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A Typical Feedback System

To Be Designed
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To Be Designed

Why use Feedback?

Reducing Effects of Nonidealities

Reducing Sensitivity to Uncertainties and Variability
Stabilizing Unstable Systems

Reducing Effects of Disturbances

Tracking

Shaping System Response Characteristics (bandwidth/speed)




One Motivating Example

Vv (t) =——>| Motor j——— 0(1)

Ir“out Platform
voltage angular
position

Open-Loop System
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Closed-Loop Feedback System




Analysis of (Causal!) LTI Feedback Systems: Black’s Formula

CT System
x(t) —i®ﬂ)— H(s) >y (1)
A
r(t) G(s) |<
Y(s) H(s)

Black’s formula (1920°s)

Closed - loop system function = forward gain

1 - loop gain

Forward gain — total gain along the forward path from the input to the output
Loop gain — total gain around the closed loop







Applications of Black’s Formula

@nple: AYS)

<+

i d(t)

x(t) —(+] ‘<> A(s)

B(s)

Y(s)  Forward gain

A'B

D X(s) 1—loop gain 1+ A BC
’ A Y(S)

A

AB

B

“114  X(s) 1+A+tABC

B(1+ A)

> y(b)

2) Y(s)  Forward gain B
\ D(s) 1—loopgain 1+A'BC 1+ A+ ABC




The Use of Feedback to Compensate for Nonidealities

x(t) —:@—»

P(s)

G(s)

A

> y(t)

Assume KP(jo) is very large over the frequency range of interest.

In fact, assume

[KP(jw)G(jw)] >>1

Qi) = 102

\
KP(jw)

1

X(jw) 1+ KP(jw)G(jw)

T G(jw)

— Independent of P(s)!!




/ Example of Reduced Sensitivity \

1) The use of operational amplifiers
2) Decreasing amplifier gain sensitivity

Example:
(a) Suppose  KP(jm,)=1000, G(jw,)=0.099
: 1000
Q(](D1) — =
1+(1000)(0.099)

(b) Suppose  KP(jw,) =500, G(jm,)=0.099
(50% gain change)
500

' = = 9.9 (1% gain ch
\ QU®) =1 50000009 = gamc@




Fine, but why doesn’t G(jo) fluctuate ?

Note: Q(jw) ~

4

For amplification, G(j®) must atfenuate, and it is much easier to
build attenuators (e.g. resistors) with desired characteristics

G(jw)

There is a price:

1
G(jw)|

|IKPG(jw)| >> 1= |KP(jw)| >>

Needs a large loop gain to produce a steady (and linear) gain for the

whole system.
= Consequence of the negative (degenerative) feedback.




Example: Operational Amplifiers

x(1) —>®ﬂ> K

Y

KAV y(t)

E=AV

FH% R2 — Gs) = . f_Rz

If the amplitude of the loop gain

A

|IKG(s)| >>1 — usually the case, unless the battery is totally dead.

Then Y(s) . 1 Ri+R
X() " Gls) R Steady State

The closed-loop gain only depends on the passive components
(R, & R,), independent of the gain of the open-loop amplifier K.




The Same Idea Works for the Compensation for Nonlinearities

Example and Demo:
Amplifier with a Deadzone

EK
x(t) —:@ﬂ» K, 1> I — y(t)

A

Ky

The second system in the forward path has a nonlinear input-output
relation (a deadzone for small input), which will cause distortion if it is
used as an amplifier. However, as long as the amplitude of the “loop gain’
is large enough, the input-output response =1/K,

b]




Improving the Dynamics of Systems

Example: Operational Amplifier 741
The open-loop gain has a very large value at dc but very limited bandwidth

H(s) = 0 Not ful on it
S) = Ot VCry usc on 1ts own
s + 40 ty
120
""""""""" w [ o feedback H(s)= 10
i a—]- 100 ".... s+
AV | His) O+ 2,
o—- Hav = 80
i = 60 ﬂT.."-.
— L with feedback Q(s)= —————"-.
o s+40+10 xG  *-.,
1 40 =z
=)
N \
20
8, 10 102 103 10* 10° 108
o (rad/s)
H{s) 107

With feedback Q(s) = T+ G () — 5140+ 107G (s)
—— Much broader bandwidth, also Q(0) ~ 1/G




Stabilization of Unstable Systems

Y
9
L

> y(t)

+
X(1) —)—@—)-— C(s)

Compensator Plant

G(s)

A

P(s) — unstable

Design C(s), G(s) so that the closed-loop system
C(s)P(s)

1+ C(s)P(s)G(s)

Q(s) =

1s stable
= poles of Q(s) = roots of 1 + C(s)P(s)G(s) in LHP




Example #1: First-order unstable systems

Y

+
x(t) —>=(+)—| K ! > y(t)

Try: C(s) = K  proportional feedback

K
K
_ 5—2 —
W) =1 K =K

Stable as long as K > 2




Example #2: Second-order unstable systems

+
x(t) —>(+)—>{ c(s) =K > y(t)

Y

s2—4

G(s) = 1

Attempt #1: Proportional Feedback C(s) = K

K
ey K

) =1 Kk o ik

— Unstable for all values of K

— Physically, need damping — a term proportional to s < d/dt




Example #2 (continued):

Attempt #2: Try Proportional-Plus-Derivative (PD) Feedback

) =D ks > >y
C(s) = K1 + Kss Cls) P(s)
Ky +Kgs
QW) = T E
K, + Kss

s? + Kos+ (K —4)

— Stable as long as K, > 0 (sufficient damping)
and K, > 4 (sufficient gain).




Example #2 (one more time):

Why didn’t we stabilize by canceling the unstable poles?

l d()
X(t) ——— ssﬁ-rz_ —»@—» 3214 y()

Y

There are at least two reasons why this is a really bad idea:

a) Inreal physical systems, we can never know the precise
values of the poles, it could be 2+A.

b) Disturbance between the two systems will cause instability.




Demo: Magnetic Levitation

ig+i(t) DTLl
)

—IP Yo+ YO

i, = current needed to balance the weight W at the rest height y,

F 1 L
orce balance E@ e (ig + z(t))2
g dt? (Yo +y(t))
Linearize about equilibrium with specific values for parameters
dy? :

4

Y(s) = ( 52_104) I(s) — Second-order unstable system




ﬁ Magnetic Levitation (Continued):

+ i(t) ~10
t) —>(+)— > +— y(t
() @ K e y()
Gain Magnetic Lev.
o, +0 5 |«
Feedback
—10K
Q(s) =

52 —10Kaps — (4 + 10Kay)

—10
\ Q(s) = GiaE Stable!
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