بسم اللهالر جمن الرجيم

فصل دوازدهم

حدود محاسبات الگوريتمي (١)

Limits of Algorithmic Computation (1)

کاظم فولادی kazim@fouladi.ir دانشکدهی مهندسی برق و کامپیوتر دانشگاه تهران

نظریهی زبانها و ماشینها

Decidability

Consider problems with answer YES or NO

Examples:

 \cdot Does Machine M have three states?

• Is string W a binary number?

• Does DFA M accept any input?

A problem is decidable if some Turing machine Solves (decides) the problem

- Decidable problems:
 - Does Machine M have three states?

- Is string W a binary number?
- Does DFA M accept any input?

The Turing machine that solves a problem answers YES or NO for each instance

The machine that decides a problem:

If the answer is YES
then halts in a <u>yes state</u>

 If the answer is NO then halts in a <u>no state</u>

These states may not be final states

Turing Machine that decides a problem

YES and NO states are halting states

Difference between Recursive Languages and Decidable problems

For decidable problems: The YES states may not be final states Some problems are undecidable:

There is no Turing Machine that solves all instances of the problem A simple undecidable problem:

The membership problem

The Membership Problem

Input: •Turing Machine M •String w

Question: Does M accept w?

The membership problem is undecidable

Proof: Assume for contradiction that the membership problem is decidable

There exists a Turing Machine H that solves the membership problem

Let L be a recursively enumerable language

Let M be the Turing Machine that accepts L

We will prove that L is also recursive:

we will describe a Turing machine that accepts L and halts on any input

Turing Machine that accepts L and halts on any input

Therefore, L is recursive

Since L is chosen arbitrarily, we have proven that every recursively enumerable language is also recursive

But there are recursively enumerable languages which are not recursive

Contradiction!!!!

Therefore, the membership problem is undecidable

END OF PROOF

A famous undecidable problem:

The halting problem

The Halting Problem

Input: •Turing Machine M •String w

Question: Does M halt on w?

The halting problem is undecidable

Proof: Assume for contradiction that the halting problem is decidable

There exists Turing Machine H that solves the halting problem

Construction of H

Construct machine H':

If H returns YES then loop forever

If H returns NO then halt

Construct machine \hat{H} :

Input: W_M (machine M)

If M halts on input W_M

Then loop forever

Else halt

Run machine \hat{H} with input itself:

Input: $W_{\hat{H}}$ (machine \hat{H})

If \hat{H} halts on input $w_{\hat{H}}$ <u>Then</u> loop forever

Else halt

\hat{H} on input $w_{\hat{H}}$:

If \hat{H} halts then loops forever If \hat{H} doesn't halt then it halts

NONSENSE !!!!!

Therefore, we have contradiction

The halting problem is undecidable

Another proof of the same theorem:

If the halting problem was decidable then every recursively enumerable language would be recursive

The halting problem is undecidable

Proof: Assume for contradiction that the halting problem is decidable

There exists Turing Machine H that solves the halting problem

Let L be a recursively enumerable language

Let M be the Turing Machine that accepts L

We will prove that L is also recursive:

we will describe a Turing machine that accepts L and halts on any input

Turing Machine that accepts L and halts on any input

Therefore L is recursive

Since L is chosen arbitrarily, we have proven that every recursively enumerable language is also recursive

But there are recursively enumerable languages which are not recursive

Contradiction!!!!

Therefore, the halting problem is undecidable

END OF PROOF
Reducibility

Problem A is reduced to problem B

If we can solve problem B then we can solve problem A

Problem A is reduced to problem BIf R is decidable then A is decidable

If A is undecidable then B is undecidable

Example:

the halting problem

is reduced to

the state-entry problem

The state-entry problem

Inputs: • Turing Machine M

- \cdot State q
- •String W

Question: Does M enter state q on input w?

The state-entry problem is undecidable

Proof: Reduce the halting problem to the state-entry problem

Suppose we have a Decider for the state-entry algorithm:

We want to build a decider for the halting problem:

We want to reduce the halting problem to the state-entry problem:

Halting problem decider

We need to convert one problem instance to the other problem instance

Halting problem decider

Convert M to M':

•Add new state q

 \cdot From any halting state of M add transitions to q

M' halts on state q on input w

We reduced the halting problem to the state-entry problem

Since the halting problem is undecidable, the state-entry problem is undecidable

Another example:

the halting problem

is reduced to

the blank-tape halting problem

The blank-tape halting problem

Input: Turing Machine M

Question: Does M halt when started with a blank tape?

Theorem:

The blank-tape halting problem is undecidable

Proof: Reduce the halting problem to the blank-tape halting problem

Suppose we have a decider for the blank-tape halting problem:

We want to build a decider for the halting problem:

We want to reduce the halting problem to the blank-tape halting problem:

Halting problem decider YES M_w→Blank-tape halting problem decider YES NO NO

We need to convert one problem instance to the other problem instance

Halting problem decider

Construct a new machine M_{W}

- When started on blank tape, writes W
- Then continues execution like M

M halts on input string W

 M_{W} halts when started with blank tape

Halting problem decider

We reduced the halting problem to the blank-tape halting problem

Since the halting problem is undecidable, the blank-tape halting problem is undecidable

END OF PROOF

Summary of Undecidable Problems Halting Problem:

Does machine M halt on input w?

Membership problem: Does machine M accept string W? Blank-tape halting problem:

Does machine M halt when starting on blank tape?

State-entry Problem:

Does machine M enter state q on input w?

Uncomputable Functions

Uncomputable Functions

A function is uncomputable if it cannot be computed for all of its domain

An uncomputable function:

 $f(n) = \begin{cases} maximum number of moves until \\ any Turing machine with n states \\ halts when started with the blank tape \end{cases}$

Theorem: Function f(n) is uncomputable

Proof: Assume for contradiction that f(n) is computable

Then the blank-tape halting problem is decidable

Decider for blank-tape halting problem: Input: machine M

- 1. Count states of M: m
- 2. Compute f(m)
- 3. Simulate M for f(m) steps starting with empty tape
 - If M halts then return YES otherwise return NO

Therefore, the blank-tape halting problem is decidable

However, the blank-tape halting problem is undecidable

Contradiction!!!

Therefore, function f(n) in uncomputable

END OF PROOF

Undecidable Problems for Recursively Enumerable Languages

Take a recursively enumerable language L

Decision problems:

- L is finite?
- $\cdot L$ contains two different strings of the same length?

All these problems are undecidable
Theorem:

For any recursively enumerable language L it is undecidable to determine whether L is empty

Proof:

We will reduce the membership problem to this problem Let M be the TM with L(M) = L

Suppose we have a decider for the empty language problem:

We will build the decider for the membership problem:

We want to reduce the membership problem to the empty language problem:

Membership problem decider

We need to convert one problem instance to the other problem instance

Membership problem decider

Construct machine M_{W} :

On arbitrary input string S

 M_w executes the same as with MWhen M enters a final state, compare s with w

Accept only if s = W

$$w \in L$$
 if and only if

$L(M_w)$ is not empty

$$L(M_w) = \{w\}$$

Membership problem decider

END OF PROOF