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CT System Function Properties

y(t)

2(t) ———  H(s)

N

Y(s) = H(s)X(s)
h(t)|dt < oo < ROC of H(s) includes jw axis

H(s) = “system function”

1) System is stable < /

2) Causality = h(?) right-sided signal = ROC of H(s) is a right-half plane

Question:
If the ROC of H(s) is a right-half plane, is the system causal?

sT
Ex. H(s) = Se+ i Re{s} > —1 = h(t) right-sided

vy = e { St e {2 e
+1 s+1), _iir

eyt +T)#40 at t<0 Non-causal




Properties of CT Rational System Functions

a) However, if H(s) is rational, then

The system is causal < The ROC of H(s) is to the
right of the rightmost pole

b) If H(s) is rational and is the system function of a causal
system, then

The system is stable < jo-axis is in ROC
< all poles are in LHP




Checking if All Poles Are In the Left-Half Plane

N(s)

76 =D

Poles are the roots of D(s) = s™ + 18"+ +a1s+ag

Method #1: Calculate all the roots and see!
Method #2: Routh-Hurwitz — Without having to solve for roots.

Polynomial Condition so that all
roots are in the LHP
First-order s+ ag ag > 0
Second-order s+ a5+ agp a1 > 0,a9 >0

Third-order s 4+ a2s® +a1s+ag az > 0,a; > 0,a9 >0
and ag < ajas




Initial- and Final-Value Theorems

If x(r)=0 for # <0 and there are no impulses or higher order
discontinuities at the origin, then

w(0+) = lim sX(s) Initial value

§— 00

If x(r) =0 for ¢ <0 and x(¢) has a finite limit as t — oo, then

z(co) = sl’i_I}I(l)SX(S) Final value




Applications of the Initial- and Final-Value Theorem

N(s)
D(s)

For X(s) =

n - order of polynomial N(s), d - order of polynomial D(s)

Initial value:

0 d>n+1
z(07) = lim sX(s) = { finite #0 d=n+1
S§— 00
00 d<n+1
1
E.g. X(S):S—l—l z(01) =?

Final value

If z(0c0) = lim s X (s) =0 = lim X(s) < 00

s—0 s—0

= No poles at s =0




Repeated use of differentiation property: 7

LTI Systems Described by LCCDEs

Za’“ dt"’ Z k dtk

d d*

S, _
TSk

M
= Z brs® X (s)
k=0

S8

N
Z akskY S
k=0

4
Y(s) = H(s)X(s)
Z 0 bpsk «—— roots of numerator = zeros
where H(s) = Z apsk roots of denominator = poles

k=0

N —
Rational

ROC =? Depends on: 1) Locations of all poles.

2) Boundary conditions, i.e.
right-, left-, two-sided signals.







System Function Algebra

Example: A basic feedback system consisting of causal blocks
t
X(t) N °® :]'11((2) > (1)
z(t) | hy(t)
Ha(s)
E(s) = X(s) — Z(s) = X(s) — H2(s)Y (s)
Y(s) = Hi(s)E(s) = Hi(s)[ X (s) — Ha(s)Y (s)]
I
H(s) = Y(s) _ H,(s) More on this later
X(s) 1+ Hy(s)Hz(s) in feedback
ROC: Determined by the roots of 1+H(s)H,(s), instead of H,(s)




Block Diagram for Causal LTI Systems
with Rational System Functions

Example: Y(s) = H(s)X(s)
2 - .
H(s) = 25 A5 0 (2;) (25 +4s — 6) — Can be viewed
s+ 35 +2 §°+3s+2 as cascade of
Defi 1 two systems.
efine:
=X
W(s) 52 +3s+2 (5)
d*w(t) _dw(t) .
72 + 37 +2w(t) = x(t), initially at rest
d?w(t) dw(t)
Similarly
Y(s) = (252 + 45 — 6)W (5)
Y
2
yt) = 2200 @ e

dt? dt




Example (continued)

H(s)
Instead of
We can construct H(s) using: di;:z(t) — a(t) -3 d’“;_it) — 2uw(t)
y(t) = Qdi;;(t) +4d12£t) — Guw(t)
‘? ? - y(1)
2 4 -6
x(1) _@w(t)‘ JT el Tl wol
‘ 2]
N\
Notation: 1/s — an integrator




Note also that

2(s—1)] [s+3 s+3][2(s—1)
(5) [ s+2 ][s+1] [s+2][ s+1 ancace
PFE 6 8 _
= 2+ — — parallel connection
s+2 s+1
2
|- - ===- -
I + :
I T s : 6 ©
I
I
| > o~ |
_______ SE— 5+ 2
+ 1

—(T_H & ‘ -8

Lesson to be learned: There are many different ways to construct a

system that performs a certain function.







The Unilateral Laplace Transform

(The preferred tool to analyze causal CT systems
described by LCCDEs with initial conditions)

X(s) = /.(;.ix(t)e_“’tdt — UL{z(t)}

Note: g

1) Ifx(r)=0forr<0,then X(s) = X(s)

2) Unilateral LT of x(#) = Bilateral LT of x(¢)u(¢")

3) For example, if A() 1s the impulse response of a causal LTI system,

then

4) Convolution property:If x,(¢) = x,(¢) = 0 for # < 0, then
ULz (t) % xo(t)} = X1(2)Xa(s)

Same as Bilateral Laplace transform




ﬂfferentiation Property for Unilateral Laplace Transform

z(t) —— X(s)
Initial condition!
U yd
da(t e
M), sx(s) — 2(07)
dt
Derivation: integration by parts

[f-dg=fg—[g-df

Mﬁ{dxd—g)} = /io da;—gt)e_”dt = s/io z(t)e tdt  + z(t)e |




Use of ULTs to Solve Differentiation Equations
with Initial Conditions

Example: d?y(t)

uc{ 44} uc{ g}
4
Ys) = (s f((ls)d(l_s?ﬁ 2) " (s + l)f)&s + 2) i s(s + 10)5(5 +2)
‘ T C T 2R
ZIR — Response for ZSR — Response for zero state,

zero input x(#)=0 [ =y =0, initially at rest




Example (continued)

»  Response for LTI system initially at rest (8 =y = 0)

O
M=% " GG 1V

«  Response to initial conditions alone (a = 0).
For example:

z(t) = 0(no input), »(07)=1, ' (07)=0 (B8=1,7=0)

4
s+ 3 2 1
V(s) = (s+1)(s+2) Ts+1 s+2
4

y(t) =2e"t—e %, t>0
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Start with differential equation:
y(t) +y(t) = o(t)

Take the Laplace transform of this equation:
sY(s)+Y(s)=1

Solve for Y (s):
V(s) = —

s+1
Take inverse Laplace transform (by recognizing form of transform):

y(t) = e u(t)
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() + 3y(t) +2y(t) = o(¢)
Laplace transform:
s2Y (s) 4+ 3sY (s) + 2V (s) = 1

Solve:

1 1 1
YO = GiDG12 s+l s+2

Inverse Laplace transform:

y(t) = (e_t - e_2t) u(t)

These forward and inverse Laplace transforms are easy if

e differential equation is linear with constant coefficients, and

e the input signal is an impulse function.
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ALAM V. OPPENHEIM
ALAN S. WILLSKY

WITH 5. HAMID HAWAD

A.V. Oppenheim, A.S. Willsky, S.H. Nawab,
Signals and Systems,
Second Edition, Prentice Hall, 1997.
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