
Jeffrey T. Pollock

Learn to:
• Recognize how the Semantic Web differs

from the traditional Internet

• Make sense of the technology, with
simple hands-on exercises

• Identify applications for Semantic
Web technology

Receive $100 off the registration fee for
SemTech Conference — see inside
for details

Semantic Web
Making Everything Easier!™

 Open the book and find:

• What defines Web 3.0

• A quick primer on tech
specifications

• How business will change as the
Semantic Web takes hold

• Ten common Semantic Web myths

• How to sort the hype from the
reality

• Interesting case studies of early
Semantic Web successes

• Key priorities for CIOs

• How familiar technologies fit with
the Semantic Web

Jeffrey T. Pollock is a software industry veteran whose startup experience

and standards community leadership have helped the Semantic Web go

from ivory tower to industrial strength. Currently he manages the data

integration product portfolio for Oracle and consults with key clients about

their Semantic Web strategies.

$29.99 US / $35.99 CN / £19.99 UK

ISBN 978-0-470-39679-7

Internet/Web Page Design

Go to dummies.com®

for more!

Get up to speed on the
most exciting evolution
in the history of the Internet
Meet the Web of tomorrow — today! The Semantic Web
completely changes how we interact with data in the
vastness of the Internet. So whether you’re a consumer
doing research online, a business owner who wants to offer
your customers the most useful Web site, or an IT manager
eager to understand Semantic Web solutions, this book is
the place to start!

• What’s Web 3.0? — explore how the Internet has evolved and
where it’s going

• Change is coming — know how the typical Internet user will
recognize the effects of the Semantic Web

• Data or documents? — see how the Semantic Web is about data
while the “old” Internet was about documents

• It’s business — explore the data Web’s many benefits to
businesses

• Speak the language — get into the languages that make it all
work: Resource Description Framework (RDF) and Web Ontology
Language (OWL)

• Jobs, jobs, jobs — sneak a peek at the variety of information
workers that will be needed in our data-driven economy

• Some geeky stuff — tour the architectures, strategies, and
standards involved in Semantic Web technology

• Already there — look at existing Semantic Web sites

Sem
antic W

eb

Pollock

spine=.864”

01_396797-ffirs.indd iv01_396797-ffirs.indd iv 2/13/09 6:42:23 PM2/13/09 6:42:23 PM

by Jeff rey T. Pollock

Semantic Web
FOR

DUMmIES
‰

01_396797-ffirs.indd i01_396797-ffirs.indd i 2/13/09 6:42:23 PM2/13/09 6:42:23 PM

Semantic Web For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009922582

ISBN: 978-0-470-39679-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_396797-ffirs.indd ii01_396797-ffirs.indd ii 2/13/09 6:42:23 PM2/13/09 6:42:23 PM

www.wiley.com
www.wiley.com/go/permissions

About the Author
Jeffrey T. Pollock is a technology visionary and author of the enterprise soft-

ware books Semantic Web For Dummies and Adaptive Information (both pub-

lished by Wiley). Currently a Senior Director with Oracle’s Fusion Middleware

group, responsible for management of Oracle’s data integration product

portfolio, Mr. Pollock was formerly an independent systems architect for the

Defense Department and Vice President of Technology at Cerebra and Chief

Technology Offi cer of Modulant, developing semantic middleware platforms

and inference-driven SOA platforms since 2001. Throughout his career, he

has architected, designed, and built application server/middleware solutions

for Fortune 500 and U.S. Government clients. Previously, Mr. Pollock was a

Principal Engineer with Modem Media and Senior Architect with Ernst &

Young’s Center for Technology Enablement. He is a frequent speaker at

industry conferences, author for industry journals, active member of W3C

and OASIS, and formerly an engineering instructor with UC Berkeley’s

Extension for object-oriented systems, software development process, and

enterprise systems architecture.

01_396797-ffirs.indd iii01_396797-ffirs.indd iii 2/13/09 6:42:23 PM2/13/09 6:42:23 PM

01_396797-ffirs.indd iv01_396797-ffirs.indd iv 2/13/09 6:42:23 PM2/13/09 6:42:23 PM

Dedication
For my family: Kathryn, Carson, Sienna, and Sirus. Especially for my wife,

who as a former ontologist is more understanding and patient than most

people could ever be with a semantics-obsessed husband. Without her love

and support, this book would not have been possible.

Author’s Acknowledgments
Semantic Web is a passion for me. Without the inspiration of Tim Berners-

Lee, Jim Hendler, Ora Lassila, Deb McGuinness, Ian Horrocks, and others

like them, I would not have ever embraced this vision for the future. Without

people like Nova Spivack, Mark Greaves, Eric Miller, and Dean Allemang con-

stantly evangelizing and refi ning the way we all talk about the Semantic Web

vision, I would not have been able to simplify and distill my own thoughts

into a coherent whole. Finally, I owe very special thanks to Samir A. Batla and

David Provost, whose contributions to several chapters in this book have

made it a better work, more practical and more encompassing of the full

scope of the Semantic Web.

01_396797-ffirs.indd v01_396797-ffirs.indd v 2/13/09 6:42:23 PM2/13/09 6:42:23 PM

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form

located at http://dummies.custhelp.com. For other comments, please contact our Customer

Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax

317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial

Project Editor: Kim Darosett

Acquisitions Editor: Katie Mohr

Copy Editor: Virginia Sanders

Technical Editor: Samir A. Batla

Editorial Manager: Leah Cameron

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant

(www.the5thwave.com)

Composition Services

Project Coordinator: Erin Smith

Layout and Graphics: Samantha K. Allen,

Reuben W. Davis, Cheryl Grubbs,

Christine Williams

Proofreaders: Jessica Kramer, Toni Settle

Indexer: Potomac Indexing, LLC

Special Help

 Linda Morris

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_396797-ffirs.indd vi01_396797-ffirs.indd vi 2/13/09 6:42:23 PM2/13/09 6:42:23 PM

Contents at a Glance
Introduction .. 1

Part I: Welcome to the Future of Data and the Web 7
Chapter 1: Getting the Gist of the Semantic Web .. 9

Chapter 2: The Semantic Web in Your Life ... 25

Chapter 3: The Data Web at Work for Business ... 43

Part II: Catch the Wave of Smart Data Today 67
Chapter 4: A Quick Semantic Web Primer .. 69

Chapter 5: Why the Semantic Web Is New Technology, Not Hype............................ 89

Chapter 6: The Problem with Metadata .. 117

Part III: Building the Semantic Web 151
Chapter 7: Using the Resource Description Framework (RDF) 153

Chapter 8: Speaking the Web Ontology Language ... 181

Chapter 9: Exploring Semantic Web Enablers .. 225

Part IV: Putting the Semantic Web to Work 247
Chapter 10: The Rise of the Information Worker ... 249

Chapter 11: Discovering the Enterprise Semantic Web .. 269

Chapter 12: Scalable Architectures ... 295

Chapter 13: Assessment Strategies ... 315

Chapter 14: Exploring the Limitations of the Semantic Web 329

Chapter 15: A Guide to Essential Vendor Implementations 339

Part V: The Part of Tens ... 365
Chapter 16: Ten Myths About the Semantic Web ... 367

Chapter 17: Ten Things to Look Forward to Beyond Web 2.0 377

Chapter 18: Ten Next Steps to Take from Here.. 387

Index .. 395

02_396797-ftoc.indd vii02_396797-ftoc.indd vii 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

02_396797-ftoc.indd viii02_396797-ftoc.indd viii 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

Table of Contents
Introduction ... 1

About This Book .. 1

Conventions Used in This Book ... 2

Foolish Assumptions ... 2

How to Use This Book ... 3

How This Book Is Organized .. 3

Part I: Welcome to the Future of Data and the Web 4

Part II: Catch the Wave of Smart Data Today 4

Part III: Building the Semantic Web ... 4

Part IV: Putting the Semantic Web to Work .. 4

Part V: The Part of Tens .. 5

Icons Used in This Book ... 5

Where to Go from Here ... 5

Part I: Welcome to the Future of Data and the Web 7

Chapter 1: Getting the Gist of the Semantic Web.9
Exploring Different Ways of Looking at the Semantic Web 10

Finding the Connection to Web 3.0 ... 10

Exploring the Business Side of Semantics .. 12

Setting Information Free ... 12

Rebirthing Artifi cial Intelligence .. 13

Checking Out the Semantic Web’s Origin ... 13

Unpacking Semantic Web Baggage .. 14

Infl ated hype and expectations .. 14

The legacy of artifi cial intelligence .. 15

Politics of standards movements .. 15

Instilling Simplicity in Complex Data .. 16

Seeing the Semantic Web’s Starring Role in Web 3.0

Showcase Applications ... 16

Linked open data in the cloud .. 17

Active metadata in business systems ... 18

Bridges across global standards .. 19

Cutting-edge research and development for nation states 20

Recognizing Compelling Reasons for the Semantic Web 21

Make your life simpler ... 22

Save money and time .. 22

Do new projects faster .. 23

02_396797-ftoc.indd ix02_396797-ftoc.indd ix 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

Semantic Web For Dummies x
Chapter 2: The Semantic Web in Your Life .25

Taking a Look at How the Web Is Used Daily ... 26

Exploring the Web 2.0 Movement and What It Means 27

An Internet microbubble... 27

Web 2.0: Technological or social? ... 28

Defi ning the Features of Web 3.0 — the Semantic Web 28

Checking Out Some Ahead-of-the-Curve Semantic Web Sites 32

Yahoo! Search with SearchMonkey ... 32

Twine: Interest networking ... 32

TripIt: Travel aggregator ... 33

ZoomInfo: People fi nder .. 33

Dapper: Mashups and semantics ... 33

Peering into the Crystal Ball of the Semantic Web 34

Semantic Web desktop applications ... 34

Semantic blogging .. 36

Semantic wikis .. 37

Semantic search engines... 38

Semantic news feeds and publishing .. 40

Semantic social networks ... 41

Chapter 3: The Data Web at Work for Business43
Getting a Handle on Enterprise Data Challenges and Opportunities 44

Understanding the Difference between Information and Data 46

Evaluating the Web in Your Current Systems .. 47

Maintaining existing business applications...................................... 49

CIO priorities and decision making ... 50

Grasping the Vision of the Semantic Web at Work 51

Flourishing in a Semantic Web Utopia .. 53

Semantic Web applications .. 54

Semantic Web databases .. 55

Semantic Web integration ... 55

Semantic Web directories ... 55

Semantic Web policies and data security ... 56

Discovering Why Semantics Are for Everyday Businesspeople 56

Commercial trading alliances ... 57

National security programs .. 57

Business operations .. 57

Making the Semantic Web Choice Now .. 58

Understanding why people buy enterprise

business software .. 58

Seeing the technical superiority of the Semantic Web 63

Discovering the Semantic Web as a foundation

for modern business .. 66

02_396797-ftoc.indd x02_396797-ftoc.indd x 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

xi Table of Contents

Part II: Catch the Wave of Smart Data Today 67

Chapter 4: A Quick Semantic Web Primer. .69
Getting Started with RDF Data ... 69

Making a statement (or two!) ... 70

Behold: A federated data graph ... 72

Gleaning what the data model says ... 75

Exploring the Semantics of RDF ... 77

Discovering Languages That Use RDF .. 77

Really Simple Syndication (RSS) .. 78

Friend of a Friend (FOAF) ... 80

RDF in Attributes (RDFa) .. 81

Web Ontology Language (OWL)... 84

Other Semantic Web languages ... 86

A Little Semantics Goes a Long Way ... 87

Chapter 5: Why the Semantic Web
Is New Technology, Not Hype .89

Tracing the Roots of the Semantic Web ... 90

Realizing That the Internet Is Made Up of Pages, Not Data 91

Realizing That Web 2.0 Is for People and Semantic

Web Is for Software .. 93

Databases Mean Business; So Does Semantic Web 95

Relational databases ... 96

Columnar databases .. 99

Hierarchical databases.. 100

Graph databases .. 102

Object databases ... 102

What Semantic Web and databases have in common 104

Grasping Why SOA/Integration Is for Messages,

Not Data Structures ... 105

Message-oriented middleware (MOM) .. 106

Enterprise application integration (EAI)... 106

Service-oriented architecture (SOA) ... 106

Enterprise information integration (EII) ... 108

Extract, transform, load (ETL) ... 108

What Semantic Web has in common with

other integration technologies ... 109

Realizing That XML Is for Documents, Not Data 110

Seeing Why Object Orientation Is a Heuristic .. 112

Unifi ed Modeling Language (UML) .. 112

Java .. 113

What the Semantic Web has in common with OOP 114

Seeing a New Beginning for Artifi cial Intelligence (AI) 114

Grasping How Semantic Web Is New and Different 115

02_396797-ftoc.indd xi02_396797-ftoc.indd xi 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

Semantic Web For Dummies xii
Chapter 6: The Problem with Metadata .117

Grasping the Basics of Data and Information .. 118

Devising a Framework for Classifying Metadata 119

Level 0: Instance data and records .. 119

Level 1: Syntactic metadata .. 120

Level 2: Structural metadata .. 120

Level 3: Referent metadata ... 121

Level 4: Domain metadata... 122

Logic and Rules in Your Metadata .. 123

How rules differ from logics ... 123

Modeling constraints ... 123

Discovering the Many Types of Metadata .. 124

Web metadata: HTML, XML, and Web services 125

Database metadata: OLTP, OLAP, and so on 126

Object-oriented language metadata: C# and Java 126

Programming framework metadata: IBM EMF,

and Oracle ADF ... 129

Mainframe system metadata: Copybooks and JCL 131

Network and protocol metadata: TCP, IP, HTTP, and FTP 134

OMG metadata: CWM/IMM, MOF, and MDA 135

W3C metadata: Web infrastructure metadata 141

ISO metadata: 10303, 11179, Dublin Core, and others 142

OASIS metadata: SAML, UDDI, and so on .. 145

Industry vocabularies ... 146

Semantics and Metadata ... 147

Semantic Web model theory in a minute .. 147

Entailment, expressiveness, and closure.. 148

Decidability ... 149

Seeing the Semantic Web as a Superset for Metadata 149

Part III: Building the Semantic Web 151

Chapter 7: Using the Resource Description Framework (RDF) 153
Breaking It Down to the R, to the D, to the F .. 153

Triplify me! .. 154

Universal Resource Identifi er (URI) ... 156

Viewing RDF Data as a Graph ... 157

Understanding That RDF Is XML ... 160

Using Typed Literals ... 163

Identifying the Type of Resource .. 164

Describing Stuff with RDF Schema .. 166

02_396797-ftoc.indd xii02_396797-ftoc.indd xii 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

xiii Table of Contents

Discovering Other Triple Formats: N3, Turtle, and N-Triples 169

N3 ... 169

Turtle ... 170

N-Triples .. 170

Specializing in Microformats, RDFa, eRDF, and GRDDL 171

Microformats .. 171

RDFa ... 172

eRDF ... 174

GRDDL ... 175

Extracting the RDF ... 175

Getting to Know the Strengths of RDF .. 176

Seeing Why RDF Is Only the Tip of the Iceberg 179

Chapter 8: Speaking the Web Ontology Language.181
Introducing OWL ... 181

Discovering the Various Species of OWL ... 184

Exploring the Foundations of OWL ... 185

Open-world assumption .. 185

OWL is monotonic ... 186

Understanding OWL Essentials ... 187

Individuals (Also known as instances).. 187

Properties: Datatype and object .. 189

Classes ... 193

Making Simple Assertions .. 200

Equivalence .. 200

Disjointness .. 202

Subsumption... 204

Inconsistency ... 207

Examining Property Characteristics ... 208

Functional ... 209

Inverse ... 210

Symmetric ... 211

Transitive .. 211

Complex Classes .. 212

Intersection (And) ... 212

Union (Or) ... 213

Complement (Not) ... 214

Restriction classes ... 215

Domain and range .. 218

Distinguishing Necessary from Necessary and Suffi cient 219

Understanding Why OWL Is Different ... 221

Precision ... 221

Dynamism ... 222

Expressiveness ... 222

Developing OWL Ontologies .. 223

02_396797-ftoc.indd xiii02_396797-ftoc.indd xiii 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

Semantic Web For Dummies xiv
Chapter 9: Exploring Semantic Web Enablers 225

Revisiting the Semantic Web Stack ... 225

Unicode and URI... 227

XML .. 227

RDF and RDFS ... 227

OWL ... 228

SPARQL ... 228

RIF and SWRL ... 228

Unifying Logic layer ... 229

Proof, trust, and cryptography .. 229

GRDDL, SAWSDL, RDFa, and SKOS .. 230

Digging a Bit Deeper into SPARQL ... 230

Developing Easy RDF Models ... 232

Protégé .. 233

XML Spy SemanticWorks .. 233

TopBraid Composer .. 234

Finding Out Why Business Rules Are a Good Thing 235

RIF: A family of dialects ... 236

Non-monotonic reasoning .. 237

Fuzzy logics, statistical mining, and how they

relate to the Semantic Web ... 239

Grappling with Natural Language Processing (NLP) 240

Enabling New Operational Models .. 241

Handling uncertainty ... 242

Dynamic classifi cation .. 242

Ad hoc modeling and browsing ... 243

Unstructured data pipeline .. 243

Open-source data ... 244

Setting the Truthiness Dial ... 244

Part IV: Putting the Semantic Web to Work................ 247

Chapter 10: The Rise of the Information Worker 249
Taking a Look at the Global 2000 ... 250

Understanding the Tactical Role of Information

in Business Economics .. 251

Getting to Know the Types of Information Workers 252

Business analysts ... 253

Corporate librarians .. 254

Taxonomists ... 255

Ontologists.. 256

Information architects... 257

Data stewards ... 258

Database architects (DBAs) ... 259

02_396797-ftoc.indd xiv02_396797-ftoc.indd xiv 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

xv Table of Contents

Understanding the Needs of the Information-Centric Company 260

Automotive manufacturing ... 260

Consumer packaged goods... 261

Publishing ... 262

Financial services... 262

Energy/oil and gas ... 263

Aiding Information Workers with the Semantic Web 263

Search optimization ... 264

Business intelligence ... 264

Metadata management .. 266

Data accuracy and quality .. 267

Enterprise content visibility ... 267

Forecasting the Information Worker of Tomorrow 268

Chapter 11: Discovering the Enterprise Semantic Web 269
Discovering the Roles within the Software Industry 270

Creating Semantics for Enterprise Systems ... 271

Semantics for data integration ... 271

Semantics for service-oriented architectures 274

Semantics for business intelligence and data warehousing 276

Semantics for enterprise governance ... 280

Enterprise metadata on steroids ... 282

Discovering a Single Source of Truth for the Enterprise 283

OWL knowledgebase ... 284

RDFS view layer .. 286

OWL view layer .. 287

RDF knowledgebase ... 288

Hybrid implementations ... 289

Exploring Some Enterprise Semantic Web Use Cases 290

NASA: Expert locator service ... 290

Eli Lilly: Targeted drug assessment ... 291

Renault: Intelligent automobile diagnostics 292

Pfi zer: A drug compound knowledgebase 292

Finding more enterprise Semantic Web use cases 293

Chapter 12: Scalable Architectures .295
Recognizing That This Is Not Your Father’s Database 296

Noting Semantic Web Tool Patterns ... 297

Ontology as static metadata ... 297

Ontology as active metadata .. 299

Triples databases ... 301

Reasoners, inference engines, and rule systems 303

02_396797-ftoc.indd xv02_396797-ftoc.indd xv 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

Semantic Web For Dummies xvi
Scaling Semantic Web Tools .. 304

Query entailment and distribution .. 305

Rulebase speed and scale ... 305

Memory-resident knowledgebase .. 306

Relational knowledgebase .. 306

Change management and security .. 307

Understanding Patterns of Architectural Usage 307

Three-tier application approach .. 308

Data classifi cation as a service .. 309

Composite data graph ... 310

Intelligence at the edge ... 312

Buyer Beware! .. 313

Chapter 13: Assessment Strategies .315
Understanding the Business Problem .. 315

The problem requires handling of unpredictable data................. 316

The problem requires dynamic classifi cation of data 316

The problem requires ad hoc modeling and data browsing 317

The problem requires understanding unstructured data 317

The problem requires open-source data .. 318

Avoiding Common Traps in Planning Your Semantic

Web Application ... 318

Identifying Semantic Web Opportunities ... 319

Blue Ocean Strategies.. 319

Operational effi ciency strategies ... 320

Social and political implications .. 320

Technical implications .. 321

Reviewing Your Assessment Checklist ... 321

Application behavior requirements .. 321

Application interface requirements .. 323

Application development requirements ... 324

Scoring the Checklist and Understanding Benefi ts 326

Making the Decision .. 328

Chapter 14: Exploring the Limitations of the Semantic Web 329
Staying Within the Standards ... 330

Straying Outside the Standards ... 331

Realizing the Implications of a Complete Semantic Web Solution 332

Tool immaturity ... 332

Scalability limitations .. 333

Skill shortage .. 333

New patterns and anti-patterns ... 334

Making Good Choices ... 335

Partners ... 335

Timelines ... 336

Functional expectations .. 336

Sticking to Best Practices ... 337

02_396797-ftoc.indd xvi02_396797-ftoc.indd xvi 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

xvii Table of Contents

Chapter 15: A Guide to Essential Vendor Implementations 339
Consumer Web Sites ... 339

Twine ... 340

Harpers Magazine .. 341

DBpedia and DBpedia Mobile ... 343

Yahoo!.. 345

hakia .. 346

Freebase (by Metaweb)... 348

TripIt .. 349

ZoomInfo ... 350

BBC online .. 351

Business Software .. 354

Thomson Reuters Calais ... 354

Oracle Database ... 356

IBM Registry ... 357

Garlik Online Identity Protection ... 358

Dow Jones Client Solutions .. 359

Microsoft ... 360

Metatomix Semantic Integration .. 361

TopQuadrant TopBraid ... 363

Part V: The Part of Tens .. 365

Chapter 16: Ten Myths About the Semantic Web.367
The Semantic Web Is Science Fiction .. 367

The Semantic Web Is for Tagging Web Sites .. 368

The Semantic Web Will Put Google Out of Business 369

The Semantic Web Is Too Complex to Succeed 370

The Semantic Web Is a Catalog System .. 371

The Semantic Web Is an Ivory Tower Design ... 372

The Semantic Web Is Description Logic ... 373

The Semantic Web Is Artifi cial Intelligence (Again) 374

The Semantic Web Is a $20-Billion Industry ... 375

The Semantic Web Hasn’t Changed the World .. 376

Chapter 17: Ten Things to Look Forward to Beyond Web 2.0.377
More Cool Features on the Web Sites and Browsers

You Already Use ... 378

Dramatically More Scalable Digital Knowledge

and Machine Intelligence .. 379

Widespread Embedding in Enterprise Software 380

New Semantic Web Technical Standards ... 381

Greater Expressivity for Core Languages ... 381

Simple-to-Use Tools for Launching Your Own Personal Ontology 382

Developers Scrambling to Take Semantic Web Training 382

02_396797-ftoc.indd xvii02_396797-ftoc.indd xvii 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

Semantic Web For Dummies xviii
Semantic Advertising and Marketing Schemes .. 383

Technology Managers Planning for New Supporting Workfl ows 385

Explaining Web 3.0 to Your Grandmother ... 385

Chapter 18: Ten Next Steps to Take from Here.387
Try Twine .. 387

Explore Yahoo! SearchMonkey .. 387

Check Out Calais .. 388

Read Up on RDF and OWL Modeling or Attend Training 389

Read the RDF and OWL Specifi cations ... 390

Contact Your Trusted Vendors ... 391

Write Down and Assess New Ideas ... 391

Ask Zepheira .. 392

Prototype Using Open-Source and Free Software 392

Sell Your Boss on the Idea! ... 393

Index ... 395

02_396797-ftoc.indd xviii02_396797-ftoc.indd xviii 2/13/09 6:43:52 PM2/13/09 6:43:52 PM

Introduction

The Semantic Web community has a distinct feeling of manifest destiny.

Here in the early part of the 21st century, the Web is still in its infancy

(less than 20 years old), and the scope of unsolved digital data challenges

is simply enormous. To many in the software industry, myself included, it

seems inevitable that the next great Web revolution must address these

universally acknowledged data problems.

In the face of exponentially rising volumes of digital data, the existing soft-

ware solutions simply fail to provide any meaning or understanding among

all that digital noise. Today, many thousands of Semantic Web developers,

architects, and visionaries are working to bring meaning to a very messy

world of digital data.

Semantic Web is not only a vision, but also a technology, a social phenom-

enon, and a Web-scale architecture. This book aims to describe all these

aspects of the Semantic Web.

About This Book
This book is an unintimidating yet thorough introduction to the Semantic

Web. It isn’t intended to be a programmer’s desk reference or an exhaustive

how-to book. This book is written for savvy technologists and forward-think-

ing businesspeople who want to see the whole Semantic Web picture, while

still being firmly grounded in the fundamentals and reality of an emerging

technology.

Because the Semantic Web is a revolutionary path forward for data process-

ing and metadata specifications, it will have an exceptionally broad impact

on every aspect of all types of software.

This book explores the social, consumer, business, and purely technical

impacts of the Semantic Web. Unlike many programming language books that

you may have read before, this book covers the visionary and architectural

aspects of the Semantic Web in addition to the specific technology languages

and programming specifications.

03_396797-intro.indd 103_396797-intro.indd 1 2/13/09 6:44:19 PM2/13/09 6:44:19 PM

2 Semantic Web For Dummies

Conventions Used in This Book
Just about every technical book starts with a little typeface legend, and

Semantic Web For Dummies is no exception. What follows is a brief explana-

tion of the typographical conventions used in this book:

 ✓ New terms are set in italics.

 ✓ When I want you to type something or perform a step, I use bold.

 ✓ You will also see this monospaced font, which I use for code, filenames,

Web page addresses (URLs), on-screen messages, and other such

things. Also, if something you need to type is really long, it appears in

monospaced font on its own line or lines.

 ✓ For many code examples used in this book, some verbose and

unimportant syntax items may be omitted or shortened. For example,

in an RDF header, an http namespace may appear as xx:SomeName,

in this case, the xx is referring to “any namespace,” and no particular

namespace is important for the example.

Foolish Assumptions
When I wrote this book, I made a few assumptions about you, the reader.

If one of these assumptions is incorrect, you should be fine. If all of these

assumptions are incorrect . . . well, you should buy this book anyway and

give it to someone who fits the profile! (Hey, I need the money for my kids’

college fund!)

 ✓ I assume that you know little or nothing about the Semantic Web. This

book isn’t an “all things to all people” book: It’s squarely aimed at the

technically savvy, curious individual who is a novice to the Semantic

Web. If you’re brand-new to the world of semantic computing, this is the

book for you.

 ✓ I assume that you can think logically. You don’t have to be a developer

for this book to be worthwhile for you, but you have to have some sem-

blance of structured thinking. So much of the Semantic Web is based on

formal logic, that although I don’t teach math in this book, you better be

ready to think in a highly organized manner to keep up with the examples!

 ✓ I assume that you have some knowledge of the Web, business soft-

ware systems, or ideally both. Just because this book is aimed at the

Semantic Web novice doesn’t mean it’s a good book for the average

03_396797-intro.indd 203_396797-intro.indd 2 2/13/09 6:44:19 PM2/13/09 6:44:19 PM

3 Introduction

technology-hating Luddite. To get the most out of this book, you should

already be pretty familiar with the basic technical aspects of the Web

(HTML, HTTP, and so on) and be familiar with the business software sys-

tems (databases, XML, transaction systems, and so on). Understanding

why the Semantic Web is cool depends on having some of that basic

knowledge for why the existing technology isn’t perfect.

How to Use This Book
I wish I could say that you can open this book up to any page and imme-

diately begin to be productive coding the Semantic Web. In one sense this

is true — the code examples in each chapter allow you to write your own

little corner of the Semantic Web — but a significant portion of this book

is dedicated to explaining the bigger picture about the Semantic Web. To

understand why the code you’re writing is different and better than the code

you could have written with Java or XML, the bigger picture of how things fit

together is very important.

In this book, I’ve divided the content into manageable chunks. You can jump

straight to the programming parts of the book, or read about the social

implications of the Semantic Web in business and on the Web. This book

is designed as a modular reference, meaning that you can skip around to

the chapters that interest you, or you can read the book from front to back.

When I need to refer to content from another chapter, I include a note for you

to reference where you can find more details.

How This Book Is Organized
Writing a book about the Semantic Web in 2008 is like writing a book about

the Internet in 1995 — in addition to the details about technology at a

moment in time, a substantial part of the book needs to explain how vastly

different the future will be and how to prepare for that future.

The impact of the Semantic Web will be felt for decades to come. This book

is organized in such a way to help the reader understand just how much the

world of data will soon change, why the technology enables these changes,

and exactly how to use the programming languages to make those changes.

This book is divided into the following parts:

03_396797-intro.indd 303_396797-intro.indd 3 2/13/09 6:44:19 PM2/13/09 6:44:19 PM

4 Semantic Web For Dummies

Part I: Welcome to the Future
of Data and the Web
The chapters in Part I introduce you to the full scope and potential of the

Semantic Web. Chapter 1 is an introduction to the vastness of the Semantic

Web focusing on the differences between consumer and business adoption

styles. Chapter 2 explores how the typical Internet user will feel the effects of

the Semantic Web, and Chapter 3 stresses the variety of ways businesses will

change when Semantic Web data becomes more pervasive.

Part II: Catch the Wave
of Smart Data Today
This part shows you today’s Semantic Web technology with some easy exam-

ples and then explains why the new languages are so powerful for Web sites

and businesses. Chapter 4 is a quick primer on Semantic Web technology

specifications. Chapter 5 provides detailed examples of how the technology

is different than anything that came before, and Chapter 6 describes in detail

why Semantic Web metadata is the key enabler for massive software benefits.

Part III: Building the Semantic Web
Sometimes the Semantic Web can seem very complicated. In this part of the

book, I simplify the Semantic Web by breaking it down into manageable steps

that are easy to follow. Chapters 7 and 8 help you understand how to pro-

gram RDF and OWL, and Chapter 9 describes how business rules fit into the

picture.

Part IV: Putting the Semantic
Web to Work
The effects of the Semantic Web will be felt in the workplace in a myriad of

ways. New kinds of jobs will appear, and new business processes, technology

architectures, and procurement strategies will evolve as a consequence of

Semantic Web adoption. Part IV looks at some of the managerial, architectural,

and lifecycle challenges to prepare yourself for in the coming years. I also

introduce some of the definitive case studies of early Semantic Web success.

03_396797-intro.indd 403_396797-intro.indd 4 2/13/09 6:44:19 PM2/13/09 6:44:19 PM

5 Introduction

Part V: The Part of Tens
The Part of Tens is where you can easily find answers to common questions

about the Semantic Web. Chapter 16 clarifies some of the most prevalent mis-

conceptions about the Semantic Web. Chapters 17 and 18 provide guideposts

for finding today’s state of the art Semantic Web examples and also for gaug-

ing where the future advances will lead us.

Icons Used in This Book
A big part of writing a For Dummies book is the style and simplicity of how the

content is presented. As such, I use some elemental icons to help you scan and

dissect the key parts of the book. Here’s a list of the icons used in this book:

 A tip is an extra piece of information — something helpful that the other

books may forget to tell you.

 Everyone makes mistakes. Goodness knows that the Semantic Web is easy to

make mistakes with. When I think of a mistake that people are especially

prone to make, I mark it with a Warning icon.

 I’m as forgetful as anybody. Keys, names, addresses — I forget them all. There

are lots of details in the Semantic Web that you ought to remember, especially

compared with other technologies. When I want to stress a point to be remem-

bered, I use the Remember icon.

 Sometimes it’s easy to dive too deep into the technical stuff, especially in an

introductory book like this. For the more advanced readers, these may be the

most interesting parts, but if you’re a novice or you’re simply in a hurry, you

might want to skip on by. In either case, the technical commentary is labeled

with the Technical Stuff icon.

Where to Go from Here
If you’ve gotten this far, it’s time to start reading about the Semantic

Web. Think of me as your personal guide through this complex topic. I

do everything I can to simplify your experience, keep you interested and

entertained, and still give you the useful information that you want. (If you

didn’t want that info, I presume you wouldn’t be reading this book!) If you

like what you read and want to send me a note, please e-mail me at jeff@
semanticwebfordummies.com.

03_396797-intro.indd 503_396797-intro.indd 5 2/13/09 6:44:19 PM2/13/09 6:44:19 PM

6 Semantic Web For Dummies

03_396797-intro.indd 603_396797-intro.indd 6 2/13/09 6:44:19 PM2/13/09 6:44:19 PM

Part I
Welcome to the
Future of Data
and the Web

04_396797-pp01.indd 704_396797-pp01.indd 7 2/13/09 6:45:04 PM2/13/09 6:45:04 PM

In this part . . .

In the beginning there was the Web, and people liked to

surf Web sites, check e-mail, and create new software

programs for their companies. Life was good.

But soon people came to like the Web too much, and all

the data on the Web was a tantalizing resource for them

to use in new ways. But the Web was made for sharing

documents, not for sharing the data inside those pages.

And people were sad.

Then the Semantic Web was created to extend the Web

and make data easy to reuse everywhere.

In this part of the book, you begin to understand why

people will soon be happy again, and why life will be good

when information is free.

04_396797-pp01.indd 804_396797-pp01.indd 8 2/13/09 6:45:05 PM2/13/09 6:45:05 PM

Chapter 1

Getting the Gist of the
Semantic Web

In This Chapter
▶ Understanding why the Semantic Web is just another way of saying Web 3.0

▶ Looking past the hype for real solutions to real problems

▶ Discovering how the Semantic Web may change the world

▶ Figuring out how to make smart data work for you

Congratulations on your curiosity: It takes courage and open-mindedness

to even open the pages of a book with the word semantic in the title. Of

course, the title also contains the word Dummies, which lessens the intimida-

tion factor just a bit! The intent of this book is to give you a gentle and com-

plete introduction to the Semantic Web. For many people, this is just the first

step. Only a few chapters in this book have code examples — just enough

to whet your appetite in case you decide that the next step is to fire up your

trusty text editor and bang out some code. More often, I’ll be giving you a

guided tour of how the Semantic Web changes the Web as you know it, as

well as business software applications, open-source software, social network-

ing, and even everyday search engines that you’re already using.

In this chapter, I give you a general introduction to what the Semantic Web

is, how it may benefit you in your daily life, and how your job might change

because of these important developments. The Semantic Web is much more

than just a new technology; like any important subject, the Semantic Web

is a multi-faceted and sometimes controversial topic. First and foremost, it

is a Web technology platform, but it is also one of the newest incarnates of

the artificial intelligence legacy, it will become a key enabler for enterprise

software, and as a social movement, it just might change the world. But

most importantly, this chapter explains how the Semantic Web will make

your life easier.

05_396797-ch01.indd 905_396797-ch01.indd 9 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

10 Part I: Welcome to the Future of Data and the Web

Exploring Different Ways of Looking
at the Semantic Web

One of the most frustrating things about the Semantic Web for newcomers is

that it means so many different things to different people and communities.

I’ve taken special care in this book to carefully distinguish a few elemental,

but differing views of the Semantic Web. Here are some of the different ways

of looking at Semantic Web:

 ✓ As an upgrade to the current Web/Internet

 ✓ As a metadata technology for business software

 ✓ As a social movement favoring open-source data

 ✓ As a new generation of artificial intelligence

 In fact, each of these views is quite true, but they each appeal to different

audiences and focus on different facets of the Semantic Web itself. The Web

community is mainly concerned with making Web sites more interesting and

easier to use. Starting in 2004, a special focus on group and social collabora-

tion on the Web has produced a wave of new Web sites that call themselves

Web 2.0. Web 2.0 is a term used to distinguish Web sites (such as Amazon.

com, Facebook.com, YouTube.com, Digg.com, Wikipedia.org, Twitter.com,

and so on) that harness the collective inputs from hundreds or thousands of

people in order to make their features and content more interesting than

could ever be developed by just one company. But now with the availability

of Semantic Web technology, many people are gearing up for what’s now

called Web 3.0.

Finding the Connection to Web 3.0
Most people agree that the first Web (Web 1.0, if you please) has profoundly

changed the world. It has connected people in faraway places and ushered

in a new era of learning opportunities for folks of any race, creed, culture, or

religion to become exposed to fresh ideas with the click of a mouse. The Web

hasn’t solved world hunger, but it has leveled the educational playing field

for millions of souls who would have otherwise been denied fair access to the

amassed knowledge of humanity.

The second wave of the Web, Web 2.0, as it is known in pop culture, is no

less profound, but perhaps more subtle in reach. Web sites that are part

of the Web 2.0 phenomenon have already altered the political landscape of

America, helped to elect the first African-American president of the United

05_396797-ch01.indd 1005_396797-ch01.indd 10 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

11 Chapter 1: Getting the Gist of the Semantic Web

States, cracked major news stories before the networks, impacted an entire

generation of kids under the age of 18, and collected the largest cache of

human knowledge in the world — not too shabby.

Web 3.0 — the Semantic Web — is what folks are calling the third major

wave of the Web. Interestingly, the principal inventor of the Web itself, Tim

Berners-Lee, doesn’t much favor the idea of versioning the Web, and he views

the Semantic Web as more aligned with his original vision anyway — which

means that we’re actually just now seeing the evolution of a Web he was

thinking about almost 20 years ago.

Nova Spivak, an entrepreneur and Web visionary, has a compelling chart,

similar to the one shown in Figure 1-1, that he uses to describe the Web 3.0

phenomenon. This chart compares the technical power of the way people

connect data inside technology and the social richness of the connections

people can make using that same technology. In this way, you can see the

clear progression of technology from the Personal Computing era, to the first

Web 1.0 of pages and documents, to the Web 2.0 era of social networking, and

to the Web 3.0 era of the Semantic Web and data networking. In Nova’s con-

ception of Web 4.0, he envisions the Web as an operating system for applica-

tions with global reach and data systems that exist entirely in the network.

Figure 1-1:
Four major

waves
of Web

evolution.

Ri
ch

ne
ss

 o
f D

at
a

Co
nn

ec
tio

ns

Richness of Social Connections

Desktop
Computing

Web 1.0

Web 2.0

Web 3.0

Semantic Web Era

WWW Era

PC Era

FTP
Email

SGML
SQL

Gopher

HTTP/HTML
00/Java

XML/J2EE

Groupware

Portals
2000-2010

2010-2020

WWW Database

Personal Agents
Rule Interchange

Linked Data

SPARQL
RDF/OWL
ATOM

AJAX/JSON
SOAP/WSDL Blogs / Wikis

Cloud Computing & SaaS

Intranets

Social Networks

1990-2000
Databases

File Servers

File Systems

1980-1990

05_396797-ch01.indd 1105_396797-ch01.indd 11 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

12 Part I: Welcome to the Future of Data and the Web

It’s still much too early to foretell what profound changes to humanity the

Semantic Web and Web 3.0 evolution will bring, but there are indeed some

early indications that the changes will be every bit as cataclysmic as Web

1.0 and Web 2.0 were. For example, this book shows you how the Semantic

Web may well lead to a “giant database in the sky” containing data, not just

pages, about anything you can think of. In this book, I explain how medical

researchers from every corner of the globe are using Semantic Web formats

to exchange and mash up data that might lead to the next great scientific

breakthroughs. I also share with you how the Linked Data Initiative is orga-

nizing the publication of terabytes of information into the public domain, and

how it’s using the Semantic Web formats so that you can freely remix and

publish your own Web sites with open-source data. You also discover how

businesses large and small are aiming to change the rules of their industries

by using Semantic Web data and technology to create new business models.

Who knows, maybe this book will give you the spark for a new idea that

changes the world that your children will live in!

Exploring the Business Side of Semantics
If you’re interested in core technology and money-making, the business side

of the Semantic Web will hold a lot of appeal for you. Each year, companies

all over the globe spend trillions of dollars buying and installing software that

will help them run their businesses. A significant portion of that money spent

on software is spent on getting the software to talk to other kinds of software.

The Semantic Web technology represents a fundamentally new way of for-

matting data — a way that can potentially save businesses billions of dollars

and help software vendors spur a new growth wave of business software.

Semantic Web data formats were designed from the ground up as purpose-

built languages for metadata — providing a way to accurately describe and

define data by using more data. In business software systems, these new

formats provide a way to more easily connect and exchange data with many

systems, and the Semantic Web also provides new ways to model complex

data environments that can be more simply maintained over time. Business

software created between 2010 and 2020 will be built substantially on the

Semantic Web formats of today. I go into much more explanation about these

business software topics in Chapters 3, 5, and 10.

Setting Information Free
“Information wants to be free.” That has become the unofficial motto for the

free content movements that are often associated with Creative Commons

copyright licenses and open-source software. The legal foundations for free

content and free software have been inexorably moving forward on the

05_396797-ch01.indd 1205_396797-ch01.indd 12 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

13 Chapter 1: Getting the Gist of the Semantic Web

principle that people can collectively help to make humanity wealthier by

allowing others to copy, remix, and reuse all sorts of content and software.

Very much in this same spirit, Tim Berners-Lee and the Linking Open Data

Community Project are working hard to leverage Semantic Web data formats

as a means to share databases of content, link them to one another, and

effectively build a Web of linked data that spans the globe.

 Unlike the current Web of linked documents, the Web of linked data will allow

publishers to describe data models, data concepts, and data records in such a

way that they can be linked, described, and queried as if they were part of a

single database.

Much of this vision is already materializing: The current state of Linking

Open Data is described in Chapters 2, 15, and 17. Already available to you are

the entire contents of Wikipedia, CIA World Factbook, WordNet, and many

commercial data models for music, restaurant reviews, and social networks

defined and accessible in the Linking Open Data project (which is described in

Chapter 2). Practically speaking, you could build your own application on open

data in the Semantic Web formats today. This book can help you get started.

Rebirthing Artificial Intelligence
The science of artificial intelligence (AI) goes through ups-and-downs in

the academic community. In times past, artificial intelligence research has

seemed to hold the promise of radical new computers and the keys to new

forms of life, but after years of failed promises, the research funding for AI

inevitably dries up. This boom-and-bust cycle for AI has repeated itself many

times throughout the 1960s, ’70s, ’80s, and ’90s. Now, the boom cycle has

come again, largely due to the Semantic Web excitement.

New research funding since the late 1990s into the areas of knowledge rep-

resentation (KR) and AI for the Web has grown substantially worldwide,

with particular growth in Europe and Asia. The Semantic Web has been yet

another source of rebirth for AI, and most of the Semantic Web roots go deep

into KR and AI problems that originally emerged several decades ago. For

academics and researchers, these AI foundations of the Semantic Web are

the most interesting and fruitful.

Checking Out the Semantic Web’s Origin
The modern origins of the Semantic Web can be traced to Netscape and the

Defense Departments of the United States and Europe. In 1998, Tim Bray

and Ramanathan Guha built a metadata language called MCF (Meta Content

Framework) for XML to help Netscape describe content ratings of Web pages.

05_396797-ch01.indd 1305_396797-ch01.indd 13 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

14 Part I: Welcome to the Future of Data and the Web

Soon thereafter, the World Wide Web Consortium (W3C) looked to create

a general-purpose metadata language called RDF (Resource Description

Framework). This new language was largely based on the original MCF speci-

fication by Guha and Bray.

 Also in 1999, the Defense Departments of the United States and the European

Union (EU) Commission independently opened research topics in the area of

intelligent agents. Both the United States and the EU had recognized that in

order for software to act more autonomously — without the constant updat-

ing by human engineers — the software needed a better data format than

XML, relational databases, or the Unified Modeling Language (UML) could pro-

vide. So the U.S. Defense Advanced Research Projects Agency (DARPA) cre-

ated DAML (DARPA Agent Markup Language), and the EU created OIL

(Ontology Inference Layer). These two formats were remarkably similar and

were eventually combined to form DAML+OIL, and that finally turned into

OWL (Web Ontology Language).

Today, RDF and OWL are the backbone of the Semantic Web and are recom-

mended standards maintained by the W3C. (See Chapters 5 and 6 for more on

RDF and OWL.)

Unpacking Semantic Web Baggage
Inevitably, profound ideas generate profound resistance, and the Semantic

Web is no exception. The seminal article announcing the arrival of the

Semantic Web was published in May 2001 in Scientific American magazine.

But years later, the Semantic Web hasn’t really changed much of anything.

Critics are rightfully disappointed with the lack of real change wrought

by Semantic Web formats in the years since they were announced by Tim

Berners-Lee, Jim Hendler, and Ora Lassila. There’s still a lot of baggage left

over (missed expectations, pointed critiques, and unfulfilled capabilities)

from these early and grand proclamations, so what gives?

Inflated hype and expectations
Early writings about the Semantic Web made it seem like a computer would

soon be able to read your mind, to know what you mean without you really

saying much to the computer at all. Promises about linguistic parsing and

expert analysis of your queries gave way to the reality that data semantics are

hard. Those early ideas about having software that automatically knew what

you were searching for or programs that could automatically connect your

datebook to travel plans made in other programs seem naive and simplistic

05_396797-ch01.indd 1405_396797-ch01.indd 14 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

15 Chapter 1: Getting the Gist of the Semantic Web

today. And despite the fact that many of those early promises are now finally

finding business models, the time that it took to go from idea to prototype

makes the whole thing seem improbable and not worthwhile. In fact, the early

hyperbole directed at the Semantic Web has prompted many pundits and skep-

tics to ignore the impressive breakthroughs that the community has yielded

and effectively throw the baby out with the bathwater by dismissing the whole

notion as a failed fad.

The legacy of artificial intelligence
Some folks are savvy enough about the roots of the Semantic Web to trace

back core ideas and concepts to their artificial intelligence (AI) legacy. For

some, the AI origin of the Semantic Web alone is enough to dismiss the whole

thing as an ivory-tower exercise in futility. Originally based in the logical

foundations of Semantic Networks and Description Logics (each well-known

domains of AI research), most mathematicians and AI researchers see those

AI foundations as anachronisms from the 1970s that don’t have a place in

modern computing. It’s true that the Semantic Web formats are grounded

in these mathematical foundations that are almost 40 years old, but it’s also

true that the Semantic Web fundamentally alters these older AI concepts

and catapults them into the Web age by making them dependent on URIs

(Universal Resource Indicators) and compatible with XML. In fact, this combi-

nation of AI roots with Web foundations is what makes the Semantic Web so

compelling and so different from other modern software languages.

Politics of standards movements
Professional software engineers accept that committee-based designs are

often the worst of all worlds. Although the W3C does a phenomenal job of

avoiding “groupthink” and anti-patterns (common patterns of incorrect solu-

tions) in their specifications, the Semantic Web is often rightly criticized as

accepting design trade-offs intended to appeal to small minorities. In general,

it’s difficult to do anything when you depend upon consensus from a large

and diverse committee. That’s why it can take many years to design and

approve even simple specifications. RDF, OWL, and other Semantic Web

technology standards are not perfect by any means. But neither are any

standards. In the software industry, consumers (like you and me) accept the

slow and sometimes painful process of the standards groups because the

outcomes are generally good for us in the end. By having a reference imple-

mentation and specification, you can go out and build your own part of the

Semantic Web and have the confidence that it will work well with others —

and that’s worthwhile in my book.

05_396797-ch01.indd 1505_396797-ch01.indd 15 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

16 Part I: Welcome to the Future of Data and the Web

Instilling Simplicity in Complex Data
Simply put, the Semantic Web helps to simplify a very complex world of data.

Semantic Web data formats are a way of leveling the field for data of any type

and origin. Out of necessity, the Semantic Web itself can be viewed as com-

plex, but it can also be incredibly simple.

The real world of data is complex — exceedingly complex. Humanity has gen-

erated more new data in the last few years than previously generated in all

the preceding years of human history combined. This newly generated data

comes in all kinds of formats, structures, styles, and languages. The Semantic

Web offers a common baseline for these many complex kinds of data. It’s

powerful enough to capture the computational semantics of most other kinds

of data formats, and it’s simple enough to then allow modelers to begin con-

necting all the data.

 There’s no magic in the Semantic Web. You can’t push a button and see all

your data cleaned up or all your Web pages linked together. But whereas the

problem was at one time insurmountable, there’s now hope for more auto-

mated, routine, and predictable ways to bring data together, share it, and

make it useful for newer software applications.

In this age, this time, people all over the world are looking to recombine data

from the Web in new ways. New inventions, Web sites, and businesses in the

future will work on Web data directly, and the Semantic Web will be a sub-

stantial means of empowerment for the young entrepreneurs of today.

Seeing the Semantic Web’s Starring Role
in Web 3.0 Showcase Applications

Any good technology should be more than just vision; in fact, most good

technologies start from an underground hacker ethos that encourages the

continuous tweaking and refinement of code. So what’s available today? What

can you go out and see today that’s substantially built upon the ideas and

technology of the Semantic Web?

First, that crazy vision of the “giant database in the sky” is actually happening.

Second, without too much fanfare, a whole host of new business applications

are being built using the Semantic Web formats and standards. Third, the

entire set of global standards is already being aligned with Semantic Web

05_396797-ch01.indd 1605_396797-ch01.indd 16 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

17 Chapter 1: Getting the Gist of the Semantic Web

underpinnings, promising some hope for data interoperability in the coming

decades. Finally, don’t look now, but your tax dollars have been funding

Semantic Web government projects since 1998, and some government agencies

depend on the Semantic Web data for some pretty serious projects. In the next

few sections, I take a closer look.

Linked open data in the cloud
A controversial dream of many is to enable the Web itself to evolve into a

global federated database. This idea of massive technology virtualization is

the kind of science fiction that used to make serious people laugh. But today

more than 30 organizations publish their libraries of data into Semantic

Web formats and make them queryable from the Web itself. The leap of

understanding that you need to absorb is that, unlike a regular database,

the Semantic Web data and data models can be directly and precisely linked

together over the Web itself. Instead of having to go through proprietary

software APIs and query listening services, the data and data models are

fully accessible from the Web itself. I can publish some data in a model from

Australia, and you can include it directly in your data and data model pub-

lished from New York. As long as we both have an Internet connection and

use the Semantic Web, a lot of magic happens for free.

The organizations that are participating in this movement aren’t fly-by-night

companies or mom-and-pop shops with a small amount of data. The U.S.

Central Intelligence Agency’s World Factbook, containing detailed data about

every country in the world, is accessible in Semantic Web formats. All the

data from Wikipedia containing data about practically everything is acces-

sible in Semantic Web formats. Every data item in Freebase, a Web database

for anybody to use, is accessible in the Semantic Web formats. And you and I

can build any software application we want that will remix and mash up data

from any of those sources for free!

But taking this vision even further, media giant Thomson Reuters offers a free

service — cloud-based Software as a Service (SaaS) — that can automatically

semantically parse any unstructured text you send it, and give you back a

Semantic Web–compatible list of people, places, things, and so on that are

automatically linked to any of those open-source data models available in

that giant database in the sky. Now you can start from any document, any

time, from anywhere and automatically get structured data about the con-

cepts and data from your raw text. Welcome to the Semantic Web!

Now imagine what the next few years will yield.

05_396797-ch01.indd 1705_396797-ch01.indd 17 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

18 Part I: Welcome to the Future of Data and the Web

Active metadata in business systems
Once upon a time, business software systems were islands of information

that couldn’t easily be connected. In fact, most business systems are still just

that: disconnected applications that largely work in a self-contained manner.

Over the years, a specialized kind of software called middleware has evolved

to connect business software together, but it’s still quite hard, laborious, and

expensive to do that. You might have even heard of a new family of standards

that was created to solve that problem; service-oriented architecture (SOA)

standards aim to solve this with standardized XML frameworks.

The truth is that all this middleware and SOA software depend entirely

on metadata formats for data, processes, and APIs, but those formats are

exceedingly brittle and don’t respond well to change.

Major business software vendors like IBM, Microsoft, and Oracle (to name

just a few) are already investing in the Semantic Web as a way to expand

their business software systems. Oracle has released functionality that brings

the Semantic Web into its database systems, into the governance and risk

applications, and even its SOA systems. IBM has built its software registry

and repository business software using the Semantic Web foundations, and

Microsoft has several business solutions that use Semantic Web languages

for media management and user-profile management in the telecommunica-

tions environment.

New businesses and online properties are trending toward the Semantic Web

as well. Commercial and non-commercial sites like Digg.com, Yahoo!, and

BBC online are using the Semantic Web metadata in very interesting ways to

improve their visitor experiences. Garlik is a very successful startup using

Semantic Web data aimed at protecting the privacy of its customers and pre-

venting identity theft.

At its core, the Semantic Web is more than just a social movement or a big

database in the sky: It offers tangible benefits for technologists interested

in finding powerful solutions to very fine-grained problems with traditional

metadata formats and languages. The Semantic Web is more than just a

pretty face, a neat vision, or a trendy idea: It’s a legitimately different tech-

nology that’s purposefully built to make metadata active, dynamic, and

change resilient. No other data technology is comparable in its flexibility

and power.

05_396797-ch01.indd 1805_396797-ch01.indd 18 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

19 Chapter 1: Getting the Gist of the Semantic Web

Bridges across global standards
One powerful testament to the impact the Semantic Web has already made

can be found in the adoption rate of its technology among the ranks of stan-

dards bodies. In the world of software, a few key global organizations are

entrusted with the reference standards for the data formats and protocols

that drive the electronic economies of every nation on earth.

Every single one of the major standard organizations is in the process of

adopting Semantic Web formats for the implementation of some of their

newest standards, or as a central framework for unifying their standards into

a common cannon of specifications.

 The World Wide Web Consortium (W3C) is the main standards body for the

Web, XML, and Web services. The W3C holds the reference standards for

the Semantic Web and is actively mapping the Semantic Web to other techni-

cal areas inside its organization — including to XML and Web services. The

International Standards Organization (ISO) maintains thousands of standards

including key metadata and data exchange standards for numerous industries.

Many of the newest ISO standards leverage the Semantic Web as a way to

unify a family of standards and to provide a common reference language for

the standards themselves.

Object Management Group (OMG) is the global standards organization that

maintains the Unified Modeling Language and other software modeling for-

mats that apply to databases, online analytical processing (OLAP), and data

warehousing. OMG is also incorporating the Semantic Web into its core speci-

fications as a metamodel for many of its core reference models. Finally, OASIS

(Organization for the Advancement of Structured Information Standards)

is also leveraging the Semantic Web formats in its community for a host of

standards that aim to improve data processing for security, data centers, and

Web service process definitions.

The Semantic Web is becoming a common bridge across silos of discon-

nected standards in a way that no other technology could. The Semantic Web

isn’t just a fancy software vocabulary like so many others: It’s a foundational

data language upon which any other data language can be built. And by build-

ing with the Semantic Web, you can all go a long way toward making software

easier to connect in the future.

05_396797-ch01.indd 1905_396797-ch01.indd 19 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

20 Part I: Welcome to the Future of Data and the Web

Cutting-edge research and development
for nation states
Despite all the cool new things that the Semantic Web allows you to do with

your most frequently visited Web sites, business software systems, and

global standards, there are actually some much more serious reasons for the

Semantic Web, too.

The origin of the Semantic Web came from government funding into research

and development on serious problems that countries face in several key areas:

 ✓ National security: What is the best way to link the entities and records

among enormous volumes of data the government collects every day?

By linking that data together more effectively, experts can see national

security threats forming before they become reality. In that regard, the

Semantic Web is like a more powerful telescope that lets people see

deeper into the masses of data on the networks.

 ✓ Disaster preparedness: How do you create computer systems that can

be mashed up and remixed on the fly in times of emergency? Disasters

rarely happen exactly as you’ve planned for them. Aiding first-responders

and government officials to quickly assess all the data they can, to best

organize a response to the changing ground situation, is critical for limit-

ing casualties in those precious first hours of any large-scale disaster.

 ✓ Military operations: How do you enable a network-centric software

architecture that can dynamically connect to your friends’ and allies’

data? Within one country, and among allies of different countries, huge,

complex command structures need to work together seamlessly to be

efficient and fight in a coordinated way. Software systems, data, and

networks must be capable of that dynamic interoperability in order for

those future combat systems to work properly.

The Semantic Web was originally conceived to help solve these gigantic seri-

ous challenges at the national level. Today, there are Semantic Web–based

systems in production that solve parts of those challenges. Hundreds of

more projects are underway that use the Semantic Web in key ways that help

government officials communicate more effectively and more quickly than

ever before.

Many of these national-level research programs (in the United States and also

abroad, especially throughout Europe) are funded through university grants

for special programs. Thousands of schools worldwide are teaching classes

and funding active research into the use of Semantic Web languages, formats,

and technical components to help push forward the various industrial uses

of the technology. These special programs are sometimes very focused on

05_396797-ch01.indd 2005_396797-ch01.indd 20 2/13/09 6:46:18 PM2/13/09 6:46:18 PM

21 Chapter 1: Getting the Gist of the Semantic Web

the logical and mathematical foundations of the Semantic Web, whereas

other research programs are more high-level and seek to find more of a sys-

temic use of the technology in applied settings.

Likewise, much of the Semantic Web research and development happening in

the university system, from government funding or private funding, is being

applied in other areas. A particularly popular area of applied research in the

Semantic Web domain is life sciences: drug discovery, clinical healthcare,

and biological research. Semantic Web research in these domains is particu-

larly strong because these areas have suffered for years from an inability to

effectively share complex research and clinical data sets with other research-

ers who might be able to use them for new discoveries. As a consequence of

this historical deficiency, the life sciences area is now one of the fastest-grow-

ing domains for adopting Semantic Web data formats — it helps the whole

community exchange data easier and with better accuracy.

 Core research and development may not be the most compelling case to con-

vince pragmatic businesspeople or casual Web surfers to embrace the

Semantic Web, but no one can deny the impact these researchers are having

on society and governments as a consequence of their investment in

Semantic Web.

Recognizing Compelling Reasons
for the Semantic Web

By now, you’ve already heard about a lot of compelling things that the

Semantic Web can do or is already doing for you:

 ✓ Making your country safer

 ✓ Making your country more prepared for disasters

 ✓ Improving the speed with which researchers create new medications

 ✓ Unifying disconnected software standards

 ✓ Making business software more change-resilient and less expensive

 ✓ Building a giant database in the sky from open-source data

 ✓ Giving humanity the gift of open knowledge

But all of those reasons might seem a little altruistic, esoteric, or even far-

fetched for most people. What about some pragmatic, down-to-earth ways

that the Semantic Web can be good for you today? The following sections

preview what I tell you about what Semantic Web can do for you in the rest of

the book:

05_396797-ch01.indd 2105_396797-ch01.indd 21 2/13/09 6:46:19 PM2/13/09 6:46:19 PM

22 Part I: Welcome to the Future of Data and the Web

 ✓ Make your life simpler

 ✓ Save you money and time

 ✓ Help do new projects faster

Make your life simpler
The whole purpose of using a computer in the first place is to have it handle

the routine and repetitive tasks for you. Doing the hard work, the boring

work, and the insanely complex work is precisely what a well-designed

Semantic Web application should do for you. Here are a few examples of how

the Semantic Web can make your life simpler today:

 ✓ Use fewer mouse clicks to find the data you need. Try searching with

Yahoo! Search, which uses the Semantic Web inside SearchMonkey.

 ✓ Stay organized on the Web and in your Web browser. Try the Adaptive

Blue Glue toolbar, which uses Semantic Web metadata to better link

your actions and predict what you might want to do next.

 ✓ Collect your interests more intuitively and share them with others.

Try Twine’s Semantic Web–enabled interest networking site, where you

can put the ideas you’re interested in and share them with like-minded

people who share their interests with you too.

 ✓ Organize your disconnected travel plans better. Try TripIt’s travel

service, which lets you combine itineraries and bookings made from dif-

ferent Web sites into a single compact Semantic Web–enabled itinerary

that summarizes just what you need to know.

 ✓ Pinpoint the exact news you want to see. Try the Thomson Reuters

Calais Web Service, which lets you automatically scan news stories for

ideas and concepts (not just keywords) and then link them to any other

Semantic Web resource on the Web (like Wikipedia, Freebase, or the

World Factbook) for more data.

Save money and time
You might be one of those very practical folks who isn’t really interested

in improving your Web surfing; instead, you’d rather invest your time and

money in solving big business problems for your company. Here are some

ways you might be able to help your company save money on the operational

tasks that it already does:

05_396797-ch01.indd 2205_396797-ch01.indd 22 2/13/09 6:46:19 PM2/13/09 6:46:19 PM

23 Chapter 1: Getting the Gist of the Semantic Web

 ✓ Finding business resources more quickly and easily: How much time

do people spend every day trying to find people or documents that they

need? Try thinking about how the Semantic Web could help with locat-

ing business resources and read on to find out how IBM and NASA are

doing just that. (See Chapters 11 and 15.)

 ✓ Diagnosing remote technical problems: How often can complex

mechanical problems be diagnosed and cross-referenced to technical

data in real time? Try thinking about how the Semantic Web might help

decipher complex data for root-cause analysis and read on to hear how

the French automaker Renault and the U.S. Defense Department are

aiming at that challenge. (See Chapters 11 and 15.)

 ✓ Preserving corporate knowledge: The embedded corporate knowledge

that goes home when the lights go out is astounding. How can busi-

nesses preserve and encourage a corporate knowledge center? Think

about how the Semantic Web can help build a better knowledge base

and read on to find out more about what the oil company Chevron

and pharmaceutical giant Pfizer are thinking about that problem. (See

Chapters 10 and 11.)

 ✓ Integrating information: Most companies have severe cost overruns

associated with the need to integrate information and metadata, but

there has to be a better way. Think about how the Semantic Web data

formats will make it easier to bring together complex data and then read

on to find out more about how companies like Oracle, British Telecom,

Metatomix, and BBC are headed that way. (See Chapters 3, 11, and 15.)

Do new projects faster
Sometimes you might have a tactical necessity to improve a process or just

help a business project move along more quickly. Semantic Web vendors,

and many companies using the Semantic Web, are looking to make complet-

ing projects easier and faster:

 ✓ Finding and linking Web services: In complex and large IT systems,

finding services can be tricky. IBM is leveraging the Semantic Web to

make that job faster and more effective.

 ✓ Building application mashups faster: For millions of Web entrepre-

neurs, the speed with which they can build a new application and place

it in the clouds is crucial. The Thomson Reuters Calais service helps

those businesses reduce their time to market with impressive Semantic

Web data scanning.

05_396797-ch01.indd 2305_396797-ch01.indd 23 2/13/09 6:46:19 PM2/13/09 6:46:19 PM

24 Part I: Welcome to the Future of Data and the Web

 ✓ More targeted and effective advertising: How do you quickly boost

click-throughs and get more people to look at your business’s offer?

Dapper has an advertising program that can help you place the ads

more effectively with Semantic Web metadata and analysis.

 ✓ Empowered information workers: Every modern business is pow-

ered by information workers that build, use, and depend on software

applications in their daily lives. Making this infrastructure work are

armies of information workers who maintain metadata, data files, and

master records in all sorts of applications. Try the Dow Jones Synaptica

Taxonomy Management Tool for a Semantic Web–driven approach to

making information workers more effective at managing the lifecycle of

corporate data and metadata.

05_396797-ch01.indd 2405_396797-ch01.indd 24 2/13/09 6:46:19 PM2/13/09 6:46:19 PM

Chapter 2

The Semantic Web in Your Life
In This Chapter
▶ Seeing the Web as a way of life for millions of people

▶ Discovering how the Semantic Web brings a new level of interaction to the Web

▶ Getting ready for the Semantic Web by trying some Web sites

▶ Previewing the Semantic Web applications of tomorrow

In 2009, more than 1.5 billion people will use the Internet. One out of every

five people in the world is a Web user. The Web has broken down politi-

cal, social, and cultural barriers: It’s a modern-day printing press bringing

advancement and change to the farthest reaches of the globe.

In an amazingly brief span of time, the Web has become part of the fabric

of humanity; the Web weaves a rich tapestry of information that connects

people, enriches lives, and shrinks the greatest of distances by bringing the

world’s knowledge to the farthest places. The Semantic Web is an evolution-

ary step in the Web itself.

This chapter introduces you to how the Semantic Web will change the way

you use the Web. I explain why the Semantic Web helps to accelerate the

newest Web 2.0 trends for collective intelligence on the Web, and I share

some practical examples of semantic wikis, semantic search, semantic

mashup applications, semantic news feeds, semantic blogs, and other ways

that Web entrepreneurs and hackers are looking to redefine how the Web

works.

As of 2009, Semantic Web is still in its earliest days, but if you start to pay

attention now, you’ll find plenty of opportunities to simplify the way you use

the Web, and maybe even a new idea worth millions!

06_396797-ch02.indd 2506_396797-ch02.indd 25 2/13/09 6:47:25 PM2/13/09 6:47:25 PM

26 Part I: Welcome to the Future of Data and the Web

Taking a Look at How the
Web Is Used Daily

People use the Web for all sorts of different things. But in spite of the great

diversity, you can find remarkable similarities in what people actually do on the

Web. For example, here are some of the most popular activities on the Web:

 ✓ E-mail: Send electronic correspondence to friends and family from Web-

based or regular e-mail systems.

 ✓ Searching: Use a search engine to find more information about anything

that you might be interested in.

 ✓ Shopping: The convenience of shopping from home was first discovered

by the catalog companies of decades past, but the Web brings a whole

new level of bargain hunting and simplicity to every kind of shopping trip.

 ✓ Checking the weather: Find up-to-the-minute weather forecasts, view

webcam video of a location, or even check the surf at your favorite beach.

 ✓ Booking travel: Arrange air travel, hotels, and rental cars. Does any-

body really remember what it was like to buy a plane ticket before the

Web? Yikes!

 ✓ Writing a blog: For many people, the process of writing in a journal has

been completely supplanted by blogging, which is putting the story of

your life and/or interests into the public domain for anybody to read

and comment on.

 ✓ Organizing a work or family calendar: Keeping track of family, friends,

and your busy schedule is much easier on the Web.

 ✓ Reading the news: The dramatic decline of print newspaper circulation

is one strong indicator of how much news Web sites have changed the

way people find and consume their news.

 ✓ Connecting with friends: The rise of social networking sites and the

huge numbers of young people with online identities hints at an even

more Web-dependant future.

 ✓ Professional networking: Even older professionals can’t resist the

temptation to network online. Hundreds of millions of adults put their

professional stories online and aim to connect, network, and build new

relationships with others.

Using the Internet for daily tasks is a part of everyday culture. For many

people, the Web is as commonplace as television and as natural as eating

breakfast in the morning. But the true beauty of the Web is that it is an

evolving and dynamic place to be. The Web of 2009 is vastly different than

the Web of 1999, and so too will the Web of 2019 make the Web today seem

simple and quaint.

06_396797-ch02.indd 2606_396797-ch02.indd 26 2/13/09 6:47:25 PM2/13/09 6:47:25 PM

27 Chapter 2: The Semantic Web in Your Life

Exploring the Web 2.0 Movement
and What It Means

The first generation of the Web, from roughly 1990 to 2000, was mostly about

publishing HTML (Hypertext Markup Language) pages onto a server. These

pages were static documents that could only be updated in rudimentary ways.

The second generation of the Web, which started in 2000 and continues

today, is still pretty much driven by pages of documents, but the source of

content within these documents is much more dynamic and interactive than

anything before it.

Nowadays people expect to get more from their interactions with the Web.

People want to interact with the thoughts and ideas of others. The Web

weaves a rich tapestry of diverse opinions and new connections. This rich-

ness is about helping people benefit from the actions and input of others.

Whether it’s the personal review of a book on Amazon.com, the political

opinion piece from that blog in Iowa, or the music recommendation from a

friend of a friend in Facebook, people are putting more trust in what they find

on the Web than they have in any media that came before.

With Web 2.0, people surf the Web for answers to complex problems, to

find new ideas that challenge their beliefs, and to find friendship and com-

munity among others who share their values. The Web has moved beyond a

place for publishing and entertainment; it’s now very much a behavioral and

humanistic part of the very fabric of society.

An Internet microbubble
The behavioral shift from Web 1.0 to Web 2.0 and the acceptance of the Web

by the masses have generated new business opportunities for entrepreneurs

everywhere. Many new business models that would have been impossible

just a few years ago make much more sense today.

The Web is a way to influence millions of people through all kinds of direct

and indirect methods. The advertising business has been turned upside down

by the Web as it becomes ever more possible to reach consumer audiences

that rival the size of those on television. In turn, this creates new economies

of funding, venture capital, corporate ventures, and other kinds of business

exploitation and risk-taking.

Understandably, the corresponding hype about this new phenomenon has pro-

duced inflated expectations for Web 2.0 businesses that result in high-profile,

high-value acquisitions of iconic Web 2.0 companies like YouTube, Flickr, and

06_396797-ch02.indd 2706_396797-ch02.indd 27 2/13/09 6:47:25 PM2/13/09 6:47:25 PM

28 Part I: Welcome to the Future of Data and the Web

MySpace. Others, like Facebook, are still independent despite billion-dollar

takeover offers from traditional media companies that would benefit from

access to their databases of information about their millions of users.

Web 2.0 has certainly created a microbubble of sorts — an economic boom

for businesses taking advantage of this new wave of social interaction with

the Web. This microbubble has even generated new slang terms like Google-
bait for new startup companies founded on the idea of offering a small but

important feature for Google, hoping to be bought out early (like YouTube)

for huge profits.

Web 2.0: Technological or social?
 Unlike the first wave of Web 1.0, which was grounded in the wide accessibility

of new networking protocols, document formats, and client/server technology,

the Web 2.0 bubble is not a technology boom. Web 2.0 is an advertising boom.

The top-ten social networking sites reach more than 500 million people

worldwide; usually, these are the very desirable younger demographics that

advertisers crave. Web 2.0 social networks are connected directly to a tre-

mendous amount of purchasing power accessible through those communi-

ties. Access to that purchasing power, to those demographics, is where the

dollar value of Web 2.0 lies.

Advertising budgets and speculation might be fueling the Web 2.0 boom, but

the engine of Web 2.0 growth is the people themselves. That is exactly what

marks the difference between Web 1.0 of disconnected people reading static

pages in contrast to the intensely connected people interacting and building

communities on the Web. Clearly, the Web 2.0 phenomenon is social, human-

istic, and not technical in nature.

Defining the Features of Web 3.0 —
the Semantic Web

Web 3.0, the Semantic Web, is about improvements in the technology of the

Web. New Web sites with new features and capabilities are becoming avail-

able now. In some ways, these new technologies are about improving the

connectedness of the Web, but in other ways, the technology is helping to do

new things that could not be done before.

06_396797-ch02.indd 2806_396797-ch02.indd 28 2/13/09 6:47:25 PM2/13/09 6:47:25 PM

29 Chapter 2: The Semantic Web in Your Life

 Perhaps the simplest way to think about Web 3.0 is to imagine that the words

and pictures you see inside your Web browser have been pieced together

from many different places, just for you, at this moment in time. Imagine that

few of the words or pictures you see have actually come from the Web site

you’re looking at. The words have been written by different people at different

times, but they all go together to make a consistent story and give you the

information you want. Imagine that you could write a blog whose words and

pictures appeared in my Web browser, mixed up with words and pictures

from other people with similar interests and ideas. Imagine that any idea, con-

cept, or data point could be reorganized in a moment and printed to a page

just for you. That’s the remix nature of Web 3.0.

 Web 3.0 is fundamentally about using new technology that helps remix, reuse,

and repurpose data on the Web in new ways. One way to understand the

nature of Web 3.0, building upon a series of attributes originally conceived by

Nova Spivak, is to think about Web 3.0 as having the following key defining

characteristics:

 ✓ Ubiquitous networking: Web 3.0 requires that data can be connected

and intertwined without concern for its physical location. Devices and

access points are assumed to have Web access, or protocols that grace-

fully accommodate low bandwidth or downtime periods. Broadband

rollout and adoption are vital for Web 3.0 because data should always

be available. Mobile Internet access and mobile devices are a Web 3.0

foundation point for both data generation (sensors) and data access

(screens).

 ✓ Open everything: Web 3.0 depends on unprecedented levels of automa-

tion and smarts. As a consequence, the many parts of the network must

remain open and not closed. Open data, open services, and open iden-

tity are all parts of the bigger Web 3.0 vision.

 Already, the Linking Open Data project (see Figure 2-1) is bringing

together databases and data models published from all corners of the

globe into a giant virtual data resource for Web 3.0. Open technologies,

open APIs and protocols, open data formats, open-source software

platforms, and open data (for example, Creative Commons, Open Data

License) all contribute to the remix, reuse, and repurpose ability of Web

3.0 infrastructures. Open identity (OpenID), open reputation (like how

user reputations are rated at Amazon.com), roaming portable identity,

and open personal data (FOAF) set the stage for intelligent software to

act on your behalf while you’re busy with other things.

 ✓ Adaptive information: Web 3.0 has been described as the “data Web”

and also as the “executable Web.” Both labels are accurate. Using the

analogy of word processing, the Web 1.0 is a single person editing a

document, the Web 2.0 is a group of people editing a document, and

Web 3.0 is a group of people creating bits of data outside of documents

06_396797-ch02.indd 2906_396797-ch02.indd 29 2/13/09 6:47:25 PM2/13/09 6:47:25 PM

30 Part I: Welcome to the Future of Data and the Web

altogether. That is the data Web. To use an analogy of file system per-

missions, Web 1.0 was read-only, Web 2.0 is read-write, and Web 3.0 is

read-write-execute. That is the executable Web. In both cases, the core

idea is that information on the Web is becoming more connected, more

fine-grained, and more dynamic. Information isn’t just about pages;

it’s about data that’s connected and capable of being reassembled on

demand. This reassembly of data, the reorganization of data pieces, is

a key central element of the Web 3.0 and Semantic Web movements —

that is the executable data Web.

 ✓ Adaptive service clouds: With Web 3.0, data is a service. Instead of

software services becoming simply about behavior and programming

interfaces, the Web 3.0 and Semantic Web movement are enabling the

publication and consumption of the data and data models as services

inside cloud computing systems (software applications that are hosted

entirely via Web protocols and services). Software for reasoning with

this data and these data models, based on inference engines and intel-

ligent agents, can enable applications that use sets of rules to express

relationships between concepts and data from anywhere on the Web.

Network computing, Software as a Service (SaaS) business models, dis-

tributed computing applications, and grid computing are all part of this

Web 3.0 movement — the data, applications, and processing of software

are all becoming virtual, shared, and open as services hosted within

clusters of adaptive service clouds.

Figure 2-1:
A pictorial

representa-
tion of the

Linking
Open Data

project.

06_396797-ch02.indd 3006_396797-ch02.indd 30 2/13/09 6:47:25 PM2/13/09 6:47:25 PM

31 Chapter 2: The Semantic Web in Your Life

 ✓ Federated data: Web 3.0 is first and foremost about the emergence of

a data Web. The data Web consists of structured data records that are

published to the Web in reusable and remotely queryable Semantic

Web formats. The construction of the data Web, underway since 2001,

is being accomplished via both top-down (formal and costly develop-

ment) and bottoms-up (informal and inexpensive) approaches. Both

approaches can be published from any Web server and remixed using

standards-based query languages like SPARQL for searching across dis-

tributed RDF databases on the Web. This new federated (when data is

stored and retrieved from different locations during a single query) data

Web enables new levels of data integration, portability, and application

interoperability, thereby making data as openly accessible and linkable

as Web pages.

 As Web 3.0 and the Semantic Web continue to mature, both structured

data and unstructured/semi-structured content will become widely

accessible in these newer federated data formats. After a critical mass

is achieved, the Semantic Web will yield to a future where data can be

easily reused and remixed from anywhere on the Web.

 ✓ Simulated intelligence: Web 3.0 will know what you want and under-

stand what you mean! A crucial new feature of Semantic Web and

Web 3.0 is the introduction of better algorithms for working with data.

Building upon decades of research into Semantic networks and descrip-

tion logics, some aspects of the Semantic Web can use powerful algo-

rithms as a way to inject some smarts into the behavior of your data on

the Web. The driving force for Web 3.0 might well be the rise of intelli-

gent Web-based systems. Although the Semantic Web algorithms are not

magic, they’re substantially more powerful than existing commonplace

algorithms used to process data on the Web.

 Some people think that machine intelligence will emerge in an organic

fashion, as an outgrowth of communities of intelligent people putting

data on the Web (such as with Web 2.0 applications like del.icio.us,

Flickr, and Digg) and Semantic Web applications that extract meaning

and order from that same data to automate the way people interact with

it. Automation and intelligence in the data are key promises that the

Semantic Web has yet to fulfill. If that vision comes to fruition in the next

ten years, it will be with the aid of other technology areas like natural

language processing, machine learning, machine reasoning, and autono-

mous software agents.

These characteristics of the Web 3.0 and Semantic Web may seem downright

preposterous, with a healthy dose of wishful thinking thrown in for good

measure, but I can assure you that each idea mentioned is more than just

speculation. Yes, the Web of 2010 to 2020 will grow faster, become more

dynamic, and be smarter than anything you might have thought about the

Web before.

06_396797-ch02.indd 3106_396797-ch02.indd 31 2/13/09 6:47:26 PM2/13/09 6:47:26 PM

32 Part I: Welcome to the Future of Data and the Web

Checking Out Some Ahead-of-the-Curve
Semantic Web Sites

Remember: The decade of Web 3.0 and the Semantic Web hasn’t yet arrived.

Early adopter Web sites that use the Semantic Web today are still experi-

menting with new uses of the technology. However, the working timeline

for Web 3.0 and Semantic Web to reach maturity is much more likely to be

between 2010 and 2020. This will be the third full decade of the Web’s exis-

tence. So, although some beta applications of the Semantic Web are here

today, you can look forward to many more in the coming years.

Yahoo! Search with SearchMonkey
Fire up your favorite Web browser and go to http://gallery.search.
yahoo.com. Here, you can find an awesome set of Semantic Web extensions

that you can add to your Yahoo! search results. I have extensions installed

that let me view content on the main search results page that typically I

would have to click a link to see. I use extensions for local restaurant reviews,

LinkedIn profiles, and business reviews from CitySearch. This kind of Web

3.0 functionality is a good example of how Yahoo! is enabling site owners to

make their content reusable by others. By annotating its own Web pages,

Yahoo! can display data on a search result, helping people like you find what

you need to with fewer clicks.

Twine: Interest networking
Go ahead and sign up for Twine at www.twine.com. You won’t regret using

this Semantic Web–based interest networking service. Twine is a Web site

that helps you stay connected and organize your many interests. The main

benefit from Twine is twofold: You have better ways to organize the stuff

you’re interested in, and you get the benefit of having input from others in

discovering new stuff that you’ll like. If you’ve ever used the “Customers Who

Bought This Item Also Bought” feature on Amazon to look for new stuff to

buy, Twine is like that but for your ideas, interests, and hobbies. Twine gives

you a way of discovering new ideas from its Web site and also via e-mail, and

it can be non-intrusive and low effort if you want it to be.

06_396797-ch02.indd 3206_396797-ch02.indd 32 2/13/09 6:47:26 PM2/13/09 6:47:26 PM

33 Chapter 2: The Semantic Web in Your Life

TripIt: Travel aggregator
If you travel, and you probably do, you should go take a peek at TripIt now:

www.tripit.com. This Semantic Web–enabled application can aggregate

your airline travel, car rentals, hotel information, and most other travel data

from any Web site you might have booked it from. Just send a copy of your

confirmation e-mail to TripIt, and it has the smarts to put everything together

in one itinerary. It’s even intuitive enough to know what activities are part

of one trip and what activities aren’t. This is a great example of how Web 3.0

technology helps you make the most of all the data you normally would have

scattered about in different places on Web 2.0 Web sites!

ZoomInfo: People finder
Have you googled yourself? If so, put this book down and immediately go to

www.zoominfo.com. ZoomInfo is a Web 3.0 site that is always crawling the

Internet looking for data about people and businesses. It has the semantic

smarts to associate data from different places and build a profile of you from

that data. If you were excited by a few page hits the first time you googled

yourself, the experience with ZoomInfo could be a little scary, so beware!

ZoomInfo isn’t always accurate and can be fooled by some common names,

but if you’ve led a life that has been documented on the Internet in any way,

ZoomInfo is very likely to know who you are.

Dapper: Mashups and semantics
If you’re at all interested in advanced data feeds or the next generation of

Web-based advertising, go directly to the Dapper demo at www.dapper.
net/dapperDemo. Dapper is a core technology for capturing content from

any Web site and making that content useful to any other application. A

number of Semantic Web applications use the power of Dapper for bringing

semantics to the masses (try Semantify: www.dapper.net/semantify)

and building a better mashup ad network (try MashupAds: www.dapper.
net/mashupads). A Web site mashup blends data from other locations into

a single feature. Dapper is a building block technology for mashups that can

help extract useful data from otherwise difficult-to-use unstructured Web 2.0

Web sites. Although this kind of screen-scraping technology can be brittle

in highly dynamic environments, it’s often the only way to repurpose data

from Web sites that don’t supply any Semantic Web annotations themselves.

Dapper applications are powerful examples of Web 3.0 applications that

attempt to build bridges between Web 2.0 data silos.

06_396797-ch02.indd 3306_396797-ch02.indd 33 2/13/09 6:47:26 PM2/13/09 6:47:26 PM

34 Part I: Welcome to the Future of Data and the Web

Peering into the Crystal Ball
of the Semantic Web

There are many ideas for how to make your regular Internet sites more

semantically rich — in other words, Web 3.0–enabled. The general idea for

adding semantics is to make sites more intuitive, more responsive, and easier

to use. Because most of the ideas for how to bring the Semantic Web to

your favorite Internet site are still in the incubation phase, I make no claims

about having perfect foresight into the future, and my ideas about how the

Semantic Web will improve a particular application are no doubt incomplete.

But with that caveat, the following Web applications are very likely suspects

for Semantic Web technology to revolutionize their core foundations. So if

you agree with me that there’s a Semantic Web opportunity in one of these

applications, maybe you’ll be the one who does it best!

Semantic Web desktop applications
Most people view the Web from a software application called the Web

browser. It’s the main application through which you see Web pages and use

the features that the Web publishers make available. The Web browser has

toolbars for browsing activities, a browsing history section for tracking sites

you’ve browsed, and bookmarks for you to save the location of pages you

want to see again in the future. But browsers don’t really have much smarts

about the data you see on the Web. In fact, browsers are lousy at understand-

ing what you’re looking at.

One way that the Web 3.0 and the Semantic Web will be different is that the

browsers will start to understand more about the content of what you’re

browsing and begin to make recommendations or help organize the content

for you. Having more smarts in the Web browser means that you’ll have

a partner in your Web surfing that can read what you’re reading and use

that information to save you time later. A company called Adaptive Blue is

exploring this path with a product called Glue (www.getglue.com). Glue

is a browser toolbar (see Figure 2-2) that tells you when you’re looking at

Web content that your friends have looked at and lets you know what they

thought about it. Glue also gives you recommendations about other topics

that you might want to check out. You don’t have to belong to a social net-

work or go to a Web page to get this kind of interaction: It’s right there in

your browser application. Using such browser smarts is one way that the

Web of tomorrow seems smarter than what you use today.

Other areas for Web 3.0 applications include the emergence of semantic

e-mail applications. The Mangrove Project is looking at ways to use seman-

tic annotations and Natural Language Processing (NLP) to automate e-mail

06_396797-ch02.indd 3406_396797-ch02.indd 34 2/13/09 6:47:26 PM2/13/09 6:47:26 PM

35 Chapter 2: The Semantic Web in Your Life

processes such as taking RSVPs, coordinating meeting logistics, organizing

subgroups on a list, and handling processes that would otherwise require

humans to read and parse the messages. Semantic calendars are a related

area for future developments. A semantic calendar application would be

capable of organizing and displaying events based on the content of the

event, and it could automatically provide cross-references to other events,

e-mail, or Web sites with similar content. One notable early implementation

here is the semantic calendar extension to Semantic MediaWiki (http://
semantic-mediawiki.org/wiki/Help:Calendar_format), a semantics-

driven wiki application.

Finally, the desktop itself may one day be the Semantic Web application you’ve

been waiting for. KDE (K Desktop Environment) is a desktop system that can

run on many different operating systems like Linux, BSD, Solaris, Windows,

and Mac OS X. The K Desktop Environment (www.kde.org) is a platform that

provides a window manager, file manager, desktop search, and other group-

ware suites. KDE 4.0 includes a desktop semantic search application called

Soprano that was contributed by the NEPOMUK (Networked Environment for

Personal Ontology-based Management of Unified Knowledge) EU (European

Union) project. This semantic search application works by creating a Semantic

Web–based index of all your desktop files and making them instantly available

for you to search more intelligently. Additionally, anybody can annotate any

file on your computer with Web 3.0 tags that become part of a local ontology

describing the contents of your computer.

Figure 2-2:
The

Adaptive
Blue Glue

toolbar for
comment-

ing on Web
content.

06_396797-ch02.indd 3506_396797-ch02.indd 35 2/13/09 6:47:26 PM2/13/09 6:47:26 PM

36 Part I: Welcome to the Future of Data and the Web

Over time, your local desktop files can be connected to any data on the

Semantic Web and remixed with anybody else’s data that you have access

to. Semantic desktops are starting with search, but eventually the operating

system and any application running on your computer might be a Web 3.0

application. Whether it’s just a browser, your e-mail client, your calendar,

or the desktop itself, the Semantic Web will be changing the way you look at

the Web.

Semantic blogging
Semantic blogging takes blogging, already one of the most popular and con-

troversial aspects of Web 2.0, to an even more interconnected level. Some

existing semantic blogs can integrate with blogging platforms like Wordpress,

Blogger, and Typepad to suggest pictures, links, articles, and tags related to

your blog postings.

One such semantic blog is from a startup company called Zemanta (www.
zemanta.com). Zemanta uses proprietary natural language processing and

semantic algorithms to compare the words in a blog post to its preindexed

database of other content in order to suggest related items that will display

next to your blog post. The articles Zemanta suggests come from 300 differ-

ent media sources as well as the other blogs of Zemanta users. The images

come from Wikimedia Commons, Flickr, and stock photo providers like

Shutterstock and Fotolia.

If you’re an existing blogger who wants to get started with a semantic blog,

you’ll very likely need to install an extension to your Web browser. After your

extension is installed, visit your favorite blog Web site with that browser and

then begin to write your post.

Zemanta’s semantic blog is interactive and dynamic. While you’re writing

your blog, Zemanta places a sidebar to your post filled with related, auto-

matically generated content as you type. Because of the way Zemanta’s index

and NLP algorithms work, each blog entry should be at least 300 words for

Zemanta to generate accurate sidebar links and other recommended content.

 The jury is still out on whether semantic blogging is its own application or

more appropriately a new feature on existing blog engines. Regardless of

whether Zemanta changes the rules of blogging, you can be assured that

more and more smart technology will be injected into the blogging software

you’re already using. A great deal of those new smarts will be thanks to the

Semantic Web.

06_396797-ch02.indd 3606_396797-ch02.indd 36 2/13/09 6:47:26 PM2/13/09 6:47:26 PM

37 Chapter 2: The Semantic Web in Your Life

Semantic wikis
Wikis are in some ways the defining application of the Web 2.0 movement —

they were the first widespread application of technology that allowed groups

to work on the same Web content. But regular Wikis are pretty basic technol-

ogy by today’s standards: They generally consist of some places for people

to type unstructured text and insert uncategorized hyperlinks into a Web

page. Although Wikis are pretty good at version control on Web pages, they

don’t really have a whole lot of smarts built in to them in other ways.

In contrast, a semantic wiki is a wiki that has an underlying model of the infor-

mation described in its pages. Semantic wikis give users the ability to capture

or identify additional data/metadata about the wiki pages and their relations

to other Web content. For example, imagine a semantic wiki devoted solely

to cars. The page for BMW would contain, in addition to standard human-

readable text information, some machine-readable or machine-generated

semantic data.

One basic example of semantic data about a car wiki might be that a BMW is

a kind of car manufacturer — the relation between “BMW” and “car manufac-

turer” is known as an inheritance relationship. The semantic wiki might be

capable of automatically generating a list of car manufacturers simply by list-

ing all pages that are tagged as (or inferred to be) a type “Car Manufacturer.”

Other semantic tags in the BMW page might indicate more data about BMWs,

including their history, models, repair data, driving characteristics, and any

other data that was considered notable. These tags could be derived (per-

haps using NLP) from the text, but with some chance of error from the auto-

matic tagging: accordingly, the tags could be presented alongside the Wiki

data so that they can be easily corrected.

Another good reason for semantic wikis is that they can then export their

data in a standard Semantic Web format. This means that the wiki data can

then be queried in the same ways that a regular database might so that exter-

nal Web sites or power users could submit queries to your wiki data and use

that data on their own Web sites.

Here are a few examples of semantic wikis:

 ✓ Metaweb: The software that powers Freebase (www.metaweb.com)

 ✓ IkeWiki: Developed by Salzburg Research (http://ikewiki.salzburg
research.at)

 ✓ Semantic MediaWiki: An extension for the popular MediaWiki software

that turns it into a semantic wiki (http://semantic-mediawiki.org)

06_396797-ch02.indd 3706_396797-ch02.indd 37 2/13/09 6:47:26 PM2/13/09 6:47:26 PM

38 Part I: Welcome to the Future of Data and the Web

 ✓ OntoWiki: A semantic wiki developed by AKSW Research (http://
ontowiki.net)

 ✓ SweetWiki: A Semantic Web Enabled Technology Wiki (http://sweet
wiki.inria.fr/wiki)

 It remains to be seen whether any semantic wiki will stand on its own or

whether the features will simply be folded into other more popular conven-

tional wikis. But the trends seem to point to a future where wikis move beyond

simple pages with simple links and become more capable of understanding

the content they contain, generating new links and organizing themselves

based on the raw content keyed in by humans. This capability will be part of

the path to a smarter and more automated Web.

Semantic search engines
Due in no small part to the incredible story of Google’s rise to Internet domi-

nance, the area of Web search has been a booming place to find Semantic

Web innovations. Whereas traditional search engines mainly operate on key-

word indices and simple results pages, the semantic search engines attempt

to give smarter results by first searching for concepts and then making

the results more navigable for people who want to drill around in the data

results. In general, semantic search attempts to augment and improve tra-

ditional searches by leveraging Semantic Web–formatted data to add more

meaning to search queries and Web text in order to increase the accuracy of

results, as well as to make it easier to navigate to the best answer.

In practice, there are two major types of search behavior:

 ✓ With a navigational search, the user is using the search engine as a

navigation tool to navigate to a particular document of interest. For nav-

igational-style searches, the Semantic Web can provide a rich category

framework for filing and retrieving specific documents of interest. The

KDE 4.0 Semantic Desktop search system gives a good example of how

documents can be organized and annotated for navigational searches to

find items more simply.

 ✓ With a research search, the user queries the search engine with a

phrase that signifies an object or idea about which the user is trying to

gather information. The user isn’t trying to get to any particular docu-

ment she knows of. Rather, she’s trying to locate a number of docu-

ments that together will give her the information she’s trying to find.

 In the research-style of searching, the search engine can augment rank-

ing algorithms, such as Google’s PageRank, to predict relevancy, with

semantic annotations and inference engines to further improve the

accuracy of wide-scale searching. (See Figure 2-3, a Powerset example

06_396797-ch02.indd 3806_396797-ch02.indd 38 2/13/09 6:47:26 PM2/13/09 6:47:26 PM

39 Chapter 2: The Semantic Web in Your Life

of a Research query.) The goal of a semantic search engine is to deliver

exactly the information queried by a user rather than returning a list of

loosely related keyword results that the user has to click through.

Figure 2-3:
Microsoft
Powerset

with a
research-

style query.

 Although semantic search gets a lot of attention in the media and could truly

be a game-changing technology if a company could rival Google’s ongoing

dominance of the search space, I personally don’t feel that the Semantic Web

will adequately solve the remaining problems in the search space until there is

more Semantic Web data to index. Until that point, my belief is that the Web

3.0 and Semantic Web search engines will find success in narrow niches that

they can optimize for and generate their own semantic data models within.

Here are a few search engines using Web 3.0 technology:

 ✓ Yahoo!: Using semantics for remixing content in search results (www.
yahoo.com)

 ✓ Hakia: Using semantics for better search accuracy (www.hakia.com)

 ✓ Swoogle: Using semantics to search public ontologies (http://
swoogle.umbc.edu)

 ✓ Microsoft Powerset: Using semantics to catalog Wikipedia and Freebase

(www.powerset.com)

 ✓ Zitgist: A Semantic Web browser for linked data (www.zitgist.com)

06_396797-ch02.indd 3906_396797-ch02.indd 39 2/13/09 6:47:26 PM2/13/09 6:47:26 PM

40 Part I: Welcome to the Future of Data and the Web

Go ahead and try a few of these search engines yourself. You’re likely to be

both impressed and underwhelmed. These semantic search applications

excel in certain situations, but they still fall short of being a perfect solution

for everyday use. That’s where the advancements in the next ten years will

have to come — in the scale and simplicity to solve search problems for

everyday Web users.

Semantic news feeds and publishing
Keeping track of events happening in the world becomes more difficult year

after year. Ironically, the more information that becomes available, the more

difficult it becomes to parse it, understand it, and place it in context with

other data that you already know about. For some folks, this process of

information gathering is merely a hobby, but for others, it’s big business and

a way of life. The news industry and the publishing industry live and die on

the basis of information access, discovery, and reuse: Obviously, they’re big

parts of the Web, and major investors in the rise of Web 3.0 technology.

Semantic news feeds are an idea that is still in its infancy, but much more

than simply a dream. Thomson Reuters is placing a big bet that companies

and people will want a better way to get their news more accurately and with

more precision than ever before. The new service provided by Thomson

Reuters is called Calais, and it gives you the ability to subscribe to news

based upon concepts and ideas — not just keywords or news feeds. The

Calais service (http://opencalais.com) can scan news content from any-

where and automatically categorize it according to an ontology of concepts

like people, places, events, and things. You can use this service to subscribe

to topics of your choice, such as, “legal events in the U.S. Congress.” The

Calais service helps you find news content that matches that concept regard-

less of whether those keywords appear in the article.

In the publishing domain, semantic publishing generally refers to publishing

documents and information as data objects using a Semantic Web format.

Semantic publication is intended for computers to understand the structure

and meaning of the information, making information search and data integra-

tion more efficient. Semantic publishing has been developed and exploited

internally by major publishers for several years, using ontology as a way to

categorize and search content of all types, but it’s only now starting to break

into mainstream publishing applications that are usable by consumers.

Some pundits expect the Semantic Web and Web 3.0 to change the publish-

ing industry as a whole — enabling companies to mix, reuse, and repurpose

their copyrighted content with open content in ways that were unimaginable

a few years ago. In particular, the area of scientific publishing is ripe for

major changes. Tim Berners-Lee predicted in 2001 that the Semantic Web,

“will likely profoundly change the very nature of how scientific knowledge

06_396797-ch02.indd 4006_396797-ch02.indd 40 2/13/09 6:47:27 PM2/13/09 6:47:27 PM

41 Chapter 2: The Semantic Web in Your Life

is produced and shared, in ways that we can now barely imagine.” One area

of scientific publishing being invested in today is to enable researchers to

self-publish their experiment data in Semantic Web formats directly onto the

Web. Imagine a future where a scientist in Berlin could design and run an

experiment and then post the research data immediately for a researcher in

Tokyo to begin reusing that data in her own experiments. This kind of collab-

oration is impossible with conventional data formats and requires too tight

of coupling between researchers to be pragmatic at huge scales. Interest

groups at the W3C (World Wide Web Consortium) are exploring this idea of

self-publishing scientific data, and early prototypes have been considered a

strong success.

At a very high level, there are at least two different approaches for semantic

publishing:

 ✓ Publish information as data objects encoded in Semantic Web lan-

guages and formats. These ontologies and data graphs are usually

developed for specific data domains. Often, this more formal approach

is expensive and performed only by profit-minded corporations or orga-

nizations with a charter for the public good (like government agencies

or publicly funded media groups).

 ✓ Use the Web 3.0 technology to annotate existing documents or data-

bases with Semantic Web metadata formats. This approach can be

simpler and more automated when you already have lots of existing non-

semantic data to publish. Both approaches already have been deployed

into product settings and are in use by major publishing organizations

worldwide.

Regardless of whether you’re a casual reader of news who wants more tar-

geted suggestions or you represent a high-powered publishing company

looking for ways to reach your audience more efficiently, the Semantic Web

and Web 3.0 transition that’s due to happen between 2010 and 2020 will very

likely change your way of thinking about how you subscribe and receive

information on the Web.

Semantic social networks
By any measure, the rise of Web-based social networks has defined the age of

Web 2.0. By some accounts, more than 40 percent of all Internet traffic (page

requests) is going to a social network. The extreme proliferation of social

networks has even resulted in a mildly derogatory acronym — YASNS (Yet

Another Social Networking Service) — used to deride the emergence of the

latest and greatest new social network. The Semantic Web and Web 3.0 are

not YASNS! But these newer semantic technologies can bring a lot of value to

the existing social network platforms in many ways.

06_396797-ch02.indd 4106_396797-ch02.indd 41 2/13/09 6:47:27 PM2/13/09 6:47:27 PM

42 Part I: Welcome to the Future of Data and the Web

Here are a few major problems with social networking sites and examples of

how Semantic Web can help:

 ✓ Social networking sites don’t work with each other. There’s little incen-

tive from a business standpoint to interoperate among social networks,

but the people using social networks are frequently frustrated with the

fact that they cannot own their own profiles (descriptions about them-

selves, their interests, the people they know, where they work, and so

on) and reuse them in different networks. Instead, the social network

users have to retype data from one Web site to the next in a repetitive

way just to get the benefits of using some particular social network.

 The Semantic Web can enable social network data portability with a

format called FOAF (Friend of a Friend). The FOAF format is already

widely used by millions of people, and some social networks already

allow import and export of FOAF data so that their users can keep and

reuse all that data that they upload to their services. If you think about

it, this is really quite a leap from the social network literally owning your

personal data to taking back control and ownership of your own data on

your own terms. This is one small example of how the Semantic Web can

help you regain control over your data.

 ✓ Social networks predominantly focus on building communities around

a particular social object. Facebook is oriented around friends, and

Flickr focuses on social networking around photos. Del.ico.us focuses

social networking around bookmarks. VOX focuses on social network-

ing with blogs. LinkedIn focuses on social networking around your job.

The challenge comes when people want to engage in networks that span

multiple types of social objects. Why do we have to keep our Facebook

profiles, LinkedIn profiles, and VOX profiles all separate? The rest of our

lives aren’t partitioned this way!

 Web 3.0 and Semantic Web technologies can help you engage in a

diverse range of social objects without becoming partitioned into only

one interest area. For example, Twine is an “interest networking” Web

site built on Web 3.0 technology that allows the community members to

create social objects around their interests themselves. The Web site is

continuously mining user entries and other Web content to recommend

new topics to the people who belong to a particular interest group. The

system can be browsed from the Web or set up to e-mail interests to the

network on a regular basis.

06_396797-ch02.indd 4206_396797-ch02.indd 42 2/13/09 6:47:27 PM2/13/09 6:47:27 PM

Chapter 3

The Data Web at Work
for Business

In This Chapter
▶ Checking out the data web between business systems

▶ Understanding how the Semantic Web helps with data sharing

▶ Choosing to work with Semantic Web technologies

▶ Seeing a future that includes low-cost ways to link important data

I’ve been building and selling semantic technology for businesses since

2001. I know first-hand how difficult it is to sell the Semantic Web vision

to profit-minded businesses keyed into bottom-line results. This chapter is

a comprehensive examination of top business and chief information officer

(CIO) issues with a focus on how the Semantic Web can help. Asset-minded

professionals should want to know they can preserve and protect their most

valuable capital investments — data.

What’s the big deal about the Semantic Web for businesses? The Semantic

Web enables businesses to start creating their own webs of universal data

connections throughout all their corporate data, content, and documents.

This chapter describes the capability of Semantic Web technologies. You

find out how businesses currently manage their data-handling needs and

how Semantic Web technologies can work with the systems already in place

to offer IT solutions that are cheaper to implement and easier to expand and

maintain.

07_396797-ch03.indd 4307_396797-ch03.indd 43 2/13/09 8:09:48 PM2/13/09 8:09:48 PM

44 Part I: Welcome to the Future of Data and the Web

Getting a Handle on Enterprise Data
Challenges and Opportunities

Data is an asset to any business. In fact, modern businesses are dependent

on electronic data. Businesses use electronic data to evaluate past perfor-

mance and also to guide future investments worth trillions of dollars to the

global economy. Large businesses already have access to a lot of data and

have made substantial investments in systems to store, manipulate, and

report on that data.

Any right-minded businessperson wants perfect visibility into all the highest-

quality business data at just the right time for the lowest possible cost. But

despite the fact that businesses have tons of existing data (and are creating

unprecedented amounts of new data daily), they’re still incapable of linking it

all together in any sort of timely and cost-efficient way. They’re trying to take

a drink from the fire hose of data gushing in their businesses.

If the problem were simply about collecting all that data fast enough, the

solution would involve engineering existing databases and other content

management systems to catch it all. But the real problem is not the large

quantity of data items (the amount of water gushing out of the fire hose); the

problem is capturing the business connections that exist between them (get-

ting a drink of water).

Businesses don’t need faster ways to collect data, nor do they need more

ways to store or report on data. If anything, they have too many different

ways to do all those tasks already. Likewise, businesses don’t need more

metadata for metadata’s sake, nor do they need more integration tools to

integrate data from one place into another. Some businesses end up paying

to integrate the integration tools!

 One technical pain point that Semantic Web solves for businesses is that it

provides a universal and powerful way to link data from anywhere to any-

thing. The Semantic Web enables a business to start creating its own web of

universal data connections throughout all its corporate data, content, and

business documents. These links become the physical web of data — and

data definitions — for business.

In the 1990s, the common benchmarks for huge enterprise computing

technologies were the global businesses of the United States. But in the 21st

century, the new benchmarks for massive corporate software infrastructure

have gone global. Some emerging market banks in India and China have

data warehouse systems that already rival even the largest retail chains like

Wal-Mart.

07_396797-ch03.indd 4407_396797-ch03.indd 44 2/13/09 8:09:48 PM2/13/09 8:09:48 PM

45 Chapter 3: The Data Web at Work for Business

In global mega-industries like oil and gas, pharmaceuticals, banking, and con-

sumer packaged goods, electronic data is routinely used to generate goods

and services worth trillions of dollars to the global economy. Decisions about

where to drill for oil, which drugs to produce, and how much money to invest

in targeted marketing campaigns are all dependent on access to accurate and

comprehensive data.

With continued globalization, the amount of business data, as well as its geo-

graphic distribution, is reaching a scale that has never been seen before in

the software industry. Here’s a glimpse of what most businesses have already

made substantial investments in:

 ✓ Databases: Every business has databases large and small. The database

is typically the centerpiece technology infrastructure for nearly every

kind of business software application.

 ✓ Data warehouses: High-end databases typically come configured specifi-

cally as data warehouses that are optimized for very fast read times with

lots of data.

 ✓ Business intelligence: Business intelligence refers to the software appli-

cations that manipulate data inside data warehouses and run reports for

finance, sales, and most other parts of any large business.

 ✓ Information Lifecycle Management (ILM): Most mature businesses use

ILM tools to archive older data yet still make sure it’s accessible in case

of audits.

 ✓ Content Management Systems (CMS): These systems are the central

repositories for business documents that need to be version controlled

and shared from a common storage system. Large businesses typically

have several.

 ✓ Enterprise Resource Planning (ERP): Central business functions like

financial ledgers, human resources, and supply chain and logistics soft-

ware systems are usually categorized as ERP systems.

 ✓ Integration: Data integration, process integration, and message integra-

tion technologies are typically used to help the rest of these software

systems work together.

 ✓ Enterprise search: A search engine can create a large index of content

and keywords that can be easily searched — thereby allowing people to

search for text matches in the data.

And those are just the data management systems! Clearly there are many

existing challenges, and therefore opportunities, in the enterprise software

environment. No opportunities stand out more than the chance to help busi-

nesses turn data into information.

07_396797-ch03.indd 4507_396797-ch03.indd 45 2/13/09 8:09:48 PM2/13/09 8:09:48 PM

46 Part I: Welcome to the Future of Data and the Web

Understanding the Difference between
Information and Data

All businesses have data to manage. Any business large enough to have its

own accounting software also has applications, databases, spreadsheets, and

other desktop documents full of business data. Much of this data is logically
connected — it relates to the same business elements — but is physically dis-
connected in ways that prevent any search engine, database, or other content

management system from linking up the separate bits of data.

Savvy IT professionals are aware of these implicit, undocumented logical
connections among business data. They also recognize the problems that

can arise when critical business applications don’t “talk” to each other over

physical connections. For example, financial risk metrics for global banking

systems cannot be calculated if the brokerage systems don’t exchange risk

coefficient data with ledger applications. IT professionals may know of many

ways to fix these kinds of problems. But if you’ve been involved with trying

to resolve logical data problems in real enterprise software, you know that

the effort can take massive amounts of manual labor, and the success rate of

projects that tackle these problems is dismally low.

For example, whenever a person in one department of your organization

updates a spreadsheet saved on his or her personal computer, that person

creates a new business event and new business data that is untraceable and

completely disconnected from your corporate system. Although you may

have a proprietary solution that allows the integration of desktop documents

into other corporate applications, these are probably point solutions (solu-

tions that work for a limited and prearranged set of situations).

In practice, businesses bring together their various systems on an “as

needed” basis, and the data tends to be shared in a “need to know” manner.

For example, suppose your business needs to create a special report that

requires a one-off integration between the facilities database and the financial

systems for the purpose of a regulatory audit. The result? Only the data that

absolutely must be shared actually is shared when the project is delivered.

 This “sharing as needed” practice has an unfortunate consequence of creating

a rigid and fragile data ecosystem with the following characteristics:

 ✓ Difficult data tracking: Tracing backwards to the original source data

can be difficult. For example, in corporate banking environments, it’s

often necessary to perform an analysis of the data lineage to accurately

state how the financial data came to be — this is a requirement both for

auditing and risk management.

07_396797-ch03.indd 4607_396797-ch03.indd 46 2/13/09 8:09:48 PM2/13/09 8:09:48 PM

47 Chapter 3: The Data Web at Work for Business

 ✓ Data isolation: Finding out about associated data that might be related

to the original source data is not straightforward. Because so many

copies are made of the data, into new silos or other applications, the

data may become irreconcilable with other similar data that should

match.

 ✓ Irregular updating: All too often, data from separate sources is merged

into the department data mart (departmental database) intermittently,

often weeks apart. At a different interval, that same data might then

make its way into the corporate enterprise data warehouse (EDW). Such

irregular updating can cause duplicate, erroneous, or incomplete data.

In the abstract, these ideas about data visibility seem somewhat esoteric, but

imagine for a minute how these fragile data ecosystems impact your own life.

The subprime mortgage crisis everyone felt in 2008 was due in no small part

to the inability of the financial institutions to easily assess the actual risk of

the loans that they were buying and selling for hundreds of billions of dollars.

In actuality, many very large loan bundles were miscategorized to be lower

risk than they really were and sold to buyers who thought they were better

protected. Then the loan interest rates rose, and homeowners started default-

ing. Each financial institution holding large collections of subprime loans had

very imprecise ways to assess how risky their loans actually were — before

or after the fact. At its essence, this subprime mortgage crisis may have

been a larger institutional problem, but it had very real and very painful data

issues at its core.

 To have reliable information about business performance, the separate data

items that your business collects must bridge the gaps between systems and

come together to form a complete picture. What your business needs — and

what the Semantic Web can provide — is a universal solution for linking disas-

sociated business content into a larger web of cohesive corporate data con-

cepts and business data values. In other words, the Semantic Web can help

provide you with easily accessible business information.

Evaluating the Web in
Your Current Systems

Somewhat ironically, a semantic web (lowercase s) already exists within

every large business. This web results from the logical, implied, and undocu-

mented relationships between data in different software systems, and its

existence is simply a fact of life for enterprise software. The same IT prag-

matists who might say that the Semantic Web vision is unachievable fluff are

very likely fighting fires with their own undocumented semantic web.

07_396797-ch03.indd 4707_396797-ch03.indd 47 2/13/09 8:09:48 PM2/13/09 8:09:48 PM

48 Part I: Welcome to the Future of Data and the Web

Each software application has its own domain of data with data objects and

values. For example, suppose that one application has a database column attri-

bute called CST_ID, and a data value of 12-34567-GH. But another application

has a software class called Customer that has an attribute called SSN with a

value of 987654321. A third XML data file uses a tag called <CUID>. In these

three data locations, one customer — say, “John Smith” — is represented by

three completely different Unique Identifier values, but the logical associations

that link this one customer to three different physical data representations are

an undeniable part of this undocumented semantic web, as shown in Figure 3-1.

Figure 3-1:
One real

person with
more than

one system
identifier.

<CUID = “321”>
<FNAME = “John” />
</CUID>

Payments

Billing System

Ordering System

Implicit
Associations

1. SSN = ObjectID
2. CST_ID = PK
3. Instance 987654321
 is SameAs Instance
 12-34567-GH

Customer
FirstName = “John”
SSN = “987654321”

FLEX

CSTMR

CUST_ID

FRST_NM

FLEX_VAL

12-34567-GH

JOHN

As a result, businesses tend to tackle the job of turning complex implicit rela-

tionships among data into explicit relationships only when they are under

extreme pressure to do so. The challenges for taking on these problems are

varied and include

 ✓ Technical challenges: From the software standpoint, it can be an excep-

tionally difficult manual task to perform the mappings and create the

system-level integrations.

 ✓ Scope challenges: The extreme scale of enterprise computing requires

that scope be constantly managed, and usually only the minimal level of

duplicative work is funded.

 ✓ Operational challenges: Businesses need to stay on an even keel to

continue operations at (at least) the current performance level. Often,

having a poorly working system of operations is better than having none

at all due to a failed attempt at improvement, which could halt business

operations and result in huge amounts of lost revenue.

07_396797-ch03.indd 4807_396797-ch03.indd 48 2/13/09 8:09:48 PM2/13/09 8:09:48 PM

49 Chapter 3: The Data Web at Work for Business

So, although all those logical data connections may be there to start, the

technical and organizational challenges required to make them actionable

may be too high of a financial burden for most organizations. In the following

sections, I describe the importance of maintaining existing legacy systems

and how the average CIO (Chief Information Officer) prioritizes his or her

projects.

Maintaining existing business applications
Most large businesses operate with several enterprise resource planning

(ERP) applications. These ERP systems are the lifeblood of business opera-

tions. Everything — from how financial books are reconciled to how orders

are fulfilled — is driven by these enterprise software applications.

A small mom-and-pop business may use desktop programs like QuickBooks

or package shipment software applications from shipping companies like

FedEx. The typical large company has several ERP applications for its opera-

tions, such as the General Ledger, Shipping and Logistics, Supply Chain

Management, and Inventory Management. The same large company probably

also has dedicated Reporting systems for each of those ERP applications.

The reasons that large businesses have many ERP systems are as numerous

as businesses themselves. Sometimes this complexity is a result of merger

and acquisition (M&A) activity, and sometimes the business simply chooses

a decentralized IT strategy. In either case, when you have a diversified ERP

environment, the costs to consolidate are massive.

In addition to ERP applications, every large IT organization manages thou-

sands of infrastructure software systems that run alongside those opera-

tional systems. This infrastructure includes technologies such as

 ✓ Online transaction processing (OLTP) databases for transactional data

such as purchase orders, general ledger activity, and other high-volume

transactional data

 ✓ Transaction processing systems (TPS) such as TPS Monitors that guar-

antee transaction success as well as enterprise application integration

(EAI) and service oriented architecture (SOA) solutions that provide

message bus services and enable system integration

 ✓ Enterprise data warehouse (EDW) appliances and business intelligence

systems that perform data aggregations, make calculations, and allow

for an intelligent synthesis of many facts

The point is this: Your business already has a significant investment of time

and money in software systems to run the operations and manage the related

data. Simply maintaining these systems requires continued investment of

07_396797-ch03.indd 4907_396797-ch03.indd 49 2/13/09 8:09:48 PM2/13/09 8:09:48 PM

50 Part I: Welcome to the Future of Data and the Web

resources. Instead of spending on innovation and process improvement, your

IT department on average spends approximately 80 percent of its budget

simply maintaining basic functions.

 As the demand for more information increases, the importance of connecting

the data in all your separate systems increases, too. What you need is a solu-

tion that enables your existing applications and infrastructure to work

together to supply information without having to make another major invest-

ment of time and money.

CIO priorities and decision making
Businesses have plenty of data, but they always need people and well-run

organizations to turn it into useful information. CIOs are faced with enormous

pressure: The weight of a modern business rests on the data and software

that processes its financial transactions and customer relationships.

Executive leaders in any company need to stay on an even keel that main-

tains the status quo for operations to continue at their current performance

levels. Oftentimes, a poorly working operational system is better than a failed

attempt to improve it because the unanticipated failures are the ones that

bring business operations to a standstill and result in huge amounts of lost

revenue. Most IT executives are inherently risk averse and take a very mea-

sured and conservative approach to modernizing software systems. Rarely

do you find a cavalier CIO who is embarking on too much change too quickly.

So what is on the global 2000 CIO’s mind? Firms like Gartner, CIO Magazine,

and CIO Insight regularly survey IT leaders to determine their priorities and

areas of focus. A summary of 2008 findings shows that the top-ten concerns are

 1. Improving business processes

 2. Better customer service

 3. Investing in business intelligence

 4. Managing server and storage technology

 5. Innovating — new products and services

 6. Legacy modernization

 7. Improving worker productivity

 8. Securing the enterprise IT environment

 9. Regulatory compliance and corporate governance

 10. More flexible and cheaper systems integration

07_396797-ch03.indd 5007_396797-ch03.indd 50 2/13/09 8:09:48 PM2/13/09 8:09:48 PM

51 Chapter 3: The Data Web at Work for Business

Because 80 percent of a CIO’s budget typically is spent maintaining existing

functions, only 20 percent is left for innovation and new initiatives. If 80 cents

of every dollar you could spend was already spoken for, you too would be

cautious about how you used the remaining 20 cents.

 Existing investments and infrastructure are the basis for all IT spending pat-

terns in any large business. It is the CIO’s job to protect and maintain those

investments.

The typical CIO of a Global 2000 enterprise will be faced with data manage-

ment challenges that may include

 ✓ Hundreds of terabytes of warehouse data

 ✓ Petabytes of information in a managed lifecycle

 ✓ Hundreds of millions of documents and other content under management

 ✓ Dozens of departmental data warehouses

 ✓ Several enterprise data warehouses

 ✓ Dozens of possibly overlapping operational systems that are mission

critical for the day-to-day business

 ✓ Several transaction processing systems, including multiple integration

platforms for integrating applications

 ✓ Capital expenditures for both hardware and software on a global basis

and in several geographical regions

Navigating huge amounts of data under CIO pressures can be daunting

indeed! Enterprise data challenges are numerous and exceptionally complex.

After 30 years of infrastructure build-out, large businesses and governments

are awash in legacy systems and very inflexible data. The Semantic Web is

not a silver bullet for all data ills, but it can offer a dramatically improved

way to move forward for strategic-minded managers.

Grasping the Vision of the
Semantic Web at Work

What if enterprises could invest in a technology that made data cheap and

abundantly easy to find, change, and distribute anywhere? What if your busi-

ness could seamlessly combine open-source data from the Web with organi-

zational data from your data warehouses and ERP applications? What if your

corporate decisions were made with 100 percent visibility into your institu-

tional data and the best of the free data from the Web?

07_396797-ch03.indd 5107_396797-ch03.indd 51 2/13/09 8:09:48 PM2/13/09 8:09:48 PM

52 Part I: Welcome to the Future of Data and the Web

If these “what if” questions sound like the direction you’d like your business

to take, I suggest you take a look in the direction of the Semantic Web for

some innovative solutions.

People use terms like semantic web, Web 3.0, and the data web interchange-

ably to describe the vision behind recently approved standards created by

the World Wide Web Consortium (W3C). Although catchy, none of these buzz

words supply any hint about this new technology’s ability to transform the

foundation of enterprise software; empower radical new business capabilities;

and throttle back IT spending in the notoriously expensive areas of data inte-

gration, master data management, and enterprise information management.

 Semantic Web technology doesn’t require monolithic software infrastructure

to be effective, nor does it require that businesses scrap their existing invest-

ments. The technology doesn’t require massive software projects to design

the perfect global single data model for your enterprise. It is also much more

effective than simple search tools for finding what you need.

This technology makes all your business data look like a high-powered

database — regardless of whether that data is a document on an employee’s

hard drive, an existing database, or a repository of many documents in any

format — without having to centralize any of that original data into one place.

The Semantic Web of tomorrow is technically more similar to today — and

more pragmatic — than you might think. In tomorrow’s Semantic Web, there

are ERP applications, databases, integration tools, corporate directories,

and security systems just like today. There are business process analysis

tools, legacy systems, and business intelligence reporting systems. There

are even old and new technologies comingled in the same infrastructure. So

what’s different?

 The single largest feature of this future utopia that’s different than today is

this: Every source of data, every master software system and application,

and every platform integration and database provide an interface to its data

and business rules in an RDF (Resource Description Framework)–compatible

graph data language. When this ubiquity of Web-addressable graph data is

achieved, you’ll see a dramatic and sustainable cost reduction around data

sharing.

 RDF will do for data what the Web did for documents. Do you remember

what computing was like before the Web? Do you remember how you found

documents before the search engine? Do you remember what it cost to

share documents before the Internet? Those are the days that gray-haired

IT guys and pencil-sharpening finance gals would like to forget.

07_396797-ch03.indd 5207_396797-ch03.indd 52 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

53 Chapter 3: The Data Web at Work for Business

The transformative power of making minute data pieces addressable at Web

scale, on Web protocols, and with powerful artificial intelligence search,

reasoning and learning capabilities cannot be overestimated. This utopian

vision is probably an inevitability — how else could the future unfold? Some

may argue that we’ve reached the height of IT data capabilities — that all the

future may hold is more eXtensible Mark up Language (XML), more Java, and

more proprietary vendor solutions. I contend, however, that software will sig-

nificantly improve, becoming easier, cheaper, and more automatic.

Flourishing in a Semantic Web Utopia
In the future utopia of easily accessible and distributable data, business will

have many new capabilities at hand. Consider the following effects on some

major industries:

 ✓ Manufacturers would be able to easily and simply identify all data, docu-

ments, and other electronic content about any product they make. This

new accessibility would take place without the manufacturer having to

move all that data into the same place. But the ability to answer highly

complex queries would make product-recall investigations or other

compliance-related needs go much more smoothly than they do today.

 ✓ International banks could drill into accounts, transactions, and finan-

cial histories without requiring many months of expensive IT projects

to do so. Financial institutions could assess risk with greater accuracy

because more of the relevant data would be available without large IT

investments. Perhaps even a major capital markets crisis (subprime

mortgage lending, perhaps?) might be averted in the future when data is

more transparent and auditable.

 ✓ Mega-pharmaceutical companies could slash the costs of drug develop-

ment. When these companies can easily combine open-source Web data

with their own proprietary data, they can have a much higher success

ratio with their investments and waste fewer dollars in unsuccessful

drug targets.

 ✓ Communications systems would be radically different. American and

European markets would enjoy a preponderance of choices for new

phone and media plans. Released from the rigid provisioning and billing

systems of yesteryear, telecommunications data would be more fluid

and dynamic than ever before.

 ✓ Clinical health providers and consumers would have access to leading

research. Different standards and regulations could be better aligned

with more flexible and secure data exchange. Insurance regulations and

07_396797-ch03.indd 5307_396797-ch03.indd 53 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

54 Part I: Welcome to the Future of Data and the Web

guidance would be applied easily at the electronic data level without

creating a conflict of interest from primary care providers. Costly and

inefficient data governance problems, like defining which treatments are

valid treatments for a given health condition, could be reconciled and

financed at the community level without forcing a central membership

committee to all adopt the same rules.

This utopian picture would also include a means for protecting the civil

liberties and privacy rights of citizens while allowing for a sensible way of

monitoring data that can help law enforcement catch the bad guys. It will be

possible to search through data records and seek nefarious activity while

avoiding any data-level infringements on citizen privacy. These systems will

be open, flexible, transparent, and easily configurable to match the policy

direction of the government who controls them.

When and if this utopian vision becomes a reality, productivity and efficiency

in all industries will skyrocket. Manufacturers will waste no time with inef-

ficient supply chains, and retail chains will be able to better assess customer

buying patterns across multiple points of contact. All businesses will benefit

from faster merger and acquisition abilities, tighter IT integration, and low-

cost modernization efforts with their legacy systems.

Newer Semantic Web–based business systems, applications, databases, and

directories, as described in the following sections, will transform how busi-

nesses respond to change.

Semantic Web applications
Semantic Web applications — designed using RDF, OWL, and SPARQL — will

be the next major evolution in how application-specific software is written.

Much like the CASE (computer-aided software engineering) vision of the

1980s, semantic applications will be capable of round-trip engineering lifecy-

cles based entirely on the metadata models describing the application. Unlike

Java programming of today or UML (Unified Modeling Language) modeling

features, the applications of the future will actually have executable domain

models at the heart of their applications.

 For the technically astute, think “ontology-based plain old Java objects

(POJO) layer without compiled code.” In simpler terms, the semantic applica-

tion will be capable of substantial evolution without requiring a programmer

to rigidly encode the program’s execution path in advance. Likewise, because

each of these semantic applications will make all their data Web-addressable

in an open graph data format, the costs of reusing that data in other systems

will be trivial.

07_396797-ch03.indd 5407_396797-ch03.indd 54 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

55 Chapter 3: The Data Web at Work for Business

Semantic Web databases
The heart of semantic applications is a semantic database. Unlike a relational

database, whose main purpose in life is static data storage, the semantic

database will contain highly adaptive, dynamic data records that respond to

changing conditions. This level of data adaptability is required because when

traditional applications work with data in-memory (the code that is executing

in the computer’s random access memory [RAM]), they always have to apply

additional rules, transaction logic, and other programming features to enrich

the statically stored data beyond what is simply saved on the hard drive.

This adaptive, dynamic, fully instantiated data must be exposed and available

at Web scale, as executable models that don’t require brittle compiled code

to find the implications of data rules and data logic. (Compiled code is brittle

because to change program logic, the code must be recompiled.) Semantic

databases will use — but not replace the need for — relational databases.

Likewise, they may also take the form of in-memory databases (databases

where the data is held in RAM). But each and every semantic database,

regardless of implementation, will enable a Web-addressable standard graph

data format that can go a long way toward supplying businesses with easy

and low-cost data integration options.

Semantic Web integration
Because the costs of data integration can’t be completely free, there must

be a kind of infrastructure that provides integration for very low cost. This

same semantic integration infrastructure will provide “wrapper services”

for applications and databases that aren’t semantics-aware so that they can

participate in the semantic integration scenarios as well (by wrapping the

non-semantic applications with semantic interfaces). These semantic inte-

gration tools will look a lot like today’s service-oriented architecture (SOA)

systems, but with additional low-cost semantic capabilities built in to their

process orchestration and data integration subsystems. Therefore, the exist-

ing SOA and data integration subsystems can be fully leveraged from within a

semantic integration super-process. The combination of old and new integra-

tion patterns will supply a universal and standards-based way of making data

from anywhere at any time at any scale available to businesspeople.

Semantic Web directories
A semantic directory will be where you go to find something in the business.

It will include the regular text search capabilities that you’ve become used

to. It will also include a way to read all those LDAP (Lightweight Directory

07_396797-ch03.indd 5507_396797-ch03.indd 55 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

56 Part I: Welcome to the Future of Data and the Web

Access Protocol) and Active Directory registries that are strewn about within

a typical large global enterprise. A semantic directory will also supply a

super-set indexing service for the many content management systems your

business likely owns. And, of course, for those EAI (enterprise application

integration) and SOA infrastructure services, the semantic directory will pro-

vide UDDI (Universal Description, Discovery, and Integration) registry type

capabilities for registering and finding services. What makes the semantic

registry unique is that it will be capable of automatically finding associations

among all the aforementioned indexes and directories so that you can actu-

ally have a one-stop place to go for finding electronic business stuff.

Semantic Web policies and data security
One predominant feature that will be common across all semantic applica-

tions, databases, and directories will be a trustworthy security layer. This

semantic policy layer will reliably encapsulate the trust and proof languages

of today — like JAAS (Java Authentication and Authorization Service),

WS-Policy (Web Service Policy), SAML (Security Access Markup Language),

and XACML (eXtensible Access Control Markup Language). The semantic

policy layer will also being able to reconcile differences between them and

apply them to a wide set of resources.

A central problem in the security and access technology standards area is

that there is no shared baseline for expressing the many kinds of complex

rules and logic that must be expressed in order to adequately secure com-

plex software applications. Therefore it’s still possible to end up in situations

where JAAS permissions conflict with WS-Policy rights (or XACML, or SAML)

and the security of an entire system is compromised. This newly envisioned

Semantic Web–based policy layer will supply that logical baseline for other

policy languages and provide a guaranteed way of encoding policies that can

be enforced from one application to the next. Far from being simply a vehicle

for technical wizardry, the semantic policy infrastructure will ensure that

different software security products and applications can have a shared and

correct interpretation of important business policies.

Discovering Why Semantics Are
for Everyday Businesspeople

Sometimes lost in the jumble of technology acronyms and high-minded sce-

narios about future IT abilities is the basic reality that normal, nontechnical

people are the vast majority of the global workforce. Despite the proliferation

of enterprise software, most businesses require their employees to work with

07_396797-ch03.indd 5607_396797-ch03.indd 56 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

57 Chapter 3: The Data Web at Work for Business

only the most basic of computer skills. Perhaps a little bit of word-processing

and Web-browser software experience is the minimum required to perform

basic data operations for the average employer.

 Whatever the semantic future of software may be, you can be sure that it has

to be at least as easy as today’s applications to have any hope of success.

Everyday people are involved in manufacturing automobiles and farm equip-

ment and making decisions about retail products, inventory, and marketing

programs. Everyday people open banking accounts and use the health care

system. These folks would benefit from less wasted time finding corporate pol-

icies and regulations, from easier access to headquarter business systems and

data, and from a clearer picture of what metrics matter most to executive

leadership. These everyday people find themselves in extraordinary jobs of all

sorts, as discussed in the following sections.

Commercial trading alliances
From Wal-Mart to Toyota, from British Airways to Pepsi, the world’s larg-

est businesses participate in economically staggering trade alliances. Often

moving transactions that total in the billions or trillions of dollars annually,

these businesses are the true lifeblood of the global economy. Everyday

people who work at these businesses will key in data that eventually might

be aggregated, recalculated, and sent electronically all over the globe. These

sorts of data-intensive jobs are everyday jobs — the kind of jobs that will be

impacted most by semantic applications, databases, and integration tech-

nologies within their businesses.

National security programs
The U.S. armed services, federal agencies, and state and local services

employ millions of everyday people whose jobs involve making every citizen

more safe and secure. These everyday people include firemen, police offi-

cers, case workers, and civil servants who consume and supply data to the

government about their particular area of responsibility. As a whole, these

databases, alert systems, and public reporting tools are the basis from which

citizens take action in a time of emergency. These everyday jobs can be made

easier and more effective with smarter data made available from semantic

applications, databases, and integration technologies.

Business operations
Everyday jobs for most businesses require exceptional data needs. People

who take orders at cash registers or who send business e-mails and sign up

for their employee benefits are all creating and manipulating business data

07_396797-ch03.indd 5707_396797-ch03.indd 57 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

58 Part I: Welcome to the Future of Data and the Web

that is used operationally for running the business. Each operational data

point is later aggregated and recalculated for future analysis within some

sort of software analytic program. Retail sales for clothing, food items, and

even utilities are scrutinized within analytic software applications as a way to

improve operational efficiency. The everyday people who use business soft-

ware can be more efficient and more effective if they begin to use semantic

applications, databases, and integration technologies.

Making the Semantic Web Choice Now
The Semantic Web is a fundamentally unique way of specifying data and data

relationships. It’s more declarative, more expressive, and more consistently

repeatable than Java/C++, relational databases, and XML documents. It builds

on and preserves the conventional data model’s respective strengths. The

following sections explain why the Semantic Web will

 ✓ Empower, directly and indirectly, new business capabilities

 ✓ Throttle back IT expenditures within medium and large businesses

 ✓ Transform the foundation of enterprise software, and data integration in

particular

Your call to action is to do the following now:

 ✓ Invest in training and skills development

 ✓ Prototype a solution and explore the new tools

 ✓ Ask your software vendors about their semantic technology roadmap

 ✓ Compel your enterprise architects to formulate a multi-year metadata

strategy

The following sections give you an understanding of the overall superiority of

Semantic Web technologies, why they’ll be embedded in the fabric of nearly

all data-intensive software within several years, and why you should start

investing in them now.

Understanding why people buy
enterprise business software
The businesspeople who buy enterprise software and approve technology

investments make decisions that involve spending about $150 billion each

year. These expenditures primarily come from medium and large businesses

with annual revenues greater than $50 million. Your business may be looking

to upgrade or add new systems for any of the following business reasons:

07_396797-ch03.indd 5807_396797-ch03.indd 58 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

59 Chapter 3: The Data Web at Work for Business

 ✓ Competitive pressures: To keep up with overall industry improvements

 ✓ Executive mandates: To fulfill new business initiatives mandated by

sponsoring executives

 ✓ Cost controls: To streamline outdated processes and generate new

efficiencies

 ✓ Regulatory demands: To meet the requirements of corporate, local,

state, and federal governance

 ✓ Strategic advantages: To gain business advantage through use of infor-

mation, for example, in collaboration

But what factors impact a buying decision for enterprise software? Contrary

to popular belief, the relative quality or technical superiority of the software

is rarely a decision-making advantage for the vendors. Likewise, the long-

term strategic fit of the technology is usually not enough of a reason for a

substantial enterprise software buy. Instead, the following selection drivers

are most frequently the factors that explain why large sums of money for

enterprise software change hands:

 ✓ Lowest risk option: Where risk is calculated on the basis of overall fit

and vendor reputation

 ✓ Tactical fit: Where the short-term requirements trump any long-term

disadvantages

 ✓ Partner/vendor choices: Where the important ties between customer

and vendor matter

 Although it may be a straightforward task to promote the Semantic Web tech-

nology stack on the basis of its technical and strategic superiority for enter-

prise software, I suggest first building a business case that speaks toward the

real buying pressures in the market: lowest risk, tactical fit, and vendor rela-

tionships. Only then can I explain why Semantic Web is a superior technical

choice for many hard data problems.

Low-risk choice
Your first look may tell you that the Semantic Web technology seems like a

riskier alternative to conventional database technologies, basic XML, and

software development using UML and Java. For starters, the Semantic Web

technology faces these challenges:

 ✓ Minimal large vendor support for development tools

 ✓ Required skill sets that are hard to find and expensive to hire

 ✓ Few proven reference implementations in the public domain

 ✓ Required and very real paradigm shift in modeling, design, and declara-

tive programming techniques

07_396797-ch03.indd 5907_396797-ch03.indd 59 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

60 Part I: Welcome to the Future of Data and the Web

 But I challenge you to change your mindset and shift the risk horizon to five

years from now. When you do, the status quo technologies begin to look like

the riskier option. Software professionals know that when they develop new

software on the basis of purely tactical decisions, the chaotic result includes

incomprehensible data silos that are much more costly — and risky — to

handle in the long run.

Examples of the chaos include the following:

 ✓ Data proliferation: Data breeds like bunnies, resulting in incompatible

formats, multiple naming conventions, and different applications, all

using different metadata.

 ✓ Sensor (instrument) proliferation: Sensors and other devices are creat-

ing more and more silos of data, faster, and with more expectations.

 ✓ Complexity explosion: The work gets more complicated as you acquire

more data models, transformation rules, business rules, XML, UML, Java,

and so on.

 ✓ Executive mandates: Expectations of IT are higher than ever and becom-

ing more demanding.

 New thinking about innovation shows how the discounted cash flow (DCF)

trap can distort conventional business risk assessments by incorrectly favor-

ing do-nothing strategies. By shifting time horizons, you can begin to see that

the limits of plain old Java, XML, and RDBMS simply can’t adapt quickly

enough to the new world of enterprise software.

Try asking a Fortune 500 CIO whose company is working under the strain

of thousands of systems to change a core business data definition; or ask

the CIO to produce a report that shows which enterprise software systems

handle purchase order data. Seemingly simple tasks for a computer become

unsolvable situations when the data is disconnected, inconsistently format-

ted, and invisible to any sort of cohesive view.

Old technology itself is not the problem. The uncoordinated proliferation of

old technology is the actual problem. And the uncoordinated part is a non-

negotiable reality of 21st century big business.

Thus, although choosing the traditional technology that appears to be low-

risk today seems like a smart idea, it takes only a little foresight to stretch

your risk horizon, avoid the DCF trap, and realize that the current path of

data management status quo is unsustainable at current rates of data prolif-

eration and complexity.

07_396797-ch03.indd 6007_396797-ch03.indd 60 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

61 Chapter 3: The Data Web at Work for Business

Semantic Web technologies are lower risk in the medium-term timeframe;

in the short term, they’re also most likely to become the roadmap for tradi-

tional data technologies — based on technical merits alone.

 In terms of absolute risk, accounting for a long horizon, and the DCF Trap,

the low-risk choice for an info-centric organization is to begin investing in

Semantic Web technology as a common metadata foundation for adaptive

data and as a common control point for information held in various reposito-

ries, applications, and physical structures.

Tactical choice
By definition, most enterprise software projects will have a simple tactical

software solution available to them — the enterprise software industry itself

has evolved to a sufficiently mature state that most software problems in

most industries will have a specific vendor with a specific solution as at least

one option. But now more than ever, these tactical solutions are seen for

what they are — often a stop-gap series of temporary fixes that usually create

new silos of disconnected data and rarely fit within an organization’s strate-

gic direction. Nonetheless, there is usually compelling business and financial

motivation to choose a strong tactical enterprise software solution, where

a top-priority business problem can be temporarily fixed, even if the bigger

technical problem remains unresolved.

The DCF trap
The Harvard Business Review has a great
explanation of the DCF trap: “Most execu-
tives compare the cash flows from innovation
against the default scenario of doing nothing,
assuming — incorrectly — that the present
health of the company will persist indefinitely if
the investment is not made. For a better assess-
ment of the innovation’s value, the comparison

should be between its projected discounted
cash flow and the more likely scenario of a
decline in performance in the absence of inno-
vation investment.”

The following figure is a visual representation
of how the DCF trap can lead to false strategy
conclusions.

Projected cash stream
from investing in an
innovation

More likely cash
stream resulting
from doing nothing

Assumed cash
stream resulting
from doing
nothing

A

C
B

DCF and NPV
methodologies
implicitly make
this comparison

Companies
should be
making this
comparison

07_396797-ch03.indd 6107_396797-ch03.indd 61 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

62 Part I: Welcome to the Future of Data and the Web

 In contrast, a Semantic Web–based solution almost never looks like a tactical

fit from the surface. But dig a little deeper, and more narrowly define the

meaning of a “tactical fit,” and Semantic Web technologies will look a lot more

down-to-earth.

For instance, many enterprise software projects revolve around the notion of

information-centric operations. Information-centric operations are what most

large global businesses and modern defense organizations use as a guiding

strategy for their operations. Information is increasingly viewed as a high-

value asset from which other strategies are built and executed. When the

tactical fit of enterprise software depends on information-centricity, it’s hard

to beat the power of Semantic Web data specifications. Tactical projects for a

large, information-centric organization might include:

 ✓ Data integration, at the XML, RDBMS, and object software tiers

 ✓ Data warehousing and business intelligence

 ✓ Service-oriented architecture (SOA) data services

 ✓ IT maintenance and IT infrastructure management

 ✓ Portal applications and data mashups

 ✓ Data replication, migration, and transformation

Each of these tactical areas has both large and small vendor solutions servic-

ing demand by using Semantic Web technologies. Although still a minority,

the vendors using Semantic Web technology to supply tactical software solu-

tions in these project areas would certainly expect to be measured against all

the typical tactical metrics the industry has adopted.

In essence, when the buying organization is committed to information-centric

operations and defines tactical success as measure of data flexibility, audit-

ability, and reuse, the Semantic Web–based products will often be best-of-

breed for those specific tactical needs. In particular cases, a vendor may

specify which technologies are being used or choose to market the benefits

the technology provides.

Oracle, IBM, and Software AG all leverage Semantic Web technologies in their

SOA products, but you won’t see them advertise the technology itself — only

the features they provide.

So, contrary to popular belief, some Semantic Web technology can be very

tactical in nature. And as is frequently observed, a little semantics goes a

long way.

Viable partnering
Strong business relationships can trump other buying factors in most cases.

The preference for sticking with a known vendor is a function of risk. If

you’ve been successful with a partner previously,

07_396797-ch03.indd 6207_396797-ch03.indd 62 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

63 Chapter 3: The Data Web at Work for Business

 ✓ You inherently trust that vendor more.

 ✓ You view that vendor’s suggestions as less risky than those of a new,

unknown, vendor.

In most cases, going with the known quantity is just simple, smart decision-

making. The Semantic Web can’t explicitly bolster any particular partnership

choices, nor can the technology itself help buyers overcome any personal

doubts about a particular vendor’s employees.

 Consider this: Most large enterprise software vendors, and many small ones,

have already begun to adopt Semantic Web technologies and embed them into

their mainstream products. In fact, leading enterprise software vendors such

as HP, IBM, Microsoft, Oracle, SAP, and SoftwareAG all currently provide appli-

cations and tools that support Semantic Web specifications.

Ask your partners about their plans to adopt Semantic Web standards for

metadata and data. If your mainstream partners are unwilling or unable to

articulate clear guidance about their roadmap for data and metadata man-

agement, there are many midsize vendors who would appreciate your time

and can give you details about the future of Semantic Web technology for

enterprise software.

 Trusted relationships usually lead to good business decisions, but in the

realm of technology and data management, your trusted advisors must be

innovative as well as safe.

Seeing the technical superiority
of the Semantic Web
Data is different than information. In the context of software, information is

data that references or is referenced by a computational model. That infor-

mation model is a necessary, logically consistent interface for accessing data.

These information models are always accompanied by metadata about the

model itself. The Semantic Web specifications (RDF, OWL, SPARQL, GRDDL,

SAWSDL — refer to Chapter 1 for details) define consistent computational

interfaces for enterprise software to declaratively interact with data.

Besides Semantic Web specifications, other computational metadata specifi-

cations for information models typically include

 ✓ Entity Relationship Model and DDL Scripting — all relational databases

 ✓ Meta Object Facility Models and Model Transformers — all UML compat-

ible languages

 ✓ XML Infoset Model and Custom Program Implementations — all XML

interchange

07_396797-ch03.indd 6307_396797-ch03.indd 63 2/13/09 8:09:49 PM2/13/09 8:09:49 PM

64 Part I: Welcome to the Future of Data and the Web

Databases, UML, and XML technologies constitute how the vast majority

of enterprise software applications store and manage data today. But the

Semantic Web presents a newer, more computationally powerful metadata

specification that can be as reliable as a database, as portable as XML, and as

powerful as native programming logic.

The Semantic Web specifications, in particular RDF and OWL, are the only

technology specifications that were purpose-built for use as a metadata lan-

guage, entirely dedicated to describing and linking data of all sorts at Web

scale. More than 30 years ago, relational databases were conceived for the

storage and consistently fast retrieval of data records. More than 15 years

ago, UML was conceived as a unified approach for visually modeling struc-

ture software programs. Almost 10 years ago, XML was wrought from SGML

as a way to give structure to documents and messages. Yet today, software

developers routinely misuse XML, UML, and relational databases for pur-

poses that they were not intended for.

 Areas where RDBMS, UML, and XML technologies are misused, and where

Semantic Web technologies excel, include specifications of

 ✓ Computationally sound business information models, such as technical

data models that have a mathematical consistency that ensures consis-

tent interpretation

 ✓ Linking and relationship (meta)data across physical data locations, like

joining data and data models across system boundaries

 ✓ Dynamic structural logic and rules that are part of the data realm, such

as the ability to influence interpretation directly from the data itself (not

an application)

 ✓ A federation approach for geographically separate data records, like an

agreed upon framework for distributing data using Web protocols

It isn’t that RDBMS, UML, and XML technology can’t be made to solve some

of these technical challenges, but to do so, they must be contorted beyond

what they are best at doing. Also, attempts to make them work have led

to nonstandard, one-off, vendor-implemented, heuristics-based solutions

that have absolutely zero portability and therefore no chance at solving

enterprise-scale information problems. Semantic Web specifications are the

only purpose-built solution for large-scale metadata intensive data problems

in enterprise software.

 Being purpose-built for change is a particularly striking difference between

Semantic Web technology and conventional data languages. Conventional

approaches rely on static data models and complex query logic, which cause

a type of software development lifecycle that favors the up-front specification

07_396797-ch03.indd 6407_396797-ch03.indd 64 2/13/09 8:09:50 PM2/13/09 8:09:50 PM

65 Chapter 3: The Data Web at Work for Business

of system behavior. But software developers can rarely envision how a given

system will be used in practice many years from the point that requirements

were developed. In fact, application data will be always be used in unantici-

pated ways.

The Semantic Web specifications are different because they provide for con-

tinually changing data models, inferred classification of data and taxonomy,

and all the richness and power of a declarative query language.

Key Semantic Web specifications were commissioned by U.S. and European

government agencies in the early 2000s because their defense research

scientists knew that RDBMS, UML, and XML technologies could not, by

themselves, solve the information challenges of the next century. Even the

standards bodies that control conventional data standards are selecting

Semantic Web standards as a foundation for their own next-generation speci-

fications. For instance,

 ✓ Object Management Group, which controls UML and CWM specifica-

tions, is adopting RDF and OWL as the centerpiece specification for its

core Definitional Metamodels.

 ✓ The International Standards Organization, which controls various EDI

and Metadata specifications, is adopting RDF and OWL within several

ISO specification families.

 ✓ The World Wide Web Consortium, which controls XML and SOA speci-

fications, is adopting RDF and OWL as extensions to existing XML and

Web service specifications.

 ✓ OASIS, which controls many business domain-specific data specifi-

cations, is adopting RDF and OWL as a core feature in standards for

Documents, Data Centers, Security, and Business Process Management.

But global conglomerates and federal agencies are not idly waiting for the

enterprise software vendors and standards bodies to supply the Semantic

Web on a silver platter. Specific situations are emerging from these end-user

organizations that demonstrate both the necessity and power of the Semantic

Web technical approach. Organizations are investing in this technology, in

most cases, because there isn’t a viable alternative that can address the size,

scope, or complexity of their legacy data problems.

It should be plain to see that the Semantic Web specifications provide a supe-

rior technical capability for information-intensive enterprise software prob-

lems, which have a high degree of dependence on metadata for operational

reliability, portability, and dynamic behavior.

07_396797-ch03.indd 6507_396797-ch03.indd 65 2/13/09 8:09:50 PM2/13/09 8:09:50 PM

66 Part I: Welcome to the Future of Data and the Web

Discovering the Semantic Web as
a foundation for modern business
Hopefully at this point you understand the Semantic Web’s superiority in

the realm of metadata and data management, and you realize that it can be

a safe, low-risk, and tactically oriented solution that’s well supported by

traditional partners. With that out of the way, I can turn to what you really

want to know about: the business benefits of the technology.

 Although the Semantic Web by itself cannot supply any magic revenue boost

to the enterprise bottom line, it can provide a means to rationalize incredibly

complex information ecosystems. Without Semantic Web technologies, busi-

nesses and federal agencies must use conventional RDBMS, UML, and XML

technology combined with liberal amounts of expensive manpower, in order

to rein in and achieve a modicum of clarity into their enterprise systems,

information and data.

The Semantic Web can be tactically applied to many projects, as described in

the “Tactical choice” section earlier in this chapter. The Semantic Web may

also be strategically applied to the following business initiatives:

 ✓ Enterprise information management

 ✓ Enterprise governance and risk (including policy compliance)

The Semantic Web is itself an enabler. (Fortunately, it’s a positive sort of

enabler.) It enables systems to run more smoothly as a result of better meta-

data, enables less-expensive manual efforts to keep disparate information

linked up, and provides much stronger capabilities for auditing, tracking, and

defining actionable rules on top of shared enterprise data. The Semantic Web

specifications are

 ✓ Empower, directly and indirectly, new business capabilities because

they enable stronger and more consistent metadata linking, automatic

inference for dynamic data structures, and a more declarative founda-

tion model for shared business information

 ✓ Throttle back IT expenditures within medium and large businesses with

reduced head-count requirements for the management of enterprise

information assets, decrease the long-term costs of integration, and sim-

plify decentralized data architectures

 ✓ Transform the foundation of enterprise software as all major software

vendors adopt Semantic Web specifications within the context of their

own mainstream tools

In short, the Semantic Web can help smash the silos of data that currently

cost the enterprise time and money to make interoperable. Start training and

planning for it. Talk to your vendors about it now.

07_396797-ch03.indd 6607_396797-ch03.indd 66 2/13/09 8:09:50 PM2/13/09 8:09:50 PM

Part II
Catch the Wave of
Smart Data Today

08_396797-pp02.indd 6708_396797-pp02.indd 67 2/13/09 6:49:29 PM2/13/09 6:49:29 PM

In this part . . .

As it turns out, writing software is pretty hard. Data

and software technology can be complex, and

despite the best wishes of developers, there’s only so

much magic in those lines of code they write. This part

of the book gives you a context for why the Semantic

Web is technically different than the problematic types of

data formats and metadata specifications that came

before it.

08_396797-pp02.indd 6808_396797-pp02.indd 68 2/13/09 6:49:29 PM2/13/09 6:49:29 PM

Chapter 4

A Quick Semantic Web Primer
In This Chapter
▶ Understanding the Resource Description Framework (RDF)

▶ Checking out a few examples of RDF triples

▶ Seeing RSS, FOAF, RDFa, and OWL in action

▶ Discovering why a little semantics goes a long way

This chapter provides a quick overview of the Semantic Web languages

and specifications. You can scan it quickly in ten minutes for a summary

of key features and examples of the RDF, RDFa, RSS, OWL, and FOAF speci-

fications that you read about in Chapters 1 and 2. Or, if you prefer, you can

take some more time with this chapter and really drill into the details.

In this chapter, I provide several simple examples of data formats and also

some more complicated data examples that you can investigate to get

started. You can type these examples into online code validators and see

the results yourself, or you can simply download some developer software

to start working with the examples immediately. Later, in Chapters 7 and 8, I

supply a deep-dive, programmer-level explanation of RDF and OWL that goes

beyond the basics presented here.

Getting Started with RDF Data
The Resource Description Framework (RDF) is the base language of the

Semantic Web. It’s a language used for describing data, metadata, and even

other data languages. RDF uses a graph data format, in contrast to relational

data formats (such as most databases) and hierarchical data formats (such

as XML). Any data model or data language that uses RDF is a part of the

Semantic Web.

The RDF graph is based on the idea that every data item should have a

unique Web identifier, called a URI (Uniform Resource Identifier), and that

every data item can be connected to every other item. A URI is different

from a URL (Uniform Resource Locator) in that a URI may refer to either a

09_396797-ch04.indd 6909_396797-ch04.indd 69 2/13/09 6:51:07 PM2/13/09 6:51:07 PM

70 Part II: Catch the Wave of Smart Data Today

Web name or a location; a URL may refer only to actual Web locations. RDF

makes URI relationships between data items the central attribute of the over-

all data model. Semantic Web programmers create data with URIs and link

them together using relationships that are also named with URIs. In this way,

an interconnected set of data may be distributed at global scale across the

Internet.

Making a statement (Or two!)
In Listing 4-1, you see a basic RDF structure. Like anybody who is learning

a new programming language, you may find it difficult to understand all the

syntax at first, but don’t be intimidated. After you get past some of the initial

syntax questions, you’ll see that RDF can be pretty easy.

Listing 4-1: A Simple RDF Graph
<?xml version=”1.0”?>
<rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:dc=”http://purl.org/dc/elements/1.1/”>

 <rdf:Description rdf:about=”http://me.jtpollock.us/”>
 <dc:title>Jeff’s Homepage!</dc:title>
 </rdf:Description>

 <rdf:Description rdf:about=”http://me.jtpollock.us/”>
 <dc:creator
 rdf:resource=”http://me.jtpollock.us/foaf.rdf#me”/>
 </rdf:Description>

</rdf:RDF>

When you load the data structure in Listing 4-1 into any RDF-capable system,

as described in Chapters 1 and 2, you get two new RDF data items. Each item

is saying something about my relationship to a Web page. These RDF data

items are usually called triples, or statements. (You can use the terms inter-

changeably.)

The first RDF statement is

<rdf:Description rdf:about=”http://me.jtpollock.us/”>
 <dc:title>Jeff’s Homepage!</dc:title>
</rdf:Description>

It says that there is a Web page at the address http://me.jtpollock.us/,

the title of which is “Jeff’s Homepage!”

09_396797-ch04.indd 7009_396797-ch04.indd 70 2/13/09 6:51:07 PM2/13/09 6:51:07 PM

71 Chapter 4: A Quick Semantic Web Primer

The second RDF statement is similar:

<rdf:Description rdf:about=”http://me.jtpollock.us/”>
 <dc:creator
 rdf:resource=”http://me.jtpollock.us/foaf.rdf#me”/>
</rdf:Description>

This statement says that there is a Web page at http://me.jtpollock.
us/ whose creator is http://me.jtpollock.us/foaf.rdf#me. With RDF,

every part of a statement may be a URI that points to another location. In this

statement, the creator data simply points to another RDF resource that has a

collection of data about me.

When taken together, these RDF triples provide two individual statements

about the relationship between a particular Web page and some other data

resources on the Web. The first triple simply names the page with a title, and

the second triple identifies the creator by pointing to another set of data that

describes me.

 You can try validating this RDF yourself. Validating RDF is a lot like validating

XML, HTML, or any other programming language: The validator simply checks

to see whether there are any issues with your code. Navigate your Web

browser to the W3C (World Wide Web Consortium) RDF validation service at

www.w3.org/RDF/Validator. At this site, type in the code in Listing 4-1,

choose the Triples and Graph setting from the Web page, and click the Parse

RDF button. You should see results that look like Figure 4-1.

Figure 4-1:
An example

from the
W3C RDF

Validation
Service.

09_396797-ch04.indd 7109_396797-ch04.indd 71 2/13/09 6:51:07 PM2/13/09 6:51:07 PM

72 Part II: Catch the Wave of Smart Data Today

Figure 4-1 shows how the W3C Validation Service can take the example code

you’ve copied, identify the two individual triples, and build a simple picture

of how they’re related in a graph.

Behold: A federated data graph
The simple set of two RDF triples in Listing 4-1 is actually a somewhat sophis-

ticated data graph. The syntax of the RDF example uses several keywords to

reference other parts of the example and also other parts of the Web. RDF

statements that reference data vocabularies hosted in other parts of the Web

are called federated graphs. Take, for example, the following statements:

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”

These two lines of code declare prefix variables that may be used elsewhere

in the example. For instance, the xmlns prefix stands for XML Namespace,
and you can use this keyword to create short-hand variables throughout your

RDF documents. Throughout this chapter, I refer to it as simply a namespace.

In the example, you can see that the keyword prefix rdf is made equal to the

URI http://www.w3.org/1999/02/22-rdf-syntax-ns#. The keyword

dc is declared equal to the URI http://purl.org/dc/elements/1.1/.

With the RDF example shown in Listing 4-1, you can see tags that contain the

two keyword prefixes dc and rdf. Whenever you see the shorthand prefix,

you know that the computer will replace the shorthand with a fully quali-

fied statement. For example, the tag <dc:creator> will be interpreted as

<http://purl.org/dc/elements/1.1/creator>. This method is how

you link data and data semantics across the Web.

 The word creator means something to a human, but it doesn’t mean any-

thing to an XML parser. Typically, without the Semantic Web, a programmer

would have to encode specific matching logic in a software program to inter-

pret and react to the word creator when it appears in data. But in the

Semantic Web, words can be defined as part of a vocabulary, providing con-

text, definitions, and a model for interpreting the meaning of those words.

In the example, the word creator is defined to be a part of the XML

Namespace http://purl.org/dc/elements/1.1/. This URI is a directory

service that points to a vocabulary about publishing provided by the Dublin

Core initiative. (The nearby sidebar, “Dublin Core initiative,” gives you some

insight into what Dublin Core is.)

Thus, the definition of the word creator is provided by the Dublin Core

vocabulary, as you can see in Figure 4-2.

09_396797-ch04.indd 7209_396797-ch04.indd 72 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

73 Chapter 4: A Quick Semantic Web Primer

Figure 4-2:
Logical view
of how RDF
models are

federated
across Web

locations.

Example RDF: Dublin Core RDF:

dc=http://purl.org/dc/elements/1.1

http://me.jtpollock.us

foaf.rdf#me

“An entity primarily
responsible for making

the resource.”

Property

Type hasVersion

006

creatorPURL
Service

Dublin
Core

Service

Web

Web

Web

dc:creator

comment

The definition of the word creator is much more than just the descrip-
tion or comment provided in the Dublin Core vocabulary. In Table 4-1, you

can see that there is a specification that defines the vocabulary and usage of

the creator term.

Table 4-1 Dublin Core: Creator
Term Name Definition

Comment An entity primarily responsible for making the resource.

Description Examples of a creator include a person, an organization, or
a service. Typically, the name of a Creator should be used to
indicate the entity.

Full definition http://dublincore.org/documents/
dcmi-terms/#elements-creator

Persistent URLs (PURLs)
A Persistent Uniform Resource Locator (PURL)
is a URL that defines an intermediate and more
persistent Web location instead of the actual
physical location of the resource being pointed
to. Calling a PURL results in redirection (for
example, via a 302 HTTP status code) to the
current location of the final resource.

PURLs are an interim measure while Uniform
Resource Names (URNs) are being adopted.

URL persistence problems are caused by the
practical impossibility of every user having
his or her own domain name, and the incon-
venience and money involved in re-registering
domain names, which results in WWW authors
putting their documents in arbitrary locations of
transient persistence.

Existing official PURLs (on Purl.org) will prob-
ably be mapped to a URN namespace at a later
date.

09_396797-ch04.indd 7309_396797-ch04.indd 73 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

74 Part II: Catch the Wave of Smart Data Today

In fact, because the Dublin Core is considered to be one of the definitive

sources of metadata terms, it serves as a canonical reference point for many

other vocabularies. Saying that your software system understands Dublin

Core metadata is like saying that you understand a particular dialect of

English. The Dublin Core provides the set of words and terms that enables

any software that shares this dialect to automatically interoperate.

In the example in Listing 4-1, I used a pointer to the Dublin Core term creator,

which will allow anyone who understands that dialect to know what I mean when

I say that something is the creator of something else.

The example includes some other pointers, too. The following are namespace

pointers:

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=http://purl.org/dc/elements/1.1/

Here’s an example of a RDF resource pointer:

rdf:resource=”http://me.jtpollock.us/foaf.rdf#me”

The namespace pointer acts just like the previous Dublin Core example,

by importing terms from external vocabularies. The rdf: shorthand prefix

refers to the W3C specification for RDF syntax, which is used to define key-

words like Description and about.

The RDF Resource pointer is interpreted by the RDF parser and may be

navigated to find another RDF document that describes the creator (me). In

this case, I have a Friend of a Friend (FOAF) vocabulary that defines who I

am; it contains an RDF profile of who I know and what I’ve done. (For more

on FOAF, see the section “Friend of a Friend [FOAF],” later in this chapter.)

Therefore, the small example data graph I created is actually federated

across several locations, as illustrated in Figure 4-3.

Dublin Core initiative
The Dublin Core metadata element set is a
widely used standard to describe digital mate-
rials such as video, sound, image, text, and
composite media like Web pages. The standard
was defined by ISO in 2003 within ISO Standard
15836 and NISO Standard Z39.85-2007.

The semantics of Dublin Core is expressed
in RDF and is maintained by an international,
cross-disciplinary group of professionals from
librarianship, computer science, text encod-
ing, the museum community, and other related
fields of scholarship and practice.

09_396797-ch04.indd 7409_396797-ch04.indd 74 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

75 Chapter 4: A Quick Semantic Web Primer

Figure 4-3:
Links

from the
example

RDF
connect
to three
external

Web data
vocabu-

laries.

Example RDF:

rdf = ”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
dc = http://purl.org/dc/elements/1.1/

rdf: about
“http://me.jtpollock.us”

http://me.jtpollock.us/foaf.rdf#me

dc:creator

RDF
Syntax

W3C
Web site

PURL
Service

Dublin
Core

Service

jtpollock
Web site

External
Vocabularies

Dublin
Core RDF

FOAF
RDFWeb

Web

Web

Web

 In a nutshell, the power of the Semantic Web is that you can create new data

models for yourself by reusing models that others have published.

Additionally, the fundamental rules and syntax for how to define the data and

link it are provided for by the W3C. The Semantic Web provides a blueprint for

creating a large-scale, Web-based graph database. How cool is that?

Gleaning what the data model says
The first part of the model in Listing 4-1 defines the document type, syntax,

and basic structure:

<?xml version=”1.0”?>
<rdf:RDF namespaces />

These two lines are the self-describing aspect of the Semantic Web. Although

RDF may be expressed in several different syntaxes, the examples in this

chapter use the RDF/XML syntax that is officially part of the standard. That’s

what the first line — <?xml version=”1.0”?> — tells you. The second line

describes its own syntax as RDF <rdf:RDF . . . />.

The remaining RDF data exists between those tags:

<?xml version=”1.0”?>
<rdf:RDF namespaces />

. . . RDF data

</rdf:RDF>

09_396797-ch04.indd 7509_396797-ch04.indd 75 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

76 Part II: Catch the Wave of Smart Data Today

Recall how namespaces are declared in the RDF header:

<?xml version=”1.0”?>
<rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:dc=”http://purl.org/dc/elements/1.1/”>

. . . RDF data

</rdf:RDF>

In the example, the remaining RDF data items are the RDF statements

themselves:

<rdf:Description rdf:about=”http://me.jtpollock.us/”>
<dc:title>Jeff’s Homepage!</dc:title>
</rdf:Description>

<rdf:Description rdf:about=”http://me.jtpollock.us/”>
 <dc:creator rdf:resource=”http://me.jtpollock.us/
 foaf.rdf#me”/>
</rdf:Description>

In plain English, I’ve created a very small set of structured data that says the

following two things:

 ✓ There is a Web page (http://me.jtpollock.us/) that has a title

(where the term title is defined by http://purl.org/dc/
elements/1.1/title) called “Jeff’s Homepage!”

 ✓ There is a Web page (http://me.jtpollock.us/) that has a creator

(where the term creator is defined by http://purl.org/dc/
elements/1.1/creator) identified by the RDF Web resource

http://me.jtpollock.us/foaf.rdf#me.

 An astute reader would at this point ask how an RDF parser would know that

one URI (http://me.jtpollock.us/) is a Web page while the other is ref-

erencing a person (http://me.jtpollock.us/foaf.rdf#me). The truth is

that the RDF 1.0 specification does not address this ambiguity. In technical

terms, both URIs are simply resources, and you know that they are related by

a relationship called creator. Beyond that, there is room for interpretation.

Work has begun in 2008 to revise the RDF specification and add a comprehen-

sive notational system for resolving URI-naming issues (is the Web site the

thing or is it about the thing?), so stay tuned for those new additions.

This chapter so far has provided a simple example of how you can declare,

describe, and link graph data in RDF format. But you can create much more

complex data vocabularies for specialized domains. In fact, RDF models

describe numerous medical domain vocabularies that express hundreds of

09_396797-ch04.indd 7609_396797-ch04.indd 76 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

77 Chapter 4: A Quick Semantic Web Primer

thousands of medical terms. People can use these vocabularies to increase

the precision and reliability of data exchange in the insurance, life sciences,

and clinical health care systems.

Keep in mind that this section is just a primer for understanding RDF con-

cepts. I provide a closer look at all aspects of programming RDF in Chapter 7.

Exploring the Semantics of RDF
RDF is a data language intended to be used to express facts about data that

can stand on their own (for example, statements or triples) using precise

formal vocabularies. RDF was conceived from the start for access and use

over the World Wide Web, and it’s intended to provide a basic foundation for

more advanced data languages with a similar purpose.

The exact meaning of an assertion in RDF in some broad sense may depend

on many factors, including social conventions, comments in natural language,

or links to other content-bearing documents. Most of this general meaning

will be inaccessible to machine processing (automatic processing by soft-

ware and computers). The exact semantics of RDF is restricted to a formal

notion of data meaning. You can think of this formal definition of semantics

as a common part of all other accounts of meaning that can be captured in

mechanical (algorithmic) inference rules.

The formal base semantics of RDF is powerful enough to adequately capture

data and data relationships of any other data language in a lossless graph

format. For example, any relational database, UML model, or XML document

can be fully expressed as RDF. But RDF’s base semantics does not specify

higher-order data concepts that would make these conversions simple or

unambiguous in a standard way.

 Because RDF is so powerful, yet so broad and unconstrained, many other data

languages have been specified with RDF itself. Here you must keep in mind

that the semantics of RDF can be used to specify the semantics of other data

languages — which are in turn used to create software application models and

complex data vocabularies.

Discovering Languages That Use RDF
Since 2004, RDF has served as a foundational data and metadata language for

many other data languages and domain vocabularies. The following is a quick

primer on some of the most important ones.

09_396797-ch04.indd 7709_396797-ch04.indd 77 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

78 Part II: Catch the Wave of Smart Data Today

Really Simple Syndication (RSS)
Really Simple Syndication (RSS) allows Web users to view some of your site’s

content without actually having to visit your site directly. RSS provides a

syndication infrastructure for content to be easily distributed and consumed.

RSS is quite popular; in fact, the syndication Web site www.syndic8.com

alone currently links to more than 500,000 RSS feeds worldwide.

Exactly what an RSS feed looks like depends on which version of RSS is being

used. At the most basic level, a feed consists of a channel with its own ele-

ments (for example, title, description, URL, creation date, and so on) and a

number of items each with their own attributes (for example, title, descrip-

tion, URL, and so on).

A picture of the basic RSS 1.0 structure is illustrated in Figure 4-4.

Figure 4-4:
The basic

RSS
document
structure
showing

RDF types.

<?xml version=“1.0”?>
<rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns=”http://purl.org/rss/1.0/”
 xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<channel rdf:about=”...”>
.....
</channel>

<item rdf:about=”...”>
.....
</item>

<item rdf:about=”...”>
.....
</item>

<item rdf:about=”...”>
.....
</item>

The information enclosed between the <channel> tags is used to describe

the feed itself. The following code snippet illustrates a typical channel

description:

<channel>
<title>CNN News | World | Top Stories</title>
<link>http://rss.cnn.com/rss/cnn_topstories.rss </link>
<description>CNN World Newsfeed</description>
</channel>

09_396797-ch04.indd 7809_396797-ch04.indd 78 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

79 Chapter 4: A Quick Semantic Web Primer

Each item in the RSS feed is described between <item> tags. At the most

basic level, these include a title, links, and descriptions as illustrated in the

following code:

<item>
<title>Semantic Web Conference Breaks Records</title>
<description>The fourth annual Semantic Technology
 conference in San Jose breaks all previous
 attendance records</description>
<link>
 http://www.prweb.com/releases/2008/05/prweb965744.htm
</link>
</item>

A complete snippet of RSS v1.0, shown in Listing 4-2, looks a lot like the first

example of basic RDF from Listing 4-1.

Listing 4-2: An RSS Syntax Example

<?xml version=”1.0”?>
<rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns=”http://purl.org/rss/1.0/”
 xmlns:dc=”http://purl.org/dc/elements/1.1/”>

 <channel rdf:about=”http://example.com/news.rss”>
 <title>Example Channel</title>
 <link>http://example.com/</link>
 <description>My example channel</description>

 <items>
 <rdf:Seq>
 <rdf:li resource=”http://www.prweb.com/releases/
 2008/05/ prweb965744.htm”/>
 <rdf:li resource=”http://example.

com/2008/05/22/”/>
 </rdf:Seq>
 </items>
 </channel>

 <item rdf:about=”http://example.com/2002/09/01/”>
<title>Semantic Web Conference Breaks Records</title>
<description>The fourth annual Semantic Technology
 conference in San Jose breaks all previous
 attendance records</description>
<link> http://www.prweb.com/releases/2008/05/
 prweb965744.htm</link>
 <dc:date>2008-05-22</dc:date>
 </item>

(continued)

09_396797-ch04.indd 7909_396797-ch04.indd 79 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

80 Part II: Catch the Wave of Smart Data Today

Listing 4-2: (continued)
 <item rdf:about=”http://example.com/2002/09/02/”>
 <title>News for May Twenty-second</title>
 <link>http://example.com/2008/05/22/</link>
 <dc:date>2008-05-22</dc:date>
 </item>

</rdf:RDF>

RSS is a simple, but powerful, way of syndicating just about any kind of con-

tent you need to publish to a subscriber base.

Friend of a Friend (FOAF)
Friend of a Friend, or FOAF, is a machine-readable vocabulary for people to

describe an online profile of themselves. You can use FOAF to describe your-

self and link into social networks without the need for centralized databases

or third-party services.

 Computers use these FOAF profiles to navigate social networks and discover

links between people and their interests. Each profile has a unique identifier

(such as the person’s e-mail addresses, a Yahoo! ID, or a URI of the person’s

homepage or blog), which is used when defining these relationships.

Tim Berners-Lee, the influential inventor of the Web, is highly supportive of

FOAF as an on-ramp for creating the Semantic Web. He has been quoted as

saying, “I express my network in a FOAF file, and that is a start of the revolution.”

A simplified version of my FOAF profile looks like Listing 4-3.

Listing 4-3: Simplified FOAF Profile for Jeff Pollock

<rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”
 xmlns:foaf=”http://xmlns.com/foaf/0.1/”>

<foaf:PersonalProfileDocument rdf:about=””>
 <foaf:maker rdf:resource=”#me”/>
 <foaf:primaryTopic rdf:resource=”#me”/>
</foaf:PersonalProfileDocument>

<foaf:Person rdf:ID=”me”>
 <foaf:name>Jeff Pollock</foaf:name>
 <foaf:title>Mr</foaf:title>
 <foaf:givenname>Jeff</foaf:givenname>
 <foaf:family_name>Pollock</foaf:family_name>
 <foaf:mbox_sha1sum>

09_396797-ch04.indd 8009_396797-ch04.indd 80 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

81 Chapter 4: A Quick Semantic Web Primer

 1a444af3548b73c371f66ce79b32aebcd25acb9f
 </foaf:mbox_sha1sum>
 <foaf:homepage rdf:resource=”http://me.jtpollock.us”/>
 <foaf:workplaceHomepage
 rdf:resource=”http://www.oracle.com”/>
 <foaf:schoolHomepage rdf:resource=”http://www.psu.edu”/>
 <foaf:knows
rdf:resource=”http://www.w3.org/People/Berners-Lee/
 card#i”/>
 <foaf:knows
rdf:resource=”http://www.w3.org/People/Connolly/#me”/>
</foaf:Person>

</rdf:RDF>

Just like the RSS example in the preceding section and my introductory

example shown earlier in Listing 4-1, you should be able to see the following

similarities of this RDF structure:

 ✓ The xmlns keywords contain the namespace definitions.

 ✓ Each keyword in the body of the RDF points to an xmlns for term

definition.

 ✓ Each namespace contains a vocabulary of terms that can be reused

across many different documents and databases.

RDF in Attributes (RDFa)
The Web contains an enormous number of pages that have been created and

generated with HTML markup. These documents often contain a lot of struc-

tured data unavailable to most applications. Because HTML is not a struc-

tured data language and the Web is predominantly rendered in HTML, it’s

quite difficult to find or use any structured data on the Web.

Using RDF in Attributes (RDFa) is a way to encode data within HTML and

XHTML Web pages — thereby enabling people and machines to supply struc-

tured data items directly embedded within Web pages.

The rendered, hypertext data of XHTML is reused by the RDFa markup

so that publishers don’t need to repeat significant data in the document

content. The underlying representation of RDFa is RDF because it’s flex-

ible enough to let publishers build and evolve their own vocabularies while

extending others with high degrees of data portability. RDFa structure is

closely tied to the data itself so that rendered data can be copied and pasted

along with its relevant structure.

09_396797-ch04.indd 8109_396797-ch04.indd 81 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

82 Part II: Catch the Wave of Smart Data Today

RDFa is similar to microformats. Whereas microformats specify both a syntax

for embedding structured data into HTML documents and a vocabulary of

specific terms for each microformat, RDFa specifies only a syntax and relies

on independent specification of terms (often called vocabularies or taxono-

mies) by others. Additionally, RDFa allows terms from independently devel-

oped vocabularies to be intermingled.

Listing 4-4 shows you a simple example of RDFa that consists of a basic HTML

page with the addition of new xmlns namespaces and some new <span
property> and <class property> tags.

Listing 4-4: A Simple RDFa Example

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML+RDFa 1.0//EN”
 “http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd”>
<html xmlns:cal=”http://www.w3.org/2002/12/cal/ical#”
 xmlns:contact=”http://www.w3.org/2001/vcard
 -rdf/3.0#”>
 <head>
 <title>Batla’s Boisterous Blog</title>
 </head>
 <body>
...
 <p instanceof=”cal:Vevent”>
 I’ll be hosting

 the big birthday party at the beach,

 on
 <span property=”cal:dtstart” content=
 “20080312T1600-0500”>
 March 12th at 4pm.

 </p>
...
 <p class=”contactinfo” about=”http://example.org/
 staff/jo”>
 SA. Batla.
 Semantic Web
 Guru
 at

 Acme.org
 .

09_396797-ch04.indd 8209_396797-ch04.indd 82 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

83 Chapter 4: A Quick Semantic Web Primer

 You can contact me

 via email
 .
 </p>
...
 </body>
</html>

When these kinds of RDFa markings are embedded in Web pages, they can

create structure where there previously wasn’t any. Take for example the

popular news Web site Digg.com, shown in Figure 4-5. It has embedded RDF

tags to put structure in its content, thereby allowing external search engines

to more intelligently mine its data.

After Web applications embed structured data within their pages, Web search

engines can more intelligently mine those pages to find relevant search

results. The Fuzzbot RDFa viewer, shown in Figure 4-5 loading the Digg.com

triples, can display the embedded RDF triples from within any Web page.

Figure 4-5:
Digg.com
shown in

Fuzzbot with
embedded

RDF triples.

Yahoo! SearchMonkey is one example of a search engine adopting RDFa to

simplify and improve its search results. Figure 4-6 shows what a more intel-

ligent search result looks like on the Semantic Web.

09_396797-ch04.indd 8309_396797-ch04.indd 83 2/13/09 6:51:08 PM2/13/09 6:51:08 PM

84 Part II: Catch the Wave of Smart Data Today

Figure 4-6:
Yahoo!
Search

Monkey
search
results.

RDFa provides the on-ramp for regular Web pages to get onto the Semantic

Web superhighway.

Web Ontology Language (OWL)
RDF provides a very simple model for graph data, but it does not specify

complex semantics for relationships or advanced data models. Web Ontology

Language (OWL; not to be confused with the Ordinary Wizarding Level tests

from a certain boy-wizard series) is an extension of the RDF data model to

supply a very rich set of semantics for building complex data models, vocab-

ularies, and software logics. An instructional overview of OWL is provided in

Chapter 8.

OWL supplies an object-oriented type of framework that links RDF triples to

classes, associations, and other complex relationships. For example, OWL

enables the kind of formal semantics to express in a data model a piece of

logic like, “A backpacker’s destination is the intersection of all destinations that
have budget accommodations and some type of sports or adventure activities.”

Unlike UML, relational databases, and XML, this type of powerful data seman-

tic can be encoded directly in the data model. Later, when you query an OWL

database that has that data model, you may simply use the query, “find all
backpacker destinations,” and the database will know which records match

09_396797-ch04.indd 8409_396797-ch04.indd 84 2/13/09 6:51:09 PM2/13/09 6:51:09 PM

85 Chapter 4: A Quick Semantic Web Primer

your query based upon the logic defined in the data model — without ever

having tagged the records as such!

Figure 4-7 shows an RDF graph using OWL semantics to express the follow-

ing logic:

A backpacker’s destination is the intersection of all destinations that have
budget accommodations and some type of sports or adventure activities.

Figure 4-7:
An OWL

RDF graph
with pow-
erful data

model logics
included.

BackpackersDestination

Destination and
(hasAccommodation some BudgetAccommodation) and
(hasActivity some (Sports or Adventure))

[Destination
hasAccommodation some BudgetAccommodation,
hasActivity some (Sports or Adventure)]

[hasAccommodation some BudgetAccommodation,
hasActivity some (Sports or Adventure)]

hasAccommodation some BudgetAccommodation

Destination

owl:Thing

[hasActivity some (Sports or Adventure)]

owl:equivalentClass
rdfs:subClassOf

owl:IntersectionOf

rdf:first rdf:rest

rdf:first rdf:rest

Because OWL is a more expressive language than other data languages, it can

provide an umbrella modeling format for machines to understand how data

is related. The RDF shown in the next example is in a simplified RDF format

called Turtle:

:BackpackersDestination
 a owl:Class ;

 rdfs:comment “A destination that provides budget
 accommodation and offers sport or
 adventure activities.”^^xsd:string ;

 owl:equivalentClass
 [a owl:Class ;
 owl:intersectionOf

09_396797-ch04.indd 8509_396797-ch04.indd 85 2/13/09 6:51:09 PM2/13/09 6:51:09 PM

86 Part II: Catch the Wave of Smart Data Today

 (:Destination [a owl:Restriction ;
 owl:onProperty :hasAccommodation ;
 owl:someValuesFrom :BudgetAccommodation]
 [a owl:Restriction ;
 owl:onProperty :hasActivity ;
 owl:someValuesFrom
 [a owl:Class ;
 owl:unionOf (:Sports :Adventure)]
])
] .

The standard rdf:comment keyword may look familiar from the earlier RDF

examples in this chapter. But thereafter you see quite a few owl:keywords

that aren’t familiar. The OWL language provides many new extensions to RDF

that enable robust data modeling; a few examples of those extensions are

listed in Table 4-2.

Table 4-2 A Few Owl Extensions to RDF
OWL Relationships Examples

SubClassOf Author is a SubClassOf Person.

EquivalentClasses Person is EquivalentClass to Homosapien.

DisjointClasses Person is a DisjointClass from Canine.

SameIndividual “President Bush” is SameIndividual “GW Bush”.

OWL Class Constructors Examples

ObjectUnionOf Jeff is the union of Author and Employee.

ObjectIntersectionOf Jeff is the intersection of Person and Male.

Many other extensions are available to OWL modelers; Chapter 8 provides

a comprehensive explanation for each of them and a programming guide for

getting started with the Web Ontology Language.

Other Semantic Web languages
Many other languages are being built upon RDF and OWL. Any new program-

ming language or data language that uses RDF or OWL can be considered a

Semantic Web language. Here are just a few of the most important ones:

09_396797-ch04.indd 8609_396797-ch04.indd 86 2/13/09 6:51:09 PM2/13/09 6:51:09 PM

87 Chapter 4: A Quick Semantic Web Primer

 ✓ SPARQL: Simple Protocol and RDF Query Language (SPARQL) is the pri-

mary query language of the Semantic Web. It is like a more powerful SQL

but for RDF graph data.

 ✓ SWRL: Semantic Web Rule Language (SWRL) bridges the gap to business

rule and production rule systems that require more expressive logics

than OWL permits because they would make OWL an inconsistent data

language.

 ✓ SAML: Security Access Markup Language (SAML) uses RDF as a meta-

data feature for maintaining access profiles.

 ✓ UML2 ODM: The Ontology Definition Metamodel (ODM) is a standard

within the Unified Modeling Language (UML) family that maintains an

RDF and OWL profile for UML2.

 ✓ SAWSDL: Semantic Annotations for Web Service Description Language

(SAWSDL) is designed to be embedded within WSDL 2.0 Web Service

binding definitions as a way to encode powerful vocabularies directly

within the Web Service API.

 ✓ GRDDL: Gleaning Resource Descriptions from Dialects of Language

(GRDDL) is a W3C standard that defines a repeatable method for extract-

ing RDF triples from HTML and XHTML document. GRDDL may be used,

for example, to convert microformats into pure RDF.

 ✓ ISO 15926, Part 7: There are many industry-specific vocabularies that

are adopting RDF and OWL. ISO 15926, Part 7 is one example focused on

the exchange of data for different kinds of industrial plant operations —

such as oil and gas drilling platforms.

Many other vocabularies are being built and used everyday throughout all

industries. Governments in the United States and Europe are some of the

most prolific adopters of Semantic Web technologies in all aspects of govern-

ment. The life sciences and pharmaceutical industries have also been using

RDF and OWL vocabularies for many years as a means to facilitate an easier

exchange of business data.

A Little Semantics Goes a Long Way
One popular misconception among people who don’t fully understand the

Semantic Web is that all the data needs to be converted to RDF. But as you can

see from this chapter, many Semantic Web languages are simply extensions of

other languages to make a small portion of data accessible as RDF triples. No

mass conversion is required. In fact, the Semantic Web works with regular non-

semantic data precisely because a little semantics goes a long way.

09_396797-ch04.indd 8709_396797-ch04.indd 87 2/13/09 6:51:09 PM2/13/09 6:51:09 PM

88 Part II: Catch the Wave of Smart Data Today

Just a few well-placed RDF triples in a Web page, document, or database can

make all the difference when somebody is searching for a particular thing.

Unlike a search engine, the SPARQL queries on RDF graphs are deterministic

(they don’t rely on probabilities) and can inference (use logic and reasoning

power) to create new data as they query. That means that you can be guaran-

teed to find the data you are looking for once it has been indexed by the RDF

engine. It also means that the RDF engine can make better guesses at what

you are looking for because it uses enriched vocabularies to cross-reference

the results of your queries.

The idealistic vision of the Semantic Web may in fact be that giant global

graph in the sky, but from where I stand today, there’s much to be gained

from a simpler view of the Semantic Web. The simple view is that RDF and

OWL bring some very real and very fundamental new benefits to data and

metadata languages. In any place where you may have considered using XML,

UML, or relational formats for metadata, you should consider using RDF and

OWL. Chances are, they would be a better solution.

Get started now using the Semantic Web and find projects where you can add

a little bit of semantics — it will go a long way for you!

09_396797-ch04.indd 8809_396797-ch04.indd 88 2/13/09 6:51:09 PM2/13/09 6:51:09 PM

Chapter 5

Why the Semantic Web Is New
Technology, Not Hype

In This Chapter
▶ Seeing beyond the Semantic Web hype

▶ Realizing why the Semantic Web is different than what came before

▶ Grasping the difference between the Semantic Web and SOA

▶ Recognizing the Semantic Web’s artificial intelligence roots

In mid-March 2008, a headline for a Times Online interview with Sir Tim

Berners-Lee read, “Semantic Web could leave Google in the dust.”

If proclamations like that don’t quicken your pulse even a little, you might

want to slowly set this book down and walk away. Unsurprisingly, both the

business and technical crowds were all aflutter about this assertion, but for

different reasons.

In the business community, analyst groups, and venture capital circles, the

buzz is slowly building for the Semantic Web. Grand assertions about displac-

ing Google may not be instantly believable, but they cause more than a few

people to dig a little deeper. However, in the technical crowd, the Semantic

Web geeks are busy trying to downplay the hyperbole. Every wise technolo-

gist knows that inflated expectations have buried more than a few good tech-

nologies over the years. As it turns out, even Tim Berners-Lee recanted the

interview with Times Online and tried to squash any idea that he has it out

for Google.

The Semantic Web is great — that’s why this book exists — but it isn’t a silver

bullet for all your problems, and it probably isn’t going to single-handedly dis-

place any particular companies.

10_396797-ch05.indd 8910_396797-ch05.indd 89 2/13/09 8:12:51 PM2/13/09 8:12:51 PM

90 Part II: Catch the Wave of Smart Data Today

This chapter describes in some detail why the Semantic Web is different than

other technologies and social movements like Web 2.0. The cautious reader

must bear in mind that no technology is perfect, and the process of articulat-

ing why the Semantic Web is different requires pointing out some deficien-

cies of classical technologies. As such, many casual readers might dismiss

the Semantic Web as “all hype.” But the aim of this chapter is to carefully

explain how the differences amount to very real, very tangible new ways of

thinking about data.

Tracing the Roots of the Semantic Web
The Semantic Web is based on some genuinely different and powerful tech-

nology capabilities that haven’t previously been widely deployed in software

systems. It’s a legitimately new set of specifications that may change quite a

bit about how software is written.

Actually grounded in several old ideas from the artificial intelligence (AI)

community dating as far back as the 1950s, the intellectual heritage of the

Semantic Web can be traced back to some of the following roots:

 ✓ Graph systems, network databases, and semantic networks

 ✓ Frame languages and object-oriented systems

 ✓ Expert systems, description logic programs, and knowledge

representation

Far from impractical, these central ideas from AI have been deliberately com-

bined with Web architecture technologies like HTTP and the URI (Uniform

Resource Identifier) to make AI more practical in today’s Web-centric world.

Further, the Semantic Web architects carefully chose particular character-

istics to ensure that the languages were a good fit for real-world demands.

They specifically wanted to ensure that the core languages were determinis-

tic like a database, more expressive than conventional modeling notations,

and capable of being very fast.

The Semantic Web today consists of two core data languages (RDF and

OWL) and a query language for accessing the data. Although there are many

shared attributes with other technologies — including databases, integration

platforms, and object-oriented programming languages — the Semantic Web

remains distinct.

10_396797-ch05.indd 9010_396797-ch05.indd 90 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

91 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

Realizing That the Internet Is
Made Up of Pages, Not Data

The Internet, or the World Wide Web (WWW), is the basis for nearly every

major software breakthrough since 1995. A simple idea really, the basis for

the Internet’s greatness lies in the notion that documents can be linked to

one another. One simple standard, the URI (Uniform Resource Identifier), has

since become the de facto way to link documents, pages, and just about any-

thing else you can think of.

The Gartner Hype Cycle
As one of the premier business analyst firms in
the software sector, Gartner’s voice on technol-
ogy trends carries far and is listened to intently.
One of Gartner’s established ways of defining
the maturity of a new technology is to plot its
progress on the Gartner Hype Cycle. This Hype
Cycle is used to aid in Gartner’s analysis of
nearly every technology that it covers.

The key insight that Gartner shares with its
Hype Cycle is that as technology is introduced,
people often have very high expectations for
it. These expectations result later in a type of
blow-back effect of disappointment before the
technology can ever reach any sort of stable
and productive maturity.

If the Semantic Web were plotted on the so-
called Gartner Hype Cycle in 2008, it would
no doubt be rising toward the peak of inflated
expectations. The Gartner Hype Cycle Figure
shown here demonstrates how every new tech-
nology is subject to a kind of popularity ranking
according to where it falls within this pattern
of market adoption. Although the expectations
may be too high today — for example, thinking
that the Semantic Web will unseat Google as
the king of search — you can rest assured that
there are some very fundamental and very real
benefits for the Semantic Web technologies.

VISIBILITY

TIME

Peak of Inflated Expectations

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger

Plateau of Productivity

10_396797-ch05.indd 9110_396797-ch05.indd 91 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

92 Part II: Catch the Wave of Smart Data Today

The Internet itself is made of documents, usually called Web pages.

Sometimes these Web pages can be generated from databases or dynami-

cally generated from XML, but when you see them via a Web browser, they’re

merely documents that contain links to other documents.

 Advocates of the Semantic Web make this simple distinction: The Internet is

a web of documents, and the Semantic Web is a web of data. Whereas a docu-

ment might be a page with lots of text in it, the data itself isn’t structured in a

way that can be interpreted by a computer. Even though this paragraph can

be understood by you, the human reader, it can’t be interpreted by a com-

puter because the words in this paragraph are not associated with any par-

ticular software syntax or structure.

On the other hand, structured data must follow some prescribed syntax

and structure because it’s used by software algorithms for data processing.

Software algorithms must receive data in the structure and type that they

expect; otherwise, an exception occurs.

Because the Internet is made up of pages of documents, it’s really useful for

people to browse. “Really useful” might be the understatement of the cen-

tury; the Internet has revolutionized civilization itself. Many people take for

granted that they can look anything up at any time. Whole nations, societies,

and political revolutions are fueled by the access to information that the

Internet brings people.

But information on the Internet is only for people. Alas, computers can’t make

sense of all those words on the Internet. If only everybody wrote things down

exactly the same way every time. . . . Instead, there are different styles, col-

loquialisms, slang terms, and mistakes. As analog “machines” capable of high

degrees of pattern recognition and an unparalleled aptitude for guessing,

humans can usually make sense of what they find on the Web. Machines, on

the other hand, cannot.

Take, for example, the way you search for information on the Internet. When

you need to find general information via the Web, you usually start by using

a search engine. Search engines aren’t like the Dewey Decimal System in your

local library, where you must know which categories of information to look

within beforehand. Instead, you simply enter a few keywords in the search

engine, and the search engine then matches them within a master index of

pages that it has scanned. There is no intelligence in a search engine. Even

in places where it seems as though the search engine has made a guess for

you — such as Google’s famous “Did you mean?” prompt at the top of its

search results list — the search engine is still not truly intelligent. In all these

cases, including the Google example, the search engine simply matches text

in a list of words. Unlike with the Semantic Web, there is no complex logic or

reasoning with the data: just simple keyword-matching algorithms.

If Semantic Web technologies were widely deployed, or if natural language

processing systems were to create Semantic Web data from regular Web

10_396797-ch05.indd 9210_396797-ch05.indd 92 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

93 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

pages, the whole way you search on the Internet could change. Instead of

looking for keywords, you might browse for ideas or data concepts; the

search engines could help distinguish the meaning behind the words you

typed in. Ultimately, you would get more results with greater levels of accu-

racy. Chapter 15 gives you examples of how Yahoo! and hakia are aiming to

make these benefits a reality for you.

The true beauty and distinctiveness of the Semantic Web is that it’s inten-

tionally built on the same core principles and infrastructure as the regular

Web. The distributed nature of the Web, achieved by using a decentralized

network of servers, provides a global scale of data distribution and fault

tolerance that is unmatched by any other technology that humans have cre-

ated. The Uniform Resource Indicator (URI) and HTTP protocols ensure that

servers all over the world are able to send requests for documents to any

other place in the world. These Web pages and Web servers operate with

metadata, tags, and markup in much that same way that the Semantic Web

does. Just like the regular Web, the Semantic Web is another big evolution in

the way people can find information from their computers.

Realizing That Web 2.0 Is for People
and Semantic Web Is for Software

If you used the Internet in 2007 and have a pulse, you’ve heard about the

Web 2.0 rage. Somewhere along the way, somebody noticed that the Internet

could enable groups of people to collaborate in ways that they couldn’t do

without it. After a few Web sites that encouraged this group behavior were

created, Web 2.0 was born.

Ever since group behavior became an important part of mainstream Web

sites, companies have found numerous ways to exploit the behavior of Web

surfers. Simple uses of Web 2.0 ideas include businesses like Amazon.com

soliciting product rankings from consumers and offering shoppers hints of

what others have bought. More overt notions of Web 2.0 include the many

social networking Web sites that have tried to profit from the basic human

need to connect with others. Facebook, MySpace, Friendster, Tribe, LinkedIn,

Spoke, and countless others have looked to profit on connecting teens, com-

munities, professionals, and just about any other type of demographic.

 But the Web 2.0 phenomenon isn’t based on any particular technological

breakthrough beyond the Web itself. Sure, some new programming languages

have surfaced — like Ajax, Flash, Ruby on Rails, JSON, and a more liberal use

of XML — as shown in Figure 5-1, but these have been incremental improve-

ments upon the existing Web platform and haven’t fundamentally changed the

fact that the Web is driven by documents and pages.

10_396797-ch05.indd 9310_396797-ch05.indd 93 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

94 Part II: Catch the Wave of Smart Data Today

Figure 5-1:
Web 2.0
Concept

from
Hinchcliffe

& Company.

People Online Software Clients Direct Web
Servers &
Services

Data

Information
“Cloud”

The Web 2.0 Architecture of Participation:
“People in the Machine Nurture the Cloud”

Identity

Web 2.0 Site A Ajax Client

Web 2.0 Site B HTML Client

Web 2.0 Site C Flash Client

Mashup D Ajax Client

Mashup E Flash Client

mutual sense of
community

partic
ipatio

n

participation

REST

Web
Service

Web
Service

The “truthiness” barrier:
Uncertain ownership and

data provenance past this point

Source: http://web2.wsj2.com

HTTP

SOAP

Database

Commercially
and User
Generated

Content Both

Public Edge

of the Enterprise

Database

Database

Web
Service

Web
Service

Site A’sSite A’s
Web ServicesWeb Services

Site B’sSite B’s
Web ServicesWeb Services

Site C’sSite C’s
Web ServicesWeb Services

Site A’s
Web Services

Site B’s
Web Server

Site C’s
Web Services

HTTPHTTPHTTP

JSCHJSCHJSCH

The Web 2.0 phenomenon is more rightly described as a social and behav-

ioral sea change. Instead of serving up static fixed content to Web surfers

in the same way that television delivers static fixed content to TV watchers,

the Web has become an interactive place for people to congregate and do

things together — virtually. Web 2.0 is about the way people use Web 1.0,

not about the Web itself. New ideas for harnessing the uncanny accuracy of

crowd-sourcing opinions and predictions are driving a higher order of collec-

tive intelligence than anyone could have imagined a few short years ago. New

ways to harness community tagging projects (where groups of people create

hierarchies of tags) allow people to build folksonomies, which are vocabu-

laries that evolve much like natural language evolves — in small pockets of

communities. The term mashup is now a common part of the lingo, used to

describe when people reuse other people’s content in their own way.

A measured view of the Web 2.0 phenomenon is offered by Tim Berners-

Lee, the true intellectual father of the Internet. In a podcast interview, Tim

Berners-Lee described the term Web 2.0 as a “piece of jargon,” stating that

“nobody really knows what it means.” He went on to say, “If Web 2.0 for you

is blogs and wikis, then that is people to people. But that was what the Web

was supposed to be all along.” Berners-Lee is clearly pointing out that this

10_396797-ch05.indd 9410_396797-ch05.indd 94 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

95 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

isn’t a fundamental change in the technology infrastructure; it’s just that

people are evolving to use the full power of a medium that’s already been

there for several years.

I agree with Tim Berners-Lee’s assessment. In fact, the Web 2.0 businesses that

have matured in the past few years have exacerbated the fundamental limita-

tions of the original document-based Web because they further proliferate data

that cannot be easily reused. If you’ve ever belonged to more than one online

social network, you know very well that you have to constantly re-type who

you are, what you like, who your friends are, what your pet’s name is, and so

on. This repetitive re-typing reflects the plain truth that your data is owned

by the network you join and each network you join is a silo unto itself. For all

the noise about Web 2.0, it turns regular people — at least the ones with a lot

of spare time — into data-entry robots who are typing and re-typing their per-

sonal information and favorites into every Web site that will have it.

In some cases, Web 2.0 sites are starting to use Web 3.0 (in other words, the

Semantic Web) technologies. As Web 2.0 businesses start to utilize the power

of metadata, they need more flexible ways to capture and define content on

their own pages — they know that people want to reuse chunks of data, not

just whole pages. Microformats, RDFa, and other tagging technologies are

increasingly using Semantic Web technologies to achieve true portability and

reuse. For more info, check out Chapter 4, where I introduce you to a few

technologies that span Web 2.0 and the Semantic Web.

Databases Mean Business;
So Does Semantic Web

The most recognized type of business software is the database. Businesses

store their information, calculate their taxes, and manage their employees by

using databases. The database is the perennial software used by businesses.

Databases come in all shapes and sizes. Relational databases, columnar data-

bases, object databases, and graph databases are different ways to manage data

records. The relational database is by far the most popular kind of database, but

the other kinds are still very much part of the business landscape today.

Although the Semantic Web exists at Web-scale (meaning the data may be

joined from any networked computer anywhere in the world), the detailed

manipulation of the Semantic Web data still occurs inside a database platform.

Whereas traditional databases require that their schemas (the way the data is

organized) are defined before the data is loaded, the Semantic Web databases

can have continually changing schemas at any time. Sometimes, the Semantic

Web database is called a knowledgebase because (a) it’s more logically expres-

sive in what the schema can say about the data and (b) it can continuously

evolve over time without major architectural impacts to the software.

10_396797-ch05.indd 9510_396797-ch05.indd 95 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

96 Part II: Catch the Wave of Smart Data Today

But before I start to describe too much about the Semantic Web databases,

take a look at the more conventional database platforms, as described in the

following sections.

Relational databases
Compared to the Semantic Web knowledgebase, the relational database

system is a less expressive but faster way to access structured data records.

In a relational database, the structured data record, sometimes called a tuple,
is arranged in tables. Tables were originally referred to as relations because

the table itself is the relationship between the column names, which are

sometimes called the object attributes.

Take for example a simple example table of Customers, shown in Figure 5-2.

The table defines the fact that every record it contains is a type of Customer.

Further, the table structure defines that every Customer must have a primary
key (a unique identifier) and may have other attributes (descriptive fields)

like FNAME, ADDR1, and so on. In this simple example, the definition of a

Customer object is described by the table columns.

Figure 5-2:
A sample

relational DB
table with

some data.

Customers

SSN

445542134

FNAME

Jeff

ADDR1

123 Anystreet

ADDR2

NULL

STATE

CA

...

In more complex database schemas, collections of tables compose records.

These collections are typically joined in one of two ways:

 ✓ Directly in the data schema by using keys (primary, foreign, and syn-

thetic keys are all kinds of unique identifiers): These relations become

part of the data model and are thus a dependable and consistent defini-

tion for the data.

 ✓ Using Structured Query Language (SQL) statements to perform joins

(such as UNION, INTERSECT, INNER, OUTER, and so on) on records

at the time of retrieval: These SQL-based data joins are obviously very

useful for manipulating records and result sets, but they’re impossible

to reliably and consistently integrate into a separable information or

data model.

10_396797-ch05.indd 9610_396797-ch05.indd 96 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

97 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

 Key relationships in the relational model can be used in various patterns to

create an efficient management scheme for collections of business objects

within the database. Much like the various indexing techniques, the arrange-

ment, constraints, degree of normalization, and overall shape of the data

schema greatly impact the performance of a relational database.

Figure 5-3 shows how regular relational tables can each supply a key value

for the SalesFact table. This logical construction allows for simpler analytic

operations on complex combinations of loosely related data. This star schema

approach is the most popular and widespread way of performing business

intelligence queries because of its flexibility and performance in read-only

type situations.

In contrast, the traditional OLTP database, with a second or third normal

form relational data model (as defined by common relational data modeling

practices), is the go-to standby for heavy transactional (write-intensive) use

cases.

It should be easy to understand why the relational database is arguably the

most successful and widespread software platform in the history of comput-

ers: It’s fast, reliable, consistent, and flexible enough to be used for all differ-

ent kinds of data-intensive use cases.

The power of sets
When Ted Codd wrote his seminal paper on
relational databases in 1970, there was little
certainty that his ideas were valuable. Even his
employer, IBM, dragged its feet in implementing
his breakthrough concepts.

But the ideas about organizing data in sets,
relationally in tables, solved a fundamental
algorithmic challenge of the day — how to
achieve computationally sound query results on
large amounts of data. By restricting the data

model’s semantics and eliminating an inher-
ently slow hierarchical data structure (as was
found in systems like IMS/DB), the relational
data could be accessed with set operators such
as UNION, MINUS, and INTERSECT.

Combined with efficient indexing strategies,
there isn’t a faster way to retrieve data from
hard disks. Set-based relational systems are
the pinnacle of fast structured data.

10_396797-ch05.indd 9710_396797-ch05.indd 97 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

98 Part II: Catch the Wave of Smart Data Today

Figure 5-3:
A rela-

tional star
schema.

Customers

SSN

445542134

FNAME

NULL

STATE

CA

...

Dates

GUID

34DC3EA7-
21E4-4C8A

DATE

06202008:
16:55:14

PEAK

NO

...

Products

PRODKEY

SKU: 54321s
df123456-po

NAME

Cotton Tee
Shirt

BRAND

Acme
Clothes

...

Promotions

PROMOKEY

XMAS-08-
HALF-OFF

NAME

XMAS
2008

START

12152008:
16:55:14

...

Sales Fact

CUSTKEY

445542134

DATEKEY

34DC3EA7-
-21E4-4C8

PROMOKEY

XMAS-08-
HALF-OFF

...

PRODKEY

SKU: 54321s
df123456-po

...

But likewise, you should also be able to see why the relational database is

being used for some use cases where it is not optimal. The need to opti-

mize the shape of a relational schema differently for reads versus writes is

a fundamental view into the reality of an essential fact about data manage-

ment: When the extremes of performance and scalability are confronted,

the relational database fails to be best at any particular use case. This view

of the relational database as a generalist’s tool is carefully considered in

the provocative interview between two database pioneers, Margot Seltzer

(inventor of Berkeley Database) and Michael Stonebraker (early pioneer of

the relational database); the interview is called, quite aptly, “A Conversation

with Michael Stonebraker and Margo Seltzer.” (You can find the interview at

http://portal.acm.org/citation.cfm?id=1255430.)

For more examples, here are some situations when relational databases

aren’t the best option:

 ✓ The best write performance can be achieved with an in-memory cache

and not a separate disk-based database platform.

 ✓ The best read performance — reading data whose native structure is

organized most like an index of tuples that is efficiently arranged on a

hard drive — is achieved from a columnar-style database.

10_396797-ch05.indd 9810_396797-ch05.indd 98 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

99 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

 ✓ The best storage structure for documents like XML and other messages

is a hierarchical database structure.

 ✓ The best storage structure for frequently changing data, and data with

very little formal structure at all, is a graph database.

 The jury is still out on what technologies are best at any particular domain.

The exciting thing about being a software engineer in this era is watching

innovative ideas compete in the global market. With that in mind, in the fol-

lowing sections, I take a look at some new, and old, alternatives to relational

databases.

Columnar databases
A relatively new entrant to the database segment is the column-oriented data-

base, often referred to as a columnar store, or c-store for short, as shown in

Figure 5-4. The key idea with a columnar database system is to optimize the

database for very fast read operations. This extreme optimization for read

access is achieved by physically arranging the data according to columns

instead of rows.

Figure 5-4:
Columnar

databases
arrange
data by

column, not
by row.

Customers

SSN

445542134

FNAME

Jeff

ADDR1

123 Anystreet

ADDR2

NULL

STATE

CA

987656782 Samir 987 Main NULL RI

123432098 Sirus 12 Chestnut Unit 2 NC

Logical
Data:

Row-oriented On Disk:

Column-oriented On Disk:
4455421234, 123432098, 987656782 Jeff, Samir, Sirius; 123
Anystreet, 987 Main, 12 Chestnut; , , Unit 2; CA, RI,NC

4455421234, Jeff, 123 Anystreet,, CA; 987656782, Samir, 987
Main,, RI;123432098, Sirius, 12 Chestnut, Unit 2, NC

10_396797-ch05.indd 9910_396797-ch05.indd 99 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

100 Part II: Catch the Wave of Smart Data Today

In this approach, the physical layout of the data on disk, either within a file-

based index or other binary format, is sequentially arranged so that all the

similar column data is grouped nearby. The main idea is to prevent full table

scans and eliminate the need for excessive indexing — both of which can

become a major drag on performance when database sizes reach beyond a

few hundred terabytes.

The columnar database approach can be applied to regular SQL and rela-

tional databases by providing a different records management system

underneath the query interpreter and other planners. Likewise, the columnar

approach can be applied to the indexing strategy of any search system to

optimize for very fast regular expression text matching algorithms. In fact,

the most successful columnar implementation is the Google BigTable system,

which is how all your searches are answered so quickly.

 In the final analysis, the columnar approach is a data optimization technique

that can be applied equally to deterministic (with guaranteed accuracy) data

management solutions like relational databases and inference engines or to

non-deterministic (without computational guarantees that your queries are

answered accurately) systems like search engine indices. In either case, the

columnar system is a high-performance solution for reading data from very

large data sets.

Hierarchical databases
Hierarchical databases actually predate the relational database. Before the

advent of data modeling and the need for general-purpose data manage-

ment, the central data management requirement was much more basic and

centered around the need to save and inventory the bill of materials for large

manufacturing and engineering businesses. The hierarchical data structure is

perfect for this use.

The first databases were hierarchical. Because they simply took a transac-

tion, or data record, and persisted it wholly as is, the default data orientation

was very hierarchical or tree-like (another way of imaging how data relation-

ships can branch out from a central trunk, like a tree), which is how any mes-

sage is structured. Situations that call for very fast save operations and very

fast lookups of data within a particular records structure still benefit from

the hierarchical database engine. For these reasons, after more the 40 years

in the marketplace, the IBM Information Management System Database (IMS-

DB), a hierarchical database, is still being sold and implemented by busi-

nesses worldwide.

Figure 5-5 shows the tree-like nature of a hierarchical record and how the

data values are arranged together as part of a single flat list. This structure

can enable very optimized read-and-write use cases when the software needs

to fetch and save records in their original fixed, hierarchical structure.

10_396797-ch05.indd 10010_396797-ch05.indd 100 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

101 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

Figure 5-5:
A hierarchi-
cal schema

with some
record data.

CEO

EVP

Sr.Dir
Dir

Dir
SVP

EVP

VP

Mgr

Mgr

First Name

Employee GUID-1239870

Jeff

Senior Director

445-54-2134

123 Anystreet

San Francisco

CA

Title

SSN

Address

Line 1

Line 2

City

State

Hierarchical
Schema

Data

Another benefit that hierarchical databases provide is the ability to answer

certain kinds of questions very quickly. For example, in a Human Resources

system that contains lots of employees arranged organizationally and by

hierarchy, hierarchical databases can provide quite simple and fast answers

to queries like, “Find all employees in department XYZ.” Similarly, for large

engineering projects that contain many different assemblies and parts, a typi-

cal query might be, “Find all parts in this component.”

 When data records are arranged as they are in Figure 5-5, they can be

searched very quickly to find all the parts of a whole. The most widely

deployed type of hierarchical records store in the world is the commonly used

LDAP (Lightweight Directory Access Protocol) security system.

 The danger with hierarchical systems is that if the relationships get complex,

or if records simply need to be joined together in a non-hierarchical way (for

example, without using a parent and child type relation), the efficiency gains

disappear, and the hierarchical system becomes a network or graph data

model. A network data model, now more commonly called a graph data model,
is usually hierarchical at its core, but it allows for more record-to-record rela-

tionships beyond the simple parent and child relation.

10_396797-ch05.indd 10110_396797-ch05.indd 101 2/13/09 8:12:52 PM2/13/09 8:12:52 PM

102 Part II: Catch the Wave of Smart Data Today

Graph databases
The graph database was one of the very first database types to emerge in

the 1960s. Before the relational database gained dominance, there was quite

a debate in the software field about whether hierarchical or graph database

models were superior. Hierarchical systems were faster for some use cases,

whereas graph data models were more natural modeling frameworks for

many other use cases.

History has shown us that the relational database is the best general-purpose

solution for data management, but just like the hierarchical database, the

graph database has never really disappeared for specialty use cases. The

Computer Associates Integrated Database Management System (CA-IDMS) is

a mainframe system that still has a measurable foothold in certain industries.

For geographical and spatial domains, the network data model continues

to dominate — even the Oracle relational database includes a network data

model feature for the spatial database option that’s quite popular in the geo-

spatial community.

Today, the primary data structure for the Semantic Web is graph-based. But

instead of being localized to a particular database management system, the

idea for the Semantic Web graph database is that it should exist at Web-scale.

Web-scale means that the data may be joined from any networked com-

puter anywhere in the world. This vision of a “database in the sky” has been

espoused by a few prominent people, but the Semantic Web was actually

designed that way.

The graph data structure itself is a type of semantic network. The semantic

net is a classical artificial intelligence framework for working with directed

graphs and was originally introduced to the computer sciences as a way to

make human language interpretable by a processor. There are many types

of directed graph operations, using different model theories and semantics.

Until the arrival of the Semantic Web, there was no standard way to encode

graph database records.

Object databases
Many considered object databases a failure in the past few years. The object

database was originally conceived as an alternative to the relational database

to become a more natural way of storing data for object-oriented software

programs. The benefits were supposed to bring a simpler object mapping to

storage and fast pointer-based object retrieval.

10_396797-ch05.indd 10210_396797-ch05.indd 102 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

103 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

In practice, the object database is faster for some pre-planned data retrieval

tasks where the data pointers can be optimized. However, due to the lack of a

formal and mathematically sound data model (as exists with relational, hier-

archical, and graph systems) and poor performance with ad hoc style queries

that aren’t planned for during system design, the object database market-

place to remain quite small in comparison to the relational market.

Further, the fact that many object databases are accessed via relational

access points (like ODBC or JDBC) and many more are actually implemented

using a relational database engine somewhat negates the originally desired

benefits of an object-based system.

Software objects and the idea of object-orientation in general are old artificial

intelligence concepts rooted in frame systems. A frame system is a type of

software language that consists of frames and slots. A frame is simply a class,

and a slot is an attribute. Thus, if you have a class called Customer and an

attribute called Address (which may itself be a class), you have a frame

system like the one shown in Figure 5-6.

Figure 5-6:
An object

style
schema.

Customer

Address: Address
FirstName: String
LastName: String

getFirstName(): String
getLastName(): String

Online Store Customer

webID: int

getWebID(): int

Address

City: String
Line1: String
Line2: String
State: String

getFullAddress(): String
+
+

+

+

-
-
-
-

-

-

-
-

The object database is highly optimized for retrieval of data in this native

frame style system. A software program may only have to instantiate an

object with a trivial statement like this:

new OnlineStoreCustomer(“445-54-2134”)

10_396797-ch05.indd 10310_396797-ch05.indd 103 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

104 Part II: Catch the Wave of Smart Data Today

The underlying object database fetches the appropriate attribute data as

part of the complete record. The object style schema allows for data mod-

eling characteristics like hierarchies and whole-part relationships. Object-

orientation itself encourages data inheritance (one concept is a child of

another) and polymorphism (a function could do one thing for one object, but

another thing for a different object) for changing behavior and attribute con-

straints among different objects.

Unfortunately, there is no mathematical consistency across object-oriented

languages, so it’s not possible to create a general-purpose declarative data

modeling framework. In simple terms, the classical object database is by defi-

nition a silo unique unto itself and not suitable for any large-scale information

management problems.

What Semantic Web and databases
have in common
After focusing so much on the differences between the major data manage-

ment platforms and techniques, you must be wondering what these have

in common with the Semantic Web. The Semantic Web specifications don’t

specify a particular technical implementation. In fact, Semantic Web solu-

tions have been built upon every type of database platform described in the

previous sections: relational, hierarchical, graph, and object.

Also, remember that the Semantic Web is itself a data and metadata specifi-

cation for a computationally sound, frame-based directed graph. Or, to put it

another way:

 ✓ The Semantic Web is based on formal mathematics just like the relational
database — which means that any system that implements it can

guarantee consistently reliable query answers that scale linearly with

predictability.

 ✓ The Semantic Web is capable of native hierarchy definitions just like a
hierarchical database — which means that tree-type data structures can

be efficiently organized and retrieved.

 ✓ The Semantic Web is a semantic network just like the network/graph
database — which means that it is exceptionally natural to model real-

world data in the Semantic Web.

 ✓ The Semantic Web is a frame-based system just like the object database —

which means that object-orientation can be preserved in the underlying

data model.

10_396797-ch05.indd 10410_396797-ch05.indd 104 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

105 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

The key Semantic Web specifications — RDF and OWL — were conscious

efforts to combine the best attributes of the relational database (perfor-

mance and consistency), the graph database (flexible, natural modeling easy

to use with unstructured data), and the object database (powerful frame-

based classification and logic-based relations).

Although the implementation of the Semantic Web database can be physi-

cally built upon any of the classical database engines, there are different

tradeoffs to consider — I address those topics in Chapter 12.

 Just like any database management system, a Semantic Web database would

consist of a tuples-based data framework. (A tuple is just a fancy way of saying

data fact.) And any Semantic Web–based system is capable of set-based opera-
tions (meaning the data can be organized and manipulated in sets rather

than by one record at a time), although it’s important to note that not every

Semantic Web system is necessarily a set-based system. A well-implemented

Semantic Web system should have many of the same characteristics as a con-

ventional database, and yet it should also be capable of much more.

Grasping Why SOA/Integration Is for
Messages, Not Data Structures

Ever since there have been computers in the world, there has been a demand

for dedicated software integration technology. Integration platforms are

responsible for assuring some level of consistency between two disparate

software applications.

Integration technology itself comes in different styles, implemented with dif-

ferent patterns and for different purposes. Generally speaking, the biggest

and most obvious difference between the Semantic Web and integration tech-

nologies is the focus on data movement. Whereas every type of integration

technology depends on the specification of data movement over some pro-

tocol and with some guarantees about the delivery of that data, the Semantic

Web is completely separate from how the movement of data occurs.

Some may say that because the Semantic Web is based on Web standards

like the URI (Uniform Resource Identifier) it is inherently federated, or geo-

graphically distributed. That’s true, but it doesn’t answer for the obvious lack

of a specification that arranges for the messaging, transport, or transforma-

tion of Semantic Web data.

10_396797-ch05.indd 10510_396797-ch05.indd 105 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

106 Part II: Catch the Wave of Smart Data Today

 Just as the integration platforms are not responsible for the data or metadata

models, neither is the Semantic Web responsible for the mechanics of moving

data across physical distance. But integration technology can be quite rel-

evant to the same kinds of problems that the Semantic Web aims to solve in a

business context. The historical ways of solving integration problems in busi-

ness consist of the following approaches:

 ✓ Message-oriented middleware

 ✓ Enterprise application integration

 ✓ Service-oriented architecture

 ✓ Enterprise information integration

 ✓ Extract, transform, and load

Each of these technologies provides different tools that can be used indepen-

dently, with each other, and with or without the use of Semantic Web tech-

nologies. More detail about the differences in these approaches follows.

Message-oriented middleware (MOM)
In the early 1990s, the message-oriented middleware (MOM) pattern arose as

the predominant way to integrate applications via their APIs in a transaction-

ally safe and flexible manner. MOMs are typically associated with the idea

of a bus, whereby messages are published to several subscribers at once.

Sometimes, this is called the publish and subscribe architecture.

Enterprise application integration (EAI)
The enterprise application integration (EAI) name is merely a super-set of

the MOM functionality within a comprehensive integration product platform.

As software vendors began to sell MOM-type products, they quickly realized

that they required more functionality — like transformation engines, message

management, error frameworks, and so on — so they bundled everything

together for their largest customers and called it EAI.

Thus, EAI at its core is a message-oriented middleware system built around a

publish and subscribe message bus.

Service-oriented architecture (SOA)
As the EAI products became more popular in the late 1990s, it became obvi-

ous that there was an interoperability problem among the different integra-

tion vendors — nobody’s integration software worked with anybody else’s!

10_396797-ch05.indd 10610_396797-ch05.indd 106 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

107 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

The industry set about to solve this challenge with a new family of standards

called service-oriented architecture. SOA is at its most basic level a standard-

ization of the core message-oriented middleware architecture patterns that

were almost 15 years old by the late 1990s. In most ways, the idea of SOA

was really the software idea of EAI, but finally available with standardized

formats.

Clearly, you can find some substantial positive differences in today’s SOA

compared with the original MOM systems. Here are a few:

 ✓ SOA focuses heavily on orchestrating long-lived processes.

 ✓ SOA implementations regularly use business rule engines.

 ✓ SOA is designed to work on Web protocols.

However, the shortfalls around dynamic discovery and loosely coupled data

still remain. Finding services in large Web services frameworks is nearly

impossible without a pre-ordained directory, and even with the popular rise

of the XSD canonical data model (which is supposed to act as a common

schema for messages), the bindings from application data formats to the

wire-based XML are still extremely brittle and too easy to foul up when things

start to change.

A balanced perspective recognizes the major steps forward in standardizing

MOM-style integration frameworks while maintaining a clear head for how

valuable that is in the big picture.

So despite falling short of some initial lofty promises, the service-oriented

architecture movement has been a beneficial one, and those benefits will

continue to be realized for years to come.

The Web services scandal
I wrote an article for the Enterprise Application
Integration Journal in 2002 titled, “Web Services
Scandal.” Somewhat tongue-in-cheek, the
article pointed to some specific shortfalls of
the then hyped-up service-oriented architec-
ture (SOA) trends. Back then, Web services
were supposed to solve all sorts of data-related
problems.

From the dynamic assembly of services, the
automatic orchestration of business processes,
and the decoupling of service data bindings, the
new Web service industry seemed to promise
so much. But of course what sounds too good
to be true usually is. In fact, SOA never really
changed anything about directories, dynamic
behavior, or data bindings. What a scandal!

10_396797-ch05.indd 10710_396797-ch05.indd 107 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

108 Part II: Catch the Wave of Smart Data Today

Enterprise information integration (EII)
Of the many kinds of integration technology, EII is the one most frequently

confused with the Semantic Web. The term enterprise information integration

was coined in the early 2000s and is distinguished by two central features:

 ✓ The use of federated queries for data retrieval: Unfortunately, EII has

had trouble succeeding in the marketplace. Federated queries are typi-

cally such poor performers that the EII tool requires a substantial cach-

ing system to enable the EII platform to deliver data in a reasonable

timeframe. This issue greatly diminishes the promises of realtime virtu-

alized data access.

 ✓ The use of a synthetic data model for viewing and accessing other dis-

parate data models: This second distinguishing feature has also proved

troublesome. Various EII products have used synthetic data models of

a classical nature. Typically, one or more of the following data model

types have been used as the synthetic modeling language in the EII

platform:

 • Relational data model

 • XML data model — XSD

 • Object data model — UML

 These are all perfectly acceptable synthetic modeling formats, of course,

but each of them has well-known limitations that are common to their

core modeling formats. In other words, the conventional EII synthetic

models don’t solve anything uniquely different about core data modeling

and are therefore creating more silos unto themselves.

Each of the aforementioned issues is further compounded by a lack of any EII

metadata standards, which means every vendor has implemented a solution

in its own way — further isolating EII as a truly robust solution.

Extract, transform, load (ETL)
Extract, transform, load (ETL) is the granddaddy of enterprise-scale data inte-

gration. Highly optimized for large-sized data transfer and transformation,

the typical ETL platform wastes no overhead on synthetic models and other

inefficient data abstractions. Instead, the ETL platform is tuned for ultra-fast

point-to-point data transformation that’s all about getting data from Point A,

Format A to Point B, Format B. Thus, the only meaningful semantics in an ETL

platform is located in the highly optimized data transformation rules and the

physical data models that are affected by them.

10_396797-ch05.indd 10810_396797-ch05.indd 108 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

109 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

What Semantic Web has in common
with other integration technologies
I started this section on integration technology by pointing out that the

Semantic Web specifies data and metadata, whereas the integration plat-

forms primarily focus on the mechanics of data movement. By now, you

should appreciate the subtle but important differences between SOA, EII, and

ETL. So it’s fair to say that integration technology is apples to the Semantic

Web oranges: They aren’t in the same class of solution.

Yet there’s more than a small bit of overlap. For instance, in a hypothetical

utopia where every application publishes data in Semantic Web formats,

there would be a drastically diminished need for integration software like

SOA, EII, and ETL. Each application would instantly be able to share and con-

sume business data without complex integration schemes.

Because the Semantic Web is a native part of the Web, all that data can be

atomically delivered via HTTP. And because Semantic Web languages are

much more expressive than relational, XML, or object style data models,

the software applications themselves could achieve much more automated

consumption of new data. Alas, we don’t live in utopia, but the vision for our

seamlessly interoperable applications of the future is at hand!

The integration platforms themselves have been tremendous letdowns.

SOA delivers on only a fraction of its original promises: failing to fulfill the

dynamic discovery and loosely coupled data promises. EII federated queries

aren’t fast enough, and the shared data models are too brittle for the kinds

of dynamic mashups that developers really want to write. But this is another

area where the Semantic Web standards can help!

A few ways that the Semantic Web can help with integration platforms, include

 ✓ Semantic Web–based inference engines are an ideal way to publish and

find Web services — as network-based graphs.

 ✓ Semantic Web data models are an ideal way to abstract the data views

within SOA and EII messaging systems.

 ✓ Semantic Web query standards are designed from scratch to accommo-

date federation at Web scale.

There isn’t any silver bullet to making integration better, faster, and cheaper,

but most of the work described in this section is already well underway.

Later in this book, in Chapter 11, I go much deeper into the specific ways that

Semantic Web will transform integration software of the future.

10_396797-ch05.indd 10910_396797-ch05.indd 109 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

110 Part II: Catch the Wave of Smart Data Today

Realizing That XML Is for
Documents, Not Data

When it was first introduced, many thought that XML would solve the data-

integration ills of the world — many people are still under the impression

that it will. But it won’t.

First of all, XML and its schema language, XSD, are not true data models.

They weren’t intended to be. They’re document models. The difference is in

how strong the model semantics are required to be. One simple example is

the nesting of tags. As shown in Figure 5-7, with XML you can declare that one

tag is nested within the other. But what does that mean? Well, it can mean

anything you want it to. It could mean parent-child, whole-part aggregate,

whole-part composite, unidirectional association, bi-directional association,

and so on. In its base definition, the nesting of a tag is simply an undefined

relation. And because of those weak semantics, a particular XML Schema tag

could mean just about anything.

Figure 5-7:
An XML

document
with some

data.

<employee guid=”1239870”>

</employee>

<firstname>Jeff</firstname>
<title>Senior Director</title>
<ssn>445-54-2134</ssn>

</address>

<address>
<line1>123 Anystreet</line1>
<line2></line2>
<city>San Francisco</city>
<state>CA</state>

 Those weakly defined structural semantics are precisely why XML became

so popular — it’s a document markup syntax and no more than that. If the

standards bodies had tried to make it a data model, it never would have been

adopted as widely as it has. The mistake people make is in thinking that it

can be a data model or that it can be a general-purpose tagging and metadata

framework for software applications.

In contrast, the Semantic Web languages are actual data models with very

precise, mathematically grounded, model theoretic semantics. For example, I

can define some arbitrary XML:

10_396797-ch05.indd 11010_396797-ch05.indd 110 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

111 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

<employee> <firstname value=”Jeff”/></employee>

This XML is syntactically sound, but no XML parser in the world can tell

me that this means that there’s a class of things called Employee and an

instance of one called Jeff.

On the other hand, I can create an RDF triple:

<#employee><#firstName><#Jeff>.

As described in Chapter 4, any N3 RDF parser would understand the above

syntax to mean that there is a class of data called Employee and that there

is an instance of one Employee called Jeff. From there, I can add more

employees, add more properties to an Employee class, and add more classes

to assign people to.

Some people within the Semantic Web community actually feel that the

association with XML is a burden. There was an early effort to build all the

Semantic Web syntax in valid XML, but many find it much too verbose and

complex. Thus, new RDF triples formats like N3 and Turtle have forgone XML

as a syntax and instead advocate a much simpler triples format.

The nature of tagging is one area where the Semantic Web languages overlap

with XML. When people think of tagging, they think of XML. Unlike XML, the

Semantic Web languages can belong to a greater, more holistic data model,

which is precisely why modern tagging languages are grounded in RDF. New

tagging markup like microformats, RDFa, and GRDDL (Gleaning Resource

Descriptions from Dialects of Languages) allow developers to encode RDF-

based triples in their local syntax. By adopting a triples-compatible format,

these modern tagging frameworks ensure a substantial degree of portability

into the future.

Documents, not data models?
If you had a pulse and could program in the
spring of 1998, you were probably excited about
the arrival of XML. Java finally had something
to do!

At that time, a lot of pundits speculated about
the effect XML would have: It might change the
way Java uses data, change object-oriented
data markup, and maybe even cause the demise
of the relational database. Not!

But as powerful as XML has proven to be —
and indeed it’s just about everywhere in almost
all software — XML hasn’t even come close to
displacing the database. Fundamentally, XML is
a document markup language, not a data mod-
eling language.

10_396797-ch05.indd 11110_396797-ch05.indd 111 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

112 Part II: Catch the Wave of Smart Data Today

Seeing Why Object Orientation
Is a Heuristic

Object-oriented programming (OOP) is a software programming style that

isn’t grounded in an underlying mathematical model. Unlike the Semantic

Web, which is grounded entirely on a complete mathematical model, the

object-oriented heuristics offer an approach toward structuring software

programs that is based upon rules of thumb and past experiences. Object-

oriented heuristics cover both the structure of the data objects as well as

their behavior.

There are various definitions of what makes something object-oriented, but

no authoritative one. For the most part, people agree that the following are

the definitive characteristics of object orientation:

 ✓ Inheritance: Parent to child relationships

 ✓ Polymorphism: Overloading and overriding class members

 ✓ Encapsulation: Hiding data behind operations

But there’s a debate about these fundamental characteristics. Some people

would add modularity as a fundamental characteristic of OOP, but others

would rather eliminate the emphasis on inheritance. Still others decry the

lack of formalisms for numerous constructs within object-oriented models.

Rather than dive in to the philosophical views about good object-orientation,

the fact that there’s a debate at all just goes to show the biggest weakness

of OOP when it comes to data modeling — it’s an informal heuristic with no

basis in formal mathematics.

Unified Modeling Language (UML)
The Unified Modeling Language (UML), shown in Figure 5-8, began life as a

simple visual notation for describing software programs. But nowadays some

people consider it to be the pinnacle of software design and architecture.

But aside from all its inherent problems of largess, UML’s main weakness is

its lack of a formal mathematical theory. When it comes to modeling data,

math is pretty darn important. Formal mathematical theory enables com-

puter systems to make specific guarantees about the quality of their opera-

tions. For example, if I query a database, and there is a matching record in

there, I am guaranteed that that record will be in my result set.

10_396797-ch05.indd 11210_396797-ch05.indd 112 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

113 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

Figure 5-8:
A simple

UML model
with no data.

Customer

Address: Address
FirstName: String
LastName: String

getFirstName(): String
getLastName(): String

Online Store Customer

webID: int

getWebID(): int

Address

City: String
Line1: String
Line2: String
State: String

getFullAddress(): String
+
+

+

+

-
-
-
-

-

-

-
-

Because UML is a modeling heuristic — not a formalism — it means that

there are no computational algorithms that can offer anybody a consistent

and repeatable way to access data values written in a program that conforms

only to UML. Sure, many algorithms can be modeled as UML, but just because

I might model a relational database engine in UML doesn’t mean that UML is

as deterministic as the database engine!

Java
Like C++, SmallTalk, and Perl, Java is a programming language. Java is by far

the most popular object-oriented language. Not all programming languages

are object-oriented, but Java happens to be one that is. When any program,

written in any programming language, is running, it executes in the com-

puter’s main memory. When it’s executing in the main memory, many data

objects are fully marshaled with various data attributes. But the way that

these data attributes are connected, navigated, and operated on is a function

of the software program itself.

Most programming languages operate with a fairly unconstrained, higher-

order logic, which means that you can program pretty much anything you

want so long as you use the programming languages syntax correctly.

Programming languages in and of themselves aren’t suitable for encoding

knowledge in software — precisely because they’re too open. Too few con-

straints are imposed for how data may be related, constructed, and operated

on algorithmically.

That’s why people use programming languages to write data management

software — the programming language itself (such as Java) is insufficient.

10_396797-ch05.indd 11310_396797-ch05.indd 113 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

114 Part II: Catch the Wave of Smart Data Today

What the Semantic Web has
in common with OOP
The Semantic Web specifications are built at the intersection of semantic

nets and frame systems. And because object-oriented systems are also frame

systems, the Semantic Web shares a few major attributes with OOP:

 ✓ The Semantic Web has classes as data concepts/categories.

 ✓ The Semantic Web has instances as actual data values.

 ✓ The Semantic Web supports inheritance among classes.

 ✓ The Semantic Web supports strongly typed data types.

 ✓ The Semantic Web supports whole-part relations.

But aside from these points, the Semantic Web is more rigorous and

grounded in formalisms, using many of the mathematical foundations of

semantic nets to further specify the types of relations that are allowable

between classes and instances. Unlike UML, the Semantic Web assigns object

and data relationships a first-class status in the data model.

The Semantic Web can’t replace any programming language, nor is it intended

to replace UML; however, it does provide a more common-sense way to model

data than to rely on UML or depend solely on your programming language.

Seeing a New Beginning for Artificial
Intelligence (AI)

Long in the doldrums, the AI winter has lasted decades. The AI winter is a

phrase used by software industry insiders to describe the long periods when

AI fell out of favor with mainstream software. Although many wish it weren’t

true, the Semantic Web is indeed built upon certain formalisms that emerged

from the artificial intelligence community — but so are object-oriented sys-

tems, search engines, and relational databases. Nonetheless, it’s still hip in

some software circles to disavow any AI ancestry once a given technology

becomes wildly popular.

 Factually speaking, the roots of Semantic Web languages lie in both semantic

nets (network data models) and in description logics (a type of frame logic

that is a decidable subset of first-order logic). Both of these areas of AI fall

within the category known as knowledge representation.

10_396797-ch05.indd 11410_396797-ch05.indd 114 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

115 Chapter 5: Why the Semantic Web Is New Technology, Not Hype

In the artificial intelligence community, the study of knowledge representa-

tion (KR) revolves around finding optimal ways to encode human knowledge

in machine-understandable structures. This long-standing area of research

has produced many different types of formalisms for encoding knowledge —

several of which are the ancestors of the modern Semantic Web languages

RDF and OWL.

Even the relational database structure is a type of knowledge representation —

albeit a very restricted type.

Historically, the various techniques for representing knowledge in computer

systems have been localized and built within silos that had few means to

interact with data outside their own system. Prolog programs and large sys-

tems like Cyc have typically had to work with data that’s held closely to their

local format and semantics.

Following are the two biggest differences with the Semantic Web that haven’t

ever happened before in the span of computer science:

 ✓ The standardization of a formal model theory for data

 ✓ The intersection of an AI KR language with Web architecture

Taken together, the fact that there’s a community standing behind the

Semantic Web formalisms, and that it’s built upon the Web architecture for

boundary-less scale of distribution, this represents a breakthrough of sub-

stantial proportions beyond what AI has yet achieved.

Grasping How Semantic Web
Is New and Different

If you’re a software geek new to the Semantic Web and you aren’t excited

after reading this chapter, go back and read it again!

The Semantic Web is definitely at risk of being over-hyped, and you should

keep in mind that it is no panacea. Further, many limitations currently exist,

and many future developments have yet to occur.

In Table 5-1, I recap why this new technology is so different and cool.

10_396797-ch05.indd 11510_396797-ch05.indd 115 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

116 Part II: Catch the Wave of Smart Data Today

Table 5-1 How the Semantic Web Is Different
Conventional
Technology

Semantic Web Is
Similar Because

Semantic Web Is Different
Because

Regular Internet It’s Web-based. It’s about data, not documents.
Web 2.0 It’s Web-based.

It’s network-oriented.

It’s about data, not documents.

It’s machine-interpretable.
Relational
database

It’s declarative.

It’s deterministic.

It’s linear time.

It’s more expressive.

It’s Web-based.

Columnar
database

It’s tuples-oriented. It doesn’t assert a physical
strategy.

Hierarchical
database

It can be very efficient
for hierarchical data.

It’s a graph.

It’s standards-based.
Graph database It’s a graph system. It’s Web-based.

It uses frame logic.
SOA platforms It can annotate legacy

applications.
It isn’t a messaging system or a
software platform.

EII platforms It can supply a neutral
data view.

It isn’t a software platform.

XML It’s a type of tagging. It’s a real data model.

It’s machine-interpretable.
Object-oriented/
UML

It’s frame-based.

It’s model-driven.

It’s deterministic.

It’s declarative.
Java It’s a logic-based

system.
It’s declarative.

It has formal data semantics.
Artificial
Intelligence

It’s an AI system! (It’s a
type of knowledge rep-
resentation.)

It’s a standard. (It uses the Web
architecture.)

As a software geek who likes to think about the future, I can’t imagine a long-

term future where people still write Java programs that parse XML and read

relational database data. Of course, those systems will still be around ten years

from now, but as the predominant pattern for writing large software applica-

tions, I can’t imagine it. Think about it: In 1996, XML didn’t even exist. Java is

less than 15 years old. Things can change fast in the software industry.

When we truly comprehend all the ways that Semantic Web specifications

can improve upon and advance the way we professionals design and encode

data, it’s hard to imagine a future that doesn’t have a Semantic Web at the

very nucleus of just about every software system.

10_396797-ch05.indd 11610_396797-ch05.indd 116 2/13/09 8:12:53 PM2/13/09 8:12:53 PM

Chapter 6

The Problem with Metadata
In This Chapter
▶ Understanding why metadata formats aren’t compatible

▶ Grasping Semantic Web model theory for beginners

▶ Seeing the Semantic Web as a superset for software metadata

Metadata is data about data. Now that I have that definition out of the

way, what else is left to say? The unfortunate truth about that oft-

quoted definition of metadata is that it’s so vague that it’s all but useless in

practice.

When a software developer or architect talks about metadata, you have to

be aware of the context. You see, the word metadata is so overloaded with

different meanings that it can mean many different things. For example, the

metadata in a word-processing document is different than the metadata in

a document content repository, which is different than the metadata in the

word processing software program, which in turn uses Web metadata for

publishing the document format, and so on and so forth. You really have to

pay attention to precisely what people mean when they use the word meta-
data. The real problem with metadata is that it should be a very serious and

formal discipline for software development, yet it has become relegated to

the trash bin of overused, meaningless catchphrases bandied about in an

already jargon-filled industry.

Metadata is an important topic to understand because metadata is what

the Semantic Web is really all about. Unlike the many kinds of conventional,

informal, and undisciplined kinds of software metadata that I cover in this

chapter, the Semantic Web was designed from the ground up to be about

linking and references and model-driven.

In this chapter, I describe some of the most important metadata types and

supply you with a framework for easily classifying metadata of all types. Then

I describe a few of the ways that metadata is used in modern software sys-

tems. Finally, you find out how the Semantic Web can help unify metadata of

all sorts and perhaps eventually fix the problem with metadata.

11_396797-ch06.indd 11711_396797-ch06.indd 117 2/13/09 8:20:33 PM2/13/09 8:20:33 PM

118 Part II: Catch the Wave of Smart Data Today

Grasping the Basics of Data
and Information

Without data, there’s simply noise. Noise is like the static on your AM

radio when you’re between radio stations; data is when you get the signal.

Information is the meaning that you place on the data. As a human listener,

you can hear the words of the radio station and interpret the audible infor-

mation. Knowledge is the stimulus, or experience, of the information in

action. (For instance, if you hear a recipe for hamburgers on the radio and

then try to make that recipe, you’re then knowledgeable about that recipe.)

Wisdom is the understanding that comes from many experiences. (If you

happen to be a decent cook, you might have the wisdom to alter the ham-

burger recipe to your taste.)

One way of describing how systems interact is “a continuum of knowledge.”

Popular among systems thinkers, philosophers, and information architects,

the knowledge continuum is a way of understanding how people and systems

move through a range of experiences at varying depths of cognition. Figure

6-1 is a popular view of the knowledge continuum, which shows how noise

is a precursor to data, data is the basis for information, information leads to

knowledge, and, with deep understanding, comes wisdom.

Figure 6-1:
Typical

knowledge
continuum.

Noise Data Information Knowledge Wisdom

meaningmeaning stimulusstimulus understandingunderstandingmeaning stimulus understanding

 Metadata is simply a way to enrich data so that software systems can interact

with information. Metadata about models, vocabularies, and even program-

ming languages are simply ways to supply “data about data” so that an inter-

preter, processor, or algorithm knows what to do. There is no magic with

metadata.

Even the most advanced types of metadata — take the Semantic Web meta-

data for example — are simply ways of enriching data and information so

that it may preserve its meaning outside of its original context. This is why

Semantic Web languages are part of a type of artificial intelligence (AI) called

knowledge representation (KR). KR is one of the fundamental foundations of

the entire AI discipline — the Semantic Web families of KR are just one type

of modern KR format. (See Chapter 5 for more on KR.)

11_396797-ch06.indd 11811_396797-ch06.indd 118 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

119 Chapter 6: The Problem with Metadata

 Semantic Web databases are typically called knowledgebases (KBs). KBs are

different from RDBMs (Relational Database Management systems) in part

because the KB allows much more expressive metadata that can be applied on

the structure of data. Likewise, a KB allows more sophisticated algorithms to

directly reason with inferences on the data structures. This kind of distinction

between data, information, and knowledge may seem superficial to some or

nothing but a semantic game for others, but for many, it’s the mark of a funda-

mentally different and more powerful layer of metadata.

Devising a Framework for
Classifying Metadata

Not all metadata is created equal. Nor is all metadata distinct. In fact, there

are many typical patterns of how metadata can be used in practice. One

framework for classifying metadata is to start with the data itself and become

progressively more abstract. For example:

 0. “300779834” is instance data.

 1. “int ssn = 300779834;” is syntax.

 2. “table PERSON; Primary Key = SSN” is structure.

 3. “table ORDER; Foreign Key = PERSON.SSN” is a reference.

 4. “object ORDERS from ANSI X12 EDI Order Series (855) Purchase Order

Acknowledgment” is a domain reference.

 The preceding examples are pseudo code, but regardless of whether I’m work-

ing with Java, C++, Relational Databases, XML messages, UML, RDF or OWL

programs, the basic pattern of layered metadata is quite similar.

The following sections describe these different levels of data and metadata in

more detail. Understanding these framework layers will help you recognize

how Semantic Web formats and specifications can help in all areas of soft-

ware development.

Level 0: Instance data and records
At the purest level, data exists without a data type and outside of a particular

software programming language. For example, the facts and figures of your

bank account balances are data that, regardless of the software used to

11_396797-ch06.indd 11911_396797-ch06.indd 119 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

120 Part II: Catch the Wave of Smart Data Today

process them, have an innate irreducible fact associated with its value.

Likewise, string values like “Jeff Pollock” or “SA Batla” exist independently

from whatever software context might be processing them at a given moment.

Level 1: Syntactic metadata
Syntax is the sugar with which programming languages are sweetened.

Syntax makes it easy for humans to write programs because it abstracts

the human programmer from the machine code that is eventually gener-

ated anyway. The way in which program variables and literals are defined is

achieved with the syntax of a language. For document formats like XML and

HTML, the syntax of angle brackets has achieved near synonymy with the

term tagging. Syntax usually isn’t the interesting part of a language, simply

because most software programming and data languages are similar enough

that learning new syntax is never too difficult.

Level 2: Structural metadata
Structural metadata is where things start to get interesting. Whereas the

syntax of a language defines how to say things that the software compiler will

understand, the structural metadata is a reflection of what can be said at all.

For example, in XML and HTML you can use angle brackets to insert tags in

a document, but XML documents may be associated with a schema (XSD) in

order to enforce a prescribed structure of the document.

Every data or programming language that operates with a schema can be

validated and checked for consistency against a governing model. Each pro-

gramming or data language that has a governing model also has a measurable

level of expressivity. The expressivity of a model defines how complex the

structure that governs the data may be. For example, the structure of an XML

Schema, an XSD, is itself defined by the XML Infoset specification, which is a

relatively simple hierarchical definition of how tags may interrelate as part

of a logical hierarchy. In contrast, database schemas usually comply with a

common base relational model theory described mathematically in the 1970s

and canonized within the ANSI SQL query standards.

 When most tech-savvy people think of metadata, they’re usually thinking of

structural metadata. That old catchphrase, “data about data,” is exactly what

structural metadata is. Anyone who’s been schooled in the basics of software

programming understands the difference between an object and an instance.

11_396797-ch06.indd 12011_396797-ch06.indd 120 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

121 Chapter 6: The Problem with Metadata

Simplistically, the objects represent the structure, and the instances represent

the data. For data models, the governing schemas can take four predominant

forms:

 ✓ Relational: The data is organized in tables, like a spreadsheet.

 ✓ XML: The data is organized in hierarchies, like a tree’s limbs.

 ✓ Object: The data is organized within a software program’s main memory,

in potentially any other type of format.

 ✓ Graph: The data is organized in a network where any item can link to

another, like a spider’s web fanning out and connecting to other webs.

The structure of data defines and limits the ways in which different software

algorithms may navigate the structure and find what you or I may be look-

ing for. For example, relational databases can be indexed very efficiently and

therefore are very fast to query. On the other hand, graph databases — such

as those used for the Semantic Web — can’t be indexed as efficiently and

take longer to answer queries. The structure of the data defines its use and

limits for computing.

Level 3: Referent metadata
A referent is an object, action, state, relationship, or attribute that defines

a relationship to anything real or imaginary. In the abstract sense, referent

metadata may simply be the relationship between the string of characters

on this page, “Jeff Pollock,” and me, the human being typing on a keyboard.

More practically speaking, reference metadata are the links between objects

and instances. For example:

 ✓ The object/class of things called Purchase Orders contains a statement

of items that have been procured; a Purchase Order definition may exist

in a dictionary or as a part of a data model with other rules associated

with it.

 ✓ The instance/record of a particular Purchase Order would be a uniquely

identifiable occurrence of a statement of items that have been procured

by some particular entity.

Purchase Orders may be related to other objects or to other instances. For

example, the Purchase Order object may contain one or more Line Item

objects, or the instance of a particular Purchase Order may be related to

others that have been created by the same customer.

11_396797-ch06.indd 12111_396797-ch06.indd 121 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

122 Part II: Catch the Wave of Smart Data Today

In a model, the referent metadata is the set of allowable relationships that

may exist between objects and instances. For example, here are some typical

relationship types from UML (Unified Modeling Language), XML, and OWL

(Web Ontology Language) models:

 ✓ Inheritance/superclass/subclass

 ✓ Aggregation

 ✓ Composition

 ✓ Hierarchy/taxonomy

 ✓ Unions

 ✓ Intersection

 ✓ Disjointedness

 ✓ Equivalence

Relationships may be statically declared after they’re inside a model, or they

may be objects themselves — instantiated for each new unique occurrence

of a relation. For example, when I model domains in UML, there is exactly

one kind of inheritance relationship. When I use an inheritance relationship

once for modeling Purchase Orders as a type of Order, I use exactly the same

inheritance relationship as I would in modeling Books.

In contrast, with Semantic Web languages like OWL and RDF, the refer-

ences (properties) are first-class objects in the model that can be inherited

and uniquely named just like any other object. This powerful feature of the

Semantic Web data languages is one of the ways that it is different than every

other popular data language.

Referent metadata may also include metadata that defines how objects and

instances may be related across different schemas and domains. Typically in

the form of point-to-point mappings — either declaratively in a map or pro-

grammatically in algorithms — this type of referent metadata may be materi-

alized as ETL maps, XSLT maps, hand-coded transformation routines in any

programming language, or automatically generated as part of some other

tooling. In any case, this type of metadata defines the relationship among

data items for the purpose of integrating data.

Level 4: Domain metadata
Domain metadata puts the structural and referent metadata in context.

The Purchase Order object may mean something completely different in a

SWIFT financial services domain model than it would in the NGOSS telecom-

munications standard models. It is domain metadata that’s required for

11_396797-ch06.indd 12211_396797-ch06.indd 122 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

123 Chapter 6: The Problem with Metadata

cross-system data exchange as a means to understand and relate foreign

data into a local data model. Oftentimes, this domain metadata is under-

stood only by the developer or data architect responsible for the data

mapping. However, more and more modern systems link their local domain

models to industry standards data models for easier portability and data

exchange.

Logic and Rules in Your Metadata
Every metadata layer may be optimized with logic and rules. The syntax

layers may define mathematical operators (+, –, /, and so on), conditional

tests (>, >, =), and other inline techniques for manipulating data. Structural

systems may incorporate rules and logic to help classify and organize objects

and instances. Referent metadata may include techniques for constraining

relationships in certain specific conditions. Domain metadata may include

techniques for merging data while maintaining logical consistency. Rules and

logic are a part of every data language.

The following section is a brief explanation of how rules are different than

logic with a few simple examples in a data model context.

How rules differ from logics
Rules and logics are often discussed interchangeably, but they are quite dif-

ferent in practice for data models. Logics refer to the way the data model is

constrained, whereas rules are typically actions that happen on the data once

it is inside a procedural program. For example, data that violates the data

model logics does not fit into the database or knowledgebase. In contrast,

data that has rules applied to it may generate an action such as an event, or

new data as an output. I cover more of these distinguishing factors in Chapter

9 when I describe Semantic Web business rule specifications.

Modeling constraints
Each software modeling language has certain, specific constraints that may

be applied to the data and the data models. These constraints are part of

the modeling metadata and typically have consequences that matter most at

runtime. For example, if the constraints that have been modeled within UML,

XML, or database models are violated during a software program’s execution,

typically some type of process exception will occur.

11_396797-ch06.indd 12311_396797-ch06.indd 123 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

124 Part II: Catch the Wave of Smart Data Today

In a relational database, constraints may include

 ✓ Primary Keys

 ✓ Foreign Keys

 ✓ NOT NULL

 ✓ Various SQL Check Constraints

 • Boolean

 • Value Ranges, and so on

Unified Modeling Language (UML) constraints are typically captured in a lan-

guage called Object Constraint Language (OCL). OCL enables UML modelers

to describe constraints on classes, properties, attributes, and operations.

The language uses very familiar operators (if, then, else, and, or, not, implies,

and so on) that specify conditional expressions. The OCL itself is the founda-

tion for several different model transformation languages that are used to

transform MOF models within the OMG MDA specification. Unlike the data-

base constraints, OCL isn’t grounded in a formal mathematic model theory,

so it behaves differently in different implementations.

 Constraints are an important part of metadata modeling because they enable a

substantial level of richness and practicality to the data model — enabling

software applications to focus on the business processing logic instead of

always having to validate and re-validate data.

Discovering the Many Types of Metadata
Software applications, especially network-based applications, are some of

the most complex man-made engineering accomplishments in the history

of our species. Layers upon layers of logic and rules from billions of lines of

code running on a silicon-based central processer work together to automate

and simplify the business operations of Fortune 500 companies that generate

more revenue than the gross domestic product (GDP) of most countries.

Without metadata, the whole framework for software development, deploy-

ment, and runtime execution would collapse. Metadata runs in every layer of

that complex ecosystem from the central processor to the network transmis-

sion and protocol layers. Metadata is fundamental to every major aspect of

software applications, software standards, network protocols, and database

technology — there’s so much to choose from!

11_396797-ch06.indd 12411_396797-ch06.indd 124 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

125 Chapter 6: The Problem with Metadata

The next several sections supply a more detailed example of conventional

metadata formats used in different kinds of software architectures. In each

section, I describe how metadata is normally used, and point out how it fits in

the framework levels described at the beginning of this chapter.

Web metadata: HTML, XML,
and Web services
Metadata on the Web is everywhere. The Web pages you browse are simply a

veneer of pretty content assembled by a browser that understands metadata

within the Web page. Tags, keywords, and special characters make up the

basics of Web content encoded into pages.

The example in Figure 6-2 displays how a simple Web page like www.dummies.
com is actually comprised of lots of metadata interspersed with a little bit of

the content you see on the page displayed within the Web browser.

Any HTML or XML document for display uses metadata in this way. In fact,

even the word processor I’m using to write this book uses XML encoding

behind the scenes to define how my text and images should be displayed on

a page.

Figure 6-2:
A sample

Web page
with its

source code
visible.

11_396797-ch06.indd 12511_396797-ch06.indd 125 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

126 Part II: Catch the Wave of Smart Data Today

Other Web content (such as Web services like those you may find from com-

panies like eBay, Amazon.com, and Salesforce.com) also use metadata — but

not for display. Web services metadata is used to define the APIs (application

programming interfaces), bindings, and structure of messages and documents

that are transmitted between different businesses. Web content of all sorts is

built on top of metadata — without it, the World Wide Web would not exist!

Database metadata: OLTP,
OLAP, and so on
Metadata inside business software applications is a necessity, but nowhere

is this fact more true than inside databases. Databases are the most widely

used software infrastructure in the world. Since the 1980s, businesses of all

sorts have hosted mission-critical applications on relational databases.

Databases use a relational modeling approach that depends on the construc-

tion of schema, tables, and relationships between the tables called keys. Many

more kinds of constraints and structural assignments can be made inside a

database. The data integration tool from Oracle shown in Figure 6-3 makes

some of these constraints, table column properties, and SQL-based mapping

assignments visible. All of this is simply metadata to the database — the

actual records, or data, are contained and viewed within the context of this

descriptive metadata.

Other databases besides relational databases exist, but they all work in simi-

lar ways. Cube-style databases, called OLAP (online analytical processing),

also depend on metadata for describing their dimensions, calculations, and

other aggregation properties. Hierarchical databases and even newer graph

databases built on top of Semantic Web languages all depend on system

metadata and modeling metadata to make their records visible. Without

metadata, the modern database would not exist.

Object-oriented language
metadata: C# and Java
The way people model software programs depends on metadata. In fact,

the very notion of modern programming is dependent upon structural and

semantic metadata for modeling software.

Object-oriented programming uses common patterns for software develop-

ment that include the use of inheritance, polymorphism, and encapsulation

of data. The object-oriented programming languages all support these basic

11_396797-ch06.indd 12611_396797-ch06.indd 126 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

127 Chapter 6: The Problem with Metadata

tenets of object design. The metadata notations shown in Figure 6-4 include

the labels on the lines (relationships), the markers next to the text (visibil-

ity), and even the lines themselves (no arrows means a bidirectional, unquali-

fied relationship), among others.

Languages like Java, C#, Smalltalk, and others all support the essential

aspects of object design — the way they do so is to implement language fea-

tures with metadata that allows developers to author their programs using

object-oriented features. For example, take a look at some of the keywords

used in this code sample:

import java.util.*;

public class Backorder extends Order {
 public Date backDate;
 public Date estShipDate;
 //overrides the method from parent class
 public void checkForOutstandingOrders() {
 super.checkForOutstandingOrders ();
 System.out.format(super.orderNumber,this.estShipDate);
 }
}

Figure 6-3:
A sample

application
viewing

database
metadata.

11_396797-ch06.indd 12711_396797-ch06.indd 127 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

128 Part II: Catch the Wave of Smart Data Today

The preceding Java example shows how you can implement simple inheri-

tance in a software program by using the keyword extends. Keywords are

used in code to tell the software compiler (or interpreter) how to link data

that it is holding in main memory; they literally tell the computer how to

build software programs. This type of keyword syntax is the type of metadata

that makes simple fourth-generation programming possible. Without meta-

data, programmers might still be writing software applications directly in

machine code.

Figure 6-4:
A sample

object
model with

metadata
notations.

<<enumeration>>

Order Status

- new: Integer

- packed: Integer

- dispatched: Integer

- delivered: Integer

- closed: Integer

+account

+account

+history

+basket

Account

+ billingAddress: String

+ closed: Boolean

+ deliveryAddress: String

+ emailAddress: String

+ name: String

+ createNewAccount(): void

+ loadAccountDetails(): void

+ markAccountClosed(): void

+ retrieveAccountDetails(): void

+ submitNewAccountDetails(): void

+ validateUser(String, String)

Order

+ date: Date

+ deliveryInstructions: String

+ orderNumber: String

+ checkForOutstandingOrders(): void

Transaction

+ date: Date

+ orderNumber: String

+ loadAccountHistory(): void

+ loadOpenOrders(): void

StockItem

LineItem

+ quantity: Integer

+ Author: string

+ catalogNumber: string

+ costPrice: string

+ listPrice: string

+ title: string

+ item

+ status

ShoppingBasket

- shoppingBasketNumber: String

+ addLineItem(): void

+ createNewBasket(): void

+ deleteItem(): void

+ processOrder(): void

11_396797-ch06.indd 12811_396797-ch06.indd 128 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

129 Chapter 6: The Problem with Metadata

Programming framework metadata:
IBM EMF, and Oracle ADF
Programming frameworks go beyond the basic language features to pre-

implement additional features that developers can use to further simplify the

construction of complex software applications.

Most of the major software providers have implemented their own frame-

works, some of which are resold and some of which are freely accessible via

open-source arrangements. IBM uses the Eclipse Model Framework (EMF),

shown in Figure 6-5, which is the underlying programming model for any

Eclipse-based project. Developers can use the EMF core (ECore) objects in

their own applications to take advantage of prebuilt features that are avail-

able only to programs that use the ECore model.

Notice that the IBM EMF framework has an EClass object (in the center of

the figure). If you were developing an EMF application, you might choose to

inherit your Java object directly from the EClass object rather than have it

be a plain-old Java object (POJO). When your objects were of type EClass,

you could take advantage of all the features of EMF and enable the framework

to handle the display and lifecycle of your business objects.

This ECore model is metadata at work because it defines a type of meta-

model. When developers write an application that they build using IBM EMF,

they must become deeply familiar with the characteristics and behavior of

how the EMF works — this is called model semantics. By learning a frame-

work and writing your own program in it, you’ve adopted the metadata and

semantics of that framework.

The Oracle Application Development Framework (ADF) shown in Figure 6-6

is roughly analogous to the IBM EMF model, although Oracle’s framework is

more oriented around the Model-View-Controller (MVC) pattern than IBM’s

is. Like IBM, you as a developer may choose to implement your business

objects as Oracle’s ADF Entity Object rather than as a POJO. Along with other

objects that you would inherit from, the Oracle framework would enable you

to take advantage of many extra features that are not available in the base

Java language itself.

11_396797-ch06.indd 12911_396797-ch06.indd 129 2/13/09 8:20:34 PM2/13/09 8:20:34 PM

130 Part II: Catch the Wave of Smart Data Today

Figure 6-5:
The IBM

core EMF
ECore model

showing
the object

framework.

EModelElement

• getEAnnotation (Source : String) : EAnnotation

EAnnotation

• source : String

EClassifier
• InstanceClassName : String
• InstanceClass : EJavaClass
• defaultValue : EJavaObject
• isInstance (object : EJavaObject : boolean
• getClassifierID () : int

EClass
• abstract : boolean

EDataType

• serializable : boolean = true

EEnumLiteral

• value : int
• instance : EEnumerator

EEnum

• getEEnumLiteral (name : String) : EEnumLiteral
• getEEnumLiteral (value : int) : EEnumLiteral

• interface : boolean
• isSuperTypeOf (someClass : EClass) : boolean

EReference

• containment : boolean

EAttribute

• ID : boolean

• container : boolean
• resolveProxies : boolean = true

• getFeatureCount () : int
• getEStructuralFeature (featureID : int) : EStructuralFeature
• getFeatureID (feature : EStructuralFeature) : int
• getEStructuralFeature (featureName : String) :
 EStructuralFeature

EPackage

• nsURI: String
• nsPrefix : String
• getEClassifier (name : String) : EClassifier

• details: EStringToStringMapEntry

ETypedElement

EOperation EParameter

• ordered : boolean = true
• unique : boolean = true
• lowerBound : int
• upperBound : int = 1
• many : boolean
• required : boolean

EStructuralFeature

• changeable : boolean = true
• volatile : boolean
• transient : boolean

• defaultValue : EJavaObject
• defaultValueLiteral : String

• unsettable : boolean
• derived : boolean
• getFeatureID() : int
• getContainerClass : EJavaClass

• create (eClass : EClass) : EObject

EFactory

• createFromString (eDataType : EDataType, IteralValue :
 String) : eJavaObject
• convertToString (eDataType : EDataType, instanceValue :
 EJavaObject) : String

ENamedElement

• name : String

+ eModeElement

+ eParameters

+ eExceptions
+ eClassifiers

+ ePackage

+ eSuperPackage

1

1

1

+ eAllSuperTypes

+ ePackage
+ eFactoryInstance

+ eSuperPackage

+ eSubPackages

+ eLiterals

+ eOperation

+ eOperations

+ eAllOperations

+ eContainingClass

+ eStructuralFeatures

+ eContaingClass

+ eOpposite

+ eAllAttributes

+ eReferenceType
+ eAllContainments

+ eAttributeType

+ eAttributes

+ eIDAttributes

0..1

0..1

+ eAllStructuralFeatures

+ eAnnotations

+ eType

+ 0..1

+ eNum+ eNum

+ eContaingClass+ eContaingClass

+ eAllReferences+ eAllReferences

+ eNum

+ eContaingClass

+ eAllReferences

+ eReferences+ eReferences+ eReferences

Both the IBM and Oracle frameworks, and for that matter the Microsoft .NET

framework, are extensions of a core programming language like Java and C#.

The extensions are a program implementation itself, but the implementation

depends on metadata and implied semantics about what the framework com-

ponents mean and what they are supposed to do. Additionally, the EMF, ADF,

and .NET frameworks all have some model-driven characteristics (where soft-

ware behavior is declaratively driven from the model of the data, not just algo-

rithms) and make extensive use of other declarative features such as business

rules and late-bindings. Thus, these very popular frameworks, which the vast

majority of business applications are written on, are themselves absolutely

dependent on the metadata used to describe the framework.

11_396797-ch06.indd 13011_396797-ch06.indd 130 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

131 Chapter 6: The Problem with Metadata

Figure 6-6:
The Oracle
ADF model

showing
the MVC
pattern.

Rich Client Web / Wireless

Swing JSP ADF UIX

Struts ADF Controller

ADF Bindings

ADF Data Control

JSF

ADF JClient

Java
Classes

JDBC
TopLink
Queries

EJB
Finders

ADF
View Object

Java
Classes

EJB Entity
Beans

TopLink Mapping

ADF
Entity Object

Persistent
Business
Objects

Data
Access

Business
Services

Model

Controller

View

EJB
Session
Beans

ADF
Application

Module

Web
Services

AD
F

M
et

ad
at

a
Se

rv
ic

es

Oracle9i JDeveloper Visual Developm
ent Environm

ent

Mainframe system metadata:
Copybooks and JCL
When serious enterprise computing began in the late 1950s, COBOL was

developed to fill specific demands that FORTRAN could not. Created by the

Conference on Data Systems and Languages (CODASYL), COBOL was devel-

oped from the ground up as the language for enterprise business systems.

COBOL’s data types were limited to numbers and strings of text. This simplic-

ity allowed for those data items to be grouped into arrays and records so

that they could be tracked and organized better using metadata.

A COBOL program is structured much like a written essay, with four or five

major sections that make up the finished program. COBOL program state-

ments use a very English-like grammar, making it quite easy to learn — which

is sometimes surprising for younger developers who often think of COBOL as

an ancient and difficult software language.

11_396797-ch06.indd 13111_396797-ch06.indd 131 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

132 Part II: Catch the Wave of Smart Data Today

The following example supplies a short fragment of COBOL, take note of the

English-like syntax:

IDENTIFICATION DIVISION
PROGRAM-ID. SUM-OF-PRICES.
AUTHOR.
SOURCE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT INP-DATA ASSIGN TO INPUT.
 SELECT RESULT-FILE ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD INP-DATA LABEL RECORD IS OMITTED.
01 ITEM-PRICE
 02 ITEM PICTURE X(30).
 02 PRICE PICTURE 9999V99.
 02 FILLER PICTURE X(44).
FD RESULT-FILE LABEL RECORD IS OMITTED.
01 RESULT-LINE PICTURE X(132).
WORKING-STORAGE SECTION.
77 TOT PICTURE 999999V99, VALUE 0, USAGE IS COMPUTATIONAL.
77 COUNT PCITURE 9999, VALUE 0, USAGE IS COMPUTATIONAL.
01 SUM-LINE.
 02 FILLER VALUE ‘ SUM =’PICTURE X(12).
 02 SUM-OUT PICTURE $$,$$$,$$9.99.
 02 FILLER VALUE ‘ NO. OF ITEMS =’PICTURE X(21).
 02 COUNT-OUT PICTURE ZZZ9.99.
01 ITEM-LINE.
 02 ITEM-OUT PICTURE X(30).
 02 PRICE-OUT PICTURE ZZZ9.99.
PROCEDURE DIVISION.
START.
 OPEN INPUT INP-DATA AND OUTPUT RESULT-FILE.
READ-DATA.
 READ INP-DATA AT END GO TO PRINT-LINE.
 ADD PRICE TO TOT.
 ADD 1 TO COUNT.
 MOVE PRICE TO PRICE-OUT.
 MOVE ITEM TO ITEM-OUT.
 WRITE RESULT-LINE FROM ITEM-LINE.
 GO TO READ-DATA.
PRINT-LINE.
 MOVE TOT TO SUM-OUT.
 MOVE COUNT TO COUNT-OUT.
 WRITE RESULT-LINE FROM SUM-LINE.
 CLOSE INP-DATA AND RESULT-FILE.
 STOP RUN.

11_396797-ch06.indd 13211_396797-ch06.indd 132 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

133 Chapter 6: The Problem with Metadata

 COBOL programs typically consist of four divisions: identification, environ-

ment, data, and procedure. COBOL’s environment division is a place for meta-

data that can help make programs easier to run on other systems because it

forces the programmer to enumerate all the resources and facilities that the

program requires. Traditional COBOL feature sets are primitive compared

with modern computing languages.

Inside early COBOL systems, metadata is very basic: Only static data struc-

tures are supported, and numeric variables can only be binary or decimal.

Support for range checking and output formatting, string manipulation

support, and simple flow-control constructs are also provided for. Record

structures and arrays are the primary means for organizing data, but no

pointers or references are available. Although COBOL isn’t considered to be

a metadata-driven language in the modern sense, you can easily see that the

structure, syntax, and format of even these very old programming languages

contain quite a bit of implicit metadata and structure.

The term JCL, or Job Control Language, is used generally to refer to any

scripting environment for mainframe systems. There are several varieties,

but they are each pretty similar in function.

The following JCL example gives you an idea of the kind of syntax metadata

used for these mainframe programs:

//TSOUSR123A JOB (12345),’JEFF POLLOCK’,

// MSGCLASS=X,CLASS=A,NOTIFY=TSOUSR123
//* SAMPLE JOB
//STEP1 EXEC PGM=SAMPLE1
//STEPLIB DD DSN=TSOUSR123.LOAD,DISP=SHR
//INFILE DD DSN=TSOUSR123.DATA(MEMBER),DISP=SHR
//OUTFILE DD SYSOUT=*
//SYSOUT DD SYSOUT=*

 In the preceding JCL sample, note some of the keywords like MSGCLASS, DSN,

and DISP. Like all programming languages, the JCL scripts have a formal

processing structure and semantics for allowable commands used in the

mainframe environment to control operating system routines. Like COBOL,

FORTRAN, and other legacy languages, JCL is not generally considered to be

a metadata-driven programming language, but unlike any programming lan-

guage, it’s still entirely driven by a formal semantic and specification for its

syntax and structure. As I further explore the wide range of metadata types

and how they relate to the Semantic Web, I explain how even older legacy lan-

guages can be modeled and controlled from the Semantic Web framework.

11_396797-ch06.indd 13311_396797-ch06.indd 133 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

134 Part II: Catch the Wave of Smart Data Today

Network and protocol metadata:
TCP, IP, HTTP, and FTP
Everybody who uses a computer nowadays uses it on a network. But net-

works are the most innocuous and forgotten about part of computing. In the

surest sign of their absolute and total success, people just expect computing

networks to work. But the few who write network firmware and build routers

and switches know that it is anything but magic to get these complex sys-

tems to work.

One of the lowest levels of Internet communication protocols is TCP (Trans-

mission Control Protocol). Along with IP (Internet Protocol) and HTTP

(Hypertext Transfer Protocol), TCP forms the backbone of every Web link

you’ve ever clicked.

TCP is a connection-oriented protocol whose transmission end points

must establish a connection before transmission can begin. TCP protocol

data units are called segments. Clients who send and receive TCP entities

exchange data in the form of segments, shown in Figure 6-7, which consist of

a fixed 20-byte header followed by a variable size data field.

Figure 6-7:
The struc-

ture of
a TCP

segment.

16-bit source port number

16-bit window size

16-bit urgent pointer16-bit TCP checksum

16-bit destination port number

32-bit sequence number

32-bit acknowledgement number

Options (if any)

Data (if any)

4-bit
header reserved

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

TCP is responsible for breaking down a stream of bytes into segments and

reconnecting them at the other end. TCP retransmits any segments that are

lost and also organizes the segments in the correct order. The segment struc-

ture is very tightly specified and includes information about the end points,

ports, offset data, and security. User data, which might include the Web page

data we browse for, is included after the end of the TCP segment header.

11_396797-ch06.indd 13411_396797-ch06.indd 134 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

135 Chapter 6: The Problem with Metadata

TCP doesn’t work in isolation. The IP and HTTP protocols are layered above

TCP to enable your Web browser to actually receive and render a Web page.

For example, each time you click a link in your browser, it issues and trans-

mits an HTTP GET command. The definition and behavior of the HTTP GET

command are specified by the W3C standards for HTTP.

As you can see in the following standards snippet, the actual semantics of the

GET commands may differ depending on the context of a given transmission.

These kinds of semantics define behavior for most low-level protocols and

are entirely driven by the syntax and structural metadata of the messages,

and the network devices that route, switch, and deliver Web content.

8.3. GET

 The GET method means retrieve whatever information (in the form of an
 entity) is identified by the Request-URI. If the Request-URI refers
 to a data-producing process, it is the produced data which shall be
 returned as the entity in the response and not the source text of the
 process, unless that text happens to be the output of the process.

 The semantics of the GET method change to a “conditional GET” if the
 request message includes an If-Modified-Since, If-Unmodified-Since,
 If-Match, If-None-Match, or If-Range header field. A conditional GET
 method requests that the entity be transferred only under the
 circumstances described by the conditional header field(s). The
 conditional GET method is intended to reduce unnecessary network
 usage by allowing cached entities to be refreshed without requiring
 multiple requests or transferring data already held by the client.

 The semantics of the GET method change to a “partial GET” if the
 request message includes a Range header field. A partial GET
 requests that only part of the entity be transferred, as described in
 Section 6.4 of [Part5]. The partial GET method is intended to reduce
 unnecessary network usage by allowing partially retrieved entities.

OMG metadata: CWM/IMM,
MOF, and MDA
The Object Management Group (OMG) is the international standards body

that maintains many of the formal specifications for object-oriented and

middleware software programming technologies.

MDA
One of the more popular, and controversial, standards efforts at the OMG

is the Model-Driven Architecture (MDA). MDA represents an attempt by

the OMG to provide a family of specifications, guidelines, and practices for

11_396797-ch06.indd 13511_396797-ch06.indd 135 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

136 Part II: Catch the Wave of Smart Data Today

separating the business and technical concerns in software programs. MDA

is principally concerned with providing a platform-independent modeling

framework that can allow software developers to work on the business prob-

lem in models while automatically generating the technical implementations.

MDA is itself more of a framework. Although the MDA specifies how to create

a decoupled architecture for modeling, it leaves the actual language speci-

fications to other implementation definitions. MDA, as shown in Figure 6-8,

relies on the CWM (Common Warehouse Metamodel), MOF (Meta Object

Facility), and UML (Unified Modeling Language) specifications for detail

model guidelines. Likewise, MDA depends on regular programming languages

like Java, .NET, and XML for the implementation profile of MDA compliance

applications.

The core business model in the MDA architecture is the computation

independent model (CIM) that shares many common characteristics of

a Semantic Web ontology layer. The CIM is typically a model of the envi-

ronment in which a system will operate and acts as a source of shared

understanding and shared vocabulary for the given domain. The platform-

independent model (PIM) represents a finer grained look at the application in

question and describes the details of its operation — without specifying the

technology in which it’s implemented. Finally, the platform-specific model

(PSM) specifies the details of a given technology or platform implementation

of that PIM. Usually the PSM will reflect some technology design choice such

as a J2EE or .NET platform decision.

MDA efforts in the OMG have focused on the difficult area of providing map-

pings between the various model specifications. Importantly, the mapping

specifications between the PIM and PSM are crucial for the ultimate vision of

the MDA to operate as promised. Mappings at this architecture layer provide

developers the ability to generate functional code in multiple formats from

common models — thus reducing the development time for new technology

deployments.

As you can tell, the entire set of OMG, MDA, and related standards is entirely

based on metadata! In fact, most of these standards are nothing but a set of

agreed upon models and semantics, which must be used in a certain way to

be within the standard. These are classic examples of structural, referent,

and domain metadata.

CWM/IMM
The Common Warehouse Metamodel (CWM) was created to facilitate the

exchange of metadata among business intelligence systems and data ware-

houses. By virtue of its design, the implementation of the CWM relies on

technology vendors to implement the CWM specifications inside their highly

proprietary tools. Some vendors choose to adopt the CWM specifications as

11_396797-ch06.indd 13611_396797-ch06.indd 136 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

137 Chapter 6: The Problem with Metadata

the core of their metadata repository, whereas others choose to offer import/

export features to extract the metadata in the CWM specifications.

The CWM breaks down the classification of metadata into four main pack-

ages: Core, Behavioral, Relationships, and Instance, as shown in Figure 6-9.

The classes provided for in the Core package are the foundation upon which

the rest of the CWM rests. In this Core model, you can see how the organiza-

tion of core metadata concepts in the model is important to specialized com-

munities that choose to implement with CWM and MOF ideals in mind.

One pragmatic result of the CWM standardization effort was to provide for an

on-the-wire format for data warehouse metadata, which, when implemented

by leading vendors, allows for the exchange of metadata in a common format.

The design parameters for the CWM are consistent with other OMG efforts

and other popular standards. CWM relies on the XMI model syntax to imple-

ment UML models and XML (using CWM XSDs) as the core exchange format

for the metadata. Likewise, the CWM effort proposed the use of CORBA-like

IDL (Interface Definition Language) interfaces for physical access to ware-

house metadata in the CWM framework.

Figure 6-8:
Graphical
depiction

of the
MDA vision
from OMG.

CORBA XM
I/XM

L
 .NET JAVA

W
EB

 S
ER

VI
CE

S

PERVASIVE SERVICES SECURITY
 EVENTS

 TRANSACTIONS

DI
RE

CT
OR

Y

Model DrivenModel Driven
ArchitectureArchitecture

UMLUML

MOF
MOF CWM

CWM

CORBA XM
I/XM

L
 .NET JAVA

W
EB

 S
ER

VI
CE

S

PERVASIVE SERVICES SECURITY
 EVENTS

 TRANSACTIONS

DI
RE

CT
OR

Y

Model Driven
Architecture

UML

MOF CWM

More...

Finance

TelecomSpace

Manufacturing E-Commerce

Transportation Healthcare

11_396797-ch06.indd 13711_396797-ch06.indd 137 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

138 Part II: Catch the Wave of Smart Data Today

Figure 6-9:
The CWM

Core pack-
age model.

ObjectModel
(from CWM)

<<metamodel>>
Core

<<metamodel>>
Behavioral

<<metamodel>>
Relationships

<<metamodel>>
Instance

CWM was primarily intended to solve problems encountered by a fairly

narrow range of applications — business intelligence and warehouse sys-

tems. Where CWM makes great strides is in the specification of models for

metadata, and in the way it grounds them in a self-describing Meta Object

Facility (MOF) to contain model-creep (when the model expands beyond its

original purpose). MOF, depicted in Figure 6-10, is the overarching framework

for UML, MDA, and CWM. These modeling advances are significantly beyond

the scope of typical data warehouse and business intelligence applications.

One of the most important aspects of the CWM effort is that it provides a

baseline understanding of how to approach the metadata specification prob-

lem. Whether a software architect is working with data warehouse issues,

packages application issues, or information interoperability issues, the CWM

can offer an approach for modeling and specifying the underlying business

models and metadata infrastructure.

For example, the CWM scope also includes the definition of specialized types

of metadata structures. OLAP (Online Analytic Processing) is a special kind

of relational model that uses model dimensions as the central organizing

feature of the model. OLAP models are extremely useful for analytic environ-

ments where pivoting the data is important. Typical software solutions for

financial reporting, budgeting, forecasting, marketing, and general business

reporting often use the OLAP model because it’s faster and easier to work

with than more traditional relational structures. CWM’s standard definition of

the OLAP model is as follows in Figure 6-11.

11_396797-ch06.indd 13811_396797-ch06.indd 138 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

139 Chapter 6: The Problem with Metadata

Figure 6-10:
OMG

Metamodel
hierarchy.

M3 Layer
Meta-Metamodel

Meta Object
Facility (MOF)

Class Attribute
name name

type

M2 Layer
Metamodel

UML
Metamodel

Class Attribute
name
package
abstract

name
type

indexed

Java
Metamodel

Java
Classes

M1 Layer
model

UML Class
Diagrams

Symptom
Diseasename

description name
cure

Java
Instances

M0 Layer
Information

UML
Objects

rash: Symptom measles: Disease
name = “Rash”
description =
“After approx.
3 days, a red
blotchy rash
starts on the
face.”

name = “Measles”
cure = Antipyretics

evidence-for

evidence-for

has-Instance

CWM efforts since 2005 have been focused on revamping the Common

Warehouse Model. As successful as CWM has been, it hasn’t served the original

intent to create a high degree of interoperability between data warehouse and

business intelligence vendor implementations. Nor has CWM been able to sub-

stantially contribute to the general purpose data interoperability challenge at

the enterprise level. Therefore, newer efforts are underway to recast the CWM

in an updated framework called the Information Management Model (IMM).

OMG’s IMM initiative is an attempt to expand the relevance of the CWM meta-

model into other information management domains. Particular focus from

the OMG is being placed on making IMM suitable for XML-centric modeling,

thereby providing an XML and data warehousing model profile inside the

popular MOF/UML framework.

OMG Collaboration with W3C
One of the most unique things about the Object Management Group is that

it sponsors more specifications work for metadata’s own sake than any

other international standards group. Both ISO (International Standards

11_396797-ch06.indd 13911_396797-ch06.indd 139 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

140 Part II: Catch the Wave of Smart Data Today

Organization) and W3C (World Wide Web Consortium) have just as many

standards that are metadata-centric, but only the OMG has really proactively

taken the leadership role in saying that it views itself as the keeper of meta-

data-centric architecture specifications. Whether that’s right or wrong,

the OMG is certainly the principal driver of the model-driven development

social meme.

Figure 6-11:
A sample

OLAP object
model from

the CWM
specification.

Schema
/ cube : Cube

/ dimension : Dimension

/ deploymentGroup : DeploymentGr...

Cube
is Virtual : Boolean

/ cubeDimensionAssiociation :
 CubeDimensionAssoci...
/ cubeRegion : CubeRegion
/ schema : Schema

CubeDimensionAssociation
/ dimension : Dimension

/ cube : Cube

/ calcHierachy : Hierarchy

Hierarchy
/ dimension : Dimension

/ cubeDimensionAssociation :
 CubeDimensionAssoc...
/ defaultedDimension : Dimension

MemberSelectionGroup
/ memberSelection : MemberSelect...

/ cubeRegion : CubeRegion

CubeDeployment
/ cubeRegion : CubeRegion

/ deploymentGroup : DeploymentG...

/ contentMap : ContentMap

Dimension
isTime : Boolean

isMeasure : Boolean

/ hierachy : Hierarchy

/ memberSelection : MemberSelection

/ cubeDimensionAssociation :
 CubeDimensionAssoc...

/ displayDefault : Hierarchy

/ schema : Schema

CubeRegion
isReadOnly : Boolean

isFullyRealized : Boolean

/ memberSelectionGroup :
 MemberSelection...
/ cube : Cube
/ cubeDeployment : CubeDeployment

MemberSelection
/ dimension : Dimension

/ memberSelectionGroup :
 MemberSelectionGroup

1

1

1

1

1 n n

n

n

1..n

0..1 0..1

0..1

n

11

n
(ordered)

calcHierarchy
displayDefault

n

n

n

n

n

1

1

11_396797-ch06.indd 14011_396797-ch06.indd 140 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

141 Chapter 6: The Problem with Metadata

 A longtime criticism of the OMG metadata standards has been that they lack

any sort of formal mathematical grounding. Unlike relational database theory

(which is grounded in a formal algebra, the central feature of OMG’s work),

the MOF framework is simply a normative heuristic for defining metadata like

classes, attributes, and relations. This foundational oversight means that in

the OMG family of metadata specifications, there’s no consistent way of per-

forming lossless model transformations (where the original meaning of the

model isn’t lost) or guaranteeing correctness in the semantics of a metadata

model.

To rectify this lack of an underlying mathematic formalism, the OMG maps

its core metamodels to the W3C Semantic Web standards. For example, the

OMG’s Ontology Definition Metamodel (ODM) recommendation maps the

MOF framework to the W3C RDF and OWL specifications, among others. The

purpose of ODM is to supply a repeatable foundation for transforming MOF

models and also to enable RDF and OWL to be modeled by the OMG visual

notations such as UML.

This intersection of OMG and W3C work is one of the most promising areas

for metadata standardization in the software industry. W3C brings strong

foundations and a deep understanding for how Web infrastructure standards

work in practices, and OMG brings focus to developer practices and a deep

understanding for how layered business software applications are built.

You can’t understand the problem and the potential of metadata without

understanding just how much the OMG and W3C standards influence and

impact every software application written anywhere in the world.

W3C metadata: Web infrastructure
metadata
Throughout this chapter, I explain how various metadata formats affect every

part of our computing environments. No standards body impacts all these

software architectures more than the W3C. Responsible for ubiquitous meta-

data and infrastructure standards, the W3C’s influence can be measured in

societal terms and not just technical ones. Think of just how much the Web

impacts elections, freedom of information, disaster awareness, and interna-

tional aid programs.

 Metadata, data, and protocol standards such as HTTP, HTML, XHTML, XML,

SOAP, WSDL, and PNG define the ways in which people communicate over the

Internet. Each of these standards is quite large, complex, and verbose. They

contain a special syntax, a formal structure, and well-defined semantics that

11_396797-ch06.indd 14111_396797-ch06.indd 141 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

142 Part II: Catch the Wave of Smart Data Today

specify how interpreters should handle them in practice. All these features are

provided for with metadata. Without the metadata defined for each of those

standards, developers would be writing assembly code while trying to adhere

to very precise instructions written in a standards document.

ISO metadata: 10303, 11179,
Dublin Core, and others
The International Standards Organization (ISO) is a very active publisher of

software specifications. In the software industry, they are more commonly

known for their quality assurance standards (ISO 9000 compliancy), but ISO

publishes standards for everything from paper sizes (A4), water-resistant

watches, book numbering (ISBN), video standards (MPEG), and even the

Portable Document Format (PDF).

ISO 10303, the STEP (Standard for the Exchange of Product Data) standard, is

a vast framework for modeling and exchanging data about all sorts of things —

anything that can be considered a product in any way. The STEP framework

includes integrated resources that are made up of application modules and

integrated constructs. STEP itself consists of many parts — application pro-

tocols, abstract test suites, and implementation modules.

STEP is intended to apply to the following domain areas: mechanical (2D

drawings, 3D drawings, automotive, furniture, and so on); buildings; electri-

cal (plants and so on); ships; technical data; fluid dynamics; and the list goes

on. For example, the STEP formats would govern the structure of detailed

data about automotive parts that is communicated between a supplier and a

manufacturer.

More than 20 years of effort have been poured into the STEP family of stan-

dards. Vocabularies, metadata, and specialized modeling languages (such as

EXPRESS) have been developed for nearly any kind of materials management

problem domain. STEP contains metadata about data modeling, metadata

about domain vocabulary, metadata about syntax, and structure of physical

world items.

Recent STEP activities are moving toward more XML- and even Semantic

Web–compliant notations. Support for RDF/OWL is already included in Part

3 of ISO 15926, which offers a Semantic Web compliant profile for ISO 10303

geometries. Likewise, the 15926 standard is defining an implementation

method based on the Semantic Web architecture.

11_396797-ch06.indd 14211_396797-ch06.indd 142 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

143 Chapter 6: The Problem with Metadata

ISO 11179, the ISO standard for metadata registries, has attempted to define

the standard for capturing business metadata in a metadata registry. The ISO

11179 specification is comprised of six parts:

 ✓ Part 1: Framework

 ✓ Part 2: Classification

 ✓ Part 3: Registry Metamodel and Basic Attributes

 ✓ Part 4: Formulation of Data Definitions

 ✓ Part 5: Naming and Identification Principles

 ✓ Part 6: Registration

Although ISO 11179 isn’t considered a successful standard — very few organi-

zations have ever made an attempt to become compliant — it’s an important

milestone in the area of metadata management because it was one of the first

attempts to systematically decompose the problem and offer an industrial

standard for the metadata repository itself.

Like many other metadata specifications that have followed, the ISO 11179

structure is an object-oriented type structure. The example in Figure 6-12

shows how a data element name is related to its object term and property

term, thereby allowing for a systematic way of building and relating objects

and properties.

Figure 6-12:
Core ISO

11179
metadata

frame-
work data

element
construction.

Example Data Element Names
Document Abstract Text
Enterprise Name
Product Price Amount
Product Scheduled Delivery Date
Engineering Design Process Cost Amount

Object List
Document
Enterprise
Place
Program
Product
Human
Asset
Lay/Rule
Environment

Amount
Angle
Area
Code
Coordinate
Date
Dimension
Identifier
Mass
Name
Quantity
Rate
Temperature
Text
Time
Volume
Weight

Project List

0..n qualifiers +
1 or more required
Object Class

0..n qualifiers +
1 required property

Data Element NameData Element NameData Element Name

Object TermObject Term Property TermProperty TermObject Term Property Term

11_396797-ch06.indd 14311_396797-ch06.indd 143 2/13/09 8:20:35 PM2/13/09 8:20:35 PM

144 Part II: Catch the Wave of Smart Data Today

A much more successful ISO standard is ISO 15836, the Dublin Core Metadata

Element Set. Created and maintained by a cross-disciplinary collection of

librarians, computer scientists, and museum cataloging specialists, the

Dublin Core consists of 15 metadata elements used for annotating items of

any type. They are

Title

Creator

Subject

Description

Publisher

Contributor

Date

Type

Format

Identifier

Source

Language

Relation

Coverage

Rights

Libraries and museums from around the world are using this set of metadata

from the Dublin Core initiatives to encode information about their assets in a

normative way that can be easily exchanged.

As I explain in Chapter 4, the Dublin Core technical encoding is expressed

in RDF and can be used to annotate Web content. The following RDF snippet

uses the Dublin Core metadata:

<?xml version=”1.0”?>
<rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:dc=”http://purl.org/dc/elements/1.1/”>

 <rdf:Description rdf:about=”http://me.jtpollock.us/”>
 <dc:title>Jeff’s Homepage!</dc:title>
 </rdf:Description>

 <rdf:Description rdf:about=”http://me.jtpollock.us/”>
 <dc:creator rdf:resource=”http://me.jtpollock.us/foaf.rdf#me”/>
 </rdf:Description>

</rdf:RDF>

The second namespace definition xmlns:dc refers to the Dublin Core meta-

data models. Later in the snippet, I use the dc:creator identifier to denote

that the Web page was created by a named resource. (In this case, it points

to Jeff Pollock’s FOAF description.)

11_396797-ch06.indd 14411_396797-ch06.indd 144 2/13/09 8:20:36 PM2/13/09 8:20:36 PM

145 Chapter 6: The Problem with Metadata

 The ISO standards are rich with data-centric models that define and describe

vocabularies for all sorts of industries, metamodels about the encoding of

data itself, programming languages, their syntax, and their structures. Just like

we saw with W3C, OMG, and other technical metadata, lots of potential for

overlap and redundant metadata definitions exist.

OASIS metadata: SAML, UDDI, and so on
No discussion of metadata standards would be complete without examin-

ing the work coming from the OASIS (Organization for the Advancement of

Structured Information Standards). Originally conceived from within the SGML

community, OASIS has matured into a strong international body for managing

standards such as UDDI, SAML, UBL, XACML, and CAP. Oftentimes, as with

ebXML and Open Doc standards, the OASIS community works closely with the

ISO community in order to further validate a given standards framework.

Although OASIS is similar to W3C and OMG in many ways, the OASIS commu-

nity tends to focus more on application standards and less on infrastructure

and protocol standards. Whereas W3C is clearly a Web infrastructure body

and OMG is a programming language body, the OASIS community focuses on

areas such as word-processing document formats, application security, data

center standards, and registry applications.

Application standards are very metadata-intensive. UDDI (Universal

Description Discovery and Integration) is a registry application standard

deployed along with most service-oriented architecture (SOA)–based

infrastructure. The UDDI model consists of tNodes, which are essentially a

taxonomy describing what services do, sort of like the Yellow Pages phone

book categories. Likewise, the Security Access Markup Language (SAML) is a

messaging and application specification for exchanging security details about

policies. In Figure 6-13, you can see how the structure of a security assertion

type is modeled as a set of XML attributes. These structural keywords —

such as IssueInstant and saml:Conditions — have very precise seman-

tics that are understood by the software interpreting SAML metadata from a

SAML-compliant issuer.

 Although the adoption of OASIS standards isn’t as widespread as ISO, W3C,

or OMG, many OASIS standards have existing or planned overlap with the

Semantic Web family of standards. Likewise, OASIS standards such as UBL,

UDDI, XACML, and SAML are frequently used in close deployment with W3C

Web standards and OMG programming standards. As with all the other meta-

data types described in this chapter, the real problem with metadata is in the

duplication and re-definition of basic principles of classification, relationships,

and other metamodel features.

11_396797-ch06.indd 14511_396797-ch06.indd 145 2/13/09 8:20:36 PM2/13/09 8:20:36 PM

146 Part II: Catch the Wave of Smart Data Today

Figure 6-13:
A sample

SAML
structure

(Asser-
tionType).

+

+

+

saml:AssertionType

attributes
Version

ID

IssueInstant

saml:Issuer

saml:Statement

ds:AuthnStatement

saml:AuthzDecisionStatem...

saml:AttributeStatement

+

saml:Subject +

ds:Signature +

saml:Conditions +

saml:Advice +

Assertion

-

-

-

-

0...∞

Industry vocabularies
The problem with metadata is that there is so much of it, yet so little reus-

ability. Nowhere is this truer than in the industries where metadata is used

to specify business vocabularies. All major marketplaces exchange data.

Marketplaces such as automotive, aerospace, pharmaceuticals, defense,

travel and tourism, consumer packaged goods, financial services, and insur-

ance each specify their own unique data vocabularies for exchanging data

among trading partners.

Example business vocabularies for a given domain may include hundreds of

business entities, nouns, XML documents, UML diagrams, and other modeling

and message metadata. Hundreds of domain-specific standards exist; some of

the more popular ones include IATA (travel industry), NGOSS (telco), ACORD

(insurance), HL7 (healthcare), and SWIFT (finance).

Business vocabularies may consist of several parts, multiple formats for con-

sumption, and reams of documentation to explain how to use the standard.

How many different technical standard formats do you imagine there are for

the business entity called, “Address?” Too many, no doubt.

11_396797-ch06.indd 14611_396797-ch06.indd 146 2/13/09 8:20:36 PM2/13/09 8:20:36 PM

147 Chapter 6: The Problem with Metadata

Business vocabularies are almost always developed in isolation, and those

vocabularies that try to serve cross-purposes for several domains are often

not considered useful. Universal Business Vocabulary (UBL) is one such

vocabulary (in an XML format) maintained by OASIS; unfortunately, it is not

widely adopted. ebXML (Electronic Business for XML) is another such cross-

domain vocabulary that has not gained wide acceptance.

Far and away, the most successful business vocabularies are in the EDI

(Electronic Data Interchange) data formats. With two major EDI formats

(EDIFACT in Europe and X12 in the United States) the vast majority of busi-

ness-to-business data interchange uses these formats. Trillions of dollars of

banking transactions, retail orders, shipping/receiving transactions, and all

sorts of other electronic processing happen in EDI data formats every day.

 Business data vocabularies aren’t an academic playground; they define how

business gets done.

Semantics and Metadata
Semantics is truly a loaded word. Broadly, the semantics of data is just the

definition of what that data means. But semantics in software is tied to all

sorts of different code interpreters, compilers, database engines and other

software algorithms. The semantics of Java is one thing, and the semantics of

XML is another. Each data format or programming language has to be inter-

preted or compiled at some point — at that exact moment, the semantics

of a given set of data or program instructions are perfectly clear, and if they

aren’t, the interpreter throws an exception.

The following sections give you an idea of the formal aspects of the Semantic

Web’s data and metadata formats. This should stand in stark contrast to the

informal conventional metadata formats described earlier in this chapter.

Semantic Web model theory in a minute
Semantic Web is grounded in set theory. It is based in a model-theoretic

viewpoint that says the behavior of data within sets should conform to a

defined collection of theorems. The collection of theorems that a data lan-

guage conforms to is called its model-theoretic semantics. Having a model-

theoretic semantic context is important because it enables the software to

make computational guarantees about finding the data you are querying for

and allows the data container (a database or knowledgebase) to automate

some of the hard work for us.

11_396797-ch06.indd 14711_396797-ch06.indd 147 2/13/09 8:20:36 PM2/13/09 8:20:36 PM

148 Part II: Catch the Wave of Smart Data Today

The Semantic Web has two data languages: RDF and OWL. Each language has

its own model theory, and they aren’t linked except for the fact that all OWL

is also valid RDF.

Entailment, expressiveness, and closure
Semantic Web model theory differs from relational database model theory

because it operates with an open-world assumption. In a database, if the data

you’re looking for doesn’t exist inside a particular schema, the closed-world

database assumes that data doesn’t exist at all. With a Semantic Web knowl-

edgebase, the knowledgebase knows the differences of answers that can be

proven to be correct, those that can be proven to be incorrect, and those

that are ambiguous. The Semantic Web open-world approach assumes that

all answers are possible and then tries to find data that supports or refutes

the query. More detail and examples about the open-world assumption are

supplied in Chapter 8.

The expressivity of RDF and OWL are described in their model theory. Each

language includes a domain, range, class extensions, and property exten-

sions that define how the data model may be constructed and precisely how

the model works in various mathematical proofs. RDF and RDFS languages

specify several lemmas (like a logical proposition or mathematical theorem)

used to prove the validity of a given model’s interpretation, including the fol-

lowing examples:

 ✓ Subgraph Lemma: A graph entails all its subgraphs.

 ✓ Instance Lemma: A graph is entailed by all its instances.

 ✓ Conjunction Lemma: If entities are grounded, the vocabulary satisfies

the entities if and only if it satisfies every RDF triple in all the entities.

 ✓ Plain Subgraph Lemma: If both of two entities are grounded, the first

entity entails the second if and only if the second is a subgraph of the first.

 ✓ Herbrand Lemma: Any RDF graph has a satisfying interpretation.

 ✓ Minimality Lemma: If the vocabulary is a minimal satisfying interpreta-

tion of the entities, the vocabulary fails to satisfy every triple that has no

instance in the set of entities.

 ✓ Strong Herbrand Lemma: Any RDF graph entities have a satisfying inter-

pretation that does not satisfy any graph that is separable from those

entities.

 ✓ Merging Lemma: The merge of a set of RDF is entailed by that same set

and every member of that set.

 ✓ Interpolation Lemma: A set entails a graph if a subgraph of the set is an

instance of the graph.

11_396797-ch06.indd 14811_396797-ch06.indd 148 2/13/09 8:20:36 PM2/13/09 8:20:36 PM

149 Chapter 6: The Problem with Metadata

You can find the complete list of RDF model-theoretic semantics in the W3C

RDF Semantics document, which is available at www.w3.org/TR/rdf-mt/.

 OWL’s model-theoretic context is quite a bit more complex to describe with-

out a formal background in logic, but you should know that it’s based upon a

formal family of logics called description logics. This formal grounding captures

and defines all the ways that the knowledgebase should respond to different

kinds of data, models, and queries. For a complete look at the OWL semantics,

check out the W3C document called Direct Model-Theoretic Semantics for

OWL, which is available at www.w3.org/TR/owl-semantics/direct.html.

Decidability
One of OWL’s most important characteristics is that even as an advanced

knowledge representation language it remains decidable. Decidability is the

ability for an algorithm to say for certain whether some bit of data belongs to

a set. Relational databases are decidable — if you issue a SQL query to find

all customers named “SMITH,” you can be certain that the query has matched

every record to your query. Many advanced knowledge systems introduce

rich modeling constructs that have the unfortunate consequence of making

those languages undecideable: This is sometimes generalized by saying that

a language is probabilistic.

The challenge with using probabilistic data representations in practice is that

you can’t ever be 100-percent certain that your algorithms have found every

match you need. For example, when you query using search algorithms such as

Google, you see only a very small set of all possible matches to your queries —

you may even see false matches as well. This probabilistic approach is fine, even

desirable, for many human-involved search use cases, but it can’t suffice for real-

world software applications that need to have absolute certainty about the data

they are working with (such as financial systems, healthcare record manage-

ment, military launch control systems, and so on). That is why decidability mat-

ters and why OWL, because it has that feature, is quite a powerful data language.

Seeing the Semantic Web as a
Superset for Metadata

The problem with metadata is truly that there is so much of it, yet so little

of it actually works together. How can it be fixed? Yes, you guessed it: the

Semantic Web!

There is no magic with the Semantic Web; after all, it’s simply a data model-

ing specification. But for all the reasons you’ve read about so far — graph

modeling with first-class relationship properties, open-world assumption,

11_396797-ch06.indd 14911_396797-ch06.indd 149 2/13/09 8:20:36 PM2/13/09 8:20:36 PM

150 Part II: Catch the Wave of Smart Data Today

high expressivity, inference logic, and decidability characteristics — the

Semantic Web data models are fully capable of becoming a superset language

for most other metadata and modeling formats. Having a superset metadata

language can go a long way toward fixing what is perhaps the most broken

part of software development — metadata.

Having the Semantic Web function as an umbrella language for metadata, as

depicted in Figure 6-14, isn’t as far-fetched as it may initially seem. Efforts

underway since the early 2000s have aimed at focused areas to map existing

metadata structures into the Semantic Web’s RDF and OWL formats. Numerous

standards are migrating toward RDF and OWL support. There are tools and

utilities to generate object-oriented metadata, even program code such as Java,

from the Semantic Web’s RDF and OWL formats. There are numerous utilities

to generate RDF and OWL from relational databases, and vice versa. Semantic

Web vocabularies are already commonplace in some industries such as life

sciences, healthcare, and defense. So, while many people are still debating

whether it’s even possible, others are going out and doing it.

The Semantic Web as a superset metadata format for all data modeling may

just be on the horizon for us all. If that vision becomes reality, it won’t single-

handedly rectify the metadata travesty — after all, the Semantic Web still

isn’t magic — but it will most certainly put us in a stronger position to get all

that metadata working for us rather than against us!

Figure 6-14:
The

Semantic
Web as an

umbrella
format for
metadata.

Standards Metadata

Web Metadata

Vocabularies: OAG,
IATA, MILSPEC, etc.

Mainframe
Metadata

Object-Oriented
Metadata

Framework
Metadata: EMF, ADF,

etc.

Database
Metadata

OMG:
MDA, MOF, UML,

etc.
ISO: 11179, 10303,

ebXML, etc.

OASIS:
UDDI, SAML,

UBL, etc.

W3C: XML, WSDL,
BPEL, etc.

Semantic Web MetadataSemantic Web MetadataSemantic Web Metadata

11_396797-ch06.indd 15011_396797-ch06.indd 150 2/13/09 8:20:36 PM2/13/09 8:20:36 PM

Part III
Building the

Semantic Web

12_396797-pp03.indd 15112_396797-pp03.indd 151 2/13/09 7:16:29 PM2/13/09 7:16:29 PM

In this part . . .

On the Web, you can post documents about yourself,

go shopping, and chat with your friends. But with

the Semantic Web, you can create data about your inter-

ests, create a remix of data created by others, and link

together unique ideas so that they’re preserved for future

generations of creative people.

In this part of the book, you find out how you can create

your own corner of the Semantic Web, publish a profile

about yourself, or just create a small ontology that

describes your interests. Once you jump in, you’ll see

that it’s not that hard.

Go ahead, admit it: This sounds like fun!

12_396797-pp03.indd 15212_396797-pp03.indd 152 2/13/09 7:16:29 PM2/13/09 7:16:29 PM

Chapter 7

Using the Resource Description
Framework (RDF)

In This Chapter
▶ Explaining RDF for developers

▶ Working with RDF

▶ Getting to know RDF Schema

▶ Developing RDF models

RDF is an acronym that stands for Resource Description Framework.

There, that explains it, right? Well, perhaps not entirely . . . RDF is a

standard data and modeling specification used to encode metadata and digi-

tal information. The Semantic Web vision revolves around and is predomi-

nantly based on the fundamental power of the RDF language. Currently, RDF

is an approved recommendation for the Semantic Web at the World Wide

Web Consortium (W3C).

In this chapter, I introduce you to the main elements of the Resource

Description Framework. You discover how to build simple data graphs with

RDF, the core structure of triples, the difference between resources and liter-

als, how to use RDF Schema, and a few of the different encoding formats for

RDF. Although you won’t be an expert by the end of this chapter, you should

be literate with the language and have a strong foundation for moving on to

OWL in Chapter 8.

Breaking It Down to the
R, to the D, to the F

Now that I have your head bobbing to RDF, I’m going to dive in a little further

and break down an RDF statement. As I said, RDF stands for resource descrip-

tion framework. A resource in the RDF language can be anything you want it

to be, as long as it can be uniquely identified by some kind of pointer, object

13_396797-ch07.indd 15313_396797-ch07.indd 153 2/13/09 7:17:12 PM2/13/09 7:17:12 PM

154 Part III: Building the Semantic Web

reference, or even just a string literal value. Descriptions in RDF are encoded

through the kinds of relationships assigned between sets of resources —

these relationships take the form of a graph data model. Finally, the frame-
work in RDF is a combination of the Web-based protocols (URI, HTTP, XML,

and so on) that it’s built upon and also the formal model theory (semantics)

that defines the allowable relationships among data items in RDF.

 Very simply stated, the concept behind RDF is that you can use it to describe

a “thing” by making assertions about its properties. The “thing” is the

resource you want to describe. Resources can be anything: books, people,

places, customers, products, organizations, and so on. The set of properties

that this particular “thing” has makes up the description of that resource —

its attributes are its definition. Assertions that you make about attributes are

axiomatic, you can treat those properties as facts about some “things.” Thus,

you describe resources in a standard framework, which gives us RDF.

Triplify me!
RDF has a model framework based on the idea of a triple. A complete RDF

triple, or statement, must have the following three parts:

 ✓ The thing the statement describes

 ✓ The properties of the thing the statement describes

 ✓ The values of those properties the statement describes

Here’s a look at a simple assertion you or I would write in plain English:

The Semantic Web For Dummies book is authored by Jeff
Pollock.

Here’s how you would identify the essential parts of that statement:

 ✓ The book Semantic Web For Dummies is the thing I’m describing.

 ✓ The book Semantic Web For Dummies has a property, author.

 ✓ The author property has a value, Jeff Pollock.

Additionally, I can derive other statements. Primarily,

 ✓ The thing being described is a Book.

 ✓ The Book has a property called title, with a value Semantic Web For
Dummies.

13_396797-ch07.indd 15413_396797-ch07.indd 154 2/13/09 7:17:12 PM2/13/09 7:17:12 PM

155 Chapter 7: Using the Resource Description Framework (RDF)

 Does the structure of an RDF statement look familiar? It should. Take a

moment to recall learning sentence structure in grammar school and apply

what you learned to the sentence example. (For the purposes of this exercise,

you’re interested in the identification of the subjects, predicates, and objects

of this sentence.)

What you might remember is the following:

 ✓ authored is the predicate.

 ✓ The book, Semantic Web For Dummies, is the subject.

 ✓ Jeff Pollock is the object. (The object helps to complete the

predicate’s meaning.)

The basic structure for sentences reacquaints us to the term triple as a gram-

mar school concept. When formally speaking about the data specification,

the term triple refers to the subject, predicate, and object (in that order) of

an RDF statement. Because every RDF statement must have exactly these

To describe or define?
Often, the terms describe and define are used
interchangeably. In fact, to most, the difference
between describing something and defining
something may seem minute, but in the area of
data modeling, the two terms have very differ-
ent implications. To a wordsmith, these differ-
ences may seem obvious, but I often hear the
phrase “define a resource” when talking about
the Semantic Web. Therefore, it’s worth illus-
trating the distinction:

From Webster’s:

 ✓ Describe means to give an account in
words of something

 ✓ Define means to state the nature or mean-
ing of something

When creating RDF statements about some data
resource, you’re simply giving an account of the
characteristics or properties about it (typically
through some observation or modeling activity).

You aren’t necessarily defining everything that
thing is. In fact, what I may want to call that thing
or how I may want to understand its meaning is
dependent on situational context.

Consider a common scenario on Law and Order.
At the beginning of nearly every show, some
sort of crime has been committed, and either
the victim or a witness is asked the question,
“Can you describe the assailant?” Notice that
the questioned individual is not asked to define
the perpetrator, but is simply asked to provide
facts from his or her observation. In fact, often,
the witness or victim tries to define the perpe-
trator anyway: “He was a loser, and a no-good
punk,” which of course is a definition based on
that person’s situation.

As opposed to the relatively messy real world, in
the world of data modeling, you can choose your
own frameworks and theoretical boundaries for
defining situations, context, and semantics.

13_396797-ch07.indd 15513_396797-ch07.indd 155 2/13/09 7:17:12 PM2/13/09 7:17:12 PM

156 Part III: Building the Semantic Web

three items, it’s also referred to as an RDF triple or just plain triple. Other

terms sometimes used to describe the concept of a triple are facts, assertions,
and of course statements.

RDF is a Web-based framework, and as such, it uses Universal Resource

Identifiers (URI) as a mechanism for uniquely identifying the subject, predi-

cate, and object of a statement. The subject, predicate, and object are each

first-class citizens of the data model. As I discuss in previous chapters, these

two unique features of RDF (Web-based and relations as first-class objects)

are quite revolutionary for data languages.

If I rewrite the previously stated example as such:

Semantic Web For Dummies has an author, Jeff Pollock

I can now describe each part of the RDF triple completely with a URI:

 ✓ Subject: http://www.dummies.com/books#Book-semanticweb_
for_dummies

 ✓ Predicate: http://www.dummies.com/books#author

 ✓ Object: Jeff Pollock

Note that my RDF subject is a resource, whereas my RDF object is a string

literal named, Jeff Pollock.

Universal Resource Identifier (URI)
URIs are basically used to provide unique names in RDF. They look a lot like

Universal Resource Locators (URLs), but have a different purpose. URLs are

primarily locations (for example, Web pages) that you can address and go to

on the Web. URIs may be but don’t have to be addressable in this sense.

A URI’s primary function is to provide a unique name. So, a URI could be

http://www.dummies.com or http://www.foo.com/ns/2008/v1 or any-

thing that helps identify the domain context you are working in. A URI is also

called a namespace when it is used as a qualifier for a specific set of names;

however, not all URIs are namespaces. Because RDF is often used to describe

federated data, the URIs are often addressable, but they don’t have to be.

Here are examples of commonly used vocabulary namespaces in RDF:

 ✓ RDF: http://www.w3.org/1999/02/22-rdf-syntax-ns#

 ✓ Dublin Core: http://purl.org/dc/elements/1.1/

 ✓ SKOS: http://www.w3.org/2004/02/skos/core#

 ✓ FOAF: http://xmlns.com/foaf/0.1/

13_396797-ch07.indd 15613_396797-ch07.indd 156 2/13/09 7:17:12 PM2/13/09 7:17:12 PM

157 Chapter 7: Using the Resource Description Framework (RDF)

Viewing RDF Data as a Graph
A collection of RDF triples is commonly referred to as a RDF graph. RDF

graphs are mathematically grounded in formal set theory. Because a set can

contain from zero to many things (according to set theory), even one RDF

triple can be considered a graph, although quite a small one! A simple RDF

graph based on our plain-English example looks like Figure 7-1.

Figure 7-1:
A simple

RDF graph
with Jeff

Pollock as a
literal value.

http://www.dummies.com/books#Book-
semanticweb_for_dummies

“Jeff Pollock”

http://www.dummies.com/books#author

Resources versus literals
The key difference between resources and lit-
erals is that literal-valued predicates are con-
stants, whereas resource descriptions may
vary over time. You can’t do much with literals
programmatically, and they have no other attri-
butes that describe them. Meaning is only dis-
covered based on the observer’s context. For
example, the string pump could mean a water
pump to some people, but to others, it could
mean women’s footwear.

In my example, the book Semantic Web For
Dummies is authored by Jeff Pollock the
resource, not Jeff Pollock the author. Because
Jeff Pollock is a FOAF resource, you can now
discover other wonderful things about me. Jeff
Pollock, the resource, may also have facts that
point to other resources, such as the company
I work for.

Resource-valued predicates open the door to a
world of rich and expansive data models.

13_396797-ch07.indd 15713_396797-ch07.indd 157 2/13/09 7:17:12 PM2/13/09 7:17:12 PM

158 Part III: Building the Semantic Web

In Figure 7-1, I have defined my name, Jeff Pollock, as a string literal

value. But as it turns out, I happen to have a Friend of a Friend (FOAF) profile

that describes me; this can be used instead of the literal value of my name.

My FOAF profile contains all sorts of additional information about me, but my

name is described there too. Figure 7-2 shows the small RDF graph pointing

to my FOAF resource instead of a string value (the FOAF resource is identi-

fied by the namespace http://xmlns.com/foaf/0.1/person#name).

Figure 7-2:
A simple

RDF graph
with pointer

to Jeff
Pollock’s

FOAF
profile.

http://www.dummies.com/books#Book-
semanticweb_for_dummies

http://me.jtpollock.us/foaf.rdf#me

“Jeff Pollock”

http://www.dummies.com/books#author

http://xmlns.com/foaf/0.1/name

 There is a convention for reading RDF data graphs. RDF models show RDF triples

as nodes (the ovals and rectangles) and arcs (the arrows). The subject and

object are illustrated as nodes, and the predicates are illustrated as directed
arcs. So, each RDF triple is represented as a node-arc-node linking pattern.

Now add the title of the book to the model, as shown in Figure 7-3. Use Dublin

Core’s “title” predicate in the example.

13_396797-ch07.indd 15813_396797-ch07.indd 158 2/13/09 7:17:12 PM2/13/09 7:17:12 PM

159 Chapter 7: Using the Resource Description Framework (RDF)

 You may be asking yourself, “Why is one object a rectangle and the other

object an oval?” Here’s why: The author in this case is a resource. You can

understand this fact by observing that the object is referring to an URI. The

title of the book in this case is simply a string of characters, called a literal. We

refer to these objects as resource-valued predicates and literal-valued predi-

cates, respectively.

One of the main advantages of a graph data model when compared with hierar-

chical or relational data models is how flexible it is when working with rapidly

changing data facts. In Figure 7-4, I can add an additional fact to the graph.

Jeff Pollock has a nickname “JTP”

You can probably see now how to go about creating RDF statements and how

a statement may be related to one or more other statements. But, as easy

as it might be for us humans to understand this RDF graph, it may not be so

easy for a machine to understand it. The formal model theory behind RDF

ensures that a model you develop in RDF is understandable to me when I

compute it with my software. But how would you send your model to me? For

software applications to understand RDF, we must have a portable format for

exchanging it. The standard format designed for exchanging RDF is defined

using XML.

Figure 7-3:
An RDF

graph with
the book
title as a

string literal.

http://www.dummies.com/books#Book-
semanticweb_for_dummies

http://me.jtpollock.us/foaf.rdf#me
“Semantic Web
For Dummies”

“Jeff Pollock”

http://www.dummies.com/books#authorhttp://purl.org/dc/elements/1.1/title

http://xmlns.com/foaf/0.1/name

13_396797-ch07.indd 15913_396797-ch07.indd 159 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

160 Part III: Building the Semantic Web

Figure 7-4:
An RDF

graph after
adding a

FOAF nick-
name to the

model.

http://www.dummies.com/books#Book-
semanticweb_for_dummies

http://me.jtpollock.us/foaf.rdf#me“Semantic Web
For Dummies”

“JTP”

http://www.dummies.com/books#authorhttp://purl.org/dc/elements/1.1/title

“Jeff Pollock”

http://xmlns.com/foaf/0.1/nick

http://xmlns.com/foaf/0.1/name

Understanding That RDF Is XML
What do I mean when I say, “RDF is XML?” What I really mean is that RDF

provides an XML syntax for representing RDF graphs. Essentially, RDF is XML

(plus more). However, XML is not RDF.

Consider the plain-English example statement, Semantic Web For
Dummies has an author Jeff Pollock. The essential RDF for this state-

ment is

 ✓ Subject: http://www.dummies.com/books#Book-semanticweb_
for_dummies

 ✓ Predicate: http://www.dummies.com/books#author

 ✓ Object: http://me.jtpollock.us/foaf.rdf#me

But what does the actual code look like for that RDF triple? Now, the moment

you have been waiting for! The XML syntax for this statement is expressed

here:

13_396797-ch07.indd 16013_396797-ch07.indd 160 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

161 Chapter 7: Using the Resource Description Framework (RDF)

1. <?xml version=”1.0”?>
2. <rdf:RDF
 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
3. xmlns:book=”http://www.dummies.com/books#”
4. xmlns:foaf=”http://xmlns.com/foaf/0.1/“>
5. <rdf:Description rdf:about=
 ”http://www.dummies.com/books#Book-
 semanticweb_for_dummies”>
6. <book:author rdf:resource=
 ”http://me.jtpollock.us/foaf.rdf#me”/>
7. </rdf:Description>
8. </rdf:RDF>

As you can see, this looks a lot like valid XML syntax. It is. And because XML

was designed for machines first, humans second, so was RDF. Not as pretty

as a picture, but machines like it!

Line 1, “<?xml version=”1.0”?>”, is the XML declaration. It simply states

that this file is an XML document that’s using version 1.0 of XML.

Line 2 is the opening RDF tag. (The statement is closed on Line 8 with “</
rdf:RDF>”.) This tag indicates that all that follows is intended to con-

form with RDF syntax and semantics. Following this tag on the same line

is an XML namespace declaration. Namespace declarations are almost like

static variables in a programming logic. For example, the first declaration

states that any tag starting with rdf is referring to this namespace: www.
w3.org/1999/02/22-rdf-syntax-ns#. These syntax examples are the

essence of the RDF vocabulary.

Likewise, Line 3 says that any tag beginning with book is referring to this

namespace, http://www.dummies.com/books#. This namespace is refer-

ring to a vocabulary that’s been established by the authors of this RDF

model.

This at first appears to be quite a bit of overhead. Lines 1–3 are necessary

housekeeping statements that let software programs know what to expect

when they start to process the RDF. After you gain familiarity with common

vocabularies and those in your own domain, creating these lines becomes

second nature.

Moving on to Lines 5–7, this is where you get to the guts of it. These lines

represent the RDF statements in Figure 7-2. Line 5 asserts that you’re about

to describe a resource with <rdf:Description... and that the unique

identifier (the URI), http://www.dummies.com/books#Book-semantic
web_for_dummies, is how you’re going to refer to it. Quite literally, Line 5

13_396797-ch07.indd 16113_396797-ch07.indd 161 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

162 Part III: Building the Semantic Web

states that the following assertion is a description and that it’s describing

(rdf:about) this URI. Line 6 makes the assertion that this resource has a

property, book:author, with a value of http://me.jtpollock.us/foaf.
rdf#me. Again, literally, it’s saying that the resource’s author is another

resource (rdf:resource). Line 7 closes the description of this resource. For

clarity, this example code excludes the portion of the graph that assigns the

literal value “Jeff Pollock” as a foaf:name for http://me.jtpollock.us/
foaf.rdf#me.

 It is standard to save the file with the RDF/XML content with an .rdf or .xml

extension. This method allows everyone to quickly identify the file’s contents,

and many tools natively understand how to process these file types.

Now add another property to the resource: the fact that the resource has a

title. The following RDF represents the RDF graph in Figure 7-3:

1. <?xml version=”1.0”?>
2. <rdf:RDF xmlns:rdf=
 ”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
3. xmlns:book=”http://www.dummies.com/books#”
4. xmlns:dc=”http://purl.org/dc/elements/1.1/”
5. xmlns:foaf=”http://xmlns.com/foaf/0.1/”>
6. <rdf:Description rdf:about=
 ”http://www.dummies.com/books#Book-semanticweb_for_dummies”>
7. <book:author rdf:resource=
 ”http://me.jtpollock.us/foaf.rdf#me”/>
8. <dc:title>The Semantic Web For Dummies</dc:title>
9. </rdf:Description>
10. </rdf:RDF>

Line 8 represents the fact that the resource now has a predicate called

dc:title. This is a literal-valued predicate, and its syntax is different from

the book:author predicate. In the case of literal-valued resources, the value

is bookended by an open and end tag. It’s noteworthy that the preceding RDF

is actually an abbreviated version of the RDF graph in Figure 7-3. The logi-

cally equivalent but more verbose RDF for Figure 7-3 would look like the fol-

lowing (my remaining examples use the abbreviated style):

1. <?xml version=”1.0”?>
2. <rdf:RDF xmlns:rdf=
 ”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
3. xmlns:book=”http://www.dummies.com/books#”
4. xmlns:dc=”http://purl.org/dc/elements/1.1/”
5. xmlns:foaf=”http://xmlns.com/foaf/0.1/”>
6. <rdf:Description rdf:about=
 ”http://www.dummies.com/books#Book-semanticweb_for_dummies”>
7. <book:author rdf:resource=
 ”http://me.jtpollock.us/foaf.rdf#me”/>
8. </rdf:Description>

13_396797-ch07.indd 16213_396797-ch07.indd 162 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

163 Chapter 7: Using the Resource Description Framework (RDF)

9.
10. <rdf:Description rdf:about=
 ”http://www.dummies.com/books#Book-semanticweb_for_dummies”>
11. <dc:title>The Semantic Web For Dummies</dc:title>
12. </rdf:Description>
13. </rdf:RDF>

Again, you’ll note that for clarity I have excluded the portion of the graph

that assigns the literal value “Jeff Pollock” as a foaf:name for http://
me.jtpollock.us/foaf.rdf#me.

Using Typed Literals
Typed literals consist of a string and a datatype. To be perfectly clear, they

aren’t resources: They are indeed literal values. The datatype provides a

space of eligible values. For instance, if I wanted to assert that the book

Semantic Web For Dummies has 368 pages, I could do so by using the

lexical form (the lexical form is simply a string of Unicode characters) of the

literal, 368, and a datatype known as an integer. In RDF/XML, there are a set

of defined datatypes. The integer datatype declaration looks like this:

http://www.w3.org/2001/XMLSchema#int

There’s nothing wrong with using literal values in your RDF statements. In

some contexts, however, it may not be sufficient. Remember, as a human,

you look at this value and realize it’s an integer. You know it isn’t a date, or

a decimal value, and so on. You know this because you chose a great label,

pages. But a program doesn’t know what the label pages means, let alone

what the string of characters following it means. You must provide some con-

text if you intend to use the number in any way other than to just view it on

a Web page. For instance, you might want to use the value to perform a sum-

mation, to compute an average or for performing equality or inequality oper-

ations. If you encountered a scenario where you had to find all For Dummies

books that had fewer than 368 pages, you could do this quite easily, as long

as the object was a typed literal. This task would be a lot more difficult to do

if the object were just a string of characters with no context. The software

would provide unpredictable results (or sometimes fail) because it wouldn’t

know what to do with the simple untyped lexical form of 368.

Developers routinely build assumptions into the software that might make up

for the absence of typed literals. For example, a developer could write code

that would convert the value to an appropriate format for the operation. I

suggest you can avoid these unchecked developer assumptions by simply

using typed literals wherever possible. Using typed literals keeps your data

models well constrained and easy to use.

13_396797-ch07.indd 16313_396797-ch07.indd 163 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

164 Part III: Building the Semantic Web

Date is another common datatype. Software frequently tries to determine

whether a given date is before or after some other date. If the software

doesn’t realize that 21 April 2008 is a date type (as opposed to some

other literal), it might provide unpredictable results because the datatypes

and conversion formats are not strictly adhered to.

The following snippet of RDF illustrates the use of typed literals in RDF/XML:

<rdf:Description rdf:about=
 ”http://www.dummies.com/books#Book-semanticweb_for_dummies”>
<book:pages rdf:datatype=
 ”http://www.w3.org/2001/XMLSchema#int”>368
</book:pages>
</rdf:Description>

You can see where I’ve used http://www.w3.org/2001/XMLSchema#int

to denote that my page datatype is in fact a typed literal of type integer.

Identifying the Type of Resource
You may have noticed as you moved through the basic example (from the

first part of the chapter) that I stopped referring to the resource http://
www.dummies.com/books#Book-semanticweb_for_dummies as the

book, Semantic Web For Dummies. This was not an oversight; it was

intentional. Remember that earlier in this chapter, the plain-English state-

ment says that the thing, labeled Semantic Web For Dummies, is a book.

The Semantic Web For Dummies book is authored by Jeff
Pollock

You as a human can look at this statement and obviously see that the subject

being described is a book. But you’d find it a bit harder to look at the RDF

syntax in XML and come to the same conclusion.

Even if I had left out the word book from the plain-English statement, you

could still come to a reasonable conclusion that the subject is some “reading

material” (most generically), and with a little bit of context, you could reason-

ably conclude that it’s a book. The context could vary, but if you’re reading

this book, the correct conclusion seems obvious. Throw in the predicate

called author, and the case is even stronger.

You may be thinking, “Well, the resource’s URI has the string ‘book’ in it, so

therefore it must be a book!” Unfortunately (or fortunately), the URI could

really be anything. The fact that you’ve seen something “meaningful” in the

URI is a benefit to you as a human reader as you inspect the RDF, but a soft-

ware program cannot and should not draw any computational conclusions

based on strings of characters within the URI.

13_396797-ch07.indd 16413_396797-ch07.indd 164 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

165 Chapter 7: Using the Resource Description Framework (RDF)

To solve this problem of classifying resources in a way that the software can

understand, the RDF vocabulary has a predefined predicate called type. The

predicate’s semantics imply that the value of this predicate is a resource and

represents a class of things. Furthermore, by assigning a “type” to the prop-

erty, it implies that the subject of that property is also an instance of that class.

Adding this new information, that Semantic Web For Dummies is a type of

book, to our RDF model, you now have the following:

1. <?xml version=”1.0”?>
2. <rdf:RDF xmlns:rdf=
 ”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
3. xmlns:book=”http://www.dummies.com/books#”
4. xmlns:dc=”http://purl.org/dc/elements/1.1/”
5. xmlns:foaf=”http://xmlns.com/foaf/0.1/” >

6. <rdf:Description rdf:about=
 ”http://www.dummies.com/books#Book-semanticweb_for_dummies”>
7. <rdf:type rdf:resource=http://www.dummies.com/books#Book/>
8. <book:author rdf:resource=
 ”http://me.jtpollock.us/foaf.rdf#me”/>
9. <dc:title>The Semantic Web For Dummies</dc:title>
10. </rdf:Description>

11. </rdf:RDF>

Reification
In RDF, reification allows the developer to
make a statement about another statement.
Reification can be a powerful way to use triples
into multiple contexts, but it can also destroy
the formal semantics of your model. Use reifi-
cation with extreme caution!

Say that I want to alter the first plain-English
statement from “Jeff Pollock is an author of the
book Semantic Web For Dummies” to instead
read that, “John Wiley & Sons says that Jeff
Pollock is an author of the book Semantic Web
For Dummies.”

Using reification, I can simply qualify the first
triple:

q:r1 subject book:sw_for_d ;
 predicate book:author ;

 object “Jeff Pollock” .

Then I can use that qualification in another
assertion:

web:JW&Sons m:says q:r1 .

If I had only stated the assertion that Jeff Pollock
is the author of Semantic Web For Dummies as
part of my reification, that statement would only
be provably true in the context of things that the
John Wiley & Sons part of the model is assert-
ing. It could still be true, but you don’t know for
sure except in John Wiley & Sons context.

As a general practice, I discourage the use of
RDF reification as the semantics of reification in
practice can be unclear and since reified state-
ments are rather cumbersome to query with the
SPARQL query language.

13_396797-ch07.indd 16513_396797-ch07.indd 165 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

166 Part III: Building the Semantic Web

Now you know for sure that the subject (book:Book-semanticweb_for_
dummies) belongs to a class of things called Book because the rdf:type is

http://www.dummies.com/books#Book.

Although it’s unnecessary to describe the Book class, it’s good practice for

readability and reuse to describe the class with at least a label. (Remember,

http://www.dummies.com/books#Book is just the URI.) Class structure

and other properties are defined with RDF Schema, which I delve into in the

next section.

Describing Stuff with RDF Schema
RDF classes are described with a separate modeling language called RDF

Schema (RDFS). RDFS provides a vocabulary to describe resources, proper-

ties (predicates), classes, and subclasses. RDFS can be written in serialized

XML just like regular RDF.

Add the Book class to the ongoing code sample:

1. <?xml version=”1.0”?>
2. <rdf:RDF xmlns:rdf=
 ”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
3. xmlns:book=”http://www.dummies.com/books#”
4. xmlns:dc=”http://purl.org/dc/elements/1.1/”
5. xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”
6. xmlns:foaf=”http://xmlns.com/foaf/0.1/”>

7. <rdf:Description rdf:about=
 ”http://www.dummies.com/books#Book-semanticweb_for_dummies”>
8. <rdf:type rdf:resource=http://www.dummies.com/books#Book/>
9. <book:author rdf:resource=
 ” http://me.jtpollock.us/foaf.rdf#me”/>
10. <dc:title>The Semantic Web For Dummies</dc:title>
11. </rdf:Description>
12.
13. <rdfs:Class rdf:about=”http://www.dummies.com/books#Book”>
14. <rdfs:label>Book</rdfs:label>
15. </rdfs:Class>

In Line 5, I’ve added a new XML namespace declaration to include the RDFS

vocabulary.

Lines 13–15 describe the Book class. You should notice that an RDFS class is

also a resource, so this description looks similar to the resource I describe

starting on Line 7, with a few differences:

13_396797-ch07.indd 16613_396797-ch07.indd 166 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

167 Chapter 7: Using the Resource Description Framework (RDF)

 ✓ I use rdf:Class to state that what’s being described is a RDFS Class.

 ✓ I give the URI: It should be the same as the URI used in Line 8.

If I were to end the resource there, with </rdfs:Class>, it would be suf-

ficient, but it’s good practice to give every resource some sort of label. I’ve

done this in Line 14. (Line 10 serves this purpose for the first resource I

described, but it uses the RDF vocabulary alone, not RDFS.)

Let me modify the example just slightly by changing the type of the original

resource and adding a new class. I now assert that the original resource is

now a Dummies Series BookDummiesSeriesBook, and that the Dummies
Series BookDummiesSeriesBook class is in a class of things called Books.

Because RDFS allows us to create subclass relationships, we can now say, “a

Dummies Series Book is a subclass of Book.”

The new model looks like this:

1. <?xml version=”1.0”?>
2. <rdf:RDF xmlns:rdf=
 ”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
3. xmlns:book=”http://www.dummies.com/books#”
4. xmlns:dc=”http://purl.org/dc/elements/1.1/”
5. xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”
6. xmlns:foaf=”http://xmlns.com/foaf/0.1/”>

7. <rdf:Description rdf:about=
 ”http://www.dummies.com/books#Book-semanticweb_for_dummies”>
8. <rdf:type rdf:resource=
 “http://www.dummies.com/books#DummiesSeriesBook”/>
9. <book:author rdf:resource=
 ”http://me.jtpollock.us/foaf.rdf#me”/>
10. <dc:title>The Semantic Web For Dummies</dc:title>
11. </rdf:Description>
12.
13. <rdfs:Class rdf:about=
 ”http://www.dummies.com/books#DummiesSeriesBook”>
14. <rdfs:label>Dummies Series Book</rdfs:label>
15. <rdfs:subClassOf rdf:resource=
 ”http://www.dummies.com/books#Book”/>
16. </rdfs:Class>
17.
18. <rdfs:Class rdf:about=”http://www.dummies.com/books#Book”>
19. <rdfs:label>Book</rdfs:label>
20. </rdfs:Class>

21. </rdf:RDF>

13_396797-ch07.indd 16713_396797-ch07.indd 167 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

168 Part III: Building the Semantic Web

By leveraging RDFS, we can now create a hierarchy of classes. Consider one

possible Book hierarchy in Figure 7-5. Using subclass reasoning (also called

subsumption reasoning), I can now infer that, Semantic Web For Dummies

is a “John Wiley Book”, even though I did not explicitly state that it is a John

Wiley Book.

 Because I asserted that it is in the For Dummies category and anything inside

the For Dummies category is asserted to be a John Wiley Book, and a

John Wiley Book is a “Book,” you know for sure that Semantic Web For
Dummies is a Book. This kind of inference yields an economy of expression

when working with data.

For the most part, the terms subclass and inheritance may be used inter-

changeably. In fact, in everyday software development terms, there isn’t

much difference between the terms. Philosophically, there are some differ-

ences, but these can be quite esoteric and are not within the scope of this

book. For RDF and OWL languages, a class B is a subclass of A if and only if

all things in B are also in A. Stated another way, if all properties in B are also

in A, B is a subclass of A.

In the example I discuss throughout this chapter, I assert that a Dummies
Series Book implies a John Wiley Book. I’ve also said that any John
Wiley Book is a Book. Therefore anything that’s described as a type of

Dummies Series Book is also a Book. The inverse is not the case however —

something having been described as a Book doesn’t imply that it’s a For
Dummies Book.

Figure 7-5:
A sample
hierarchy

for John
Wiley Book
categories.

Books

John Wiley Books

For DummiesInter Science

The Internet Series

http://www.dummies.com/books#Book-
semanticweb_for_dummies

Higher Education

Travel Series

http://purl.org/dc/elements/1.1/title “Semantic Web
For Dummies”

13_396797-ch07.indd 16813_396797-ch07.indd 168 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

169 Chapter 7: Using the Resource Description Framework (RDF)

The Venn diagram in Figure 7-6 illustrates this idea of subclass subsumption —

the subsumed class receives the attributes of its parent.

Figure 7-6:
A simple

Venn
diagram
showing
subclass

containment.

John Wiley Books

For Dummies

Semantic Web For Dummies

Discovering Other Triple Formats:
N3, Turtle, and N-Triples

Formats such as N3, Turtle, and N-Triples may also be used to encode RDF.

In general, as long as you have the appropriate interpreters, it doesn’t matter

which of these formats you use. The knowledge is still in the triples logical

format, and the physical syntax is really only syntactic sugar required by

your particular model parser. (The term sugar refers to syntax that is added

for cosmetic or usability reasons alone.) The following examples show seri-

alizations of the RDF graph in Figure 7-3 (shown earlier) in N3, Turtle, and

N-Triples.

N3
N3 stands for Notation3 and is a shorthand notation for representing RDF

graphs. N3 was designed to be easily read by humans, and it isn’t an XML-

compliant language.

13_396797-ch07.indd 16913_396797-ch07.indd 169 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

170 Part III: Building the Semantic Web

1. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2. @prefix book: <http://www.dummies.com/books#> .
3. @prefix dc: <http://purl.org/dc/elements/1.1/> .
4. @prefix jtp: <http://me.jtpollock.us/me#> .
5.
6. book:Book-semanticweb_for_dummies book:author jtp:name ;
7. dc:title “The Semantic Web For Dummies” .

Lines 1–4 are general housekeeping items similar to the xml namespace

declarations in RDF/XML. Line 6 is the start of the resource description:

Notice the semicolon (;) at the end that indicates that the description of the

resource is continued on the next line. The period (.) ends a line or descrip-

tion. N3 files typically have an .n3 extension.

Turtle
Turtle is a more verbose subset of N3 and an extension of N-Triples, which I

discuss next. The previous N3 example is valid Turtle. Turtle stands for Terse

RDF Triple Language. This particular serialization is popular among develop-

ers of the Semantic Web. Consequently, many tools are available to support

this format. Turtle files typically have a .ttl extension.

N-Triples
The N-Triples is a plain and simple line-based format for expressing triples.

Using the RDF graph in Figure 7-3 as an example, the N-Triples serialization

looks like this:

1. <http://www.dummies.com/books#Book-semanticweb_for_dummies>
 < http://www.dummies.com/books#author>
 < http://me.jtpollock.us/me#name> .
2. <http://www.dummies.com/books#Book-semanticweb_for_dummies>
 <http://purl.org/dc/elements/1.1/title>
 “Semantic Web For Dummies” .

This format differs from the others in that there are no prefixes — the fully

qualified URI is included in each statement. As with N3, the statements are

closed by the period (.). Typically, files with N-Triples have the .nt extension.

 The extensions typically used for these formats aren’t necessarily a require-

ment. For the most part, there’s no meaning in them from a machine’s point of

view (unless software has been developed that derives a particular meaning

from those extensions). However, the extensions help us humans differentiate

between formats. Therefore, these defaults are a common convention within

the Semantic Web community.

13_396797-ch07.indd 17013_396797-ch07.indd 170 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

171 Chapter 7: Using the Resource Description Framework (RDF)

Specializing in Microformats,
RDFa, eRDF, and GRDDL

The largest opportunity, and challenge, for the Semantic Web is to encode

existing data with Semantic Web–compliant markup. The following special-

ized languages are intended to fit within other more common data and docu-

ment formats like XHTML and XML.

Microformats
The word microformats might suggest you need a magnifying glass to read

material written in such a format. Well, the impact of microformats is not

microscopic. Some people would say that microformats and RDF stand on

opposite sides of the format spectrum: Microformats can be small and loose,

whereas RDF is a little heavy and can be verbose. Although RDF itself is a

framework, not just a format, many pundits can’t resist comparing the two

data languages.

Actually, either format is an appropriate and powerful way to encode more

meaning into Web pages. Depending on what you want to accomplish, you

may choose one or the other or both.

Microformats are a collection of formats (tags) for embedding document

metadata within Web pages, XHTML, and HTML. Their ability to be embed-

ded in HTML is seen by some as a major advantage over plain RDF. Later in

this section, I show you how eRDF and RDFa allow you to achieve the same

results. For now, I take a quick look at a few points regarding microformats to

help differentiate between the two:

Microformats

 ✓ Were designed for humans first, machines second

 ✓ Solve a specific problem

 ✓ Reuse building blocks from widely adopted standards

 ✓ Are a way of thinking about data

 ✓ Are NOT a new language

 ✓ Are NOT infinitely extensible and open-ended

 ✓ Are NOT a panacea for all taxonomies and ontologies

13_396797-ch07.indd 17113_396797-ch07.indd 171 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

172 Part III: Building the Semantic Web

RDF, on the other hand,

 ✓ Was designed for machines first, humans second

 ✓ Solves specific problems and also more general problems in represent-

ing metadata

 ✓ Reuses building blocks from widely adopted standards

 ✓ Is a way of thinking about data

 ✓ Is a new language

 ✓ Is infinitely extensible and open-ended

 ✓ Provides the foundation of OWL

Despite some of these substantial differences, both microformats and RDF

are important contributors to the W3C’s Semantic Web vision. The long-term

value of microformats is a matter of debate in some circles. But both micro-

formats and various flavors of RDF allow developers to encode metadata

about the data into Web pages; and this is a good thing! Microformats happen

to be a more rigid and brittle type of metadata, but for communities that

have agreed on a vocabulary and syntax, they can be a quick and easy way to

enrich Web pages.

RDFa
RDFa is a proposed set of extensions to XHTML. In case you’re wondering,

the a is for attributes. Its intent is to allow the inclusion of metadata in any

XML document, but RDFa is primarily used in XHTML. RDFa allows machines

to understand and leverage RDF semantics from within a Web page.

Many relevant objects can be found on a Web page such as media — videos,

images, and audio — that has information about the creator, when it was cre-

ated, length, and so on. If you’ve tried to buy something on the Web, you’ve

seen tens or hundreds of pages of product information, describing things like

the product’s appearance, usage, price, and so on. Before RDFa, the informa-

tion about such things was represented in XHTML elements: Only humans

understood the semantics on those Web pages. With RDFa, there is now a

standards-based approach to representing the Web page metadata just like

you would with RDF.

Consider my working RDF sample resource, Jeffrey Pollock. I might create a

simple Web page about myself that looks like Figure 7-7.

13_396797-ch07.indd 17213_396797-ch07.indd 172 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

173 Chapter 7: Using the Resource Description Framework (RDF)

Figure 7-7:
A render-

ing of basic
Web page
containing

semantic
markup.

Using RDFa, the XHTML looks like this:

1.<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
2. “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
3.<html xmlns=”http://www.w3.org/1999/xhtml”>
4.<head>
5. <meta http-equiv=”content-type”
 content=”text/html; charset=iso-8859-1” />
6. <title>Jeffrey Pollock </title>
7.</head>
8.<body>
9.
10.<div class=”content”
 about=”http://localhost/jeff_pollock.html”
 instanceof=”foaf:person”>
11.
12. <h1>
13. Information about
 Jeffrey
 Pollock
14. </h1>
15.
16. <img rel=”foaf:depiction”
 class=”flr”
 alt=”Photo of Jeffrey Pollock”
 src=”jeff_pollock.jpg”
 alt=”Jeffrey Pollock” width=”100” height=”150”/>
17.
18. <p>Mr. Pollock is an Executive business leader responsible for technology

strategy, software product management, industry relations,
and business development for enterprise software technology
solutions.</p>

19. <p>© Semantic Web For Dummies</p>
20.</div>
21.
22.</body>
23.</html>

13_396797-ch07.indd 17313_396797-ch07.indd 173 2/13/09 7:17:13 PM2/13/09 7:17:13 PM

174 Part III: Building the Semantic Web

I assume that you have some working knowledge of HTML, so I focus only

on the RDFa annotations — in this case, Lines 10, 13, and 16. Line 10 states

this resource (the Web page) is an instance (about) a person. Line 13 states

Jeffrey is the person’s first name, and Pollock is the person’s last name.

Line 16 says the image is a depiction of the person represented on this Web

page. Other information about different objects on the page may also be

included.

As you can see, embedding RDF-based data can be an easy and straightfor-

ward task with RDFa.

eRDF
The very same Web page shown earlier in Figure 7-7 can be created using

different encoding, eRDF. eRDF (Embeddable RDF) is similar to RDFa, and for

the most part, they can be used interchangeably.

eRDF is a syntax for writing HTML in such a way that the information in

the HTML document can be extracted (with an eRDF parser or an XML

Stylesheet) into RDF. eRDF is not a W3C recommendation. Like RDFa, eRDF

is embedded in XHTML documents. However, it differs from RDFa because

eRDF is meant only for XTHML or HTML, whereas RDFa may be used in any

XML-compliant document. Additionally, the RDFa markup in the XHTML must

indicate the use of the RDFa profile.

Using the previous example, the eRDF version looks like this:

1.<head profile=”http://purl.org/NET/erdf/profile”>
2.</head>
3.<link rel=”schema.foaf” href=”http://xmlns.com/foaf/0.1/”/>
4.<div id=”jp” class=”-foaf-Person”>
5.
6.
7. <h1>
8. Information about
 Jeffrey
 Pollock
9. </h1>
10.
11. <img src=”jeff_pollock.jpg”
 class=”foaf-depiction”
 alt=”Photo of Jeffrey Pollock”/>
12.
13. <p>Mr. Pollock is an Executive business leader responsible for technology

strategy, software product management, industry relations,
and business development for enterprise software technology
solutions.</p>

14. <p>© Semantic Web For Dummies</p>
15.
16.</div>

13_396797-ch07.indd 17413_396797-ch07.indd 174 2/13/09 7:17:14 PM2/13/09 7:17:14 PM

175 Chapter 7: Using the Resource Description Framework (RDF)

GRDDL
GRDDL stands for Gleaning Resource Descriptions from Dialects of

Languages. It’s a W3C recommendation for extracting RDF out of XHTML

documents using XSLT. Identifying an XHTML document (or any other XML

document) as GRDDL-compatible is a simple case of adding a profile attribute

in the head element and a link to a transformation script (typically XSLT).

Here’s the previous RDFa example (with GRDDL annotations):

1.<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
2. “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
3.<html xmlns=”http://www.w3.org/1999/xhtml”>
4.<head profile=”http://www.w3.org/2003/g/data-view>
5. <meta http-equiv=”content-type”
 content=”text/html; charset=iso-8859-1” />
6. <title>Jeffrey Pollock </title>
7.</head>
8.<link rel=”transformation” href=”jeff_pollock.xslt” />
9.<body>
10.
11.<div class=”content”
 about=”http://localhost/jeff_pollock.html”
 instanceof=”foaf:person”>
12.
13. <h1>
14. Information about
 Jeffrey
 Pollock
15. </h1>
16.
17. <img rel=”foaf:depiction”
 class=”flr”
 alt=”Photo of Jeffrey Pollock”
 src=”jeff_pollock.jpg”
 alt=”Jeffrey Pollock” width=”100” height=”150”/>
18.
19. <p>Mr. Pollock is an Executive business leader responsible for technology

strategy, software product management, industry relations,
and business development for enterprise software technology
solutions.</p>

Lines 4 and 8 are the modified lines. Line 4 indicates that there’s at least one

GRDDL transformation available. Line 8 identifies the transformation. Figure 7-7,

shown earlier, still looks the same when described by this code!

Extracting the RDF
So, what’s the point of all these standards and formats? First of all, they

enable applications to find data where before they couldn’t. Web pages have

13_396797-ch07.indd 17513_396797-ch07.indd 175 2/13/09 7:17:14 PM2/13/09 7:17:14 PM

176 Part III: Building the Semantic Web

always been unstructured text in a document, but with microformats, RDFa,

eRDF, and GRDDL, you can choose to turn each of your pages into small Web-

based RDF databases.

 As with most technology comparisons, there are distinct differences in what

each of the technologies described enable you, the practitioner, to do. With

any of the formats described here, the metadata may manifest itself as RDF in

any syntax you choose. XSLT is a convenient, but at times limiting, mechanism

to extract RDF from GRDDL documents. A variety of parsers available on the

Web (as well as XSLT transformers) are great options for extracting RDF from

RDFa and eRDF documents. In the end, you’re looking for the RDF.

For the three examples previously given, the RDF looks like this (RDF house-

keeping syntax has been excluded):

1.<rdf:Description
 rdf:about=”http://me.jtpollock.us/foaf.rdf#me”>
2. <rdf:type rdf:resource=”http://xmlns.com/foaf/0.1/Person”>
3. <foaf:firstName>Jeffrey</book:first_name>
4. <foaf:family_name>Pollock</book:last_name>
5.</rdf:Description>

After the RDF data has been extracted from the Web page(s), I can easily

load the RDF statements into an RDF database and start to perform some

advanced query and analytic operations on them. The world has moved from

the age of dumb Web pages assembled by servers to smart Web pages with

atomic data items structured directly in the documents. Now is when data

mashups really start to get interesting!

Getting to Know the Strengths of RDF
Many aspects of RDF should appeal to you. Technically speaking, XML as the

transport for RDF is a tangible, nicely packaged, standard, serializable, and

extremely portable format for data. These facts alone are reasons why many

people choose RDF over a relational database format or a purely object-

oriented approach — RDF is especially useful for transporting data while pre-

serving the complex semantics of relationships.

 Most of the earliest adopters of RDF are communities of practice that fre-

quently need to exchange data, but cannot afford to strictly adhere to

burdensome vocabulary standards. Industries such as biotechnology, phar-

maceuticals, defense, and civilian environmental agencies have the need to

exchange data whose formats are always changing and in flux. Therefore they

need something more flexible than plain RDB or XML technologies.

13_396797-ch07.indd 17613_396797-ch07.indd 176 2/13/09 7:17:14 PM2/13/09 7:17:14 PM

177 Chapter 7: Using the Resource Description Framework (RDF)

If you look closely at RDF, and squint just a little, you can detect a hint of

relational database type structure. In fact, both RDF and relational databases

share some common underpinnings — both technologies use computation-

ally sound mathematics as a foundation for their model theory. Set theory is

the basis for both technologies, and, in fact, RDF data is frequently used to

create database-driven applications.

I want to compare the structures of RDF and RDB technology more closely.

Take a look at a snippet of my RDF example (to make it more interesting, I’ve

added a FOAF resource for the Person Jeff Pollock):

1.<rdf:Description rdf:about=
 ”http://www.dummies.com/books#Book-semanticweb_for_dummies”>
2. <rdf:type rdf:resource=http://www.dummies.com/books#Book/>
3. <book:author rdf:resource=
 ”http://me.jtpollock.us/foaf.rdf#me”/>
4. <dc:title>The Semantic Web For Dummies</dc:title>
5.</rdf:Description>
6.
7.<rdf:Description rdf:about=
 ”http://me.jtpollock.us/foaf.rdf#me”>
8. <rdf:type rdf:resource=http://xmlns.com/foaf/0.1/Person/>
9. <foaf:firstName>Jeffrey</book:first_name>
10. <foaf:family_name>Pollock</book:last_name>
11.</rdf:Description>

A simple database representing these resources might have two tables that

look like Tables 7-1 and 7-2.

Table 7-1 Book
GUID (Primary Key) Title Author (Foreign Key to

Person GUID)

semanticweb_
for_dummies

The Semantic
Web For Dummies

jeff_pollock

other_books … …

Table 7-2 Person
GUID (Primary Key) first_name last_name

jeff_pollock Jeffrey Pollock

other_persons … …

13_396797-ch07.indd 17713_396797-ch07.indd 177 2/13/09 7:17:14 PM2/13/09 7:17:14 PM

178 Part III: Building the Semantic Web

The similarities should be quite clear. Resources are analogous to table

names, and predicates are analogous to columns. The primary key in the

table is the resource URI (the subject), and the column values are the

objects. It’s a straightforward task to represent any relational database as

RDF. This fact is true because RDF is a more semantically rich data modeling

structure than RDB — it can fully contain the semantics of the basic RDB.

Although RDF doesn’t look anything like object-oriented (OO) design, I can

make an analogy between the two. (I’ll spare you details of looking at Java or

C# code.) A mapping of the terminology between OO and RDF, as shown in

Table 7-3, should help you understand some of the similarities.

Table 7-3 OO to RDF Mapping
RDF Terminology OO Terminology Example

Class Resource
(a thing)

Class Book, Person

Instance Resource
(a particular thing)

An instantiation
of a class

semanticweb_for_dummies,
jeff_pollock

Predicate Property title, first_name, last_
name

To be perfectly clear, I’m not suggesting that RDF and OO approaches are

completely interchangeable. Each technology indeed has its own unique

advantages or disadvantages, as I describe in Chapter 5. The requirements of

the software system that you’re creating should lead you down one particu-

lar path instead of another.

What’s really going to drive your adoption of RDF — whether you’re start-

ing out fresh collecting new data or working with legacy data collected over

years and years — is whether you want to decompose your data (knowledge)

into smaller pieces of information (with meaning) and whether you want to

express that knowledge in a decentralized way that is still consumable and

open to anybody.

 Simply put, if you need an easy way to assert data as very flexible statements,

and if it must be structured so that a machine can easily read it, RDF — or a

language derived from RDF — is probably a good solution for you.

13_396797-ch07.indd 17813_396797-ch07.indd 178 2/13/09 7:17:14 PM2/13/09 7:17:14 PM

179 Chapter 7: Using the Resource Description Framework (RDF)

Seeing Why RDF Is Only
the Tip of the Iceberg

In this chapter, I present only a quick primer for RDF providing the essentials

to get you started and feeling comfortable with reading the language — but

it’s only the tip of the iceberg for the Semantic Web. If you decide to really

become an RDF developer, you need to spend some time on the W3C Web

site (www.w3.org/2001/sw/) so that you understand most aspects of the

RDF specification itself. The more time you spend with the various develop-

ment tools for modeling RDF, the better you get.

RDF as a language is truly the foundation for the Semantic Web, but it is still

only a small part of the total Semantic Web vision. Chapter 8 supplies the

definitive primer for the Web Ontology Language, and Chapter 9 explains

more details about several proposals still in process, including the use of

business rules as a part of the Semantic Web.

Taken together, RDF, RDFa, GRDDL, OWL, business rules, and other coming

features of the Semantic Web are an exciting evolution in the way people

write software programs: Welcome to the 21st century!

13_396797-ch07.indd 17913_396797-ch07.indd 179 2/13/09 7:17:14 PM2/13/09 7:17:14 PM

180 Part III: Building the Semantic Web

13_396797-ch07.indd 18013_396797-ch07.indd 180 2/13/09 7:17:14 PM2/13/09 7:17:14 PM

Chapter 8

Speaking the Web
Ontology Language

In This Chapter
▶ Getting to know OWL

▶ Making assertions

▶ Understanding property characteristics

▶ Getting why OWL is different

OWL stands for the Web Ontology Language. OWL builds on and extends

RDF and RDFS by adding more vocabulary terms for describing sets of

things called classes, facts about those classes, relationships between classes

or instances, and characteristics of those relationships. OWL has quite a few

additional model semantics compared to RDF — I discuss most of these later

in this chapter. OWL 1.0 has been a W3C recommendation since 2004, and the

OWL 1.1 specification is currently under development.

This chapter introduces you to the foundations of OWL including simple and

complex classes, properties, individuals, assertions, and ontology develop-

ment. You find out how to code simple OWL models and what pitfalls to

avoid when developing a larger and more complex ontology.

Introducing OWL
As I briefly discuss in Chapter 3, the Web Ontology Language grew out of

necessity from the late 1990s work in the U.S. Defense Department and

European Defense community. Both research groups were looking for a data

format that would be self-describing and dynamic so that intelligent agents

might act autonomously on that data. After surveying various XML, object-

oriented and database formats the Europeans and Americans simultaneously

figured that new data languages would be required. The Europeans invented

OIL (Ontology Inference Layer), and the Americans invented DAML (DARPA

Agent Markup Language). Later, OIL and DAML were combined and eventu-

ally became the W3C specification that’s now known as OWL.

14_396797-ch08.indd 18114_396797-ch08.indd 181 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

182 Part III: Building the Semantic Web

The syntax of OWL 1.0 is encoded as RDF/XML. OWL looks a lot like RDF/

XML, but it has additional reserved words and special ways to format data.

It’s standard practice to save an OWL model in a file with an .owl exten-

sion. The following code listing gives you a look into a simple OWL model in

its native syntax. To make it easier to follow along, I’ve added line numbers,

which have no other significance:

1.<?xml version=”1.0” encoding=”UTF-8”?>
2.<rdf:RDF
3.xmlns:owl=”http://www.w3.org/2002/07/owl#”
4.xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”
5.xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
6.xmlns:dc=”http://purl.org/dc/elements/1.1/”
7.xmlns=”http://www.dummies.com/owlexample#”>
8.
9. <owl:Class rdf:about=”http://www.w3.org/2002/07/owl#Thing”/>
10.
11.
12. <owl:Thing rdf:ID=”semanticweb_for_dummies”/>
13.
14.</rdf:RDF>

As with the RDF models described in Chapter 7, Lines 1–7 are housekeeping

items. Mainly, they specify the XML version and encoding, the beginning of

the RDF, and namespaces in the model.

Line 9 exists in every OWL model. It says a concept called Thing exists that

is the top-most class in any OWL hierarchy — it represents the superset of

each and every “thing” in the model. Every other class is automatically a sub-

class of Thing, and every individual is a type of Thing.

Shouldn’t it be WOL?
There’s an endearing story about how the Web
Ontology Language came to be known as OWL
rather than WOL. Actually, OWL isn’t a real
acronym. The language specification started
out as the Web Ontology Language with no
special acronym. But after some time, the W3C
Working Group disliked the acronym WOL and
decided to call it OWL. The group became more
comfortable with this decision when one of the
members pointed out the following justification

from the noted ontologist A.A. Milne who, in
his book, Winnie the Pooh, stated of the wise
character Owl, “He could spell his own name
WOL, and he could spell Tuesday so that you
knew it wasn’t Wednesday, but his spelling
goes all to pieces over delicate words like mea-
sles and buttered toast.” I’m sure it didn’t hurt
the group’s affirmation that Owl spoke with a
Received Pronunciation (a uniquely prestigious
and educated sounding British accent).

14_396797-ch08.indd 18214_396797-ch08.indd 182 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

183 Chapter 8: Speaking the Web Ontology Language

Line 12 states there is an individual of type Thing with and ID “semantic
web_for_dummies”. Notice that this resource has slightly different syntax

than the resource example in Chapter 7. It’s really just an alternative syntax.

The previous example could also have been written like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<rdf:RDF
xmlns:owl=”http://www.w3.org/2002/07/owl#”
xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns=”http://www.dummies.com/owlexample#”>

 <owl:Class rdf:about=”http://www.w3.org/2002/07/owl#Thing”/>

 <rdf:Description rdf:about=”http://www.dummies.com/owlexample#
 semanticweb_for_dummies”>
 <rdf:type rdf:resource=”http://www.w3.org/2002/07/owl#Thing”/>
 </rdf:Description>

</rdf:RDF>

Either of the two OWL models would be interpreted exactly the same by an

OWL inference engine (referred to as a reasoner). The first example happens

to be using native OWL XML syntax, whereas the latter example is using a

more RDF-oriented syntax.

Old developer dogs learning
new Semantic Web tricks

If you’re a Semantic Web newbie and you’re
still interested in learning how to model and pro-
gram in RDF and OWL, you’re probably already
a software developer. But when you create
your own RDF and OWL models, you need to
unlearn some of the tricks and practices that
you’ve spent a lot of time immersing yourself in
over the years.

For example, if you’ve come to the Semantic
Web by way of an object-oriented programming
background, you’re probably pretty comfortable
with the class model of OWL, but you have to
unlearn the idea that classes are just a static
datatype for objects at runtime and start to also

think of classes as dynamic sets of instances
that may change membership at anytime during
runtime.

Database experts are more comfortable with the
notion of OWL classes as sets, but they have to
resist the temptation to normalize (as in second
or third normal form) the data model using keys
and instead focus on modeling accurate object
hierarchies to represent the information model.
Being a programmer before learning Semantic
Web languages can give you a big head-start,
but only if you’re willing to unlearn some prac-
tices that you might take for granted.

14_396797-ch08.indd 18314_396797-ch08.indd 183 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

184 Part III: Building the Semantic Web

Discovering the Various Species of OWL
The “species” of OWL, as I refer to them (the W3C calls them sublanguages),

are specific versions of the OWL 1.0 language that are optimized for unique

purposes and are distinguished by the language expressivity of the allowable

axioms and constructors used in the OWL model. In OWL 1.0, there are three

species to keep track of: OWL-Lite, OWL-DL, and OWL-Full. OWL-Lite uses

only some of the expressivity available in OWL-DL. In OWL Lite, there are

limitations on how a class can be asserted and the restrictions that can be

placed on a class. OWL-DL allows full use of the core OWL language, but with

some limitations on class restrictions. An OWL-Lite model is a valid OWL-DL

model. OWL-Full is the most expressive of the three, allowing users to assert

that classes can also be properties and instances.

In Chapter 9, I explain more about the recent extensions made with OWL 2.0,

where new sub-species of the OWL language have been introduced so that

vendors and implementers can easily distinguish what language properties

they are adopting.

For this book, I explain and work primarily with OWL-DL, which is by far the

most popular dialect of the many OWL species. Of the three, OWL-DL pro-

vides the ideal combination of language expressivity and performance — and

therefore commercial viability. (In Chapter 12, I explain in more detail the

impact of expressivity on large-scale Semantic Web applications.) The DL in

OWL-DL stands for description logics — a family of knowledge representation

languages that have historically been developed in the artificial intelligence

community. (Chapter 16 busts the myth that the Semantic Web is just about

description logics — it is indeed a key part of OWL, but the Semantic Web is

about much more than just description logics.)

Here’s a quick refresher on some basic terms:

 ✓ Ontology: An ontology is a formal representation of a set of concepts

within a domain and the relationships between those concepts.

 ✓ Individuals: Describe a thing. Individuals may be members of one or

more classes. Frequently in this book, I use the term instances to be

interchangeable with individuals.

 ✓ Properties: Describe the relationships between individuals. A property

in OWL and RDF is a first-class object in the model.

 ✓ Classes: Also known as sets. Members of classes share some properties

or characteristics.

Because OWL classes are really just a description of a set of things, ontolo-

gies are often best visualized using Venn diagrams.

14_396797-ch08.indd 18414_396797-ch08.indd 184 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

185 Chapter 8: Speaking the Web Ontology Language

Figure 8-1 represents several assertions: 1) There is a class called Person; 2)

Jeffrey Pollock is a Person; 3) S.A. Batla is a person; and 4) Jeffrey Pollock and

S.A. Batla are related by the symmetrical relationship, hasFriend.

Figure 8-1:
Logical

representa-
tion of two

Person
instances
related by
hasFriend
property.

Person

S.A.Batla

Jeffrey Pollock

hasFriend

Exploring the Foundations of OWL

OWL’s foundation rests on a family of knowledge representation languages

called description logics (DL). DL allows you to describe concepts and logic-

based semantics for a particular domain in a formal, well-structured way. DL

is based on first-order predicate logic, which is a deductive reasoning system

with foundations in mathematics. This means that, with OWL, you can express

facts and rely on a proven query foundation based on mathematics to discover

the implications of those facts. In a general sort of way, you can think of DL as a

more powerful type of relational algebra that enables us to develop more pow-

erful databases. That’s why OWL databases are usually called knowledgebases —

because they allow more expression and dynamism than regular databases.

Open-world assumption
The open-world assumption (OWA) is a monumental, cannot-be-exaggerated

difference between Semantic Web data languages and regular relational data-

bases. OWA is an assumption made in most formal logic systems that often

confuses even the most seasoned ontologist. To explain the OWA, it helps to

first explain its opposite — the closed-world assumption (CWA). The CWA

is an assumption that states that any statement that is not known to be true

is false. OWL, which is an OWA language, doesn’t hold to this assumption.

Instead, the OWA doesn’t assume that an answer is false unless it can be

absolutely proven that it is false — there are many questions that may have

no provable answers at all.

14_396797-ch08.indd 18514_396797-ch08.indd 185 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

186 Part III: Building the Semantic Web

Perhaps an example would help:

OWL Statement:
Jeff lives in San Francisco, California

Query/Question:
Does Jeff live Santa Fe, New Mexico?

Answer:
CWA: No
OWA: Maybe or unknown. (I could have residences in both

places)

With an open-world assumption, the system is acknowledging that its knowl-

edge of the world (or a particular domain) is incomplete. The failure to find a

perfect answer doesn’t imply the opposite must be the case. An OWA capable

system such as the Semantic Web is sophisticated enough to acknowledge

various shades of gray in the knowledgebase.

OWL is monotonic
Description logics are a monotonic logic and therefore so is OWL. A

monotonic system based on deductive logic means that adding new state-

ments (information) to our knowledgebase never falsifies a previous conclu-

sion. If you later discover “Jeff lives in Santa Fe, New Mexico,” this doesn’t

change any conclusion made from the previous statement. In some instances,

the information might prove to be inconsistent, but from a reasoning per-

spective, previous conclusions, true or false, still hold. Modifying the example:

OWL Statement:
Jeff lives in San Francisco, California.

New OWL Statement:
Jeff lives in Santa Fe, New Mexico.

Query/Question:
Does Jeff live in San Francisco, CA?

Answer:
CWA: Yes.
OWA: Yes.

New Question:
Does Jeff live in Santa Fe, New Mexico?

New Answer:
CWA: Yes.
OWA: Yes.

14_396797-ch08.indd 18614_396797-ch08.indd 186 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

187 Chapter 8: Speaking the Web Ontology Language

Based on these simple assertions/statements, no OWL reasoner would com-

plain about this apparent inconsistency because there are no known restric-

tions on how many places a person may live. How would the OWA answer

the question if there was a restriction placed on “lives”? Such as “a person

can only live in one place”? I address this inconsistency question later in the

chapter, in the section titled “Inconsistency.”

Understanding OWL Essentials
OWL provides a vocabulary for describing classes, facts about those classes,

relationships between classes, and characteristics of those relationships.

Some OWL axioms are somewhat esoteric, not very practical, and aren’t cov-

ered in much detail in this book. I cover commonly used axioms in enough

depth to understand their implications (and give you just enough information

to make you dangerous with modeling basic OWL!).

The most intuitive way to get a mental picture of modeling with OWL is in

terms of basic set theory: which things belong in different sets. I interchange-

ably refer to classes as sets and use Venn diagrams to visualize OWL asser-

tions I cover in this chapter. This book isn’t meant to be a primer on set

theory, but where appropriate, I make basic references to explain some of the

assertions and concepts in OWL.

As shown in my first example, an ontology can be very simple. At a minimum,

all you need are some housekeeping items and the class Thing. But that’s

not very useful by itself. Now, I go a bit further by explaining how to assert

classes, properties, and individuals.

Individuals (Also known as instances)
In Chapter 7, you discover how to create individuals. In our examples, the

book, Semantic Web For Dummies and the author, Jeff Pollock, are

individuals. I also introduce relationships between those individuals: I stated

that Semantic Web For Dummies has an author, Jeff Pollock. In an

ontology, these individuals and the relationship between them are known as

the Assertional Box (Abox) or the data.

Individuals represent physical or virtual concepts the ontology is describing.

At a minimum, individuals are members of the class Thing and don’t neces-

sarily need to be members of any other class. Individuals can belong to many

different classes — multiple membership is fully allowable. Consider the indi-

vidual in Figure 8-2: San Francisco International (SFO) Airport.

14_396797-ch08.indd 18714_396797-ch08.indd 187 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

188 Part III: Building the Semantic Web

Figure 8-2:
Simple

logical rep-
resentation

of a single
instance of

a Thing.

Thing

airport-sfo

Now, the syntax in OWL/RDF:

<owl:Thing rdf:ID=”airport-sfo”/>

This model doesn’t represent anything too compelling, but it is indeed a

complete OWL model. Nothing is implied in this model that wasn’t already

made explicit. Simply, there is an individual labeled “airport-sfo”, and it

is a Thing. Note, we humans are tempted to infer that “airport-sfo” is an

Abox and Tbox
In knowledge representation, the Assertional
Box (Abox) is the assertional component, and
the Terminological Box (Tbox) is the terminolog-
ical component. The Abox holds the data facts
associated with a Tbox, whereas the Tbox holds
modeling knowledge such as descriptions of
classes and properties. Assertions in the Abox
are facts about instances that include relation-
ships to literal values or to other individuals.

Some sample Abox statements:

Mary is a Student
Mary is 30
Mary knows Steve

Some sample Tbox statements:

All Students are Persons
There are two types of

Persons: Students and
Teachers

One easy metaphor is to think of the Tbox as
a relational database schema and metadata
fields. Think of the Abox as instance data or the
records in the database.

14_396797-ch08.indd 18814_396797-ch08.indd 188 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

189 Chapter 8: Speaking the Web Ontology Language

Airport (and that we are referring to San Francisco International). However,

as it stands now, a machine doesn’t have enough information to conclude

this.

Properties: Datatype and object
There are two important types of properties in OWL: datatype properties

and object properties. Datatype properties help describe individuals — they

are not typically used to describe classes and are certainly not dependent on

classes. The set of allowable values for datatype properties are typed literals.

Typed literals are literal values (not abstract objects) with a specific datatype.

I’m going to assert a property in my model called terminalCode, which rep-

resents a code that refers to an airport terminal. Figure 8-3 below represents

the assertion that airport-sfo has a terminalCode: SFO.

Figure 8-3:
Notice that

SFO and ter-
minalCode

are not
Things.

Thing

Airport-sfo

terminalCode

“SFO”

Now, the syntax in OWL/RDF:

<owl:DatatypeProperty rdf:ID=”terminalCode”/>
<owl:Thing rdf:ID=”airport-sfo”>
<terminalCode rdf:datatype=
 “http://www.w3.org/2001/XMLSchema#string”>SFO</

terminalCode>
</owl:Thing>

As with our prior example, not much more is implied here than what has been

asserted. In Listing 8-1, I introduce a class Airport, create another Thing

called airport-bos, and make both individuals members of Airport.

14_396797-ch08.indd 18914_396797-ch08.indd 189 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

190 Part III: Building the Semantic Web

Listing 8-1: An Airport OWL Example with Airport Class

<owl:DatatypeProperty rdf:ID=”terminalCode”/>

<owl:Class rdf:ID=”Airport”>
 <rdfs:label>Airport</rdfs:label>
</owl:Class>

<Airport rdf:ID=”airport-sfo”>
 <rdfs:label>San Francisco International Airport</rdfs:label>
 <terminalCode rdf:datatype=
 “http://www.w3.org/2001/XMLSchema#string”>SFO</terminalCode>
</Airport>

<Airport rdf:ID=”airport-bos”>
 <rdfs:label>Boston Logan International Airport</rdfs:label>
 <terminalCode rdf:datatype=
 “http://www.w3.org/2001/XMLSchema#string”>BOS</terminalCode>
</Airport>

I’ve simply added a class called Airport, and asserted that airport-sfo

is a member of Airport. I’ve also added another individual, airport-bos,

with terminalCode, BOS. I now have two Airport types in this model,

airport-sfo and airport-bos, with nice human-readable labels.

To make this ontology more interesting, in Listing 8-2, I now add a class

called Flight. After all, what good are airports without flights?

Listing 8-2: An Airport OWL Example with Flights

<owl:DatatypeProperty rdf:ID=”flightNumber”/>

<owl:Class rdf:ID=”Flight”>
 <rdfs:label>Flight</rdfs:label>
</owl:Class>

<Flight rdf:ID=”flight-jb637”>
 <rdfs:label>JetBlue 637</rdfs:label>
 <flightNumber>JB637</flightNumber>
</Flight>

<Flight rdf:ID=”flight-jb638”>
 <rdfs:label>JetBlue 638</rdfs:label>
 <flightNumber>JB637</flightNumber>
</Flight>

So what have I asserted? In this model, I have two classes, Airport and

Flight. I’ve asserted two instances of airports, BOS and SFO, and I’ve

asserted two instances of flights, JB637 and JB638. Obviously, I could

14_396797-ch08.indd 19014_396797-ch08.indd 190 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

191 Chapter 8: Speaking the Web Ontology Language

provide a lot more information for each of the four instances, but this suffices

for now. For legibility, the labels of each instance in Figure 8-4 have been left

out of the diagram.

Quite a bit of description is missing from the instances, and information that

links flights to airports is also missing. From the model itself, I don’t know

where these flights depart from or arrive. What I want to say about a particu-

lar flight is that it departs from one airport and arrives at another airport.

Object properties allow you to create associations or relationships between

two individuals. That means the subject and the object the triple are both

individuals. In this particular case, I want to create an association (a triple)

that states a flight (the subject) departs from (the predicate) an airport (the

object). Likewise, I also want to be able to say that a Flight arrives at a par-

ticular airport. In Listing 8-3, take a look at the complete OWL/RDF (without

the housekeeping).

Figure 8-4:
More com-
plex logical
model with
Flights and

Airports.

Airport

terminalCodeairport-sfo

terminalCode

“SFO”

terminalCodeairport-bos
“BOS”

Flight

flightNumberflight-jb637

flightNumber

“JB637”

flightNumberflight-jb638
“JB638”

14_396797-ch08.indd 19114_396797-ch08.indd 191 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

192 Part III: Building the Semantic Web

Listing 8-3: The Complete OWL Airport Model

<!-- property assertions -->
<owl:DatatypeProperty rdf:ID=”terminalCode”/>
<owl:DatatypeProperty rdf:ID=”flightNumber”/>
<owl:ObjectProperty rdf:ID=”departsFrom”/>
<owl:ObjectProperty rdf:ID=”arrivesAt”/>
<!-- end property assertions -->

<!-- class assertions -->
<owl:Class rdf:ID=”Airport”>
 <rdfs:label>Airport</rdfs:label>
</owl:Class>

<owl:Class rdf:ID=”Flight”>
 <rdfs:label>Flight</rdfs:label>
</owl:Class>
<!-- end class assertions -->

<!-- individuals assertions -->
<Airport rdf:ID=”airport-sfo”>
 <rdfs:label>San Francisco International Airport</rdfs:label>
 <terminalCode rdf:datatype=
 “http://www.w3.org/2001/XMLSchema#string”>SFO</terminalCode>
</Airport>

<Airport rdf:ID=”airport-bos”>
 <rdfs:label>Boston Logan International Airport</rdfs:label>
 <terminalCode rdf:datatype=
 “http://www.w3.org/2001/XMLSchema#string”>BOS</terminalCode>
</Airport>

<Flight rdf:ID=”flight-jb637”>
 <rdfs:label>JetBlue 637</rdfs:label>
 <flightNumber>JB637</flightNumber>
 <departsFrom rdf:resource=”#airport-bos”/>
 <arrivesAt rdf:resource=”airport-sfo”/>
</Flight>

<Flight rdf:ID=”flight-jb638”>
 <rdfs:label>JetBlue 638</rdfs:label>
 <flightNumber>JB638</flightNumber>
 <departsFrom rdf:resource=”#airport-sfo”/>
 <arrivesAt rdf:resource=”airport-bos”/>
</Flight>
<!-- end individual assertions -->

The diagram in Figure 8-5 represents these same assertions within sets.

After studying the code sample above, you might be asking, “why not make

departsFrom and arrivesAt datatype properties?” It’s much more useful to

have objects as resources, a topic that I cover in Chapter 7. As you read fur-

ther into this chapter, I show you how some very interesting inferences can

only be drawn when using object properties.

14_396797-ch08.indd 19214_396797-ch08.indd 192 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

193 Chapter 8: Speaking the Web Ontology Language

Figure 8-5:
The logi-

cal model
gets more

complex
with linking
Properties

like
arrivesAt.

Airport

terminalCode
airport-sfo

terminalCode

“SFO”

terminalCode

airport-bos
“BOS”

Flight

arrivesAtflight-jb637

arrivesAt
departsFrom departsFromflight-jb638

If I were to only use the literal value approach, all an OWL reasoning system

would really infer is that airports and flights have departsFrom and arrivesAt
predicates whose objects are string literals — BOS or SFO. This is not any

more useful than a regular database. However, when I use object proper-

ties, that same reasoning system infers that the flights depart from or land

at airports and furthermore know which airports a particular flight departs

from or lands (and other information about those airports). In the section

“Complex Classes,” later in this chapter, I dive deeper into determining

Airport and Flight class membership.

Classes
I’ve demonstrated how classes are asserted in OWL:

<owl:Class rdf:ID=”Airport”/>

This is the simplest class assertion. It’s a good idea to provide a rdfs:label

to all classes that give the class a text description. There may be other pieces

of information to describe the class as well such as restrictions on member-

ship in a class, which is something I get into later in this chapter.

Aside from this simple way of defining OWL classes, all you really need to

understand about classes is the following:

 ✓ All classes in OWL are subclasses of owl:Thing;.

 ✓ Classes can share individuals. Individuals can be members of one

(including Thing) or more classes.

 ✓ Membership in classes may be explicit or implicit. Up until now, I have

shown you only the explicit variety.

14_396797-ch08.indd 19314_396797-ch08.indd 193 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

194 Part III: Building the Semantic Web

Seems simple, huh? Not quite. It’s time to revisit the open-world assumption

and put it in the context of classes, properties, and individuals. Based on my

existing OWL Airport Model shown earlier in Listing 8-3, the following state-

ment is true:

A flight can be an airport, and vice versa.

Wait, please don’t throw away this book — let me explain.

Using a simpler model to understand, consider three simple assertions in a

higher education domain:

<owl:Class rdf:ID=”Faculty”/>
<owl:Class rdf:ID=”Staff”/>
<owl:Faculty rdf:ID=”Jane”/>

So what does this model actually assert? The easiest way to understand the

logic is to see the classes and the instances in a Venn diagram. Figure 8-6

shows what most developers might have thought I asserted; that Jane is a

member of Faculty but not Staff. Figure 8-7 shows what I really said to the

OWL reasoner; that Jane is a member of the Faculty and might also be a

member of the Staff.

Figure 8-6:
What you
may have
thought I
asserted.

(Jane is
Faculty, and
Faculty are

not Staff.)

StaffFaculty

Jane

Figure 8-7:
What I

really
asserted.

(Jane is
Faculty and

might also
be Staff.)

StaffFaculty

Jane

StaffFaculty

Janeor

14_396797-ch08.indd 19414_396797-ch08.indd 194 2/13/09 7:18:26 PM2/13/09 7:18:26 PM

195 Chapter 8: Speaking the Web Ontology Language

Is this what I really meant? Maybe, or maybe not. There are two possible

models in this little world as a result of those three simple assertions. Fig-

ure 8-7 shows the two possible interpretations of the world. This apparent

ambiguity is what I get because of the open-world assumption. If I wanted to

eliminate the possibility that Jane is Faculty AND Staff, I would need to

assert one of the following:

 ✓ That a Faculty member could not be a Staff member (This concept is

called disjointness, which I explain later in the chapter in the section

“Disjointness.”)

 ✓ That Jane is not a Staff member

Before you decide OWL isn’t your cup of tea, you need to understand what

you require from your knowledgebase. If you only want a system to report

back to you exactly what has been asserted and no more (such as with a data-

base), you don’t need the features of OWL. You could certainly choose to use

OWL for those cases, but it wouldn’t be necessary and would probably be too

much overhead. Relational database models do an excellent job of telling you

what’s been asserted (for example, the records in a database) and nothing

more.

However, if you’re looking for a system to draw inferences or to interpret the

implications of your assertions (for example, to supply a dynamic view of

your data), OWL is for you. Does that mean you have to assert that all classes

in your data model are disjoint? Usually not. If you’ve determined that the

questions you seek answers for require open-world reasoning (as opposed

to the closed-world reasoning of relational database technology), it’s unlikely

you need to ensure that all classes in your model are mutually exclusive: Real

life data eliminates possibilities naturally. If you do decide to make these

assertions, you’re manually closing the world of possibilities directly in the

data model.

Now I want to ask my new Faculty ontology a couple of questions. First,

you know there are two implications (or inferred models): We see them

in Figure 8-7. One is the case where Jane is Faculty only, the other case

shows that Jane is Faculty as well as Staff. There is no implication Jane

is Staff only (because this possibility would be inconsistent with the asser-

tion, Jane is a member of the Faculty class). Here’s how I can confirm this:

Question:
Is Jane a Faculty member?

Answer:
OWA: Yes.
CWA: Yes.

Question:
Is Jane a member of the University Staff?

14_396797-ch08.indd 19514_396797-ch08.indd 195 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

196 Part III: Building the Semantic Web

Answer:
OWA: Maybe.
CWA: No.

Question:
Is Jane a Flying Spaghetti Monster?

Answer:
OWA: Maybe.
CWA: No.

The following ontology is a great example of how the OWA can explode the

world of possibilities with just a handful of assertions. Study the following

OWL snippet.

<owl:Class rdf:ID=”Staff”/>
<owl:Class rdf:ID=”SocialCommunity”/>

<owl:Class rdf:ID=”Faculty”>
 <owl:disjointWith rdf:resource=”#Staff”/>
</owl:Class>

<owl:Faculty rdf:ID=”Jane”/>
<owl:Staff rdf:ID=”Tom”/>
<owl:Community rdf:ID=”Mary”/>

The new class assertion SocialCommunity says that membership in either

the Faculty or Staff groups doesn’t necessarily imply membership within

the SocialCommunity. (At some universities in the United States, if you

don’t attend your school’s sporting events, you aren’t considered a true

member of the university’s social community!)

Our new disjoint assertion says that no Faculty can be Staff and no

Staff can be Faculty. This fact is likely true in most real-world cases. In

total, we have seven assertions (eight if you count the disjoint assertion

as a symmetric relationship). Because of the open-world assumption, the

SocialCommunity class intersects with Faculty and also with Staff.

Figure 8-8 illustrates all the possibilities for how Jane, Tom, and Mary

might fit.

(Admit it: You wanted to yell out, “Mickey Mouse!” when you saw Figure 8-8,

didn’t you?)

Because of the OWA, the model now has 12 possibilities. Notice I knew of

only three facts regarding the individuals: their known memberships (com-

puted by the ABox). But due to the OWA and my class assertions (inside the

TBox), I now know that there are nine additional facts — inferred facts.

14_396797-ch08.indd 19614_396797-ch08.indd 196 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

197 Chapter 8: Speaking the Web Ontology Language

Figure 8-8:
Twelve

possible
models of

reality in the
small OWL

example.

Mary
Jane

Jane

JaneTom

Tom

StaffFaculty StaffFaculty StaffFaculty StaffFaculty

Mary Mary Mary

Jane
Tom

Tom

SocialCommunity SocialCommunitySocialCommunity SocialCommunity

Mary

Jane Jane JaneTom Tom

MaryMaryMaryMary MaryMary MaryMary
JaneJane

TomTom TomTomMaryMary Mary Mary
Jane

Tom
Tom

StaffFaculty StaffFaculty StaffFaculty StaffFaculty

SocialCommunity SocialCommunitySocialCommunity SocialCommunity

Mary
Jane

Jane

JaneTom Tom

StaffFaculty StaffFaculty

SocialCommunity SocialCommunitySocialCommunity SocialCommunity

StaffFaculty StaffFaculty

TomTom TomTom

Mary Mary Mary

Tom

TomJane

This example is trying to illustrate that it’s not really a small world after all —

not in OWL anyway. Think of the last time you said something seemingly

simple and innocent that had numerous implications. Conveying the explo-

sion of implications from facts you’ve stated in your data model is precisely

OWL’s main advantage. This feature makes your data models dynamic and

multifaceted.

To understand Figure 8-8, start with the known facts (the classes), and then

simply move the individuals (Jane, Tom, and Mary) around from class to

class as long as you don’t violate the simple assertions in the model. Do this

until you’ve exhausted all possibilities.

Now I can ask the following questions:

Question:
Is Jane a member of the University Staff?

Answer:
OWA: No.
CWA: No.

Or put another way.

14_396797-ch08.indd 19714_396797-ch08.indd 197 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

198 Part III: Building the Semantic Web

Question:
Is Jane not a member of the University Staff?

Answer:
OWA: Yes.
CWA: Yes.

Question:
Is Tom, without a doubt, a member of the University

Community?

Answer:
OWA: No
CWA: No

Question:
Might Tom be a member of the University Community?

Answer:
OWA: Yes.
CWA: No.

The number of implications may increase or decrease depending on the

assertions I make. For instance, take a moment and consider a model where

all the classes are asserted as disjoint from one another. How would that

impact the preceding model? And what would happen if new data arrives that

violates my assertions? Say that new data arrives that states Jane is also

Staff. I discuss this in the section titled “Inconsistency” a little later in the

chapter.

Now I want to return to my earlier OWL example of airports and flights.

Now you should fully understand why flights and airports can be the same

thing unless I make those classes disjoint. Without explicitly stating Flight

cannot be an Airport and an Airport cannot be a Flight, one view of my

model really looks like the diagram in Figure 8-9.

Figure 8-9:
Logically,

a Flight
might be an
Airport, and

an Airport
might be a

Flight!

Flight Airport

flight-jb638

flight-jb637

airport-sfo

airport-bos

14_396797-ch08.indd 19814_396797-ch08.indd 198 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

199 Chapter 8: Speaking the Web Ontology Language

Applying open-world reasoning to my airports and flights model, if I were to

submit the query, Return a list of airports in the model., the

OWA answer would be:

 ✓ airport-sfo

 ✓ airport-bos

 ✓ flight-jb637

 ✓ flight-jb638

But, if I query, Return a list airports that we can prove are
definitely airports., the OWA answer would be

 ✓ airport-sfo

 ✓ airport-bos

Provable versus satisfiable
When querying an OWL reasoning system,
there are mainly two types of questions
another system or user will ask of it. One may
ask whether something is provably the case or
satisfiably (maybe) the case. A fact is provably
true if, given what is currently known and con-
sidering all the possible cases, the fact is true
in every case. A fact is satisfiably true if, given
what is currently known and considering all the
possible cases, the fact is true in at least one
case.

Likewise, a fact is provably false, if given what
is currently known and considering all the pos-
sibilities, the fact is false in every case. A fact
is satisfiably false, if given what is currently
known and considering all the possibilities, the
fact is false in at least one case.

To further illustrate, consider the following
statements:

 ✓ Anything that is provably true is also satisfi-
ably true.

 ✓ Anything that is provably false is also satis-
fiably false.

 ✓ Anything that is NOT satisfiably false, must
be provably true.

 ✓ Anything that is NOT satisfiably true, must
be provably false.

 ✓ Nothing can be provably true AND provably
false.

Thanks to the open-world assumption (OWA),
the OWL reasoner must assume that any fact
is potentially true unless it has been explicitly
told otherwise. Anything unknown could be
true or false, and a reasoner has to consider
both possibilities. Therefore fact is provable if
and only if it is true in every possible interpreta-
tion. It is satisfiable if it is true in at least one
model. Solving these set theory problems are
the two main uses of an OWL reasoner: to prove
a statement or to discover if a statement is pos-
sible (satisfiable).

14_396797-ch08.indd 19914_396797-ch08.indd 199 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

200 Part III: Building the Semantic Web

I can also ask other questions as well. Such as:

Question:
Which flights depart from Boston Logan International

Airport?

Answer:
JetBlue 637

Question:
Which flights arrive at which airports?

Answer:
Boston Logan International Airport, JetBlue 638
San Francisco International Airport, JetBlue 637

The OWA allows one to ask questions about what may or may not be true

and about what individuals may or may not be members of some class. When

a software system needs to answer questions without all the information at

hand, the open-world assumption can be a powerful reasoning tool.

Making Simple Assertions
Simple assertions of class, property, and individual, although critically impor-

tant, don’t have much implication beyond their explicit meaning. This section

goes a little further into nuanced OWL assertions. I show you more about

basic assertions that have broader implications that carry more potential

impact. The simple assertions I show you here are the most useful and fre-

quently used, but they aren’t the complete set.

Equivalence
Equivalence assertions state that two things are the same. It’s a simple

notion, but it has powerful implications in OWL. You can assert equivalence

for classes, properties, and individuals.

Class equivalence
Asserting that two classes are equivalent is a way of stating that every indi-

vidual who is a member of one class is also a member of the equivalent class.

This assertion is useful if you’re resolving synonym issues across systems.

Often in publishing, there is no distinction between author and creator.

By asserting the Author class is equivalent to the Creator class, you are

asserting that anyone who is an Author is also a Creator, and vice versa.

14_396797-ch08.indd 20014_396797-ch08.indd 200 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

201 Chapter 8: Speaking the Web Ontology Language

This is important because when you ask the question, What are all
known Authors in this system?, the response includes both authors

and creators in one query. The OWL/RDF looks like this:

<owl:Class rdf:ID=”Creator”/>
<owl:Class rdf:ID=”Author”>
 <owl:equivalentClass rdf:resource=”#Creator”/>
</owl:Class>

Property equivalence
By stating that two properties are equivalent, you’re stating that the proper-

ties are interchangeable. Considering documents: Say you’ve asserted that the

property has Author, which relates a Document to an Author. Elsewhere, if

you find the property hasCreator has the same meaning as hasAuthor, you

can use property equivalence to make them interchangeable.

Property equivalence allows you to query the system using either property.

Say you know that Jeff Pollock is an author and you want to know what

books he has written. If the model relates Jeff Pollock to one book with

hasAuthor, and another book with hasCreator, asking the question What
books hasAuthor Jeff Pollock? results in both books being returned.

The OWL/RDF looks like this:

<owl:ObjectProperty rdf:ID=”hasCreator”/>
<owl:ObjectProperty rdf:ID=”hasAuthor”>
 <owl:equivalentProperty rdf:resource=”#hasCreator”/>
</owl:ObjectProperty>

Individual equivalence
Understanding individual equivalence is not as trivial as it is with classes or

properties. Asserting two individuals are equivalent states that everything

that is asserted about one is also true about the other. Regardless of their

class membership, or properties they have, making two individuals equiva-

lent is analogous to saying the two are one and the same thing.

Whenever you assert two things are the same, it’s very important to think

about the implications. This is especially true with individuals. Asserting

equivalence should be done very carefully and is usually performed for resolv-

ing issues that come about from integrating different modeling contexts. In

most practical situations, the description logics–based OWL reasoning system

should be relied upon to determine whether individuals are equivalent.

<Person rdf:ID=”person-135”>
 <foaf:firstName>Jeff</foaf:firstName>
 <foaf:family_name>Pollock</foaf:family_name>
 <foaf:mbox>jtp@semanticwebfordummies.com</foaf:mbox>
</Person>

14_396797-ch08.indd 20114_396797-ch08.indd 201 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

202 Part III: Building the Semantic Web

<Person rdf:ID=”person-246”>
<foaf:firstName>Jeffrey</foaf:firstName>
 <foaf:family_name>Pollock</foaf:family_name>
 <hasMiddleInitial>T</hasMiddleInitial>
 <owl:sameAs rdf:resource=”#person-135”/>
</Person>

If both of these instances have the same referent, the author of this book,

Jeff Pollock, you know that he has an e-mail address and a middle initial

T and perhaps goes by either Jeff or Jeffrey — even though the facts

themselves may be asserted on either individual.

Depending on your situational context, the accessibility of different data for the

same person may be a positive or negative scenario for you. Either way, it is

most likely significant. You may be resolving differences between systems and

knowing that Jeff, the person, goes by either first name may be relevant to you.

But, it may also suggest that your data is inconsistent. Being aware of these data

inconsistencies is very likely important for your software application.

Disjointness
Disjointness assertions explicitly state that two things are different. One

common mistake is to think that disjointness means “opposite.” It doesn’t —

it means only that two things are not the same. Disjointness can be asserted

between classes or individuals.

Class disjointness
Recall that individuals can be members of more than one class. In fact, they

can be members of any class unless they are provably otherwise. (Remember

the many possible worlds in Figure 8-8.) So, asserting that two classes are

disjoint states that any member of one class cannot be a member of the dis-

joint class. This means that disjoint classes can have no common members. If

I assert that Flight is disjoint from Airport, my absurd statement earlier,

“A flight can be an airport, and vice versa,” can no longer be true. In the Venn

diagram in Figure 8-10, you now see what you might have thought that I origi-

nally asserted in the OWL Airport Model.

In OWL, the assertion that makes Flight disjoint from Airport looks like this:

<owl:Class rdf:ID=”Airport”>
 <rdfs:label>Airport</rdfs:label>
</owl:Class>

<owl:Class rdf:ID=”Flight”>
 <rdfs:label>Flight</rdfs:label>
 <owl:disjointWith rdf:resource=”#Airport”/>
</owl:Class>

14_396797-ch08.indd 20214_396797-ch08.indd 202 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

203 Chapter 8: Speaking the Web Ontology Language

Figure 8-10:
This is look-

ing better:
Flights are

disjoint from
Airports.

Flight Airport

flight-jb638

flight-jb637

airport-sfo

airport-bos

Individual disjointness
Disjoint individuals means something quite different than disjoint classes.

This assertion actually instructs an OWL reasoning engine to remove the idea

that the two individuals are equivalent from the set of possibilities. In other

words, if two individuals are asserted to be disjoint, the OWL reasoner will

always conclude that those instances are provably not equivalent.

Consider for the moment that I have a “notable names” ontology and there

are two references to Jerry Lewis. One of these individuals refers to

the Comedian/Actor, and the other refers to the Congressman/Politician.

Asserting that the two Jerry Lewis instances are disjoint means that an

OWL reasoning engine never considers the possibility that they are the same.

Does this mean that you have to assert individual disjointness on every

binary relationship in our ontology? Thankfully, you don’t. In reality, almost

all individuals in an ontology are disjoint. Remember, for two individuals to

be equivalent, what is true about one individual is also true of the other. This

is rarely the case in real-life data. Even if there were such cases, most prac-

titioners would rather know that an OWL system found two instances to be

equivalent — it could mean there’s a problem with the data arriving from one

or more data sources.

Here’s an example of asserting two individuals as disjoint in OWL:

<Person rdf:ID=”person-123”>
 <foaf:firstName>Jerry</foaf:firstName>
 <foaf:family_name>Lewis</foaf:family_name>
</Person>

<Person rdf:ID=”person-456”>
 <foaf:firstName>Jerry</foaf:firstName>
 <foaf:family_name>Lewis</foaf:family_name>
 <owl:differentFrom rdf:resource=”#person-123”/>
</Person>

14_396797-ch08.indd 20314_396797-ch08.indd 203 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

204 Part III: Building the Semantic Web

In the previous example, if there is no disjoint assertion on “person-456”,

an OWL reasoner takes into consideration that the two individuals could be

equivalent, and in fact concludes that they are satisfiably equivalent. As with

the equivalent individual assertion example, this is an important conclusion.

It may be a strong indicator that there are inconsistencies in your data that

may need resolving.

Subsumption
Subsumption is one of the most basic principles in set theory (and therefore

OWL). If you think of OWL classes as sets of things, subsumption expresses a

subset of relationships. Subsumption can be asserted on classes and proper-

ties, not individuals. Because subsumption exists in OWL, so does the con-

cept of supersumption — taking a group of existing classes and making them

subsets of a new class. But whether you need subsumption or supersump-

tion, in OWL, the syntax is expressed using the subClassOf keyword.

Subsumption logic states that if an individual is a member of a class, it is

provably a member of its superclass or superclasses. There is no restriction

as to the number of sub or superclasses a class may have. To illustrate sub-

sumption, take a look at Figure 8-11 — a Venn diagram of the book hierarchy

depicted in Figure 7-5 in Chapter 7:

Unique Name Assumption
The Unique Name Assumption (UNA) is a con-
cept that assumes individuals with different
names always refer to different entities. OWL
doesn’t make this assumption. It isn’t assumed
that because two individuals have different
names that they must be different. However,
OWL does provide a vocabulary for making two
individuals equivalent or distinct.

Human thinkers typically follow the UNA —
especially when it comes to solving riddles.
Here’s a riddle that provides a clear metaphor.

Two sons and two fathers went to a pizza res-
taurant. They ordered three pizzas. When they
came out, everyone had a whole pizza. How can
that be?

Most people would assume that there were
four people who entered the pizza restaurant,
“two sons and two fathers,” and focus on the
word whole as some attempt to trick them. But
in fact, there were three people: a grandfather,
a father, and a son.

Remember the absence of the Unique Name
Assumption when you’re using OWL.

14_396797-ch08.indd 20414_396797-ch08.indd 204 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

205 Chapter 8: Speaking the Web Ontology Language

You can see that the individual, Semantic Web For Dummies, is a

member of the class, The Internet Series, which is a subclass of For
Dummies, which is a subclass of John Wiley Book, which is a subclass of

things called Book. Therefore it is provably true, that the thing, Semantic
Web For Dummies, is a Book. You also know that the individual labeled,

Introduction To Modern Set Theory, is a member of John Wiley
Book (and therefore provably a Book), but you can’t prove that it is a

Higher Education book or Inter Science book or For Dummies book.

The OWL/RDF looks like Listing 8-4.

Listing 8-4: A John Wiley Book Ontology

<owl:Class rdf:ID=”Book”/>

<owl:Class rdf:ID=”JohnWileyBook”>
 <rdfs:subClassOf rdf:resource=”Book”/>
</owl:Class>

<owl:Class rdf:ID=”ForDummies”>
 <rdfs:subClassOf rdf:resource=”JohnWileyBook”/>
</owl:Class>

<owl:Class rdf:ID=”HigherEducation”>
 <rdfs:subClassOf rdf:resource=”JohnWileyBook”/>
</owl:Class>

<owl:Class rdf:ID=”InterScience”>
 <rdfs:subClassOf rdf:resource=”JohnWileyBook”/>
</owl:Class>

<owl:Class rdf:ID=”TheInternetSeries”>
 <rdfs:subClassOf rdf:resource=”ForDummies”/>
</owl:Class>

<owl:Class rdf:ID=”TravelSeries”>
 <rdfs:subClassOf rdf:resource=”ForDummies”/>
</owl:Class>

<ForDummies rdf:ID=”SemanticWebForDummies”/>

<JohnWileyBooks rdf:ID=”IntroductionToModernSetTheory”/>

All For Dummies books have the string “Dummies” in the title and there-

fore, as a human, you could conclude that the book, Introduction to
Modern Set Theory, is provably not a Dummies book. But unless I

make the assertion that All Dummies series books have the word
Dummies in the title, you cannot interpret that fact provably.

There can be no disjointness between sets that have a subset relationship. If

an individual is a member of a set, and therefore provably the set’s superset,

the two sets cannot be disjoint.

14_396797-ch08.indd 20514_396797-ch08.indd 205 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

206 Part III: Building the Semantic Web

Figure 8-11:
Semantic
Web For

Dummies
is a type of
John Wiley

Book.

John Wiley Book

For Dummies

The
Internet Series

Travel Series

Higher
Education

Inter Science

Book

Adaptive InformationAdaptive Information
Introduction to Modern Set TheoryIntroduction to Modern Set Theory

Semantic Web For DummiesSemantic Web For Dummies

Adaptive Information
Introduction to Modern Set Theory

Semantic Web For Dummies

In practice, sibling sets (sets who share the same parent/superset) are typi-

cally disjoint. Therefore, asserting that they are disjoint in OWL is common

practice. If, upon investigation, you can’t determine the sibling sets should

be disjoint, the sets in question may be better suited to having a subset

relationship.

Subsumption in properties is used when using one property implies the use

of another. A very common example used to illustrate this is hasParent and

hasAncestor. It’s important to note that this isn’t property equivalence —

these properties are not interchangeable. One implies the other. In this case,

hasParent implies hasAncestor. The OWL/RDF is

<owl:ObjectProperty rdf:ID=”hasAncestor”/>

<owl:ObjectProperty rdf:ID=”hasParent”>
 <rdfs:subPropertyOf rdf:resource=”#hasAncestor”/>
</owl:ObjectProperty>

14_396797-ch08.indd 20614_396797-ch08.indd 206 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

207 Chapter 8: Speaking the Web Ontology Language

Inconsistency
Remember that OWL is monotonic: Adding new statements (information) to

a world knowledge base never falsifies a previous conclusion. This behav-

ior opens the door for modelers to make inconsistent assertions. An OWL

reasoner doesn’t complain about inconsistency. In fact, you can still ask

questions of an inconsistent ontology and get sensible conclusions, but

sometimes the results may not make sense. When this happens, asking the

OWL reasoner to tell you whether a model is consistent is a good idea. All

good OWL reasoners have this capability.

What makes an ontology inconsistent? A number of different scenarios can,

and I can’t cover them all here. One thing is for sure, however: An ontology

without individuals will never be inconsistent, even though it may contain

contradicting assertions. Consider the following ontology:

<owl:Class rdf:ID=”A”/>

<owl:Class rdf:ID=”B”>
 <owl:disjointWith rdf:resource=”#A”/>
</owl:Class>

<owl:Class rdf:ID=”C”>
 <rdfs:subClassOf rdf:resource=”A”/>
 <rdfs:subClassOf rdf:resource=”B”/>
</owl:Class>

Remember, OWL is based on set theory. So, if the ontology contains no indi-

viduals, an OWL reasoner knows that every set (A, B, and C in this case) is

empty — including the set Thing — meaning that there are no members in

any set and, therefore, no conclusion can be drawn that the assertions are

contradictory. However, if you introduce an individual into the ontology

(regardless of its asserted membership):

<C rdf:ID=”someIndividual”/>

The reasoner now has enough information to tell the user whether the ontol-

ogy is consistent. In this case, it is not. The OWL reasoner approximates this

kind of logic-checking process: If the individual is a member of A, it is not

necessarily a member of C and is provably not a member of B; therefore, it is

okay. The same logic applies if the individual is a member of B.

But in our case, the individual is a member of C, and is therefore provably

a member of A and B (by subsumption), but A and B cannot have common

members (because of the disjointness assertion). Therefore, the entire model

is inconsistent.

14_396797-ch08.indd 20714_396797-ch08.indd 207 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

208 Part III: Building the Semantic Web

Consistency can be checked in an ontology. Checking whether future asser-

tions contradict a previous assertion is a powerful tool for quality assurance.

If an ontology becomes inconsistent, there may also be issues with the quality

of data arriving from your data sources. An often-used test is to query your

ontology for “empty” classes or unclassified individuals. Either situation may

be an indicator that the model needs to be reconsidered in light of the actual

system data. In fact, in the biomedical research industry, new protein combi-

nations have been discovered exactly this way by researchers using OWL rea-

soning systems with real drug discovery data.

Examining Property Characteristics
Throughout this chapter, I review the implications of OWL’s simpler asser-

tions. In this section, I dive into assertions that have deeper and more com-

plex impacts on the data model.

First, I examine property characteristics. The best way to understand the

simple assertion of a property is in terms of datatype sets. Consider the fol-

lowing OWL:

<owl:DatatypeProperty rdf:ID=”productClass”/>

With this simple assertion, I’ve created a new class (unnamed for now) that

contains all things with the property productClass. Introducing a property

in an ontology is equivalent to asserting an anonymous class of all things that

have that property assignment. If I assert the following:

<Product rdf:ID=”product-123”>
 <productClass>Electronics</productClass>
</Product>

I’ve created an anonymous set of things that have a property called

productClass with a value Electronics whose member is product-123

(and perhaps other members). Figure 8-12 shows the anonymous class.

Anonymous classes may be created from ObjectProperty assertions as

well. For instance, if product-123 has a property called assembledFrom
with a target product-456, another anonymous set of things is created that

are all those things that are assembled from product-456.

Be sure to understand that properties are features of an individual that either

include or exclude the individual from a class or category. Characteristics of a

property refine that inclusion or exclusion.

14_396797-ch08.indd 20814_396797-ch08.indd 208 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

209 Chapter 8: Speaking the Web Ontology Language

Figure 8-12:
A new

datatype
property
implies a

new anony-
mous class

of things.

The Set of All Things
with productClass =

Electronics

product-123

productClass “Electronics”

Functional
Functional properties allow me to assert that a Person can have only one

biological mother. For instance,

<owl:ObjectProperty rdf:ID=”biologicalMother”>
 <rdf:type rdf:resource=
 ”http://www.w3.org/2002/07/owl#FunctionalProperty”/>
</owl:ObjectProperty>

This characteristic has some very interesting implications. The preceding

assertion states that for any given subject engaged in a biologicalMother

relationship, it can have only one object. But this is not a constraint in tradi-

tional terms. Remember, OWL being monotonic, I can assert later that a par-

ticular individual has yet another biological mother. For instance,

<foaf:Person rdf:ID=”person-123”>
 <biologicalMother rdf:resource=”#person-123456”/>
</foaf:Person>
later...
<foaf:Person rdf:ID=”person-123”>
 <biologicalMother rdf:resource=”#person-123456789”/>
</foaf:Person>

Using the OWA, an OWL reasoner doesn’t complain about that second asser-

tion. In fact, if you ask the reasoner to check on consistency, it reports back

as consistent. What the heck is happening here? The reasoner correctly

concludes that person-123456 and person-123456789 are equivalent!

Because biologicalMother is a functional property, the reasoner con-

cludes that the objects of both assertions must be the same individual and

therefore equivalent.

14_396797-ch08.indd 20914_396797-ch08.indd 209 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

210 Part III: Building the Semantic Web

Functional properties are a very important property characteristic to under-

stand. In general, assertions in OWL are used to force an OWL reasoner to

eliminate from consideration certain possibilities. Its function is not to decide

which assertions appear contradictory or nonsensical and throw them out of

consideration.

A healthy debate exists about the use of functional properties when apply-

ing OWL in real life (whether or not to use Functional Properties to eliminate

possibilities in the model), and both points of view have good arguments.

One simple thing to keep in mind is that you want to build your ontology as

close as possible to the real world, but you also need to understand how it

may be used by the software applications that need it. For example, it might

be a widely accepted fact that a person has only one biological mother, and

therefore you might argue for this assertion in an OWL ontology about clini-

cal healthcare. But if data later comes along that suggests there are two

individuals who qualify to be a biological mother of a person (as with trans-

planted eggs), I would want the reasoner to tell me about that too. If some-

body makes a new assertion for two birthmothers, perhaps my data might be

corrupt or indeed the two (OWL) individuals have the same referent, but just

different URIs. Either way, this is important knowledge for my system.

Inverse
In the stated terms of the triple, inverse properties suggest the same relation-

ship, but with the subject and object reversed. This means that a declared

relationship in one direction implies the inverse relationship in the other

direction.

Every object property has an implied inverse. For example, partOf is a

natural choice for the inverse of assembledFrom. But it is implied or

unnamed. In other words, the subjects of partOf are the set of all objects of

assembledFrom. A Venn diagram in Figure 8-13 illustrates this point.

In the figure, product-123 is engaged in the assembledFrom property, and

its object is product-456. In the inverse scenario, the subject and object

are flipped in the partOf property relationship. By labeling the inverse prop-

erty of assembledFrom with partOf, we can refer to it in the ontology and

therefore use it for querying. The assertion looks like this:

<owl:ObjectProperty rdf:ID=”assembledFrom”/>

<owl:ObjectProperty rdf:ID=”partOf”>
 <owl:inverseOf rdf:resource=”#assembledFrom”/>
</owl:ObjectProperty>

14_396797-ch08.indd 21014_396797-ch08.indd 210 2/13/09 7:18:27 PM2/13/09 7:18:27 PM

211 Chapter 8: Speaking the Web Ontology Language

Figure 8-13:
Inverse

relationship
among OWL

properties
assembled-

From and
partOf.

The Set of All Things
with property =
assembledFrom

product-123

The Set of All Things
with property = partOf

(inverse of assembledFrom)

assembledFrom

partOf product-456

It is important to note here that because string literals are not allowed to be

the subject of a property relationship in OWL, there are no implied inverses

of datatype properties. In other words, it cannot be asserted that the literal

Electronics is the productClassOf of product-123 (from Figure 8-12).

Symmetric
Asserting that a property is symmetric allows the modeler to state that given

a property relationship between a subject and object, the property relation-

ship in the other direction is also given. A perfect usage of this characteristic

is the sibling relationship:

<owl:ObjectProperty rdf:ID=”sibling”>
 <rdf:type rdf:resource=
 ”http://www.w3.org/2002/07/owl#SymmetricProperty”/>
</owl:ObjectProperty>

The symmetry of the relationship means that it can hold going in both direc-

tions. I am the sibling of my brother, and my brother is also the sibling of me.

Transitive
A good way to understand the OWL transitive property is to remember back

to your primary school education. “If A equals B and B equals C, then A

equals C” is how you probably learned about transitivity. In this example, the

equals operator is transitive (and also symmetric).

14_396797-ch08.indd 21114_396797-ch08.indd 211 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

212 Part III: Building the Semantic Web

Located In is another great example of a transitive property. For example,

if the Golden Gate bridge is located in San Francisco, and San Francisco is

located in California, the Golden Gate bridge must be located in California.

Here’s the transitive property assertion in OWL:

<owl:ObjectProperty rdf:ID=”locatedIn”>
 <rdf:type rdf:resource=
 “http://www.w3.org/2002/07/owl#TransitiveProperty”/>
</owl:ObjectProperty>

Property characteristics such as inverse, symmetric, and transitive allow you

to ask an OWL reasoner if an instance of data provably or satisfiably partici-

pates in a relationship (as well as the object of that relationship). In other

words, you can ask pretty interesting questions about the data in a knowl-

edgebase because our object relationships are very expressive.

Complex Classes
Because OWL ontologies are based on Set Theory, I can use complex class

assertions to define how sets are related to other sets. Just as I can per-

form regular Boolean operations on sets, I can do the same thing with OWL

classes. In the following sections, I describe three of the most important class

combinations: intersection, union, and complement.

Complex classes allow for dynamic categorization based on class member-

ship criteria. Rather than asserting class membership explicitly, the idea is to

specify the criteria for inclusion and then allow the OWL reasoner to deter-

mine membership by considering an individual’s unique characteristics.

Intersection (And)
A class described by the intersection of two or more classes includes exactly

all the individuals that are common to all the classes listed in the intersec-

tion. For example, say that you’re a compliance officer for your organization

and you want to describe someone who has a Purchase Order Creator role

and a Purchase Order Approver role as a potential compliance violation.

Here’s how you would describe such a class:

<owl:Class rdf:ID=”POCreator”/>
<owl:Class rdf:ID=”POApprover”/>

<owl:Class rdf:ID=”IllegalRole”/>
 <owl:intersectionOf rdf:parseType=”Collection”>
 <owl:Class rdf:about=”#POCreator”/>
 <owl:Class rdf:about=”#POApprover”/>
 </owl:intersectionOf>
</owl:Class>

14_396797-ch08.indd 21214_396797-ch08.indd 212 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

213 Chapter 8: Speaking the Web Ontology Language

With the OWL in Figure 8-14, I’ve created a new set called IllegalRole

whose members are those individuals that are in both POCreator and

POApprover sets.

Figure 8-14:
IllegalRole

is the inter-
section of

Creator and
Approver.

Purchase Order
Creator

role-123

Purchase Order
Approver

role-456

role-789

Illegal Role = intersectionOf (PO Creator; PO Approver)

Union (Or)
A class described by the union of two or more classes includes all the mem-

bers specified in the union. Say that you’re a travel agent in New England and

you want to describe a class called WinterGetaway that includes Florida,

Aruba, and Bermuda getaway packages that you offer. Here’s how you would

describe such a class (see Figure 8-15):

<owl:Class rdf:ID=”FloridaGetaway”/>
<owl:Class rdf:ID=”ArubaGetaway”/>
<owl:Class rdf:ID=”BermudaGetaway”/>

<owl:Class rdf:ID=”WinterGetaway”/>
 <owl:unionOf rdf:parseType=”Collection”>
 <owl:Class rdf:about=”#FloridaGetaway”/>
 <owl:Class rdf:about=”#ArubaGetaway”/>
 <owl:Class rdf:about=”#BermudaGetaway”/>
 </owl:unionOf>
</owl:Class>

In a real situation, I might model the getaways as subclasses of a class called

Getaway, and also make each getaway subclass disjoint from its siblings.

14_396797-ch08.indd 21314_396797-ch08.indd 213 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

214 Part III: Building the Semantic Web

Figure 8-15:
The union of
these three

getaways
are in the

Winter
Getaway

class.

Winter Getaway

Flordia Getaway

gw-florida

Aruba Getaway

Bermuda Getaway

gw-aruba

gw-bermuda

In this case, every individual in any of the three classes is a member of the

WinterGetaway class.

Complement (Not)
A complement describes a class that includes all the members that provably

do not belong to a specified class. Asserting an individual is provably not

a member of class A implies that it is satisfiably a member of all the other

classes that are provably not equivalent to class A. By itself, complement

isn’t very useful, but combined with intersection, it can be quite helpful. With

an intersection, you give that individual more meaning. Here’s what the OWL

looks like:

<owl:Class rdf:ID=”NotAReplacementPart”>
 <owl:complementOf>
 <owl:Class rdf:about=”#ReplacementPart”/>
 </owl:complementOf>
</owl:Class>

14_396797-ch08.indd 21414_396797-ch08.indd 214 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

215 Chapter 8: Speaking the Web Ontology Language

Without an intersection with a class called Part, members of

NotAReplacementPart may include anything (a member of any class

that is not equivalent to ReplacementPart of course).

Restriction classes
Restriction classes are very powerful classes packed with reasoning implica-

tions. Restriction classes have property restrictions placed on them. These

restrictions dictate which individuals get included in or excluded from the

class. This is often the preferred approach to determining class membership —

to specify class membership criteria and let the reasoner decide if an individual

is a member as opposed to explicitly asserting the fact.

For example, in my OWL Airport and Flight ontology, I could set the cri-

teria for being an Airport instead of explicitly asserting airport-sfo and

airport-bos to be members of the Airport class. Here’s one simple way

to define the main characteristic of an airport:

An Airport is anything that a Flight departs from.

In OWL, it looks like this:

<owl:Class rdf:ID=”Airport”>
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#hasDeparting”/>
 <owl:someValuesFrom rdf:resource=”#Flight”/>
 <owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

The owl:Restriction is the criteria I’m setting on the class Airport. It’s

stating that to be an Airport, an individual must have the property has-
Departing, and the object of that property relationship must be a Flight.

Furthermore, with owl:someValuesFrom, I state that only one such triple

needs to exist to satisfy the criteria. This statement implies that if there are

other property relationships, that the individual is involved with that those

are irrelevant.

Study the following change to our Airport class and Airport individuals,

shown in Listing 8-5.

14_396797-ch08.indd 21514_396797-ch08.indd 215 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

216 Part III: Building the Semantic Web

Listing 8-5: An Updated OWL Airports Ontology

<owl:Class rdf:ID=”Airport”>
 <rdfs:label>Airport</rdfs:label>
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#hasDeparting”/>
 <owl:someValuesFrom rdf:resource=”#Flight”/>
 </:w
owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

<Thing rdf:ID=”airport-sfo”>
 <rdfs:label>San Francisco International Airport</rdfs:label>
 <terminalCode rdf:datatype=
“http://www.w3.org/2001/XMLSchema#string”>SFO</terminalCode>
 <hasDeparting rdf:resource=”#flight-jb638”/>
</Thing>

<Thing rdf:ID=”airport-bos”>
 <rdfs:label>Boston Logan International Airport</rdfs:label>
 <terminalCode rdf:datatype=
 “http://www.w3.org/2001/XMLSchema#string”>BOS</terminalCode>
</Thing>

This is much different from my earlier example of Airports and Flights in

Listing 8-3. This time, I’ve made Airport a restriction class, and I’ve changed

the individuals, airport-sfo and airport-bos, to be in the Thing class —

I want the reasoner to determine their membership in the Airport class.

Note that airport-sfo has at least one property relationship with

hasDeparting, and the object of that relationship is known to be a Flight.

The reasoner in this case concludes that airport-sfo is provably an

Airport. But what about airport-bos? There is no such data for

airport-bos. In this case, the reasoner concludes that airport-bos may

be an Airport, but can’t prove it. In fact, it may even be a Flight (but it

can’t be both because of the disjoint assertion).

This a very critical point to understand. If you ask an OWL reasoner for all

things proven to be members of the Airport class, you get airport-sfo.

If you ask for all things that might be in the Airport class, you get

airport-sfo and airport-bos. The reasoner doesn’t return the members

of the Flight class because their membership is explicit and flights cannot

be airports.

Can you apply similar membership criteria to a Flight? You can. Consider

this statement:

A Flight arrives at an Airport.

14_396797-ch08.indd 21614_396797-ch08.indd 216 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

217 Chapter 8: Speaking the Web Ontology Language

You can model this in OWL:

<owl:Class rdf:ID=”Flight”>
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#arrivesAt”/>
 <owl:allValuesFrom rdf:resource=”#Airport”/>
 <owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

The restriction placed on the Flight class is similar to the one put on

Airport. In this case, the property relationship is arrivesAt with the

object being an Airport. There is one minor syntactical but major semantic

difference — owl:allValuesFrom means that all the objects of arrivesAt

property relationships must also be members of the Airport class. Listing

8-6 illustrates the change in the example.

Listing 8-6: An Updated OWL Airports Ontology with Flights as Restrictions

<owl:Class rdf:ID=”Flight”>
 <rdfs:label>Flight</rdfs:label>
 <owl:disjointWith rdf:resource=”#Airport”/>
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource=”#arrivesAt”/>
 <owl:allValuesFrom rdf:resource=”#Airport”/>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

<Thing rdf:ID=”flight-jb637”>
 <rdfs:label>JetBlue 637</rdfs:label>
 <departsFrom rdf:resource=”#airport-bos”/>
<arrivesAt rdf:resource=”airport-sfo”/>
</Thing>

<Thing rdf:ID=”flight-jb638”>
<rdfs:label>JetBlue 638</rdfs:label>
<departsFrom rdf:resource=”#airport-sfo”/>
<arrivesAt rdf:resource=”airport-bos”/>
</Thing>
<!-- end individual assertions -->

Note that both flight-jb637 and flight-jb638 have at least one

arrivesAt property relationship, but only flight-637’s participation is

with a known Airport, airport-sfo. I know flight-jb638 arrives some-

where, but I don’t know where for sure. Because I can’t prove airport-bos

14_396797-ch08.indd 21714_396797-ch08.indd 217 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

218 Part III: Building the Semantic Web

is an Airport, I can’t prove flight-jb638 arrives at an Airport and

therefore can’t conclude that it is provably a Flight. But, there is another

implication here: The reasoner can’t conclude that flight-jb637 is prov-

ably a Flight either! It may be, but the reasoner can’t prove it. Remember,

all arrivesAt properties must have Airport as the object. Even though the

one assertion I see satisfies this restriction, the next new assertion that gets

added to the model (where the object participating within the arrivesAt

relationship with flight-jb637 is disjoint from Airport) may or may not

satisfy this restriction (due to the open-world assumption).

Asserting restrictions like owl:allValuesFrom are based on value of the

object (in this case, Airport), whereas owl:someValuesFrom is based on

number of relationships (at least one). In practice, owl:someValuesFrom

is most commonly used. You can see where the implications from

owl:allValuesFrom may cause a lot of sleepless nights.

Domain and range
Domain and range restrictions are global restrictions on properties (as

opposed to local property restrictions like functional, transitive, and so on).

They apply to every instance of the property in an ontology. The most impor-

tant thing to understand about domain and range is that they are not used as

constraints (as in mathematics). They’re used to infer an individual’s mem-

bership in a class or classes, which is why I describe them in the “Complex

Classes” section of this chapter.

In mathematics, the domain of a function is the set of all values that can be

inputs, and the range is the set of values that can be outputs. You can use

domain and range in this case to test if a value is allowed as an input or

output. This is not the case in OWL. Here are some examples:

<owl:ObjectProperty rdf:ID=”capitalOf”>
 <rdfs:domain rdf:resource=”#City”/>
 <rdfs:range rdf:resource=”#AdministeredRegion”/>
</owl:ObjectProperty>

With the preceding OWL, I asserted that the subject of the capitalOf prop-

erty must be a City and the object must be an AdministeredRegion (a

region with an administrative seat). To illustrate the implication of domain

and range in OWL, I’ll assert something absurd: The Atlantic Ocean is the

capital of Spain.

<Thing rdf:ID=”AtlanticOcean”>
 <capitalOf rdf:resource=”#Spain”/>
</Thing>

14_396797-ch08.indd 21814_396797-ch08.indd 218 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

219 Chapter 8: Speaking the Web Ontology Language

This doesn’t make sense to a human, but an OWL reasoner doesn’t com-

plain and in fact makes perfect sense out of these facts. Domain is used

to infer subject membership in a class; range is used to infer object mem-

bership. Given this, the OWL reasoner concludes that Spain must be an

AdministeredRegion (which sounds reasonable), but it also concludes

that the AtlanticOcean must be a City. This last conclusion sounds unrea-

sonable. This example highlights the potential power of domain and range

reasoning such as being able to conclude membership in a class without all

of the information available. But it also exposes a misconception.

The way to really think about domain and range in OWL is to ask yourself

what types of things are the subject and object of a property, rather than

what types of things can be. If you find yourself asking the latter, avoid-

ing domain and range restrictions is wise. In most cases, using restriction

classes would be a better way to go. The distinction between things that are

or can be are subtle, but consider this for our example. Cities can be capitals

of administered regions, but are they necessarily? No. Perhaps a subclass

of City, called Capital (or CapitalCity) would be better suited as the

domain of capitalOf because they are capitals of administered regions.

Consider how the open-world assumption applies to these two property

restrictions. Remember, the absence of an explicit property relationship

between two individuals does not imply that one does not exist. Also, remem-

ber that you can’t assert that a property doesn’t exist between two individuals.

Going back to the Airport and Flight ontology: I haven’t set domain and

range restrictions on arrivesAt and, due to the OWA, the reasoner thinks

it is possible that an Airport can arrive at a Flight. This doesn’t make

sense. To keep the reasoner from drawing this conclusion, I simply state that

arrivesAt has a domain of Flight. This eliminates the possibility that an

airport can be in the domain of arrivesAt and therefore makes that prop-

erty relationship no longer satisfiable.

Domain and range are powerful but often misunderstood in the context of

OWL. As shown in these examples, they may help remove some nonsensical

possibilities but may also introduce them as well. In some cases, as in the

first example, using restriction classes is the better option.

Distinguishing Necessary from
Necessary and Sufficient

One of the greatest powers of representing knowledge in OWL is the ability

for you and me as modelers to choose between subsumption (subclass rela-

tionships) and equivalence class assertions.

14_396797-ch08.indd 21914_396797-ch08.indd 219 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

220 Part III: Building the Semantic Web

Subclass relationships provide necessary conditions for class membership,

but this is only a partial definition. For instance, examine the Figure 8-16 (a

slight modification of Figure 8-14). For an individual to be an IllegalRole

in this model, by definition of the IllegalRole class, the individual must

be a POApprover and a POCreator. But the fact that the role is both a

POApprover and POCreator is not sufficient by itself. You can’t prove

that if an individual meets these two criteria alone that it is provably an

IllegalRole.

Figure 8-16:
Subclass

semantics
are neces-

sary but not
sufficient
for proof.

Purchase Order
Creator

Purchase Order
Approver

Illegal
Role

The intersection partially defines an Illegal Role

role-789

However, when you use the intresectionOf constructor, you’re using

equivalence semantics by default. Equivalence relationships provide neces-

sary and sufficient semantics — a complete definition. For example, Figure

8-17 shows an OWL intersection that An IllegalRole is a POCreator
AND a POApprover. I’m using equivalent class semantics. IllegalRoles

are exactly those individuals that have both a POCreator and POApprover

roles. There’s no other definition of an IllegalRole. If an individual does not

have both roles, the individual is provably not an IllegalRole.

This distinction between simple subclass reasoning and more advanced com-

plex class reasoning is one of the powers of OWL — you can specify a rich set

of relationships, rules, and constraints directly onto your data, and you can

reclassify that same data on-demand.

14_396797-ch08.indd 22014_396797-ch08.indd 220 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

221 Chapter 8: Speaking the Web Ontology Language

Figure 8-17:
Equivalence

semantics
are neces-

sary and
sufficient.

Purchase Order
Creator

Purchase Order
Approver

The intersection completely defines an Illegal Role

role-789

Understanding Why OWL Is Different
Throughout this chapter, I make comparisons between OWL and other forms

of knowledge representation — such as relational databases and object-

oriented systems. Generally speaking, good code written by smart people

can certainly give the illusion that some type of reasoning is happening, but

only OWL supplies a standard semantic that can be reliably and repeatedly

applied to data in different locations.

In this book, I describe many benefits to using OWL (and reasoning engines

that consume OWL) that data practitioners can take advantage of. The follow-

ing three benefits are the key reasons why OWL matters to data architects

and data modelers.

Precision
Declaring a data assertion to be true (or false) without having all the evi-

dence leaves open the possibility that your facts may be incorrect. In my

University OWL example, if I were to assert Jane is a Faculty member at

a University, but the properties for Jane do not support this assertion,

then I would have an inconsistency in my data. However, if I describe what a

Faculty member is (requiring an employee ID, a status, or some combina-

tion of criteria), a reasoner always draws the correct conclusion for every

14_396797-ch08.indd 22114_396797-ch08.indd 221 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

222 Part III: Building the Semantic Web

person in the knowledgebase (or it would at least tell you that it doesn’t

have enough information to answer with certainty — if you ask it). There

may be other class memberships you want to discover as well; for instance,

based on years of service and other criteria, a Faculty member may be a

TenuredFaculty member, and so on.

In contrast, one must write complex queries in a database, or complex logic

in an object-oriented program to determine class membership for a par-

ticular instance of data. With databases, the important semantics are in the

query itself, not in the database model. Simply put, with a database, the fact

that a record exists means that the record belongs to the set of things in that

table, nothing more.

Dynamism
Dynamic categorization is the action a reasoner takes every time new knowl-

edge enters the system. As new data comes into the system, the reasoner

is asked to re-categorize all the individuals (based on the knowledge you’ve

given it — the TBox and ABox), and it infers class membership for all indi-

viduals. If new information about Jane the Faculty member comes into the

system that meets the criteria of the TenuredFaculty class, she becomes a

member of that class.

Dynamic categorization is very important in time-sensitive applications

where records or documents change “state” frequently. Notions of stale data,

safe-harbor documents, day/week/month old documents, classified data, and

so on are based on metadata about a document or data, and that metadata

may change frequently. Modeling different data states or document states is

very easy with OWL, as you can see in this chapter’s examples. Instead of tag-

ging everything explicitly, you let the OWL reasoning engine draw the logical

conclusions for you.

There’s no such thing as dynamic categorization in relational database or in

object-oriented design. Database queries and code contain the real semantics —

and they typically represent very specific and narrow contexts for truth.

Expressiveness
In OWL, you can create a simple model that represents knowledge that

looks just like a relational model. On the other side of the spectrum, one can

create a model that is very open and has numerous implications (and a lot

of them are of no use to us). Somewhere in between is where your model

will fit. Which side it favors depends on various factors: your domain and

14_396797-ch08.indd 22214_396797-ch08.indd 222 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

223 Chapter 8: Speaking the Web Ontology Language

how explicit you need to be or how vague you can afford to be; whether you

choose to use object properties rather than datatype properties; whether

you use subclass semantics or equivalence semantics; whether you use

domain and range; whether you eliminate possibilities with disjoint axioms;

and so on. Oh, and there’s that thing about satisfying your system require-

ments and use cases.

This flexibility in knowledge representation is unseen in database and object-

oriented technologies. A combination of primary key/foreign key relation-

ships and triggers in relational databases simulate “reasoning” (as well as

writing code), but again, they’re tied to very specific and narrow contexts.

Developing OWL Ontologies
After you decide that you want to develop OWL ontologies for a project,

you will want to develop your real-world data models without having to

hand-code OWL or gaze at Venn diagrams. When developing an OWL-

based system, you constantly need to keep a clear distinction between the

instances (ABox) and the models (TBox). Because OWL allows you to change

the models on-the-fly, this distinction is somewhat trickier to bear in mind

because both the data and the models may change at any time due to appli-

cation behavior.

For the moment, I’m going to set aside the details about how to work with

OWL individuals (ABox) during development; in any case, that discussion

is essentially a discussion about RDF triples. How to go about creating RDF

resources for your data is covered in Chapter 7 — there are numerous

methods.

But how should you model the (TBox) class and property assertions? As with

RDF/S, there are many tools on the market. For ontology modeling, tools that

have a graphical user interface, are scalable, and have a lightweight reason-

ing engine to reason about and allow querying are the most practical tools.

Chapter 9 gives you more details about these OWL modeling tools and

describes other essential extensions of the Semantic Web that can make your

applications even more powerful.

14_396797-ch08.indd 22314_396797-ch08.indd 223 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

224 Part III: Building the Semantic Web

14_396797-ch08.indd 22414_396797-ch08.indd 224 2/13/09 7:18:28 PM2/13/09 7:18:28 PM

Chapter 9

Exploring Semantic Web Enablers
In This Chapter
▶ Enabling technologies that surround the Semantic Web core architecture

▶ Finding out how Natural Language Processing (NLP) adds more power and baggage

▶ Discovering why business rules are the next frontier for the Semantic Web

▶ Finding new operational models for your software applications

If you’ve read the first eight chapters of this book, you probably under-

stand by now that the Semantic Web is a multifaceted and dynamic topic

that spans technical and social domains. In this book, I try to supply you

with the breadth of understanding and the context to apply Semantic Web

languages in your own projects. In particular, I focus this introduction to the

Semantic Web predominantly on the RDF and OWL languages. For technical

purists, RDF and OWL are the heart and soul of the Semantic Web. However,

several other “neighboring” technologies may not be considered as core

to the Semantic Web, but are no doubt essential to its success. Natural

Language Processing (NLP) technology, business rule languages, and vari-

ous data vocabularies built with RDF/OWL may all be instrumental to the

long-term success of the Semantic Web despite the fact that many people do

not consider them a central feature of the core technologies. These various

Semantic Web enablers are the topic of this chapter.

Revisiting the Semantic Web Stack
The defining picture of the Semantic Web is sometimes called the “layer

cake.” The logical architecture diagram in Figure 9-1 is the visual depiction of

how the core technologies of the Semantic Web should fit together.

In practice, the technology represented by each of these individual architec-

ture layers is in a different state of maturity. Figure 9-2 shows which technol-

ogies are highly mature, mostly mature, and still immature. Taken as a whole,

RDF and OWL are clearly the cornerstones of the Semantic Web and, since

their standards recommendations in 2004, have been proven to be quite

stable even in their early revisions.

15_396797-ch09.indd 22515_396797-ch09.indd 225 2/13/09 8:24:22 PM2/13/09 8:24:22 PM

226 Part III: Building the Semantic Web

Figure 9-1:
The W3C
Semantic

Web layer
technology

stack.

Semantic Web Applications

Unicode

Cr
yp

to
gr

ap
hy

RDF (Graph Data)

Other (Serialization) XML (Serialization)

Uniform Resource Identifier

Unifying Logic

Trust

Proof

OWL (Ontology)

RDFS (Graph Schema)
SPARQL
(Query)

RIF
(Rules)

One point that may not be obvious to a casual observer is that the tech-

nologies described in Figures 9-1 and 9-2 are not nearly enough to write an

entire software application. In fact, to put it into context, the entire family

of Semantic Web languages is only capable of replacing some of the data

definition aspects of conventional object-oriented programming languages

and relational databases. To put it bluntly, there is no such thing as a “pure”

Semantic Web application: There will always be some sort of procedural

application code required to surface the Semantic Web data into regular soft-

ware applications.

Figure 9-2:
The maturity

levels of
the W3C

Semantic
Web tech-

nology stack
layers.

Semantic Web Applications

Unicode

Cr
yp

to
gr

ap
hy

RDF (Graph Data)

Other (Serialization) XML (Serialization)

Uniform Resource Identifier

Unifying Logic

Trust

Proof

OWL (Ontology)

RDFS (Graph Schema)
SPARQL
(Query)

RIF
(Rules)

Immature

Mostly
Mature

Very
Mature

15_396797-ch09.indd 22615_396797-ch09.indd 226 2/13/09 8:24:22 PM2/13/09 8:24:22 PM

227 Chapter 9: Exploring Semantic Web Enablers

So what does the Semantic Web really give us? In the next few sections, I

recap Unicode, XML, RDF, OWL, and SPARQL, as well as other Semantic Web

languages that are defined in more detail in Chapter 6.

Unicode and URI
As the standards-bearer for the Semantic Web, the World Wide Web

Consortium (W3C) has been committed to the Unicode text standard as its

foundation. Unicode is actually an ISO standard (as published in ISBN 0-321-

48091-0) that provides a common representation and technical encoding

for text in any language. This is important because as data travels between

regions of the world, different kinds of alphabets and other characters that

people use to communicate all need to be represented. The Unicode stan-

dard is the baseline text standard that ensures that computer text is compat-

ible with all types of software. The most common Unicode formats are UTF-8

(multi-byte) and UTF-16.

The Uniform Resource Identifier (URI) is the foundation of the World Wide

Web and essentially provides the address for how to find any kind of Web

resource. A URI may consist of a name and/or a locator. URIs are the basis for

finding Web pages inside browsers and linking RDF data objects across the

vast expanse of the Internet.

XML
The eXtensible Markup Language (XML) is a language for marking documents

and messages with tags that can make it simpler for machines to parse data

from files. The XML standard supplies a grammar and syntax for tagging

(the famous angle brackets <tag>) and also a behavioral standard for parsing

those tags.

XML is a hotly debated topic in the Semantic Web community because the

first versions of the RDF and OWL specifications were encoded exclusively

in XML, but the inelegance of XML for encoding has prompted a movement

to enable Semantic Web languages encoding in other formats. A few of those

alternative formats, like N3, Turtle, and N-Triples, are described in Chapter 7.

RDF and RDFS
The Resource Description Framework (RDF) and RDF Schema (RDFS) are

truly the backbone of the Semantic Web. As you can see from Figure 9-2

(shown earlier), the RDF and RDFS formats are mature data formats that

truly serve as the central defining feature of the Semantic Web. RDF provides

15_396797-ch09.indd 22715_396797-ch09.indd 227 2/13/09 8:24:22 PM2/13/09 8:24:22 PM

228 Part III: Building the Semantic Web

the core model semantics for an open and extensible graph data model of

interconnected data items linked by URIs. The RDF schema provides the core

model semantics for describing simple class taxonomies (concepts) that

group the RDF data into more complex sets that can be organized and

queried via different query languages. Chapter 7 provides some hands-on

exercises to get to know RDF.

OWL
If RDF and RDFS are the foundation of the Semantic Web, OWL is the load-

bearing support system for the Semantic Web. OWL brings an advanced,

computationally stable way of defining highly complex and interdependent

data models in the Semantic Web. OWL adds data modeling semantics that

are more powerful than conventional databases, but maintains their essen-

tial reliability and correctness guarantees that make them so valuable for

software applications. OWL is what gives the Semantic Web an element of

grounding and stability for defining the meaning of data in an unambiguous

yet powerful data model that rests upon a strong mathematical foundation.

Chapter 8 is a fuller explanation of logical modeling with OWL.

SPARQL
The Simple Protocol and RDF Query Language (SPARQL) standard is a

query language for RDF. Developments are under way to make sure that the

SPARQL standard can work with OWL. Like SQL and XQuery, the SPARQL lan-

guage provides a declarative interface for interacting with an RDF database.

Critics of the SPARQL standard believe that instead of inventing a new gram-

mar for SPARQL, the W3C should have leveraged the work already put into

XQuery or SQL. As ANSI SQL helped popularize the relational database, many

supporters hope that the SPARQL standard will help encourage adoption of

the Semantic Web technologies.

RIF and SWRL
The Rule Interchange Format (RIF) is a Working Group (an approved action

committee) within the W3C. Its charter originally set out to define a standard

format for the exchange of business rules between various kinds of software

engines. The RIF Working Group has since decided to develop a family of lan-

guages aimed at solving specific kinds of problems because the complexity

of defining a single technical language for all types of business rules became

undesirable. By far, the most widely deployed focus area for business rules

are production rule systems. Production rule systems are the backbone of

15_396797-ch09.indd 22815_396797-ch09.indd 228 2/13/09 8:24:22 PM2/13/09 8:24:22 PM

229 Chapter 9: Exploring Semantic Web Enablers

fraud detection systems, anti-money-laundering applications, and most com-

puter security programs installed inside any major business. As it relates

specifically to the Semantic Web, the business rule topic is mainly about

interoperability so that OWL and RDF data models can be further extended

and constrained with complex business rule definitions.

Unifying Logic layer
The Unifying Logic layer of the W3C technology stack is still only vaguely

defined. One interpretation on the intent of this layer is to describe a formal

mathematical logic that reconciles all the different model semantics of the

parts (RDF, RDFS, OWL, SPARQL, and RIF) into a consistent and holistic

model theory. The central tenet of this proposed layer would be to provide a

single logical interface to the Semantic Web of data and rules so that software

applications could be more easily written to this single facade rather than to

the individual parts. However, the technical implementation or details about

this unifying logic are undefined and nonexistent in the practical sense.

Software frameworks (open source, or from commercial vendors) that supply

all the component parts of a Semantic Web framework in a single collection

exist, and they’ve each implemented their own unifying logic to make every-

thing work together, but each of those software frameworks do the unifica-

tion in a different way. Thus, although the RDF and OWL remain standard and

portable, the implementation of the application does not.

Proof, trust, and cryptography
The various security frameworks defined for the Semantic Web are still deep

areas of research. Because the Semantic Web depends on unprecedented

levels of intelligence at the data layer, the software needs to be capable of

explaining what kinds of intelligence have been automated. For example, if

a future Semantic Web software application is constantly monitoring sensor

data about the health of a person, or even the health of our national borders,

it could recommend drastic actions if certain conditions have been met.

The “proof” element of the Semantic Web technology stack is intended to

supply a mathematically correct way of explaining which inferences and

which business rules have led to a particular conclusion or recommendation.

It’s a way for humans to validate what the software machine has inferred. The

“trust” element of the Semantic Web supplies a means to rate data in terms

of trustworthiness so that we can distinguish data that is likely to be good

from data that is more likely to be bad. Finally, the cryptography work in the

Semantic Web is building upon the encryption techniques defined for lower

layers of the stack like Unicode and XML.

15_396797-ch09.indd 22915_396797-ch09.indd 229 2/13/09 8:24:22 PM2/13/09 8:24:22 PM

230 Part III: Building the Semantic Web

GRDDL, SAWSDL, RDFa, and SKOS
Although some programming languages are specifically built with the RDF

and OWL formats, or are developed explicitly to provide interoperability with

the Semantic Web languages, they typically aren’t included in the W3C archi-

tecture stack depicted in Figure 9-1. In some ways, this is a shame, because

the W3C itself has sponsored new standards that are key enablers for the

Semantic Web vision. Here are some of those other key standards enabling

the Semantic Web vision:

 ✓ Gleaning Resource Descriptions from Dialects of Languages (GRDDL)

is a W3C standard for encoding XML and XHTML with extra metadata

that can be parsed by XSLT and converted to RDF.

 ✓ Semantic Annotation for Web Service Description Language (SAWSDL)

is a W3C standard for annotating service-oriented architecture Web

services with RDF or OWL (or any other ontology) metadata to aid in the

simpler discovery of services.

 ✓ Resource Description Framework in Attributes (RDFa) is a W3C stan-

dard that can be used to define new attributes in XHTML that can be

parsed automatically and structured as first-class RDF objects. RDFa is

commonly used by developers to add machine readable data directly

within their Web pages.

 ✓ Simple Knowledge Organization System (SKOS) is a W3C standard that

is built upon RDF and used to provide a starting point for developers

looking to create their own vocabularies. As it turns out, many clas-

sification schemes and data models follow similar principles, and RDF

by itself doesn’t provide enough of a framework to prevent duplicative

work by developers in different communities. Thus, SKOS is an optional

RDF language that modelers can choose to inherit from as a way to

jump-start their own modeling and ensure some degree of conformance

with best-practices.

Each enabling language (GRDDL, SAWSDL, RDFa, and SKOS) helps to bring

the Semantic Web to a wider developer audience and supply a higher level of

automatic interoperability among different Semantic Web implementations.

Digging a Bit Deeper into SPARQL
In Chapters 7 and 8, I give you a view of what it looks like to work with RDF

and OWL, but when you decide to jump in and start coding your own appli-

cation, you also need to know how to query those RDF and OWL models.

Realistically, many RDF databases do not yet implement a standard query

language, but when they do, it will most certainly be the Simple Protocol and

RDF Query Language (SPARQL) — a W3C standard that defines a standard

query language for RDF.

15_396797-ch09.indd 23015_396797-ch09.indd 230 2/13/09 8:24:22 PM2/13/09 8:24:22 PM

231 Chapter 9: Exploring Semantic Web Enablers

SPARQL is both a standard query language and data access protocol, which

means that you can query not only RDF graphs, but also other data sources

that can be mapped to RDF. Since January 2008, SPARQL has been an official

W3C recommendation.

SPARQL allows the user to write queries that consist of triple patterns, con-
junctions (logical “and”), and disjunctions (logical “or”s). In SPARQL, as with

most declarative query languages, the query is actually specifying a pattern

in the data that should be matched in a result set. Given a particular triple

pattern in a query, a SPARQL processor considers sets of triples in the target

RDF model that match the pattern. Here’s an example:

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX books:<http://www.dummies.com/books#>

SELECT ?book
WHERE {
 ?book rdf:type books:Books .
 ?book books:author
 http://me.jtpollock.us/foaf.rdf#me .
 }
ORDER BY ?book

Simply stated, this query is looks for books authored by Jeff Pollock and

orders the resulting list. Notice that in the WHERE clause, I’m specifying triple

patterns. The first pattern matches on all RDF instances that are of rdf:type
Book. The second pattern matches all those RDF instances that have a

book:author relationship to Jeff Pollock. The fact that these two patterns

are inside the braces in the WHERE clause implies a conjunction. The ? in front

of the word book, indicates a variable — the thing you are looking for. To

round off the syntax, the “.” signifies the end of a triple pattern in the WHERE

clause.

This code returns the list of URIs of all the resources that match these pat-

terns. In the case where we had a fully populated RDF model in structure I

used in Chapter 7 and 8, I should get two books in the result:

http://www.dummies.com/books#Book-semanticweb_for_dummies
http://www.wiley.com/books#Book-adaptive_information

This fully qualified result set doesn’t look very nice for a human reader, but

you can leverage the dc:title predicate from Dublin Core and print out a

nicer result:

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX books:<http://www.dummies.com/books#>

15_396797-ch09.indd 23115_396797-ch09.indd 231 2/13/09 8:24:22 PM2/13/09 8:24:22 PM

232 Part III: Building the Semantic Web

SELECT ?title
WHERE {
 ?book rdf:type books:Books .
 ?book books:author

 http://me.jtpollock.us/foaf.rdf#me .
 ?book dc:title ?title .
 }
ORDER BY ?title

This query gives a nicer-looking result:

Adaptive Information: Improving Business Through Semantic
Interoperability, Grid Computing, and Enterprise
Integration

Semantic Web for Dummies

SPARQL queries can be very easy to write for RDF data. For experienced devel-

opers, they are very similar to SQL queries for relational databases and can be

used in much the same way. Future work on the SPARQL standard will include

more advanced keyword support to do pattern matching with OWL inference

engines. This capability will give developers a standardized way to harness

the full power of Semantic Web data languages.

Developing Easy RDF Models
Say that you understand RDF, OWL, and SPARQL, and you think this stuff is

the best thing since you learned how to upload photos on Facebook. But if

you’ve honestly and truly been following along with the technical examples,

you probably realize that you would never want to put up with the hassle

of creating RDF, OWL, or SPARQL by hand-coding it into your favorite text

editor while having to cut and paste from a spreadsheet containing your busi-

ness data in another window. So how can you easily create RDF?

You can create RDF data and OWL ontology models many different ways.

Tools to create Semantic Web models (whether from scratch or from import-

ing data from another format) are abundant. Graphical tools allow the user

to draw diagrams similar to the graphs earlier in the chapter. Connect those

drawings to a relational database, and then with one click, you get RDF/XML.

A variety of tools are available to harvest the RDF out of GRDDL, eRDF, and

RDFa as well. Then there is the tried-and-true custom code route as well.

Consider RSS and Atom feeds, for example: You could write a simple program

in Java that parses these standard formats and produces plain RDF. This

would be a programmatic, bottoms-up way of creating Semantic Web data.

In the next few sections, I detail some popular graphical tools to help you

start modeling your Semantic Web masterpiece from the top-down, model-

driven perspective:

15_396797-ch09.indd 23215_396797-ch09.indd 232 2/13/09 8:24:22 PM2/13/09 8:24:22 PM

233 Chapter 9: Exploring Semantic Web Enablers

Protégé
Protégé is one of the oldest and most widely deployed ontology modeling

tools. It was originally conceived as a frame-based modeling tool for rich

ontologies in accordance with the Open Knowledge Base Connectivity pro-

tocol. Later iterations of Protégé have expanded to include a plug-in that is

now widely used for OWL and RDF modeling. Figure 9-3 shows a sample OWL

model inside the Protégé tool.

Figure 9-3:
Protégé

is the first
widely

deployed
ontology

modeling
tool.

Although Protégé is most widely used in the academic community, its fully

featured support for OWL and RDF is garnering it a wider following in com-

mercial enterprises as well. Because it’s free, Protégé may well continue to be

a leading ontology editor. The source code is also freely available under the

open-source Mozilla Public License (MPL).

XML Spy SemanticWorks
XML Spy from Altova (see Figure 9-4) is one of the most popular and acclaimed

XML editors in the software industry. Altova decided to stick close to its roots

and offer editing tools for other kinds of XML-based models too — including

the Semantic Web. The SemanticWorks product line from Altova gives develop-

ers a friendly way of building ontologies that is familiar to any XML developer.

The tool itself can work with multiple encodings of RDF to produce RDF/XML

and also N-Triples.

15_396797-ch09.indd 23315_396797-ch09.indd 233 2/13/09 8:24:22 PM2/13/09 8:24:22 PM

234 Part III: Building the Semantic Web

Figure 9-4:
XML Spy
Semantic

Works
brings

Semantic
Web

markup
to XML

developers.

The Altova product is particularly important because it breaks down barriers

between the XML development community and the Semantic Web develop-

ment community. This tool from Altova provides complete support for RDF

and OWL with syntax, format, and semantic validation on the models.

TopBraid Composer
TopQuadrant is a long-time pioneer in the Semantic Web field. Traditionally

focused on consulting engagements, the company’s shift toward software

products started with the very successful TopBraid Composer, shown in

Figure 9-5. The Composer tool comes in multiple editions and is more than

just a modeling tool: It’s like a toolbox for developing complete Semantic Web

applications. Beyond the class modeling, data modeling, SPARQL queries,

and source code editing, the Composer tool also enables data source map-

pings, geography mapping, form generation, scripting, and various conver-

sion utilities for XML and e-mail messages.

TopQuadrant is also expanding TopBraid to go beyond the development tool-

ing areas and push forward into more mainstream enterprise software areas

like business intelligence and data integration. The Composer product is a

good start for TopQuadrant as it moves toward these mainstream markets.

Regardless of which modeling toolkit you choose to use, these products can

be excellent ways to jump-start your programming efforts and enable you to

rapidly develop your own Semantic Web applications.

15_396797-ch09.indd 23415_396797-ch09.indd 234 2/13/09 8:24:22 PM2/13/09 8:24:22 PM

235 Chapter 9: Exploring Semantic Web Enablers

Figure 9-5:
TopBraid

Composer
sets the

standard for
graphical
Semantic

Web
modeling.

Finding Out Why Business Rules
Are a Good Thing

The Semantic Web is a powerful set of technologies, but it’s still incomplete.

Both RDF and OWL work within a constrained set of logical expressiveness.

In contrast, business rule systems, non-monotonic reasoning, and fuzzy logic

can greatly extend the core power of the Semantic Web.

The Semantic Web of today is for defining data and metadata — it doesn’t

define any languages that give you actions (not withstanding SPARQL for

querying). To really build functional software, a developer needs the power

of events and actions to work with. These are foundational tools for doing the

following things inside your code:

 ✓ Looping: In other words, “if something is true, then do some action.”

 ✓ Working with case statements: For example, “in the case where some-

thing matches a condition, then do the next thing and move on.”

 ✓ Using mathematical operators: Say, “if x is greater than y, then do

something.”

Details about different programming languages like Java, C#, or Perl are out-

side the scope of this book, but most languages provide a very high level of

capability for writing logic and rules inside that programming framework.

Although this approach to writing business rules is powerful, it places the

15_396797-ch09.indd 23515_396797-ch09.indd 235 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

236 Part III: Building the Semantic Web

content of the rules and the execution of the rules in a highly technical

domain that only very specialized developers can work with. In contrast, a

business rule engine attempts to remove the specification and execution of

certain rules and logics from the domain of programmers and into a place

where business users can control them.

This decoupling of the business rule from the programming framework is what

enables higher levels of reuse, portability, and greater dynamism of software

behavior. Mainstream business rule engines are the main enablers for some of

the most important financial and national security software currently in pro-

duction worldwide.

Business rules are largely an arbitrary and proprietary endeavor. Different

software vendors use different mathematics and heuristics to implement

their business rule systems, making it impossible to accurately classify,

extract, or pinpoint the types of rules you’ve encoded inside their software.

This tactical problem for business rule vendors provides key motivation for

the W3C Rule Interchange Format Working Group.

RIF: A family of dialects
The Rule Interchange Format (RIF) Working Group at the W3C originally

started with the charter to specify an exchange format for business rules so

that they can be used across diverse systems as a common language into

which established and new rule languages can be mapped, allowing rules

written for one application to be published, shared, and reused in other

applications and other rule engines. As the RIF has evolved, it has become

clear that a single language for business rules cannot solve the enormous

scope and complexity of the many vendor implementations and theoretical

use cases that must be considered. Therefore, the RIF group has defined a

family of different dialects that will be specified (see Figure 9-6), including

 ✓ Framework for Logic Dialects (FLD): This specification is the overarch-

ing formalism used for specifying the other dialects of rule languages

supported by the RIF group. This logic defines both the syntax and

semantics that are commonly used for various logic languages. The

design of FLD is intended to be broad enough to encompass the seman-

tics of future logic dialects and specific enough to require deep technical

justification when newer logics can’t map directly to FLD.

 ✓ Basic Logic Dialect (BLD): This specification is a core part of the FLD

specification and contains the syntax, semantics, and XML serialization

format for the interchange of basic business rules. From a logic theory

standpoint, this specification corresponds to the language of definite

Horn rules with equality and standard first-order logic (FOL) semantics.

In layman’s terms, it’s a pretty powerful rule language even though it’s

called “basic!”

15_396797-ch09.indd 23615_396797-ch09.indd 236 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

237 Chapter 9: Exploring Semantic Web Enablers

 ✓ Datatypes and Built-ins (DTB): This part of the RIF specification speci-

fies the list of primitive datatypes along with built-in functions and

predicates. Input from the XML Schema datatypes and XPath-Functions

are the starting point for this RIF foundation library.

 ✓ Production Rules Dialect (PLD): This is a key specification that will

enable production rule systems (behavior, action-oriented rule systems)

to exchange rules in the proper semantics while using a common syntax.

Unlike logic rules, the production rule usually contains a THEN state-

ment that describes an action that may add, delete, or modify a knowl-

edge base.

Figure 9-6:
RIF families
of dialects.

Datatypes
& Built-ins

Framework for Logic Dialects

Production
Rules
Dialect

Basic
Logic

Dialect

As it turns out, having a family of dialects for business rules is very impor-

tant to prevent side effects when exchanging logic and production rules. Side

effects need to be scrupulously avoided because even the smallest error in

interpreting a rule could have disastrous effects (wrong answers to highly

sensitive questions) in the software application that it is executing within.

Because business rules are so important to the business and developer com-

munities, development of the RIF portion of Semantic Web is moving a very

deliberate pace intended to ensure that no mistakes are made along the way.

Non-monotonic reasoning
The many foundation math theories that comprise the Semantic Web are

much too complex to cover here since I want to engage a wide range of read-

ers, but one very important theoretical concept that you should remember is

the distinction between monotonic and non-monotonic logic.

15_396797-ch09.indd 23715_396797-ch09.indd 237 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

238 Part III: Building the Semantic Web

 Put simply, non-monotonic reasoning is the ability of the reasoner to accept

new facts that might contradict previously held beliefs. In contrast, when a

monotonic reasoning system learns new facts, it cannot reduce the set of

facts that were already known, and the system must remain consistent

(no contradictions).

Business rules can be either monotonic or non-monotonic. But in the

Semantic Web defined by OWL and RDF, only monotonic logics are allowable.

This difference in logical foundations is one of the central mathematical dif-

ferences between pure Semantic Web data languages and other knowledge

representation techniques such as business rules.

Consider a simple OWL data model that defines the class Birds. Because

your data model is about flying things, you have another class called

ThingsThatFly from which you inherit your Birds class. You want

your OWL data model to automatically classify any new Birds you add as

ThingsThatFly. This works great while you are adding Eagles, Sparrows,

and Robins, but then you add Penguins and Emus and realize that your

system won’t work out. So, knowing a bit about OWL, your natural reaction is

to add a disjoint relationship (disjoint asks the reasoner to exclude instances

from belonging to the disjoint classes) between your flightless birds and the

class called ThingsThatFly. Whoops!

Because OWL is a monotonic logic, you get inconsistency warnings when

you try to load this data model. Because you have a data record (Penguin)

that is inherited from the class Bird, which is inherited from the class

ThingsThatFly, you cannot then say that something of type Bird is incapa-

ble of flying (by assigning disjoint between Penguin and ThingsThatFly).

That creates a problem for answering queries like, “return a list of all things

that can fly.” The query engine would find an inconsistency because, on one

hand, all kinds of Birds can fly, but these specific animals are defined as

being different from anything that can fly. Which is it?

A non-monotonic logic system wouldn’t care. Instead, it might give you

results for Penguins in both sets of “things that fly” and “things that don’t

fly,” or it might choose to let the disjoint statement override the general-

ization at the Birds class level — but you might not know which case the

engine has selected. Non-monotonic logic systems are by far the most widely

used logic in logic systems in software and are at the very core of most

kinds of statistical analysis like data mining, fuzzy logic, Natural Language

Processing (NLP) Web-based search engine algorithms, and business rule

systems.

The use of monotonic logic systems for the Semantic Web is a deliberate

choice to offer explicit, consistent, and strict data modeling logic for ontolo-

gies used at Web scale. This has the advantage of creating a more relational

database–like guarantee for correctness of query results (without the weaken-

ing or statistical thinning used by most non-monotonic reasoners).

15_396797-ch09.indd 23815_396797-ch09.indd 238 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

239 Chapter 9: Exploring Semantic Web Enablers

Fuzzy logics, statistical mining, and
how they relate to the Semantic Web
Fuzzy logics, statistical data mining, and many other types of advanced logic

programming are close cousins to the Semantic Web, but remain distinctly

different. For example, fuzzy logics supply approximate reasoning, whereas

the Semantic Web description logics provide exact reasoning. Thus, the

statistical approach to data analysis depends on a willingness to accept

approximate query results instead of guaranteed query results. A greatly

simplified example of this is the difference between searching for a query

on Google versus searching for a query in your company’s financial data-

base. The Google results are fast and usually pretty accurate, but they’re

only an approximation of your real search. (When you submit a query, the

Google technology doesn’t search the whole Web or the entire cache of

data; instead, the results are primed in advance and sorted by keywords.)

Conversely, the query you send to your financial database is guaranteed

mathematically to find any matching data according to the precise semantics

of the query you sent it. This guarantee is crucial for business systems that

depend on repeatable and correct results.

It’s possible to apply fuzzy logic and statistical mining to structured database

data or unstructured text data. These fuzzy algorithms perform cluster analy-

sis according to rules that a given algorithm defines. Depending on the com-

plexity of the algorithms, these fuzzy logics can

 ✓ Correlate words in massive amounts of text using distance algorithms

and frequency. Words that are frequently located close to one another

are more likely to signify related concepts.

 ✓ Find patterns in scientific data. Cluster analysis of average surface tem-

peratures over time shows areas on our planet that are warming faster

than others.

 ✓ Spot fraudulent activities in banking software. Hackers are known to

use specific kinds of multi-step attacks and can sometimes be stopped

after the algorithms spot a likely break-in before it is finished.

Semantic Web and fuzzy logics (statistical reasoning) are like apples and

oranges — they’re both part of the same family of techniques for working

with data, but they are distinctly different varieties to consider. Although

business rules and fuzzy logics are not yet formally considered as part of the

core Semantic Web family, they are already a necessary ingredient for most

implementations and will always be considered for use alongside RDF and

OWL datasets in Semantic Web applications.

15_396797-ch09.indd 23915_396797-ch09.indd 239 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

240 Part III: Building the Semantic Web

Grappling with Natural Language
Processing (NLP)

One place where the statistical (fuzzy) analysis techniques are particularly

important is for use with Natural Language Processing (NLP) engines. An NLP

engine is capable of applying algorithms to completely unstructured text in

order to produce structured data or a data model. A typical approach is to

encode grammar rules or clustering rules into algorithms that then create a

cumulative score for how data and concepts are extracted from raw text.

The value of the NLP domain in general is to bring some semblance of order

to chaos. It’s true that humanity is creating more new information this

decade than in all of recorded human history. Most of this new data is in the

form of unstructured text and binary media such as photos and videos. NLP

engines are one of the only viable technologies that can automate the extrac-

tion of valuable structured data from all this new unstructured noise.

NLP engines are used in fraud detection, anti-terrorism software, mortgage

financing software, anti-money-laundering systems, network security soft-

ware, publishing software, business intelligence reporting, and many other

software applications that need to work with huge volumes of unstructured

text. The more common NLP systems and frameworks are

 ✓ General Architecture for Text Engineering (GATE) is an open-source

framework for applying text mining and NLP programs to raw text. The

GATE technology is a framework because it allows developers to create

new NLP components that can be plugged in to the existing architecture

and used with pre-existing NLP algorithms. This flexibility is important

because real-world problems typically require a series of NLP algorithms

applied serially to achieve a high accuracy rate. Commercial users of

GATE include Glaxo Smith Kline, AT&T, Thomson Reuters, and Garlik.

(See Chapter 15 for more information about Garlik.)

 ✓ Unstructured Information Management Architecture (UIMA) is an

architecture framework for NLP that was developed by IBM and is com-

mercialized in its OmniFind product. A version of UMIA has been moved

into the open-source domain as an Apache project.

 ✓ Inxight is a long-time leader in the commercial text-extraction area, the

Inxight products were acquired by Business Objects, which was subse-

quently acquired by SAP.

 ✓ Thomson Reuters Calais is a new entry into the NLP sector, the Calais

product was created from the ground-up to be Semantic Web–ready. It’s

the only product or framework to plug in directly to the Linked Data ini-

tiative started by Tim Berners-Lee. (For more on Calais, see Chapter 15.)

15_396797-ch09.indd 24015_396797-ch09.indd 240 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

241 Chapter 9: Exploring Semantic Web Enablers

The good news about NLP and the Semantic Web is that they’re highly com-

plementary technologies. A good NLP engine can produce RDF, which in turn

can be networked and linked to rich OWL data models. Thus, unstructured

text can be brought into the Semantic Web and made part of this giant data-

base in the sky.

However, the hype has greatly exceeded reality. In fact, the steep hype curve

of expectations for NLP had been considered a significant handicap for

decades preceding the Semantic Web. So although the whole of the Semantic

Web plus NLP exceeds the sum of their parts, they also bring along baggage

from long over-inflated expectations.

A crucial step for Semantic Web pioneers is to build compelling applications

with RDF, OWL, and the enabling technologies such as business rules and

NLP without getting burned by past failures attributed to these technologies.

Only through the rise of successful and compelling applications (see Chapter

15) will the sullied reputations of NLP and business rules cease to diminish

the new thinking behind the Semantic Web data formats.

Enabling New Operational Models
Semantic Web software applications should be useful and supply meaningful

new capabilities in order to bear the inherent risks of using them. The rela-

tive immaturity of the tools and technologies creates far too many risks to

NLP: A necessary evil
For most practitioners of information manage-
ment, the NLP engine is considered a nec-
essary evil. It’s necessary because there is
so much unstructured data in the world that
human beings cannot possibly organize it all.
On the other hand, NLP is evil because after 30
years of research and development, there still
isn’t a reliable NLP engine that works well for
all types of data.

In very specific domains (like healthcare, law,
or security), practical NLP implementations
achieve a reasonably high degree of accuracy
(where high accuracy is measured by how suc-
cessful the algorithm is at classifying a docu-
ment or producing a new data model from raw

text). But for most general purpose applications,
the quality of NLP engines is dismal — usually
achieving only a 60–70 percent accuracy level.
Further, the typical NLP engine isn’t very good
at defining what a given document is about. For
example, a given document might have dozens
of references to Cars but actually be about
Environment Protection.

Even in cases where the accuracy level for NLP
is low, many businesses still find it worthwhile
for uses where they don’t care about false neg-
atives (situations where the NLP engine clas-
sifies some data or documents incorrectly). In
these situations, the usefulness of the positive
matches outweighs the false negatives.

15_396797-ch09.indd 24115_396797-ch09.indd 241 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

242 Part III: Building the Semantic Web

haphazardly try Semantic Web applications. In this section about enabling

new kinds of operational models, I identify a few key capabilities that the

Semantic Web can bring to your business applications that use it.

Handling uncertainty
Typical business applications leverage relational databases and XML data

processing techniques. But relational databases and XML depend on pre-

defined data definitions (schema) that are difficult to change after they’ve

been implemented. Likewise, those relational and XML formats operate on

the basis of a closed-world assumption, which means that they assume that

the data they contain is the only data relevant to a given application. On the

other hand, the Semantic Web formats operate on an open-world assump-

tion, which I describe in some detail in Chapter 8. The open-world assumption

empowers a Semantic Web knowledgebase to distinguish between data facts

that are provable and those that are satisfiable. A satisfiable query result can

be useful to an application because it tells the application that there’s some

uncertainty in the answer.

One extreme, but illustrative, example of this open-world characteristic is to

consider a software application that helps doctors with the decision about

whether to operate on a patient. With a Semantic Web application, you can

ask the knowledgebase whether there is data to support the decision to oper-

ate, and the knowledgebase might answer in one of four ways: provably yes,

provably no, satisfiably yes, or satisfiably not. The two satisfiable answers

are interesting because they indicate that some of the data indicates a yes or

no answer, but that there are not enough facts for the system to answer with

complete certainty. This ability to handle uncertainty is useful for a large

number of business applications and, rather than depending on procedural

code to deduce that uncertainty, the knowledgebase can supply those results

directly.

Dynamic classification
Dynamic classification is the ability to say whether a particular data item

belongs to a class of things without having to directly tag all the data. For

example, a Semantic Web knowledgebase can answer a query to find all pos-

sible evacuation facilities without having to require developers to predefine

each and every facility. A single OWL model can define the properties of a

suitable evacuation facility by defining a specific elevation above sea level, a

certain size in square feet, and the availability of specific facilities like water,

restrooms, and beds. From there, a Semantic Web query can evaluate data

from all sorts of different sources about facilities like churches, schools,

15_396797-ch09.indd 24215_396797-ch09.indd 242 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

243 Chapter 9: Exploring Semantic Web Enablers

hotels, stadiums, or shopping malls and match the facilities that meet the

model definition of an evacuation facility. One of the principal benefits is that

these data items can be matched according to a model, and they don’t have

to be hard-wired into one or more queries that depend on the local syntax of

a given data source. Several examples of this type of dynamic classification

are given in the Enterprise use cases described in Chapter 11.

Ad hoc modeling and browsing
Ontologies are a conceptual model of a domain that may or may not map

to physical data sources. Because these conceptual models can exist

completely outside of the physical systems, they can be independently

manipulated, altered, and evolved over time. Although there are other ways

to achieve this logical abstraction, the Semantic Web provides a standards-

based approach that’s more portable and much less ambiguous than other

techniques. The principal benefits for using ontology this way are that busi-

ness analysts and other information workers can change the models on-

demand and browse the data that matches their conceptual models without

having to learn all the details about the underlying physical sources and

physical data models.

Unstructured data pipeline
A significant emerging challenge for any large business is how to rationalize

content within documents with data within databases and XML. Whereas

database and XML data are inherently structured, the contents within docu-

ments do not typically have much structure that can be leveraged for useful

queries and joining with structured data. The Semantic Web formats like

OWL and RDF supply an ideal format for joining unstructured and structured

data because they are a graph structure rather than more rigid tabular and

tree-like data structures.

Some organizations such as governments and the financial services industry

have substantial amounts of content that needs to be understood alongside

database data, and they are using a combination of Semantic Web technolo-

gies and Natural Language Processing (NLP) techniques to perform those

analytics. In their fully realized form, the NLP processes can operate as

a pipeline to inject and refine unstructured content into more structured

formats like RDF/OWL. After it is structured, that content may be analyzed

alongside or with structured content for many different kinds of business

purposes. For example, the business intelligence examples provided in

Chapter 11 explain how that works.

15_396797-ch09.indd 24315_396797-ch09.indd 243 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

244 Part III: Building the Semantic Web

Open-source data
Unstructured data pipelines enable a new class of analytic applications that

may use freely available data from the Web in powerful analytic engines that

previously worked only on structured data. Freely available data is some-

times referred to as open-source data because it is open for anybody to find.

The open-source data trend is one of the most exciting and promising move-

ments in the intelligence community because the explosion of new content

on the Internet means that data is sometimes available that can help identify

and prevent malicious attacks on our community interests. Semantic Web

formats can help with the challenges of knowing what data can be trusted

and how to find data without knowing what to ask for. By converting data to

RDF/OWL, more efficient machine automation can be applied to that open-

source data to rate its trustworthiness and automatically classify millions

of documents according to NLP and inference rules. Without a doubt, there

are many unsolved challenges in the open-source data movement, but the

Semantic Web has opened new frontiers and offered new solutions to age-old

problems that simple search engines like Google can’t solve.

Setting the Truthiness Dial
By combining reasoning techniques from different Semantic Web languages

and business rule systems, a software vendor could choose to give develop-

ers the ability to change entailment levels. Entailment levels define what rules

the query engine follows when answering queries. For example, if your data

model shows that a Web Shopper is a type of Customer, and you submit

a query asking for all Customers, that query may include people who are

directly classified as Customers and/or those who are classified as Web
Shoppers.

For the purposes of a Semantic Web application, the entailment level of the

query defines the truth of the data. As the entailment levels change in a rea-

soner, so does the logic of the data and therefore the truth of it. So, if you

have a reasoner that can change entailment levels, you are thereby changing

the facts and concepts that are considered when the system answers a ques-

tion. Thus, although the reasoner can’t answer from its gut (since it doesn’t

have one), you can still think of this as a truthiness dial!

Because OWL ontologies are quite advanced in terms of what can be

expressed, and because there are many kinds of logics that may or may

not be considered while answering a query (including monotonic or non-

monotonic logics), a particular knowledgebase must conform to one or more

expressiveness levels during a particular query.

15_396797-ch09.indd 24415_396797-ch09.indd 244 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

245 Chapter 9: Exploring Semantic Web Enablers

Have you ever seen one of those art posters that are composed of many dif-

ferent colors and look like nonsense when viewed with the naked eye, but

when you wear special tinted glasses, the pictures materialize and make

sense? The expressiveness of querying a knowledgebase is a little like that.

Using one level of expressiveness, the knowledgebase might deliver one set

of results, but using another expressiveness level, the knowledge base might

deliver an altogether different set of data.

The newer OWL 1.1 specification has begun to define fragments of OWL

logics that can be safely used as self-contained entailment levels, with well-

defined consequences for moving from one level to the next. The following

list describes a few of the more commonplace entailment levels that are com-

monly used today:

 ✓ RDFS: This formal specification includes basic RDF graph navigation

semantics plus the simple RDF schema class inheritance semantics.

 ✓ OWL Prime: This informal specification implemented in the Oracle data-

base supports the most widely used semantics for practical applications

(as viewed by Oracle). Support is included for the following axioms:

 • rdfs:domain

 • rdfs:range

 • rdfs:subClassOf

 • rdfs:subPropertyOf

 • owl:equivalentClass

 • owl:equivalentProperty

 • owl:sameAs

 • owl:inverseOf

 • owl:TransitiveProperty

 • owl:SymmetricProperty

 • owl:FunctionalProperty

 • owl:InverseFunctionalProperty

 ✓ OWL 2 DL: This is considered a major dialect of the OWL 2 specification.

It’s a syntactically restricted version of OWL Full. OWL DL restrictions

produce a language that’s fully deterministic and much more practical

for vendors to implementation solutions for.

 ✓ OWL 2 Full: This is a major dialect of the OWL 2 specification and is

generally considered to be a more straightforward extension of RDFS,

but it introduces the possibility of some non-deterministic and resource-

intensive query results.

15_396797-ch09.indd 24515_396797-ch09.indd 245 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

246 Part III: Building the Semantic Web

 ✓ OWL 2 EL++: This is a profile of OWL 2 that’s defined to provide highly

optimized behavior for large and complex ontologies that depend on

complex class definitions. Example domains that should consider OWL

2 EL++ include life sciences, manufacturing, retail, scientific, and other

domains that may require complex conceptual models.

 ✓ OWL 2 QL: This profile of OWL 2 was formulated specifically as a way to

capture the model semantics of databases and UML (Unified Modeling

Language) and is intended to aid in the use of OWL as a data integration

language.

 ✓ OWL 2 RL: This profile of OWL 2 was built for optimizing the intersec-

tion of rule programs with description logics. It’s intended to provide

a profile for implementing reasoning systems on top of existing rule

engines or other hybrid-based approaches for using increased expres-

sive power.

Future Semantic Web knowledgebases and platforms may eventually include

seamless ways to change expressiveness on-the-fly using a user-controlled

dial for changing levels, but these capabilities are still in their infancy today.

Once in place, this kind of hypothetical truthiness dial will enable applica-

tions and information workers to apply entailment levels as a kind of filter

to analyze the same data from different perspectives, different performance

characteristics, and different answers to the same questions.

15_396797-ch09.indd 24615_396797-ch09.indd 246 2/13/09 8:24:23 PM2/13/09 8:24:23 PM

Part IV
Putting the
Semantic

Web to Work

16_396797-pp04.indd 24716_396797-pp04.indd 247 2/13/09 7:20:05 PM2/13/09 7:20:05 PM

In this part . . .

Alas, the Semantic Web can be pure fun only for hob-

byists and academics. For the rest of us schmucks,

we have to worry about putting it to work. Thankfully

the Semantic Web can offer a lot to the average big busi-

ness by laying the groundwork for a stable and flexible

information management infrastructure.

Far from being another IT fad, the Semantic Web offers

some unique alternatives to the same-old tired data

architectures. This part of the book explains how you can

make it work for you!

16_396797-pp04.indd 24816_396797-pp04.indd 248 2/13/09 7:20:05 PM2/13/09 7:20:05 PM

Chapter 10

The Rise of the Information Worker
In This Chapter
▶ Creating new jobs, skills, and expectations in the information age

▶ Realizing that business information is more important today than ever before

▶ Seeing how the Semantic Web changes information-centric job functions

▶ Peering into the crystal ball: The information worker of tomorrow

If you’ve already decided to read a book about the Semantic Web, you

probably intuitively understand that the world of work is changing.

Regardless of your role in a white-collar, blue-collar, or even green-collar

industry, you’re probably using computers and electronic information in

ways that would have been unimaginable just a few years ago. The pace of

change is speeding up, and workers all across the globe are being asked

to become smarter, faster, and more productive — in other words, they’re

being asked to become information workers.

Information workers, in the broadest sense, are people with everyday jobs

who must learn to be more productive by using technology to aid in the auto-

mation of their routines. Even the largely manual blue-collar jobs of today are

using more automation in the form of robotics, navigation systems, and other

technology-driven machinery to push the envelope of productivity in their

industries. Desk jobs especially are using software to increase productivity

and automation: ERP (Enterprise Resource Planning) systems, social net-

working for businesses, workplace collaboration suites, and desktop automa-

tion systems all push forward what’s possible with technology. Pretty much

any job can have elements of IT injected into its core to turn workers into

information workers.

In a more narrow sense, information workers are also emerging as a specialty

workforce that’s in charge of the data assets of big businesses. Increasingly,

and smartly, big companies are starting to treat their corporate data as what

it is — a business asset. Capital assets are material assets like trucks, build-

ings, and machinery that contribute to a business’s value. Human capital

consists of the minds and output of the people employed by business. Data

17_396797-ch10.indd 24917_396797-ch10.indd 249 2/13/09 7:20:55 PM2/13/09 7:20:55 PM

250 Part IV: Putting the Semantic Web to Work

assets are the digital information that fuel business software. Forecasts, bud-

gets, inventory, logistics, and any critical data about a business’s health are

types of corporate data assets. The people who know how to take care of

these data assets in very detailed ways are the new class of emerging spe-

cialty information workers.

In this chapter, I explain in detail the new types of specialty information

worker jobs, the businesses that most heavily depend on them, and how the

Semantic Web will influence the evolution of these jobs.

Taking a Look at the Global 2000
The pace of change in business since the mid-1990s is breathtaking. The ubiq-

uity of the Internet and the aggressive adoption by businesses of Enterprise

Resource Planning (ERP) software systems in just ten short years have for-

ever altered our notions of big business.

Whereas businesses used to close the books on their finances once per quar-

ter, many of the largest companies now close their books nightly. Large man-

ufacturing and retail businesses used to take it on faith that their logistics

shipments and product movements were on time, but today they use Global

Positioning Systems (GPS) and Radio Frequency Identifiers (RFIDs) to track

where their merchandise is. Yesterday’s businesses used to operate in virtu-

ally unregulated territory, leaving it to the pressures of the marketplace to

enforce fairness. Today’s businesses, though, face the most highly regulated

global environments ever as Sarbanes-Oxley, BASEL 2, and other financial

regulations are forcing companies to play fair, report about their money con-

sistently, and prove to governments that they’re following the rules.

A Global 2000 business is one of the top 2000 businesses in the world by mea-

sure of its gross revenues. These are the most important businesses in the

world, whose success drives the vast majority of the global economy and the

U.S. economy, and provides the economic stability for small businesses to

thrive. These Global 2000 businesses are pushing the envelope of information

management — using information as a way expand their lead on the competi-

tion and to proactively change the rules of their industries.

Since the role of information in Global 2000 companies is now seen as an

instrument of competition, the Semantic Web is primed to transform how

businesses compete on an international stage. The Semantic Web’s core inno-

vation is that it brings the rigor of science and logic to the management of

data, models, and business rules. In times past, it was possible for database

administrators and software architects to locate all the data; large-scale data

processing was only possible with people in the process to help out.

17_396797-ch10.indd 25017_396797-ch10.indd 250 2/13/09 7:20:55 PM2/13/09 7:20:55 PM

251 Chapter 10: The Rise of the Information Worker

Global 2000 businesses have now gone beyond the time when major business

decisions were entirely driven by the gut instinct of a few powerful people;

today, the entire infrastructure of the business is built to supply good infor-

mation about the business facts so that decision makers make their calls

without just guessing. Global 2000 businesses now regularly use scenario

modeling and financial planning software to assist their understanding of the

future and influence their decisions today. Now more than ever, the system-

atic and near-scientific institutionalization of innovation is the driving force

that separates the global leaders from the has-beens.

The information supply that drives innovation and separates the leaders

doesn’t magically appear for some and not for others. This information supply

can’t be bought off the shelf and installed to make any business a Global 2000

company. Rather, a deep commitment by some companies to invest in the

development of new competencies — information worker competencies —

separates the winners from the rest. These information worker competencies

are not ethereal ideas about people looking at information all day and think-

ing deep thoughts. Instead, these competencies enable businesses to execute

more efficiently because they put in place more streamlined processes and

repeatable ways to make smarter, better informed decisions.

Understanding the Tactical Role of
Information in Business Economics

The Semantic Web has tremendous potential to change the everyday job of

the typical information worker throughout the world. The skills and com-

petencies of these information workers impact a business’s bottom line

in big ways. The everyday operations of a Global 2000 business, quarterly

reporting, and even customer satisfaction can depend on how reliable the

businesses information is. After all, people build the reports, put data in the

enterprise software, and link together customer data from different systems.

Information influences the most tactical of business operations.

Take, for example, the act of balancing the ledger. Just like you balance

your checkbook, every business has to balance its general ledger and report

to the government what its balances are. These ledger statements impact

everything from a company’s tax burden to its stock market valuation. The

process of balancing big business ledgers used to require armies of accoun-

tants working with paper, pencils, and calculators. But with the widespread

deployment of ERP systems, that process has become easier.

17_396797-ch10.indd 25117_396797-ch10.indd 251 2/13/09 7:20:55 PM2/13/09 7:20:55 PM

252 Part IV: Putting the Semantic Web to Work

The ERP system is like a big, advanced calculator, but just as with the cal-

culator, you still have to get the data into the ERP system. And this data

gap, from the sources of the ledger transactions to their entry into the ERP

system, can still be error-prone and cause substantial impacts to the bottom

line or even shareholder stock valuation problems. Working on ledger data

may seem like a geeky technical problem, but it has a critical impact on the

actual and perceived health of the business.

Like ledger data, the data about a business’s products is crucial to the opera-

tions of those businesses. Major retailers and packaged goods manufacturers

(like Wal-Mart, the Gap, Proctor & Gamble, and so on) depend on product

data as the lifeblood of their business. The data about their raw materials,

their manufacturing processes, logistics, and supply chain information and

inventory levels can’t be too accurate or too current. These are software sys-

tems that enable those companies to operate efficiently, and it is information

workers who enable those software systems to function correctly.

The process of taking orders and fulfilling them is also an information-intensive

process. Businesses that streamline the order-to-cash processes eliminate

costly manual steps in order-taking, debiting payments, updating inventories,

and scheduling logistics. These lifecycle processes may also include the steps

to issue quotations, accept bids, and initiate the bookings. Each step in these

complex, global, and multisystem interactions require good quality informa-

tion and efficient software systems. Once again, the modern information

worker acts as the caretaker for these critical business systems that are the

lifeblood of well-run companies.

Accurate data and information aren’t luxuries for modern competitive busi-

nesses: They’re a tactical necessity. No longer can a company expect to

thrive without paying attention to its data as an asset, instead of treating it as

an afterthought. As more Global 2000 businesses leverage Semantic Web data

in their own enterprise software systems, they gradually shift the attention of

information technology (IT) away from the technology and back to the infor-

mation. Part and parcel of this shift in attention is how the role of the special-

ist information worker changes to become the key enabler for these newer,

more streamlined software systems.

Getting to Know the Types
of Information Workers

Specialist information workers are not technical software developers who

write code. They are not simply database administrators who take business

requirements and make databases, nor are they regular business employees

who have business line responsibilities for a profit center. The specialist

17_396797-ch10.indd 25217_396797-ch10.indd 252 2/13/09 7:20:55 PM2/13/09 7:20:55 PM

253 Chapter 10: The Rise of the Information Worker

information worker is a catalyst for bridging the gap between businesspeople

and information technology (IT) specialists. They usually think in terms of

the business but act on IT assets that are consumed by software systems. A

few of the key information worker roles are

 ✓ Business analysts

 ✓ Corporate librarians

 ✓ Information architects

 ✓ Taxonomists

 ✓ Ontologists

 ✓ Data stewards

 ✓ Database architects

Many of these roles have emerged just in the past three to five years, as

the necessity of their functions gained importance in the new economies of

Global 2000 businesses. As these roles continue to evolve, they will be using

the Semantic Web in their everyday jobs. Whether by using tools that gener-

ate RDF or by designing ontologies directly, these information workers are

also becoming Semantic Web developers.

The following sections provide explanations of these roles and have been

validated by numerous interviews with people who hold these titles. Try

searching for these jobs yourself on your favorite job board!

Business analysts
A business analyst is the most widespread information worker and is also

the closest to the main business operations. Typically, the business analyst

doesn’t have a particular horizontal skill set that effectively maps between

industries. More often, the business analyst has some kind of business

degree and is an expert in a particular industry or domain and has skills that

are transferrable among companies in that domain. For example, a business

analyst in the insurance industry may be expected to have strong working

knowledge of catastrophic modeling and underwriting, whereas a business

analyst in the financial services field may be expected to have expertise in

the areas of order management and billing.

Information worker skills for the business analyst include

 ✓ Is comfortable being a catalyst between businesspeople and IT people

 ✓ Has a detailed understanding of the business processes that are unique

to a given industry

17_396797-ch10.indd 25317_396797-ch10.indd 253 2/13/09 7:20:55 PM2/13/09 7:20:55 PM

254 Part IV: Putting the Semantic Web to Work

 ✓ Has a detailed understanding of the data contained within the IT sys-

tems that enable various business processes

 ✓ Can translate the business requirements into actionable IT objectives

that can be successfully implemented by technologists

 ✓ Has expertise using the following kinds of software tools: desktop pro-

ductivity tools such as Word and Excel, and ERP applications

 ✓ May be able to use various database management systems and Master

Data Management (MDM) applications

The business analyst advises the IT team on behalf of the business and sets

objectives for the management and dissemination of high-quality and reliable

business information.

In a word, the business analyst plays the role of a catalyst.

Corporate librarians
A corporate librarian is an information worker who specializes in the organi-

zation of complex information. Often, the corporate librarian’s job requires

a Library Sciences degree, and by their nature, corporate librarians are not

necessarily specialists in a particular industry or marketplace. (Some fields,

such as law, do prefer corporate librarians trained specifically in their disci-

pline.) Since the rise of the Internet, modern librarians are expected to under-

stand how to produce search strategies that can be applied to various search

engines and other online catalogs.

Information worker skills for the corporate librarian include

 ✓ Is comfortable working with large volumes of complex content

 ✓ Can produce detailed classification rules for content that is unique to a

given industry

 ✓ Has a detailed understanding of the data contained within multiple can-

nons of information used to enable various business processes

 ✓ Can translate the business requirements into actionable searches that

can be repeated and automated by businesspeople

 ✓ Has expertise using the following kinds of knowledge management

tools: Autonomy; Enterprise Content Systems (SharePoint, Stellent,

Documentum, FileNet); Portal software; and online resources such as

Docline, PubMed, and Lexis/Nexis

 ✓ May be a power user of various internal and external content manage-

ment systems and Master Data Management (MDM) applications

17_396797-ch10.indd 25417_396797-ch10.indd 254 2/13/09 7:20:55 PM2/13/09 7:20:55 PM

255 Chapter 10: The Rise of the Information Worker

The corporate librarian’s core duties are to locate, enrich, organize, and

disseminate corporate data. Although corporate librarians help locate infor-

mation, research, enrich found information, and organize information to a

taxonomy, they may or may not actually create the taxonomies, repair bad

data, or set requirements for application-specific data formats. Corporate

librarians should be experts in locating, organizing, and disseminating busi-

ness information. They work with predefined tags/taxonomies to manually

classify information and further enrich it for distribution.

In a word, the corporate librarian plays the role of the cataloger.

Taxonomists
Often confused with the corporate librarian role, the taxonomist typically

has a much more technical background. For example, whereas the corporate

librarian may read, organize, and classify documents, the taxonomist is the

person responsible for defining the category system and tags. This is a more

technical role because the category systems and tagging systems are usually

part of a bigger systems picture where taxonomies are consumed by auto-

mated software programs and may be maintained in technical formats like

XML documents and indexed master files. A taxonomist may be required to

specify and maintain complex taxonomies with IT dependencies that require

a deeper technical understanding of code syntax and programming skills in

order to produce technically valid IT inputs.

Information worker skills for the taxonomist include

 ✓ Is comfortable working with complex technical data formats and data

models

 ✓ Can produce detailed hierarchies, create taxonomy standards, and

define the taxonomy strategies unique to a given set of IT systems and

technologies

 ✓ Has a detailed understanding of the systems and system architectures

that consume taxonomy and drive various business processes

 ✓ Can translate the business lists, codes, and hierarchies into organized

information models that can be inserted into specific IT systems

 ✓ Has expertise using the following kinds of tools: Autonomy, Synaptica,

Omnifind, XML Spy; also, can work with the raw formats of Java, Cobol,

C++, and other programming languages that consume ordered taxonomy

data from master files or properties files

 ✓ Is a potential power user of an ontology modeling toolkit

17_396797-ch10.indd 25517_396797-ch10.indd 255 2/13/09 7:20:55 PM2/13/09 7:20:55 PM

256 Part IV: Putting the Semantic Web to Work

A taxonomist must work closely with the business analyst to understand the

business requirements and translate them into IT requirements for the many

uses of that corporate information and reference data. Taxonomists work with

model hierarchies, ontologies, tag sets, file lists, master files, property files,

and some relational data models or indices. They create and maintain the clas-

sification systems (manual and automated) used to organize structured, semi-

structured, and unstructured content. These classifications may be applied

to Master Data Management systems or exported for use in other information

management systems, such as content management systems. Taxonomists

respond to business user, librarian, and steward requirements by improving

the findability of corporate data that is organized by structured lists.

In a word, the taxonomist is the definer of terms, categories, and master files.

Ontologists
Ontology experts can be thought of as senior taxonomists, or as senior infor-

mation architects — the evolution of either role will lead to expertise in the

ontology field. Whereas a regular taxonomist may start with expertise in the

structure and organization of category trees, such as being skilled in defining

the broader and narrower definitions of terms in a thesaurus, the ontologist
is skilled in a definitional logic that is much more expressive than thesaurus-

style lists. Similarly, the information architect (see the next section) may be

skilled in producing models in the UML (Unified Modeling Language) or ERD

(Entity Relationship Diagram) formats, whereas the ontologist supplies a

higher-level of modeling experience using formats like OWL, KIF (Knowledge

Interchange Format), or SCL (Simple Common Logic).

Information worker skills for the ontologist include

 ✓ Is comfortable working with specialized technical data formats and data

models

 ✓ Can produce detailed modeling standards and define the rules for con-

sistency that are unique to a given set of ontology assets

 ✓ Has a detailed technical and linguistic understanding of the vocabular-

ies, terms, and concepts that drive various business processes

 ✓ Can translate taxonomies, data models, and system architectures into

organized ontologies that can be reliably reasoned with inside conven-

tional expert systems

 ✓ Has expertise using the following kinds of tools: Protégé, TopBraid,

Oracle Spatial, OpenCyc, NLP engines; also capable of working with the

raw formats of OWL, RDF, SPARQL and other programming languages

that enable ontology-driven applications

 ✓ May need to be a power user of an ontology modeling toolkit

17_396797-ch10.indd 25617_396797-ch10.indd 256 2/13/09 7:20:55 PM2/13/09 7:20:55 PM

257 Chapter 10: The Rise of the Information Worker

As you see in Figure 10-1 (which shows a recent job listing), ontologists are

an emerging breed of specialists that are working at the pinnacle of their dis-

ciplines, capable of the hard-core logic and mathematics for writing the most

complex software systems. They choose to focus on the discipline of informa-

tion modeling, structured data definitions, and description logics.

Figure 10-1:
A recent job

posting for
an ontology

specialist.

Information architects
The information architect position is an often overloaded one. In some com-

munities, the information architect role is attributed to jobs that focus

entirely on making large Web sites easier to navigate. However, I’m referring

to an information worker role that specializes in the informational aspects of

software architecture. The job of the information architect is truly a cross-

disciplinary specialty that may often be detached from any particular indus-

try that the information architect works in. Instead, information architects

are experts on the underlying software technologies and systems that supply

the lifeblood of data throughout a large business.

Information worker skills for the information architect include

 ✓ Is comfortable working with complex IT systems and data models

 ✓ Can produce detailed information standards and strategies unique to a

given set of IT systems and technologies

17_396797-ch10.indd 25717_396797-ch10.indd 257 2/13/09 7:20:55 PM2/13/09 7:20:55 PM

258 Part IV: Putting the Semantic Web to Work

 ✓ Has a detailed understanding of the design patterns and reference archi-

tectures of IT systems used to enable various business processes

 ✓ Can translate the business requirements into information models that

can be implemented within specific IT systems

 ✓ Has expertise using the following kinds of tools: Enterprise Architecture

Modeling tools (XML, UML, OWL, RDF, ERD), Business Intelligence

platforms, Master Data Management (MDM), Information Lifecycle

Management (ILM), and DBMS and Data Warehouses

 ✓ Is a potential power user of an ontology modeling toolkit

The information architect understands the business requirements well

enough to build models from them, and he or she works within IT objectives

to create new data formats while staying within design limitations of various

technologies selected by IT. The information architecture role may also be

known as software architect, database architect, or systems architect.

Information architects are experts in the IT systems that feed and are fed by

the information management applications; they make decisions about latency

requirements of data, scheduling of system updates, and ensure end-to-end

dependability of enterprise data and system resources. Additionally, the

information architect responds to requirements set by analysts and stewards

for new systems participating in the data ecosystem, and sets requirements

and objectives for developers and DBAs working on implementation design

and construction.

In a word, the information architect fulfills the blueprint role in the data-driven

organization.

Data stewards
The data steward ensures that business data conforms to the corporate

models and ontologies and improves the quality and eliminates redundancy

in the data itself. Whereas most of the information workers described earlier

in the chapter (taxonomists, architects, librarians, and so on) are principally

concerned with the models, categories, and organization of the data, the

data steward looks after the data itself. The power and influence of the data

steward should not be minimized by the use of the relatively passive word

steward; perhaps the term data governor is a more benefitting job title, but

that term isn’t commonplace in the industry. However you say it, the data

steward’s responsibilities are both broad and deep.

17_396797-ch10.indd 25817_396797-ch10.indd 258 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

259 Chapter 10: The Rise of the Information Worker

Information worker skills for the data steward include

 ✓ Is comfortable working with complex technical data formats and data

models

 ✓ Can define, plan, and supervise the establishment of data governance

rules for the use and management of corporate data assets

 ✓ Can produce detailed standards and define the strategies for the man-

agement of master data and golden records (trusted, clean, guaranteed

data)

 ✓ Has a detailed understanding of the data cleansing and parsing opera-

tions that ensure high-quality data drives important business processes

 ✓ Can translate the technical requirements into a metadata management

strategy that can be inserted into specific IT systems and business

applications

 ✓ Has expertise using the following kinds of tools: master data manage-

ment applications, data quality systems, and metadata management

systems; also, can working with the raw formats of XML, ERD, DBMS,

and other modeling languages that drive application data, metadata, and

business rules

 ✓ Is a potential power user of an a metadata management toolkit

Data stewards are experts in finding and navigating the data within the MDM

applications; they know what data can be changed, by whom, and how to

do it. They interact with human workflow systems, as a team of stewards, to

respond to tasks that have been set by SMEs and business analysts. The data

steward is principally responsible for ensuring good data.

In a word, the data steward governs corporate data for its full lifecycle from

cradle to grave.

Database architects (DBAs)
The term DBA has always been somewhat ambiguous; it could mean database

administrator or database architect (DBA). In these classical definitions, the

administrator is usually a more junior version of the architect. For my pur-

poses, I’m referring to the database architect (DBA) as a specialty information

worker. In practice, the DBA’s skills strongly overlap the information architect

skills defined previously, but with less focus on non-database models and

more focus on performance optimizations for relational databases.

17_396797-ch10.indd 25917_396797-ch10.indd 259 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

260 Part IV: Putting the Semantic Web to Work

Good DBAs are capable of working directly with the business analysts and

taxonomists to understand the system requirement. They then must be able

to produce a database data model that can match those business needs with

the IT requirements for scalability, performance, and tolerance. Many DBAs

end up with specialty roles unique to a database engine like Oracle, DB2, or

Teradata; they may also develop specialties in areas of data warehousing,

transactional databases, or OLAP cubes. However, for DBAs to be truly suc-

cessful, they must be able to see the big picture from a business perspective

and understand the database technology is merely an enabler.

Understanding the Needs of the
Information-Centric Company

Information workers are especially important for businesses that are

dependent upon information for their competitiveness. Although many of

these information-intensive businesses are in the Global 2000, many small

businesses are transitioning from manual processes to more efficient levels

of automation. This continual drive toward efficiency and automation is

precisely the reason that the Semantic Web will be critical for tomorrow’s

information-centric company. But in the future, every company, large or

small, will be information-centric.

For example, I worked with a small dry-cleaning business operating from the

Midwestern United States. This business had 18 locations in three states and

could certainly operate as a profitable company without high levels of auto-

mation. However, the company wanted to grow and automate the process of

balancing its books, so it looked to a software-based solution for synchroniz-

ing its cash receipts every night. In this particular case, a relatively simple

database-replication process was installed, enabling the business owner to

track progress and balance budgets continuously.

You don’t have to be a multibillion-dollar company to be information-driven.

One way to appreciate the importance of information workers is to see

how entire industries are changing the way data is used to drive business

operations.

Automotive manufacturing
Margins are tight in the automotive sector. Unlike 30 years ago, there is very

little room for error in the process of manufacturing vehicles. Labor costs

have been steadily rising, downward pressures on pricing have accelerated

17_396797-ch10.indd 26017_396797-ch10.indd 260 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

261 Chapter 10: The Rise of the Information Worker

due to more competition from automakers in emerging markets, and materi-

als costs haven’t diminished. So where do carmakers innovate?

Although labor automation through the use of robotics has garnered

the most attention from the industry, successful car makers like Toyota,

Mercedes, and Audi have also been innovating in other areas. Increasing the

reliability of vehicles through simulation, understanding market conditions

through scenario planning, and optimizing supply-chain operations for mate-

rials management are all ways that information-driven jobs are helping some

automotive manufacturers get an edge.

I’ve worked with ontologists and data stewards from major automotive manu-

facturers who are building next-generation systems to streamline the car-

making process. From concept to dealer lots, the manufacturers can control

their products and get feedback from buyers through the smart use of soft-

ware systems. Building data models, managing master data, and maintaining

corporate taxonomies are new ways to streamline and improve older manu-

facturing information systems.

Consumer packaged goods
Information management has always been a key element of the consumer

packaged goods (CPG) industry — but no one ever called it that. The secrecy

of Coke’s recipe for the world’s favorite cola has gained almost mythological

status. But Coke’s secret recipe is just one small example of how CPU closely

manages information. Proctor & Gamble (P&G) is one of the largest CPG com-

panies in the world, and it has some of the most sophisticated, and secretive

recipe-management systems in the world. Some of the P&G products are leg-

endary for the amount of research and development that went into produc-

ing a consumer hit — Pringles potato chips, for example — and P&G rightly

wants to protect and preserve the information about what did and did not

work to make those products.

Research and development plays a hugely important role for CPG companies

as they try to create the next hit products. But the manufacturing and mar-

keting aspects of CPG are also crucial to their success. CPG companies that

understand the buying patterns, shopping patterns, and tastes of their cus-

tomers have a clear edge in that cutthroat business. The information about

their consumers and retailers is used to create real-time business intelligence

for CPG executives to make decisions about huge investments in new products.

Information workers enable every aspect of those information flows — from

recipe management and supply-chain data, to customer relationship manage-

ment. Data architects and corporate librarians are the workers who keep the

successful CPG companies producing at high efficiency.

17_396797-ch10.indd 26117_396797-ch10.indd 261 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

262 Part IV: Putting the Semantic Web to Work

Publishing
By definition, the publishing industry is information-driven, but you might

be surprised to discover that the major publishers have only recently begun

to truly automate their business operations electronic software systems.

Business operations for a publishing company are the processes by which

they manage the lifecycle of content. Content, for the publisher, is the raw

material that is assembled, packaged, and sold for huge profits.

Major publishers like Thomson Reuters, McGraw-Hill, and Reed Elsevier

control a healthy percentage of the world’s content. Everything from maga-

zines, journals, electronic libraries, business information, and book contents

is owned and copyrighted by a publisher. Even the content of this book in

your hands is copyrighted by John Wiley & Sons. Some of the publishers, like

Thomson Reuters and Reed Elsevier, license their content libraries to busi-

nesses all over the world.

Accessing these publishing systems can be easy, but finding what you want

can be difficult. Therefore these publishers employ armies of corporate

librarians, taxonomists, librarians, ontologists, and data stewards to make

sure that their content is easy to find, high quality, and secure. Perhaps more

than any other industry, the publishing industry intuitively understands why

the emerging class of specialty information workers and the Semantic Web as

a whole are keys to its future.

Financial services
The historic innovators of the information-driven economy have always

been the financial institutions, by necessity. Long gone are the days where

banks and trading houses dealt with any material assets: Everything from

bank transfers to mortgage payments and stock trades is electronic these

days. Every financial transaction has a data model associated with it. The last

time you used an ATM to withdraw cash, you sent an electronic transaction

through a central software system designed by information workers many

years ago.

Today, every large bank or investment company has hundreds of different IT

systems responsible for keeping billions of dollars accurately accounted for.

The people who manage these software systems, keep them running, and help

them evolve are information workers.

Business analysts, database architects, and taxonomists keep the records

straight. They ensure that the general ledger codes are accurate. They main-

tain multiple lists of legal entity codes that map to their business operations

in different parts of the world. They maintain the auditing requirements for

17_396797-ch10.indd 26217_396797-ch10.indd 262 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

263 Chapter 10: The Rise of the Information Worker

how they must show which debits and credits were applied as part of closing

their books. They organize the many versions of their data models that are

constantly evolving in response to changing market conditions. Without the

information workers, modern banks could not operate with any efficiency,

nor could they comply with government regulations that ensure fair report-

ing of their activities.

Energy/oil and gas
Long-time stalwarts of business-scenario planning, oil companies practically

invented the discipline. Used as a way to aid the decision-making processes

of the energy companies, the scenario planning models typically looked at

how the global energy markets would respond to real and hypothetical politi-

cal changes among nations. More than just a group of smart people imagining

situations, the scenario planning of the energy companies is a science unto

itself. It’s information-driven, almost to a fault.

But the scenario models of energy companies aren’t the only ways informa-

tion workers contribute. The more mundane everyday business operations

of multinational companies require hyper-flexible software systems that can

react to constantly changing conditions. Knowledge-based systems for con-

necting people, overseeing seismic and drilling projects, and maintaining

billions of dollars in oil rig and refinery operations are dependent on experi-

enced knowledge workers who create and maintain the data models, geogra-

phy taxonomies, and accounting codes that fuel their business operations.

In the past few years, I’ve worked with data architects and data stewards at

major oil companies who are working with data-intensive software systems

that are a decade old. I’ve also worked with ontologists and taxonomists

at those same oil companies who are working to build the next generation

of knowledge systems — many of which will be based on Semantic Web

technologies.

Aiding Information Workers
with the Semantic Web

Information workers and information-driven companies have existed without

and are not dependent upon the availability of Semantic Web technologies.

However, each of the information worker roles and information-driven indus-

tries previously described are already benefiting greatly from emerging tech-

nologies of the Semantic Web.

17_396797-ch10.indd 26317_396797-ch10.indd 263 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

264 Part IV: Putting the Semantic Web to Work

Search optimization
One of the most important core business functions in the publishing industry

is to assist customers in finding the right information at the right time. Unlike

a search performed via a search engine like Google, the publishing industry

depends on very rich and sophisticated taxonomies to guide its customers to

the right content. Whereas the typical search engine employs sophisticated

algorithms to find search terms and frequency, publishers categorize their

content according to term lists, keywords, and data models. Historically,

organizing and tagging content have largely been manual tasks. Partially

automated techniques depend on software to categorize this content accord-

ing to nested taxonomies of words, similar to a traditional thesaurus.

Newer technologies coming from the Semantic Web field are aiding these pro-

cesses in several ways:

 ✓ The process of automating the classification of documents is now being

driven by much more powerful Natural Language Processing (NLP)

algorithms. Although NLP itself predates the Semantic Web, newer NLP

approaches use Semantic Web–based ontologies as a way to seed their

data models with more dynamic and powerful taxonomies.

 ✓ The output of NLP systems in the publishing industry has traditionally

been fed into standard relational data models, but newer approaches

populate RDF databases with graph data that’s far more flexible and

more easily navigable.

 ✓ The old way of specifying master files was usually done with relatively

flat word lists, generally as text documents. Newer master file structures

are actually encoded as proper ontologies with all the additional richness

and power of a complete business logic for linking word descriptions.

The business benefits of the Semantic Web technology for search optimiza-

tion are not revolutionary per se, but the incremental benefits do impact

the bottom line. Customers of the publishing companies that use Semantic

Web technologies — such as Thomson Reuters, Dow Jones, Elsevier, and

Time Inc., to name a few — experience faster and simpler navigation of paid

content and are generally more satisfied with the services that they already

subscribe to. In some cases, publishers are able to offer more customization,

more features, and higher value service levels. The net effect, of course, is

more revenue.

Business intelligence
Business intelligence solutions are broadly part of the $10-billion decision-

support market category. These systems are built and employed to aid

decision-makers with scenario planning, forecasting, visibility into

17_396797-ch10.indd 26417_396797-ch10.indd 264 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

265 Chapter 10: The Rise of the Information Worker

operational systems, analysis of market conditions, and various kinds of

reporting. The business intelligence and decision support systems can service

and support all types of organizations, including commercial businesses as

well as governmental agencies. For decades, these decision support systems

have depended on the relational database as their central data manage-

ment software. In fact, decision support is one of the main reasons why the

relational database was invented. The structure of data in those relational

business intelligence systems has historically taken one of two forms: the

normalized model or the multidimensional star model. Multidimensional

models make up the vast majority of those data models today.

Semantic Web systems are improving upon the business intelligence category

in both incremental and revolutionary ways. For many of the classical busi-

ness intelligence systems, the investment in the multidimensional data model

approach is too entrenched to change quickly: Systems have been optimized

for that data structure for nearly 20 years. But incremental improvements

have been embraced where graph data — like RDF and OWL — can aid in the

uptake of unstructured documents into the classical business intelligence

systems. Using the Semantic Web in this way is an incremental but important

way to improve business intelligence systems.

On a more revolutionary front, some newer decision support systems are

being built entirely around the Semantic Web data structures. The advantages

of Semantic Web data structures are particularly valuable in industries that

face exceptionally dynamic data that needs to be assembled in new ways

without the overhead of rigid multidimensional data models. Life sciences,

defense, and disaster preparedness are all areas where newer business intel-

ligence systems are rapidly moving toward a Semantic Web–based approach.

The benefits of the Semantic Web for business intelligence are many-fold, but

the dominant factors tend to prevail when the industry or market has spe-

cial data needs. For example, in the life sciences industry, researchers from

all sorts of different companies and universities are constantly generating

new research data. Sometimes this research data is proprietary and secret,

but increasingly there’s a wealth of public data becoming freely available in

the public domain. The challenge for researchers is to be able to consume

this free data and rapidly make effective use of it. Semantic Web formats

like RDF and OWL are ideal because they can be used as a place to easily

put data coming in very diverse formats and structures. Once the data is in

the Semantic Web format, new links and analysis can be performed on that

diverse data without a lot of overhead caused by rigid multidimensional data

models. This method produces better research analysis faster, which can be

the difference between finding a patent on a new drug or being a has-been.

Similarly, the defense industries from most of the large nations use Semantic

Web data as a place to consume and analyze open-source intelligence

gleaned from public sources. Disaster preparedness systems built by

government agencies and university systems use Semantic Web business

17_396797-ch10.indd 26517_396797-ch10.indd 265 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

266 Part IV: Putting the Semantic Web to Work

intelligence systems to deliver more flexible analysis because, in times of

crisis, it can be very important to consume unexpected data very quickly

without having to rebuild data models and recompile software applications.

These benefits of adaptability, agility, extensibility, and flexibility may matter

more for some than for others, but for those who place a premium on those

attributes in business intelligence, the Semantic Web technologies are very

attractive.

Metadata management
The challenges of metadata management are known to only a few but are

felt by many. Typically accounted for in the $5-billion software integration

market, the metadata management problem surfaces whenever two or more

software systems are linked together. At a very basic level, the issue has to

do with the problem of relating the structure of one set of information with

the structure of another set of information. This problem is a required part

of integrating software systems, and integrating software systems is now a

required part of doing business in any large company.

Today, most integration technologies have some level of metadata man-

agement. A few even separate the discipline into its function. For example,

several commercially available and popular systems employ a metadata man-

agement repository that acts as a central storehouse of all metadata used

in an integration platform. The features of the metadata repository might

include the import and export of various formats and sophisticated version

management of all kinds of metadata, including data definitions, file formats,

software programming interfaces, business processes, and so on. Existing

popular metadata repositories have been built using relational database tech-

nology, which has yielded some successes and many limitations.

The main underlying limitation with using relational subsystems is that the

more flexible you try to make them, the less you can leverage the inherent

power of the data models. To put it another way, a very powerful metadata

system has to have a level of modeling flexibility that isn’t inherently available

in the relational database.

Some newer metadata management systems that use the power of the

Semantic Web are beginning to emerge. The benefits that these systems yield

come from the ability to enable extremely rich modeling while maintaining

a built-in dependence graph that can be used to find how all the millions

of metadata items are related to one another. When based on the Semantic

Web, this dependency model is in a standard and portable format with well-

known algorithms for finding and navigating the dependencies. Although

some companies have been able to force similar capabilities into older tech-

nology, the Semantic Web approach holds much promise for raising the bar

substantially for what you can expect from flexible, extensible, and traceable

metadata repositories.

17_396797-ch10.indd 26617_396797-ch10.indd 266 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

267 Chapter 10: The Rise of the Information Worker

Data accuracy and quality
The bane of any business executive is inaccurate data. It seems that there’s

a regular outpouring of retracted financial statements, investor reports, and

sometimes bad earnings announcements that impact the valuation of many

public companies. More often, the public doesn’t hear about the cases where

bad customer data or bad product data cost a company millions.

Existing traditional approaches to fixing data quality are generally provided

for with rule-based systems that trap bad data and then supply a fixed ver-

sion of it. Other modern approaches use a statistical technique that looks

for clusters of data and then reports to you the statistical outliers, which are

usually good indicators of bad data. A semantics-based approach uses a dif-

ferent technique: first attempting to organize data according to the concepts

that the data appears to belong to, and then normalizing that same data

based on consistency rules that can be inferred from other related data.

No particular approach to data quality cleansing appears to be entirely domi-

nant. Each technique excels in its own problem domain, but the Semantic

Web concept-based approach has been proven to provide better data quality

and cleansing operations in very complex data domains such as product and

business data, where the conceptual alignment of terms may be the best way

to find like items in a sea of noise.

Enterprise content visibility
Second only to the problem of having data that you think is correct but

isn’t is the problem of not being able to get the data that you know is there

somewhere. For content management, the management of documents, there

are two important markets to watch: enterprise content management (ECM)

and information lifecycle management (ILM). The ECM and ILM markets

combined are worth close to $3 billion. ECM is focused on the management

of content for Web site pages and corporate business documents. The ILM

market also covers that type of content but focuses on the deep storage part

of the problem, essentially dealing with the archival problem. Most medium-

to-large-size businesses have one or more ECM solution (Microsoft essen-

tially gives one away called SharePoint), and most large businesses will have

some type of ILM strategy. The biggest and most complex content visibility

issues come from companies or government agencies that have several of

each kind of system.

Technically speaking, a single ECM or ILM system may contain several tera-

bytes of data (the entire print collection of the U.S. Library of Congress would

consume about 10 terabytes of space), and most large companies have several

ECM systems and several ILM systems comprising the content equivalent of

many petabytes (several hundred U.S. Libraries of Congress) — that’s a lot of

17_396797-ch10.indd 26717_396797-ch10.indd 267 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

268 Part IV: Putting the Semantic Web to Work

data. That much data is difficult to search, organize, and find things in. Making

matters worse is that each software system that holds a fragment of the big

picture would typically have its own taxonomy, term list, search algorithms,

and underlying software engine.

Semantic Web technologies can be used as a kind of enterprise ontology to

unify the taxonomies of different content systems and provide a single data

model to retrieve content through. I’ve personally been a part of several proj-

ects where OWL and RDF have supplied a common ontology to bridge ECM

systems from Microsoft, IBM, and Oracle, as well as some home-grown pro-

prietary ECM systems from a major aerospace company. This kind of shared

visibility and unified view is very difficult — if not impossible — to achieve

without a rich, flexible ontology language.

Forecasting the Information
Worker of Tomorrow

In some ways, information workers of tomorrow will look a lot like the

information workers of today. However, there will be an increased level of

appreciation and specialization of the information worker roles as more busi-

ness executives become aware of their importance. Most of the jobs that I

describe in this chapter have only come into being since the late 1990s, and

I’m among the first to point out that this collection of jobs is really a new

category of worker — not quite traditional IT people and not quite traditional

businesspeople. More and more businesses will start to become more effec-

tive at defining these roles, recruiting for them, and incentivizing their best

people to take those extremely important information worker jobs.

Tomorrow’s information workers will still be working with data models, tax-

onomies, master files, master data, and data quality tools, but those formats

and tools will continue to evolve. In the future, there will be many more for-

mats using RDF and OWL. Generations beyond may be using new business

rule standards and formats that haven’t yet been invented. One thing that’s

for certain is that things must change. There is simply too much new informa-

tion being generated every year to keep using the current generation of infor-

mation formats successfully — new innovation and more powerful formats

are necessities, not wishes.

The good news for information workers is that instead of manual scripting

and 1980s-era data formats, the Semantic Web brings a new generation of

formats and tools that can make them more productive, more connected, and

more innovative. In light of the many generations of information workers to

come, we’re still at the earliest and most rudimentary beginnings today. The

Semantic Web is not the destination: It’s merely the next step.

17_396797-ch10.indd 26817_396797-ch10.indd 268 2/13/09 7:20:56 PM2/13/09 7:20:56 PM

Chapter 11

Discovering the Enterprise
Semantic Web

In This Chapter
▶ Discovering the Semantic Web for the enterprise workplace

▶ Finding how conventional enterprise IT systems may benefit from the Semantic Web

▶ Using ontology as an enterprise information model

▶ Exploring specific use cases for Semantic Web in the enterprise

You’re surrounded by them every day, but most people have no idea just

how dependent they are on enterprise software systems that big busi-

nesses run. Swipe your credit card at Starbucks for a coffee, and millions of

electrons fire up inside software from IBM and Oracle. Ride a bus in most

major cities and your movements are being followed through a satellite and

software from IBM, Oracle, or Microsoft. Buy some milk at your local super-

market and the inventory software automatically calls for a bit more milk

replenishment on the next shipment. Even when you’re watching television

at home, your channel selections are copied into large data warehouses in

Florida to report on how many people are watching. Yes, enterprise software

isn’t just somebody else’s problem: Everyone is influenced by it.

But enterprise software is complicated and challenging. Professionals labor

their entire careers on projects to build it, billion-dollar companies rise and

fall selling it, and implementing it results in far more failures than successes.

Enterprise software is as complicated and important as anything that human-

ity has created. Our biggest achievements — space travel, particle accelera-

tors, humanitarian aid programs, and so on — wouldn’t operate without it.

The Semantic Web is already being inserted into the biggest and most com-

plicated enterprise software programs in the world. This chapter explains a

little bit about how those enterprise systems work and why they need more

of the Semantic Web.

18_396797-ch11.indd 26918_396797-ch11.indd 269 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

270 Part IV: Putting the Semantic Web to Work

Discovering the Roles within
the Software Industry

The software industry is a big, dynamic, and borderless space, but people still

try to draw boundaries around the different kinds of software as a way to seg-

ment the industry. For example, most observers make a distinction between

business applications and software infrastructure. A business application is soft-

ware that’s predominantly used by a nontechnical business person as part of

an everyday job. These business applications might include the cash registers

at your favorite retailer or restaurant, the payroll systems at a big company, or

the software that helps buyers manage the inventory for stores like the Gap,

Macy’s, and Wal-Mart. These applications usually have a specific function and

businesspeople to interact with them throughout the duties of their jobs.

In contrast, software infrastructures rarely have businesspeople using them

directly. Instead, the infrastructure is built and maintained by technical spe-

cialists who work for the same companies as the businesspeople, but who

focus entirely technical specialties. Infrastructure software may include the

database management systems that store the application data, the middle-

ware systems that operate like the plumbing in your house by connecting

appliances running in different rooms, and security systems that centrally

track and authorize businesspeople using all different kinds of applications.

The purpose of a business application is to provide a business function —

like making payroll, distributing healthcare benefits, or tracking a package.

The purpose of infrastructure software is to provide a technical function —

like storing data on a hard drive or sending a message from one datacenter

to another. The Semantic Web does not supply any unique business function:

It’s inherently about providing new and more efficient technical functions.

In Chapter 10, I describe in some detail the role of information workers in

Global 2000 businesses, but infrastructure developers are not part of the defi-

nition I provided. Infrastructure developers are hard-core technology experts:

They may have a specialty or be a generalist, but they’re predominantly con-

cerned with the technology itself. Usually, the infrastructure developer isn’t

expected or needed in the business discussions. As you know, infrastructure

developer is very different from the information worker (business analyst,

taxonomist, corporate librarian, ontologist, and information architect) who

absolutely must deeply understand the processes and models of the business.

Infrastructure developers are a lot like surgical specialists — they’re not usu-

ally concerned with why a system exists or any measures of its overall health.

They’re the deepest experts in a particular field and a particular set of tools.

In practice, infrastructure software specialists tend to orient around platforms

(databases, middleware, security); or languages (Java, .NET, Ruby); or vendors

(Oracle, IBM, SAP, Microsoft). Improving the productivity and practices of these

specialists is the focus of Semantic Web in enterprise infrastructure systems.

18_396797-ch11.indd 27018_396797-ch11.indd 270 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

271 Chapter 11: Discovering the Enterprise Semantic Web

Creating Semantics for
Enterprise Systems

Nobody but academics enjoy the Semantic Web for its own sake. The

Semantic Web has to bring some value to people’s jobs or lives for it to

matter at all. Enterprise infrastructure software is already a maturing area

with known challenges and solutions. To the extent that Semantic Web is

important, it should provide some unique value to things that people are

already doing, or even eliminate the need for things that people spend time

on. This section describes some existing areas of software infrastructure

work that the Semantic Web can dramatically transform and improve.

Semantics for data integration
Ever since the world’s second computer was built, there has been the

need for data integration. What is today a $3-billion software market only

scratches the surface of the data integration problem — far more data inte-

gration projects are still taken care of the way they always were: with brute-

force custom-coded solutions that employ armies of skilled labor.

Data integration challenges come in many shapes and sizes. The basic

requirement for data integration is to enable the data of one system to work

effectively inside a completely different system. As I describe in Chapter 6,

this seemingly innocuous requirement is beset by plenty of landmines in the

syntax, structure, and semantics of the data. Data integration software is

built to handle all of these complexities and is therefore quite complex. The

Semantic Web can help, but not in all areas.

Because the business applications that companies wish to integrate come

in so many shapes, sizes, and architectures, many different styles of data

integration are used in the real world. As seen in Figure 11-1, business appli-

cations may sometimes be integrated at the database tier, the logic tier, or

sometimes even the interface tier (not shown). Applications may sometimes

need to have nearly instantaneous integration, and sometimes it may be more

appropriate to integrate on daily or weekly cycles. Sometimes data integration

occurs from many systems into a single large system, and sometimes data

integration needs to replicate data equally among many different systems.

Being complex, the data integration marketplace has several different kinds

of specialty areas, including

 ✓ Extract, transform, load (ETL): Technology for making massive amounts

of updates from one system to another as fast as possible.

 ✓ Enterprise information integration (EII): Technology for merging and

reading data from many sources at once.

18_396797-ch11.indd 27118_396797-ch11.indd 271 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

272 Part IV: Putting the Semantic Web to Work

 ✓ Data replication: Technology for keeping databases in perfect synchro-

nization at all times at any given moment.

 ✓ Data services: Technology for creating components inside a service-

oriented architecture (SOA) that expose composite data components as

Web services.

 ✓ Object-relational mapping (ORM) toolkits: Technology for developers

to build their own data objects inside custom applications.

Figure 11-1:
Data inte-

gration from
different
places in

the business
application

architec-
ture.

User Interface

Application

Data

User Interface

Application

Data

SOA/EAI

ELT/ETL

Application 1 Application 2

Semantic Web technologies may have a role to play in each of these data

integration market areas, but it’s unlikely that the Semantic Web will have a

transformative effect in these existing market categories. Because most of the

established data integration marketplace is strongly driven by performance-

optimized solutions, the Semantic Web technology set is at an inherent disad-

vantage because it always requires additional processing overhead.

For example, ETL technologies are predominantly judged on the raw perfor-

mance of moving and transforming massive amounts of data, and they have

been optimized to eliminate unnecessary overhead in their processes. The

Semantic Web offers nothing in terms of performance gains to ETL; in fact,

it’s just the opposite — Semantic Web is such a new technology that it isn’t

at all strongly optimized in relative terms. But all is not lost for the Semantic

Web: Large gains can still be made in the data integration space using

Semantic Web technologies. Table 11-1 shows how.

18_396797-ch11.indd 27218_396797-ch11.indd 272 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

273 Chapter 11: Discovering the Enterprise Semantic Web

Table 11-1 Semantic Web for Data Integration
Existing Data Integration Challenge Semantic Web Opportunity

ETL and replication solutions are typi-
cally part of a larger solution that may
include business intelligence, analytic
applications, or other data integration
solutions — but incompatible system
metadata results in lost productivity and
unplanned system outages.

Leverage OWL/RDF as a common
metadata framework for enterprise
infrastructure (because it’s so pow-
erful and expressive) and derive
substantial new benefits from higher
reuse, better developer productivity,
and end-to-end impact analysis fea-
tures that prevent unforeseen techni-
cal outages.

EII, Data Services, and ORM solutions
typically offer developers a way to
create a new data model that maps to
many underlying sources, but these
new data models either (a) are standard
formats with weak expressiveness, or
(b) have powerful flexibility but no porta-
bility outside a specific vendor toolkit.

Leverage OWL/RDF as a data model
view layer so that developers can
build their unifying views in a format
that is both highly expressive (power-
ful) and exceptionally portable
(reusable).

The most practical path forward for businesses to receive benefits from the

Semantic Web in data integration use cases is for technology vendors like

IBM, Oracle, and Microsoft to begin using the technology within their already

popular data integration solutions. However, that process will only begin to

accelerate when the customers of those solutions demand the productivity,

openness, and flexibility benefits that the Semantic Web will yield.

Finally, it must be noted that the long-term promise of the Semantic Web for

data integration is actually to displace existing tools, not to make them better.

The central challenge with any of the existing mainstream data integration

tools is in the physical integration of differing data syntaxes, data structures,

and data semantics. The central benefit of the Semantic Web data languages is

that, after data is in those formats, they largely eliminate the difficult and com-

plex brute-force design work required to make different data work together.

If you haven’t already, check out Chapters 9 and 10, where I discuss how RDF

and OWL data can be easily recombined in new ways.

The most optimistic Semantic Web advocates see a future where most

business software applications make their data available in Semantic Web

formats. After this utopian ideal materializes, the need for traditional data

integration tools will begin to fade away. In this vision, the RDF/OWL data

would be directly accessible from the business applications and that data

could be easily linked, joined, and reused without having to rely entirely on

infrastructure developers to manually connect the data together in advance.

18_396797-ch11.indd 27318_396797-ch11.indd 273 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

274 Part IV: Putting the Semantic Web to Work

Although this optimistic vision is absolutely possible, it remains improbable

for the foreseeable future. The reality of business applications is that they’re

infrequently upgraded after they’re installed, and the application vendors

rarely add features for purely altruistic reasons. For those reasons, it will

probably be decades before Semantic Web technology will even begin to dis-

place the need for even some of the more conventional data integration solu-

tions that are around today.

Semantics for service-oriented
architectures
One of the hottest markets in enterprise infrastructure is the service-oriented

architecture (SOA) market. Since 2001, the SOA market has been building and

building based on the promises of lower-cost and more flexible integration.

Unlike the data integration technologies, the SOA technologies are built pri-

marily to integrate business applications at their logic layers using messages

and transactions. Historically, these kinds of integrations have been fulfilled

by technologies called enterprise application integration (EAI) platforms, but

SOA raises the bar on features and offers a more standardized way to ensure

long-term flexibility.

As a technology, a typical SOA is actually made up of several subsystems

that comprise the whole solution. Just as with the data integration market-

place, the Semantic Web is not a replacement or panacea technology for SOA.

Instead, the Semantic Web benefits may be selectively applied to certain SOA

components for incremental benefits.

Any enterprise SOA has an enormously complex collection of metadata

that’s required to make the solution work. Inside these SOA platforms there’s

always some type of metadata repository to govern the lifecycle of these

assets. The Semantic Web can’t replace this SOA repository, but it can pro-

vide substantial new capabilities to improve how these subsystems work.

Today, large SOA providers such as IBM and Oracle are using RDF and OWL

to augment the functionality of their SOA metadata management subsystems.

These uses for Semantic Web technology can be as simple as proving a better

way to annotate existing SOA metadata, or as comprehensive as using the

RDF/OWL as the primary metadata model for expressing the relationships

among SOA assets. Large vendors and smaller niche vendors will no doubt be

offering more Semantic Web capabilities inside SOA repositories in the years

to come.

A related but distinct area within SOA is the registry. Like the repository,

the SOA registry is comprised of mainly metadata, but unlike the repository,

the registry’s purpose is to enable the runtime and design-time discovery of

18_396797-ch11.indd 27418_396797-ch11.indd 274 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

275 Chapter 11: Discovering the Enterprise Semantic Web

active services that are available for use. Whereas the SOA repository is like

a file cabinet for placing items, the SOA registry is like the Yellow Pages direc-

tory that you use to locate services. If you need to brush up on your SOA

fundamentals, you can find out all you need to know about from the recently

updated 2nd edition of Service Oriented Architecture For Dummies (Wiley).

Because the Semantic Web is an excellent way to create powerful taxono-

mies and data models, as you discover in Chapter 10, you can guess that

these RDF/OWL formats can also be a powerful way to store the structure of

SOA Web services and publish them for consumption. Instead of depending

entirely on the limitations of XML Schema, or the limited power of UDDI’s

(Universal Description, Discovery, and Integration) TNode approach, the

OWL/RDF semantics can empower SOA developers to write more dynamic

programs that can locate and leverage Web services more independently and

with higher accuracy.

Some vendors are also exploring ways to use Semantic Web technology

to generate business processes at runtime. Instead of the way the BPEL

(Business Process Execution Language) standard works today — where the

developer must define the process in advance — it’s possible to construct

business processes on-the-fly by using inference engines to make the data-

level bindings more automatic. Although these highly dynamic use cases

aren’t for every business, some companies that depend on close operations

with partners can use this Semantic Web extension to BPEL as a way to be

more flexible and dynamic.

Again, the Semantic Web does not displace the need for SOA: It merely offers

a better alternative to basic XML as a metadata layer when the situation calls

for it.

SOA is a quickly growing market that is already worth billions, but critics

are quick to point out that SOA hasn’t fundamentally made working with

data any easier. Using SOA is akin to pressing harder on the gas pedal when

you’re driving down a dark road without your headlights on: You need lights,

not more speed! The Semantic Web is one way to shine more light on the

data-level issues inside SOA. The aforementioned uses for Semantic Web in

the SOA registry, SOA repository, and SOA process engines are all ripe for

semantics.

Likewise, the data integration use cases like data services can inject seman-

tics into SOA as a kind of canonical data model for XML messages. Unlike

the limited power of XML, the RDF and OWL models can supply a genuine

data framework for viewing and retrieving data inside a SOA architecture.

Someday, the SOA may even be the preferred place to access data — bypass-

ing the database and SQL for a more middle-tier, silo-less approach for data.

Nonetheless, that kind of major shift in technology is still far away.

18_396797-ch11.indd 27518_396797-ch11.indd 275 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

276 Part IV: Putting the Semantic Web to Work

Semantics for business intelligence
and data warehousing
Despite guidance from database vendors, few businesses store all their

data in a global single database. Mergers and acquisitions, upgrades, legacy

systems that are essential and can’t be phased out, internal politics, and

simple common sense ensure that multiple and heterogeneous databases will

continue to exist for the foreseeable future. Much of the useful information

in many organizations is contained in the spreadsheets and single-user data-

bases on users’ desktops, and this reality is also unlikely to change.

Yet, organizations recognize that the quality of their information is a key

competitive factor. Streamlined internal information flows and high-quality

reporting are considered essential to a modern business — but the required

information is fragmented, held in several online transaction processing

(OLTP) databases and dozens or hundreds of small, hand-crafted reporting

systems, all of which have different definitions of terms as well as different

scopes, user interfaces, and goals.

A data warehouse aims to crystallize all of this different information into a

single, central system, with real-time querying of data properties based on

frequently updated operational data. These online analytical processing

(OLAP) systems may store many terabytes of data and support queries from

thousands of users. A data mart is a smaller version of a warehouse, with its

structure optimized for a particular department or business function; these

may still run to tens or hundreds of gigabytes.

A typical data warehouse or data mart contains three components:

 ✓ A relational database optimized for queries

 ✓ One or more multidimensional aggregations stored in some custom data

structure, typically a hypercube

 ✓ A way of transforming data from multiple OLTP schemata into a single

schema for the warehouse

The optimized relational database typically uses a star or snowflake schema.

A star contains a single, large table of facts, and several dimension tables that

map identifiers to values. There may be several separate stars in one ware-

house. A four-dimension example for a retailer is shown in Figure 11-2.

The fact table holds identifiers for the various dimensions and numeric

values. Rows contain the finest level of detail available through the ware-

house. Each dimension has one associated dimension table that holds all its

data. In this example, there are four dimensions: product, location, time, and

payment method. This dimensional modeling approach allows a user to move

between levels efficiently and to drill down to more detailed information.

Sometimes a dimension table is complex enough to be split into its own star.

This split produces a snowflake schema, as shown in Figure 11-3.

18_396797-ch11.indd 27618_396797-ch11.indd 276 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

277 Chapter 11: Discovering the Enterprise Semantic Web

Figure 11-2:
A proto-

typical star
schema

for a retail-
ing data

warehouse.

Product dimension

Sales Fact Table

Payment dimension

Time dimension Location dimension

Figure 11-3:
A proto-

typical
snowflake

schema
for a retail-

ing data
warehouse.

Sales Fact Table

Time dimension Location dimension

18_396797-ch11.indd 27718_396797-ch11.indd 277 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

278 Part IV: Putting the Semantic Web to Work

Both the star-schema approach and the more complex snowflake approach

are built with relational databases. As I describe in Chapter 5, relational

databases are good at storing large volumes of similar data and retrieving

small parts of that data. They’re less successful at calculating summaries,

such as totals, over large parts of that data. As a result, other types of tech-

nology have been created for storing and aggregating those summaries.

Multidimensional OLAP cubes allow summary data to be queried more

quickly and efficiently than any other technique.

A typical cube has three dimensions — for example, time, location, and pay-

ment method. If it’s divided up on all three dimensions into many tiny cells,

it can store combinations of three OLAP dimensions in those cells. Each cell

corresponds to one possible combination of values. A multidimensional cube

is simply a cube with more than three dimensions. It’s more difficult to visu-

alize, but simply allows the same cell construction with more complex fact

tables.

Business intelligence, reporting, and analytic applications use cubes and the

underlying OLAP database as alternative ways of retrieving information. Top-

level summary information is usually obtained from the cube; as a user drills

down to smaller amounts of data, queries are run against the underlying rela-

tional database.

When typical business intelligence (BI) and analytic systems work with star-

schema, snowflakes, and OLAP cubes, they typically have to work directly

against the physical structures of that data. These physical tables, as you can

well imagine, may be very complicated to navigate and understand. Very few

businesspeople or information workers are productive when working against

the raw physical sources of data warehouses.

Newer, more advanced BI solutions offer some layers of indirection; some

vendors even call these indirection models a “semantic layer.” But what

these BI solutions are really doing is allowing the BI developers to create

more business-friendly logical dimensions and fact tables on top of the

physical fact tables and dimensions. Although this is incrementally useful, it

doesn’t change the reality that fact tables and dimensions are an extremely

unnatural way of looking at business data. Therefore, the BI and analytics

industry as a whole continues to face much criticism about the specialty

developers that have to be continually on-call for the businesspeople in

order make truly useful BI dashboards and reports. This manual and labor-

intensive solution is quite expensive for big companies.

Another challenge for these star-schema and cube-based analytic and data

warehouse systems is their ability to work with semi-structured and unstruc-

tured data. Although these BI platforms have all generally evolved to work

pretty well with relationally structured data, they haven’t really applied any

innovative methods to leverage unstructured and semi-structured data inside

BI. These unstructured data requirements are becoming more important each

18_396797-ch11.indd 27818_396797-ch11.indd 278 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

279 Chapter 11: Discovering the Enterprise Semantic Web

year that the Internet becomes more pervasive and the more that large com-

panies look to organize and use the enormous amount of documents that exist

in parallel but disconnected systems. Thus, there are two important opportu-

nities for the Semantic Web technology based to incrementally improve and

expand upon BI and data warehouse systems, as shown in Table 11-2.

Table 11-2 Semantic Web for BI and Data Warehousing
Existing BI and Warehouse
Challenges

Semantic Web Opportunity

BI and data warehouse tools usually
require users to work on the physi-
cal data tables directly or sometimes
through a dimensional logical layer.
Both of these kinds of data models are
extremely non-intuitive for business
users to set up, query, and maintain,
thereby causing enormously expensive
and inefficient BI solution footprints.

Leverage OWL/RDF as a data model
view layer so that businesspeople
can build their enterprise data views
in a more natural graph data format
that is highly expressive (powerful),
exceptionally portable (reusable), and
strongly deterministic (important for
formulating DBMS queries).

Businesses are placing a rising impor-
tance on their document-base content
and making it part of the overall BI
imperative. Unstructured and semi-
structured content should be capable
of being analyzed alongside normal
data warehouse data in order to pro-
vide a more complete and accurate
picture of the business-to-business
leadership.

Leverage OWL/RDF as an intermediary
format for parsing unstructured data
into a more highly structured format.
Because OWL and RDF are graph for-
mats, the text parsers have an easier
time extracting data into them, and
the resulting data can be more easily
combed for useful analytics alongside
traditional warehouse systems.

Few, if any, vendors are pursuing this complementary vision of the Semantic

Web augmenting the data warehouse and business intelligence platforms —

at least not publicly. As you can see by the conceptual idea captured in

Figure 11-4, the idea is really a loose coupling between the BI system, the

data warehouse, and the Semantic Web technologies. The benefits are a sim-

plified user interface for the businesspeople as well as an improvement in the

BI system’s ability to cope with documents and unstructured data.

Perhaps more interestingly, more efforts are being placed into newer busi-

ness intelligence and analytic applications that rely entirely on the Semantic

Web for infrastructure. As I point out in Chapter 10, these newer systems are

being constructed because certain industries place a premium on adaptive-

ness, agility, and flexibility. For those who prize those attributes over raw

speed and raw scale, it’s possible to construct a purpose-build BI system to

aid in decision support directly on top of Semantic Web repositories and data

formats.

18_396797-ch11.indd 27918_396797-ch11.indd 279 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

280 Part IV: Putting the Semantic Web to Work

Figure 11-4:
A concep-

tual picture
of how a

hybrid BI/
Semantic

Web system
might look.

NLP

Presentation Layer

Business Intelligence Architecture using Semantic Web

Business Model layer (OWL Ontology)

Snowflake
DB/DW

Triples
KB

Desktop

Web

ECM

Product dimension

Sales Fact Table

Payment dimension

Time dimension Location dimension

Semantics for enterprise governance
Governance is one of the most catchy, overused, and ill-defined buzz words

in enterprise software. Depending on who you talk to, it could mean some-

thing as trivial as making sure you have a strong password, or something as

all-encompassing as surviving a Sarbanes-Oxley audit by the government.

Governance is big business today, but mostly for the professional services

organizations that supply auditors and technical staff to help shore-up and

stabilize the enterprise computing environment. In fact, governance is a

broad collection of management, security, and audit processes that span

many different kinds of IT systems.

For the purposes of this discussion, I refer to the following broad categories

of IT governance:

 ✓ Data governance: The process of managing the complete lifecycle of

data models, data records, data hierarchies, and data rules. Typically,

this area is fulfilled by the master data management and metadata man-

agement marketplace.

 ✓ SOA governance: The process of managing the complete lifecycle of

SOA metadata for design-time and runtime XML metadata. Typically, this

area is fulfilled directly by the SOA platform provider, but specialty solu-

tions such as Oracle Enterprise Repository and Software AG CentraSite

also provide standalone solutions.

18_396797-ch11.indd 28018_396797-ch11.indd 280 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

281 Chapter 11: Discovering the Enterprise Semantic Web

 ✓ Security governance: The process of enabling single sign-on infra-

structure and a common identity framework across business systems.

Typically, this area is fulfilled by the identity management software

sector.

 ✓ Application governance: The process of managing the risk and compli-

ance factors for how people can use or abuse application-level functions

inside business software of any type. Typically, this problem area is

addressed by the governance, risk, and compliance (GRC) marketplace.

 ✓ Network governance: The process of managing the hardware devices,

their configurations, and their connections inside a large company.

Typically, this problem is solved by systems management and configu-

ration management databases like HP OpenView, Tivoli, and Oracle

Enterprise Manager.

Each of these broad categories is treated somewhat independently from the

others in the marketplace and, although some overlap does occur among

them, they tend to solve different enough problems to describe how the

Semantic Web can help in each area.

Each of the infrastructure governance categories I’ve defined have unique

properties and work on substantially unique kinds of data. But they also

share much in common. The fundamental questions that users of each of

these systems want to know are

 ✓ Can I see an end-to-end picture of how things are logically connected?

 ✓ Can I generate a report to show me if something will break when I make

changes?

 ✓ What happens if a newer version of this data becomes available?

 ✓ Are my systems ready to pass an audit?

In the case of SOA governance, those questions might apply to changing

WSDL (Web Service Description Language) interfaces or BPEL processes.

The data governance questions may apply to changing database schemas or

accounting codes. Security governance staff may ask those questions about

users, roles, and permissions, whereas my application governance person-

nel might be wondering about new functionality in the billing system and

whether certain application users can now approve invoices.

Today, these solutions are partially addressed by dedicated systems, but I

cannot use a SOA governance platform to watch my data models or a data

governance platform to watch my segregated application function points.

The opportunity for the Semantic Web is both within and across these exist-

ing governance solutions, as shown in Table 11-3.

18_396797-ch11.indd 28118_396797-ch11.indd 281 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

282 Part IV: Putting the Semantic Web to Work

Table 11-3 Semantic Web for Enterprise Governance
Existing Governance Challenges Semantic Web Opportunity

With each existing governance category
(Data, SOA, Security, Application, and
Network), there’s a common need for
being able to identify technical and
business concepts that can be easily
connected and navigated. However,
creating data graphs with XML or
relational formats is complicated and
non-deterministic, making it impossible
to build a solution that can gracefully
change over time.

Leverage OWL/RDF as the concep-
tual model for things (SOA artifacts,
data model entities, devices, appli-
cation functions, people, and roles,
and so on) and then rely on the
power of the inference engine to do
dependency analysis and ensure
that business rules are consistently
and deterministically applied to the
data about the environments being
governed.

Governance as a market is still in its
early days, as evidenced by the five
unique areas mentioned in this sec-
tion. Over time, the opportunity will be
to link together governance practices
from each of these areas into a common
framework for governing data assets,
SOA assets, security assets, applica-
tion usage, and network assets from a
unified place, but today’s fragmented
systems cannot offer that ability because
of incompatible and inflexible software
systems built without using Semantic
Web metadata.

Existing governance platforms could
be abstracted into a single OWL
ontology of assets, people, and poli-
cies and connected via a middleware
for governance. Or alternatively,
specialty governance solutions could
employ OWL models from the begin-
ning and continuously evolve into
new areas by expanding the ontology
and application functionality.

It’s a near-certainty that the enterprise governance markets will continue

to grow, thrive, and become even more important as regulatory pressures

worsen. The opportunity for existing governance solutions to leverage the

Semantic Web, even on a tactical basis, is quite strong. A few companies are

already heading in that technical direction. But a larger challenge is looming

on the horizon: the challenge of integrating the governance platforms. This

may be a kind of long-tail problem that doesn’t materialize for a decade or

more, but some forward-thinking businesses are already investigating what it

will take to align data governance with SOA governance with application gov-

ernance, and so on.

Enterprise metadata on steroids
Data integration, SOA integration, and enterprise governance all depend on

metadata. The common opportunity for Semantic Web technologies to assist

those software markets swirls around the general metadata problem space.

As I describe in Chapter 6, metadata can come in all shapes, sizes, flavors,

18_396797-ch11.indd 28218_396797-ch11.indd 282 2/13/09 8:33:13 PM2/13/09 8:33:13 PM

283 Chapter 11: Discovering the Enterprise Semantic Web

and uses, and it comes with its own set of technical strengths and weak-

nesses. Until the Semantic Web, there really wasn’t a viable candidate for

making metadata interoperable in a one-size-fits all kind of manner. The uni-

versal promise for Semantic Web technologies in the enterprise computing

sector is to leverage a powerful, deterministic, and flexible standard for defin-

ing system metadata — that’s the common thread running throughout each

of these enterprise Semantic Web use cases.

Discovering a Single Source
of Truth for the Enterprise

For many years, enterprise IT departments have sought the ability to present

a single view of truth about business operations to the business community.

This single view of the truth would tie together disparate business applica-

tions into a rational and complete view of data about key business assets

such as customers, products, supply chain operations, human resources,

orders, and general ledger statements. This objective has spawned and

fueled the significant IT spending patterns for many years. The client-server

boom of the early 1990s, the ERP boom of the mid-1990s, and the business

intelligence boom of the early 2000s have all, to a substantial degree, been an

attempt to create a single global source of truth for businesspeople to under-

stand their operations.

Unfortunately for businesspeople and IT staff alike, these attempts have

yielded only incremental gains and in most cases have only worsened their

problems. ERP systems for human resource planning, financial accounting,

and customer relationship management have multiplied instead of con-

solidating. Business intelligence systems and data warehouses have been

capable of solving only narrow business problems in specific domains, and

innumerable one-off attempts to leverage enterprise information models have

been too complex and were resounding failures. These effects haven’t just

been felt by businesses: State and federal governments have tried for the

same goals and also had to abort their efforts.

This description of failure in meeting the larger goal of an enterprise source

of truth is not to imply that ERP and BI systems have been failures; to the

contrary, they’ve been quite successful in achieving more narrowly defined

goals. The main enemy of a single source of truth has always been change.

During the many months of any IT project, businesses change many times

over. Changing market conditions drive business decisions like mergers,

acquisitions, new products, new promotions, new accounting practices, new

sales territories, and so on. ERP systems and BI systems can keep pace with

that change in only very narrow circumstances, under just the right condi-

tions, and with no small amount of effort to keep pace.

18_396797-ch11.indd 28318_396797-ch11.indd 283 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

284 Part IV: Putting the Semantic Web to Work

Every ERP or BI system is a terribly complex collection of software. Layers of

business objects, business rules, data models, and application interfaces

manipulate data along predefined execution paths. These predefined execu-

tion paths prevent easy changes. How can a system designed over the course

of many years respond to a business’s 180-degree turn on a moment’s notice?

It can’t.

When ERP and BI systems depend on underlying relational models or hard-

wired business entities and contrived flex data elements, they cannot change

midstream. To many people, the kind of desired flexibility required for gener-

ating and maintaining a single source of truth is an impossibility. Some have

compared the single source of truth idea to the idea of trying to change a jet

airliner’s engines while it is flying: a nice idea, but a fantasy nonetheless.

Ontologies and the Semantic Web do not magically solve this decades-old

problem, but they do offer an intriguing path forward to try yet again what

some have deemed impossible. Semantic Web ontologies provide some new,

unique capabilities that haven’t been available previously: new capabilities

that directly address some of the short-comings of previous attempts at a

single source of truth. First, OWL/RDF ontologies provide a superset of data

model expressiveness, which means they are technically capable of captur-

ing the semantics of existing IT systems with lossless accuracy. Second,

OWL/RDF ontologies are computationally consistent, which means that there

is grounded unambiguous level of truth when interpreting them. Third, OWL/

RDF ontologies can change in real time, which means that consistency can be

maintained while changing or asserting new facts into the global data model.

The Semantic Web is not itself the Holy Grail for an enterprise source of truth,

but it does offer compelling clues to what the next stages of that journey

might look like. So far, there have been several early tries at using Semantic

Web languages for these purposes, and some early patterns are emerging. In

the following sections, I look at these early patterns and give you some pros

and cons to consider about their usefulness.

OWL knowledgebase
An OWL knowledgebase can describe data/records, schema, and busi-

ness rule–type metadata within a single repository that can be always kept

consistent. In this approach, the data models contain taxonomic/schema

concepts connected to OWL-based records that are essentially RDF triples.

After the data is accessible via OWL and in the RDF format, more powerful

and expressive connections can be made on the records themselves to link

them together, define datatype properties, and perform algorithmic inference

operations on the data directly.

The defining characteristics of this approach are

18_396797-ch11.indd 28418_396797-ch11.indd 284 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

285 Chapter 11: Discovering the Enterprise Semantic Web

 ✓ OWL as the model representation: The business models are syntacti-

cally and semantically held within an OWL framework.

 ✓ Taxonomic and associative data linking: The OWL is leveraged via a

TBox and an ABox, which means that records must be converted and

stored into the OWL/RDF formats. See Chapter 8 for more information

on TBox and ABox components.

 ✓ Mappings connect records to RDF triples: A mapping directs extraction

engines to convert business application data into RDF triples.

 ✓ Data retrieval by the OWL knowledgebase: The physical retrieval of

data must now occur directly from the OWL knowledgebase.

 ✓ Advanced inference may occur on data: The OWL knowledgebase can

classify and assert new facts (axioms) onto the data according to how

the OWL taxonomic models have been defined.

The main substantial limitation to this approach is that the OWL knowledge-

base does not and cannot ever scale to the levels of a relational database.

Both in terms of query speed and in amount of data, the OWL knowledge-

base is always behind a comparable relational database. (The facts behind

this tradeoff are explained further in Chapter 12.) Secondarily, because the

data itself is now part of an OWL knowledgebase, there will always need to

be background processes that copy data from the point of origin into the

knowledgebase. In other words, the data in this approach is always a copy

(as shown in Figure 11-5) and not the actual data that is active in the business

application.

Figure 11-5:
The OWL

knowl-
edgebase
approach

for a single
source of

truth.

NLP
& ETL

Analytics Layer

Query Interface

OWL Knowledgebase

RDF
KB

OWL
TBox

Applications

Documents

Web

18_396797-ch11.indd 28518_396797-ch11.indd 285 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

286 Part IV: Putting the Semantic Web to Work

The benefits of this approach to business are in the analytic power of the

OWL knowledgebase. If the business is willing to sacrifice scale and speed,

the graph format of the data allows for much more powerful algorithms to

manipulate the data inside the OWL knowledgebase. The most important new

capabilities are the ability to continually evolve the data model, how the data

is organized, and how the data is connected to other data — essentially over-

coming the barriers to changing data models directly in the knowledgebase

itself. These capabilities are reasons why some industries like life sciences,

defense, and financial services are looking to OWL knowledgebases for use as

decision support systems.

RDFS view layer
The RDFS view layer is technically similar to the OWL view layer, but with

limited model expressiveness. In this case, the models are limited to the

RDFS level semantics, as defined in Chapter 7. Instead of using OWL ontolo-

gies for defining the business view, the information workers use simpler

taxonomies and business models that don’t exceed RDF Schema’s semantic

capabilities. This method yields a simpler architecture for viewing a single

source of enterprise truth, but it greatly limits how powerful the business

models can be.

The defining characteristics of this approach are

 ✓ RDF Schema as the model representation: The business models are

syntactically and semantically held within an RDF Schema framework.

 ✓ Mappings connect concepts to records: A mapping of RDF concepts

links the model to underlying data schema such as relational models or

XML Schema (RDF Façade, as shown in Figure 11-6).

 ✓ Data retrieval by regular systems: The physical retrieval of data still

occurs in the legacy data tier using SQL, XQuery, or other commonplace

data recovery techniques — although the upstream software clients may

issue an RDF query such as SPARQL.

Limitations to this approach include a lack of modeling power and inability

to manipulate data directly at the record level. Because the RDF Schema is

acting only as a view, the physical records of business applications remain in

their relational or XML formats. This would yield a good way to link different

IT system data models, but the records themselves would not be any more

unified than before. RDF Schema offers some advantages over relational mod-

eling because it’s a graph format that allows for class inheritance and a more

intuitive way of structuring data hierarchies — which are commonplace in

business systems — but its degree of power in defining complex concept asso-

ciations is far less than OWL and only somewhat comparable to even UML.

18_396797-ch11.indd 28618_396797-ch11.indd 286 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

287 Chapter 11: Discovering the Enterprise Semantic Web

Figure 11-6:
Using RDFS
facades as

a proxy to
business
systems.

User Interface

Application

Data

User Interface

Application

Data

SOA/EAI

ELT/ETL

RDF Query Layer

New Software Applications with Re-Mixed Data

RDF FaçadeRDF Façade

RDF Façade

RDF Façade

User Interface

Application

Data

Application 2 Application...Application 1

The benefits of this kind of approach can be useful as an alternative to some

more commonplace data integration techniques, namely EII and data ser-

vices, but the overhead and relative immaturity of the approach may make

the benefits insufficient to justify the risks.

OWL view layer
One promising approach is to extend the RDF Schema layer in order to

leverage OWL ontologies as a common logical modeling layer on top of exist-

ing enterprise business applications. Because OWL is technically capable

of accurately expressing data models of any type, business models can be

generated by information workers and mapped through layers onto existing

IT systems. After it’s in place, the OWL model becomes the consistent view

through which enterprise data is used by client software that requires a uni-

fied single source of truth.

The defining characteristics of this approach are

 ✓ OWL as the model representation: The business models are syntacti-

cally and semantically held within an OWL framework.

 ✓ Taxonomic models only: The OWL is leveraged via a TBox only, which

means that the data records are not converted and stored into the OWL

format. See Chapter 8 for more on TBox.

18_396797-ch11.indd 28718_396797-ch11.indd 287 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

288 Part IV: Putting the Semantic Web to Work

 ✓ Mappings connect concepts to records: A mapping of OWL concepts

links the ontology to underlying data schema such as relational models

or XML Schema.

 ✓ Data retrieval by regular systems: The physical retrieval of data still

occurs in the legacy data tier using SQL, XQuery, or other commonplace

data-recovery techniques.

One limitation of this approach is that it leverages only the taxonomic power

of the OWL ontologies. This limitation means that it would not enable deeper

connections and linking to occur between the physical records. For example,

I could create an ontology that says that two different relational database

columns, CUST and ISV_PART, are both conceptually a corporate customer,

but it would not enable me to say that two data records, ACME and ACME

Consulting, are the same. Thus, I get the incremental benefits of conceptually

linking many different kinds of schemas, but I can’t directly link the physical

records in the view itself.

Businesses can benefit from this approach most when they need to work

directly with the data models as the dominant source of truth. Certain kinds

of problems lend themselves to using the data model as a way of defining

allowable relationships, views, and business rules, and OWL is a likely format

for enabling that. Secondly, sometimes the business’s main challenge is link-

ing together many different applications from the schema level in order to

know where data is and how to get at it; answering questions about what

data you have and where it resides is sometimes the biggest part of a busi-

ness’s problem. Finally, giving information workers an exceptionally power-

ful, flexible, and dynamic way of building enterprise business domain models

can move them beyond the limitations of other formats like relational data-

bases, XML Schema, and UML (Unified Modeling Language), which aren’t as

expressive and far more brittle and inflexible than OWL.

RDF knowledgebase
Just like the OWL knowledgebase approach, the RDF knowledge base supplies

a landing spot for data copied from other places. But instead of viewing that

data via a powerful and expressive ontology, the RDF knowledgebase by itself

only allows for RDF Schema–level models to be applied to the physical data.

The defining characteristics of this approach are

 ✓ RDF Schema as the model representation: The business models are

syntactically and semantically held within the RDFS scope.

 ✓ Data record–level linking: The RDF triples are leveraged via the RDF

repository directly, which means that records must be converted and

18_396797-ch11.indd 28818_396797-ch11.indd 288 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

289 Chapter 11: Discovering the Enterprise Semantic Web

stored into the RDF format. See Chapter 7 for more information on the

concept of a triples store.

 ✓ Mappings connect records to RDF triples: A mapping directs extraction

engines to convert business application data into RDF triples.

 ✓ Data retrieval by the RDF knowledgebase: The physical retrieval of

data must now occur directly from the RDF knowledgebase via a query

language such as SPARQL.

 ✓ Some RDFS-level inference may occur on data: The RDF knowledge-

base can classify and assert new facts (axioms) onto the data according

to how the RDF Schema models have been defined: for example, to build

new classification schemes based on subsumption-level inference (see

Chapter 7).

The benefits and limitations to this approach roughly mirror those of the

OWL knowledgebase. Instead of working with a more powerful ontology lan-

guage like OWL, the modeling formats are limited to the power of the RDF

Schema model semantics. Although many people would prefer the more

advanced ontology formats, others make the point that RDF by itself is less

constricting and easier to work with. Essentially, RDF gives users a blank

canvas with their data, and they’re free to manipulate and recombine it

without having to comply with possibly limiting data models. Whereas some

information workers want the control to enforce consistency on the data

through the ontology, others prefer the flexibility to add and retract facts

in the knowledge base with fewer constraints. In those cases, particularly

where there’s a lot of previously unknown data that must be consumed,

an RDF knowledgebase approach would be more desirable than an OWL

knowledgebase.

Hybrid implementations
As the Semantic Web approaches evolve, knowledgebases will likely spawn

hybrid capabilities that enable business to mix up these different styles (see

Figure 11-7). There are valid business reasons why one source of truth may

require powerful and consistent data models expressed in OWL, whereas

other business drivers may require the flexibility to consume new RDF triples

without constraining them to a particular business model. Likewise, the need

to balance operational requirements might direct one solution down the path

of viewing data in the place where it’s used, whereas other requirements

might necessitate copying data into a knowledgebase for more advanced ana-

lytics. The benefits of a Semantic Web–based approach is that these differing

needs could be accommodated in a single platform, while still enabling the

cross-pollination of data into different data views.

18_396797-ch11.indd 28918_396797-ch11.indd 289 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

290 Part IV: Putting the Semantic Web to Work

Figure 11-7:
An example

hybrid
architec-
ture that

combines
different

source
of truth

patterns.

NLP
& ETL

Analytics Layer

Information
Worker

Query Interface

OWL Knowledgebase

RDF
KB

OWL
TBox

Applications

Documents

Web

User
Interface

Application

Data

User
Interface

Application

Data

RDF Façade

Application 1 Application...

User
Interface

Application

Data

Application...SPARQL
Adapter

Exploring Some Enterprise
Semantic Web Use Cases

All the ideas presented in this chapter would be theoretical and mostly use-

less if there weren’t real examples of the technology in action. Unfortunately

for researchers, many of the most interesting examples of the Semantic Web

are unpublished classified projects considered too strategic and too impor-

tant to promote widely. Fortunately, a few companies are willing to share

their successes with the industry and have made all or part of their Semantic

Web projects public in one form or another. Many of the use cases presented

here were drawn from the growing collection of examples hosted by the W3C

Semantic Web Education and Outreach initiative.

NASA: Expert locator service
Like many large organizations, the U.S. National Aeronautics and Space

Administration (NASA) can sometimes have trouble locating the right people

for a particular job. Working together with Michael Grove from Clark &

Parsia, NASA has developed a Semantic Web application called POPS (People,

Organizations, Projects, and Skills) that aims to make it easier to find the

right people when you need them.

18_396797-ch11.indd 29018_396797-ch11.indd 290 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

291 Chapter 11: Discovering the Enterprise Semantic Web

According to the use cases published on the W3C Web site and many public

blogs, POPS application development started in the 2006/2007 timeframe

and finally went live in the early part of 2008. At the time of launch, it used

RDF data generated from internal NASA LDAP (Lightweight Directory Access

Protocol) directories and other data sources to enable the correlation of

people, their skills, NASA projects, and the organizations that fund those

projects. The POPS application itself contains RDF data about 70,000 to

80,000 NASA employees and third-party contractors.

Instead of trying to change NASA’s culture, the POPS application team

worked hard to incorporate ways to augment typical business practices like

calling co-workers for references. The POPS application works much like a

social network, showing details about how the staffing manager is connected

to the potential candidate. Even if they don’t know each other, the staffing

manager can call people she knows for references. Other benefits from using

the Semantic Web include an easy-to-use and consistent data architecture

(RDF) and the rapid integration of new source information (by converting to

RDF and merging).

Eli Lilly: Targeted drug assessment
In the pharmaceutical industry, researchers are the main drivers of innova-

tion and profits. Their work to find new drugs and chemical compounds are

the first steps in a long process of producing medicines that help people stay

healthier and live longer. But making new medications is a long and costly

process. Often a drug that seems promising at an early stage may not pro-

duce the expected results later in the development cycle. Likewise, the costs

for finding new compounds early in the stages of drug development are soar-

ing to billions of dollars.

Data integration is a key part of the drug discovery process. Because the data

about targets and drug compounds is analyzed at early stages to eliminate

or select candidate drugs, the better the data is, the better the company’s

chances of making good decisions, saving money, and finding the right drug

compounds early.

At Eli Lilly, the Semantic Web is used to extend the capabilities of the Target

Assessment Tool (TAT). Scientists and researchers use TAT to evaluate can-

didate drugs in light of scientific and business requirements. Industry termi-

nologies are stored and manipulated as RDF and OWL models. Other kinds of

data models were not as efficient and flexible when working with the diverse

data sources that TAT requires. Because RDF and OWL is a graph language,

researchers can navigate through the relationships more naturally without

having to use artificial keys and indices. The Semantic Web provides a more

powerful way for the pharmaceutical researchers to work on data directly,

discover information as they navigate the set of knowledge, and view all data

that’s related to the entities of interest.

18_396797-ch11.indd 29118_396797-ch11.indd 291 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

292 Part IV: Putting the Semantic Web to Work

Renault: Intelligent automobile
diagnostics
The production of the technical documentation that’s used daily in automo-

tive repair shops for diagnostics and repair is an intricate process. It requires

precise modeling of the workings of vehicles and the aggregation of data from

many sources. These processes are further challenged by the growing com-

plexity of cars, which is a consequence of their many electronic components.

Improving this process, as well as allowing new uses of the knowledge that

gets produced, requires the availability of an increasing part of this informa-

tion as machine-understandable data.

Implementing the linked data principles inherent to the Semantic Web is a

first and very significant step. For example, data entities that are part of the

field gain unambiguous identification — an obvious prerequisite for data

integration — and existing data repositories get turned into simple services.

These simple services can be achieved through unobtrusive methods with

respect to the legacy systems involved (for example, the conversion of XML

as RDF, RDF facades in front of SQL databases, and mapping between equiva-

lent terms used in different systems).

After they’re unambiguously defined, the terms of the published vocabular-

ies can be safely used as metadata to describe the documentation, which can

therefore be queried with SPARQL. On these easy-to-use services, you can

implement the application that mechanics use to access the information they

need for a given repair.

You then can build on OWL’s greater expressivity to model more precisely

the concepts of the field. For instance, defining with OWL the relations

between car components, part failures, symptoms, diagnostic tests and fail-

ure rates, Renault has built a prototype diagnostic engine. Reusing a proba-

bilistic induction tool developed in-house for other purposes, it computes on

the fly procedures that minimize the total cost of diagnostics. This is clearly

an example of the innovative applications that linked enterprise data and

sharable Semantic Web–type modeling can make easier to develop.

Pfizer: A drug compound knowledgebase
Multinational pharmaceuticals like Pfizer fund hundreds of concurrent proj-

ects to develop new chemical compounds in the hopes of discovering some

useful ones that can be used for new drugs. These companies spread risk by

supporting projects at all different phases of the development lifecycle: Some

compounds are very early in development, whereas others are quite mature

18_396797-ch11.indd 29218_396797-ch11.indd 292 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

293 Chapter 11: Discovering the Enterprise Semantic Web

with well-known attributes and behaviors. Most compounds developed don’t

reach the market in an approved drug or medication by a long shot, but that

doesn’t necessarily mean that they aren’t useful in some situations.

Because these pharmaceutical companies end up with massive databases

of drug compound information, most of which aren’t being fully utilized, it

raises the question of whether that existing research and knowledge can be

mined for new uses or combined in new ways. Pfizer is trying a new Semantic

Web approach to aggregate and mine its corporate knowledge of these drug

compounds (some of which may be many years old or residing in different IT

systems) in an effort to help scientists collaborate and reuse the knowledge

gleaned from previous investigations.

Pfizer’s approach is to keep the primary compound data records in their origi-

nal source formats, but to export the key attributes as RDF. This is a kind of

RDF view–layer approach as described earlier in this chapter. The benefits

that Pfizer is happy about include a balance between the ease of maintenance

and ease of use of the data. A version of the MIT SIMILE technology was lev-

eraged to combine different RDF result sets and help the researchers make

better decisions and find compounds that may have been cancelled for one

project, but could still be useful in another. Without the Semantic Web tech-

nologies, it would be much more difficult for researchers to work effectively

with such a huge body of information while remaining efficient and productive.

Finding more enterprise
Semantic Web use cases
For more information about the use cases described in this chapter, and for

additional information about more enterprise Semantic Web use cases like

those in the following list, point your Web browser to the W3C Semantic Web

Education and Outreach Web site at www.w3.org/2001/sw/sweo/public/
UseCases. This site includes a large number of case studies, including those

from the following companies and organizations:

 ✓ Vodaphone: Mobile content search and discovery

 ✓ British Telecom: OSS systems integration

 ✓ Audi: Manufacturing parts assembly

 ✓ Chevron: Oil and gas research knowledgebase

 ✓ Cleveland Clinic: Clinical research knowledgebase

 ✓ UK Ordnance Survey: Geographic referencing framework

 ✓ AGFA Healthcare: Radiological orders validation

 ✓ Oracle: Technology network search engine

18_396797-ch11.indd 29318_396797-ch11.indd 293 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

294 Part IV: Putting the Semantic Web to Work

18_396797-ch11.indd 29418_396797-ch11.indd 294 2/13/09 8:33:14 PM2/13/09 8:33:14 PM

Chapter 12

Scalable Architectures
In This Chapter
▶ Checking out what’s different about scalability in the Semantic Web

▶ Understanding RDF database scalability

▶ Knowing what to look for when selecting a scalable architecture

▶ Buyer beware!

Sometimes technical people take a little while to internalize the systemic

advantages of the Semantic Web data formats: Simply put, it takes

awhile to “get it.” Newer ideas like making data available with Web identifiers

combined with older ideas from artificial intelligence–like graph data net-

works and inference algorithms make for some unusual reactions to learning

more about the Semantic Web. But eventually, as the power of this approach

sinks in, folks naturally start to think about how to put it to work.

But then the reality of the Semantic Web sinks in — its Achilles heel and main

weakness has always been scalability. Scalability means different things to

different people, but for the purposes of discussing Semantic Web architec-

tures, scalability questions are typically about the following:

 ✓ How much data the system can take

 ✓ How expressive the reasoning on the data can be

 ✓ How fast the system can calculate the newly inferred data

Since 2004, a wealth of new startups in the enterprise and consumer software

sectors have looked to solve old problems in new ways using the Semantic

Web. Entrepreneurs are increasingly looking at the Semantic Web as a tech-

nology that can give them an edge against more well-established businesses.

But as soon as the technology is aimed at mainstream software problems

and applications, they get a nasty wake-up call about the relative maturity

of Semantic Web architectures. All that new data processing power of the

Semantic Web comes at a price, and that’s a price that most technologists

haven’t had to consider: data scalability.

19_396797-ch12.indd 29519_396797-ch12.indd 295 2/13/09 8:32:19 PM2/13/09 8:32:19 PM

296 Part IV: Putting the Semantic Web to Work

This chapter builds on the topics covered in Chapter 11 and introduces

you to the most important technical and scalability considerations you

should think about when putting together your own plans for a Semantic

Web application. I discuss the tradeoffs of using inferencing (calculating the

newly inferred data and reasoning with it), and I cover the various ways you

can reliably expose Semantic Web data to consuming applications. Finally, I

conclude with a “buyer beware” message to urge you stay pragmatic when

adopting Semantic Web technology — inflated expectations are the greatest

cause of failure among most Semantic Web projects.

Recognizing That This Is Not
Your Father’s Database

As cool as the Semantic Web is, it doesn’t change the fundamentals of soft-

ware. Software requires programs for processing, places to store data, and

user interfaces to work with it. Nothing fundamental has changed. But the

infrastructure that people use to process and store Semantic Web data

requires different tools than what long-time professionals are used to. In par-

ticular, working with RDF and OWL demands a different kind of database that

has never been widely used before.

Mainstream relational databases have been around in roughly their same

form since the early 1990s. The relational database core patterns were

defined nearly a decade before that. Any software professional who has

implemented commercial, scalable software must have used the relational

database for the vast majority of his or her projects.

Relational databases have features that people simply expect to be there, but

that aren’t there yet for most OWL/RDF databases. Some of these expected

features include

 ✓ Scalable query listeners

 ✓ Backup and fail-over utilities

 ✓ Bulk loading programs

 ✓ Multilevel security controls

 ✓ Flexible view management

 ✓ Embedded procedural programs and functions

 ✓ Powerful partitioning utilities

 ✓ Query planning and indexing wizard

19_396797-ch12.indd 29619_396797-ch12.indd 296 2/13/09 8:32:19 PM2/13/09 8:32:19 PM

297 Chapter 12: Scalable Architectures

The list could go on. It’s not that the makers of OWL/RDF repositories are

inferior, but most of the robust utilities and features of a relational database

need to be rethought in terms of a new and different data structure. Security

on a graph is different than security on matrixed data. Query processing and

planning are different when inference is involved. The notion of what a view

is and how to manage it changes when OWL ontologies enter the picture.

Partitioning and indexing depend on how the data is written to disk, and

optimizing disk writes for RDF data is different than the same features for

relational data.

Of course, none of these concerns are stopping developers from prototyping.

Heck, you don’t even need an RDF database to prototype a Semantic Web

application! One popular prototyping framework, Hewlett Packard’s Jena

toolkit, doesn’t even require a database to work. But planning how an appli-

cation can be successfully transitioned from one or two users to thousands

of concurrent users takes a high level of engineering foresight, planning,

and tooling. Simple logic dictates that Semantic Web database features will

always be behind the curve when relational databases are the benchmark.

Noting Semantic Web Tool Patterns
Fortunately, not every Semantic Web application requires the maximum

level of functionality offered by Semantic Web languages. Sometimes a spe-

cific part of a larger application can benefit from Semantic Web languages.

Sometimes a large application requires a pervasive but relatively efficient

part of the Semantic Web. And in those cases where a large application

requires a substantial number of Semantic Web features, you can employ cer-

tain strategies to overcome some of the barriers to scalability. The following

sections describe a few known and repeatable patterns for using Semantic

Web alongside more traditional software systems.

Ontology as static metadata
An ontology in the OWL format can be used in many different ways. In

Chapter 8, I describe how OWL can be used to model a domain and how the

inference capabilities of OWL are used with that model to empower active

data models. But OWL can also be used in a more static way.

OWL is itself a data model. Without using any inference features whatsoever,

OWL is still a data model. You can build an OWL model and deploy it as

an XML document without having to use any query or inference capabilities

19_396797-ch12.indd 29719_396797-ch12.indd 297 2/13/09 8:32:19 PM2/13/09 8:32:19 PM

298 Part IV: Putting the Semantic Web to Work

at all. When used in this way, it is similar to how many software projects use

XML Schema or the Unified Modeling Language (UML) — as a conceptual

model for understanding a larger data set. Figure 12-1 shows a simplified

view of how you can use ontology management tools (like those described

in Chapter 9) to manage static OWL files, or OWL models in a DBMS, and the

links among them.

Figure 12-1:
The ontol-

ogy and
triples man-
aged in files

or DBMSs
as they are

explicitly
asserted.

Ontology
Management

Tools

Usually an application that requires a separate conceptual model has a

requirement to work with domain concepts, terms, entities, and data vocabu-

laries independently from the physical data records. Healthcare applications,

financial systems, and decision support systems of all types often have these

kinds of requirements. OWL can be a very useful alternative to XML Schema

and UML because it has a more expressive structure (the standard for defin-

ing classes and relationships) than either of those formats.

Even though this general pattern for using OWL might not fully leverage

all the strengths of logic and inference that OWL can provide (which are

described in Chapter 8 and again later this chapter in the section “Scaling

Semantic Web Tools”), it’s still sufficient to supply a robust and more stan-

dardized way of building model-driven applications. Importantly, it also

starts to enable high-level Semantic Web capabilities without the overhead

and costs associated with the scalability problem that a fully featured OWL

subsystem entails.

19_396797-ch12.indd 29819_396797-ch12.indd 298 2/13/09 8:32:19 PM2/13/09 8:32:19 PM

299 Chapter 12: Scalable Architectures

Ontology as active metadata
Sometimes the system demand is for a much more powerful set of capabili-

ties that include advanced reasoning algorithms for changing metadata

structures on-the-fly. These kinds of systems are typically very dependent

on having accurate up-to-date information on system events that could vary

widely or change suddenly, with profound and complex implications to the

behavior of the software application.

Some of the software applications described in Chapter 11 are good examples

of active metadata systems. The Audi maintenance application uses busi-

ness rules and ontology models to assess a vast array of potential problems,

and the state of the software applications changes with each new data point

added to the knowledgebase. Likewise, the targeted assessment models used

by the pharmaceutical companies profiled in Chapter 11 rely heavily on the

inferred combinations of proteins and drug compounds to inform scientists

about the results that can be expected from new data as it becomes avail-

able. Of course, many of these active metadata problems can be solved with

conventional software applications, but they would require developers to

understand and code for all the possible combinations of data in advance —

which is impractical for most complex systems and impossible for some.

The U.S. Air Force Space Wing project
The U.S. Air Force Research Laboratory has
developed DEEP (Decision Explanation Engine
Platform) in support of the U.S. Air Force’s 45th
Space Wing Knowledge Management Initiative.
Launch operations staff at the 45th Space Wing
are required to make mission-critical decisions
about whether to launch a vehicle into space
based on large amounts of distributed, frag-
mented information. DEEP first worked to solve
the biggest issue facing launch operations by
using OWL ontologies to unify fragmented and
disparate data. The solution addressed the most
pressing fragmentation issues first without any
advanced inference, and only later added capa-
bilities for decision reasoning: how to focus the
ontology (or model) and reasoner on the subset
of facts and relationships necessary to answer
the decision-maker’s question.

The tooling for this solution was the Modus
Operandi Wave semantic data services plat-
form, which applies an OWL semantic model
to federated data that can enable a flexible
and powerful search and query capability over
real-time events for launch decision support.
Modus Operandi President and CEO Peter
Dyson emphasizes that, “Ensuring America’s
preeminence in space launch involves high
tempo operations that rely on timely, trusted
information. The 45th Space Wing is underway
with an initiative to increase the level of inte-
gration of its disparate data sources. We are
targeting this important and exciting challenge
on the DEEP project in support of launch opera-
tions. The resulting new technology speeds the
cycle time for making informed decisions.”

19_396797-ch12.indd 29919_396797-ch12.indd 299 2/13/09 8:32:19 PM2/13/09 8:32:19 PM

300 Part IV: Putting the Semantic Web to Work

A typical approach for solving these sorts of problems would be to leverage

an OWL ontology reasoner to build an associative model for the ontology and

build the inferred data from the data that has been asserted by the system.

You can see in Figure 12-2 how the OWL model may contain explicit data (in

black) and inferred data (using dashed lines) that is generated by inference

engines. This level of sophistication and inference complexity leads directly

to massive scalability limitations in large systems.

Figure 12-2:
Ontology

and RDF are
used with

inferred
data (shown
with dashed

lines).

Ontology
Management

Tools

Interence
Engines

An active metadata approach that uses an OWL reasoning platform depends

heavily on powerful, computationally intensive algorithms to compute

inferences on data. Because these features are more intensive than simpler

storage and query algorithms, they always require more overhead for pro-

cessing. In some systems, the computations are calculated during the time

that a query is asked, but for other systems, the calculations occur in the

background. The advantage of applying inferences at the time of query is that

you always get accurate inferred data, but the downside is that your query

could take many minutes or even hours to answer. Active metadata systems

that apply background calculations always have faster query responses,

but the answers to your queries might contain information that is no longer

accurate because the system might still be calculating the inferences in the

background.

Most newer OWL systems can employ the background classification

approach. Applications tend to have a stronger demand for fast query

responses and can sacrifice accuracy in the short term. This approach also

allows for the OWL-based systems to scale to reasonably large levels up to 10

billion RDF triples. Depending on the number of relationships and overhead

in the model, that could be as many as a 50 billion database records.

19_396797-ch12.indd 30019_396797-ch12.indd 300 2/13/09 8:32:19 PM2/13/09 8:32:19 PM

301 Chapter 12: Scalable Architectures

For some applications, a billion records might be a lot, but for perspective,

such a database could not even hold the names of all the citizens in China,

never mind any additional attributes about them or relationships among them.

This relatively low ceiling is just the nature of where scalability limits exist at

this point in time.

Issues and concerns about how much data an RDF/OWL database can con-

tain or query are only one dimension to consider. Equally important are the

various kinds of operations you can perform on that data. For example, the

algorithms used to infer the implications of deleting data are much more

complex than those required for inserting new data. Likewise, updating exist-

ing records is computationally more difficult than inserting data. Sometimes

the processes for retracting and updating are handled separately and in par-

allel to other database operations, and may necessarily take more time.

These performance considerations and further distinctions between the

kinds of OWL/RDF database implementations are explained in more detail as

part of the assessment strategies offered in Chapter 13.

Triples databases
Commercial databases that support RDF/OWL are still maturing and in a rela-

tively early stage. The state of the market today is characterized by different

technical approaches to working with vast amounts of RDF, and there haven’t

been any clear winning technologies defined as of yet.

RDF to relational mapping approach
One of the most conventional and mainstream approaches to working with

RDF data is to leverage a typical relational database and simply structure it

in a three-column table (for the RDF subject, predicate, and object parts of

the triple) and then use SQL (structured query language) to retrieve the data.

Technology frameworks consisting of pre-built Java classes for working with

relational databases are commonplace as a way to enable this pattern. The

Sesame project and Hewlett Packard’s Jena software are popular frameworks

that employ this approach. Likewise, many other projects have created their

own implementations using a relational database and proprietary extensions

for working with RDF.

Oracle hybrid approach
One of the software industry’s most popular databases is the Oracle data-

base. Primarily a relational system at its core, the Oracle system also offers

an interesting hybrid implementation of an RDF/OWL database as part of its

Enterprise Edition Spatial features. Oracle’s Spatial subsystem is highly opti-

mized for working with graph data due to the long-time demands from the

geography and mapping industries. Because that system is already optimized

19_396797-ch12.indd 30119_396797-ch12.indd 301 2/13/09 8:32:19 PM2/13/09 8:32:19 PM

302 Part IV: Putting the Semantic Web to Work

for graph operations, it’s a natural extension to include RDF/OWL support.

Today, Oracle’s implementation is in its third generation and arguably offers

some of the most robust and feature-rich RDF/OWL capabilities because of its

association with the exceptionally feature-rich core database platform.

Native RDF and columnar approaches
Other, more native RDF databases also exist. The Franz Technologies

AllegroGraph database is a Java and Lisp-based platform that works natively

with RDF triples on disk. Because of that company’s long-time investment

in native object-oriented databases, Franz implements a number of useful

features for flexibly working with object-type systems inside the product.

Likewise, the Franz team has some of the most advanced technology for

working with Lisp, so companies and research teams using that programming

environment naturally find a lot of synergy with that approach. Franz invests

heavily in its core database but also builds semantic applications and APIs

for enabling companies to make rapid progress on their projects.

An interesting development happening since 2006 has been that data ware-

house appliance vendors are also starting to consider how they can optimize

for RDF-driven analytic data warehouses. As described in Chapter 5, the data

warehouse appliance usually employs a shared-nothing backend architecture

(where hardware nodes, especially disk drives, are not shared with a single

master process), which is particularly good for handing read-optimized que-

ries on very large datasets. Vertica is one data warehouse appliance vendor

that has demonstrated a columnar database (see Chapter 5) that works with

RDF. One of the most popular warehouse appliances is the Netezza system: It

also leverages a shared-nothing backend architecture and the company has

also considered how it can optimize for RDF/OWL applications.

Another recent development has been the experimentation with distributed

B+tree systems like Google BigTable, Yahoo! Hadoop, and specialty Semantic

Web implementations like the open-source projects called BigData and

Mulgara.

Whereas data warehouse appliances use grid software to manage dozens or

even hundreds of compute nodes (each node with its own CPU, hard drive,

and random access memory [RAM]), the biggest of all data grids are used to

answer Web-based search queries. Both Google and Yahoo! have built mas-

sive data centers with thousands of interconnected servers that help answer

the billions of questions that people send to them every day. Grounded

in a popular algorithm called MapReduce, Google’s BigTable and Yahoo!’s

Hadoop both achieve incredible levels of scalability and reliability.

These columnar-style approaches are extremely promising because they are

leveraging open frameworks like MapReduce for data scalability and federa-

tion. In contrast to many of the more proprietary approaches used by data

warehouse vendors, there is more worldwide activity being applied to these

open alternatives that could realistically produce the next big breakthrough in

massively scalable Semantic Web computing.

19_396797-ch12.indd 30219_396797-ch12.indd 302 2/13/09 8:32:19 PM2/13/09 8:32:19 PM

303 Chapter 12: Scalable Architectures

In-memory approach
Another trend in triples databases has been to develop in-memory systems,
which operate in random access memory (RAM) to avoid the extra overhead

of disk-based input and output. These systems build the entire graph of RDF/

OWL inside the main memory of a software application and use that for the

basis of answering queries. Because the main memory for most hardware

platforms is limited to roughly 3GB and even more advanced systems only

offer up to 16GB, another layer of data federation has to be used. Data grid

technologies from Oracle Coherence and Gigaspaces can be used to link

together main memory from several machines to achieve a virtual main

memory footprint that exceeds the terabyte level. RDF/OWL databases that

use this approach can support billions of triple in main memory, thereby

achieving performance advantages over disk-based systems. One implemen-

tation of this approach is by Siderean Software, which uses RDF/OWL to build

a graph of knowledge about content to aid more advanced searches.

Understanding the tradeoffs

Each of the approaches described in the preceding sections comes with

tradeoffs:

 ✓ The conventional RDF approach with relational systems can be built

with free software, but it’s limited in size, scale, and flexibility.

 ✓ The Oracle hybrid approach offers the best overall robustness and fea-

tures for commercial users, but it doesn’t include some of the advanced

capabilities offered by shared-nothing and main memory approaches.

 ✓ The native RDF, columnar, and in-memory approaches have com-

pelling scalability attributes, but they typically require much more

setup time and programming to be efficient in the context of an actual

Semantic Web application.

Reasoners, inference engines,
and rule systems
As I describe in Chapter 9, business rule engines are a natural part of the

Semantic Web ecosystem. Inference engines are a special kind of rule engine

that work on more narrowly defined logics and standardized formats.

Implementations for inference engines can be wide and varied. The tuning

and optimization for dedicated standalone inference engines (versus infer-

ence and rule platforms that ship within more mature products) can some-

times be a bit of a black art, but thankfully most of the RDF triples databases

described in the previous section offer some built-in inference engines that

scale with more predictable characteristics.

19_396797-ch12.indd 30319_396797-ch12.indd 303 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

304 Part IV: Putting the Semantic Web to Work

The following list describes the most common types of inference engine

implementations:

 ✓ Chain-based rule engine: The most popular type of inference engine

for OWL is built using forward or backwards chaining production rules.

A production rule system that uses rule chains applies rules to data in

a hierarchy, moving up and/or down the hierarchy to test the data and

create new data when a rule pattern is triggered. Chain-based rule engines

tend to operate very efficiently on smaller data sets and can be quite fast

(sub-second) when there aren’t many rules to apply. As data sets grow to

become quite large, or the rule system gets quite complex, the rule chain

approach can bog down easily and become the main bottleneck for apply-

ing inferences. Another limitation of rule-chaining approaches is more

theoretical; they cannot guarantee the computational correctness of

their aggregate inferences because one rule chain is not directly aware of

another rule chain working on the same data. This correctness guarantee

is important in only a few critical kinds of applications.

 ✓ Tableau reasoning system: Another common OWL reasoning technology

is based on the tableau system. A tableau reasoning system applies infer-

ences within datasets that are kept consistent as part of its core opera-

tions. Thus the tableau reasoning system can guarantee computational

correctness, but it trades efficiency, especially on smaller datasets.

 ✓ FOPC-based approach: Some Semantic Web systems are based on arti-

ficial intelligence (AI) technologies that leverage a first-order predicate

calculus (FOPC) for managing the units of data. One powerful advantage

is that these FOPC-based approaches can seamlessly move between

expressivity levels up to OWL and beyond, but there isn’t a standard

accepted way of defining the allowable expressivity levels beyond OWL.

The Simple Common Logic (SCL) standard and Prolog programming

language are based on this FOPC approach. FOPC-based applications

typically place a strong emphasis on the reasoning capabilities of their

systems and less importance on how consistent they are with any

standards. Historically, all kinds of AI expert systems have used this

approach for building really smart systems.

Finally, there are many different kinds of theorem provers, mostly in the

university context, that specialize in different logic subsets. These theorem

provers can be used to directly enable Semantic Web applications or similarly

advanced AI systems that require very agile and adaptive data structures.

Scaling Semantic Web Tools
Although comparing different technology approaches to the Semantic Web

can be a little like comparing apples to oranges, I can still compare the

functional output of different technologies to assess both fitness and perfor-

mance. For example, regardless of the particular technology at hand, normal

19_396797-ch12.indd 30419_396797-ch12.indd 304 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

305 Chapter 12: Scalable Architectures

scalability metrics like throughput, failover, response time, and so on all

apply equally to any technology. These scale and performance dimensions

are particularly important when sizing Semantic Web applications.

The following sections give you some ideas for functional performance com-

parisons between Semantic Web technologies, which should help you make

the best decision for your project.

Query entailment and distribution
Regardless of which kind of Semantic Web infrastructure you consider, you

should be thinking about some of the following questions:

 ✓ How complex might the models be?

 ✓ Which OWL axioms and class constructors can be used?

 ✓ May the system selectively close the world, or is open-world assumption

(OWA) always intact? (OWA is described in Chapter 9.)

 ✓ How complex can your queries be? Full SPARQL, or with custom

functions?

 ✓ Does your application data need to be in one physical location or may it

be federated?

 ✓ If your data can be federated, how is the data partitioning handled?

Rulebase speed and scale
A rulebase can be a database, a business rule engine, or an inference engine/

reasoned. Any rulebase you select will have finite limits. You should be think-

ing about what your application requirements are and how the technology

choices will fit:

 ✓ How many rules can you put in the rulebase?

 ✓ Are answers computed with rule chains or some other approach?

 ✓ Can you tune the engine to demand provable execution of full chains or

partial execution for speed?

 ✓ Can you change your rule entailment by model? By instance?

Dynamically at runtime?

 ✓ Does the rulebase offer the ability to prove why some inferences were

made? In what formats?

 ✓ Can rules be asserted on-the-fly, or is recompilation in the background

required? At what cost?

19_396797-ch12.indd 30519_396797-ch12.indd 305 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

306 Part IV: Putting the Semantic Web to Work

Memory-resident knowledgebase
Main memory approaches can be very fast when high-performance is the

number-one requirement, but the infrastructure demands and knowledge-

base attributes are quite unconventional. Here are some of the factors you

should take into consideration when you’re examining the use of a main-

memory approach for your application:

 ✓ What is the maximum number of hardware nodes allowable for a

memory cluster?

 ✓ Does each machine offer a single main memory blackboard or several?

 ✓ How is query partitioning handled? With a firmware hash? Is it index-

driven?

 ✓ What grid technology is used underneath the knowledgebase? Oracle

Coherence? Gigaspaces? Open Source JGroups?

 ✓ What hardware platforms can be in the cluster?

 ✓ Is the access pattern via a query listener, or via APIs?

Relational knowledgebase
By far the most popular infrastructure for Semantic Web applications, the

relational database offers a number of advantages and also some unique

areas of concern for scalability. Here are the critical questions to answer

when you’re selecting a triples database:

 ✓ How many triples can be stored?

 ✓ How many triples can be efficiently queried at a given query entailment?

 ✓ Are the triples written directly to core relational database tables or to

an intermediary data model?

 ✓ Which built-in database features can and cannot be used with the RDF

subsystem? Security controls? Bulk loading utilities? Partitioning? Query

plan optimizations?

 ✓ Do you query the system with SQL, SPARQL, or something else?

 ✓ Can the system make inferences on OWL models?

 ✓ How is the OWL graph persisted and computed?

19_396797-ch12.indd 30619_396797-ch12.indd 306 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

307 Chapter 12: Scalable Architectures

Change management and security
Any triples system should provide features that allow you to work with

changing data that is befitting of the power of RDF and OWL. Likewise,

because RDF and OWL are relatively immature with respect to enterprise sys-

tems, you should be asking plenty of questions that help you determine the

appropriate security controls on the data that you require:

 ✓ Does the RDF query language support inserts, deletes, and updates?

 ✓ Does the system allow model versioning or data snapshot capabilities?

 ✓ How are views computed, and how many views can be layered on the

same triples?

 ✓ Do deletes cascade to inferences, or are orphaned triples allowed?

 ✓ Does the system compute updates or translate updates to inserts?

 ✓ Is security at the model level? The triple level? Computed for inferences?

 ✓ Are triples stored as quads or quints, or do they require an external

security model?

 ✓ Is security role-based? User-level? Can security levels be inferred?

Getting a clear picture on the scalability and functional attributes of your

triples database can be the difference between your project’s success and

failure. Because of the wide differences in platforms on the market today, my

general advice is to develop your Semantic Web application requirements

in parallel with your technology selection process. By exploring the limits of

the available technologies, you’ll find yourself more accurately understand-

ing how your system architecture will look and be more likely to get the best

match first. In a nutshell, don’t assume that your previous experiences with

building applications necessarily apply in the world of Semantic Web: Do your

due diligence on the data layer fresh, with open eyes, and in consideration of

how unique RDF/OWL can be.

Understanding Patterns
of Architectural Usage

It’s a plain fact that the Semantic Web isn’t ready for all types of enterprise

needs; therefore, the judicious application of semantics for specific use cases

should dictate a realistic scalability architecture. Specific functional use

cases are driven by the application requirements, and the degree to which

the Semantic Web infrastructure should scale is a reflection of those require-

ments. A few different patterns of scaling and deploying Semantic Web infra-

structure are becoming more widespread today, and I look at them in the

next few sections.

19_396797-ch12.indd 30719_396797-ch12.indd 307 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

308 Part IV: Putting the Semantic Web to Work

Three-tier application approach
In the case where a large number of triples must service an application, or a

set of applications, a centralized knowledgebase can be utilized. Of the triples

repository types described earlier in this chapter, the most common fit for this

use would be the conventional relational database as an RDF knowledgebase

or the data warehouse appliance. Figure 12-3 shows a conventional three-tier

application approach being sourced from a common, shared data repository.

Figure 12-3:
A cen-

tralized
knowledge-

base for
one or more

three-tier
applications.

Application
Logic 1

ETL

Application
Logic 2

Application
Logic 3

User Interface 1 User Interface 2 User Interface 3

External
data if any

SPARQL

RDFRDF
KBKB

RDF
KB

This pattern would typically involve a knowledgebase that is self-contained

and operating within a fairly narrow domain. Because the knowledgebase is

working, for the most part, with local data, it is considered to be the source

of truth for the data it contains. Data input and output are predominantly via

the applications directly, or through tightly controlled back-end processes

like ETL (extract, transform and load) services.

For scalability planning, this approach is like any three-tier architecture:

The consideration of load from the application queries is a central concern.

The knowledgebase must be capable of handling the level of concurrency

and result set load from the applications. Your application requirements for

static or active metadata also place a ceiling for what the scalability of the

knowledgebase can accommodate in terms of the amount of data. Latency

(the processing time between software steps) is a topic that is one-part tra-

ditional (network and system latency) and one-part unique to the Semantic

Web (classification latency). For system planning, your architecture should

consider how frequently new facts will be asserted to the knowledgebase,

19_396797-ch12.indd 30819_396797-ch12.indd 308 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

309 Chapter 12: Scalable Architectures

what level of inference you plan to support, and what the acceptable amount

of time is from the point new data is added to the point your applications

must have access to that data and its inferred implications.

Data classification as a service
Using a knowledgebase as a service on a service-oriented architecture (SOA)

can be a powerful way to augment an integration architecture with some

additional smarts. The central scalability limits of the knowledgebase are not

that different than in any other situation, but the typical use cases would be.

For example, with a Web service front-end, the knowledgebase may have a

more fixed interaction pattern (repeating query patterns) that can be heavily

optimized by the developer. This is because the Web service itself may pub-

lish an API of allowable bindings that is limited to a set of specific features.

Many of the companies using this approach are using the Web service as a

kind of vocabulary server. Figure 12-4 shows an RDB knowledgebase exposed

via SPARQL end-points in a Web service cloud. In industries that have very

complex localized terminologies (such as healthcare and defense), the ser-

vice may be published to allow end-users to look up terms and term relation-

ships. The terms themselves would of course be maintained and managed in

an RDF/OWL format. Cancer researchers worldwide use a vocabulary system

like this from Stanford called the National Cancer Institute (NCI) ontology:

This ontology is used as a way to streamline communications and ensure

consistent use of medical terms.

Figure 12-4:
A shared

classifica-
tion service
driven from

a shared
RDF knowl-
edgebase.

Service-Oriented Architecture
(perhaps exposed in a large-scale compute cloud)

SPARQL Service WSDL API

RDFRDF
KBKB
RDF
KB

19_396797-ch12.indd 30919_396797-ch12.indd 309 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

310 Part IV: Putting the Semantic Web to Work

Other data classification or vocabulary services may leverage an ad hoc

interface so that upstream clients can issue dynamically formatted queries

that are not tightly controlled by the Web service, but these systems can

yield highly unpredictable performance stresses and should be handled

with caution. Because the RDF/OWL knowledgebases are inherently lower

performing than conventional databases, they are much more susceptible to

malformed queries and bad records that cause prolonged classification pro-

cessing. Web service front-ends can certainly be set up to restrict problem-

atic functions, but that kind of preventive ability requires a lot of preplanning

and implementation time to enhance the robustness of the Web service.

The data classification service may also be used within a SOA for internal

metadata services, but the software architecture for that setup might be

vastly different than how an end-user would deploy a knowledgebase in a SOA.

Vendors like IBM, Oracle, and Microsoft are already using RDF inside their

SOA products, but each vendor takes a different technical approach to wiring

the knowledgebase to the SOA components.

Composite data graph
A popular vision for the Semantic Web is to leverage it as a unified data inte-

gration layer for disparate enterprise data sets. Unfortunately for the pundits,

using Semantic Web data formats in this way is not inherently any easier

than other more conventional techniques — it can actually be much harder.

Certain tools can enable this sort of vision more easily than building it from

scratch. For example, Oracle Data Service Integrator, formerly the BEA Data

Service Platform, can be paired with Modus Operandi Wave’s OWL ontology

layer to supply a unified data model across data services, which are in turn

mapped to one or more enterprise data sources.

The main benefit of this federation approach is to provide a consistent, model-

driven view of enterprise data — the OWL ontology provides that view — and

then be capable of issuing queries to that view without detailed knowledge of

how those queries are fulfilled (as shown in Figure 12-5). In order for this com-

posite approach to work, the following architecture patterns must be applied:

 1. The knowledgebase must expose the OWL concepts for query.

 2. The OWL concepts must be mapped to physical data services provided

by an enterprise information integration (EII) platform.

 3. The EII platform must be mapped to the actual physical application

sources that maintain the data.

19_396797-ch12.indd 31019_396797-ch12.indd 310 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

311 Chapter 12: Scalable Architectures

The resulting architecture pattern requires a lot of query re-writes and result

set filtering at runtime — which can be a substantial performance drag — but

many use cases tolerate the relatively poor query performance for the benefit

of having a rationalized model-driven view of their data assets.

Figure 12-5:
A knowl-

edgebase is
a composite

of multiple
domains

and system
data.

Enterprise Information Integration Platforms

Heterogeneous IT Systems

RDFRDF
KBKB
RDF
KB

query result

Because this approach is predominantly about the scalability of the queries

at runtime, the primary place to look for optimizations is in the runtime

components. Tuning the mappings from ontology to data service, and from

data service to source, can yield substantially better results than simply rely-

ing on the infrastructure to build the best SQL queries or XQueries. In this

approach, there is not a substantial amount of data localized in the RDF/OWL

structure. Most data caching occurs inside the EII platform itself, and you

refer to that architecture for tuning hints.

One last important aspect to consider when using this pattern is the require-

ment for the OWL platform to easily supply mixed views and secure access —

be sure to fully define your required view management needs and your secu-

rity requirements up-front and match those to the OWL platform that is acting

as the view layer.

19_396797-ch12.indd 31119_396797-ch12.indd 311 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

312 Part IV: Putting the Semantic Web to Work

Intelligence at the edge
The promise of the Semantic Web for applications has much to do with its abil-

ity to access and work with data transparently from its physical location and

original purpose. Achieving this goal requires pushing intelligence to the edges

of a large-scale network of systems working together and enabling applications

to use other application data directly, without a dedicated integration layer. As

described in Chapter 11, if all business applications were to use RDF data start-

ing tomorrow, the need for data integration software would drop precipitously.

Each RDF-enabled application could work with local or remote data graphs via

the URI naming infrastructure and without much overhead dedicated to trans-

forming data into and out of different structures and syntaxes.

In this forward-looking view, each application may have a local RDF knowl-

edgebase (as a database, but also likely as an in-memory system) and the

ability to join together other RDF resources using Web protocols. So, if you

build an RDF application and expose your data on the Web, I can build my

RDF application and use your data without much integration effort at all. As

shown in Figure 12-6, this kind of low-level data interoperability could dra-

matically reshape the way software applications work together over the Web.

Figure 12-6:
Two or more
applications

with local
knowledge-
bases share

federated
data.

Application 3

RDFRDF
KBKB
RDF
KB

SPARQL
 via Web

Application 1

Fi
re

w
al

l

RDFRDF
KBKB
RDF
KB

Application 2

Firewall

19_396797-ch12.indd 31219_396797-ch12.indd 312 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

313 Chapter 12: Scalable Architectures

In large systems, these different RDF applications could act individually or

as a collective. Early adopters of this approach are military intelligence agen-

cies that have the need to distribute complex application behavior to remote

places, ensure that those applications have a high level of resilience to net-

work outages, and still be able to leverage constantly changing remote data

whenever it happens to be available. Imagine a battlefield situation where a

single application running on a laptop in a tent needs to be capable of run-

ning effectively with no network access, yet automatically connect to and use

data from other nearby command centers (tanks, planes, boats) as well as

data coming all the way from Washington, D.C., via a Global Information Grid

(GIG). RDF/OWL applications offer an extreme level of resilience and flexibil-

ity around constantly changing data sets and structures, making it an ideal

format for those high-demand use cases.

Buyer Beware!
The fancier your proposed Semantic Web application sounds, the less likely

it will scale. The laws of physics can’t be broken. Ultimately, the Semantic

Web is still about moving bits and bytes through software algorithms that

execute inside silicon. The algorithms that power the inference-ready

Semantic Web are substantially more intensive than what you’re probably

familiar with for databases.

In the not-too-distant future, Semantic Web formats may be able to be quickly

and easily deployed for any application, but that time is not yet here. As I

describe in Chapter 3, there are many good, rational, and low-risk ways to

begin experimenting with the Semantic Web. Your reasons for exploring that

direction can be an effective way of hedging against the certainty that today’s

mainstream technologies are hitting their upper limits of flexibility. But the

key to success is to proceed with extreme caution into new areas. Many

products and services sound good on paper but turn into snake oil once you

invest your capital.

If you’re a buyer of Semantic Web technologies, you should ask your selected

vendors to provide support for extended presales proof-of-concept projects.

If you’re a designer or an architect, prepare for an unusually long period of

time spent assessing how the Semantic Web technology impacts your ideal

architecture — and be prepared to change course when you find out what the

practical limits of the technologies really are.

19_396797-ch12.indd 31319_396797-ch12.indd 313 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

314 Part IV: Putting the Semantic Web to Work

19_396797-ch12.indd 31419_396797-ch12.indd 314 2/13/09 8:32:20 PM2/13/09 8:32:20 PM

Chapter 13

Assessment Strategies
In This Chapter
▶ Determining whether your project is ready for semantics

▶ Framing a business problem as a Semantic Web opportunity

▶ Being aware of technical implications

▶ Assessing your application’s fitness for Semantic Web

Like the old saying goes, “When the only tool you have is a hammer, every

problem looks like a nail.” The Semantic Web is an exciting new collec-

tion of technologies and a new way of thinking about data, but it shouldn’t

be used for every type of software problem. Say that you’ve read the chap-

ters in this book that describe the tremendous social impact that semantics

is already having on the Web, and you’ve learned enough of RDF and OWL

to want to go try them, but you’re still not sure whether the Semantic Web

makes sense for your project. The assessment strategies in this chapter tell

you the right questions to ask and give you the techniques for identifying a

good opportunity to try the Semantic Web yourself.

Understanding the Business Problem
A new software project always begins with a defined business problem that

you want to solve using software. With the Semantic Web, the core part

of this process is just like any other software project: You have to supply

the cost-benefit analysis that says your project is worth the amount of

time, effort, and money that it would take to complete it. There isn’t any-

thing inherently different about making this business assessment when the

Semantic Web is in the picture. However, the technical implications of using

the Semantic Web should change the cost structure of your analysis, and per-

haps it could even change the benefit side of your equation.

First, you should understand how to map the technical power of the Semantic

Web back to your business problems. The business problem should be one

that the core technical strengths of the Semantic Web can help solve. If

20_396797-ch13.indd 31520_396797-ch13.indd 315 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

316 Part IV: Putting the Semantic Web to Work

mapping the technical strengths to the desired business outcomes doesn’t

drive new value in your project, you have some serious thinking to do about

the cost side of your equation.

The following sections identify a few key ways you can map the Semantic

Web value to a business problem.

The problem requires handling
of unpredictable data
Applications written with Semantic Web data provide a dynamic and flex-

ible way of handling data and relationships in formats that could not be

predicted at the time the software application was first written. As described

in Chapter 8, the Semantic Web operates with an open-world assumption

(OWA). Compared with traditional data structures, the Semantic Web data

can enable your application to automatically make the distinction between

data that is provably true versus satisfiably true.

A Semantic Web database can answer some queries with records that might

possibly match, or it can separately tell you which records are absolutely

a match (see Chapter 11 for some practical examples). Many business use

cases can benefit from seeing uncertain data, and Semantic Web technology

gives those businesses a more comprehensive set of tools to work with.

The problem requires dynamic
classification of data
The Semantic Web technology can use inference engines to enable property-

driven classification of data instead of more labor-intensive and error-prone

manual tagging. An inference engine follows the rules of an ontology to clas-

sify data, as described more fully in Chapter 8.

For example, if you had a software application that was responsible for listing

emergency evacuation centers, you could manually review data about build-

ings and locations to tag the buildings that are potential evacuation centers,

or you could ask an inference engine to find possible matches based on rules

in the ontology. These property-driven rules could contain criteria such as

“elevation must be greater than 50ft above sea level, facilities must have

more than three restrooms, building must be greater than 10,000 square feet

of open space” and so on. Then your application could ask a simple question

like, “Which buildings are potential evacuation centers?”, and the Semantic

Web database would know how to infer which structures were a good match.

20_396797-ch13.indd 31620_396797-ch13.indd 316 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

317 Chapter 13: Assessment Strategies

The exceptionally valuable point about this technique is that you could easily

redefine the rules in the ontology, and the inference engine reacts in real time

to give you new matching data. No recompilation of software or dropping and

rebuilding of data models are required!

The problem requires ad hoc
modeling and data browsing
The Semantic Web supplies a conceptual model that is also computation-

ally sound and an international standard. No other technology shares those

attributes. Conceptual modeling and data layering can provide easier ad hoc

navigation of data because you don’t have to understand the physical layers

of how data is represented. There are many other technical means to achieve

a conceptual data layering architecture, but none like the Semantic Web that

can provide an open and portable window into the core data structures,

conceptual models, and data relationships. For business problems that need

the conceptual modeling and would benefit from high levels of openness, the

Semantic Web is a clear choice to make.

The problem requires understanding
unstructured data
The Semantic Web is an ideal semi-structured format for describing data

within a multi-step process flow that converts text into more structured

data formats. Natural Language Processing (NLP) approaches (described in

Chapter 9) that can take completely unformatted text in any language and

give it some basic structure are algorithmic miracles. These NLP engines

can ideally store the output of their conversions into RDF triples and be

chained together serially or run in parallel to improve the ability to find

structure in chaos.

Many kinds of business problems can benefit from taking e-mails, documents,

text, Web sites, and other unstructured content and converting them into

structured data that can be merged and reused with other database sources.

The Semantic Web languages are not a requirement in this process, but they

can substantially augment the NLP algorithms by giving them ontologies for

classifying data and inference engines for generating new facts where the

data supports it. However, if your application’s core functionality is depen-

dent on these NLP engines, approach the Semantic Web cautiously and delib-

erately because these technologies inject additional technical risks of failure

into your project.

20_396797-ch13.indd 31720_396797-ch13.indd 317 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

318 Part IV: Putting the Semantic Web to Work

The problem requires open-source data
Many modern software applications make heavy use of public data from the

Internet: This is what I call open-source data. Information and content that

resides on Web pages is extremely useful for a range of software applications.

Customer service applications that need to provide tips and hints for how to

solve problems and even national security applications looking for informa-

tion about people can be greatly enhanced by open-source data that’s free

on the Web for anybody to browse and reuse. The Semantic Web is an ideal

format for merging that open-source, unstructured data with more structured

business information. Really an extension of the need to support the under-

standing of unstructured data, the open-source domain is a particular niche

where the Semantic Web has a major role to play.

Avoiding Common Traps in Planning
Your Semantic Web Application

It’s easy to get excited about the Semantic Web, but it’s difficult to find a

software problem that’s uniquely suited to it. You should be wary of some

common folk wisdom when you’re thinking of areas where you can leverage

the Semantic Web successfully:

 ✓ Build another data integration solution. Many Semantic Web pun-

dits think that the problem area of data integration is the Holy Grail

of business use cases for the Semantic Web technologies, but it isn’t.

Data integration is a multibillion-dollar marketplace that depends on

mission-critical, high-performance software that is strongly optimized

for data warehouses and business intelligence systems — none of which

currently leverage the Semantic Web. At some point in the future, the

Semantic Web may become more prevalent in the enterprise software

ecosystem, but until then, the conventional data integration technolo-

gies already solve major parts of the real problems faced by IT profes-

sionals. Don’t be fooled into thinking that the Semantic Web circa 2009

can solve problems that regular data integration tools can’t!

 ✓ Become the next Google star. It’s a popular pastime for many to dream

about becoming the next Google, a company that starts with just a few

people in a dorm room and morphs into a hundred-billion-dollar jug-

gernaut. Some folks think that the Semantic Web will change the game

for search engines and that the next breakthrough will be a semantic

search company. But in 2008 Microsoft snapped up Powerset (a seman-

tic search company), and Yahoo! deployed SearchMonkey (a semantic

application of search results), so it should be obvious that the Semantic

20_396797-ch13.indd 31820_396797-ch13.indd 318 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

319 Chapter 13: Assessment Strategies

Web is more of an additive technology rather than a fundamental

power-shift. Google and others are keeping a close eye on the Semantic

Web evolution and won’t be blindsided by a new startup that ruins their

business. If you’re looking for the next software juggernaut, don’t look in

the search industry!

 ✓ Tackle Web-scale problems. Because the Semantic Web is inherently a

Web technology and is sometimes billed as “functional at Web scale,”

early adopters often try to solve problems using huge amounts of Web

data (search engines, blog engines, semantic Wikipedia, and so on).

But a realistic assessment of your first project with the Semantic Web

should start much smaller. Why confront the many limitations of scale

(see Chapter 12) if you don’t have to? Start small, act fast, and build a

system that can grow with you over time!

Identifying Semantic Web Opportunities
Even though everything you see may eventually start to look like a Semantic

Web opportunity — trust me, I’ve been there — it pays to work hard to under-

stand whether you’re looking at solving a fundamentally different problem

than has been solved before, or solving an existing problem in a new way.

Blue Ocean Strategies
A Blue Ocean Strategy is defined in the book of the same name written by

Chan and Mauborgne. Essentially, this is the idea that, in a particular market,

you’re either competing in a crowded marketplace where products become

commodities and growth is increasingly difficult over time, or you’re com-

peting in new industries that are largely untainted by competition. The Blue

Ocean is where demand is created and the rules of the marketplace have not

yet been defined. The Red Ocean is where competition is cutthroat and the

waters are bloodied. Many purveyors of the Semantic Web core technology

foundations have essentially viewed themselves as Blue Ocean innovators,

producing software that is fundamentally a new way of doing things that dra-

matically disrupts the old ways.

However, this can be a risky foundation to rest on because often the busi-

ness model is unproven and there few other competitors in that area that can

justify your own existence by validating a strong source of revenues. Your

project may seek to exploit Blue Ocean forces by differentiating in major and

fundamental ways, but in the early part of your Semantic Web explorations, I

strongly recommend that your project be dedicated to solving a known and

recognized problem.

20_396797-ch13.indd 31920_396797-ch13.indd 319 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

320 Part IV: Putting the Semantic Web to Work

Operational efficiency strategies
At the other extreme of Semantic Web solution areas is the project that seeks

to solve an existing long-time problem by producing a more efficient solution

than the other guys. These are projects that already have solutions, or may

even have many competing solutions, but a new project using the Semantic

Web is seen as attractive because it offers an incrementally better way to

achieve some results.

This is a very risky strategy because an incremental improvement may not

justify other risks that inherently surround the new Semantic Web technol-

ogy. Rarely do you find a known problem area, with many existing software

solutions, that can be completely and fully solved by software based in the

Semantic Web. The simple fact is that the Semantic Web is merely a foun-

dation, but a conventional, more mature software application would have

evolved over many years to provide specialized and highly robust applica-

tion layers (beyond just a foundation) for control on a given problem set.

If you plan to use the Semantic Web on a very mature problem area when

there are already many other alternatives, you should proceed cautiously and

seriously investigate whether the Semantic Web gives you enough benefits

to justify other shortcomings that are likely to exist due to the immaturity of

your foundational data choices.

Social and political implications
Many people feel that the Semantic Web is inherently good because it’s more

open than other technologies. Of course, leveraging the Semantic Web pro-

vides some inherent openness to any solution, but the value of that openness

may lead different people to different opinions. Openness isn’t always viewed

as an absolute positive benefit. Sometimes openness of the data just doesn’t

matter, or worse, sometimes a software application may purposefully seek to

encapsulate the data away from any direct manipulation. These encapsula-

tion principles have been a defining aspect of object-oriented programming

for almost 20 years. In the modern Web culture, openness is generally seen as

a virtue, but don’t assume that all software architects agree with that value

judgment.

Using the Semantic Web automatically attaches a stigma to your application.

Because this is a new technology, some of your stakeholders may automati-

cally view it as cutting edge, but others may see it as doomed for failure.

Don’t underestimate the backlash or blowback that builds up with any new

technology paradigm. For every person who is excited about the new break-

through, probably two more are overtly skeptical of the promised features,

and five more are just downright indifferent. Selecting the Semantic Web as a

technical foundation for your project subjects your choices to the judgments

of others, and their preconceived notions may or may not match your own!

20_396797-ch13.indd 32020_396797-ch13.indd 320 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

321 Chapter 13: Assessment Strategies

Technical implications
Using the Semantic Web is just like using any other software foundation,

except harder. The designer and architects of Semantic Web–based solu-

tions must pay special attention to the weak areas of the Semantic Web (see

Chapters 12 and 14) to counter-balance the relative immaturity of the solu-

tions in the domain. Using the Semantic Web absolutely introduces some

front-loaded technical risk to your projects, but if you get it right, and use the

Semantic Web judiciously, the payoffs could be huge.

Reviewing Your Assessment Checklist
This section provides you with a series of scorecards to help you think about

whether your project is a good fit for the Semantic Web. I offer a way for you

to score each section and a range of total scores to assess if your project is a

Strong Fit, a Possible Fit, or a Weak Fit for leveraging the Semantic Web.

To start this assessment, you should have a specific software project in mind

and have thought about the business problem you want to solve with that

software. For the purposes of this checklist, I assume that the hypothetical

Semantic Web–based application is leveraging an OWL+RDF data layer to

enable these advanced semantic capabilities.

To use the assessment, check the box of each answer that applies to your

project. At the end of the assessment, you will be asked to add up the scores

for each item that you have checked. Then you can see how good a fit your

project is by comparing your score to the grading scales provided at the end

of this assessment.

Application behavior requirements
First, assess your project from a behavioral standpoint.

Open world or closed world
Does the application directly benefit from being able to distinguish between

absolute and possible answers to database queries? A closed-world relational

database has absolute unambiguous query results. An open-world RDF/

OWL database may provide both absolute and possible result sets. Review

Chapter 8 for a refresher on these topics.

 ❑ A closed-world normal database would be fine. (+1)

 ❑ Perhaps some open-world behavior would be useful. (+2)

 ❑ My application definitely needs open-world behavior. (+3)

20_396797-ch13.indd 32120_396797-ch13.indd 321 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

322 Part IV: Putting the Semantic Web to Work

Correctness levels
For the data that your application is using, does it absolutely need to be guar-

anteed as correct and repeatable? For example, a search engine result set is

very useful but not guaranteed or fully repeatable. A relational database is

fully correct and fully repeatable. Sometimes an application may need some

data as statistical (not guaranteed) and correct (guaranteed). Review Chap-

ter 5 for a refresher on these topics.

 ❑ My application should primarily use a statistical method of data

retrieval like a search engine. (+1)

 ❑ I need some statistical behavior and also guaranteed queries. (+2)

 ❑ I need 100-percent correctness guarantees in the data used by the

application — for searches and elsewhere. (+3)

Amount of structured data
If you need to store and query RDF/OWL data efficiently, pay attention to how

low the ceiling is. Especially if inference and data classification is required,

ensure that the repository and query platforms you select are scalable to

your maximum peak levels. Review Chapter 12 for a refresher on these

topics.

 ❑ I need more than 1 terabyte. (+1)

 ❑ I need between 100 gigabytes and 1 terabyte. (+2)

 ❑ I need less than 100 gigabytes. (+3)

Unstructured data
Requiring Natural Language Processing (NLP) technology outside the scope

of the Semantic Web can create double the risks of immature and bleeding

edge technology. For mainstream systems, be positive that the business solu-

tion you actually need is provided by the NLP systems feeding your Semantic

Web repository or application. Review Chapter 9 for a refresher on these

topics.

 ❑ The application depends on automatic linguistic parsing. (+1)

 ❑ The application needs to parse some data linguistically. (+2)

 ❑ The application doesn’t need any unstructured data. (+3)

Entailment levels
If you find yourself needing an unrestricted level power for rules and logic in

your data language, or if you only need SQL/RDBMS levels of power, consider

alternative languages besides RDF and OWL for your data. Within the scope

20_396797-ch13.indd 32220_396797-ch13.indd 322 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

323 Chapter 13: Assessment Strategies

of RDFS or OWL data semantics, your application can take on a lot more

expressive power while retaining openness and portability. Review Chapter 8

for a refresher on these topics.

 ❑ I need an unrestricted level of logic. (+1)

 ❑ I need SQL/RDBMS-type queries only. (+2)

 ❑ I need RDF/S or OWL Prime expressiveness. (+3)

 ❑ I need OWL OWL DL, EL++, QL, or RL expressiveness. (+4)

Application security
Systems with a need for exceptionally robust and flexible levels of data secu-

rity shouldn’t be considering RDF/OWL-based systems. As of 2009, there are

very few widely deployed RDF/OWL platforms that can compare with built-in

data level security features of most relational databases. Of course, if the

benefits of RDF/OWL justify the expense, a robust multilevel security system

can be implemented within the ontology and graph data models themselves.

Research efforts into trust and proof security problems using inference have

already broken ground on these topics. Review Chapter 11 for a refresher on

these topics.

 ❑ The entire system is a high-security system. (+1)

 ❑ A trust system is required (open-source data). (+2)

 ❑ Security must remain correct with inferred nodes. (+3)

 ❑ Role/user-based data filtering is required. (+4)

Data integration
The infrastructure requirements for data integration almost always involve

systems with data that isn’t in RDF/OWL formats. If your project involves

using a lot of existing data in your Semantic Web application, be prepared for

the costs and timelines necessary to convert the physical and logical data

into your application. A Semantic Web application doesn’t automatically

help with any practical aspect of data integration. Review Chapter 11 for a

refresher on these topics.

 ❑ I need to import hundreds of millions of existing records. (+1)

 ❑ I have some data imports, but they aren’t excessive. (+2)

 ❑ My data is mostly self-contained to the proposed solution. (+3)

Application interface requirements
Next, examine your proposed project from a software interface standpoint.

20_396797-ch13.indd 32320_396797-ch13.indd 323 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

324 Part IV: Putting the Semantic Web to Work

Human interface
Using ontology for the items on graphical user interface (GUI) can make

a user experience more dynamic, but the most important part of human

experience is how quickly the system responds to new data. A fast system

is required for trading applications and call centers, but applications like

reporting systems and back-office business software can usually wait for

data several minutes at a time. Because it can sometimes take a while to infer

new data on the Semantic Web, which is really what the Semantic Web is all

about, you can sometimes expect your application to need precious time (or

more hardware) to work with lots of new data coming from its users. Review

Chapter 12 for a refresher on these topics.

 ❑ The interface must be highly dynamic and extremely responsive in real

time to new data. (+1)

 ❑ The interface must be dynamic, but is largely driven by pre-existing

data. (+2)

 ❑ The interface is fairly static, and new data may take several minutes to

assess correctly. (+3)

Machine interface
Some software systems are built for handling massive numbers of small

transactions, the debits and credits of a trading center for example. Other

systems are built for handling huge sets of data all at once, a business data

warehouse for example. Depending on your Semantic Web application’s

needs, you may have to watch for use cases that depend on extreme trans-

action speed — these won’t necessarily be the best fit for process-intensive

Semantic Web data. Review Chapter 11 for a refresher on these topics.

 ❑ The system has a high degree of transactional input and output. (+1)

 ❑ The system has a high degree of transactional input, but not output. (+2)

 ❑ The system has bulk inputs for large amounts of data. (+3)

 ❑ The system is self-contained, with very little input or output of any

kind. (+4)

Application development requirements
Finally, in this section, assess your development requirements.

Team size
How large does your development organization need to scale to?

20_396797-ch13.indd 32420_396797-ch13.indd 324 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

325 Chapter 13: Assessment Strategies

 ❑ Large team (greater than 30) (+1)

 ❑ Medium team (10–30) (+2)

 ❑ Small team (less than 10) (+3)

Visualization during development
How important is visualizing your data architecture or analyzing your data

during development?

 ❑ Visual modeling and analysis of data are essential requirements for

developers. (+1)

 ❑ Visual modeling and analysis are nice-to-have features for developers. (+2)

 ❑ Visual analysis and modeling of the application data aren’t really

required during development. (+3)

Skills planning for staffing
What kind of skills do you have access to today? Review Chapter 10 for a

refresher on these topics.

 ❑ Semantic Web skills are definitely required, but nobody on existing staff

has used them before. (+1)

 ❑ Semantic Web skills might be required, and a few developers have

learned the basics. (+2)

 ❑ Semantic Web skills might be required, and I already have architects and

developers who know them well. (+3)

Skills planning for management
How much experience does your management have with Semantic Web appli-

cations? Review Chapter 10 for a refresher on these topics.

 ❑ No management experience with Semantic Web projects (+1)

 ❑ Some management experience with Semantic Web projects (+2)

 ❑ Good management experience with Semantic Web projects (+3)

Skills planning for scalability
More than many other aspects of your proposed Semantic Web project, you

should be ready to confront the scalability and performance limitations that

are inherence in the Semantic Web technology base. Skilled scalability archi-

tects from any discipline will rapidly add value to your project. Don’t worry

too much about direct Semantic Web background; find the scalability experts

and train them into the Semantic Web. Review Chapter 12 for a refresher on

these topics.

20_396797-ch13.indd 32520_396797-ch13.indd 325 2/13/09 7:33:46 PM2/13/09 7:33:46 PM

326 Part IV: Putting the Semantic Web to Work

 ❑ No scalability architect is on staff. (+1)

 ❑ Some senior developers or existing architects know some things about

scalability in software. (+2)

 ❑ I can get a scalability architect on loan from another group. (+3)

 ❑ I am directly ready to staff a dedicated scalability architect to the

project. (+4)

Scoring the Checklist and
Understanding Benefits

Now, add up your scores from each check box that you marked in the previ-

ous sections. Depending on how high your score is, your project might be a

strong fit for Semantic Web technology. A possible fit means that you should

dig a little deeper and perhaps explore some Semantic Web technology to see

if it would work. A weak fit means that it is unlikely that your project would

work well with Semantic Web technologies.

For Application Behavior, your results map to these recommendations:

 ✓ A score of 18–higher means that the Semantic Web is probably a Strong

Fit for your project. The answers you gave indicated that the Semantic

Web is likely a low-risk and high-value proposition for your proposed

project’s application behavior.

 ✓ A score of 13–17 means that it’s a Possible Fit. You should probably

investigate the Semantic Web a bit more thoroughly for your project. Take

time to review the answers you gave that were scored as a 1 or 2 and read

the appropriate chapter that discusses that topic more thoroughly.

 ✓ A score of 7–12 means that the Semantic Web is probably a Weak Fit for

your project. There are too many areas where the technology doesn’t

match your requirements or the importance of certain behavior is too

risky for depending on the Semantic Web.

For Application Interfaces, your results map to these recommendations:

 ✓ A score of 6–higher means that the Semantic Web is probably a Strong

Fit for your project. The answers you gave indicated that the Semantic

Web would not significantly jeopardize your software application inter-

face requirements.

 ✓ A score of 4–5 means that the Semantic Web is a Possible Fit. You

should investigate the Semantic Web a bit more for your project. Take

time to review the answers you gave that were scored as a 1 or 2 and

read the appropriate chapter that discusses that topic more thoroughly.

20_396797-ch13.indd 32620_396797-ch13.indd 326 2/13/09 7:33:47 PM2/13/09 7:33:47 PM

327 Chapter 13: Assessment Strategies

 ✓ A score of 2–3 means that the Semantic Web is probably a Weak Fit for

your project. There are too many areas where the technology doesn’t

match your interface requirements or the importance of certain inter-

face behavior is too risky for the Semantic Web core technologies.

For Development Requirements, your results map to these recommendations:

 ✓ A score of 13–higher means that the Semantic Web is probably a Strong

Fit for your project. The answers you gave indicated that the Semantic

Web would not significantly jeopardize your software development

requirements.

 ✓ A score of 9–12 means that it’s a Possible Fit. You should investigate

the Semantic Web a bit more thoroughly for your project. Take time to

review the answers you gave that were scored as a 1 or 2 and read the

appropriate chapter that discusses that topic more thoroughly.

 ✓ A score of 5–8 means that the Semantic Web is probably a Weak Fit for

your project. There are too many areas where the tool maturity doesn’t

match your project requirements or the importance of certain project

attributes is too risky for the Semantic Web core tooling and technologies.

After reviewing your Assessment Checklist, see whether you can spot any of

these major warning signals that may indicate the Semantic Web is not right

for your project:

 ✓ Your project needs an unrestricted logical model and a first-order

rule-based system for working with complex sets of records. This is

not a fit because the Semantic Web depends on a consistent logical

model that does not exceed the model semantics defined in OWL. A

Semantic Web system can be built using unrestrained logics, but many

of the openness and portability benefits of the Semantic Web disappear

in those circumstances. Think twice if your application can’t leverage

RDF and OWL alone for the data representation.

 ✓ Your project depends entirely on linguistic parsing of files. This

doesn’t rule out the use of Semantic Web, but it’s a clear signal that the

hard part of your project will be elsewhere. The use of NLP introduces

a significant set of challenges, and the benefits of the Semantic Web in

that context need to be extra clear and obvious lest your project take

on unnecessary complexity. Consider the heavy use of NLP as a strong

warning sign for your project’s use of Semantic Web.

 ✓ Your project needs huge amounts of data and requires only closed-

world query answering. This warning sign is a clear indicator that a

more traditional data warehouse could be a better fit for you. If this is

true, you should have other strong and immovable requirements that

clearly demand the Semantic Web; otherwise, why add needless com-

plexity to your project?

20_396797-ch13.indd 32720_396797-ch13.indd 327 2/13/09 7:33:47 PM2/13/09 7:33:47 PM

328 Part IV: Putting the Semantic Web to Work

Making the Decision
Approach your decision cautiously. The Semantic Web technologies will be

available for a long time, and there isn’t any reason to be an early adopter

if you don’t absolutely have to be. But if you’re clear-headed about the risks

of your Semantic Web project, the rewards for your risks could be quite

generous.

The checklists provided here are by no means comprehensive; instead,

they’re intended to get you thinking about how the Semantic Web tech-

nologies are different than what you’re used to. You have to make early

judgments using instinct and informed opinion about which project to

authorize, which to cancel, and which ones should try out new technology

that is potentially risky.

If you follow a conservative course and apply some of the guided assess-

ments I provide in this chapter, you have a much better chance of avoiding

some of the commonplace Semantic Web pitfalls that myself and others have

already fallen into!

20_396797-ch13.indd 32820_396797-ch13.indd 328 2/13/09 7:33:47 PM2/13/09 7:33:47 PM

Chapter 14

Exploring the Limitations
of the Semantic Web

In This Chapter
▶ Wielding the double-edged sword of tight standards

▶ Understanding the risks of staffing your Semantic Web projects

▶ Finding good partners to share the risk

This book focuses on providing a straightforward, but optimistic view of

the emerging Semantic Web family of technologies. I make every attempt

throughout the book to balance the unique power of the new technology

against those technologies that are more proven. However, the newness and

complexity of the Semantic Web technologies warrants a full chapter dedi-

cated to explaining directly the challenges anyone faces when implementing

their new semantic projects.

By most measures, the Semantic Web is a fairly mature set of technologies.

Serious work began on RDF as early as 1997. Standardization of RDF and

OWL occurred in 2004, and many projects and products have been launched

since then. Early-adopter implementations are far enough along that there

is a cadre of professionals out there who already have battle scars. But

compared to most other technologies, the Semantic Web is clearly still in its

incubation period. Relational database technologies, for example, have had

more than 30 years of refinement and optimization investments placed into

them. Other technologies like Java and XML may only be a few years older

on the calendar, but they are significantly more mature because of the sheer

number of rapid implementations that have occurred since their inception.

In most regards, the Semantic Web has not yet crossed the chasm from early

stages to mainstream adoption. Your project should take that situation seri-

ously and adjust accordingly.

The Semantic Web brings many limitations along with its great benefits. As

a long-time evangelist for Semantic Web technologies, I thought twice about

dedicating an entire chapter in this book to its limitations. I could have easily

described the limitations in smaller sections scattered throughout the book.

However, I came to the conclusion that newcomers to the technology should

21_396797-ch14.indd 32921_396797-ch14.indd 329 2/13/09 7:34:50 PM2/13/09 7:34:50 PM

330 Part IV: Putting the Semantic Web to Work

have access to a balanced view of the risks and concerns about the Semantic

Web. The remainder of this chapter explains how the Semantic Web standards

are still evolving to cover language gaps, offer some practical advice about the

immaturity of Semantic Web tools, define a few best practices for you to con-

sider, and offer some advice for how to make good choices with your Semantic

Web project.

Staying Within the Standards
My emphasis in this book has been primarily on two standards: RDF for

graph data and OWL for ontology. These standards are stable, under tight

version control, and technically proven in a substantial number of applica-

tions. There are patterns to draw from and lessons about them that have

already been learned. Most direct discussions about the Semantic Web are

implicitly about the use of one of these two standards. RDF and OWL truly

are the lynchpin technologies that form the nucleus of the Semantic Web.

However, several other standards that I’ve introduced in this book (see

Chapter 4 and Chapter 9) are also very important in the context of building

your Semantic Web application:

 ✓ Gleaning Resource Descriptions from Dialects of Languages (GRDDL):

This standard was recommended by the W3C in 2007 and is used to

specify how to extract RDF triples from other types of languages using

an XML and XSLT transformation. This is particularly useful if you

already have, or plan to have, an XML-centric application that should

also be capable of producing RDF triples.

 ✓ Semantic Annotations for Web Service Description Language

(SAWSDL): This standard was recommended by the W3C during 2007

as a way to specify how Web service data bindings can be mapped to

formal models. It isn’t tightly coupled to RDF or OWL, but it offers a

repeatable way to connect RDF or OWL to Web services with fixed data

bindings, thereby making it easier to programmatically find service data

that meets the needs of your application.

 ✓ Semantic Web Rule Language (SWRL): Not yet approved, this language

proposal is part of the Rule Interchange Format Working Group at the

Semantic Web. SWRL is a working draft of a rule language that offers

more complex and powerful rule extensions to OWL. It’s proposed in

such a way that it can leverage OWL classes and individuals within rule

definitions.

 ✓ Resource Description Framework in Attributes (RFDa): Not yet

approved, RDFa is squarely aimed at providing an easy way to embed

RDF triples within an XHTML-compliant Web page. This format is the

W3C’s alternative to the more rigidly structured microformats that have

developed in an ad hoc manner in several communities.

21_396797-ch14.indd 33021_396797-ch14.indd 330 2/13/09 7:34:50 PM2/13/09 7:34:50 PM

331 Chapter 14: Exploring the Limitations of the Semantic Web

These six technical standards (RDF, OWL, GRDDL, SAWDL, SWRL, and RDFa)

represent the collection of current and potentially near-term languages at the

core of the Semantic Web. Many other standards — such as vocabulary stan-

dards and application standards — leverage these core technical specifica-

tions, but they aren’t what I would consider fundamental Semantic Web

technical standards.

From a distance, these may seem to be a pretty complete set of languages to

build an application from, but you can’t actually build a software application

from the W3C standards alone. These W3C Semantic Web standards encom-

pass only some very specific technical layers in application architecture

focused on data, metadata, and data bindings. They don’t directly provide

solutions for user interface development, application program executables,

or even data management functions that most industrial-strength applica-

tions require.

Straying Outside the Standards
Building a complete Semantic Web solution requires you to use non-standard

technology. Even if you make every effort to use standards wherever pos-

sible, there are many different ways to use the Semantic Web languages that

would leave your system incompatible with other Semantic Web applications.

For example, your application would still require procedural programs like

Java or C++ to make your system executable. The way you choose to imple-

ment the logic in your application is precisely the decision that determines

how standardized and portable your solution is.

As I discuss in Chapters 7 and 8, many kinds of logic are directly expressible

in languages like RDF and OWL. You can use these languages to define fairly

complex logic like that which defines a business’s Gold Customers, what con-

stitutes an Emergency Evacuation Center, or even a likely Drug Target given a

set of manufactured compounds with specific attributes. But you can also, of

course, express these logics in conventional software programs. The advan-

tages that the Semantic Web brings in terms of reuse, dynamism, flexibility,

and openness also yield to potential inefficiencies such as complexity, perfor-

mance drags, and even inelegance. The choices that an application architect

makes about which logic to place in the Semantic Web data model or in con-

ventional software programs are naturally different than the choices made by

other application architects. This is just common sense.

However, the natural diversity of Semantic Web design patterns, how much

OWL is used, and where the system logic resides means that many long-

standing problems that the Semantic Web aims to address can’t be resolved

in the very messy real world.

21_396797-ch14.indd 33121_396797-ch14.indd 331 2/13/09 7:34:50 PM2/13/09 7:34:50 PM

332 Part IV: Putting the Semantic Web to Work

Straying outside the standards is also a natural prerequisite for working with

vendor-supplied solutions. Just as the Java and J2EE standards are supposed

to resolve application portability problems, the Semantic Web standards are

supposed to resolve data portability problems. But just like the reality behind

J2EE application servers — that it’s quite difficult and rare to swap vendor-

supplied servers after a system has been built with it — comprehensive porta-

bility of Semantic Web formats is fraught with incompatibility challenges. By

all means, use vendor technologies to jump-start your Semantic Web projects,

but your architects and developers should choose wisely because your busi-

ness application is stuck with that choice indefinitely.

Realizing the Implications of a Complete
Semantic Web Solution

The implications of choosing to build a complete Semantic Web software

application are profound. Unless you’re a university researcher or student,

I wouldn’t recommend it. For all the reasons I mention in previous sections,

Semantic Web technologies aren’t suited for solving a complete software

problem. Instead, the Semantic Web is best suited for solving problems

having to do with the reusability, portability, and expressiveness of data

languages. But even within the range of the sweet-spot use cases, every

Semantic Web buyer and architect should be cautious when implementing it.

Tool immaturity
Semantic Web as an idea and a technical vision has been around since the

late 1990s. As technology, the RDF and OWL standards were reasonably

complete in 2004. But the tooling required to support these new formats has

been frustratingly slow to emerge. In Chapter 9, I introduce you to Stanford

University’s Protégé tool, Altova’s SemanticWorks, and TopQuadrant’s

TopBraid Composer. However powerful these tools are, and indeed they are

quite good at what they do, they aren’t known to be mainstream data model-

ing tools.

In the real-world of industrial software and the multitrillion-dollar markets

that it enables, the vast majority of data modelers use tools like Computer

Associates ERWIN, Sybase PowerDesigner, and Quest’s TOAD database

modeler. Software developers writing code in Java most often use standard

components for IBM Eclipse or Sun’s Java Studio. No matter how you look at

it, the mainstream tools for software development are still on the sidelines

waiting to see how this whole Semantic Web meme shakes out.

21_396797-ch14.indd 33221_396797-ch14.indd 332 2/13/09 7:34:50 PM2/13/09 7:34:50 PM

333 Chapter 14: Exploring the Limitations of the Semantic Web

The tools you’re left with, the pure-play tools for developing in the Semantic

Web formats, can still get the job done, but they’re woefully immature com-

pared with the mainstream tools. Feature gaps around team-based configura-

tion management, multi-language development, and interfaces with various

platforms and technologies make the Semantic Web tools difficult to fit into

existing practices. Likewise, the relative immaturity and lack of global scope

for the vendors poses a challenge for procurement officers who typically have

specific criteria about who to do business with in order to minimize risk —

most newer Semantic Web companies don’t fit those profiles.

Scalability limitations
In Chapter 12, I define many facets of scalability to be aware of. When

building a Semantic Web application using 2008-era technologies, a system

architect should pay very close attention to scalability and performance

requirements:

 ✓ How much data? Semantic Web databases typically allow for a maxi-

mum of 300–500 million triples, which for many applications is simply

not enough.

 ✓ How much inferencing? If your application depends heavily on the

power of Semantic Web for inferring new data, you can reduce your

scalability ceiling by 5–10 times.

 ✓ How close to realtime? The process of inferring new data is typically

a background process that can take minutes or hours to update a fully

loaded Semantic Web database; you might be in trouble if your applica-

tion depends on new facts and implications quickly.

Although these scalability limitations sound quite severe, a large number of

software applications fall outside of these scalability boundaries.

Skill shortage
So, say that you’ve decided to brave immaturity of development tools and that

you’re convinced that your proposed application won’t stress the limits of

Semantic Web formats. Now you have to find good people to help you build it!

On any given week, you might be able to find a few hundred open positions

in the United States and Canada for Semantic Web skills like RDF, OWL, and

graph data modeling, but there aren’t enough experienced developers to

meet the demand. Your project is competing with many other projects for

the developers who already have hands-on experience. Of course, any experi-

enced software developer can learn RDF/OWL in a fairly short period, but the

experiences of using these languages on a real project are priceless.

21_396797-ch14.indd 33321_396797-ch14.indd 333 2/13/09 7:34:51 PM2/13/09 7:34:51 PM

334 Part IV: Putting the Semantic Web to Work

Sometimes these skill shortages can be partially or wholly mitigated by

partnering wisely with other companies that can cover your skill gaps. Good

experience is necessary, in a partner or a new hire, because the new develop-

ment patterns required by Semantic Web projects is oftentimes more of an

art than a science.

New patterns and anti-patterns
Although most of the processes used to create Semantic Web software are

just like the processes used to create regular software, new technologies

and new skills are required, which naturally leads to new processes and new

traps. A pattern in software development can be a template for a coded solu-

tion (in Java, for example), or it may simply be a repeatable way of doing

things in the process. An anti-pattern is a solution that seems obvious but

usually results in unintended disastrous results.

Here are a few healthy project patterns to pay attention to in a Semantic Web

project:

 ✓ Iterative development: In Semantic Web application projects, it can

be too easy to get caught up in the development of the ontology, the

iteration of a perfect model, or planning for innumerable contingencies.

Given the inherence complexity of RDF/OWL anyway, it is especially

important to keep your development team focused on short delivery

cycles with continuous incremental progress. This focus on iterative

development is even more important in Semantic Web projects than in

conventional software projects.

 ✓ KISS (Keep it Simple, Stupid): Think of Occam’s Razor (which says that

entities must not be multiplied beyond necessity) or Einstein’s maxim,

“Everything should be made as simple as possible, but no simpler.” I can

say from experience that you can easily find prima donnas in the realm

of Semantic Web who think highly of themselves yet make models and

software unnecessarily complex. Use the KISS principle ruthlessly in

your project to ensure that you meet milestones and remain focused on

outcomes as opposed to the relative beauty of your solution.

 ✓ Contract-based design: In the world of Semantic Web, the software

contracts are different. In conventional software, the idea of contract-

based design is nearly 20 years old and is focused on clearly denoting

the signature of each request and the expected format of each reply.

Using contracts, different teams can work in parallel to develop com-

plex software instead of having to wait for each step to be completed

serially. In the Semantic Web, contracts may take the form of SPARQL

query requests (SPARQL is the query language for RDF, described in

Chapter 9), RDF result sets, and perhaps even the APIs to an inference

engine and the OWL result sets that define the data. Regardless of your

21_396797-ch14.indd 33421_396797-ch14.indd 334 2/13/09 7:34:51 PM2/13/09 7:34:51 PM

335 Chapter 14: Exploring the Limitations of the Semantic Web

particular project’s technical choices, stick closely to the contract-

based design principles and apply them to Semantic Web formats for

your best chance at success.

Here are a few unhealthy project patterns to especially watch for:

 ✓ Analysis paralysis: For some people, the availability of new modeling

formats is like giving a kid a new toy. Many people have a tremendous

urge to use RDF and OWL to their fullest, to capture all kinds of data,

make the model perfect, and anticipate the future. Resist those urges.

In all but a few cases, I recommend a tactical approach to RDFS and

OWL modeling. Sure, creating data models from scratch is top-down by

definition, but it needn’t be an exercise of perfection for every model.

The tactical approach to RDFS and OWL means to stay focused on just

the specified behavior of the application, avoiding modeling any part of

the domain not relevant to the application behavior. Without rigorous

checks-and-balances, you can easily slip into analysis paralysis on your

Semantic Web project.

 ✓ Broken triangle: The iron triangle says that every good quality software

project can be changed along three axes of cost, scope, and time, but

that changing any one dimension leads to measurable impacts on the

others (lest the quality of the project decline). The broken triangle refers

to occasions where the developers and managers get out of synch, the

triangle is broken, and unrealistic expectations lead to failed projects. In

the realm of Semantic Web projects, I especially recommend that you be

very conservative on scope and time. Cut your project’s scope to the bare

minimum and double your first estimates on how long it will take to com-

plete. During the course of your project, use frequent iterations to prevent

breaking the triangle and ensure that expectations are always up to date.

Making Good Choices
With a little bit of planning, foresight, and caution, your Semantic Web proj-

ect can be successful and enjoyable. In software, as in life, making good deci-

sions can lead to an easier path and an enjoyable time.

Partners
Finding good partners to help you is a great way to share the risks and

rewards of a tough Semantic Web project. A good partner can come to you

as a systems integrator, a software vendor, or an individual. Sometimes you

have to pay for your partner’s help, but you can also find partners willing to

help you for free, or at cost, if you serve as a good reference for them after

project is successfully completed.

21_396797-ch14.indd 33521_396797-ch14.indd 335 2/13/09 7:34:51 PM2/13/09 7:34:51 PM

336 Part IV: Putting the Semantic Web to Work

In the 2009-era, the big systems integrators and software contractors aren’t

usually going to be your best choice for helping with your Semantic Web

projects. Even if they happen to employ a few staff members who know the

technology really well, you would be unlikely to have them on your project

because they would probably be working on other projects using more main-

stream skills. In contrast, if you do your homework about various boutique

consulting firms that specialize in the Semantic Web, you may be pleasantly

surprised by what you find. I personally know of several who specialize in dif-

ferent domains, a few who would work at cost for the right projects, and even

a few who might donate their time and expertise for humanitarian uses of the

Semantic Web.

Software vendors can make good partners too. Often, a Semantic Web vendor

is looking to showcase a great use of its technology. You can use this desire

as a way to ensure that the vendor will help your project be successful, that

it will participate actively in your project, and that it will see you through

until the end. I identify and recommend a few of these potential partners in

Chapters 15 and 17.

Timelines
Working with new technology, new standards, and new resource skills should

put any good project manager on his or her toes about project milestones. In

this chapter, you’ve been warned. Most of what you thought you knew about

planning, scoping, and estimating software projects has changed. Depending

on the architecture choices you’ve made, you’ve either pushed some of your

object-oriented code into Semantic Web formats, or you’ve raised data out

of the relational database to work with it in the Semantic Web. In either case,

you’ve shifted some fundamental design patterns about how logic and data

interact in software. The newer Semantic Web formats have different attri-

butes, different skill requirements, and tooling requirements that you prob-

ably haven’t had to deal with before. No matter how you decompose your new

Semantic Web project, you should be adding multipliers to your timeline esti-

mates to account for all the unknowns you’ll surely encounter along the way!

Functional expectations
In the eight years I’ve been involved with about a dozen substantial Semantic

Web projects, I’ve learned that it’s usually best to solve as much of your

software problem as possible using conventional technology and to isolate

the areas where you need or want to apply Semantic Web technology. By

making the bulk of your application based on conventional technology, you

both acknowledge that the Semantic Web is limited and guarantee that some

substantial part of what you set out to achieve is in fact achievable. The parts

of your planned application that can really benefit from the Semantic Web

21_396797-ch14.indd 33621_396797-ch14.indd 336 2/13/09 7:34:51 PM2/13/09 7:34:51 PM

337 Chapter 14: Exploring the Limitations of the Semantic Web

should be partitioned away as much as possible from other core features.

And by partitioned, I don’t mean disconnected, but rather I suggest that you

use a common software façade for loosely coupling your software interfaces

to the Semantic Web bits of the application. This technical recommendation

feeds into the overall project recommendation to keep your functional expec-

tations firmly grounded in reality. Remember, the Semantic Web is not magic.

It’s far too easy to get caught up in the power, flexibility, and newness of the

Semantic Web. Eventually, every software problem looks like nails to your

new-found Semantic Web hammer. But not every software problem is suited

for the Semantic Web data formats. A careful examination of your software

architecture and functional requirements should yield a reasonably small

percentage of requirements that depend directly on the Semantic Web.

One approach that I’ve used successfully to scope Semantic Web projects is

to focus specifically on the data-level queries that you want answered from

RDF/OWL. For example, list the application-specific questions and queries

that you think would be best answered from a graph database or an inference

engine. After you have a good idea of the business benefits of those queries,

you can start to decompose them further into queries that are answerable

with data you already have, or data that needs to be converted to RDF/OWL.

For the data that should come from RDF/OWL, the important business que-

ries can help direct the best way to model your ontologies.

It sounds simple, but it’s a good idea nonetheless: Start with the business

requirements and then work backwards into the technology choices. Try

not to use semantics just for the sake of semantics, and then double or triple

your project estimates for the functions that really do need to depend on

Semantic Web technologies.

Sticking to Best Practices
The Semantic Web industry is young enough that best practices are still

being discovered and rewritten all the time. The Semantic Web of 2008 isn’t

a fully mature discipline with fully mature practices. However, I can offer at

least two kind of best practices: process/project best practices and techni-

cal best practices. In the previous sections, I address several components

of project/process best practices. Technical best practices are far more rel-

evant to the architects and developers on your Semantic Web project. I name

many best practices in Chapters 7 and 8, but here a few more from the W3C

to consider:

 ✓ Defining Multi-way Relations in Semantic Web: Detailed ontology pat-

tern guidance for creating and maintaining relationships among indi-

viduals and more than one individual or value. See www.w3.org/TR/
swbp-n-aryRelations/.

21_396797-ch14.indd 33721_396797-ch14.indd 337 2/13/09 7:34:51 PM2/13/09 7:34:51 PM

338 Part IV: Putting the Semantic Web to Work

 ✓ Classes as Property Values: Defines patterns for implementing class

names as relationship properties in OWL-DL and OWL-Lite where that

explicit behavior isn’t allowed. See www.w3.org/TR/swbp-classes-
as-values/.

 ✓ Specified Values in OWL: In the OWL 1.0 formats, the developer may

need to choose a way to itemize a list of values associated with a

property; this best practice describes using class partitions and enu-

merations of individuals as a way to solve that. See www.w3.org/TR/
swbp-specified-values/.

 ✓ Semantic Web Best Practices for Object-Oriented Developers: An intro-

duction to Semantic Web formats as conceptual domain models for OO

developers who may have been formally trained in subjects like UML

(Unified Modeling Language). See www.w3.org/TR/sw-oosd-primer/.

 ✓ Using XML Schema Datatypes in RDF and OWL: Detailed guidance for

how to adopt all XSD Datatype support into your Semantic Web model.

See www.w3.org/TR/swbp-xsch-datatypes.

 ✓ RDF/OWL WordNet Representation: This is a reference implementation

of the Princeton WordNet into RDF/OWL; it also describes the principles

used in conversion. See www.w3.org/TR/wordnet-rdf/.

 ✓ Time Ontology in OWL: Temporal concepts can be difficult to use in a

logic system that is not temporally bound; this reference implementa-

tion covers a basic implementation for the purposes of creating a sched-

uling ontology. See www.w3.org/TR/owl-time.

 ✓ Whole-part Relationships in OWL Ontologies: A best practices note to

describe how OWL can be used to model the simple cases of whole-part

relations, expressing containment, and being able to reason effectively

with those assertions. See www.w3.org/2001/sw/BestPractices/
OEP/SimplePartWhole/.

You can find more technical best practices like these on the W3C Web site at

www.w3.org/2001/sw/BestPractices.

Technical best practices are a tactical but very good way to protect your

project from the pitfalls that others have already experienced. Before starting

your project, I strongly encourage you to consider the process, project, and

technical best practices presented throughout this book before deciding that

the Semantic Web is for you.

21_396797-ch14.indd 33821_396797-ch14.indd 338 2/13/09 7:34:51 PM2/13/09 7:34:51 PM

Chapter 15

A Guide to Essential Vendor
Implementations

In This Chapter
▶ Keeping your eye on key players in the Semantic Web business

▶ Paying attention to important company and product profiles

▶ Identifying consumer and business products that you might be able to use

Sometimes, seeing what others are doing helps spur your own ideas. Or

perhaps you just want to jump-start your own project by finding some

software that can help you get going. Consumer Semantic Web sites are

places you can go to try some of new Semantic Web technology, perhaps

as a customer or just a casual surfer. Either way, you might be surprised:

Many of these Web sites seem pretty normal on the surface, but as you try

some of their cool features, you wonder, “How did they do that?” That’s

where the Semantic Web magic comes in.

The “Business Software” section of this chapter is more oriented around

products you can buy or try for your own project. In some cases, as with

the Oracle Database, the product is itself a supplier of Semantic Web

technology for you. In other cases, as with the IBM Registry, the product

uses Semantic Web technology on the inside as a way to make the product

better. In all cases, this chapter can give you a good idea of which companies

and products are aggressively moving toward the Semantic Web today!

Consumer Web Sites
Consumer Web sites are applications that you can go ahead and use directly

from your everyday Web browser. Typically these consumer Web sites

are focused on attracting your attention, and they make money from the

advertizing space that they sell. Most of the consumer applications I’ve

profiled for this section use that business model. All of the consumer-

facing applications described here are making innovative use of semantic

technology to empower their next-generation capabilities.

22_396797-ch15.indd 33922_396797-ch15.indd 339 2/13/09 7:35:45 PM2/13/09 7:35:45 PM

340 Part IV: Putting the Semantic Web to Work

Twine
URL: www.twine.com

Headquarters: San Francisco, CA, USA

Products (Primary): Twine.com

In a ground-breaking report written in the fall of 2008 by David Provost,

Nova Spivack, who is the CEO of Twine, was interviewed about Twine in

light of recent developments in the industry. I’ve worked with David and

Nova to provide you some of those facts and insights about Twine and

their implementations.

Twine is an interest networking Web site designed to let people share links,

comments, files, and more about topics they’re interested in. When Twine

launched as a beta, it mostly attracted people involved with the Semantic

Web. But since then, the diversity of people on Twine has grown rapidly, and

now a quick look at the Top 100 Twines (interest categories) show interests

as diverse as green business and investing, science discoveries, geopolitics,

sustainable living, and thousands more.

 Twine is easily one of the best-known Semantic ventures today, but what’s

truly refreshing about Twine is that it emphasizes what it does (its business

mission) and not how it does it (Semantic Web technology). Longstanding

members of the Semantic Web community may be left wondering “Where’s the

beef?” because there aren’t any ontology editing screens, model visualizers,

or RDF development environments. On the other hand, the general public may

come to believe it has finally found the Semantic Web, and it’s on Twine.

Twine is built to support regular people who have interests they’d like to

share. Because Twine aims be an evolutionary step beyond Facebook or

MySpace, with broad interest networking appeal to everybody, don’t look for

Twine to include any hands-on Semantic Web development features.

If you’ve started a Twine on cooking, you won’t miss the absence of ontology

editing tools. In fact, you probably won’t care about the Semantic Web

technology at all. Instead, you may be far more interested in the bookmark

someone just posted to your cooking Twine that leads to a recipe you’ve

never thought of before.

Visible or not, Twine has a lot of semantics at work under the hood in the

form of autotagging, Natural Language Processing (NLP), and RDF Semantic

Web data. But the technology and the Semantic Web hype surrounding it

have been rightfully overshadowed by Twine’s business goals and its point

for existing in the first place: to be a money-making venture.

22_396797-ch15.indd 34022_396797-ch15.indd 340 2/13/09 7:35:45 PM2/13/09 7:35:45 PM

341 Chapter 15: A Guide to Essential Vendor Implementations

Twine’s audience demographics and behavior may position the company

front and center as a viable media property. For instance, Twine’s target

demographic is young professionals, an older (which usually means more

affluent) demographic than that of Facebook or MySpace, where advertisers

have been frustrated in crafting effective campaigns.

 Compared with “discovery” sites like Delicious, Digg, or Technorati, where

visitors may linger for two minutes, Twiners remain on the site for 15 minutes.

In the world of advertising, that’s a substantial jump that represents a highly

motivating business opportunity, particularly when these visitors are deeply

engaged in interests that are important to them and can be identified,

quantified, targeted, and served.

Twine is a business that sees an opportunity to use semantic technology in a

way that other technologies can’t easily replicate, if at all. Semantic Web

technology is providing Twine with a competitive advantage in two critical

processes: developing a valuable audience, and providing advertisers with a

highly targeted, systematic way of reaching this audience.

 Entrepreneurs reading this book should be paying attention: You should

be looking into any specialty markets where people might benefit from

semantics-based social networks, e-commerce sites, or other viable consumer

applications.

Harpers Magazine
URL: www.harpers.org

Headquarters: New York, NY, USA

Semantic Technology Products (Primary): Harpers.org (online)

Circulation: 200,000+ (individuals and businesses)

Harper’s Magazine is one of the oldest magazines published in the United

States, and now it’s one of the most technically advanced as well. Beginning

in 2003, the magazine began to work with Paul Ford, a Semantic Web

visionary, to eke more value out of an initially limited set of content.

Harper’s, shown in Figure 15-1, is a popular general-interest magazine with

an emphasis on politics, culture, and the arts. It includes content from the

Weekly Review dating back to 2000, the Harper’s Index, a statistical portrait

of the world dating back to 1998, and the full text of scanned archives dating

back to 1850, when the magazine started.

22_396797-ch15.indd 34122_396797-ch15.indd 341 2/13/09 7:35:45 PM2/13/09 7:35:45 PM

342 Part IV: Putting the Semantic Web to Work

Figure 15-1:
Browsing

the semanti-
cally linked

Harper’s
Magazine
archives.

The project to insert some Semantic Web behavior started with segmenting

the content into categories and then arranging them into a taxonomy. The

technology approach leverages a simple set of ontological relationships,

a traditional taxonomy of content, and narrative content that is split into

smaller sections and then linked back to the content taxonomy.

Although the net effect of this approach is seemingly complex (to take 300

static pages with fairly static content and enable the Web site to generate

more than 1,100 pages of remixed content), the actual usefulness of the Web

site improves dramatically. Remixed and repurposed content may appear in

many different contexts and in different locations, whereas the underlying

data mostly remains stable and easy to manage.

Some of the initial benefits for Harper’s, according to Mr. Ford, include an

uptick in Web site traffic and higher subscription revenues, lower cost

of Web site maintenance, and a growing database of facts and events that

benefit online readers in all areas of the Web site.

Albeit a fairly niche implementation, this example from Harper’s represents

the very best of how even the most simple and elemental use of Semantic

Web frameworks can have a huge impact, making static, content-heavy

Web sites more dynamic, more open, and better able to respond to reader

interests and behaviors.

22_396797-ch15.indd 34222_396797-ch15.indd 342 2/13/09 7:35:45 PM2/13/09 7:35:45 PM

343 Chapter 15: A Guide to Essential Vendor Implementations

DBpedia and DBpedia Mobile
URL: http://wiki.dbpedia.org

Headquarters: Berlin, Germany (Primary)

Semantic Technology Products (Primary): Wikipedia Datasets

Facts: 100,000,000+ (converted RDF from Wikipedia)

DBpedia is a somewhat audacious community effort aiming to extract all the

information from Wikipedia (the free online encyclopedia) into a structured

Semantic Web format. By converting all the Wikipedia unstructured content

into structured RDF, as shown by all the different vocabularies named in

Figure 15-2, the folks at DBpedia are set to enable users to ask highly targeted

questions as queries to a database containing all the Wikipedia data. In

contrast to Wikipedia’s typical full-text search, the Semantic Web query

language can enable much more precise answers and even new applications

to be built on top of the Wikipedia data.

Figure 15-2:
The linked

data
concept:
Vocabu-

laries and
ontologies

from every-
where are

connected!

22_396797-ch15.indd 34322_396797-ch15.indd 343 2/13/09 7:35:46 PM2/13/09 7:35:46 PM

344 Part IV: Putting the Semantic Web to Work

The DBpedia community, principally located in Europe, has made this infor-

mation available on the Web using an open-source GNU license. This means

that the data can be yours for your application, on a royalty-free basis, using

any of the three main interfaces to DBpedia:

 ✓ SPARQL Endpoint, which allows standard RDF SPARQL queries into

the vast 100m+ triples DBpedia database hosted online

 ✓ Linked Data Interface, which allows Semantic Web browsers and

crawlers to quickly navigate and drill-around the triples

 ✓ Database Extract, which would allow you to import the data into your

own RDF database

The Wikipedia source itself consists of more than 7 million articles in 250

languages and a continuous growth rate of more than 3 percent. Wikipedia

articles are mostly unstructured content, but they also contain structured

content such as information boxes, images with metadata, a categorization

scheme, and data tables. This rich data can be easily added to the structured

information extracted from the main articles and is included in the overall

RDF triples dataset hosted by DBpedia.

Users of DBpedia are usually focused in just a few use case areas. These use

cases include improving search engine reliability by merging or referencing

DBpedia content in searches, and leveraging the data in new software appli-

cations as a way to include royalty-free structured content from the Web.

Others on the very cutting edge are leveraging the DBpedia data as the very

core of the Linked Data Web project — a global effort to make the Semantic

Web pervasive in and of itself.

One particularly compelling software application that is using the DBpedia

data is the DBpedia Mobile client for mobile phones. This software client

provides a way to see localized data about nearby attractions on a map of

where you are now, as shown in Figure 15-3. The Marbles Linked Data

Browser is embedded to render views of those attractions and to drill into

background information about locations, attractions, restaurant reviews,

and any other interlinked dataset.

 This DBpedia Mobile application is currently running only on Windows Mobile

and a little bit on Apple iPhone at the time of this writing, but it’s certainly

an application and vision to keep an eye on. I certainly expect more of these

kinds of features to make it to phones as a standard service in the years

to come.

22_396797-ch15.indd 34422_396797-ch15.indd 344 2/13/09 7:35:48 PM2/13/09 7:35:48 PM

345 Chapter 15: A Guide to Essential Vendor Implementations

Figure 15-3:
Browsing
localized

Semantic
Web data
from your

phone while
in China.

ok

Xd
a

O
2

Tiananmen
Square

Monument
to the
People’s
Heroes

National
Centre for
the
Performing
Arts
(China)

Maps: Open Street Map

 POWERED BY

Google

Great
Hall
of the
People

Beijing

Tiananmen

You
are
here

ok

Xd
a

O
2

Tiananmen
Square

Monument
to the
People’s
Heroes

National
Centre for
the
Performing
Arts
(China)

Maps: Open Street Map

 POWERED BY

Google

Great
Hall
of the
People

Beijing

Tiananmen

You
are
here

Tiananmen Square
Review
A must-see! Very crowded on weekends.

Tiananmen Square
is the large plaza
near the center of
Beijing, China,
named after the
Tiananmen (literally, Gate of Heavenly Peace)
which sits to its north, separating it from the
Forbidden City. It has great cultural
signifigance as a symbol because it was the

Yahoo!
URL: http://developer.yahoo.com/searchmonkey

Headquarters: Sunnyvale, CA, USA

Products (Primary): SearchMonkey

In his special report written last year, David Provost spoke with Amit Kumar

about Yahoo! in light of recent developments in the industry. I’ve worked

with David and other Yahoo! search experts to provide you some of those

facts and insights about Yahoo! and their Semantic Web implementations.

The search industry is serious business for marketers, and any new technol-

ogy or feature that can provide a competitive edge is ruthlessly exploited.

SearchMonkey is Yahoo!’s opening shot at using Semantic technology (RDFa,

eRDF, and microformats) to produce a search experience that hopes to tilt

more eyeballs and market share in Yahoo!’s favor. The use of Semantic Web

in search results is an evolving practice, but a simple example is annotating

22_396797-ch15.indd 34522_396797-ch15.indd 345 2/13/09 7:35:48 PM2/13/09 7:35:48 PM

346 Part IV: Putting the Semantic Web to Work

a published Web page so that search software can recognize with certainty

that a particular string of numbers is actually a phone number, a date, or

perhaps a restaurant ranking.

Another scenario might be the publisher of a Web site that sells concert

tickets embedding Semantic Web annotations that deliver telephone

numbers and a running count of tickets remaining to a concert. Someone

searching for tickets to this concert would see the site’s phone number

and the remaining ticket count in the search results, thus eliminating the

need to navigate to the ticket seller’s site to find the same information.

In this concert tickets example, the site owner gets a jump on any competing

ticket sellers, and Yahoo! can claim it’s offering a better search experience

for the user and better services for the advertiser. Consumers of search

results win because they stand to get essential information presented on

a single page and not distributed across several sites. Even if all ticket sites

in the example used Semantic Web annotations to deliver information, all

parties would still win because of the quick comparisons this would make

possible.

SearchMonkey is a key element in what Yahoo! calls its Yahoo! Open
Strategy (Y!OS), which is an effort to build a community of developers and

publishers for its search platform. Yahoo! hopes that search consumers

find the experience compelling enough to start submitting more and more

searches through them.

SearchMonkey presently delivers enhanced results for movies, Yelp,

LinkedIn, StumbleUpon, and hundreds of other sites found at http://
gallery.search.yahoo.com.

hakia
URL: www.hakia.com

Headquarters: New York, NY, USA

Semantic Technology Products (Primary): hakia.com Search Engine

Funding: $21,000,000+ (privately held)

hakia is a search engine focused on Web-based semantic searches using

graph-based data and ontologies to improve search results. In contrast, most

conventional search engines generate results via statistical and popularity-

ranking algorithms, but a popular Web site may not always be credible, and a

credible Web site may not always be popular. As a result, a search may suffer

from wasted search time or drilling around using misleading information.

hakia’s semantic technology aims to provide a new search experience that’s

focused on quality, not popularity. These search results satisfy the following

three criteria simultaneously:

22_396797-ch15.indd 34622_396797-ch15.indd 346 2/13/09 7:35:48 PM2/13/09 7:35:48 PM

347 Chapter 15: A Guide to Essential Vendor Implementations

 ✓ Come from credible Web sites recommended by librarians

 ✓ Represent the most recent information available

 ✓ Remain absolutely relevant to the query

Users of the Web site find that hakia search results are organized in a tabbed

format (see Figure 15-4) that clearly distinguishes results as Web results,

hakia Credible Sites, images, and news. This new tabbed format reinforces

the delivery of focus, clarity, and credibility in hakia search.

hakia also has a developer community Web site that enables interested

people to collaborate on search projects or semantically annotate their

own Web pages. A few of the topics being explored in this community are

Librarians’ Corner; Rate hakia versus Google, Yahoo!, and MSN; Webmasters

Tools and Page Submission; Semantic Advertising at hakia.com; and other

projects in the Lab.

Semantic search technology like hakia can enable more accurate retrieval of

information via concept or meaning match. The technology is effective for

many domains and content types, as it is perhaps the only method that can

be appropriately applied to credible, dynamic, and structured content. Most

of this type of content is statistically flat (infertile) for popularity algorithms

(conventional search engines like Google) to work effectively beyond

common queries.

Figure 15-4:
hakia is

happy to
have com-

parisons
versus other

popular
search

engines.

22_396797-ch15.indd 34722_396797-ch15.indd 347 2/13/09 7:35:48 PM2/13/09 7:35:48 PM

348 Part IV: Putting the Semantic Web to Work

The hakia.com search engine is currently operating in beta mode while the

ongoing development and analysis are underway. The folks at hakia are

currently indexing credible content in vertical domains such as medicine,

finance, law, science, travel, arts, history, as well as other content-rich topics.

hakia’s language coverage is primarily English. However, coverage of

Portuguese, Spanish, Italian, Polish, and Turkish has also been started.

Freebase (by Metaweb)
URL: www.freebase.com

RDF URL: http://rdf.freebase.com

Headquarters: San Francisco, CA, USA

Semantic Technology Products (Primary): freebase.com Open Database

Funding: $50,000,000+ (privately held)

Freebase is a Web site and database created by Metaweb Technologies.

It’s an open creative commons database that grandly aims to contain all of

the world’s information. It’s a graph database built and populated by a

broad community and is free for anyone to query, contribute to, build appli-

cations on top of, or integrate into his or her Web site. By structuring the

world’s data in this manner, using the Semantic Web frameworks, the

Freebase community hopes to create and continuously evolve a truly global

resource that will one day allow people and machines everywhere to access

information far more easily and quickly than they can today.

Freebase covers millions of topic areas in hundreds of knowledge categories.

It draws from large, open data sets like Wikipedia, MusicBrainz, and the SEC

archives to round out its information. Freebase also contains structured

information on popular topics like movies, music, people, and locations.

Importantly, this database is well organized and available via open APIs,

including an RDF-based linked data API. Any of the Freebase information can

be supplemented by a global community of users working together to add

structured information on a diverse range of subject areas.

Danny Hillis, the software industry luminary and founder of Freebase, has

said that, “All of the information in Freebase will be available under a license

that makes it freely shareable.” But, in the future, the company hopes to

generate business revenue by also organizing and disseminating access to

proprietary data that corporations would pay for.

Freebase’s ontologies, called Freebase types, are themselves user-editable.

This way, users and contributors to Freebase can experiment and add

their own types, which can become broadly adopted if accepted by the

administrator of the information category or domain it applies to.

22_396797-ch15.indd 34822_396797-ch15.indd 348 2/13/09 7:35:49 PM2/13/09 7:35:49 PM

349 Chapter 15: A Guide to Essential Vendor Implementations

Technically, the Freebase system runs on a database infrastructure created

in-house by Metaweb that utilizes a graph model at its core. Native Freebase

queries to the database are made with Metaweb Query Language (MQL), but

Freebase also supports an RDF profile built around the linked data principles

of the Semantic Web community.

TripIt
URL: www.tripit.com

Headquarters: San Francisco, CA, USA

Semantic Technology Products (Primary): TripIt.com Travel Assistant

Funding: $6,000,000+ (privately held)

Online travel is already more than a decade old, and more than half of U.S.

travelers now book their travel online. But as the popularity of airline, hotel,

and rental car supplier Web sites has grown, the typical traveler now has to

keep track of multiple, potentially confusing, travel reservations to organize

their trips. A typical trip today might include a flight booked at United.com, a

hotel room booked at Expedia and a rental car booked at Dollar.com.

Organizing these disparate itineraries is where TripIt helps out. To use TripIt,

you simply forward all your travel confirmation e-mails to plans@tripit.
com. The TripIt Itinerator semantic engine processes and combines all the

related bookings into a master itinerary. Then TripIt uses the trip data to

automatically pull information from other websites, including

 ✓ Daily weather forecasts from NOAA

 ✓ Local maps and driving directions from Google

 ✓ Unique city guides from Wikipedia, Flickr, and Eventful

TripIt aims to apply the linking power of social networking to improve the

travel experience. It will let you share your itinerary and collaborate on

planning trips. With TripIt, it’s easy to see when your travel plans overlap so

people can connect with friends and colleagues while on the road. In fact, a

recent collaboration between TripIt and LinkedIn now directly connects you

to your LinkedIn connections when you’re traveling, so you’ll be notified if a

LinkedIn connection is in your neighborhood.

The technology at the heart of TripIt is the Itinerator, which is TripIt’s

patent-pending and proprietary Semantic Web technology for automatically

creating itineraries from travel confirmation e-mails. The Itinerator is a tech-

nology platform built to work with most major travel Web sites. This engine

transforms unstructured e-mails into structured data and is able to intelli-

gently perform tasks for a user, including aggregating related data from other

22_396797-ch15.indd 34922_396797-ch15.indd 349 2/13/09 7:35:49 PM2/13/09 7:35:49 PM

350 Part IV: Putting the Semantic Web to Work

Web sites and services. Current examples of the data it aggregates include

weather, maps, directions, and city guides. Data on the Web is increasingly

being geo- and time-indexed, which enables deep personalization.

 TripIt is in a unique position to benefit from the coming of the Semantic Web

because more and more online data is made machine readable for intelligent

agents and services such as TripIt. TripIt has moved beyond the browser to

utilize an e-mail interface with support for open standards like iCalendar

and microformats. Additionally, the TripIt To Me and TripIt Mobile options

enable travelers to access all their travel plans from their mobile devices. The

company’s goal is to provide travel information when and where users need it,

including online, in their calendars, via a mobile device, and of course as a

printed itinerary.

TripIt is a classic example of a regular, every-day business model being

transformed and empowered by the combination of Semantic Web and

Natural Language Processing (NLP) technologies.

ZoomInfo
URL: www.zoominfo.com

Headquarters: Waltham, MA, USA

Semantic Technology Products (Primary): ZoomInfo.com People Finder

Funding: $7,000,000+ (privately held)

People Profiled: 43 million+

Companies Profiled: 3.9 million+

ZoomInfo is a people-finder and business information search engine with

information on more than 45 million people and 5 million companies.

ZoomInfo’s semantic search engine continually crawls the Web, scouring

millions of targeted company Web sites, news feeds, and other online

sources to identify information on people, companies, products, services,

and industries, as shown in Figure 15-5. ZoomInfo organizes this discovered

information into easy-to-read profiles that can be queried by anybody.

ZoomInfo technology represents one of the most sophisticated, automatic

content-generation systems and has already secured five patents with two

more patents pending. The ZoomInfo data is extracted and compiled by NLP,

AI algorithms, and data integration programs.

The ZoomInfo semantic search engine analyzes sentences to understand

their meanings and to extract relevant information about companies and

people, such as the industry a company is in and its products or services,

22_396797-ch15.indd 35022_396797-ch15.indd 350 2/13/09 7:35:49 PM2/13/09 7:35:49 PM

351 Chapter 15: A Guide to Essential Vendor Implementations

or the company a person works for and her job title. It employs artificial

intelligence algorithms to analyze Web site pages and to create a graph

model of their contents. With these algorithms, ZoomInfo analyzes the type

and content of a Web site based on how it’s constructed. ZoomInfo is able to

deduce that a specific paragraph is a company description or that a specific

address contains the location of a company’s headquarters in order to

extract the most accurate and relevant information.

After the most relevant data is extracted, information integration logic

allows ZoomInfo to sift and to organize data, analyzing the information and

determining what’s up-to-date and what’s not. ZoomInfo then creates or

updates company and people profiles to deliver business users fresh,

accurate, comprehensive, and objective information. Finally, that content

is delivered via a conventional search box, or alternatively as a paid service

for third-party businesses to receive the most up-to-date and accurate

information inside their own business systems.

Figure 15-5:
ZoomInfo
finds me
first, but

also again
at the

bottom of
the list.

BBC online
URL: www.bbc.co.uk

Headquarters: London, United Kingdom

Semantic Technology Products (Primary): BBC Programmes

22_396797-ch15.indd 35122_396797-ch15.indd 351 2/13/09 7:35:49 PM2/13/09 7:35:49 PM

352 Part IV: Putting the Semantic Web to Work

Long on the forefront of new technology, the BBC (British Broadcasting

Corporation) is no slouch when it comes to using advanced software technol-

ogies. The BBC was on the first wave of Web 2.0 technology, and it also is an

early adopter of new communication mediums like Twitter. It shouldn’t come

as any surprise then, that it’s also pushing the limits of Semantic Web in the

online world of BBC.com.

One of the first forays into the Semantic Web by the BBC was rolled out

in order to provide direct access to the actual data backing BBC content

and programs. The BBC team designed a Semantic Web ontology covering

program data — called the Programmes (using the British English spelling)

Ontology. This ontology, as depicted in Figure 15-6, provides Web identifiers

for concepts such as brand, series, and episode. The ontology is divided

into two main parts. First, it captures categorical information about pro-

grams, and the relations between those program categories. For example,

it allows the description of a brand, a series constituting it, a subseries, and

an episode in it. The second part of the ontology describes episodes and

their broadcast content on a particular service.

But the BBC doesn’t plan to stop with the Programmes Ontology and simply

call it a day with the Semantic Web. Instead, there are a host of initiatives

that are in various stages of planning an rollout that cover the use of

Semantic Web technology for Linked Data initiatives and the use of NLP to

improve the discovery and navigation of content on the BBC Web properties.

Figure 15-6:
The BBC

Pro-
grammes
Ontology.

Brand

Episode

Series

Content

Publishing

rdfs:subClassOf
object propertyBroadcast

Service

Programme

Event

Version

22_396797-ch15.indd 35222_396797-ch15.indd 352 2/13/09 7:35:49 PM2/13/09 7:35:49 PM

353 Chapter 15: A Guide to Essential Vendor Implementations

The BBC owns and operates many different Web site properties on behalf

of the U.K. taxpayers, most of that content and data is public domain, and

the properties themselves belong to the people of the U.K. These Web sites

might encompass news, music, television and other kinds of media. But how

can all the content in the different properties be linked together, or linked

with other public domain content? You guessed it: by using the Semantic

Web. Working with the Linked Data initiative, the BBC is considering tying

into the broader community of free Linked Data by bringing in the BBC Music

data, BBC Topics (television), BBC Programmes, BBC News, and other BBC

data into the broader community of RDF Linked Data.

Figure 15-7 shows how the BBC Web site content could be transformed by

the use of Linked Data and NLP services — giving users of the Web site better

content, more accurate linking, and jumping off links (that are automatic

and highly reliable) to external content that’s relevant to the content that is

currently being browsed.

BBC’s rich tradition of using cutting-edge technology in media likely portends

a long and interesting journey with the Semantic Web. As the next 5–10 years

unfold, you’ll no doubt see more and more of the BBC content intermingled

with public, open-source data from the LinkedIn community, and you’ll

probably see the BBC leading the way with easy to use Web content with

Semantic Web machinery under the hood. A great place to see more of the

BBC vision is in this online slide show: www.slideshare.net/onpause/
made-of-links-the-bbc-and-dbpedia-collaboration-at-dublin-
core-2008-berlin-presentation.

Figure 15-7:
BBC

vision for
automatic

annotations
and

category-
based

linking.

22_396797-ch15.indd 35322_396797-ch15.indd 353 2/13/09 7:35:49 PM2/13/09 7:35:49 PM

354 Part IV: Putting the Semantic Web to Work

Business Software
Business software for the Semantic Web is the software that most people

may never realize exists. All too often it’s only the IT folks who know what

software is really powering the enterprise. Nonetheless, even though you

may not ever hear about these applications, it’s business software that keeps

businesses running efficiently and productively. The following Semantic Web

business software examples just might change the way your business runs in

the future!

Thomson Reuters Calais
URL: www.opencalais.com

Headquarters: New York, NY, USA

Products (Primary): The Calais Initiative

Employees: 50,000

Revenue: $13.94 billion

Installed Base: 5,000 developers, 1.2 million pieces of content processed

per day

Again working with David Provost, I’ve spoken with Krista Thomas from

Thomson Reuters to provide you some key facts and insights about its

exceptionally cool Semantic Web implementation called Calais.

The Calais Initiative (Calais), wholly owned and operated as a division

within Thomson Reuters, comprises several tools for processing text, but

the core product is an NLP engine. When presented with a body of text, the

Calais Web service returns the named entities (the categories to which the

document’s key terms and concepts are assigned), facts, and events it

discovers within the document. The relationships between these items are

also identified and embedded in the results. Essentially, the results are the

semantic metadata of the document and can be thought of as the document’s

knowledge content, which can then be published and made available for

searching and navigation.

On its own, and applied to one or two small, short documents, this might not

seem exceptionally valuable. But deployed on the Web and made available

as a free service, Calais is in a position to process massive amounts of data

(text, quantitative, graphic, and so on) and extract its knowledge content.

After the NLP tasks are complete, the content can then be searched, com-

bined with other content, or remixed and searched along with other data.

There are three main types of data that Calais can remix your data with:

22_396797-ch15.indd 35422_396797-ch15.indd 354 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

355 Chapter 15: A Guide to Essential Vendor Implementations

 ✓ Any data from the Web

 ✓ Proprietary Thomson Reuters content

 ✓ Open data from the Linking Open Data project (see Chapter 2)

Further, any combination of the three data sources can be mixed together to

address a unique and particular domain of interest.

The Calais team’s goal is to provide the world’s best tool for extracting struc-

ture from any kind of content, recognizing its type, the concepts that are

contained, their relationships, and doing so not just within a single file, but

across a span of files that could be as large as the Web itself. With recent

updates occurring in early 2009 that bring Calais in line with the Linked Data

initiative, this vision is well within reach.

The fact that Thomson Reuters, a global publishing giant, is sponsoring

Calias suggests that this Semantic Web startup will be around for quite a

long time. Furthermore, at this time, Calais is in the final stages of testing

its “infinite scalability” initiative, based upon cloud computing principles,

which is designed to address growth in demand or spikes in utilization.

Calais has grown very quickly. The effect of this growth has been to discard

the original usage projections because demand has so vastly exceeded

expectations. Curiously, the vast majority of demand for Calais has existed

almost entirely outside of any Thomson Reuters media properties or busi-

ness units, but according to the company, this is likely to change in 2009.

Deploying Calais over the vast, professionally developed and controlled

content in the Thomson Reuters empire would be a remarkable step in the

evolution of the Semantic Web. After 150 years as a traditional news wire

service and publisher, Thomson Reuters’ content in Semantic Web formats

could quickly become something not yet fully understood, but quite possibly

far more powerful and useful than what any traditional publishers have ever

offered their customers.

In addition to the continued internal roll-out of Calais, outside demand is

moving beyond experimenters and creative small companies exploring this

new service. Demand from large organizations, including well-established

publishers, is growing at an unexpectedly high rate. As a result, larger

organizations or ventures built around Calais can expect to see availability

backed by Service Level Agreements (SLAs). Special situations are also

being anticipated where Calais is deployed on an enterprise scale behind a

corporate firewall.

Over the past 150 years in the publishing industry, Thomson Reuters has

amassed a body of high-quality content that’s possibly the largest in the

world. This content will continue to grow, but the advent of the Web has

unleashed a torrent of new content available to consumers on a global scale.

22_396797-ch15.indd 35522_396797-ch15.indd 355 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

356 Part IV: Putting the Semantic Web to Work

Because this content is outside Thomson Reuters’s editorial and production

controls, the company considers it to be “wild” content. This label doesn’t

mean it’s bad — some of it happens to be exceedingly good quality.

Calais puts Thomson Reuters in a unique position to extend its core compe-

tencies by including “wild” content alongside content that it controls. This is

important to the larger business because:

 ✓ The fundamental nature of publishing and using content is changing.

 ✓ Open-source content dwarfs the content Thomson Reuters controls

internally.

 ✓ Professionally produced content will continue to command a premium.

 ✓ The Open Access movement and similar efforts by academics, research-

ers, and other content authors seeking to retain control of their work

will continue and grow.

 ✓ Flexible integration/interoperation of different types of content will

provide powerful added value to Thomson Reuters customers.

Oracle Database
URL: www.oracle.com

Headquarters: Redwood Shores, CA, USA

Semantic Technology Products (Primary): Oracle Spatial Database

Installed Base: 250,000+ (across all product areas)

Oracle is the world’s largest enterprise software company. Oracle sells

many products that have some Semantic Web components, but the flagship

Oracle Database has the RDF option that is leading the way for commercially

successful RDF databases.

As part of Oracle Spatial 11g, an option for Oracle Database 11g Enterprise

Edition, Oracle delivers a very advanced overall semantic data management

capability. With native support for RDF/RDFS/OWL standards, the Oracle

semantic data store enables application developers to benefit from an open,

scalable, secure, integrated, efficient platform for RDF- and OWL-based

applications. These semantic database features enable storing, loading, and

DML access to RDF/OWL data and ontologies, inference using OWL and RDFS

semantics and user-defined rules, querying of RDF/OWL data and ontologies,

and ontology-assisted querying of enterprise (relational) data.

Oracle Semantic Database features support for storing, loading and DML

operations on RDF/OWL models. The database’s normalized storage

architecture manages the complexity arising from repeated usage of typically

22_396797-ch15.indd 35622_396797-ch15.indd 356 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

357 Chapter 15: A Guide to Essential Vendor Implementations

long URIs and literal values associated with the subjects, objects, and

predicates across triples. This leads to space-efficient storage, and scalable

and high-performance loading, querying, and inference of RDF/OWL data.

The Oracle Database features include a native inference engine for efficient

and scalable inference using common subsets of OWL semantics. This OWL

inference engine makes the existing native inference for RDF, RDFS, and

user-defined rules (used for additional specialized inference capabilities)

more efficient and scalable. Inference can be done using any combination of

these supported entailment regimes.

RDF/OWL data contained in the Oracle Database can be queried using SQL.

As with the core Oracle Database Enterprise Edition, the RDF subsystems

also incorporate key performance and scalability features that can help

address the most demanding enterprise-class semantic Web solutions.

Oracle Spatial semantic database features exploit the benefits of Advanced

Compression and Partitioning, while fully supporting Real Applications

Clusters (RAC). RAC is Oracle’s key technology for clustered and grid-enable

database systems.

Available since 2004, Oracle has clearly demonstrated a commitment to

innovation in the Semantic Web area and is now the leading large vendor

supplying foundation technologies for this emerging sector.

IBM Registry
URL: www.ibm.com

Headquarters: Armonk, NY, USA

Semantic Technology Products (Primary): WebSphere Service Registry

and Repository

Installed Base: 100,000+ (across all product areas)

IBM is one of the largest overall enterprise software suppliers, covering data-

bases, mainframe software, integration software, and business intelligence

systems. It was one of the first to embrace the ideas of the Semantic Web in

its research labs and also one of the first vendors to leverage Semantic Web

technology in a mainstream way for service-oriented software products.

The IBM WebSphere Service Registry and Repository is principally responsi-

ble for the description and discovery of Web Service metadata. Unlike some

of the more conventional vendors that stick closely to the troubled UDDI

(Universal Description, Discovery, and Integration) standard, IBM chose to

forge its own direction with a system that uses RDF and OWL models at the

very core of the metadata framework.

22_396797-ch15.indd 35722_396797-ch15.indd 357 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

358 Part IV: Putting the Semantic Web to Work

 In some ways, IBM has only dipped a toe in the water of Semantic Web; most

of its investments lay in the more docile IBM Labs environment. But as it

releases more mainstream products using RDF, it continues to catch up

with Microsoft and Oracle, which each have more and more Semantic Web

products already in production.

Garlik Online Identity Protection
URL: www.garlik.com

Headquarters: Esher, Surrey, United Kingdom

Semantic Technology Products (Primary): Data Patrol

Installed Base: Tens of thousands (individuals and businesses)

Responding to the ongoing crisis of identity theft, Garlik aims to give

consumers and businesses more power over where and how their informa-

tion appears on the Web and provides an array of services to protect its

customers’ information. Garlik was founded by Mike Harris, founding CEO

of Egg plc, former Egg CIO Tom Ilube, and former British Computer Society

president Professor Nigel Shadbolt. Garlik is one of the first businesses to

release a Web-scale commercial application of Semantic Web technology.

Garlik’s core application Data Patrol enables its customers to find and

understand what personal information is in the public domain about them

and control their identities on the Web.

Supporting its cutting-edge application of Semantic Web technology, Garlik

has notably appointed a panel of world-class ID-protection and Semantic Web

technology experts to advise the business including Professor Wendy Hall

CBE from the University of Southampton, Sir Tim Berners-Lee, the inventor of

the Web and Semantic Web, Simon Davies, director of Privacy International

and Daniel Cooper, renowned privacy lawyer with Covington & Burling.

Garlik is a privately held, venture-backed firm.

The Garlik technical platform consists of an overall system architecture that

depends heavily on the power of RDF, ontologies, and NLP techniques to

enable semantically informed search and data harvesting. The RDF triple

store is a home-built clustered system that is purported to scale into the tens

of billions of statements. Although the inference power of the Garlik system

does not include OWL-DL reasoning, the SPARQL query standard is used as a

common interface to the repository, and its related application QDOS uses a

FOAF-like ontology.

22_396797-ch15.indd 35822_396797-ch15.indd 358 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

359 Chapter 15: A Guide to Essential Vendor Implementations

Clearly, the Garlik applications are taking the lead in applied Semantic Web

applications. The executives are tireless evangelists for the Semantic Web,

not just because they love the technology, but also because they genuinely

believe that it offers them and their customers a tangible benefit in the quest

to protect identity and prevent identity theft.

Dow Jones Client Solutions
URL: http://solutions.dowjones.com/djcs

Headquarters: New York, NY, USA

Products (Primary): Synaptica

Christine Connors, the global Director of Semantic Technology for Dow

Jones, spoke with David Provost for an interview about how Dow Jones

is using Semantic Web technology to get ahead in its Client Services

division. This section summarizes that interview and describes more about

a revolutionary Dow Jones product called Synaptica.

Dow Jones Client Solutions (DJCS) offers a range of software products and

consulting services for businesses that depend on publishing content. The

Synaptica product marks the company’s entry to the Semantic Web space.

Synaptica can be used to build and manage vocabularies, taxonomies,

thesauruses, and the inherent metadata of these structures. Environments

that deploy Synaptica are usually enterprise-oriented and behind a corporate

firewall. In these enterprise settings, the customer goals of Dow Jones might

be to improve enterprise search results, standardize corporate libraries

for compliance purposes, scope out the information that exists within the

enterprise, or support the creation of a “single source of truth”.

Synaptica has actually been in general release for more than 12 years (but

acquired by Dow Jones less than 3 years ago). During that time, increasingly

sophisticated and Semantic capabilities have been added, such as support

for RDF, OWL, and SKOS, the first two of these being crucial W3C recommen-

dations. Note that Dow Jones’s use of the term taxonomy may be an expedi-

ency to ease the introduction of concepts like ontologies, inferencing, and

other “more Semantic” terminology to mainstream audiences.

Dow Jones’s (recently acquired by News Corp.) ownership of high-quality,

professionally produced content benefits its global install base. Unlike

nearly every other entrant in the Semantic industry, Dow Jones could remain

quite busy just by introducing Synaptica to each of its existing customers

and gradually integrating these capabilities with the vast span content and

various media channels owned by News Corp.

22_396797-ch15.indd 35922_396797-ch15.indd 359 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

360 Part IV: Putting the Semantic Web to Work

The scope of opportunities within News Corp. alone would make most

Semantic vendors ecstatic if they occupied a similar almost-preferred-vendor

status. If the DJCS team is industrious and inventive, as it certainly appears

to be, it may well introduce innovative uses of Semantic technology within

its corporate bounds and also among the company’s extensive installed

base. Managing a vast span of content has given Dow Jones a very clear

understanding of metadata and Semantics, and these lessons will be quite

valuable to the company’s other customers.

 What is very clear to even the casual observer is that this is yet another media

giant moving forward with an investment in the Semantic Web. Given Dow

Jones/News Corp.’s track record of success, the company will quite likely

discover interesting and productive uses for Synaptica and everything this

product spawns. If your Dow Jones account rep isn’t already talking about

Synaptica, ask about it — the results could be very interesting.

Microsoft
URL: www.microsoft.com

Headquarters: Redmond, WA, USA

Semantic Technology Products (Primary): Powerset and Connected

Services

2008 Revenue: $60 billion (across all products)

Microsoft is no stranger to Semantic Web technology. But rather than seeing

a big-bang approach to Semantic Web or selling standalone infrastructure for

it, Microsoft instead appears to be dabbling in several different application

areas. A diverse range of applications from Microsoft including search, digital

asset management, and telecommunications services have all included some

degree of RDF/OWL support.

Microsoft Interactive Media manager is a collaborative environment for

handling media management tasks for professionals — commonly known

as a Media Asset Management system. One common problem area for

managing large amounts of digital media is the maintenance of the metadata

describing all those assets. Microsoft has invested in an RDF- and OWL-based

approach for tagging labels and relationships at the metadata layer; further, a

derivative of SPARQL is used for querying the model and finding relations.

Microsoft Connected Services Framework is an application service bundle

aimed at telecommunications providers for managing content and networks.

One of the core features of this kind of tooling is the maintenance of user

profiles. This profile management system for Connected Services Framework

uses RDF and SPARQL to ensure flexible and dynamic access to continually

changing user profiles.

22_396797-ch15.indd 36022_396797-ch15.indd 360 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

361 Chapter 15: A Guide to Essential Vendor Implementations

Finally, one of the high-profile early acquisitions of semantic search tech-

nology came when Microsoft acquired Powerset. Powerset’s technology is

similar to the technology from DBpedia described earlier in this chapter —

providing an RDF triples view into Wikipedia data, fully exposed for semantic

search, as shown in Figure 15-8. The underlying technology consists of a high-

end RDF triples database and a lot of relationship metadata and extraction

technology for joining concepts extracted from the unstructured Wikipedia

data. At the time of this writing, there’s still a lot of speculation about where

this technology will end up at Microsoft. One safe guess is that it will be

offered as part of the Microsoft Live Search and also for Microsoft Enterprise

Search (FAST).

Certain groups at Microsoft are clearly interested in the Semantic Web, but I

have yet to see whether the company as a whole will really get behind the

trend in a big way.

Figure 15-8:
Microsoft
Powerset
searching

on RDF-
enabled

Wikipedia.

Metatomix Semantic Integration
URL: www.metatomix.com

Headquarters: Dedham, MA, USA

Products (Primary): Branded as the “360” family of Applications

Installed Base: 50+

22_396797-ch15.indd 36122_396797-ch15.indd 361 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

362 Part IV: Putting the Semantic Web to Work

Founded in 2000, Metatomix is a leading semantic integration startup vendor.

Metatomix solutions intelligently link data from existing disparate systems to

create a common semantic view of information across an enterprise, thereby

providing a 360-degree view of business information. As a result, business

applications can leverage information that comes from across many data

sources. The combined data — including relationships and correlations that

were previously undiscovered — can actually create new, insightful informa-

tion. This information can be added to or modified as needed, without exten-

sive software coding, providing an extremely flexible information foundation

for your business applications.

Metatomix has been different from its founding, focusing on the end-to-end

business value. As an early adopter of semantic services that have added

business rules, workflow, and embraced W3C Semantic Web standards to

create an end-to-end development and deployment environment. Metatomix

360 aims to achieve the following:

 ✓ Generate a unified, 360-degree view of data that can extend across

enterprise silos, disparate content domains, and unstructured data

accessible anywhere on the Web.

 ✓ Automate the enrichment and discovery of previously unobserved

relationships.

 ✓ Leverage a rules engine to drive business process based on information

discovery.

 ✓ Offer an extensible application layer with dynamic screen generation

based upon user role.

Regardless of whether the integration points are traditional databases, Web

services, or legacy applications, Metatomix’s semantic integration platform

can provide a modular framework for solving information-centric business

challenges. Leveraging W3C semantic standards such as OWL ontologies

for domain descriptions and RDF, for data tagging, the Metatomix platform

more tightly links the context of the integrated data to the application for

which it is bound. Many conventional middleware approaches are more

rigid at the information layer and can’t provide the extensibility required

to build dynamic applications. This highly flexible, extensible approach

allows Metatomix to integrate complex data sources exponentially faster

than traditional technologies.

The embedded rules engine then builds on the dynamic data model of the

ontology and allows direct action to be taken. Specifically, the customer

can select specific entities within the model to iteratively enrich that entity,

automating the discovery of previously unobserved relationships. The

resulting data is then presented in a single 360-degree perspective via a thin,

extensible application layer that offers dynamic screen generation based

upon user role.

22_396797-ch15.indd 36222_396797-ch15.indd 362 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

363 Chapter 15: A Guide to Essential Vendor Implementations

The distinguishing factor of the Metatomix offering is the complimentary

combination of a flexible data integration layer and an intelligent, rules-

driven enrichment engine that further discovers related information across

the disparate enterprise, all in a single platform. Additionally, data is not

moved or replicated; rather, the source data remains where it is, and results

are persisted only as needed by the business application.

The net result that Metatomix aims to bring to its customers is the acceler-

ated development and maintenance of real time, dynamic analytical and

composite applications, improving corporate insight, decision-making, and

operating efficiency.

TopQuadrant TopBraid
URL: www.topquadrant.com

Headquarters: Alexandria, VA, USA

Products (Primary): TopBraid Suite

Installed base: 500+

Both David Provost and myself have worked with TopQuadrant and have

used its technologies for years. We spoke with Ralph Hodgson and Dean

Allemang about their products, services, and corporate profile.

TopQuadrant’s flagship product is TopBraid Suite, an integrated platform

comprised of TopBraid Composer, TopBraid Live, and TopBraid Ensemble.

Using TopBraid, customers can integrate data, develop and deploy semantic

applications and infrastructure, and create applications that process data

that have been linked or semantically combined.

TopBraid Composer is a full-strength ontology development tool and

supports modeling, application development, data source configuration,

and more. As a server platform, TopBraid Live is used to deploy Semantic

applications, mashups, and in general, any of the solutions developed

with Composer. Ensemble is a collection of out-of-the-box, configurable user

interface components. With these components, developers can quickly build

semantic applications that end users can use to view and interact with rich,

connected collections of information. The net effect is that TopBraid is

flexible enough to be used as a content management system and wiki. With

add-ins, it can support faceted search, calendaring, maps, timelines, and

charts and reports created with BIRT (Business Intelligence and Reporting

Tools, a suite of open-source business intelligence tools).

22_396797-ch15.indd 36322_396797-ch15.indd 363 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

364 Part IV: Putting the Semantic Web to Work

TopBraid Suite has an open architecture and integrates with the best

third-party reasoners and Semantic databases such as Oracle 11g and

AllegroGraph. This suite is well suited to companies investigating the

practicality and value of deploying enterprise applications of Semantic Web

technology.

Training on the fundamentals of Semantic technology and its range of

products is a key element of TopQuadrant’s global reputation. TopQuadrant

almost certainly holds more publicly accessible training courses than any

other Semantic Web vendor. (See Chapter 18 for more Semantic Web training

options.)

 In addition to training, TopQuadrant offers unique capabilities in its toolset,

such as SPARQLMotion, which is geared toward script developers as a

higher-level graphic scripting language. With SPARQLMotion, script writers

can connect a series of automated, predefined routines (which can also be

user-written) in a way that resembles Yahoo! Pipes or OSX’s “Automator”

function. As a higher-level language, SPARQLMotion allows a larger team to

participate in the development and maintenance of solutions created by the

lower-level tools found in TopBraid Suite.

TopQuadrant as a business is purely in execution mode — it has made its

plans and now it’s focused on linked data exploration (uniquely enabled

by SPARQL), semantically enabled content management, and enterprise

architecture in a few different industries. The company’s solution areas of

focus are based on customer demand — TopQuadrant is one of the very few

Semantic Web startups with an extensive installed base.

22_396797-ch15.indd 36422_396797-ch15.indd 364 2/13/09 7:35:50 PM2/13/09 7:35:50 PM

Part V
The Part of Tens

23_396797-pp05.indd 36523_396797-pp05.indd 365 2/13/09 7:37:52 PM2/13/09 7:37:52 PM

In this part . . .
You’re near the end of the book, and it’s time to

debunk those pesky myths you’ve heard about the

Semantic Web and get some useful ideas for where to go

next. What’s that you say? You haven’t read every word

in the chapters before this one? That’s okay. You can find

a ton of useful information in the Part of Tens and have a

good idea for the next steps you should take.

23_396797-pp05.indd 36623_396797-pp05.indd 366 2/13/09 7:37:52 PM2/13/09 7:37:52 PM

Chapter 16

Ten Myths About the
Semantic Web

In This Chapter
▶ Discovering how the Semantic Web relates to Google

▶ Empathizing with Semantic Web critics, but educating them, too!

▶ Understanding why the Semantic Web is so much more than simple AI

▶ Knowing the facts about how the Semantic Web is really changing the world

In some circles, it is fashionable to dismiss the Semantic Web. People

who fancy themselves more practical or grounded find a million reasons

why the status quo will remain the status quo. It is true that there are many

futurists promoting the Semantic Web, and there are also many followers

who simply have jumped on the bandwagon because the idea sounds cool.

However, it is also true that very smart and practical people have turned to

the Semantic Web as a way forward because they’ve reached the limits of

what status quo can solve for them. Practical people who are responsible for

finding information in government data, in life sciences drug research data,

or in remote corners of the World Wide Web already know the dirty secrets

of search engines and have slammed into the limits of SQL. For some folks,

the status quo is simply not good enough.

Nonetheless, it will remain trendy to be contrarian long after the Semantic

Web is a part of everyday life. Although some contrarians simply can’t be

convinced to change their minds, others might simply be misinformed —

this chapter is for them.

The Semantic Web Is Science Fiction
There has been a groundswell of popular wisdom among techies that the

Semantic Web is merely science fiction. Truly, the devil is in the details. If

24_396797-ch16.indd 36724_396797-ch16.indd 367 2/13/09 7:38:42 PM2/13/09 7:38:42 PM

368 Part V: The Part of Tens

people choose to define the Semantic Web as an all-knowing computer in the

sky that can answer your every query and interact with you as if it were a

person itself, of course it’s science fiction.

But the trouble is that nobody who actually works on the Semantic Web

defines it that way. Instead, the definition that most working practitioners

ascribe to the Semantic Web is about its ability to link data items, not just

pages, into a Web of interconnected models. These linked data items can be

narrowly connected for individuals, businesses, and communities, or more

widely dispersed to include entire domains of knowledge across the globe.

This isn’t science fiction at all.

In fact, this book shows you numerous case studies and citations of Semantic

Web projects at multibillion dollar companies like Oracle, Eli Lilly, Chevron,

IBM, and many more. I can assure you, dear reader, that for-profit businesses

do not inject science fiction into their core business operations.

In the end, it may simply be a matter of semantics (pun intended), but the

reality of the Semantic Web is definitely not science fiction if you choose to

accept the pragmatic working definition of the Semantic Web supplied by the

people who actually work on it. From there, you can find irrefutable evidence

that the early beginnings of the Semantic Web are upon you already.

The Semantic Web Is for
Tagging Web Sites

Still more damaging to the Semantic Web vision is the terribly misleading and

mistaken idea that its purpose for existing is to tag Web sites. Somewhere

along the way, the Semantic Web got labeled as a way to improve search

accuracy. People said that it would do that by embedding hidden tags

in Web pages — or, more precisely, that Web developers would have to

embed the tags into their Web pages. Perhaps this rumor might seem trivial,

but any software developer worth his or her salt would physically recoil at

the thought of manually tagging according to some weird “standard.”

Luckily, the Semantic Web isn’t for that purpose and doesn’t have those

requirements. Whew! Contrary to popular belief, the Semantic Web . . .

 ✓ Is more than just for tagging (although it can be used for tagging

Web content)

 ✓ Is entirely voluntary — not mandatory

 ✓ Can be 100-percent automated without developer oversight

24_396797-ch16.indd 36824_396797-ch16.indd 368 2/13/09 7:38:42 PM2/13/09 7:38:42 PM

369 Chapter 16: Ten Myths About the Semantic Web

Earlier in the book, I talk about microformats and RDFa — both of which are

ways to apply Semantic Web–type structured tags within HTML content.

Neither microformats nor RDFa are mandatory, and both can be automated.

The value of having structure within HTML is that it allows external software

systems to more easily load data from the unstructured Web.

But lest you think that this is where the Semantic Web starts and stops, I

want to be clear that this whole tagging idea is a very small part of what the

Semantic Web can do for you. Several chapters of this book are dedicated to

the business value proposition of the Semantic Web, which is completely

unrelated to the tagging value of the Semantic Web in the Internet as a whole.

The Semantic Web Will Put
Google Out of Business

In April 2008, Google’s market capitalization was hovering near $170 billion

dollars. Google is among the biggest and most powerful companies in

the world. In contrast, the Semantic Web is a small set of data standards

that reside with the not-for-profit organization called the World Wide Web

Consortium (W3C).

The idea that the Semantic Web could actually displace Google is laughable

on many levels. On the one hand, the Semantic Web isn’t even a company,

or software, or a search engine — how could a nonentity compete with

a corporate entity? On the other hand, the Semantic Web isn’t even intended

to enable better search engines — how could it realistically replace a

technology it isn’t designed for?

Nonetheless, the media likes hyperbole, tension, and drama. Therefore a

sensational article in The Times (2008) stated “Google could be superseded,

says web inventor!” (the Web inventor being Tim Berners-Lee). But when you

read the article itself, it’s clear that Tim Berners-Lee said no such thing. He

even later admonished The Times in his personal blog for misleading readers.

In this case, the facts are that the Semantic Web is still in need of a killer app,

and the media wishes this killer app would be in the search engine space. But

in spite of several new search engines that do in fact use some Semantic Web

standards for encoding metadata and sometimes even for influencing search

results, every software engineer knows that search engines are dependent on

their text-extraction capabilities, and the Semantic Web has nothing to offer

in the text-extraction domain.

Fundamentally the Semantic Web is a great way to encode structured data

because it’s so flexible, but it has nothing to do with the complex algorithms

that create structure from unstructured pages. The search engines that use

24_396797-ch16.indd 36924_396797-ch16.indd 369 2/13/09 7:38:42 PM2/13/09 7:38:42 PM

370 Part V: The Part of Tens

the Semantic Web languages use them almost exclusively as a post-process

to their text-extraction crawlers. Using RDF instead of indices provides some

unique benefits that can make semantic search engines valuable for some

market areas.

Even if the Semantic Web were an actual entity that could compete with

the likes of Google, it by itself would have no hopes for displacing the search

juggernaut.

The Semantic Web Is Too
Complex to Succeed

Folks are starting to get excited about Web 3.0, and they’re digging a little

deeper to find out what it’s all about and hopefully to start using it. First,

they find a cryptic data language called RDF with really obtuse XML syntax.

Perhaps that terrible syntax could be forgiven if it all still led to that giant

computer in the sky. But next they find three different specifications of OWL

based on some kind of math called description logics.

Slowly and carefully, they walk away from their computers. That’s right

about when most people give up. After they start to try and understand

how to make their Web page’s tagging system compliant with OWL, they

decide right then and there that the Semantic Web is too complex to ever

succeed.

Even though this book is called Semantic Web For Dummies, I’m not here to

tell you that it’s easy. But it’s nowhere near being too complex for success.

The main problem is the benchmark to which the Semantic Web is being

compared — HTML. HTML is a rendering markup language for documents.

It’s barely a programming language in the loosest possible sense of the word

programming.

 The more logical benchmark for the Semantic Web specifications is in the

area of data and programming languages. For instance, the Semantic Web is

a good deal more complex than XML, slightly more complex than database

programming, and simpler in many ways than UML and Java. In other words, a

moderately competent Java programmer or database developer would have

no trouble learning the Semantic Web’s core features and be able to program

it natively.

Clearly, this is not another HTML parlor trick. Yes, you have to be a software

developer to understand how to program in the Semantic Web native

languages. But, no, you do not have to be a programmer to benefit from the

Semantic Web’s power and flexibility. Just like you do not have to be a

24_396797-ch16.indd 37024_396797-ch16.indd 370 2/13/09 7:38:42 PM2/13/09 7:38:42 PM

371 Chapter 16: Ten Myths About the Semantic Web

programmer to benefit from a database or from Java, there will be many

software applications written with the Semantic Web as a backbone from

which you will see benefit — and you will never have to know how to encode

RDF as N3 or Turtle via a RESTful Web service. Leave that to the pros.

The Semantic Web Is a Catalog System
Category systems, like the Dewey Decimal System, are manufactured taxo-

nomies that organize content based on some heuristic. In and of themselves,

they’re valuable for the communities that build themselves up around the

system. Some systems, as are popular with Web 2.0 environments, are even

self-organizing because the community is constantly adjusting and changing

the categories.

But the Semantic Web is not a catalog system. In fact, there isn’t even any

catalog content in the Semantic Web. The Semantic Web is more like a card

catalog drawer full of blank cards and empty indexes. You might rightfully

say that the Semantic Web offers a framework for cataloging, but it neither

offers the catalog contents nor enforces a particular indexing approach.

Even if you wanted to think narrowly about the Semantic Web as a “catalog

framework,” you would have to conclude that it was the most powerful

catalog framework ever conceived. For example:

 ✓ Any catalog system can be implemented in the Semantic Web languages

(community- or authority-based).

 ✓ The Semantic Web languages allow for community-based or librarian-

based cataloging (top-down or bottom-up).

 ✓ Graph-type organization can enable easier content discovery. (Search

terms can be linked and organized uniquely for whoever is doing the

searching.)

 ✓ Cataloging could be achieved at Web-scale (globally upon established

protocols like HTTP and URIs).

 ✓ Catalogs that were started by different people at different times using

different indexes and systems could still be quickly and easily joined

together.

Thus, even though the Semantic Web is not a catalog system, a category

system, or even a Dewey Decimal–style index, it could indeed be imple-

mented as a very powerful framework for catalogs. Nonetheless, it is not

designed or intended to be a particular occurrence of a catalog system.

24_396797-ch16.indd 37124_396797-ch16.indd 371 2/13/09 7:38:42 PM2/13/09 7:38:42 PM

372 Part V: The Part of Tens

The Semantic Web Is an
Ivory Tower Design

Long before the international Semantic Web standards were approved in

2004, the Semantic Web had a reputation as an ivory tower design flop,

meaning that the idea had been created by academics with no basis in the

practical world outside of the university. Indeed, it’s true that the Semantic

Web was largely developed within the university system. However, the

Semantic Web’s genesis derived from the very pragmatic observation that

XML, object-oriented programming languages, and relational databases were

insufficient to solve the current data and metadata challenges.

In 1997, an engineer from Apple named Ramanathan Guha and an indepen-

dent consultant named Tim Bray went to work for Netscape and created a

graph-based metadata language called Meta Content Framework (MCF).

Eventually, MCF made it into the W3C standards process and was renamed

as RDF.

In 1999, the DARPA Agent Markup Language (DAML) and the Ontology

Inference Layer (OIL) first received funding to advance software technology

that could automatically work with Web data. It sounds funny to say it that

way, but software cannot, for the most part, automatically work with data:

It needs to be programmed by a human to do so. This fact presents many

challenges for working with data at very large scale — automated techniques

were needed.

These government researchers had already realized that the model seman-

tics of object-oriented notation, XML, and relational databases were

insufficient to program general-purpose algorithms for automating data

manipulation. That’s why the DAML and OIL languages were created.

After a few years of working out the kinks, the two languages finally merged

for good and were ratified as OWL — the Web Ontology Language. Thus,

the true history of the Semantic Web comes from commercial businesses

(for RDF) and the defense departments of the United States and Europe

(for OWL).

Likewise, the Semantic Web is evolving today under much more scrutiny

from the commercial world. Companies like Oracle, IBM, Adobe, Sun, Eli Lilly,

Citi, and many others have vested interests and committed resources taking

part in the formulation and reformulation of the standards.

 History and politics aside, the design of the Semantic Web is decidedly

neutral. Instead of prescribing a tightly knit framework of specifications,

protocols, and other standards, the Semantic Web layers may be adopted

one at a time and without any of the others. There is no ivory tower design

book that says that RDF must be used in some particular way and only that

way will suffice.

24_396797-ch16.indd 37224_396797-ch16.indd 372 2/13/09 7:38:42 PM2/13/09 7:38:42 PM

373 Chapter 16: Ten Myths About the Semantic Web

Quite the contrary to an ivory tower design, the Semantic Web is a frame-

work that consists of a few data language specifications from which intero-

perability may be assured. At its most basic level, the Semantic Web

prescribes you to encode your data such that it may be easily consumed

as an RDF triple. From there, many more levels of adherence exist, but none

are mandatory.

The Semantic Web Is Description Logic
If you had already heard the phrase “description logic” before opening this

book, you qualify as a true propeller-head. You’re either a mathematician

or a logician, or you’ve already been following the Semantic Web standards.

There are many kinds of logic, and description logics are one particular

family of logics.

Clay Shirky is a regarded author of many forward-thinking technology works,

and a vocal skeptic of the Semantic Web. In one particular article he wrote

back in 2003, he attempts to trivialize the foundational logic of OWL —

description logics. Well, Shirky mistakenly assumes too much of the role for

OWL in the Semantic Web.

 The first and most important point that you should remember is that the

Semantic Web’s foundation is RDF — no more and no less. OWL is an

extremely useful and much more powerful extension of RDF, but as Jim

Hendler says, “a little RDF goes a long way.”

Description logics are complex if you try to understand all the math, but if

you put that aside and think about why databases matter, you can begin

to see why description logics are relevant and important to the Semantic

Web discussion.

Databases matter because they provide computational guarantees about

interacting with the data that’s in them. If I query a database for a record,

and that record is in there, the database will find it — guaranteed. This

is completely at odds with Google-type search engines. Firstly, they don’t

even index the whole Web; secondly, they don’t provide any computational

guarantees about the data they do index. Lastly, they return so many

keyword matches that it’s frequently impossible to look at all the results.

In technospeak, they have weak precision and good recall.

A database has a much smaller set of data to work with, but it has perfect

recall and perfect precision. That’s what description logics can provide when

people use tags that conform to OWL fragments. This is an exceptionally

24_396797-ch16.indd 37324_396797-ch16.indd 373 2/13/09 7:38:42 PM2/13/09 7:38:42 PM

374 Part V: The Part of Tens

good thing because as the use of these OWL fragments expands over time,

the result will be a continually growing, Web-scale database that’s even more

computationally expressive than a relational database. Unless you’re Clay

Shirky, databases are good!

The Semantic Web Is Artificial
Intelligence (Again)

At the beginning of the 21st century, AI was still a bad word. An AI winter

had long iced-over the prospects for artificial intelligence to revolutionize

computing. At various points throughout the history of AI research, the

media has turned against it, and the funding ran dry. So to call the Semantic

Web just another AI technology is to insult the technology and dismiss it as

an abject failure.

This particular assertion — that the Semantic Web is artificial intelligence —

is true. However, the underlying premise that AI is bad is actually a myth

worth debunking. Artificial intelligence is a term coined in 1956, and it refers

to the creation of intelligent machines. The AI field of research is broad and

deep, encompassing areas from speech understanding to the encoding of

human knowledge and brain simulation.

Several spectacular failures through the years have contributed to the widely

held perception that AI as a whole is a failure, such as in the areas of speech

understanding, machine translation, and expert systems. Compounding this

perception of failure, the media has widely promoted some few successes

that seem trivial in the big picture. IBM’s Deep Blue beating Gary Kasparov

at chess was a substantial feat, but understandably underwhelming in

comparison to all that was promised from AI as a whole.

Nearly all modern software technology like object-oriented systems, business

rule engines, relational databases, modern machine code compilers, and

countless other algorithms and solution patterns have made their way

from the realm of AI science fiction to become workplace science fact.

Industries like financial services, life sciences, pharmaceuticals, manufactur-

ing, and retail are all dependent on AI technology for the very core of their

operations.

So what if the Semantic Web is AI? Lots of cool stuff was AI, and lots of tech-

nology that made people very rich was AI. Maybe when the Semantic Web

goes entirely mainstream, everyone will forget this pesky little detail and just

wallow in the glory of Web 3.0.

24_396797-ch16.indd 37424_396797-ch16.indd 374 2/13/09 7:38:42 PM2/13/09 7:38:42 PM

375 Chapter 16: Ten Myths About the Semantic Web

The Semantic Web Is a
$20-Billion Industry

Measuring markets is a black art. Analysts get paid huge sums of money and

spend months of their time assessing well-defined markets to issue guidance

about what they’re worth. But the Semantic Web isn’t even considered a

standalone market in 2008.

Leading software analysts such as Gartner, Forrester, IDC, and Ovum have

barely acknowledged the presence of the Semantic Web technology base,

much less actually tried to size its value in the marketplace. Some niche

analysts, however, have completed substantial research and declared the

Semantic Web industry to be a multibillion-dollar industry (Project 10x, 2008,

Semantic Wave 2008 Report: Industry Roadmap to Web 3.0 and Multibillion
Dollar Market Opportunities). To which I say, “Bah!”

Okay, perhaps that’s a little harsh. The folks at Project 10x do some wonder-

ful research, but they’re also publishing very misleading figures. When a

tier-one analyst (like Gartner, IDC, or Forrester) publishes figures about

a software marketplace, the analyst publishes figures in terms of annual

new license revenue generated in that particular software area. They’re

usually careful to define just which sorts of products qualify, provide sepa-

rate figures for services, and exclude loosely related technologies that only

partially depend on the main software being considered.

The figures published by Project 10x, on the other hand, are inclusive of

Semantic Web software revenues, professional services implementing

that software, software revenue of products that embed Semantic Web

technology in one way or another, and an aggregate of the venture capital

investments occurring in the related fields. Project 10x also openly defines

semantic technology as a super-set of Semantic Web technology and lumps

in some more traditional AI technologies like business rule engines and text

analytics.

Promoting the Semantic Web is admirable, but the implied linkage of these

misleading billion-dollar figures to a Semantic Web software marketplace may

actually be a disservice to the fledgling industry.

 The appropriate way to size a software market is to add up all the new money

being spent on licensed software and subscription services to the new tech-

nology itself, not including unrelated technology that happens to use some

aspect of semantics. A more realistic estimate for 2007–2008 new software

revenues in the more narrowly defined Semantic Web area would probably be

measured in the tens of millions, not billions.

24_396797-ch16.indd 37524_396797-ch16.indd 375 2/13/09 7:38:42 PM2/13/09 7:38:42 PM

376 Part V: The Part of Tens

The Semantic Web Hasn’t
Changed the World

If the Semantic Web is so great, how come is hasn’t changed the world yet?

That whole “vision thing” with the Semantic Web is still to blame here. The

expectations of the masses upon hearing about the Semantic Web are simply

too high to really fulfill — thus, the perception exists that the Semantic Web

hasn’t really done anything yet.

But what are the facts?

 ✓ The Semantic Web has spawned a new way of consuming news from one

of the world’s largest news organizations — Reuters (CNet News, 2008).

 ✓ The Semantic Web is responsible for scientists finding new protein

families that might lead to better medicine (Wolstencroft, et al., 2005,

A Little Semantics Goes a Long Way in Biology. School of Computer

Science, University of Manchester, UK).

 ✓ Enterprise software companies like Oracle, IBM, SAP, and Microsoft are

using Semantic Web technology in their products.

 ✓ The New York Times, Business Week, Information Week, and The
Economist have all run stories about how the Semantic Web is changing

the technology landscape today.

 ✓ Governments across the world are using Semantic Web technology for

defense, environmental protection, disaster preparedness, state and

local justice, and many other uses.

 ✓ The Semantic Web is the backbone for the global cancer research data

exchange (National Cancer Institute Thesaurus).

 ✓ Universities worldwide have shifted their curriculums to teach the

Semantic Web as part of their regular computer science programs.

 ✓ European and United States governments alone have invested hundreds

of millions of dollars in R&D funding (Davis, Allemang, and Coyne, 2004).

Without a doubt, the Semantic Web has not yet produced the kind of massive

societal change that the first Internet revolution did — but don’t forget that

the Internet “revolution” was quietly happening for several decades before

the Internet economic boom, which happened from 1996 to 1999. Sometimes

when you’re in the middle of massive change, it feels more like evolution than

revolution. You may yet look back on the 2000s as the calm before the big

Semantic Web boom of the 2010s: Who knows?

24_396797-ch16.indd 37624_396797-ch16.indd 376 2/13/09 7:38:42 PM2/13/09 7:38:42 PM

Chapter 17

Ten Things to Look Forward
to Beyond Web 2.0

In This Chapter
▶ Developing better searching, browsing, and social networks

▶ Moving toward less obnoxious advertising

▶ Seeing a giant database in the sky

▶ Explaining the Semantic Web to your grandma

Web 2.0 is still all the rage, and to be fair, there may yet be a few years

to go in the love affair happening with the digitally enabled and

their social networks. Web sites like Facebook, Twitter, and Digg will con-

tinue to bring people together with the Web as a medium. However, with

the rise of the Semantic Web, you will certainly witness the next generation

of the Web — Web 3.0 if you please — and a new capacity for your machines

to become more autonomous and to act on your behalf without any partici-

pation of your friends and acquaintances that are part of your online social

connections.

This shift to Web 3.0 will be gradual and slow. If you’ve discovered anything

by flipping through this book, it’s that the Semantic Web is not for dummies.

It takes skilled hands and bright ideas to enable the Semantic Web to seem

easy and to simplify your life rather than confuse it. More and more applica-

tions that you use on the Web and at work will begin to adopt Semantic Web

data. Eventually there will be such a critical mass of software applications

producing RDF and OWL that tasks that seem impossible today will be taken

for granted in just a few years. In this chapter, I show you what might be on

that horizon.

25_396797-ch17.indd 37725_396797-ch17.indd 377 2/13/09 7:39:29 PM2/13/09 7:39:29 PM

378 Part V: The Part of Tens

More Cool Features on the Web Sites
and Browsers You Already Use

Here are just a few of the compelling new features being brought to you

today by the Semantic Web technology:

 ✓ Search: The single most used application in a Web browser is search.

Unfortunately, searching can sometimes take a lot of time before you

find just the right data you need. But what if you searched and the data

you needed came back on the first search results page? That’s what

Yahoo! SearchMonkey is aiming to do by using Semantic Web metadata

with partners and developers. Today, if you search for the name of

a restaurant in San Francisco, you see the Yelp rating for that restaurant

and a phone number. As time progresses, more and more data may be

directly accessible directly from the search results page, which would

mean you would spend less time clicking around trying to find stuff.

 ✓ News pages: News pages are another popular destination for most

people. Sure, the standard news sites let you customize your news page

to create content areas that are filled with content they place there —

usually by a category that they pick. Things got a little better with RSS

(another RDF Semantic Web application, albeit a simple one) because

you can now subscribe to a set of feeds and have them appear in a

particular place. But RSS still doesn’t let you define content categories

that are different than what your news site lets you choose. With more

and more news sites shifting to a Semantic Web approach, like what

Thomson Calais provides, you may one day be able to fully customize

both the layout and category rules of your news homepage.

 ✓ Travel: If you travel a lot, you probably do a majority of your bookings

online. Even if you use a travel portal like Expedia or Orbitz, you’re

very likely to occasionally use the Web site of a particular company.

United Airlines, Marriott, and other travel companies usually offer more

rewards for booking on their Web sites because they want your business

directly. Therefore, you end up with a travel itinerary that has been

booked in three or four different systems. New Semantic Web companies

like TripIt are aiming to make your life easier by understanding all those

different itineraries and merging them into a single, much more useful

itinerary that you can travel with.

 ✓ Bookmarks: When I browse the Web, I rarely have the time to bookmark

everything that’s interesting to me, much less provide a well-organized

category system for organizing those bookmarks. The conventional

browser system just doesn’t cut it for me. Why doesn’t somebody make

a plug-in that just watches what I browse and automatically organizes

old and new content based on what I do and what others like me do?

Adaptive Blue does. Its browser plug-in is a semantics-based bookmark-

ing plug-in that injects a bit of intelligence in how the browser maintains

your links, actions, and content.

25_396797-ch17.indd 37825_396797-ch17.indd 378 2/13/09 7:39:29 PM2/13/09 7:39:29 PM

379 Chapter 17: Ten Things to Look Forward to Beyond Web 2.0

 ✓ Social networks: Taking this idea of interest networking to the next

level, a whole range of new social networks based on Semantic Web

technologies are emerging. Twine.com is the most popular new interest

networking site that looks to move beyond people-to-people connec-

tions and onward to people-to-interest connections. The organizing

principle on Twine.com is topics that are then connected to other topics

and connected to people. These Twines are built using Semantic Web

data, which makes them easier to mash-up, remix, and push-out to other

people with similar interests that may not have found the content in

other areas. In some ways, this is like a popularity contest for content

and ideas, not just people and pages.

These are just a few of the compelling new features being brought to you

today by the Semantic Web technology. There will be more.

Dramatically More Scalable Digital
Knowledge and Machine Intelligence

The Web currently has no intelligence and uses just a tiny fragment of the

hypertext ideas promoted more than 70 years ago by Vannevar Bush. But

the next generation of the Web, the Semantic Web, will begin to really have

intelligence in the structure and format of the data it contains, and more of

the kind of rich relationships and linking infrastructure that data on the Web

is capable of. Yes, it begins to resemble that giant, distributed database in

the sky that the dreamers still envision. But today the Web is still grounded

in vast piles of HTML and millions of databases behind HTTP Web servers.

The Semantic Web enables graph data to be connected to other data regard-

less of distance, at very deep and fine-grained levels, and with the accuracy

and correctness that we expect from good databases. These data graphs

span many Web servers and usher in an era of open data that is linked

together for anybody and everybody to use in the software they need on

their own computers. It will literally be the database on the network that

everybody can use.

What the Semantic Web provides technically are the protocols and formats

for sound data organization. These protocols allow developers to specify

object-oriented type inheritance on Web-based data models, sameAs pointers

on Web-based data models, transitivity for basic reasoning, and set-based

operators like unions and intersections on Web-based data models. Yes, this

will evolve into a dramatically more scalable and pervasive form of database

and machine intelligence than could have ever come from a single company.

25_396797-ch17.indd 37925_396797-ch17.indd 379 2/13/09 7:39:29 PM2/13/09 7:39:29 PM

380 Part V: The Part of Tens

The broader community, the Semantic Web community, is the open, demo-

cratic, and self-organizing community that is bringing this new kind of Web

database into reality at Web scale on open, standard graph data formats.

No, it isn’t perfect today and nor will it ever be, but the basic essentials are

intact, and there’s plenty of evidence that the open global knowledge being

placed in RDF and OWL formats will survive and thrive in the royalty-free

public domain where they’re being placed.

 For evidence, you need only look to the Linking Open Data project hosted by

the W3C, where hundreds of organizations are placing their RDF and OWL

data on the Web and making it interoperable with the basic standards for

linking open data. Projects like DBpedia and Freebase look to organize the

world’s content into RDF browse-able formats and place the data on a cloud

of servers (such as Amazon’s A9) for you to make your own Semantic Web

application.

Widespread Embedding
in Enterprise Software

The Semantic Web is all about making data easier to work with, and this fact

is not lost on the companies that build business software. Business applica-

tions are all about the data, and any competitive edge that a vendor can

supply in an application will eventually be added if there’s a profit to be had.

Businesses like Oracle, SAP, IBM, and Microsoft supply the vast majority of

the world’s business software systems. These vendors are shipping products

today that use RDF or OWL in some way. Some of these vendors have already

made architectural commitments to Semantic Web formats that will change

the way their applications are built and delivered.

The Semantic Web may not be widely publicized by these major vendors in

the short term, but the RDF and OWL technology will be under the hood

of most business applications in ten years. The use of the Semantic Web

in business systems may not be sexy, and it might be exclusively used

as only a metadata language; however, it will be selected because it is a

purpose-built metadata language that excels at being flexible and defining

very rich relationships between data.

The Web vision for the Semantic Web may always be at odds with business

software. Because the ideals of open data, open source, and free software

often run counter to a business’s needs for security, reliability, and control,

don’t expect the Semantic Web to change the profit-orientation of businesses

or motivate organizations to change course on their business systems.

Instead, I’m suggesting that the technical aspects of the Semantic Web stand

on their own merits quite separately from the social and global benefits of

the Semantic Web vision as a whole.

25_396797-ch17.indd 38025_396797-ch17.indd 380 2/13/09 7:39:29 PM2/13/09 7:39:29 PM

381 Chapter 17: Ten Things to Look Forward to Beyond Web 2.0

In ten years, look for more than 50 percent of new business applications to be

leveraging RDF or OWL as metadata formats inside the system — “powered

by Semantic Web.”

New Semantic Web Technical Standards
Semantic Web technologies are still evolving and at a very early stage. As a

point of fact, the W3C technology stack is still incomplete, full applications

can’t be built using the Semantic Web alone, and the standards as they

exist today may not fulfill the final Semantic Web vision anyway. The area

of knowledge representation (KR) is clearly the core of the Semantic Web,

and in that area, there’s still a ways to go to reach its fullest potential.

Newer query languages are evolving to extend SPARQL with operators that

can take advantage of more reasoning capabilities from the engines that

deliver RDF and OWL. Newer business rule standards like SWRL and the

outcomes from the W3C RIF (rule interchange format) group will deeply

influence how the Semantic Web stores and distributes digital knowledge

as part of RDF and OWL formats. Likewise, new extensions will reach into

other domains like Web services, databases, UML, and Web languages to

include Semantic Web metadata in areas that desperately need a higher

level of formality to their metadata uses. If there’s one thing you can be sure

of, it’s that the Semantic Web standards will keep changing and growing.

Greater Expressivity for Core Languages
One area to expect more changes is in the reach of RDF and OWL to take on

more conventional software engineering challenges. Because RDF tooling

will get simpler and easier to use, there will be ongoing demand for RDF

languages to go in new directions. As a data language, OWL will become

both simpler and more expressive in ways that makes it easier to use produc-

tively on real-world problems. The existing work to specify the OWL 2.0

standard is the first step in this multistep process. Including support for

new OWL fragments (described in Chapter 10) will make it easier for data

models to be portable and extensible into new logic framework. Other new

extensions will make it easier to work with common modeling and inference

requirements that arise when building conventional software applications.

These expressivity enhancements will be a continuously evolving process

during the entire future of the Semantic Web.

25_396797-ch17.indd 38125_396797-ch17.indd 381 2/13/09 7:39:29 PM2/13/09 7:39:29 PM

382 Part V: The Part of Tens

Simple-to-Use Tools for Launching
Your Own Personal Ontology

There are many possible users of the Semantic Web, each with different

needs and desires. Here are a few examples:

 ✓ Web site developers may want to annotate their Web pages with

Semantic Web metadata that improves the usability of their content

within search results like Yahoo! SearchMonkey.

 ✓ Application developers may want to use RDF as a more flexible alterna-

tive to XML for their application metadata.

 ✓ Casual users of social networking sites like Facebook and LinkedIn might

want to build a single personal profile that they can use to link and

network with people regardless of which social network they belong to.

 ✓ Casual users of interest networking sites like Twine might want to create

a personal ontology of their interests and use that to link with others

who share a common profile.

 ✓ Integration developers and architects could use ontologies as a way of

creating hierarchies, vocabularies, and other metadata that is important

when linking business applications together.

 ✓ Corporate librarians at big companies may need to publish business

vocabularies that can be consumed by people and applications that

streamline business processes.

No matter which community you might envision that needs the ability to

make new ontologies, the future will bring ever simpler ways to create and

share the richly structured metadata like RDF and OWL that connect things,

places, people, interests, and business data.

Developers Scrambling to Take
Semantic Web Training

The groundswell since 2004 has been slow but steady: The beginnings of

widespread developer adoption are here today. Looking at the job boards,

it’s easy to see that Semantic Web jobs are already in high demand, well

paying, and could be recession-proof because they’re inherently spots that

are hard to fill. Existing training classes offered for the Semantic Web from

several suppliers have been booked to capacity, growing every year since

they’ve launched.

25_396797-ch17.indd 38225_396797-ch17.indd 382 2/13/09 7:39:29 PM2/13/09 7:39:29 PM

383 Chapter 17: Ten Things to Look Forward to Beyond Web 2.0

Increasingly, developers are starting to use the Semantic Web as a way to

distinguish themselves from the pack. Regardless of the global economy

or technology trends, look for the Semantic Web to provide some uniquely

distinguishing skills for new software engineers to gravitate toward. The

mad rush for training may not be proportional to the rush for HTML training

in 1995 and Java training in 1998, but you should definitely expect a spike of

developers asking about, “How do I get trained on RDF?”

Semantic Advertising and
Marketing Schemes

Because the Semantic Web is all about meaning, it seems obvious to many

that it can be a potential boon for advertising companies to get onboard.

As it turns out, it’s not quite that simple. In fact, there are potentially

several ways to make money by injecting Semantic Web technology into

the advertising business:

 ✓ Targeted ads: New Semantic Web startups are beginning to use seman-

tic technology to determine the context and placements of ads: Some

people are calling this semantic advertising. Ad networks such as Peer39

and Ad Pepper Media’s iSense stress their use of semantic technology

as a competitive advantage in this area of semantic advertising. In

general, both companies use semantic technology for natural language

processing, entity extraction, and some simple inferencing. Ad Pepper

Media iSense goes a bit further with the use of an extensive ontology of

terms that help contextualize ad placement.

 From one point of view, iSense is quite distinct from the emerging

natural language, algorithmic-based semantic classification systems.

A team of 40 linguists and lexicographers has spent some four years

assigning words from a dictionary to a framework of knowledge catego-

ries. The core of the system roughly mirrors some of the ideas inherent

in the Semantic Web around word-sense disambiguation. (Is a search for

“bug” about cars or insects?) This notion of sense-disambiguation is

why simple statistical algorithms used by most add networks, such as

looking for high-frequency keywords, don’t work very well. The iSense

approach is to analyze and understand all the words on a page, not just

to identify better or more keywords. By profiling and categorizing the

whole page using linguistics, iSense hopes that a more complete picture

of the various content themes on a page becomes actionable.

 In addition to the linguistic analysis of page content, site publishers

may also add metadata to their sites via a bottom-up approach using

RDF, RDFa, and eRDF tags and/or microformats. This labor-intensive

approach will happen only when the business incentives for doing so

are compelling enough. At that point, the metadata could be used to

increase the accuracy of ad placements.

25_396797-ch17.indd 38325_396797-ch17.indd 383 2/13/09 7:39:29 PM2/13/09 7:39:29 PM

384 Part V: The Part of Tens

 ✓ Applied semantic search: A second big area for advertising with

Semantic Web is in the area of applied semantic search. A new cadre

of semantic search engines like Hakia, Cognizant, Microsoft Powerset,

and others are beginning to use Semantic Web to aid in category and

context-based searches. These approaches are gaining some significant

traction particularly in vertical domain searches, like law and medicine,

where the meaning of words and relationships can be disambiguated

relatively easily.

 Like most every search engine, the business model for these new seman-

tic search engines ends up being advertising. Companies that advertise

in a semantic search engine may ultimately end up bidding on concepts

and relationships rather than keywords or phrases. The jury is still

out on whether these new vertical search engines can really displace

Google or Yahoo!, or instead maybe remain viable in narrower specialty

areas. Indeed, perhaps Yahoo! or Google will acquire the technology as

Microsoft has done and expand its already massive businesses into the

semantic search areas.

 ✓ Use of dynamic content: A third area of interest for advertisers is in the

use of dynamic content placed directly from their own IT departments

and marketing teams. Unlike the model where an ad company manages

the placement of your predefined content, this model lets you change

things on the fly. RAMP Digital has applied this concept to dynamically

feeding content into interactive Flash ads. The idea is that an advertiser,

usually an online a retailer, can expose its latest offers as semantic

data, and then the creative person or agency who makes an interactive

ad can use the data in real time to dynamically change the context or

placement of the ad accordingly.

 One key benefit is that as advertisements become more data-rich,

or more diverse as part of a larger campaign, this makes the job of

maintaining and keeping them fresh much more manageable. This

approach could be even more powerful if the data format of these ads

were standardized across multiple ad placement companies, perhaps

even across multiple industries. Eventually, a marketer could create

appealing ads while remaining decoupled from the company that is

producing the data. This approach could also enable “mashup ads” that

pull data from multiple online sources. Of course, the ownership and

intellectual property laws would have to catch up once this started!

 ✓ Sponsored placements: As the Semantic Web data becomes more

pervasive, it’s inevitable that companies will pay to have their content

ranked higher and found easier than other content. Just like linked ads

are sorted first on Google and Yahoo!, you may find that querying the

Semantic Web yields paid sponsors first. This method hopefully won’t

bother you too much because the content is much more likely to be

useful than current paid spots on the search engines. For instance, if

you were to do a search for a restaurant in San Francisco and you got

not only reviews from Yelp but also coupons a la the Semantic Web,

that’d be pretty neat, wouldn’t it?

25_396797-ch17.indd 38425_396797-ch17.indd 384 2/13/09 7:39:29 PM2/13/09 7:39:29 PM

385 Chapter 17: Ten Things to Look Forward to Beyond Web 2.0

 It’s still too early to tell whether anybody’s going to get very wealthy on

Semantic Web–based advertising, but you can easily see that a lot of people

are working hard in the area. A number of potential uses for semantics

enhance the existing online advertising business models, but others will

require more general uptake of the Semantic Web to really be successful. One

thing is for sure: You’re very likely to be marketed to online with ever more

sophisticated techniques, and the Semantic Web will be a part of that —

hopefully for the better!

Technology Managers Planning
for New Supporting Workflows

After the rise of the Web 2.0 in the mid-2000s, IT workers rushed to plan

activity around the notion of Enterprise 2.0 and how the business organiza-

tion would change with the impact of new technologies. Similarly, as the

ideas of Semantic Web start to take off, we’ll see more and more IT managers

asking themselves the question, “What do I need to be doing to get ready for

the Semantic Web?” Various aspects of the typical IT director responsibilities

may be directly influenced by the Semantic Web:

 ✓ Intranet

 ✓ Portals

 ✓ Search engine optimization (SEO)

 ✓ Systems integration planning and metadata management

 ✓ Collaboration software

 ✓ Knowledge worker productivity

You may or may not witness the same levels of urgency that other technolo-

gies have spurred, but over the next few years, you will continue to see

more and more IT managers looking to plan for the use of semantics in their

everyday jobs.

Explaining Web 3.0 to Your Grandmother
Yes, if it takes off the way it might, there’s a pretty decent chance that your

grandmother may ask you about the Semantic Web during the next few

years. The software industry is notoriously faddish, and nowadays the new,

hip technology that’s popular in software communities has a way of going

mainstream.

25_396797-ch17.indd 38525_396797-ch17.indd 385 2/13/09 7:39:29 PM2/13/09 7:39:29 PM

386 Part V: The Part of Tens

Already there have been articles in Business Week, Newsweek, Forbes, and

The Economist about the Semantic Web. Although your grandma may not

read those magazines, it’s not too hard to imagine that the next wave of

Semantic Web news coverage may find its way to People magazine or your

local newspapers. So, how will you answer the question when your grand-

mother asks you, “Honey, what is all this Semantic Web stuff about?”

Why not try a simple answer like, “The Semantic Web is a new computer

language for describing all the knowledge that people could ever save in

books or computers. It lets programmers connect facts and ideas that would

otherwise be located in all sorts of different places, making it much easier

for people to find things they need even though there is so much information

in the world”?

That may not be the best definition of the Semantic Web, but it might be

one that your grandmother could understand and appreciate. If you have a

technologically savvy grandma and she asks you, “Isn’t that what Google

is for?” you can reply, “Sort of, but Google just helps people find words in

documents, whereas the Semantic Web helps people find ideas and concepts

in any kind of data.” If your grandmother is very curious and she asks you

what the difference is between finding words and finding ideas, just buy her a

copy of this book!

25_396797-ch17.indd 38625_396797-ch17.indd 386 2/13/09 7:39:29 PM2/13/09 7:39:29 PM

Chapter 18

Ten Next Steps to Take from Here
In This Chapter
▶ Trying a few Semantic Web–enabled Web sites in your life

▶ Finding a developer’s book or taking training classes

▶ Reading the specifications or talking to vendors you work with

▶ Preparing to sell your boss on the idea

Say that by now, you’re convinced that the Semantic Web is a game-

changer. But where do you go from here? This book isn’t your final desti-

nation for learning the Semantic Web: It’s only the first step. This chapter

lays out some different paths for bettering your personal understanding of all

these new formats, architectures, and ideas that you’ve grown familiar with.

Try Twine
If you’ve made it this far into the book and haven’t gone out and tried a

Semantic Web application, by all means, do so now! Twine is an interest net-

work that continuously catalogs things you might be interested in and con-

nects you to them. Originally conceived by Nova Spivak’s Radar Networks,

Twine (www.twine.com) aimed to supply a new era of power and features to

the social networking Internet craze. However, as the Twine beta progressed

and the true potential of the technology became more apparent, it was clear

that the underlying technology of Twine could do much more than connect

people with tags. Instead, the real genius of Twine is its ability to connect you

to people and interests just by watching your behavior on the site. Twine has

an uncanny way of knowing what you’ll be interested in, and it gets better

every time you use it. Go try it now!

Explore Yahoo! SearchMonkey
If you’ve used Yahoo! Search since the middle of 2008, you’re already a user

of the Semantic Web — albeit in a small way. Yahoo! has been incorporating

26_396797-ch18.indd 38726_396797-ch18.indd 387 2/13/09 7:40:12 PM2/13/09 7:40:12 PM

388 Part V: The Part of Tens

the use of SearchMonkey metadata (RDFa, microformats, and so on) to

enhance your search results page and make it easier to find what you’re

looking for.

In fact, the easiest way to see the Semantic Web in action is to try a search

on Yahoo! (www.yahoo.com) for a specific restaurant in a city. For example,

try searching for one of my favorites by using the search terms “slanted
door san francisco”). You’ll most likely see restaurant ratings, phone num-

bers, and other interesting data provided by Yelp.com, CitySearch.com, and

others in the actual body of your search results — that’s a simple example

of the Semantic Web mashup in action. The search engine may give you

what you need without you having to browse to the page and look for it,

saving you effort.

 Aside from just using Yahoo! for semantic searches, why not develop your

own SearchMonkey extensions? If you already maintain a Web site of any

kind, you can create your own extensions that Yahoo! can use during a

search. Web sites such as StumbleUpon enable Yahoo! to show Web page

ratings in the search result, and other sites such as BlogSpot enable Yahoo!

Search to show the Top 10 most recent blog posts for a given search right in

the search page. You can do the same with your pages if you want to have

people get more when they find you from Yahoo! For more information about

developing SearchMonkey extensions, go to http://developer.yahoo.
com/searchmonkey/.

Check Out Calais
Calais isn’t a consumer Web site that just anybody use, but if you’ve ever

had an urge to build your own mashup and you need to find a service to help

you build applications, give Calais a try. In fact, if you’re really serious about

building cool applications that require data from all sorts of different places,

Calais, shown in Figure 18-1, may be your killer app. You can use Calais to

grab unstructured data from just about anywhere and turn it into very useful

structured data that can be placed on your own application in any way you

choose. By now, the value should be obvious; Calais makes unstructured

data accessible and usable to anybody who needs it.

Calais uses linguistic parsing (also known as entity extraction) in a mass-

market, service-enabled way to produce RDF triples and Semantic Web data

models. The Semantic Web is essential to Calais’ value proposition because

that’s how the data can be so easily repurposed, remixed, and mashed up.

The fourth release of Calais goes beyond the ability to extract semantic data

from your content to link that extracted semantic data to datasets from

dozens of other information sources such as Wikipedia, Freebase, and the

26_396797-ch18.indd 38826_396797-ch18.indd 388 2/13/09 7:40:12 PM2/13/09 7:40:12 PM

389 Chapter 18: Ten Next Steps to Take from Here

CIA World Fact Book. Instead of being limited to the linguistic associations

found in the content of the document(s) that you’re processing, you can

develop extensive applications that leverage large and rapidly growing open-

source information resources.

 Calais is a substantial enabler for the Linking Open Data initiative and is help-

ing to make that “giant database in the sky” vision come to reality.

Figure 18-1:
A look at

what Calais
can do

with your
unstruc-

tured text.

Read Up on RDF and OWL Modeling
or Attend Training

This book is a broad and comprehensive look at the Semantic Web, but it

isn’t a deep treatise on how to code with RDF and OWL or how to apply

best practices for ontology modeling. A book that I’ve found quite useful for

hands-on projects is Semantic Web for the Working Ontologist: Effective
Modeling in RDFS and OWL by Dean Allemang and James Hendler (published

by Morgan Kaufmann).

A number of good, hands-on Semantic Web courses are offered by reputable

consulting firms like TopQuadrant, Semantic Arts, and Zepheira. Here are

some example Semantic Web courses offered by Zepheira (http://
zepheira.com/solutions/Training/) at the time of this publication:

26_396797-ch18.indd 38926_396797-ch18.indd 389 2/13/09 7:40:12 PM2/13/09 7:40:12 PM

390 Part V: The Part of Tens

 ✓ Introduction to Semantic Web Technologies (2 days): This course is a

comprehensive tour of the Semantic Web Technology stack, the vision,

and related technologies. The focus is on the individual W3C standards,

what they bring to the table, and how to consume and produce them.

 ✓ Applied Semantic Web Technologies (3 days): This course is designed

for students comfortable with the vision of how Semantic Web

technologies fit together but who want practice doing so with specific

applications.

 ✓ Semantic Technology Bootcamp (5 days): This course is a fast-paced

and comprehensive (but accessible) introduction to semantic technolo-

gies and how to apply them in the enterprise. Although it starts with an

introduction to the vision, it is appropriate for groups or individuals

who know they need to get up to speed quickly and want real examples

and strategies for successful adoption in their systems.

 ✓ Data Architect Bootcamp (5 days): This course is a combination of ideas

from the Semantic, Resource-oriented, and XML offerings to provide a

comprehensive roadmap for data architects and stewards to success-

fully and efficiently offer an organization access to its own data. It covers

proven strategies for data production, accessibility, transformation, and

provenance in the face of ever-changing requirements and business

needs. Additionally, this approach includes being able to integrate

across data sources including relational databases, RDF graphs, Web

pages, Excel spreadsheets, RSS feeds, and so on.

I recommend taking any of these courses before you start on a commercial

project aimed at leveraging the Semantic Web.

Read the RDF and OWL Specifications
Yes, I know . . . reading a computer language specification isn’t the most

exciting thing you’re likely to have on your calendar for the weekend. But if

you really want to get to the crux of a particular topic and move beyond a

given vendor implementation, or simply to have your deepest burning ques-

tions answered about the Semantic Web, there’s no substitute for reading the

source of truth for it all. Here are some of the most important specifications:

 ✓ Resource Description Framework (RDF) (www.w3.org/RDF)

 ✓ Web Ontology Language (OWL) (www.w3.org/2004/OWL)

 ✓ Simple Protocol and RDF Query Language (SPARQL) (www.w3.org/TR/
rdf-sparql-query)

 ✓ RDF Annotations (RDFa) (www.w3.org/TR/rdfa-syntax)

26_396797-ch18.indd 39026_396797-ch18.indd 390 2/13/09 7:40:13 PM2/13/09 7:40:13 PM

391 Chapter 18: Ten Next Steps to Take from Here

 ✓ Rule Interchange Format (RIF) (www.w3.org/2005/rules/wiki/RIF_
Working_Group)

 ✓ Semantic Annotations for Web Service Description Language (SAWSDL)

(www.w3.org/2002/ws/sawsdl)

 ✓ Gleaning Resource Descriptions from Dialects of Language (GRDDL)

(www.w3.org/2001/sw/grddl-wg)

These W3C languages form the foundation of the Semantic Web and define its

usage across many other areas of interest, such as Web services and XML.

Contact Your Trusted Vendors
If you happen to be a professional who works with software vendors already,

your existing software vendors can be a great place to get more information.

But usually, you have to find the right people to ask, and you may have to

work with several people to find the best Semantic Web contact point to

answer your questions. Here are a few vendors and hints to get you started:

 ✓ Microsoft: Try asking for the Media Management software group. The

group has used an embedded RDF database that runs on Microsoft SQL

Server. (www.microsoft.com/)

 ✓ IBM: Ask for the Almaden Research Labs, or the WebSphere Registry

and Repository software team. Both groups in IBM have substantial

experience working with RDF and OWL. (www.ibm.com)

 ✓ Oracle: With more than 250,000 customers, Oracle knows a few things

about databases. You can visit the Oracle homepage for semantic tech-

nology, ask for the Spatial Database software team, or use the e-mail

address I give in this book’s Introduction and ask me for pointers. (www.
oracle.com/technology/tech/semantic_technologies/)

Write Down and Assess New Ideas
One of the single best ways that I can recommend you move forward to make

progress is to write down your ideas. Putting thoughts to paper forces you to

see their weaknesses and gives you opportunities to improve your ideas.

Make some drawings by hand, turn them into PowerPoint, and transfer your

notes into a technology vision paper or business plan.

 Many Semantic Web businesses started just this way, with a few notes and a

picture on the back of a napkin.

26_396797-ch18.indd 39126_396797-ch18.indd 391 2/13/09 7:40:13 PM2/13/09 7:40:13 PM

392 Part V: The Part of Tens

Before you talk to your vendors, look for funding, or speak with your boss,

you must first think through the business and technical risks. Remember that

the Semantic Web is new and scary to many people: The conservative first

reaction is to see big risks, big worries, and to move on to safer projects.

Work hard to frame your ideas in terms of the benefits you can create, and be

very detailed and explicit about how you think the Semantic Web helps you

get there.

 Most people make a judgment about your idea within the first few seconds of

your pitch. If you don’t pass this critical “sniff test,” you may not get the

chance to try again!

Ask Zepheira
You’ve probably never heard of Zepheira before: It is a niche consultancy

with a disproportionately large big brain trust. Its key partners are long-time

leaders of the Semantic Web standards and veteran entrepreneurs who have

each seen several Semantic Web startup businesses come and go. With the

lessons learned from successes and failures, it may provide the critical input

you need to succeed the first time around.

The folks at Zepheira are also the minds and hands behind many open-source

Semantic Web tools. These newer open-source tools are starting to level the

playing field for startups that can’t afford expensive software and are looking

to use highly advanced free software built on community principles.

Most importantly, the founders of Zepheira are community activists who

love to solve big problems with Semantic Web technologies. Usually the

folks at Zepheira are willing to listen to new ideas and offer advice for

people looking to learn more about the space. When it comes to action,

both for-profit and non-profit projects are equally as interesting to Zepheira,

and Zepheira is quite willing to help on projects that have big paybacks for

the community at large.

Prototype Using Open-Source
and Free Software

If you’ve got a little bit of hacker in you, you no doubt want to jump right

in and start trying things now. Earlier in this chapter, I mention the

Yahoo! SearchMonkey developer Web site, but going further into the core

technology might require that you start looking at Semantic Web infrastruc-

ture. Here’s a list of some software that you can get a hold of to starting

trying things out:

26_396797-ch18.indd 39226_396797-ch18.indd 392 2/13/09 7:40:13 PM2/13/09 7:40:13 PM

393 Chapter 18: Ten Next Steps to Take from Here

 ✓ Sesame: Open-source API for RDF data persistence and more (www.
openrdf.org)

 ✓ Oracle: Most popular commercial database in the world supports RDF/

OWL, available freely under the Oracle Technology Network license

agreement (www.oracle.com/technology/tech/semantic_
technologies/index.html)

 ✓ Jena: Extremely popular API/Framework for working with RDF, available

freely under the Hewlett-Packard license agreement (http://jena.
sourceforge.net)

 ✓ Calais: Thomson Reuters’ free entity-extraction service, free for most

uses under the Thomson Reuters license agreement (www.open
calais.com)

 ✓ Mulgara: Open-source RDF database (www.mulgara.org)

 ✓ Pellet: Open-source OWL reasoner (http://pellet.owldl.com)

Hundreds more open-source and free Semantic Web software tools are

available: These are just some of the more popular ones that I’ve had

personal, positive experiences with.

Sell Your Boss on the Idea!
Selling your boss on the Semantic Web is probably more difficult than

explaining it to your grandmother! (See Chapter 17.) For your grandma, you

have to keep things simple, but the challenge with your boss is to simplify it

just enough while still making clear how your company could really benefit

from the Semantic Web.

Chapter 3 is almost entirely focused on making that business case. Try

re-reading that for some ideas, and really focus on talking to your boss about

the costs of not innovating. The best advice I can give you is to find a way

for you to start small, show incremental progress, and spend a lot of time

listening to your management to understand what their biggest issues

really are.

26_396797-ch18.indd 39326_396797-ch18.indd 393 2/13/09 7:40:13 PM2/13/09 7:40:13 PM

394 Part V: The Part of Tens

26_396797-ch18.indd 39426_396797-ch18.indd 394 2/13/09 7:40:13 PM2/13/09 7:40:13 PM

Index
• A •
Abox (Assertional Box), 187–188, 223, 285

accuracy of data, improving, 267

Active Directory, 56

active metadata, ontology as, 299–301

Ad Pepper Media’s iSense technology, 383

adaptability, 29–30, 55

Adaptive Blue Glue (toolbar), 22, 34, 35

ADF (Application Development

Framework), 129–131

ad-hoc modeling and browsing, 243, 317

advertising, 27–28, 383–385

AI (artifi cial intelligence), 13, 15, 31,

114–116, 374

AllegroGraph database (Franz

Technologies), 302

Altova SemanticWorks, 233–234

analysis paralysis, 335

and relationship, OWL classes, 212–213

anonymous classes, OWL, 208–209

anti-patterns, 15

Application Development Framework

(ADF), 129–131

application governance, 281, 282

approximate reasoning, 239

architectural usage patterns, 307–313

artifi cial intelligence (AI), 13, 15, 31,

114–116, 374

Assertional Box (Abox), 187–188, 223

assessing opportunities for the Semantic Web

avoiding planning traps, 318–319

fi nding opportunities, 319–321

grasping business problem, 315–318

making fi nal decision, 328

reviewing checklist for, 321–326

scoring checklist for, 326–327

automotive industry, 260–261

• B •
background classifi cation, 300–301

banking industry, 53, 262–263

base semantics of RDF, 77

Basic Logic Dialect (BLD), 236

BBC online, 23, 351–353

behavior requirements, 321–323, 326

Berners-Lee, Tim (inventor of Web)

data sharing efforts, 13

predictions, 40, 89, 369

on versioning the Web, 11

on Web 2.0, 94–95

best practices, 337–338

BI (business intelligence), 45, 264–265,

276–280, 283–284

BLD (Basic Logic Dialect), 236

blogging, semantic, 36

Blue Ocean strategies, 319

blueprint, information architecture as, 258

bookmarking, 378

bottom-up construction of data Web, 31

BPEL (Business Process Execution

Language), 275, 281

Bray, Tim (software developer), 13–14

British Telecom, 23

broken triangle pattern, 335

browsers, future of, 34, 378–379

browsing, 92, 243, 317

business analysts, 253–254

business applications. See also semantic

applications

defi ned, 270

enterprise software, 58–63

governance of, 258–259, 281, 282

metadata, 126

partitioning, 336–337

planning, 47–51, 318–319

scaling. See scalability

standards for, 145–146

business intelligence (BI), 45, 264–265,

276–280, 283–284

business of the Semantic Web

advantages, 22–24, 61–65

call to action, 58–66, 393

challenges and opportunities, 44–45,

56–58, 59, 375

data integration, 271–274

data marts and intelligence, 276–280

27_396797-bindex.indd 39527_396797-bindex.indd 395 2/13/09 7:40:46 PM2/13/09 7:40:46 PM

396 Semantic Web For Dummies

business of the Semantic Web (continued)

enterprise metadata, 280–282

fi nding opportunities, 319–321, 328

governance, 258–259, 280–282

services architecture, 274–275

envisioning utopia, 51–56

evaluating current systems, 26, 47–51

growth, 12, 18, 27–28, 66

role of information, 46–47, 62, 260–264

single source of truth, 283–290

technical superiority, 63–65

business operations, 57–58, 251, 283–290,

315–318

Business Process Execution Language

(BPEL), 275, 281

business rules, 235–239, 303–304, 305

business software examples, 354–364

business vocabularies, 146–147

• C •
c-stores, 99–100

C# language metadata, 126–128

CA-IDMS (Computer Associates Integrated

Database Management System), 102

Calais news service (Thomson Reuters),

40, 240, 354–356, 388–389, 393

calendar applications, semantic, 34–35

capital assets, 249

catalog systems, 371

categorization, dynamic, 222, 242–243,

316–317

centralized knowledgebases, 308–309

certainty, lack of, 241. See also OWA

chain-based rule engines, 304

change management, 307

channels in RSS feeds, 78

checklists for new opportunities, 321–328

Chevron, 23

CIA’s World Factbook, 17

CIO priorities, 50–51, 60–62

civil liberties and privacy, 54

Class object, 129

classes, OWL

complex classes, 212–218

defi ned, 184

disjointed, 202–203

equivalent, 200–201, 219–221

subsumption, 204–206, 219–221

Thing superclass, 182, 187–188, 193

classes, RDF, 166–169

classifi cation

of data and metadata, 119–123

dynamic (automatic), 222, 242–243,

316–317

of RDF resources, 164–166

as service, 309–310

clinical health providers and consumers,

53–54

closed-world assumption. See CWA

closure, 148–149

cloud computing, 17, 30, 93–94

CMS (Content Management Systems), 45

COBOL language, 131–133

collective intelligence, 94

columnar databases, 99–100, 116, 302, 303

COM (computation independent model), 136

commercial trading alliances, 57

Common Warehouse Metamodel. See CWM

communication systems, 53

competencies of information workers, 251

complements of OWL classes, 214–215

complete solutions, implausible, 332–335

complex classes, OWL, 212–218

complexity, 16, 22, 370–371

Composer. See TopQuadrant TopBraid

Suite

composite data graphs, 310–311

computation independent model (CIM), 136

Computer Associates Integrated Database

Management System (CA-IDMS), 102

Conjunction Lemma, 148

conjunction queries, SPARQL, 231

consistency, ontologies, 186–187, 207–208,

238

constraints on data models, 123–124

consumer packaged goods (CPG), 261

consumer Web site examples, 339–353

content as open. See openness of content

Content Management Systems (CMS), 45

continuum of knowledge, 118

contract-based design, 334

Copybooks, 131–133

Core package (CWM), 137

corporate assets, 249–250

27_396797-bindex.indd 39627_396797-bindex.indd 396 2/13/09 7:40:46 PM2/13/09 7:40:46 PM

397397 Index

corporate librarians, 254–255

correctness requirements, 322

courses on the Semantic Web, 389–390

CPG (consumer packaged goods), 261

Creative Commons, 12, 29

creator term (Dublin Core), 72–74

cryptography, 229

cube-style databases. See OLAP

culture of the Web, 26–28

CWA (closed-world assumption), 185, 195,

241, 321, 327

CWM (Common Warehouse Metamodel),

133, 136–139

• D •
DAML (DARPA Agent Markup Language),

14, 181, 372

Dapper technology, 24, 33

DARPA (U.S. Defense Advanced Research

Projects Agency), 14

data

classifi cation, 119–123, 222, 242–243,

316–317

encoding RDF triples, 161–162, 169–170,

175–176. See also microformats

fi nding patterns in, 239

governance, 258–259, 280, 282

graphs. See RDF graphs

integration of

application requirements, 323

composite data graphs, 310–311

Eli Lilly’s drug assessment, 291

metadata management, 266

Metatomix applications, 23, 361–363

semantics of, 45, 55, 271–274, 318

technologies for, 105–109

isolation of, 47

modeling of, 111, 112–114, 149–150

not information, 44, 46–47, 64

privacy of, 54

public, 244, 318, 392–393

quality and truth of, 105, 208, 244–246, 267

replication of, 272, 273

scalability of

architectural usage patterns, 307–313

improved with Web 3.0, 379–380

as main weakness, 295–296, 313, 333

of Semantic Web tools, 304–307

skills planning for, 325–326, 333–334

security of

application requirements, 323

frameworks for, 229

governance of, 56, 281, 282

identity protection (Garlik), 358–359

scalability considerations, 307

sharing of

in business, 44–45

data transport, 105–109

as needed, 46–47

privacy, 54

working with open-source data, 244,

318, 392–393

sources of, 46

standards for

future ideas, 381

growth in adoption of, 15, 63, 65

for integration technologies, 106–107

as limitations, 330–332

main bodies of, 19, 65

specifi cation Web sites, 390–391

stewards of, 258–259

structured

accessing unstructured data, 243, 317

amount of, assessing, 322

domain metadata, 122–123

fuzzy logic and statistical mining, 239

hierarchical databases. See hierarchical

databases

integration for, 105–109

metadata management, 266

Structured Web as, 92

unpredictable, 316

unstructured, 243, 317, 322

data assets, 249–250

Data Patrol (Garlik), 358

data warehouses (data marts), 45, 47,

276–280, 302. See also EDW

data Web, 29–30, 31, 52

database architects (DBAs), 259–260

databases. See also knowledgebases

business investments in, 45

columnar, 99–100, 116, 302, 303

description logics with, 373–374

fuzzy logic and statistical mining, 239

graph databases. See graph databases

27_396797-bindex.indd 39727_396797-bindex.indd 397 2/13/09 7:40:46 PM2/13/09 7:40:46 PM

398 Semantic Web For Dummies

databases (continued)

hierarchical. See hierarchical databases

like the Semantic Web, 104–105, 116

metadata of, 126

misuse of RDBMS technologies, 64

object databases, 102–105, 121

OWL as different, 183, 221–223

of RDF triples, 301–313

architectural patterns, 307–313

scalability considerations, 304–307

relational. See relational databases

synchronization of, 272, 273

using the Semantic Web, 55, 95–96

datatypes, 163, 189–193, 208–212

Datatypes and Built-ins (DTB), 237

date datatype (RDF), 164

DBAs (database architects), 259–260

DBpedia and DBpedia Mobile, 343–345

DCF (discounted cash fl ow) trap, 60–61

decidability, 149

Decision Explanation Engine Platform

(DEEP), 299

decision making, IT, 50–51, 60–62

decision support, 265. See also business

intelligence

declaring namespaces (RDF), 72, 76

DEEP (Decision Explanation Engine

Platform), 299

defense industries, 265–266

defi ne, as different from describe, 155

defi ner, taxonomist as, 256

Del.ico.us (Web site), 42

describe, as different from defi ne, 155

description logics, 184, 185, 246, 370,

373–374

descriptions, RDF, 154

desktop as semantic application, 35–36

development patterns, 334–335

development requirements, 324–326, 327

dialects for business rules, 236–237

dimensional modeling, 276–277

directed arcs, 158

directories, semantic, 55–56

disaster preparedness, 20, 265–266

discounted cash fl ow (DCF) trap, 60–61

DisjointClasses extension, 86

disjointness, 193, 202–204, 238

disjunction queries, SPARQL, 231

distributed data. See federated data

DL. See description logics

document models, 110

documents, Internet. See Web pages

domain metadata, 122–123

domain restrictions (OWL), 218–219

Dow Jones Synaptica, 24, 359–360

drug assessment (Eli Lilly), 291

DTB (Datatypes and Built-ins), 237

Dublin Core, 72–74, 144, 156

dynamic classifi cation, 222, 242–243,

316–317

dynamic content, 384

dynamic interfaces, 324, 326–327

Dyson, Peter (CEO), 299

• E •
EAI (enterprise application integration),

56, 106, 274

ebXML (Electronic Business for XML),

145, 147

Eclipse Model Framework (EMF), 129–130

ECM (enterprise content management),

267–268

economy of expression, 168

ECore objects, 129

edges, intelligence at, 312–313

EDI (Electronic Data Interchange), 147

EDIFACT vocabulary, 147

EDW (enterprise data warehouse), 49

effi ciency, operational, 320

EII (enterprise information integration),

108–109, 116, 271, 273, 310–311

Electronic Business for XML (ebXML), 145,

147

Electronic Data Interchange (EDI), 147

Eli Lilly (targeted drug assessment), 291

Embeddable RDF (eRDF), 174

embedding data in Web pages. See eRDF;

GRDDL; microformats; RDFa

EMF (Eclipse Model Framework), 129–130

empty classes, OWL, 207–208

enabler, Semantic Web as, 66

enabling technologies for the Semantic Web

business rules, 235–239

list of, 225–230

natural language processing. See NLP

27_396797-bindex.indd 39827_396797-bindex.indd 398 2/13/09 7:40:46 PM2/13/09 7:40:46 PM

399399 Index

operational models, 241–244

SPARQL. See SPARQL

tools for RDF modeling, 232–235

encapsulation, 112, 126–127, 320

encoding RDF triples, 161–162, 169–170,

175–176. See also microformats

energy industry, 263

entailment, 148–149, 244–246, 305, 322–323

enterprise application integration (EAI), 56,

106, 274

enterprise business software, 58–63

enterprise content management (ECM),

267–268

enterprise content visibility, 267–268

enterprise data warehouse (EDW), 49

enterprise information integration (EII),

108, 109, 116, 271, 273

enterprise resource planning. See ERP

enterprise search, 45

enterprise Semantic Web, 223

enterprise systems

architectural usage patterns, 307–313

business rules, 235–239

creating semantics for, 271–283

data integration, 271–274

data marts and intelligence, 276–280

enterprise metadata, 280–282

governance, 258–259, 280–282

services architecture, 274–275

growth of, 380–381

industry roles, 253–260, 270

single source of truth, 283–290

tactical role of information, 251–252

tools patterns, 297–304

use cases. See examples of the Semantic

Web

equivalence assertions, 200–202, 219–221

EquivalentClasses extension, 86

eRDF (Embeddable RDF), 174

ERP (enterprise resource planning), 45, 49,

250, 251–252, 283–284

ETL (extract, transform, load), 108, 109,

271–273

evolution of the Web, 10–12

exact reasoning, 239

examples of the Semantic Web

business software examples, 354–364

consumer examples, 339–354

corporate use cases, 290–293

where to fi nd more, 293

executable Web, 29–30

expert locator service (POPS), 290–291

expressiveness, 148–149, 222–223, 244–246,

381

eXtensible Access Control Markup

Language (XACML), 56, 145–146

eXtensible Markup Language (XML)

as governing schema, 121

infl exibility, enterprise-level, 60

metadata, 120, 125–126

misuse and shortcomings, 64–65

not designed for data, 110–111, 116

purpose within Semantic Web, 227

relationship with RDF, 159, 160–163

typical relationship types, 122

extract, transform, load. See ETL

extracting RDF from Web pages, 175–176

• F •
Facebook (Web site), 28

fact tables, 276

features of the Semantic Web, 28–31

federated data, 31, 105, 305, 310–311

federated graphs, 72–75

federated queries (EII), 108

feeds, RSS. See RSS

fi nancial services industry, 262–263

FLD (Framework for Logic Dialects), 236

FOAF (Friend of a Friend)

openness of, 29

profi les, 80–81, 158, 177–178

in RDF graphs, 160

for social networking, 42

vocabulary namespace, 156

folksonomies, 94

Ford, Paul (Semantic Web pioneer), 341–342

formal mathematical theory, 103, 104, 112,

114, 115

formats, triples. See encoding RDF triples

frame systems, 103

Framework for Logic Dialects (FLD), 236

Franz Technologies AllegroGraph

database, 302

free assets. See openness of content

27_396797-bindex.indd 39927_396797-bindex.indd 399 2/13/09 7:40:46 PM2/13/09 7:40:46 PM

400 Semantic Web For Dummies

Freebase, 17, 37, 40, 348–349

Friend of a Friend. See FOAF

FTP (File Transfer Protocol), 134–135

functional properties, OWL, 209–210

funding of the Semantic Web, 13–14, 20–21

future. See Semantic Web, promise of

Fuzzbot RDFa viewer, 83

fuzzy logics, 239

• G •
Garlik, 18, 358–359

gas and oil industries, 263

GATE (General Architecture for Text

Engineering), 240

geographical distribution of data. See

federated data

GET command (HTTP), 133

giant database in the sky, 12, 16, 88, 379

Gleaning Resource Descriptions from

Dialects of Language. See GRDDL

Global 2000 businesses, 250–251

Glue toolbar (Adaptive Blue), 22, 34, 35

Google

becoming the next, 318–319

PageRank algorithm, 38

put out of business, 369–370

Web site, 28, 38, 239, 302

Googlebait (slang), 28

governance, enterprise, 258–259, 280–282

government funding, 13–14, 20–21

grandmother, explaining Web 3.0, 385–386

graph data models, 101

graph databases, 102, 104–105, 116, 121, 126

graphical tools, RDF modeling, 232–235

graphs, RDF. See RDF graphs

GRDDL (Gleaning Resource Descriptions

from Dialects of Language), 87, 175,

230, 330–331, 391

Guha, Ramanathan, 13–14, 372

GUI requirements, 324

• H •
hakia (search engine), 39, 346–348

Harper’s Magazine, 341–342

health providers and consumers, 53–54

Herbrand Lemma, 148

heuristic, object orientation as, 112–114

Hewlett Packard’s Jena toolkit, 297, 393

hierarchical databases, 100–101, 104–105,

116, 126

hierarchy of RDF classes, 168–169

Hillis, Danny (computer programmer and

inventor), 348

history of Semantic Web, 10–12, 13–14

HTML pages. See Web pages

HTTP (Hypertext Transfer Protocol),

134–135

human capital, 249

human interface needs, 324, 326–327

hybrid architecture as enterprise source of

truth, 289–290

hype

about natural language processing, 241

about the Semantic Web, 14–15, 89, 115,

367–370, 376

about Web 2.0, 27–28

Hypertext Markup Language. See Web pages

• I •
IBM

EMF (Eclipse Model Framework), 129–130

IMS-DB (IBM Information Management

System Database), 100

UIMA (Unstructured Information

Management Architecture), 240

using the Semantic Web, 18, 23, 391

WebSphere Service Registry, 357–358

identifi ers, 47

identity protection (Garlik), 358–359

IDL (Interface Defi nition Language), 137

IkeWiki (wiki), 37

ILM (Information Lifecycle Management),

45, 267–268

IMM (Information Management Model), 139

immaturity of semantic tools, 332–333

inconsistency, ontologies, 186–187,

207–208, 238

incremental improvement, as goal, 320

individuals (instances), OWL

associating. See object properties (OWL)

defi ned, 184

disjointed, 203–204, 238

27_396797-bindex.indd 40027_396797-bindex.indd 400 2/13/09 7:40:46 PM2/13/09 7:40:46 PM

401401 Index

equivalent, 201–202, 219–221

essentials of, 187–189

relating with classes, 193

industry roles, 253–260

industry vocabularies, 146–147

inference engines, 300, 303–304, 305

inferencing, 296

information

as critical asset, 62

role in business, 251–252

unlike data, 44, 46–47, 64

information architects, 257–258

Information Lifecycle Management (ILM),

45, 267–268

Information Management Model (IMM), 139

information workers

about, 249–251, 268

benefi ts of Semantic Web, 264–268

needs of, 260–264

tactical role, 251–252

types of, 253–260

information-centricity, 62, 260–264

infrastructure software systems, 49, 270

inheritance, 104, 112, 122, 126–128, 168. See
also subsumption reasoning

in-memory databases, 55, 303, 306

instance data, 119–120, 121

Instance Lemma, 148

instances, OWL. See individuals, OWL

integer datatype, 163

integration of data

application requirements, 323

composite data graphs, 310–311

Eli Lilly’s drug assessment, 291

metadata management, 266

Metatomix applications, 23, 361–363

semantics of, 45, 55, 271–274, 318

technologies for, 105–109

intelligence

artifi cial intelligence (AI), 13, 15, 31,

114–116, 374

business analysts, 253–254

business intelligence (BI), 45, 264–265,

276–280, 283–284

collective intelligence, 94

and data marts, 276–277

at the edges, 312–313

search, lack of intelligence in, 92

simulated intelligence, 31

and Web 3.0, 379–380

Interface Defi nition Language (IDL), 137

interface needs, 323–324, 326–327

International Standards Organization. See

ISO

Internet. See Web (Web 1.0)

Interpolation Lemma, 148

intersections of OWL classes, 212–213

inverse properties, OWL, 210–211

investment companies, 262–263

Inxight framework, 240

IP (Internet Protocol), 134–135

iSense (Ad Pepper Media), 383

ISO (International Standards Organization)

described, 19, 65

ISO 10303 standard, 142

ISO 11179 standard, 143

ISO 15836 standard. See Dublin Core

ISO 15926, Part 7, 87, 142

metadata, 142–145

IT leaders, priorities of, 50–51, 60–62

IT specialists, 252–253

iterative development, 334

Itinerator (TripIt), 349–350

ivory tower design reputation, 372–373

• J •
Java language, 111, 113, 116, 126–128

JCL (Job Control Language), 132–133

Jena toolkit (Hewlett Packard), 297, 393

• K •
KBs. See knowledgebases

KDE 4.0 (K Desktop Environment), 35, 38

Keep It Simple, Stupid (KISS), 334

keys, database, 96, 126, 183

keywords (object-oriented programming),

128

KISS (Keep It Simple, Stupid), 334

knowledge, 118. See also intelligence

knowledge representation (KR)

Abox and Tbox, 188, 223, 285

logics. See description logics

research on, 13, 114–115

Semantic Web languages as, 118

27_396797-bindex.indd 40127_396797-bindex.indd 401 2/13/09 7:40:46 PM2/13/09 7:40:46 PM

402 Semantic Web For Dummies

knowledgebases (KB). See also semantic

databases

architectural usage patterns, 307–313

defi ned, 119

expressiveness of querying, 148–149,

222–223, 244–246, 381

open-world assumption. See OWA

scalability considerations, 306

as source of truth, 284–286, 288–289

specialized for the Semantic Web, 296–297

Web-scale, 95, 319

KR. See knowledge representation

• L •
labels for classes, 167, 193

latency, knowledgebase, 308–309

layer technology stack of the Semantic

Web, 225–230

LDAP (Lightweight Directory Access

Protocol), 55–56, 101

lemmas of RDF, 148–149

levels of data and metadata, 119–123

lexical form, 163

librarians (corporate), 254–255

life sciences industry, 21, 86, 265, 309

Lightweight Directory Access Protocol

(LDAP), 55–56, 101

limitations of the Semantic Web

incomplete solutions, 332–335

scalability, 295–296, 333

staffi ng needs, 335–337

tight standards, 330–332

using best practices, 337–338

linguistic parsing, 327

LinkedIn (Web site), 42, 346, 349, 353

Linking Open Data project, 29, 30, 344,

353, 380

literals

defi ned, 159

different from resources, 157

in OWL ontologies, 193, 211

resources with literal values, 162

typed literals, 163–164

logic, business, 235–239

logical architecture, 225–227

logical connectivity, 46

logics, 123–124

looping (business rules), 235

• M •
machine intelligence. See intelligence

machine interface requirements, 324

mainframe system metadata, 131–133

main-memory execution, 113

management skills, 325, 333–334

Mangrove Project, 34–35

manufacturing, 53

MapReduce algorithm, 302

Marbles Linked Data Browser, 344–345

mashups, 33, 94

mathematical operators, 235

maturity of semantic technologies, 226

MCF (Meta Content Framework), 13–14, 372

MDA (Model-Driven Architecture), 124,

135–136

MediaWiki software. See Semantic

MediaWiki (wiki)

mega-pharmaceutical companies, 53

memory-resident knowledgebases. See

in-memory databases

Merging Lemma, 148

message-oriented middleware (MOM), 106

messages, 105–109

Meta Content Framework. See MCF

Meta Object Facility. See MOF

metadata

classifying, framework for, 119–123

enterprise-level, 282–283

logic and rules in, 123–124

management of, 266

ontologies as, 297–301

Semantic Web as superset, 149–150

semantics of, 147–149

SOA subsystem, 274

types of, 124–147

databases, 126

industry vocabularies, 146–147

ISO standards, 142–145

mainframe systems, 131–133

networks and protocols, 134–135

OASIS standards, 145–146

object-oriented languages, 126–128

OMG standards, 135–141

programming frameworks, 129–131

W3C standards, 141–142

Web-based, 125–126

understanding, 117–119

27_396797-bindex.indd 40227_396797-bindex.indd 402 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

403403 Index

Metatomix, 23, 361–363

Metaweb (wiki), 37

Metaweb Freebase, 17, 37, 40, 348–349

microformats, 82, 171–172, 369

Microsoft Corporation, 18, 360, 391

Microsoft .NET Framework, 130

Microsoft Powerset (search engine), 39,

318, 361

middleware, 18

military operations, 20

Minimality Lemma, 148

mobile phones, DBpedia for, 344–345

model semantics, 129

Model-Driven Architecture. See MDA

modeling, ad-hoc, 243, 317

modeling constraints, 123–124

model-theoretic contexts, 147–149

Model-View-Controller. See MVC

Modus Operandi Wave, 299, 310

MOF (Meta Object Facility), 124, 133, 138, 141

MOM (message-oriented middleware), 106

monotonic reasoning, 186–187, 207–208,

237–238

Mulgara project, 302, 393

MVC (Model-View-Controller), 129

• N •
N3 (National3) RDF format, 169–170

named entities, 354

namespace pointers, RDF, 74

namespaces, 72, 76, 156, 161

NASA (National Aeronautics and Space

Administration), 23, 290–291

National Cancer Institute (NCI), 309

national security, 20, 57

native RDF databases, 302, 303

Natural Language Processing. See NLP

navigational search, 38

NCI (National Cancer Institute), 309

necessary conditions, OWL classes, 219–221

nested tags (XML), 110

.NET Framework (Microsoft), 130

Netezza system, 302

Netscape (Web browser), 13–14

network data models, 101, 104–105

network governance, 281, 282

network metadata, 134–135

neutrality of the Semantic Web, 372–373

News Corp., 359–360

news feeds, semantic, 40, 378

NLP (Natural Language Processing)

application requirements, 317, 322

automatic classifi cation, 243, 264

importance of, 240–241

Mangrove Project, 34

non-monotonic reasoning, 236–237

non-standard technology, using, 331–332

not relationship, OWL classes, 214–215

.nt fi les, 170

N-Triples (RDF format), 170

• O •
OASIS (Organization for the Advancement

of Structured Information Standards),

19, 65, 145–146

Object Constraint Language (OCL), 124

object databases, 102–105, 121

Object Management Group. See OMG

object properties, OWL, 191–193, 208–212

ObjectIntersectionOf extension, 86

object-oriented programming (OOP)

ISO 11179 standard, 143

metadata, 126–129

in relational databases, 177–178, 301

unlearning for OWL modeling, 183

unlike the Semantic Web, 103–104,

112–114, 116

object-relational mapping (ORM), 272, 273

objects, RDF triples. See also triples, RDF

as basic element, 155–156, 160

creating triples in OWL, 191–193

as resources, 166, 193

reversed with subjects, 210–211

structural metadata, 120–121

ObjectUnionOf extension, 86

OCL (Object Constraint Language), 124

ODM (Ontology Defi nition Metamodel),

87, 141

OIL (Ontology Inference Layer), 14, 181, 372

oil and gas industries, 263

OLAP (online analytical processing), 126,

138, 140, 276, 278

OLTP (online transaction processing)

databases, 49, 97, 126, 276

27_396797-bindex.indd 40327_396797-bindex.indd 403 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

404 Semantic Web For Dummies

OMG (Object Management Group), 19, 65

collaboration with W3C, 139–141

MDA (Model-Driven Architecture), 124

metadata, 135

OASIS community as different, 145

online analytical processing. See OLAP

online transaction processing (OLTP)

databases, 49, 97, 126, 276

ontologies, 233. See also OWL

as active metadata, 299–301

ad-hoc modeling, browsing, 243, 317

defi ned, 184

rules of, 316–317

simple tools for, 382

as static metadata, 297–298

ontologists, 256–257

Ontology Defi nition Metamodel. See ODM

Ontology Inference Layer. See OIL

OntoWiki (wiki), 38

OOP. See object-oriented programming

Open Data License, 29

open identity (OpenID), 29

openness of content, 12–13, 29, 40–41, 54,

320. See also security of data

open-source data, 244, 318, 392–393

open-world assumption. See OWA

operational effi ciency strategies, 320

operational models, 241–244

opportunities for the Semantic Web,

95, 102, 318. See also assessing

opportunities for the Semantic Web

or relationship, OWL classes, 213–214

Oracle

ADF (Application Development

Framework), 129–131

data integration tool, 126, 127

Data Service Integrator, 310

investing in Semantic Web, 18, 23, 391

RDL/OWL hybrid database, 301–303

Semantic Database product, 356–357

Organization for the Advancement of

Structured Information Standards. See

OASIS

ORM (object-relational mapping), 272, 273

OWA (open-world assumption), 185–186,

194–200, 242, 316, 321

OWL (Web Ontology Language). See also

ontologies

assertion, 200–206, 219–221, 238

backbone of the Semantic Web, 330–331

basics, 84–86, 181–183, 185–187, 221–223,

389–391

closure, 148–149

complex classes, 212–218

converting data to, 243–244

creation of, 14, 15, 181

developing ontologies, 223

dialects, 184–185, 245–246

entailment, 148–149, 244–246

enterprise source of truth, 288–289

expressiveness, 148–149, 222–223,

244–246, 381

extensions to RDF, 86

mapping MOF framework to, 141

migration toward, 150

model essentials, 187–200

classes, 193–200

individuals (instances), 187–189

properties, 189–193

monotonic reasoning and inconsistency,

186–187, 207–208, 238

necessity and suffi ciency, 219–221

promise of, 88

properties, 208–212

basics, 184, 189–193

characteristics of, 208–212

equivalent, 201, 219–221

restrictions on, 215–219

subsumption, 206, 219–221

provability and satisfi ability, 199, 216

specifi cation Web site, 390

stability of, 225

static fi les, 297–298

support system for the Semantic Web,

228

technical superiority, 55

typical relationship types, 122

• P •
PageRank algorithm, 38

pages. See Web pages

parsing XML, 110–111

27_396797-bindex.indd 40427_396797-bindex.indd 404 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

405405 Index

partitioning applications, 336–337

partnering (in business), 57, 62–63, 335–336

patterns

architecture, 307–313

Semantic Web tools, 297–304

software development, 334–335

Pellet reasoner, 393

People, Organizations, Projects, and Skills

(POPS), 290–291

performance, functional, 305–307

Persistent URLs (PURLs), 73

Pfi zer, 23, 292–293

pharmaceutical industry, 53, 86

physical disconnection in data storage, 46

PIM (platform-independent model), 136

Plain Subgraph Lemma, 148

planning for Web 3.0 workfl ows, 385

planning semantic applications, 318–319

platform-independent model (PIM), 136

platform-specifi c model (PSM), 136

PLD (Production Rules Dialect), 237

point solutions, 46

policies, semantic, 56

politics

CIO priorities, 50–51, 60–62

of the Semantic Web, 320

of standards, 15

polymorphism, 104, 112, 126–127

POPS application (NASA), 290–291

Powerset (search engine), 39, 318, 361

precision of OWL, 221–222

predicates, RDF triples. See also triples, RDF

as basic element, 155–156, 160

creating triples in OWL, 191–193

like columns in database tables, 178

literal-valued, 162

in relational databases, 301

primary keys, 96, 177–178

priorities of IT leaders, 50–51, 60–62

privacy and civil liberties, 54

private funding of the Semantic Web, 21

probabilistic data representations, 149

Procter & Gamble (P&G), 261

production rule systems, 228–229

Production Rules Dialect (PLD), 237

profi les, FOAF, 80–81, 158, 177–178

Programmes Ontology (BBC), 352

programming framework metadata, 129–131

programming languages, unsuitable for

encoding knowledge, 113–114

Project 10x, 375

proof element, technology stack, 229

properties, RDF, 162, 165–166

property-driven classifi cation. See dynamic

classifi cation

Protégé modeling tool, 233

protocol metadata, 134–135

prototyping applications, 297, 392

provability (in reasoning), 199, 216

PSM (platform-specifi c model), 136

public data, 244, 318, 392–393

publish-and-subscribe architecture, 106

publishing, semantic, 40–41

publishing industry, 262

PURLs (Persistent Uniform Resource

Locators), 73

• Q •
quality assurance with OWL, 208

query entailment. See entailment

query language for RDF. See SPARQL

• R •
RAC (Real Applications Clusters), 357

RAM, data in. See in-memory databases

range restrictions (OWL), 218–219

RDB. See relational databases

RDBMS (relational database management

systems), 60, 64–65, 119

RDF (Resource Description Framework)

alternatives. See eRDF; GRDDL;

microformats; RDFa

backbone of the Semantic Web, 87–88,

227–228, 330–331

basics, 69–77, 148–149, 153–157

compared to microformats, 171–172

compared to relational databases, 177

converting data to, 243–244

creation of, 14, 15, 105

enterprise source of truth, 284–287

expressiveness of. See expressiveness

extracting, 175–176

graphical modeling tools, 232–235

27_396797-bindex.indd 40527_396797-bindex.indd 405 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

406 Semantic Web For Dummies

RDF (Resource Description Framework)

(continued)

learning about, 389–391

mapping MOF framework to, 141

OWL extensions to, 86

promise of, 52, 88, 150, 179

query language for. See SPARQL

relationship with XML, 159, 160–163

resource type, identifying, 164–166

with RSS, 78–80

schema for. See RDF Schema

strengths, 55, 176–178, 225

typed literals, 163–164

URIs as mechanism of, 156

validating, 71–72

viewing data as graph. See RDF graphs

.rdf fi les, 162

RDF graphs

basics, 69–70, 157–160

composite data graphs, 312–313

federated, 72–75

inside RAM. See in-memory databases

N-Triples example, 170

N3 example, 169–170

OWL, example of, 85

Turtle example, 170. See also Turtle

RDF resource pointers, 74

RDF Schema (RDFS)

backbone of the Semantic Web, 227–228

describing things with, 166–169

enterprise truth, 286–287, 289

formal specifi cation, 245

RDF triples. See triples, RDF

RDF vocabulary namespace, 156

RDFa (RDF in Attributes), 81–84, 172–174,

230, 330–331, 390

RDFS. See RDF Schema

Real Applications Clusters (RAC), 357

Really Simple Syndication (RSS), 78–80

reasoners, 183, 299–301, 303–304, 305, 393

record-level metadata, 119–120

Red Ocean strategies, 319

Reed Elsevier, 262

referent metadata, 121–123

registry, SOA, 274–275

reifi cation, 165

relational databases

basics, 96–99

compared to RDF, 177

compared to the Semantic Web, 104–105,

116, 296–297

data marts and intelligence, 276–277

decidability, 149

as governing schema, 114–115, 121

management systems. See RDBMS

metadata, 126

modeling constraints of, 124

structured for RDF data, 301

relational knowledgebases, 306

relational star schemas, 97–98, 276–278

relationships in data models. See referent

metadata

Renault, 23, 292

repeatability requirements, 322

requirements for applications, 321–328

research and development, 20–21

research search behavior, 38–39

Resource Description Framework. See RDF

resource pointers, RDF, 74

resources, OWL, 183

resources, RDF

classifying, 164–166

defi ned, 153–154

describing in code, 161–162, 169–170

like tables in relational databases, 178

objects as, 166, 193

as subjects or predicates, 156

responsivity of human interface, 324

restriction classes, OWL, 215–219

reviews of requirements, 321–328

RIF (Rule Interchange Format), 228–229,

236–237, 380, 391

risk of the Semantic Web, 59–61

RSS (Really Simple Syndication), 78–80

rule chaining, 304

rule engines. See inference engines

Rule Interchange Format. See RIF

rule systems, 303–304

rulebases, 305

rules, metadata, 123–124

rules, ontology, 316–317

27_396797-bindex.indd 40627_396797-bindex.indd 406 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

407407 Index

• S •
SameIndividual extension, 86

SAML (Security Access Markup Language),

56, 87, 145–146

satisfi ability (in reasoning), 199, 216

SAWSDL (Semantic Annotations for Web

Service Description Language), 87, 230,

330–331, 391

scalability

architectural usage patterns, 307–313

improved with Web 3.0, 379–380

as main weakness, 295–296, 313, 333

of Semantic Web tools, 304–307

skills planning for, 325–326, 333–334

scale of the Semantic Web, 95, 102, 318

schemas

database, 96–98, 100–101, 103–104

XML, 110–111, 120. See also XSD data

model

science fi ction, the Semantic Web as, 367

scoping projects, 337

scorecards for semantic opportunities,

321–327

search

approximate and exact reasoning, 239

enterprise-wide, 45

of hierarchical databases, 101

lack of intelligence in, 92

optimization of, 254

semantic, 38–40, 378, 384. See also

SearchMonkey

SearchMonkey (Yahoo!), 32, 83–84, 318,

345–346, 387–388

security (national), 20, 57

Security Access Markup Language. See SAML

security of data

application requirements, 323

frameworks for, 229

governance of, 56, 281, 282

identity protection (Garlik), 358–359

scalability considerations, 307

segments, TCP, 133

semantic advertising, 27–28, 383–385

Semantic Annotations for Web Service

Description Language. See SAWSDL

semantic applications

desktop applications, 34–36

planning, common traps in, 318–319

prototyping, 297, 392

pure, no such thing as, 226

requirements for, 321–328

scaling. See scalability

technical superiority, 63–65

vision, 54, 321–328

semantic blogging, 36–37

semantic databases, 55, 95–96, 104–105,

356–357

semantic directories, 55–56

Semantic MediaWiki (wiki), 35, 37

semantic networks (nets), 102, 114

semantic news feeds, 40, 378

semantic policies, 56

semantic publishing, 40–41

semantic search, 38–40, 378, 384

semantic social networks, 41–42, 379

Semantic Web

business side. See business of the

Semantic Web

compared to other technologies, 104–105,

108, 110–116

different views of, 10

as enabler, 66

enterprise. See enterprise systems

example implementations

business software, 354–364

consumer sites, 32–33, 339–354

features, 28–31

history and origin, 10–14, 90–91

layer technology stack, 225–230

model theory of, 147–149

neighboring technologies. See enabling

technologies for the Semantic Web

promise of

benefi ts of RDL and OWL, 88

for data integration, 273–274

fi nding opportunities, 319–321, 328

future ideas, 21–23, 34–42, 57

hype, 14–15, 115, 367–370, 375–376

for information workers, 264–268

vision, 51–56

within Web 3.0, 16–21

27_396797-bindex.indd 40727_396797-bindex.indd 407 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

408 Semantic Web For Dummies

Semantic Web (continued)

scalability issues, 295–296, 313, 333

for software, not people, 93–95

technical superiority, 63–65

tools for. See tools for the Semantic Web

as utopia, 51–56

W3C Web site for, 179

weaknesses. See limitations of the

Semantic Web

at Web-scale, 95, 102, 318

Semantic Web Education and Outreach

(W3C), 293

Semantic Web Rule Language. See SWRL

semantic wikis, 37–38

semantics

about, 147

business rules, 235–239

enterprise-level, 271–283

enterprise-level governance, 258–259,

280–282

to improve data quality, 267

opportunities for. See assessing

opportunities for the Semantic Web

of RDF, 77. See also RDF

of reifi cation, 165

SemanticWorks product line (Altova),

233–234

serializations, RDF. See encoding RDF triples

service-oriented architecture. See SOA

services, 272, 273, 309–310. See also cloud

computing

set-based operations, 105

sets, OWL. See classes, OWL

sharing data

in business, 44–45

data transport, 105–109

as needed, 46–47

privacy, 54

working with open-source data, 244, 318,

392–393

Shirky, Clay (Internet technology teacher),

373

sibling sets (OWL), 206, 211

Siderean Software, 303

Simple Knowledge Organization System

(SKOS), 156, 230

Simple Protocol and RDF Query Language.

See SPARQL

simplifi cation of complex data, 16, 22

simulated intelligence, 31

skills development, 325, 333–334, 382–383,

389–391

SKOS (Simple Knowledge Organization

System), 156, 230

slots (frame systems), 103

snowfl ake schema, 276–278

SOA (service-oriented architecture)

adding semantics to, 18, 274–275

knowledgebase as a service, 309–310

metadata governance, 280–282

within semantic Web integration, 55

unlike Semantic Web, 106–107, 109, 116

social implications of the Semantic Web, 320

social networks, 28, 41–42, 80, 93–95, 379

software. See also business applications

as audience of the Semantic Web, 93–95

databases

business investments in, 45

columnar, 99–100, 116, 302, 303

description logics with, 373–374

fuzzy logic and statistical mining, 239

graph databases. See graph databases

hierarchical. See hierarchical databases

like the Semantic Web, 104–105, 116

metadata of, 126

misuse of RDBMS technologies, 64

object databases, 102–105, 121

OWL as different, 183, 221–223

of RDF triples, 301–313

relational. See relational databases

synchronization of, 272, 273

using the Semantic Web, 55, 95–96

free, and openness of content, 12–13, 29,

40–41, 54, 320. See also security of data

metadata, 126

software architects. See information

architects

software development patterns, 334–335

software industry roles, 253–260, 270

software infrastructures, 49, 270

software interface, 323–324, 326–327

software vendors, as partners, 336

27_396797-bindex.indd 40827_396797-bindex.indd 408 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

409409 Index

Soprano search application, 35

source data, identifying, 46

source of truth, enterprise-level, 283–290

Space Wing project (U.S. Air Force), 299

SPARQL (Simple Protocol and RDF Query

Language), 87–88, 228, 230–232, 334, 390

SPARQLMotion toolset, 364

species of OWL, 184–185

speed, rulebase, 305

Spivak, Nova (Semantic Web pioneer),

11, 340

sponsored placement (advertising), 384

SQL (Structured Query Language), 96

staffi ng skills planning, 325, 333–334

Standard for the Exchange of Product Data.

See STEP

standards

future ideas, 381

growth in adoption of, 15, 63, 65

for integration technologies, 106–107

as limitations, 330–332

main bodies of, 19, 65

specifi cation Web sites, 390–391

star schema, 97–98, 276–278

statements, RDF. See triples, RDF

static metadata, ontology as, 297–298

statistical mining, 239

statistical reasoning, 239

STEP (Standard for the Exchange of

Product Data), 142

straying outside standards, 331–332

string literals. See literals

Strong Herbrand Lemma, 148

structural metadata, 120–121

structured data

accessing unstructured data, 243, 317

amount of, assessing, 322

domain metadata, 122–123

fuzzy logic and statistical mining, 239

hierarchical databases. See hierarchical

databases

integration for, 105–109

metadata management, 266

Structured Web as, 92

Structured Query Language (SQL), 96

subclass reasoning. See subsumption

reasoning

subclasses, RDF, 167–169

SubClassOf extension, 86

Subgraph Lemma, 148

subjects, RDF triples. See also triples, RDF

as basic element, 155–156, 160

creating triples in OWL, 191–193

in relational databases, 301

reversed with objects, 210–211

sublanguages, OWL, 184–185, 245–246

subsumption reasoning, 168–169, 204–206,

219–221

suffi ciency, class membership, 219–221

superset metadata language, 149–150

supersumption, 204

SweetWiki (wiki), 38

Swoogle (search engine), 39

SWRL (Semantic Web Rule Language), 87,

228–229, 330–331, 380

symmetric properties, OWL, 211

Synaptica (Dow Jones), 25, 359–360

synchronization of databases, 272, 273

syntactic metadata, 120

synthetic data models (EII), 108

system identifi ers, 47

• T •
tableau reasoning systems, 304

tables, database, 96–97, 177–178

tactical advantages of semantics, 61–62

tactical role of information, 251–252

tagging, 111, 120, 368–369

Target Assessment Tool (Eli Lilly), 291

taxonomists, 255–256

Tbox (Terminological Box), 188, 223, 285

TCP (Transmission Control Protocol), 134

team, development, 324–325

technical best practices, 337–338

technical implications of semantics, 320

technological newness, 115–116

technology stack layers, 225–230

technology standards. See standards

Terminological Box (Tbox), 188

27_396797-bindex.indd 40927_396797-bindex.indd 409 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

410 Semantic Web For Dummies

Terse RDF Triple Language. See Turtle

Thing superclass, 182, 187–188, 193

Thomson Reuters (publisher), 17, 40, 262,

354. See also Calais news service

three-tier application approach, 308–309

timelines for project development, 336

tNodes (UDDI), 145

tools for the Semantic Web, 232–235,

297–307, 332–333

top-down construction of data Web, 31

TopQuadrant TopBraid Suite, 234–235,

359–360, 363–364

TPS (Transaction processing systems), 49

tracking data to sources, 46

trading alliances, commercial, 57

training. See skills development

transaction processing systems (TPS), 49

transactional interface requirements, 324

transformation of semantic data, 105–109

transitive properties, OWL, 211–212

travel. See TripIt (Web site)

tree databases. See hierarchical databases

TripIt (Web site), 22, 33, 349–350

triples (statements), RDF

basics, 70–72, 87–88

collections of. See RDF graphs

creating in OWL, 191–193

databases of, 301–303

architectural patterns, 307–313

scalability considerations, 304–307

difference from XML statements, 111

embedded in pages. See RDFa

formats. See encoding RDF triples

literal values in, 163

querying. See SPARQL

about triples (reifi cation), 165

trust element, technology stack, 229

truth

and data quality, 105, 208, 244–246, 267

single source for, 283–290

.ttl fi les, 170

tuples (relational databases), 96, 105

Turtle (RDF format), 85–86, 169–170

Twine (site), 22, 32, 42, 340–341, 387

type predicate (RDF), 165–166

typed literals, 163–164

types (Freebase), 348

• U •
ubiquitous networking, 29

UBL (Universal Business Vocabulary),

145, 147

UDDI (Universal Description, Discovery,

and Integration), 56, 145–146

UIMA (Unstructured Information

Management Architecture), 240

umbrella metadata, the Semantic Web for,

149–150

UML (Unifi ed Modeling Language)

creation of, 14

lacking executable domain models, 54

MDA reliance on, 136

misuse and shortcomings, 64–65

modeling constraints of, 124

OWL 2QL profi le for, 246

OWL as alternative to, 297–298

typical relationship types, 122

unlike the Semantic Web, 108, 112–113, 116

UNA (Unique Name Assumption), 204

uncertainty. See open-world assumption

Unicode text standard, 227

Unifi ed Modeling Language. See UML

Uniform Resource Identifi ers. See URIs

Uniform Resource Locators (URLs), 69, 73

Unifying Logic layer (W3C technologies),

229

unions of OWL classes, 213–214

Unique Name Assumption (UNA), 204

Universal Business Vocabulary (UBL),

145–146, 147

Universal Description, Discovery, and

Integration. See UDDI

university funding, 20–21

unpredictable data, handling, 316

unstructured data, 243, 317, 322

Unstructured Information Management

Architecture. See UIMA

URIs (Uniform Resource Identifi ers)

as foundational, 91–93, 156, 227

parsed by RDF parsers, 76

querying with SPARQL, 231–232

in RDF graphs, 69

URLs (Uniform Resource Locators), 69, 73

27_396797-bindex.indd 41027_396797-bindex.indd 410 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

411411 Index

U.S. Air Force Space Wing project, 299

U.S. Defense Advanced Research Projects

Agency (DARPA), 14

U.S. Defense Department, 23

utopia, Semantic Web as, 51–56

• V •
validating RDF, 71–72

vendor implementation examples. See

examples of the Semantic Web

Vertica, 302

visibility of data, 44, 47, 267–268

vision. See Semantic Web, promise of

visualization requirements in development,

325

vocabulary namespaces. See namespaces

vocabulary servers, 309

VOX (Web site), 42

• W •
W3C (World Wide Web Consortium)

best practices, 337–338

described, 15, 19, 41, 65

Direct Model-Theoretic Semantics for

OWL (document), 149

OASIS community as different, 145

OMG collaboration with, 139–141

RDF Semantics (document), 149

RDF Validation Service, 71–72

Rule Interchange Format. See RIF

Semantic Web Education and Outreach

initiative (W3C), 293

specifi c standards. See also GRDDL; RDFa;

SAWSDL; SKOS

for metadata, 141–142

Unicode, commitment to, 227

technology stack, 225–230

Web infrastructure metadata, 141–142

Web site for the Semantic Web, 179

Wave (Modus Operandi), 299, 310

Web (Web 1.0)

how used today, 26, 29–30

infrastructure metadata, 141–142

origins and infl uence, 10, 11

unlike Web 3.0, 91–93, 116

Web 2.0

defi ned, 10

how used today, 27–28, 29–30, 377

origins, 11

shift to Web 3.0, 377–386

unlike the Semantic Web, 93–95, 116

Web 3.0, 10–12, 29–30, 52, 377–386. See also

Semantic Web

Web metadata, 125–126

Web Ontology Language. See OWL

Web pages

building block of Web, 27, 92–94

embedding data within. See eRDF;

GRDDL; microformats; RDFa

extracting RDF from, 175–176

metadata, 125–126

tagging, 111, 120, 368–369

XML, as designed for, 110–111

Web Service Description Language. See

WSDL

Web services, 108, 126. See also SOA

Web sites

consumer Web site examples, 339–354

Del.ico.us, 42

Facebook, 28

Google, 28, 38, 239, 302

LinkedIn, 42, 346, 349, 353

OWL (Web Ontology Language), 390

specifi cation Web sites, 390–391

TripIt, 22, 33, 349–350

VOX, 42

W3C (World Wide Web Consortium), 179

Wikipedia, 17, 40, 341–342

ZoomInfo, 33, 350–351

Web-scale, Sematic Web at, 95, 102, 318

WebSphere Service Registry, 357–358

Wikipedia (Web site), 17, 40, 341–342

wikis, semantic, 37–38

WOL, for Web Ontology Language, 182

workfl ow support, 385

World Factbook, 17

World Wide Web Consortium. See W3C

wrapper services, 55

WSDL (Web Service Description Language),

281. See also SAWSDL

27_396797-bindex.indd 41127_396797-bindex.indd 411 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

412 Semantic Web For Dummies

• X •
X12 vocabulary, 147

XACML (eXtensible Access Control Markup

Language), 56, 145–146

XHTML pages, embedding in. See eRDF;

GRDDL; microformats; RDFa

XHTML pages, extracting from, 175–176

XML (eXtensible Markup Language)

as governing schema, 121

infl exibility, enterprise-level, 60

metadata, 120, 125–126

misuse and shortcomings, 64–65

not designed for data, 110–111, 116

purpose within Semantic Web, 227

relationship with RDF, 159, 160–163

typical relationship types, 122

.xml fi les, 162

XML Schema, 297–298

XML Spy SemanticWorks (Altova), 233–234

xmlns prefi x (RDF), 72, 81

XSD data model, 107, 108, 110, 120

• Y •
Yahoo!. See also SearchMonkey

Open Strategy (Y!OS), 346

Search (search engine), 22, 32, 39

YASNS (Yet Another Social Networking

Service), 41

• Z •
Zemanta (semantic blog), 36

Zepheira, 389–390, 392

Zitgist (search engine), 39

ZoomInfo (Web site), 33, 350–351

27_396797-bindex.indd 41227_396797-bindex.indd 412 2/13/09 7:40:47 PM2/13/09 7:40:47 PM

The Semantic
Technology Conference

$100
OFF

Ready to learn
more about

Semantic Web?

SemTech, the Semantic Technology Conference, is the annual conference
addressing the commercialization of semantic technologies. Focusing on
existing applications and case studies, how-to hands-on tutorials, product
reports, and putting you in direct contact with industry thought leaders,
SemTech has become THE annual gathering for people interested in
Semantic Technologies since 2004.

We are pleased to offer you a special
“Dummies Discount” of $100 off
your registration fee for SemTech.

To claim your discount, visit:
http://semantic-conference.com/SemanticWebForDummies

28_396797-badvert01.indd 41328_396797-badvert01.indd 413 2/13/09 7:53:28 PM2/13/09 7:53:28 PM

Want to EXPLORE even more?

Educating the World About Semantic Technologies & Applications

The best online resource for ongoing information and education about
Semantic Technologies is the Semantic Universe Network, a vibrant online
community and communications hub for the global semantic technology marketplace. The Semantic Universe
Network is the professional and educational resource for the people, companies, editorial content, events, prod-
ucts, advertising, research and initiatives within the high-growth semantics sector. The Network was developed
and deployed on a sophisticated semantic application platform to facilitate the highest level of user engagement,
contextual relevancy and editorial resource matching. At Semantic Universe, you will find:

• Blogs
• Webcasts
• Articles
• Audio & Video archives

• Product Listings
• Community Directories
• Educational Resources
• Live Events and Meetings

FREE
MEMBERSHIP

MEMBERSHIP is FREE!
Join today at: http://semanticuniverse.com/SemanticWebForDummies

28_396797-badvert01.indd 41428_396797-badvert01.indd 414 2/13/09 7:53:28 PM2/13/09 7:53:28 PM

Jeffrey T. Pollock

Learn to:
• Recognize how the Semantic Web differs

from the traditional Internet

• Make sense of the technology, with
simple hands-on exercises

• Identify applications for Semantic
Web technology

Receive $100 off the registration fee for
SemTech Conference — see inside
for details

Semantic Web
Making Everything Easier!™

 Open the book and find:

• What defines Web 3.0

• A quick primer on tech
specifications

• How business will change as the
Semantic Web takes hold

• Ten common Semantic Web myths

• How to sort the hype from the
reality

• Interesting case studies of early
Semantic Web successes

• Key priorities for CIOs

• How familiar technologies fit with
the Semantic Web

Jeffrey T. Pollock is a software industry veteran whose startup experience

and standards community leadership have helped the Semantic Web go

from ivory tower to industrial strength. Currently he manages the data

integration product portfolio for Oracle and consults with key clients about

their Semantic Web strategies.

$29.99 US / $35.99 CN / £19.99 UK

ISBN 978-0-470-39679-7

Internet/Web Page Design

Go to dummies.com®

for more!

Get up to speed on the
most exciting evolution
in the history of the Internet
Meet the Web of tomorrow — today! The Semantic Web
completely changes how we interact with data in the
vastness of the Internet. So whether you’re a consumer
doing research online, a business owner who wants to offer
your customers the most useful Web site, or an IT manager
eager to understand Semantic Web solutions, this book is
the place to start!

• What’s Web 3.0? — explore how the Internet has evolved and
where it’s going

• Change is coming — know how the typical Internet user will
recognize the effects of the Semantic Web

• Data or documents? — see how the Semantic Web is about data
while the “old” Internet was about documents

• It’s business — explore the data Web’s many benefits to
businesses

• Speak the language — get into the languages that make it all
work: Resource Description Framework (RDF) and Web Ontology
Language (OWL)

• Jobs, jobs, jobs — sneak a peek at the variety of information
workers that will be needed in our data-driven economy

• Some geeky stuff — tour the architectures, strategies, and
standards involved in Semantic Web technology

• Already there — look at existing Semantic Web sites

Sem
antic W

eb

Pollock

spine=.864”

	Semantic Web For Dummies®
	Cover
	Table of Contents
	Introduction
	Part I Welcome to the Future of Data and the Web
	Chapter 1 Getting the Gist of the Semantic Web
	Exploring Different Ways of Looking at the Semantic Web
	Finding the Connection to Web 3.0
	Exploring the Business Side of Semantics
	Setting Information Free
	Rebirthing Artificial Intelligence
	Checking Out the Semantic Web’s Origin
	Unpacking Semantic Web Baggage
	Instilling Simplicity in Complex Data
	Seeing the Semantic Web’s Starring Role in Web 3.0 Showcase Applications
	Recognizing Compelling Reasons for the Semantic Web

	Chapter 2 The Semantic Web in Your Life
	Taking a Look at How the Web Is Used Daily
	Exploring the Web 2.0 Movement and What It Means
	Defining the Features of Web 3.0 — the Semantic Web
	Checking Out Some Ahead-of-the-Curve Semantic Web Sites
	Peering into the Crystal Ball of the Semantic Web

	Chapter 3 The Data Web at Work for Business
	Getting a Handle on Enterprise Data Challenges and Opportunities
	Understanding the Difference between Information and Data
	Evaluating the Web in Your Current Systems
	Grasping the Vision of the Semantic Web at Work
	Flourishing in a Semantic Web Utopia
	Discovering Why Semantics Are for Everyday Businesspeople
	Making the Semantic Web Choice Now

	Part II Catch the Wave of Smart Data Today
	Chapter 4 A Quick Semantic Web Primer
	Getting Started with RDF Data
	Exploring the Semantics of RDF
	Discovering Languages That Use RDF
	A Little Semantics Goes a Long Way

	Chapter 5 Why the Semantic Web Is New Technology, Not Hype
	Tracing the Roots of the Semantic Web
	Realizing That the Internet Is Made Up of Pages, Not Data
	Realizing That Web 2.0 Is for People and Semantic Web Is for Software
	Databases Mean Business; So Does Semantic Web
	Grasping Why SOA/Integration Is for Messages, Not Data Structures
	Realizing That XML Is for Documents, Not Data
	Seeing Why Object Orientation Is a Heuristic
	Seeing a New Beginning for Artificial Intelligence (AI)
	Grasping How Semantic Web Is New and Different

	Chapter 6 The Problem with Metadata
	Grasping the Basics of Data and Information
	Devising a Framework for Classifying Metadata
	Logic and Rules in Your Metadata
	Discovering the Many Types of Metadata
	Semantics and Metadata
	Seeing the Semantic Web as a Superset for Metadata

	Part III Building the Semantic Web
	Chapter 7 Using the Resource Description Framework (RDF)
	Breaking It Down to the R, to the D, to the F
	Viewing RDF Data as a Graph
	Understanding That RDF Is XML
	Using Typed Literals
	Identifying the Type of Resource
	Describing Stuff with RDF Schema
	Discovering Other Triple Formats: N3, Turtle, and N-Triples
	Specializing in Microformats, RDFa, eRDF, and GRDDL
	Getting to Know the Strengths of RDF
	Seeing Why RDF Is Only the Tip of the Iceberg

	Chapter 8 Speaking the Web Ontology Language
	Introducing OWL
	Discovering the Various Species of OWL
	Exploring the Foundations of OWL
	Understanding OWL Essentials
	Making Simple Assertions
	Inconsistency
	Examining Property Characteristics
	Complex Classes
	Distinguishing Necessary from Necessary and Sufficient
	Understanding Why OWL Is Different
	Developing OWL Ontologies

	Chapter 9 Exploring Semantic Web Enablers
	Revisiting the Semantic Web Stack
	Digging a Bit Deeper into SPARQL
	Developing Easy RDF Models
	Finding Out Why Business Rules Are a Good Thing
	Grappling with Natural Language Processing (NLP)
	Enabling New Operational Models
	Setting the Truthiness Dial

	Part IV Putting the Semantic Web to Work
	Chapter 10 The Rise of the Information Worker
	Taking a Look at the Global 2000
	Understanding the Tactical Role of Information in Business Economics
	Getting to Know the Types of Information Workers
	Understanding the Needs of the Information-Centric Company
	Aiding Information Workers with the Semantic Web
	Forecasting the Information Worker of Tomorrow

	Chapter 11 Discovering the Enterprise Semantic Web
	Discovering the Roles within the Software Industry
	Creating Semantics for Enterprise Systems
	Discovering a Single Source of Truth for the Enterprise
	Exploring Some Enterprise Semantic Web Use Cases

	Chapter 12 Scalable Architectures
	Recognizing That This Is Not Your Father’s Database
	Noting Semantic Web Tool Patterns
	Scaling Semantic Web Tools
	Understanding Patterns of Architectural Usage
	Buyer Beware!

	Chapter 13 Assessment Strategies
	Understanding the Business Problem
	Avoiding Common Traps in Planning Your Semantic Web Application
	Identifying Semantic Web Opportunities
	Reviewing Your Assessment Checklist
	Scoring the Checklist and Understanding Benefits
	Making the Decision

	Chapter 14 Exploring the Limitations of the Semantic Web
	Staying Within the Standards
	Straying Outside the Standards
	Realizing the Implications of a Complete Semantic Web Solution
	Making Good Choices
	Sticking to Best Practices

	Chapter 15 A Guide to Essential Vendor Implementations
	Consumer Web Sites
	Business Software

	Part V The Part of Tens
	Chapter 16 Ten Myths About the Semantic Web
	The Semantic Web Is Science Fiction
	The Semantic Web Is for Tagging Web Sites
	The Semantic Web Will Put Google Out of Business
	The Semantic Web Is Too Complex to Succeed
	The Semantic Web Is a Catalog System
	The Semantic Web Is an Ivory Tower Design
	The Semantic Web Is Description Logic
	The Semantic Web Is Artificial Intelligence (Again)
	The Semantic Web Is a $ 20-Billion Industry
	The Semantic Web Hasn’t Changed the World

	Chapter 17 Ten Things to Look Forward to Beyond Web 2.0
	More Cool Features on the Web Sites and Browsers You Already Use
	Dramatically More Scalable Digital Knowledge and Machine Intelligence
	Widespread Embedding in Enterprise Software
	New Semantic Web Technical Standards
	Greater Expressivity for Core Languages
	Simple-to-Use Tools for Launching Your Own Personal Ontology
	Developers Scrambling to Take Semantic Web Training
	Semantic Advertising and Marketing Schemes
	Technology Managers Planning for New Supporting Workflows
	Explaining Web 3.0 to Your Grandmother

	Chapter 18 Ten Next Steps to Take from Here
	Try Twine
	Explore Yahoo! SearchMonkey
	Check Out Calais
	Read Up on RDF and OWL Modeling or Attend Training
	Read the RDF and OWL Specifications
	Contact Your Trusted Vendors
	Write Down and Assess New Ideas
	Ask Zepheira
	Prototype Using Open-Source and Free Software
	Sell Your Boss on the Idea!

	Index

