Problem 1 (O&W 3.22 (a) - only the signal in Figure p3.22 (c)) Determine the
Fourier series representation for the signal z(t).

a(t)
2

2+, for —2<t<0
x(t) =
2 — 2t, for0<¢t<1.

N 4+
w —+
N
~

-5 -4 -3 -2 -1 0 1
—— T ——

(t) periodic with period T'=3 — wo = 28 = ¢

A goal of this problem solution is to show different ways to reaching the same answer.
Finding the Fourier series coefficients of a signal using the analysis equation usually requires
the most effort, but can be reverted to if everything else fails. Oftentimes, a signal can be
dissected into simpler signals that are easier to analyze or can be derived from a simpler
signal by integration, differentiation, time shifting, or any combination of the properties of
the Fourier series (see Table 3.1, O&W, p.206).

We will start with finding ag, which is usually straight-forward and doesn’t require much
effort, and then explore the different methods for finding aso:

T

The following are four possible methods to calculate aj.o, the Fourier series coefficients of
x(t) for k # 0:
e Method (a): Using the integration property:
Let g(t) = dzgt) — z(t) = [ g(t)dt + p, where p is the value of x(t) at the beginning of
the period, and it equals to zero for the period we selected that starts at t = —2. Note
that, since we are trying to find a9, the value of p is not important because it only
affects the DC level of x(t) and we have already calculated it by finding aq.

g9(t)

1 p==-

1 1
ap = = / z(t)dt = 3 (the total area under the curve for one period) = 5(2 +1)=1.
T
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---d —2




Note that ¢(t) must have a zero DC level, otherwise a ramping signal will be included
in z(t) making it non-periodic, and unbounded. By definition, g(¢) should have a
zero DC level because the derivative operation eliminates it, so this can be used as a
double-check.

After finding by, the Fourier series coefficients for g(¢), we can use the Fourier series
properties to find ay, the Fourier series coefficients for x(t)

0 1
o= = / g(t)e_jkwotdt:l( / (1)e imotqt + / (—2)e_jk”°tdt>
T T 3 -2 0

1 1 —jkwot ’ 1 —jkwot ' —1 jkwo2 —jkw
= = ——e I -2 ———e I = — (1 — e?he0? — 2¢7 /w0 4 2)
3\ —jkwy s —jkwo 0 37kwy
1 ) )
= jkwe2 2 —7kwo —3).
YT (e + Ze )
1
a = - br  (from the Integration property, Table 3.1, O &W, p.206 )
JRWo
— 1 1 (ejkw(ﬂ 4 2€—jkwo o 3) — 1 (3 o 2e—jkwo o ejkon)
jka Bjka 3]620)3
1 , A A
= oo (1 — elheo?) (remember that e 70 = e/k0? for T = 3)
0

1 ( . A7 1 27,27
= ——(1- e]kT> = (1 - e*]kT> .
k2w? k2w?

e Method (b): Using the integration property twice:
Let’s define v(t) as the following:

o(t) = di;;g@ - dfg) e a(t) = //v(t) dtdt +p = /g(t) dt +p

Similar to the discussion in Method(a) of the DC level of g(t), v(t) must have a zero DC
level. In addition, its limited integration over one period must also have a zero DC level.

We can find v(t) by differentiating g(¢). However, in our case, but not always, we
can find v(t) directly from z(¢) in one step, by placing an impulse at each point of time
where the slope of x(t) changes abruptly. The value of that impulse (i.e its area) is the
change in slope of z(t) at that point.
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To find ¢, the Fourier series coefficients of v(t), let’s take the period between -1 and
2, which contains two impulses.

Note that we can also take the period between -2 and 1, but we have to be careful not
include the impulses at both -2 and 1. In other words, we can take the period between
—2+ ¢ and 1 49 or the period between —2 — ¢ and 1 — 4.

G = %/Tv(t)ejkwotdt = % (/_21[—35@) +30(t — 1)] ejkwotdt>
= [+ e - e

1
— e Jkwo(0) 4 e~ Ikwo(l) — o—jkwo __ 1

Now to find ay, we just need to use the integration property two times:

1 1
ap = - _ ¢r  (from the Integration property, Table 3.1, O &W, p.206 )
]kwo Jkwo

= ( ( ke — 1)

e~ Jkwo
k‘%}o )

)
= k:2 (1 — eI ) , which is the same answer found in Method(a).
wg




Before exploring the other methods, let’s first find the Fourier series for y(t), shown
below, which is a periodic triangular function with a period of 7. y(t) will be useful
for the Method(c):

y(t)
/1\
r -T T T t
2 2
d
2(t) = 24
1
T
Ty
r T T t
2 2
__1
T

Let z(t) = dlé—gt) , 2(t) N ex , and y(t) <, dy, = (jk%o) er
We will find the Fourier series for z(¢) and from it, we will find the Fourier series for

y(t), as follows:

ep = l/Z(t) e Ihwot qp — l [/0 (i)ejkwotdt—&-/Tl(_—l)ejkwotdt]
T Jr T n T o I

1 1 . ) 1 1 ) _

- —Jjkwot |0 = jkwot|Ty - 1— JkwoTh 1— —jkwoTy

TT, (—jkwy) (7P Py — 0t = oo (ko) (11— )

—1 X . —1

= [2— (e TR ] = 2 — 2cos (jhwoTh)] -

Tlekwo[ (7 te ) Tk (2~ 208 (keoTh)

Thus,
1 2 — 2 cos (kwoT)
d P— P—
§ ek(jku)o) TT1 kQWS



e Method (c): By dissecting the signal into simpler components:
Here, we will dissect z(t) into x1(t) and z5(t) which we know their Fourier Series (using
the result of dj above and the time-shifting property).

1 (t)

2

II 1
4 -3 -2 -1 0 1 2 3 4 t

4 -3 -2 -1 0 1 2 3 4 t

z(t) = z1(t) + xo(t) , and let xq(¢) AN b and xo(t) AN Cr

2 — 2 cos (kwp(1)) ( )2 —2c08 (kwo(1))  _jpwe(—1)
(3)(1)k2wg (3)(1)k?wg
2 — 2cos kwy

= 2+ M),
3k2w? (2+ ™)

cap = by+op=(2)

Although this result looks different from those found in the previous methods, further
simplification will show that they are identical:

ap = W(Q—Fejkwo) = 31{;0}3 (2 — 2 cos kwg) (2 + eF+0)
= gEg- O R
= ﬁwg (4+ 2eihwo _ geikwo _ gikwn2 _ gp=jkwo _ e’)
= 31%‘%008 (4 _ pihwo2 _ g —jhkwo _ 1) _ gk%wg (3 _ pikwo2 _ 2673'/@%)
= k;ug (1 — e7keo?) (remember that e 70 = e/h02 for T' = 3)
= k21w3 (1 — ejk%ﬂ> , which is the same answer found in previous methods.



e Method (d): using the analysis equation:
In the process of evaluating the analysis equation, the following integral will save us a
lot of derivation steps:

t 1
/te“tdt = <— — —2> et , for any a # 0
a a

L[> . I :
ap = T/_x w(t)e Ihtdt = 3/2$(t)63k“’0tdt
1 r 0 ) 1 )
= = / (2 + t)eIhwotqs 4 / (2 — 2t)e kot
3L/ 0
17 o I
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D (kD) _ giken(-2)) 4 L (1 (2 ot
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o (- W ey _
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2 , 2 .
_ —Jjkwo —jkwo
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= 1 __26*]'/%-)0 _ 2 e*jkwo + 2 efjkwo 1 4 2
3 jk?w() ]{I2w(2) jk?wO ]{32013 /C%dg
2 jkwo2 1 ikwo2 2 ikwo?2
LT L O
1 2 —Jkw 3 1 jkwo2
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1 —jkw j kwo2
— m(3—2€j 0 — ¢l O)
1 , . .
= = (1 — ejkw()?) (remember that e 70 = /502 for T = 3)
1 e
= o <1 — e’ k4?> , which is the same answer found in previous methods.
Wo

9 kAT
= e (1),



Problem 2 O & W 3.23 (a)

Given ay, , the Fourier series coefficients of a periodic continuous time signal with period 4,
determine the signal x(t).

The Fourier series coefficients ay are given as follows:

0, k=0

ap = in km/4
’ (j)kw, otherwise.
km

Here are some of the facts we know about z(¢):
e a4y =0 — no DC component in z(t)
o I'=4—wy=2n/4=m/2

o psin(—kr/4) (1" —sin(kr/4)
e O
(g T _

Thus x(t) is a real signal (O&W, Section 3.5.6, p.204).

Noting that j = ¢/™2 — (j)* = (ej“/Q)k = eIkm/2 = eikwo — o=ikwo(=1) we can consider z(t)
to be a time-shifted version of another signal y(t) such that:

sin kr /4
km

x(t) = y(t + 1), where y(t) by =0, brzo = and a;, = bye/" oW

By backtracking the derivation equation of by, we can find the signal g(¢) which has the same
by, but can have a different DC level (i.e. by) :

b, sinkm/4_ 1 (et it
k#0 = Ok£0 = = - >
= L : 1 ( jkm/4 _efj]m/4)
(4) jk(3)
1
1 1 g . ) 1t |
= — ]kwo(_) _ ]k‘wo(f—)> _ = 1 kaotdt.
T jkwo (e ’ € ’ T/%( )6

The integration above suggests that

A 1, —3<t<s
y(t) = . .
0, elsewhere in the same period T=4.
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y(t)
1
_T T
2 2
} } 1 i } }
-3 -2 -1 0 1 2 3 t

Note that the same conclusion can be reached by noticing that ¢(¢) is the same signal in
Example 3.5 (O& W, p.193) with T} = 1 and T = 4.

2

To find y(t), which has by = 0, we first calculate by and then subtract it from §(t) :

. 1 1 [12 1
bo = — | 9(t)dt = = 1)dt = =
. T/Tyo 4/_1/2” 3

1 3 —i<t<i
—yt)=9(t) — = =>ylt) =LY 2 2
3 —1.5<t<—05
—at)=ylt+1)= Y
6 =yt+1) {—5 —05<t<25
Sketches of y(t) and z(t) are shown below:
y(1)
3/4
-3 -2 -1 1 2 3
——t ———
14 t
(1)
| 3/4
-3 =2 1 2 3
: : , : ——
-1 “1/4 t
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Problem 3 Determine the Fourier series coefficients for the periodic signal z[n] depicted
below. Plot the magnitude and phase of these coefficients.

_.]

z[n]

i

O t—) —

—12

.I|II A
6 l 12

2

Fundamental period N =6 — wy =< =Z

6 3°

2

5
ax = % Z x[n]e IFwon = éz e Ikwon — é Z xn]e Iheon

n=<N> n=-—3

Notice that the last two expressions will give the same result, but the latter would take
advantage of the symmetry of some of the samples to combine them into sinusoids.

Qg

UL ag

L [(0)6—,jkwo(—3) + (1)e k(=2 4 (2)edkwo(=1) 4 (1) ikwo(0) 4
6
+<2>e—jkwo(1) + (_1)e—jkwo(2):|

_ 1 [efjkwo(fQ) . efjkwo(Q) + 2efjkwo(71) + 267]'/%.)0(1) + 1:|

6

1

6 [(27) sin kwy2 + 2(2) cos kwy + 1]

1 2 '

6 + 3 cos kwgy + % sin kwg?2

! + 2cos(kw) +j=s

-4+ = —¢in

6 3 3 ‘7

1

6

| —

1+ 4cos (k3> + 72sin (k;)}
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Here are the values of a, for one period of six consecutive points (from k=-2 to k=3):

0, — L [1 + 4 cos ((—2)%) +2jsin ((—2)%)]

1 2 4 1
= = [1+4cos <§> — 9jsin <§>] =<

1
= -1+ 7v/3) = —0.1667 + 50.2887

(=}

_ (=1)2+ (\/5)2 o atan(v3,—1) _ lej%” — |as| = 1’ La_y = 2_7T
6 3 3 3

Similarly, for the magnitude and phase of a; for k = —1 — 3 which are summarized in the
table below:

k Qg |6Lk| Lak

-2 [ -0.1667 4+ j 0.2887 | 1/3 27/3

-1] 0.5000-j0.2887 |[1/v3 ]| —7/6

0 0.8333 5/6 0

1 | 0.5000 +j0.2887 | 1/v3 | =/6

2 | -0.1667 -j 0.2887 1/3 | —2m/3

3 -0.5000 3/2 -7

10



The magnitude and phase of the Fourier series coefficients were plotted below, using MAT-
LAB:

Magnitude of a,

1 T T T T T
08k o) o) o) o) o) i
06 o] o3l Ao} (o3 Bo) o3 o) 0] 7
o
0.4 s
0.2 .
0
-15 -10 -5 0 5 10 15
k
Phase of a
1 T T T T T
0.5 .

l b o o b

a, (radians)
o
—o
—o
—o
—o

1 I I I I I
-15 -10 -5 0 5 10 15
k

For your reference, the MATLAB code used to compute and plot the magnitude and phase
of the Fourier series coefficients is shown below:

MATLAB Code:

A=inline(’1/6 +2/3*cos(k*pi/3)+j/3*sin(k*2%pi/3)’);
k=-12:12;a=A(k) ;am=abs(a) ;ap=angle(a); subplot(2,1,1);stem(k,am);grid
on;xlabel(’k’);ylabel(’la_k|’);title(’Magnitude of a_k’);
subplot(2,1,2);stem(k,ap/pi);grid on; xlabel(’k’);ylabel(’\angle a_k
(radians)’);title(’Phase of a_k’);

MATLAB tip: you can use TEX expressions in the text of figures.

11



Problem 4 O & W 3.29 (a)

Given a , the Fourier series coefficients of a periodic discrete time signal with period 8,
determine the signal x[n].

The Fourier coefficients are given as follows:

B k;7r+ . 3km
ap = cos 1 sin 1

N=8 — there are only 8 samples to compute in z[n|, some of which can have a zero value,
wo =27 /8 = m /4.

3k
ap = COS Zﬂ + sin Tﬂ = cos kwq + sin 3kwy
1 . 1 _. 1 1 .
— _ LJkwo = —jkwo = j3kwo _ — _—j3k
5 e + 5 e + 2 e 2 e
_ 1 {4 ghwo(=1) 4 4 pmikeo() 4 & k(=80 _ & —ik3)
J J

[(4) e Jkwo(=1) (4) e Jkwo(1) 4 (—47) e IR(=3)wo 4 (49) 6_]‘14;(3)}

1

8

1 —jkwon 1 : —jkwon
=5 Z x[n]e IHom = 3 Z x[n]e 7ro

n=<N> n=-—3

—45, n=-3

47, =3
By matching the expressions of a — z[n] = J "

4, n ==+l

4j 4 x| 4 4j
I -3 =2 I 5 6
—e T ‘ ‘ ‘ T ‘ T ‘ ’_
-6 -5 —4 l -1 0 1 2 3 4 l n
—4j —4j

12
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Problem 5 Consider the following CT periodic signals, z(t), y(t), and z(t).

(a) Determine the fundamental frequency, period, and Fourier series coefficients, ay, for

x(t).
(1)

-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 ¢

Fundamental period of z(t) =T =4 — wy = 27 /4 = /2.

1 1 [t 2 1

= — dt == Hdt == = =.

a0 T/Txu 4/lcc<> =3
1

, 1/t : 1 E
- — t —]kwotdt — _/ 1 —]kwotdt — —jkwot
i T/Tx( e 1) ,We R
1 _ sin(kwy)  sin(k7)

— (ejkwo _ e*jk‘wo) —

1k27 km km

The same result can also be found directly using Example 3.5 ( O & W, P.193).

(b) Determine the fundamental frequency,period, and Fourier series coefficients, by, for
y(t).

JAVAVAVRVIVEVS

~

Fundamental period of y(t) =T =2 — @y = 27/2 = 7.

1
by = = / y(t)dt =0 (.- y(t) has no DC component).
T

13
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y(t) = sinwpt = 5 = _7‘7 ed (Dot _ ‘7 e (Dot — Z by, e kot
J k=—o00
%l, k=1
— bk = %, k‘ = —1
0 otherwise

Y

(c) Determine the fundamental frequency and period for z(¢). Also, using the results of
parts (a) and (b), determine the Fourier series coefficients, ¢j for z(t).

Fundamental period of z(f)=Fundamental period of 2(t) =T =4 — wo =27/4 =

Co — —

T

/Tz(t)dt =0 (.2

(t) has no DC component).

Noticing that z(t) = z(t)y(t), we can find ¢; using the multiplication property. How-

ever, the fundamental frequencies of x(t)

and y(t) must be identical in order for the

Fourier coefficients to match (i.e. to represent the same frequencies). The fundamen-

tal period of y(t) is 2, but if we define

it to be 4, then we only need to scale the

frequency Components accordingly to keep the value of kwqy constant. In our case, for

y(t): wo =5 = wo/2

I
vl

O k.

14
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otherwise
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Using the multiplication property:

+00
cr = Z a,bj._,, which looks like the discrete-time convolution, in frequency.

Note that a,bj_,, # 0 only when k —n = £2

—J J
— + Qpyo= =

9 5 (ak+2 - ak—z)

NSRS

/ /
— C = Qp—2by + App2b_y = ap_2

sin (k+2) 32 — sin (kiz)

Ao = { (k+2)m k# =2 _ { (k+2)m k# =2
1 _ 1 _
L k=-2 |1 k= —2

{Si‘z,i’i;fﬁ, k2 {‘(ijiéﬁf), k2
k-2 = 9 N1
bR k’ - 2 9 k - 2

15



Problem 6 Let z(t) be a periodic signal with fundamental period 7" and Fourier series
coefficients a. Derive the Fourier series coefficients of each of the following signals in terms
of ay:

(a) Od{x(t —T/2)}

x(t—=T/2) «— b = ape Fo (Time Shifting Property)
= ape " = qp(e 7"

= ak(—l)k

If we assume that x(t) is real, then:

Od{z(t —=T/2)} —— ¢, = jSm{b,} (Even-Odd Decomposition of Real Signals
Propriety, Table 3.1, O & W, p. 206)
= jSm{a(=1)"} = (=1)"5Sm{ax}.

However, the question didn’t specify z(¢) to be real, so assuming that x(¢) is complex,
we will just use the general formula for finding the Odd part of a signal:

Od{xz(t)} = %[m(t) —z(—t)] (O &W, Sec. 1.2.3, and specifically eq.(1.19), p.14)

Odfa(t ~T/2)} = 5 lolt — T/2) — a(—t = T/2)] e die = lag(~1) — a_(~1)*]
= )~ ).

Note that for real z(t): a_, = aj — ap — a—, = 2j Sm{ar} — cx = dy.
(b) z(T/4—1)
r(—t) «— ¢, = a_p (Time-Reversal Property)
o(T/4—t) «— dj, = cpe 70T/ (Time-Shift in the positive time direction, i.e. delay)

= cpe "2 = cp(—5)F = a_p(—j)".

16
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Problem 7 O & W 3.31 (also determine ay)

1, 0<n<7 . . . .
Let z[n| = 0 S<n<o ,xz[n] : periodic, N = 10, Fourier series coefficients: ay.
>N >

)

Also, let g[n] = z[n] — x[n — 1].

g[n] 1
1
-3 -2 _1 I 7 8
e} i L 2 ¢ ¢ L L ¢ L L 2 | @ 1
l 0 1 2 3 4 5 6 l 9 10 "
-1 -1
z[n] —1
-3 -2 1 9 10
o ! i O O O ¢ ¢ ¢ ¢ L 4 4 i
l l 0o 1 2 3 4 5 6 7 8 l l n
-1 -1 1 -1

Fundamental Period = N =10 — wo = £.

=z 3 aln =15 > oln] = 18 + 0] =8/10 = 4/5.

n=<N> n=0

(a) Show that g[n| has a fundamental period of 10.
gln+ N| =z[n+ N| —z[n+ N — 1]

~x[n+ N] =2z[n] — gln+ N| = zn] —zn — 1] = g[n]
— g[n] has a fundamental period of N = 10.

17



(b) Determine the Fourier series coefficients of g[n].

1, n=>0
gl = aln] —aln—1]={0, 1<n<7
-1, n=8
1 .
b = — gln]e ko
N n=<N>
T
= 1 Z g[n]e=7kom the limits were chosen to use the non-zeros near the origin
n=—2
_ i [(_1)67]'/%00(72) 4 (1)efjkwo(0):| — i [1 . ejk:wo?] _ i ejk:wo [efjkwo . ejk’wo):|
10 10 10
—52 . Jkwo _ o—jkwo _i —q
= —1% elkwo [—e 2],6 ] = Fj eF0 gin kwg = ?‘7 e’*3 sin k;g

(¢) Using the Fourier series coefficients of g[n] and the First-Difference property in Table 3.2,
determine ay, for k # 0.

From Table 3.2 (O & W, p. 221): x[n] — z[n — 1] «— (1 — e 7*@/N)) q; = b,

1
10
1 1—eho2 1 (1—eh0)(1+ekw0) 1 (1+ k)
101 —e koo 10 e dhen(eibwo —1) 10 e —Jhwo
—1 ewos 1

_ 1 jkwod | gikwody = L ikwod L
= 1 e_jkw()(e 02 4 /W0z) = e °2cos(kw02>

— b, = (1 _ ejk'on) _ (1 . e—jkwo) a.

_1 7,37 ™
= —&*10 cos (k’—) .
5 © 10
Let’s double check the result, and at the same time use another route to find ay:

Note that z[n] — 1 would have the same a; (only ay changes with a change in the DC
level of a signal).

0, 0<n<T7T 0, 0<n<T7T
z[n] —1= =
n < -1, -2<n<-1

-1, 8<n<9
a, = 1 Z (z[n] — 1)eTkwon — B [(—1)e’jk“0(’2) + (_1)e,jkw0(,1)] = ! [ejkwo2 + elkwo
N 10 10
n=<N>
-1 . . . -1 1 -1 sn
_ T kw0 (3/2) [ejkwo(%) + e—kao(%)] _ - eIkw0(3/2) (g (kwog) _ = I35 cos (kli()) '

18



Problem 8 O & W 3.51
x[n] : periodic signal with period N = 8 and Fourier series coefficients ay = —aj_4.
y[n] : periodic signal with period N = 8 and Fourier series coefficients by, |

ol = (FE Y el -

Find a function f[k] such that b, = f[k]ay .

y[n] = (#) zn —1] = %:U[n - 1]+ %(—1)’%[71 —1].

z[n — 1] «— aze %W (Time Shifting Property) (1)

Note that (—1)" = (e7)* = /4FI" = eitoon g = 27 /8 = T

(=1)"z[n — 1] = e/*omz[n — 1] — aj_ge 7 F~H=0 (Frequency Shifting Property)  (2)

From (1) and (2): y[n] = 1z[n — 1]+ 3(=1)"2[n — 1] «— by =  ape 750 4 %ak%e*j(k*"‘)wo.

Substituting ar = —ag_4:

1 . 1 . A
b, = 5 age kw0 4 3 (—ay) e Ikwoeidwo
1 A 1 — eddwo _
= 5 axe Jkwo (1 — edten) = —( 26 ) e IR,
1 — /43 . 1—(=1) _,=
- (2764) efjkzak — # e*]kzak
= e Jk%ak

— flK] = e*.
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