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Problem 1

(a) We are given x(t) = cos(10t). Here, w, = 10 rad/sec. Taking the Fourier transform of

(),

X(jw)
(m) (m)
—10 10 w
The sampling function, s(t) = >,°° 6(t — kT), with T = 2=
s(1)
(1)
—2T ~T 0 T 2T t

Taking the Fourier transform of s(¢) (note that w, = 28 = 90),
S(jw)
(90)

—180 -90 0 90 180 w

Using the multiplication property, z(t) = z(t)s(t) in frequency domain is Z(jw) =
%(X(jw) xS (jw)), i.e. we need to convolve X (jw) with the periodic impulse train in
S(jw) and scale the amplitude by 5= (see section 7.1.1 in O&W).

2t) = > ax(nT)s(t - nT)
Zw) = o [ XG0S - 0)as
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Therefore, Z(jw) is as follows:

L]

—190—-170 —100 —80 —10 10 80 100 170 190 %

(b) y(t) is the output from the band-pass filter, H(jw), with input z(¢) as derived in part
(a). We know,

Y(jw) = H(jw)Z(jw)

Let us consider |Y (jw)| and ZY (jw) separately. |Y (jw)| is the band-pass filtered
version of |Z(jw)| with frequency components between 90 to 180 and -180 to -90

rad/sec.
Y (jw)
(45)
~170 ~100 0 100 170 w
2Y (jw) = ZH(jw)+ £LZ(jw)
_Tw g Tw
200 200

Combining the magnitude and angle, Y (jw) = |V (jw)|e?<¥ U®).
Consider Y (jw) as the Fourier transform of the sum of two sinusoidal signals; one with

w, = 100 and another with w, = 170. Using the time-shifting property of Fourier

transform, z(t — t,) L e e X (jw),

45 T 45 T
45 T 45 17
= 22 00s(100f — =) + =2 cos(170t — ——
- cos(100¢ 2) +— cos(170t 50 )
(¢) Now the sampling function s(t) is changed with 7" = 2%,
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Z o(t — kT) — Z 5t—kT——)

k=—o00 k=—o00

Taking the Fourier transform,

2T 27 2T .7 27
: - - _ L\ _ __pJwy -
S(jw) - k_z_:oo5(w ho) = e k;@aw h)
27T 2T 2n T 2
= = §( SIRT RS (w — k-
Tkz_oo w — k Tkz_xe 720w k‘T)
2 2
_ Z 5w — k:— - % (e 7™k §(w — k%)
k=—00 k=—o00
= 2 — & 2
= Z o(w — k;— -7 (=) (w — k?)
k=—o00 k=—o00
Seperating the odd and even terms of k,
2 2
S(jw) = — Zéw k:ﬂ Zéw /{:W
k=even k=even
27 2T 2T 27
+ > Ow— ko) + o > O(w—k=2)
k=odd k=odd
47 27
- = Slw — k=2
3 dtw -1 25)

z(t) = cos(10t) as before. To find Z(jw), we need to convolve X (jw) with the impulse
train in S(jw) and scale the result by 5-.

S(jw) is as sketched below,
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S(jw)

(180)

—970 —90 0 90 270 w

The convolution will place two scaled impulses (from X (jw)) centered at each impulse
in the impulse train of S(jw). Finally, H(jw) will only pass impulses that exist between
90 to 180 and —180 to —90 radians. We plot |Y (jw)| (output from H (jw)) as follows:

—100 0 100 w

As derived in part (b), ZY (jw) = ZH(jw) = —355.
From the plot of |Y(jw)| and the ZY (jw), we can view y(t) as a time-shifted cos
functions. Therefore,

y(t) = gﬂ—ocos(mou—;g—o))

90 T
= — 100t — —
cos(100 2)
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Problem 2 (O&W 7.30 except let z.(t) = §(t —

-~

NIl
N~—
~

(a) We are given x.(t)

T
w(t) = d(t—)

T

X (jw) = e Ivy

We take the Fourier transform of the system’s differential equation and find the fre-
quency response, H(jw), of the system.

dy.(t
WD ity = =)
JwYe(jw) +Ye(jw) = Xc(jw)
4 Ye(jw) 1
H pr— pu—
U =X Gey T T
Now, we can write,

Yo(jw) = X.(jw)H(jw) =73

ye(t) = e Dyt —

y[n] = y.(nT) where y.(t) is as defined in part (a). Therefore, y.(n7T) will pick-up
values from y,.(t) at nT time values with n =0,1,2, ...
yln] = y.(nT) = e*”TJ“%u[n —1]
= (e2)(e ) (e )" uln — 1]
Using the time-shifting property of DTFT and basic DTFEF'T table,

1

Jwy 5w
YY) = e ze TR g

Now we choose H(e/*) such that:

yln] x hin] = wn] =dln]
Y@ H(") = 1
H(e") = —e%t_ﬁ” (1—eTev)
H(") = ez —e 2

Taking the inverse F'T,
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Problem 3

First, we need to find frequency response of the DT filter, y[n] = 3y[n—2]+xz[n]+iz[n—1]
When z[n| = d[n], y[n] = h[n|. Therefore,

Bl = 2hin— 2]+ oln] + ia[n 1]

1
) 3 . . 1 .
H(eM) = Ze*ﬂQH(eﬂﬂ)+1+Ze*ﬂﬂ
4 1+ 279
Q _ 4
HED) = 3w [0<r

It is given that X (jw) = 0 for |w| > 7 and we have a sampling frequency, w, = 2r. So
there will be no aliasing.

Therefore, the effective frequency response of the entire CT system, H.(jw), is related to

the frequency response of the DT system, H(e/*), by (assume Q = wT and find appropriate
range of w):

. H(eij) |w| o w

H,(juw) = Cwl<zos
c(j ) { 07 ’w‘ > %

1+ Le—dwT 5

Hc(jw) = kgeﬁa |’LU| < % = %
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Problem 4 O&W 7.22

Solution:
In this problem we need to figure out a range of values for the sampling period, T, to recover
y(t) completely from y,(t). To do this we need to determine the bandwidth of the original
Y (jw) and use the sampling theorem. By the convolution property, Y (jw) = X;(jw)X2(jw).
The bandwidth of Y (jw) then will be the bandwidth of the smaller of the two bandwidths,
X1(jw) or Xy(jw). Hence, Y (jw) = 0 for |w| > 10007. Then, using the sampling theorem,

2
w3=:5§:>2wm;=2(um0w)

This gives the range of T as 0 < T < 0.001 seconds.

Problem 5 O&W 7.23

Solution:

(a) We need to sketch X, (jw) and Y (jw). In the frequency domain, X,(jw) = 5-X (jw) *
P(jw). We need to determine P(jw). Since P(jw) is periodic, we need to use the
periodic Fourier transform formula. That is

P(jw) =2 Y apd(w — kw,).
k=—o00

Here, w, = 2% = % We need to determine the a;’s using the formula a;, = % pr(t)e_jk“’ot.

A few are shown below:

1 2A
w55 | (0=00-2)a=0
L ) — bt - AyeiEtdr = L 1.emy = L
YN A ¢ ~ oA CTA
(o 2t 1 2

_ 1 _s(h 2Rt qp — (1 —1.e92T) —
o2 =55 [ (60— 0= A)eE = (117 =0
as= 1 [0 — bt — A)e B = (1 1. ety = L
HENCYN A 2A A

Thus, a;, = 0 for k even and a; = % for k odd and

_ 2m T = 27 T
P(jw) = Y Folw—kx) = D 29 <w — (2K + 1)Z>
kodd k=—o0
From this Fourier transform for P(jw), we can sketch X,,(jw) as copies of X (jw) scaled
by % and replicated at intervals of w = (2k + 1)%. for all k. This can be seen in the
figure below:
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H(jw) is a sum of two ideal unity gain bandpass filters. Thus, Y (jw) is the part of
X, (jw) that is passed through H(jw). This is shown below:

A

A A

| | | T | | |
—4m/A  =3m/A =2n/A =T/ /A 2T/A 3m/A 4m/A

_/

|

(b) To recover z(t) from z,(t) we need to do two things. First, we need to multiply x,(¢)
with a cosine function,cos %t. This will shift X,(jw) such that one of the copies of
X (jw) is centered around w = 0. Second, we send the shifted signal through a lowpass
filter, R(jw), to eliminate the extra copies of X (jw). To achieve this we have a filter,
R(jw) with gain = A, bandwidth 2f and centered around w = 0. This is shown below:

A
®

—Tt/A /A 2/A

The overall system is shown below:

/A

O-—
e




(c)

To recover x(t) from y(t) we need to run Y (jw) through two parallel filter systems.
The top parallel path will multiply () by cos Xt which will shift the demi-replicate of
X (jw) that is centered at w = % over to w = 0. The shifted signal then passes through
the lowpass filter, R(jw) described above in part (b) to eliminate the extra copies.

The bottom parallel path will multiply y(¢) by cos %ﬂt which will shift the demi-replicate
of X(jw) that is centered at w = 3T over to w = 0. The shifted signal then passes
through the lowpass filter, R(jw) described above in part (b) to eliminate the extra
copies. Thus, the two halves combine together to form a complete X (jw) and z(t) is

recovered. The overall system is shown below:

T /A
L
-/
— O—
O ®
T
T /A

To recover x(t) from x,(t) and y(t), X,(jw) cannot have any overlap in the copies of
X(jw). Because of this particular p(t), the copies of X (jw) are at w = (2k+1) % for all
k. Thus, just looking at one interval to make sure the copies of X (jw) don’t overlap,
we have one copy of X(jw) centered at w = % and one copy of X(jw) centered at

w = 3. (See Figure of X, (jw) above). For no overlap between these copies,

7T+ 3
A A

— W,

which gives





