

سیگنالها و سیستمها

درس ع

سیستمهای خطی تغییرناپذیر با زمان (۲)

Linear Time-Invariant (LTI) Systems (2)

کاظم فولادی قلعه دانشکده مهندسی، پردیس فارابی دانشگاه تهران

http://courses.fouladi.ir/sigsys

طرح درس

COURSE OUTLINE

پاسخ نمونهی واحد و خصوصیات سیستمهای خطی تغییرناپذیر با زمان گسسته-زمان

The unit sample response and properties of DT LTI systems

سیستمهای توصیفشده با معادلات تفاضلی خطی با ضرایب ثابت

Systems Described with Linear Constant-Coefficient Difference Equations

سیگنالها و سیستمها

سیستمهای خطی تغییرناپذیر با زمان (۲)

پاسخ نمونهی واحد و خصوصیات سیستمهای خطی تغییرناپذیر با زمان گسسته-زمان

Properties of Convolution and DT LTI Systems

1) A DT LTI System is *completely characterized* by its unit sample response

Ex. #1:
$$h[n] = \delta[n - n_0]$$

There are many systems with this response to $\delta[n]$.

There is one LTI System with this response to $\delta[n]$:

$$y[n] = x[n - n_0]$$

$$\Downarrow$$

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

Ex. #2:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$
 - An Accumulator

Unit Sample response

$$h[n] = \sum_{k=-\infty}^{\infty} \delta[k] = u[n]$$

$$x[n] * u[n] = \sum_{k} x[k]$$

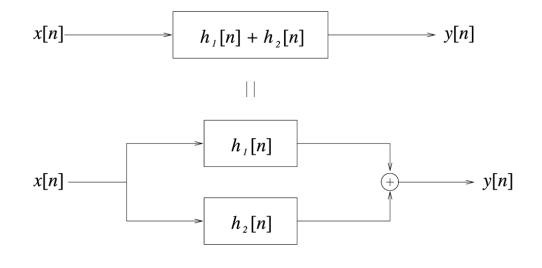
The Commutative Property

$$y[n] = x[n] * h[n] = h[n] * x[n]$$

$$x[n] \longrightarrow h[n] \longrightarrow y[n] \quad h[n] \longrightarrow x[n] \quad y[n]$$

Ex: Step response s[n] of an LTI system

$$s[n] = u[n] * h[n] = h[n] * u[n]$$


$$\downarrow$$

$$s[n] = \sum_{i=1}^{n} h[k]$$

The Distributive Property

$$x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$$

Interpretation

خاصیت توزیعپذیری

مثال

$$x[n] = 0.5^{n} u[n] + 2^{n} u[-n]$$

$$h[n] = u[n]$$

$$x_{1}[n] = 0.5^{n} u[n]$$

$$x_{2}[n] = 2^{n} u[-n]$$

$$y[n] = (x_{1}[n] + x_{2}[n]) * h[n]$$

$$y_{1}[n] = \left(\frac{1 - 0.5^{n+1}}{1 - 0.5}\right) u[n]$$

$$y_{2}[n] = \begin{cases} 2^{n+1} & n \le 0 \\ 2 & n \ge 1 \end{cases}$$

The Associative Property

$$x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$

(Commutativity) ||

$$x[n] * (h_2[n] * h_1[n]) = (x[n] * h_2[n]) * h_1[n]$$

Implication (Very special to LTI Systems)

$$x[n] \longrightarrow h_1[n] \longrightarrow h_2[n] \longrightarrow y[n]$$

$$x[n] \longrightarrow h_1[n] * h_2[n] \longrightarrow y[n]$$

$$x[n] \longrightarrow h_2[n] \longrightarrow h_1[n] \longrightarrow y[n]$$

خاصیت شرکتپذیری

مثال

$$h_{1}[n] = \sin (8n) \qquad h_{2}[n] = a^{n}u[n]$$

$$x[n] = \delta[n] - a\delta[n-1] \qquad y[n] = ?$$

$$y[n] = \sin(8n)$$

Properties of LTI Systems

1) Causality
$$\Leftrightarrow$$
 $h[n] = 0$ for all $n < 0$

2) Stability
$$\Leftrightarrow \sum_{k=-\infty} |h[k]| < \infty$$

خاصيت حافظهدار بودن

مثال

$$h[n] = K\delta[n]$$

$$\downarrow \downarrow$$

$$y[n] = Kx[n]$$

خاصیت وارونپذیر بودن

مثال

وجود داشته باشد h_i که:

$$h[n] * h_i[n] = \delta[n]$$

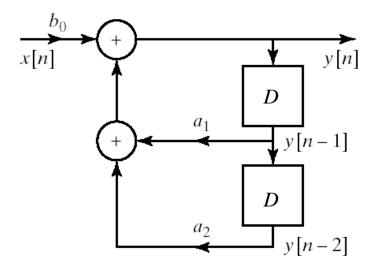
سیگنالها و سیستمها

سیستمهای خطی تغییرناپذیر با زمان (۲)

سیستمهای توصیفشده با معادلات تفاضلی خطی با ضرایب ثابت

سیستمهای توصیفشده با معادلات تفاضلی خطی با ضرایب ثابت

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

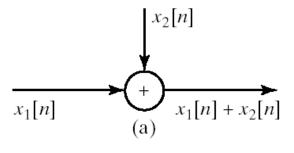


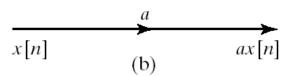
سیستمهای توصیفشده با معادلات تفاضلی خطی با ضرایب ثابت

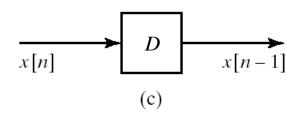
بازنمایی با نمودار بلوکی

BLOCK DIAGRAM REPRESENTATION

$$y[n] = a_1y[n-1] + a_2y[n-2] + b_0x[n]$$

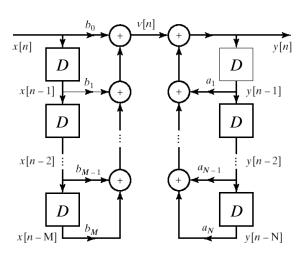



سیستمهای توصیفشده با معادلات تفاضلی خطی با ضرایب ثابت


بازنمایی با نمودار بلوکی

BLOCK DIAGRAM REPRESENTATION

- LTI systems with rational system function can be represented as constant-coefficient difference equation
- The implementation of difference equations requires **delayed values** of the
 - input
 - output
 - intermediate results
- The requirement of delayed elements implies need for **storage**
- We also need means of
 - addition
 - multiplication


سیستمهای توصیفشده با معادلات تفاضلی خطی با ضرایب ثابت

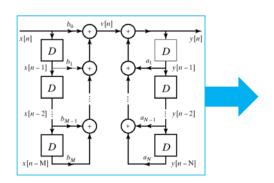
بازنمایی با نمودار بلوکی: فرم مستقیم یک

DIRECT FORM I

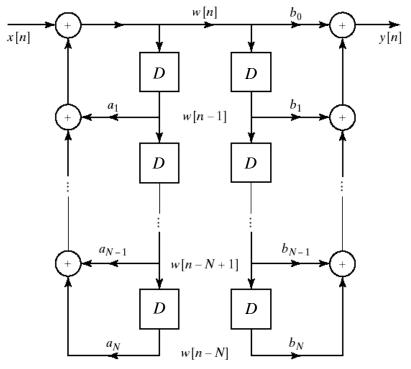
$$\sum_{k=0}^{N} \hat{a}_{k} y[n-k] = \sum_{k=0}^{M} \hat{b}_{k} x[n-k]$$

$$y[n] - \sum_{k=1}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$v[n] = \sum_{k=0}^{M} b_k x[n-k]$$
$$y[n] = \sum_{k=1}^{N} a_k y[n-k] + v[n]$$



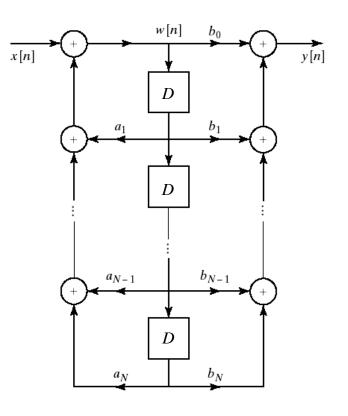
سیستمهای توصیفشده با معادلات تفاضلی خطی با ضرایب ثابت


بازنمایی با نمودار بلوکی: فرم مستقیم دو

DIRECT FORM II

مىتوان جاى دو سيستم متوالى را عوض كرد:

$$w[n] = \sum_{k=1}^{N} a_k w[n-k] + x[n]$$
$$y[n] = \sum_{k=0}^{M} b_k w[n-k]$$

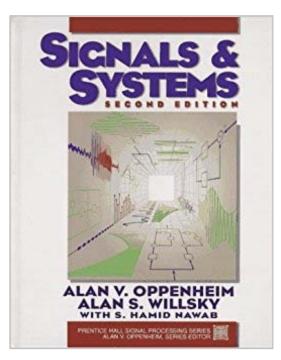


سیستمهای توصیفشده با معادلات تفاضلی خطی با ضرایب ثابت

بازنمایی با نمودار بلوکی: فرم مستقیم دو

DIRECT FORM II

- No need to store the same data twice in previous system
- So we can collapse the delay elements into one chain
- This is called Direct Form II or the Canonical Form
- Theoretically no difference between Direct Form I and II
- Implementation wise
 - Less memory in Direct II
 - Difference when using finite-precision arithmetic


سیگنال ها و سیستم ها

سیستمهای خطی تغییرناپذیر با زمان (۲)

منابع

منبع اصلى

A.V. Oppenheim, A.S. Willsky, S.H. Nawab, **Signals and Systems**, Second Edition, Prentice Hall, 1997.

Chapter 2

