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Some examples of systems

System properties: Causality, Linearity, Time invariance
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Some Examples
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SYSTEM EXAMPLES \

x(t)—>

CT System ——>y(?)

. #1 RLC circuit

Tt

x(1) C

-

R L
— M ————

>
) /f?(t) C

()

R i(t) + Ld;(;) +y(t) = z(?)
i(t) = )
4
Lcddzgt) + Rcdz—(tﬂ +y(t) = =(t)
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Ex. #2 Mechanical system x(1)—— CT System ——>(1)
K
AW ——— :
g x(t) - applied force
g M } > (1) K - spring constant
- % D - damping constant
| y(t) - displacement from rest
0 (0
Force Balance: ,
d*y (1) dy(t)
M = x(t) — Ky(t) — D————=
YO — 1)~ Ky(t) - DL
. J
d-y(1) dy(t)
M—= + D= = + Ky(t) = (1)

Observation: Very different physical systems may be modeled
mathematically in very similar ways.




Ex. #3 Thermal system

Cooling Fin in Steady State

Temperature

yO

4

x(t)—> CT System

x(1)

y(t)

)

x(t)

(1)

T,

= distance along rod

y(t) = Fin temperature as function of position

x(t) = Surrounding temperature along the fin




@3 (Continued) x(t)—| CT System —>y(t)\

TUO — Ky(t) — (1)
y(To) = Yo

dy

— (1) = 0

Observations

* Independent variable can be something other than
time, such as space.

*  Such systems may, more naturally, have
\boundary conditions, rather than “initial” conditioy
o0 kol




Ex. #4 Financial system x(1)——{ CT System ——>(?)

Fluctuations in the price of zero-coupon bonds

t=0 Time of purchase at price y,

t=T 'Time of maturity at value y,

y(f) = Values of bond at time ¢

x(t) = Influence of external factors on fluctuations in bond price

Tul) _ (i‘/(t)’ d?iz(tt)’ml(t)»@(t)""’mN(t)’t>

y(0) =y, y(T)=1yr.

Observation: Even if the independent variable 1s time, there are
interesting and important systems which have boundary conditions.




ﬂx. #3 x[n]——> DT System
* A rudimentary “edge” detector

(a)
(b)

yin] = x[n+1] - 2z[n,
= dzn+1]—zn

—>y[n] \

+ x[n — 1]

I} = {z[n] — z[n - 1]}

“Second difference”

rln] =n

« This system detects changes 1n signal slope

= yln] =0
= y[n]
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ﬂservaﬁons \

1) A very rich class of systems (but by no means all systems of
interest to us) are described by differential and difference
equations.

2) Such an equation, by itself, does not completely describe the
input-output behavior of a system: we need auxiliary
conditions (initial conditions, boundary conditions).

3) In some cases the system of interest has time as the natural
independent variable and 1s causal. However, that 1s not
always the case.

4) Very different physical systems may have very similar

Qathematical descriptions. /
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SYSTEM PROPERTIES

(Causality, Linearity, Time-invariance, etc.)

WHY ?

Important practical/physical implications

™~

They provide us with insight and structure that we
can exploit both to analyze and understand systems

more deeply.

J
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Memoryless System

y[n] = (2z[n] — 2%[n])’
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x[n]—— DT System —>y["]
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x(t)—> CT System ——>(?)

x[n]——

DT System
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x(t)—> CT System —>y(f)  x[n]—— DT System ——>y[7]
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/ CAUSALITY \
c A

system 1s causal if the output does not anticipate future
values of the mput, 1.e., if the output at any time depends
only on values of the input up to that time.

e  All real-time physical systems are causal, because time
only moves forward. Effect occurs after cause. (Imagine 1f
you own a noncausal system whose output depends on
tomorrow’s stock price.)

Causality does not apply to spatially varying signals. (We
can move both left and right, up and down.)

«  Causality does not apply to systems processing recorded
signals, e.g. taped sports games vs. live broadcast.




/ CAUSALITY (continued) \

 Mathematically (in CT): A system x(¢#) — y(?) 1s causal i1f

when xi(0) =y x(0) = (2
and x(t)=x,(¢t) forallz < 1,
Then yi () =vyy(t) foralls < ¢,

- J




CAUSAL OR NONCAUSAL \

y(t) = «*(t — 1)
E.g. y(5) depends on x(4) ... causal

y(t) =zt +1)
E.g. y(5) = x2(6),y depends on future = noncausal

yln] = x[-n
E.g. y[5] = z[-5] ok, but
y|—5] = x|5|, y depends on future = noncausal

l)nle r°[n — 1]

y[n] — (2
Q.g. y|5] depends on x|[4] ... causal /
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/ TIME-INVARIANCE (TI) \

Informally, a system is time-invariant (TI) if its behavior does not
depend on what time it 1s.

* Mathematically (in DT): A system x[n] — y[n] 1s TT 1f
for any 1nput x[#n] and any time shift n,,

If x{n] = yln]
then x[n—ny] — y[n —ng) .

e Similarly for a CT time-invariant system,

If X()) > ()
\\ then X(t _ to) — y(t o to) . /




/ TIME-INVARIANT OR TIME-VARYING ? \

y(t) = 2*(t + 1)

T1

Jln] = (%f n— 1]

Time-varying (NOT time-invariant)

- J




/ NOW WE CAN DEDUCE SOMETHING! \

Fact: If the mput to a TI System 1s periodic, then the output 1s
periodic with the same period.

“Proof™: Suppose x(t+T)=x(1)
and ORI ()
Then by TI
x(t+ 1) = yi+T).
T T
These are the So these must be the

same input! same output,
\\ Le., y(t) =yt + T)/
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LINEAR AND NONLINEAR SYSTEMS

Many systems are nonlinear. For example: many circuit
elements (e.g., diodes), dynamics of aircraft, econometric
models,...

However, we focus exclusively on linear systems.

Why?

* Linear models represent accurate representations of
behavior of many systems (e.g., linear resistors,
capacitors, other examples given previously,...)

* (Can often linearize models to examine “small signal”
perturbations around “operating points”

» Linear systems are analytically tractable, providing basis
for important tools and considerable insight




/ LINEARITY \

A (CT) system 1s linear 1f 1t has the superposition property:
If x1()) = yi(®) and  xy(2) = ¥,(9)

then ax,(f) + bx,(f) — ay,(t) + by,(?)

y[n] =x%[n]  Nonlinear, TI, Causal
y(t) = x(2¢) Linear, not TI, Noncausal

Can you find systems with other combinations ?

- ¢.g. Linear, TI, Noncausal
\\ Linear, not TI, Causal J




/ PROPERTIES OF LINEAR SYSTEMS \

* Superposition If

TEn] —  yrn)

> araeln] — > apyrln]
k k

 For linear systems, zero input — zero output

"Proof™ 0=0-x[n] > 0-y[n]=0

- J

Then




/ Properties of Linear Systems (Continued) \

* A limear system 1s causal if and only 1f 1t satisfies the
condition of 1nitial rest:

xz(t) =0fort <ty — y(t) =0 fort <ty (x).

“Proof”

a) Suppose system is causal. Show that (*) holds.

b) Suppose (*) holds. Show that the system 1s causal.

- J




/ LINEAR TIME-INVARIANT (LTI) SYSTEMS \

. Focus of most of this course

- Practical importance (Eg. #1-3 earlier this lecture
are all LTI systems.)

- The powerful analysis tools associated
with LTI systems

A basic fact: If we know the response of an LTI
system to some inputs, we actually know the response

\\to many 1nputs /
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x(t)—> CT System —>y(f)  x[n]—— DT System ——>y[7]
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Example: DT LTI System \

x[n] y1[n]
2 ;
' ‘ 1t al
~101 01
z2[n]
3
2
I
01 2 |
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x1[n — 2]

y1[n]

DT LTI System

Example:

x1[n]

-

01

—101

2:}3‘1 [n — 1]

123

012

01 2 ]




Example:

DT LTI System

y1[n]
171
01
2z1[n — 1] x1[n — 2]
4
2 2 2
il -yl
012 123
2y1[n — 1] y1[n — 2]
2
1
1 2




x1[n]

1 [211

—101

xo[n]

2

D—.

y2(n]

/ Example: DT LTI System

y1[n]
171
01
21 [n — 1] 21 [n — 2]
4
2 2 2
il - oyl
012 123
2y1[n — 1] y1[n — 2]
2
1 2
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ALAN V. OPPENHEIM
ALAN S. WILLSKY

WITH 5. HAMID HAW.A R

A.V. Oppenheim, A.S. Willsky, S.H. Nawab,
Signals and Systems,
Second Edition, Prentice Hall, 1997.

Chapter 1
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