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Decidability



Consider problems with answer YES or NO

Examples:
» Does Machine M have three states ?

» Is string W a binary number?

- Does DFA M accept any input?



A problem is decidable if some Turing machine
Solves (decides) the problem

Decidable problems:
* Does Machine M have three states ?

» Is string W a binary number?

- Does DFA M accept any input?



The Turing machine that solves a problem
answers YES or NO for each instance

Input — YES
problem — Turing Machine

Instance — NO




The machine that decides a problem:

» If the answer is YES
then halts in a yes state

- If the answer is NO
then halts in a no state

These states may not be final states



Turing Machine that decides a problem

YES and NO states are halting states
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Difference between
Recursive Languages and Decidable problems

For decidable problems:

The YES states may not be final states



Some problems are undecidable:

There is no Turing Machine that
solves all instances of the problem



A simple undecidable problem:

The membership problem
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The Membership Problem

Input: -Turing Machine M

‘String W

Question:  Does M accept w?
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Theorem:

The membership problem is undecidable

Proof: Assume for contradiction that
the membership problem is decidable
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There exists a Turing Machine H
that solves the membership problem

M——

W——

—YES

— > NO

M accepts W

M rejects W
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Let L be arecursively enumerable language

Let M be the Turing Machine that accepts L

We will prove that L is also recursive:

we will describe a Turing machine that
accepts L and halts on any input
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Turing Machine that accepts |
and halts on any input

H

M accepts W ?

YES | accept W

NO

> reject W
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Therefore, L is recursive

Since L is chosen arbitrarily, we have
proven that every recursively enumerable
language is also recursive

But there are recursively enumerable
languages which are not recursive

Contradictionlil!
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Therefore, the membership problem
is undecidable
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A famous undecidable problem:

The halting problem
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The Halting Problem

Input: +Turing Machine M

‘String W

Question:  Does M halton w ?
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Theorem:

The halting problem is undecidable

Proof: Assume for contradiction that
the halting problem is decidable
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There exists Turing Machine H
that solves the halting problem

M~——

W——

—YES

— > NO

M halts on W

M doesn't W
halt on
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Construction of H

Input:
initial tape contents
Wp W

H

/O

Encoding  String
of M W

7 {Gn) NO




Construct machine H' :

If H returns YES then loop forever

If H returns NO then halt
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H’

Loop forever




Construct machine H :

Input: Wy (machine M)

If M halts oninput Wy

Then loop forever

Else halt
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copy

Wnm Wiv

H’
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Run machine H with input itself:

Input: Wp (machine H )

If H halts oninput Wy

Then loop forever

Else halt
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A

H

on input  Wp

If H halts then loops forever

If H doesn't halt then it halts
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Therefore, we have contradiction

The halting problem is undecidable
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Another proof of the same theorem:

If the halting problem was decidable then
every recursively enumerable language
would be recursive
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Theorem:

The halting problem is undecidable

Proof: Assume for contradiction that
the halting problem is decidable
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There exists Turing Machine H
that solves the halting problem

M~——

W——

—YES

— > NO

M halts on W

M doesn't W
halt on
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Let L be arecursively enumerable language

Let M be the Turing Machine that accepts L

We will prove that L is also recursive:

we will describe a Turing machine that
accepts L and halts on any input
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Turing Machine that accepts |
and halts on any input

F{

M halts on W ?

NO

> reject W

Y%
acceP'r wW

Halts on final state
Run M

with input W| reject W

Halts on non-final
state 24




Therefore L is recursive

Since L is chosen arbitrarily, we have
proven that every recursively enumerable
language is also recursive

But there are recursively enumerable
languages which are not recursive

Contradictionlil!
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Therefore, the halting problem is undecidable
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Reducibility



Problem A is reduced to problem B

If we can solve problem B then
we can solve problem A

B

(20
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Problem A is reduced to problem B

!

If B is decidable then A is decidable

!

If A isundecidable then B is undecidable
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Example:

the halting problem

IS reduced to

the state-entry problem
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The state-entry problem

Inputs:  -Turing Machine M
‘State (]
*String W

Question: Does M enter state Q

on input W ?
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Theorem:
The state-entry problem is undecidable

Proof: Reduce the halting problem to

the state-entry problem
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Suppose we have a Decider
for the state-entry algorithm:

state-entry
problem

YES, M enters g

NO

" M

doesn't
enter
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We want to build a decider
for the halting problem:

M—.

Halting problem

YES, M halts on W

NO

" M

doesn't
halt on
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We want to reduce the halting problem to

the state-entry problem:

Halting problem

M-— YE

9

W

>

>

State-entry
problem

YES

YES

NO

NO .,
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We need to convert one problem instance
to the other problem instance

Halting problem

YES

YES

State-entry
problem

NO

NO .,
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Convert M +0 M':
-Add new state (

‘From any halting state of M add transitions to Q

I\/I /
(O—_
\
Mo O
(O—"T single
halting states halt state
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M halts on input W

. T
if and

only if
S

M’ halts on state Q on input W
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Halting problem

Generate
M /

g/l’ State-entry VES YES>
» problem
w | 7 no [NO |
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We reduced the halting problem
to the state-entry problem

Since the halting problem is undecidable,
the state-entry problem is undecidable
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Another example:

the halting problem

IS reduced to

the blank-tape halting problem
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The blank-tape halting problem

Input: Turing Machine M

Question: Does M halt when started with
a blank tape?
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Theorem:
The blank-tape halting problem is undecidable

Proof: Reduce the halting problem to the

blank-tape halting problem
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Suppose we have a decider for the
blank-tape halting problem:

blank-tape
halting problem
decider

VES M halts on

> blank tape

NO, M doesn't halt

on blank tape
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We want to build a decider
for the halting problem:

M—.

halting problem

YES, M halts on W

NO

" M

doesn't
halt on
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We want to reduce the halting problem to
the blank-tape halting problem:

Halting problem

M—.
Blank-tape VEs | YES
M W

»halting problem

no | NO

56



We need to convert one problem instance
to the other problem instance

Halting problem

vEs | YES

Blank-tape
halting problem

no | NO
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Construct a new machine M,

* When started on blank tape, writes W

- Then continues execution like M

M w

step 1 step?
if blank tape execute M

thenwrite W | | with input W
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M halts on input string W

. T
if and

only if
S

Mw halts when started with blank tape
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Halting problem

Generate

M w

M

>

blank-tape
halting problem

YES

YES

NO

NO
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We reduced the halting problem
to the blank-tape halting problem

Since the halting problem is undecidable,
the blank-tape halting problem is undecidable
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Summary of Undecidable Problems
Halting Problem:

Does machine M halt on input W ?

Membership problem:
Does machine M accept string W ?
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Blank-tape halting problem:

Does machine M halt when starting
on blank tape?

State-entry Problem:

Does machine M enter state O
on input W ?
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Uncomputable Functions



Uncomputable Functions

Values
region

Domain

A function is uncomputable if it cannot
be computed for all of its domain
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An uncomputable function:

‘maximum number of moves until
f (n) =< any Turing machine with N states
_halts when started with the blank tape
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Theorem: Function f(N) is uncomputable

Proof: Assume for contradiction that
f (n) is computable

Then the blank-tape halting problem
is decidable
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Decider for blank-tape halting problem:
Input: machine M

1. Count statesof M: m

2. Compute f(m)

3. Simulate M for f(M) steps
starting with empty tape

If M halts then return YES
otherwise return NO
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Therefore, the blank-tape halting
problem is decidable

However, the blank-tape halting
problem is undecidable

Contradiction!ll
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Therefore, function f(N) inuncomputable
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Undecidable Problems
for
Recursively Enumerable Languages
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Take a recursively enumerable language L

Decision problems:

- L is finite?

- L contains two different strings
of the same length?

All these problems are undecidable
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Theorem:

For any recursively enumerable language L
it is undecidable to determine whether

L is empty

Proof:

We will reduce the membership problem
to this problem
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Let M bethe TMwith L(M)=L

Suppose we have a decider for the
empty language problem:

empty language
problem

YES, L(M) empty

NO, | (M) not empty

74



We will build the decider for the

membership problem:

M—.

membership
problem

YVES, M accepts W

NO

" M rejects W
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We want to reduce the membership problem to

the empty language problem:

Membership problem

YES

NO

M,y | empty language
— " problem
W — NO

YES
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We need to convert one problem instance

to the other problem instance

Membership problem

empty language
problem

YES

NO

NO

YES
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Construct machine M, :

On arbitrary input string S

M,, executes the same as with M

When M enters a final state,
compare S with W

Accept only if S=W
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We L

. T
if and

only if
S

L(M,,) is not empty

L(M,,) ={w}
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Membership problem decider

construct

Mw

empty language
problem
decider

YES

NO

NO

YES

END OF PROOF
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