eyl o ylldlll g o

Limits of Algorithmic Computation (1)

3 58 ’A.B‘S
kazim@fouladi.ir
FoelS 5 B (suige souStils
O N

SomelS 5 3o redige oSl Lagaale 5 Lagl) sk

Decidability

Consider problems with answer YES or NO

Examples:
» Does Machine M have three states ?

» Is string W a binary number?

- Does DFA M accept any input?

A problem is decidable if some Turing machine
Solves (decides) the problem

Decidable problems:
* Does Machine M have three states ?

» Is string W a binary number?

- Does DFA M accept any input?

The Turing machine that solves a problem
answers YES or NO for each instance

Input — YES
problem — Turing Machine

Instance — NO

The machine that decides a problem:

» If the answer is YES
then halts in a yes state

- If the answer is NO
then halts in a no state

These states may not be final states

Turing Machine that decides a problem

YES and NO states are halting states

7

Difference between
Recursive Languages and Decidable problems

For decidable problems:

The YES states may not be final states

Some problems are undecidable:

There is no Turing Machine that
solves all instances of the problem

A simple undecidable problem:

The membership problem

10

The Membership Problem

Input: -Turing Machine M

‘String W

Question: Does M accept w?

11

Theorem:

The membership problem is undecidable

Proof: Assume for contradiction that
the membership problem is decidable

12

There exists a Turing Machine H
that solves the membership problem

M——

W——

—YES

— > NO

M accepts W

M rejects W

13

Let L be arecursively enumerable language

Let M be the Turing Machine that accepts L

We will prove that L is also recursive:

we will describe a Turing machine that
accepts L and halts on any input

14

Turing Machine that accepts |
and halts on any input

H

M accepts W ?

YES | accept W

NO

> reject W

15

Therefore, L is recursive

Since L is chosen arbitrarily, we have
proven that every recursively enumerable
language is also recursive

But there are recursively enumerable
languages which are not recursive

Contradictionlil!

16

Therefore, the membership problem
is undecidable

17

A famous undecidable problem:

The halting problem

18

The Halting Problem

Input: +Turing Machine M

‘String W

Question: Does M halton w ?

19

Theorem:

The halting problem is undecidable

Proof: Assume for contradiction that
the halting problem is decidable

20

There exists Turing Machine H
that solves the halting problem

M~——

W——

—YES

— > NO

M halts on W

M doesn't W
halt on

21

Construction of H

Input:
initial tape contents
Wp W

H

/O

Encoding String
of M W

7 {Gn) NO

Construct machine H' :

If H returns YES then loop forever

If H returns NO then halt

23

H’

Loop forever

Construct machine H :

Input: Wy (machine M)

If M halts oninput Wy

Then loop forever

Else halt

25

copy

Wnm Wiv

H’

26

Run machine H with input itself:

Input: Wp (machine H)

If H halts oninput Wy

Then loop forever

Else halt

27

A

H

on input Wp

If H halts then loops forever

If H doesn't halt then it halts

28

Therefore, we have contradiction

The halting problem is undecidable

29

Another proof of the same theorem:

If the halting problem was decidable then
every recursively enumerable language
would be recursive

30

Theorem:

The halting problem is undecidable

Proof: Assume for contradiction that
the halting problem is decidable

31

There exists Turing Machine H
that solves the halting problem

M~——

W——

—YES

— > NO

M halts on W

M doesn't W
halt on

32

Let L be arecursively enumerable language

Let M be the Turing Machine that accepts L

We will prove that L is also recursive:

we will describe a Turing machine that
accepts L and halts on any input

33

Turing Machine that accepts |
and halts on any input

F{

M halts on W ?

NO

> reject W

Y%
acceP'r wW

Halts on final state
Run M

with input W| reject W

Halts on non-final
state 24

Therefore L is recursive

Since L is chosen arbitrarily, we have
proven that every recursively enumerable
language is also recursive

But there are recursively enumerable
languages which are not recursive

Contradictionlil!

35

Therefore, the halting problem is undecidable

36

Reducibility

Problem A is reduced to problem B

If we can solve problem B then
we can solve problem A

B

(20

38

Problem A is reduced to problem B

!

If B is decidable then A is decidable

!

If A isundecidable then B is undecidable

39

Example:

the halting problem

IS reduced to

the state-entry problem

40

The state-entry problem

Inputs: -Turing Machine M
‘State (]
*String W

Question: Does M enter state Q

on input W ?

41

Theorem:
The state-entry problem is undecidable

Proof: Reduce the halting problem to

the state-entry problem

42

Suppose we have a Decider
for the state-entry algorithm:

state-entry
problem

YES, M enters g

NO

" M

doesn't
enter

43

We want to build a decider
for the halting problem:

M—.

Halting problem

YES, M halts on W

NO

" M

doesn't
halt on

44

We want to reduce the halting problem to

the state-entry problem:

Halting problem

M-— YE

9

W

>

>

State-entry
problem

YES

YES

NO

NO .,

45

We need to convert one problem instance
to the other problem instance

Halting problem

YES

YES

State-entry
problem

NO

NO .,

46

Convert M +0 M':
-Add new state (

‘From any halting state of M add transitions to Q

I\/I /
(O—_
\
Mo O
(O—"T single
halting states halt state

47

M halts on input W

. T
if and

only if
S

M’ halts on state Q on input W

48

Halting problem

Generate
M /

g/l’ State-entry VES YES>
» problem
w | 7 no [NO |

49

We reduced the halting problem
to the state-entry problem

Since the halting problem is undecidable,
the state-entry problem is undecidable

50

Another example:

the halting problem

IS reduced to

the blank-tape halting problem

o1

The blank-tape halting problem

Input: Turing Machine M

Question: Does M halt when started with
a blank tape?

52

Theorem:
The blank-tape halting problem is undecidable

Proof: Reduce the halting problem to the

blank-tape halting problem

53

Suppose we have a decider for the
blank-tape halting problem:

blank-tape
halting problem
decider

VES M halts on

> blank tape

NO, M doesn't halt

on blank tape

54

We want to build a decider
for the halting problem:

M—.

halting problem

YES, M halts on W

NO

" M

doesn't
halt on

55

We want to reduce the halting problem to
the blank-tape halting problem:

Halting problem

M—.
Blank-tape VEs | YES
M W

»halting problem

no | NO

56

We need to convert one problem instance
to the other problem instance

Halting problem

vEs | YES

Blank-tape
halting problem

no | NO

57

Construct a new machine M,

* When started on blank tape, writes W

- Then continues execution like M

M w

step 1 step?
if blank tape execute M

thenwrite W | | with input W

58

M halts on input string W

. T
if and

only if
S

Mw halts when started with blank tape

59

Halting problem

Generate

M w

M

>

blank-tape
halting problem

YES

YES

NO

NO

60

We reduced the halting problem
to the blank-tape halting problem

Since the halting problem is undecidable,
the blank-tape halting problem is undecidable

61

Summary of Undecidable Problems
Halting Problem:

Does machine M halt on input W ?

Membership problem:
Does machine M accept string W ?

62

Blank-tape halting problem:

Does machine M halt when starting
on blank tape?

State-entry Problem:

Does machine M enter state O
on input W ?

63

Uncomputable Functions

Uncomputable Functions

Values
region

Domain

A function is uncomputable if it cannot
be computed for all of its domain

65

An uncomputable function:

‘maximum number of moves until
f (n) =< any Turing machine with N states
_halts when started with the blank tape

66

Theorem: Function f(N) is uncomputable

Proof: Assume for contradiction that
f (n) is computable

Then the blank-tape halting problem
is decidable

67

Decider for blank-tape halting problem:
Input: machine M

1. Count statesof M: m

2. Compute f(m)

3. Simulate M for f(M) steps
starting with empty tape

If M halts then return YES
otherwise return NO

68

Therefore, the blank-tape halting
problem is decidable

However, the blank-tape halting
problem is undecidable

Contradiction!ll

69

Therefore, function f(N) inuncomputable

70

Undecidable Problems
for
Recursively Enumerable Languages

71

Take a recursively enumerable language L

Decision problems:

- L is finite?

- L contains two different strings
of the same length?

All these problems are undecidable

72

Theorem:

For any recursively enumerable language L
it is undecidable to determine whether

L is empty

Proof:

We will reduce the membership problem
to this problem

73

Let M bethe TMwith L(M)=L

Suppose we have a decider for the
empty language problem:

empty language
problem

YES, L(M) empty

NO, | (M) not empty

74

We will build the decider for the

membership problem:

M—.

membership
problem

YVES, M accepts W

NO

" M rejects W

75

We want to reduce the membership problem to

the empty language problem:

Membership problem

YES

NO

M,y | empty language
— " problem
W — NO

YES

76

We need to convert one problem instance

to the other problem instance

Membership problem

empty language
problem

YES

NO

NO

YES

77

Construct machine M, :

On arbitrary input string S

M,, executes the same as with M

When M enters a final state,
compare S with W

Accept only if S=W

78

We L

. T
if and

only if
S

L(M,,) is not empty

L(M,,) ={w}

79

Membership problem decider

construct

Mw

empty language
problem
decider

YES

NO

NO

YES

END OF PROOF

80

