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Photographs in newsprint are ‘“half-tone” images.
Each point is black or white and the average conveys brightness.
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Photographs in newsprint are “half-tone” images.
Each point is black or white and the average conveys brightness.
Zoom 1n to see the binary pattern.
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SAMPLING

Every image that we see is sampled by the retina,
which contains = 100 million rods and 6 million cones (average spacing = 3um)
which act as discrete sensors.

Choroid
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SAMPLING

We live in a continuous-time world: most of the signals we
encounter are CT signals, e.g. x(¢). How do we convert them into DT
signals x[n]?

— Sampling, taking snap shots of x(¢) every T seconds.

T — sampling period
x[n] =x(nT),n=...,-1,0, 1, 2, ... — regularly spaced samples

Applications and Examples
— Digital Processing of Signals
— Strobe
— Images in Newspapers
— Sampling Oscilloscope

How do we perform sampling?
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Why/When Would a Set of Samples Be Adequate?

*  Observation: Lots of signals have the same samples

X3(t) X(t) Xo(t)

i
-3T 2T -T 0 T 2T 2T t

* By sampling we throw out lots of information
— all values of x(¢) between sampling points are lost.

* Key Question for Sampling:

Under what conditions can we reconstruct the original CT signal
x(?) from its samples?
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Uniform sampling (sampling interval T). oAl 95 (5518 e gl

x[n] = x(nT)
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Impulse reconstruction. o s bbb

= Zx[n]é(t —nT)
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Impulse Sampling — Multiplying x(¢) by the sampling function
p(t)= > &(t—nT)

zp(t) = z(t)p(t) = i x(t)o(t —nT) = i z(nT)o(t — nT)
n=—0oo pit) n=—oo
qm__+C}——»%m
W
0 t
T p(t)

1

L

0
R
// A \\\k,/}’(“\\ [ Xp(t)
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/ Analysis of Sampling in the Frequency Domain

zp(t) = z(t) - p(t)

1
Multiplication Property = X, (jw) = Q—X(jw) * P(jw)
T
2T —
P(jw) = = k; §(w — kws)
2T )
ws = — = Sampling Frequency Important to
r note: @ o<1/T
4
1 oo
Xp(jw) = = ) X(jw)*d(w — kw,)
=—00

\ = Tk;mX(j(w—kws))
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Ilustration of sampling in the frequency-domain for a
band-limited (X(jo) = 0 for |®| > w,,) signal

X(je)
]
—(OM (Y] (0]
P(jo)
Xp(jw) drawn assuming  -20s -0g 0 (©s) 20g 3ws ©
—Wpn > Wy X(jw)*P(jow)/2m

“W”AAAAAA

oy O (oM Og
No overlap between shifted spectra ms om)




Reconstruction of x(# from sampled signals

+00

p(t) = Z 3(t-nT)
l X(jo)
XM [ 1
X(t—(%) >| H(jo) > X(1)
VY| (VY (O]
/\ 1T ws>2mM
w
H(jo) ‘”s o
T 0N <0 <(wg -0p)
. P N
If there 1s no overlap between -0¢ o ®
shifted spectra, a LPF can Xr (jo)
reproduce x(z) from x,(z) /\

-M ®
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ﬁ The Sampling Theorem \

Suppose x(7) is bandlimited, so that
X(jw) =0 for |w|>wnp

Then x(z) 1s uniquely determined by its samples {x(n7)} if

ws > 2wpr = The Nyquist rate

where ws = 27 /T

. /
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SAMPLING

Sampling

z(t) — x[n] = x(nT)

Bandlimited Reconstruction

LPF
Impulse Tp(t) = T
xln) —s D052 ! o LI L ol oo
Reconstruction| " z[n]é(t — nT) 4 4

Sampling Theorem: If X(jw) =0V |w| > % then x,.(t) = z(t).
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Observations on Sampling

(1) In practice, we obviously ho ()
don’t sample with impulses ~ xt—(x)—2 O — [0
or implement ideal lowpass 0 T
filters.

— One practical example:
The Zero-Order Hold




Observations (Continued)

(2) Sampling is fundamentally a time-varying operation, since we
multiply x(7) with a time-varying function p(f). However,

p(t) = 2 8(t-nT)

Xp(t
X(t) :@ ol > H(jw) > X(1)
H(jw)
T oM <0 <(wg -p)
-0 W ®

is the identity system (which is 77) for bandlimited x() satisfying
the sampling theorem (w, > 2m,,).

(3) What if o, < 2m,,? Something different: more later.
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CT MODEL OF SAMPLING AND RECONSTRUCTION
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Time-Domain Interpretation of Reconstruction of
Sampled Signals — Band-Limited Interpolation

p(t) = = 5(tT)

t H(j ©)
X(t) é i T p—x

-mc ﬂ)c

wp <o¢ <(wg -wp)

z,.(t) = x,(t)*xh(t) , whereh(t)= %
= ( Z x(nT)d(t — nT)) * h(t)
) i STVt — ) — i ) (nT)Tsin[wc(t —nT)]

n=-—00 n=-—00 ﬂ-(t B nT)

The lowpass filter interpolates the samples assuming x(t) contains
no energy at frequencies = ,




Graphic Illustration of Time-Domain Interpolation

Original
CT signal x(t)

After sampling

After passing the LPF




Interpolation Methods

Bandlimited Interpolation
Zero-Order Hold

First-Order Hold — Linear interpolation

p(t) = 2 5(t-nT)

X (tp——( : }—»Xp(t)

H(jo)
h(t)

» Xr(t)

h(t)







Undersampling and Aliasing

When o, < 2m,; = Undersampling

X(jo)
1
oM OM o)
P(jc) v — 2T
2n s
ot
20)5 ~Ws Mg 20)5 3(!)5 0]




Undersampling and Aliasing (continued)

p(t) = X 5(t-nT)

x(t)—»@xp—(t)> H(j®) —————— x/(t)

H(jo)
T
Eory Os ® . .
2 X (o) 2 X,(Jo#X(w
A Distqrtign because
of aliasing
o 05 ®
2 2

— Higher frequencies of x(¢) are “folded back™ and take on the
“aliases” of lower frequencies
— Note that at the sample times, x,(nT) = x(nT)




ﬂ Simple Example X(jw)

Aﬂ: Tﬂ
x(t) = cos(wot + @) s o =
Xp(jo)
I - 0s=30>2 My
Picture would be * | T* T* -
Modified... Os X g Dogs) O O
(0o~ ws) 2 (s-0p)

A|iasing 777777777777777777 (’JS=1 -20)0<2(0M

N W N N U I

-0s ! s Wy ®

(ws-wp) 2
Demo: Sampling and reconstruction of cosm,t
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What happens if X contains frequencies |w| > %?

X(jw)
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ALIASING

What happens if X contains frequencies |w| > %?
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ALIASING

What happens if X contains frequencies |w| > %?

o
ERUEE

Prepared by Kazim Fouladi | Fall2017 |2nd Edition
—7"
€ __>_| -
vf§
> .
—
N—

P



¥4

ALIASING

What happens if X contains frequencies |w| > %?

X(jw)
tlr
P(jw
2T71‘
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ALIASING

The effect of aliasing is to wrap frequencies.

Output frequency

Ws
2
\ V.\ Input frequency
AP

X(jw)

i .

Prepared by Kazim Fouladi | Fall2017 |2nd Edition

P



Prepared by Kazim Fouladi | Fall2017 |2nd Edition

P

¥\

ALIASING
The effect of aliasing is to wrap frequencies.

Output frequency

7
\ V\ Input frequency
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ALIASING

The effect of aliasing is to wrap frequencies.

Output frequency

\/‘1/\ Input frequency
w

o
X (jw)
tr

v
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ALIASING

The effect of aliasing is to wrap frequencies.

Output frequency

7
\ V\ Input frequency
AVAIPAN
)

X(jw

Wb/ 2 2
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ALIASING
. ™
A periodic signal with a period of 0.1 ms is sampled at 44 kHz.
[ To what frequency does the eighth harmonic alias? ]
1. 18 kHz 2. 16 kHz
3. 14 kHz 4. 8 kHz
5. 6 kHz 6. none of the above
= J
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Output frequency (kHz)
88 4
44 N

—Y——— Input frequency (kHz)
22 44 66 88
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Harmonic

10
20
30
40
50
60
70
80

kHz
kHz
kHz
kHz
kHz
kHz
kHz
kHz

(YY) JGe

Output frequency (kHz)

88 1\
444 \\
2'2 4'4 6|6 8|8

Alias
10 kHz
20 kHz
44 kHz-30 kHz =14 kHz
44 kHz-40 kHz = 4 kHz
50 kHz-44 kHz = 6 kHz
60 kHz-44 kHz =16 kHz
88 kHz-70 kHz =18 kHz
88 kHz-80 kHz = 8 kHz

Input frequency (kHz)
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ALIASING
. ™
A periodic signal with a period of 0.1 ms is sampled at 44 kHz.
[ To what frequency does the eighth harmonic alias? ]
1. 18 kHz 2. 16 kHz
3. 14 kHz 4. 8 kHz
5. 6 kHz 6. none of the above
= J
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ALIASING

High frequency components of complex signals also wrap.

X(jw)
A
P(ju;_ﬂ
N
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High frequency components of complex signals also wrap.
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ALIASING

High frequency components of complex signals also wrap.

X(jw)
N
P(ju;_ﬂ
N
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High frequency components of complex signals also wrap.

X(jw)

AN\

P(jw2_ﬁ
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ALIASING

Aliasing increases as the sampling rate decreases.

X(jw)

AN

P(ju%
IR
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Aliasing increases as the sampling rate decreases.

X(jw)

AN

P(ju%
AN
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Aliasing increases as the sampling rate decreases.

EERUERE




[ala]

ALIASING

Aliasing increases as the sampling rate decreases.

EESELERRE
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ALIASING

Aliasing increases as the sampling rate decreases.

X(jw)

AN

P(ju%
IR
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Aliasing increases as the sampling rate decreases.

X(jw)
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ALIASING

Aliasing increases as the sampling rate decreases.

EERUERE
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ALIASING

Aliasing increases as the sampling rate decreases.

EESELERRE
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ANTI-ALIASING FILTER

¢Sl 5l olaal gl

Anti-aliasing Reconstruction
Filter Filter
1 :c(t) T
z(t) —» [T 1, >® Loy I I > (1)
_ Ws Ws _ Ws Ws
2 2 T 2 2
p(t)
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ALIASING

Aliasing increases as the sampling rate decreases.

X(jw)

AN

P(ju%
IR
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Aliasing increases as the sampling rate decreases.
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Aliasing increases as the sampling rate decreases.
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Anti-aliased X (jw)
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ALIASING

Aliasing increases as the sampling rate decreases.
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Anti-aliased X (jw)
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ALAM V. OPPENHEIM
ALAN S. WILLSKY

WITH 5. HAMID HAWAD

A.V. Oppenheim, A.S. Willsky, S.H. Nawab,
Signals and Systems,
Second Edition, Prentice Hall, 1997.

Chapter 7
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