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 Remember: Bayes rule

 Here: The class to which a feature vector

belongs depends on:

 Its own value

 The values of the other features

 An existing relation among the various classes
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 This interrelation demands the classification to be 

performed simultaneously for all available feature 

vectors

 Thus, we will assume that the training vectors

occur in sequence, one after the other

and we will refer to them as observations
N

x,...,x,x
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 The Context Dependent Bayesian Classifier

 Let

 Let

 Let      be a sequence of classes, that is

There are MN of those

 Thus, the Bayesian rule can equivalently be stated as
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 Markov Chain Models (for class dependence)

NOW remember:
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 Assume:

 statistically mutually independent 

 The pdf in one class independent of the others, then
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 From the above, the Bayes rule is readily seen to be 

equivalent to:

that is, it rests on

 To find the above maximum in brute-force task we 

need Ο(NMΝ ) operations!!
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 The Viterbi Algorithm
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 Thus, each Ω
i
corresponds to one path through the trellis 

diagram.  One of them is the optimum (e.g., black).  The 

classes along the optimal path determine the classes to which 

ω
i
are assigned.

 To each transition corresponds a cost.  For our case

•

•

•
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• Equivalently

where,

• Define the cost up to a node , k,
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 Bellman’s principle now states

 The optimal path terminates at 

• Complexity O (NM2)
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 Channel Equalization

 The problem

•

•

•
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 Example

•

•

• In x
k

three input symbols are involved:

I
k
, I

k-1
, I

k-2

13

k1kkk
nII5.0x ++= −

1

,  2
k

k

k

x
x l

x −

 
= = 
 

CONTEXT DEPENDENT CLASSIFICATION    Channel Equalization



x
k-1

x
k

I
k-2

I
k-1

I
k

ω
1

00000

ω
2

10100

ω
3

0.51010

ω
4

1.51110

ω
5

00.5001

ω
6

10.5101

ω
7

0.51.5011

ω
8

1.51.5111

14

CONTEXT DEPENDENT CLASSIFICATION    Channel Equalization



Not all transitions are allowed

•

• Then

•
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• In this context, ωi are related to states.  Given 

the current state and the transmitted bit, Ik, we 

determine the next state. The probabilities 

P(ωi|ωj) define the state dependence model.

The transition cost

•

for all allowable transitions
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 Assume:

• Noise white and Gaussian

• A channel impulse response    estimate to be 
available

•

•

• The states are determined by the values of the binary
variables

I
k-1
,…,I

k-n+1

For n = 3, there will be 4 states
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 Hidden Markov Models

 In the channel equalization problem, the states are 
observable and can be “learned” during the training 
period

 Now we shall assume that states are not observable and 
can only be inferred from the training data

 Applications:

• Speech and Music Recognition

• OCR

• Blind Equalization

• Bioinformatics
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 An HMM is a stochastic finite state automaton, that 
generates the observation sequence, x

1
, x

2
,…, x

N

 We assume that: The observation sequence is produced as 
a result of successive transitions between states, upon 
arrival at a state:
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 This type of modeling is used for nonstationary stochastic 
processes that undergo distinct transitions among a set of 
different stationary processes.
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Examples of HMM:

• The single coin case: Assume a coin that is tossed behind 
a curtain. All it is available to us is the outcome, i.e., H or 
T. Assume the two states to be:

S = 1H             S = 2T

This is also an example of a random experiment with 
observable states. The model is characterized by a single 
parameter, e.g., P (H). Note that

P (1|1) = P (H)             P (2|1) = P (T) = 1 – P (H)
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• The two-coins case: For this case, we observe a sequence 

of H or T. However, we have no access to know which 

coin was tossed. Identify one state for each coin. This is 

an example where states are not observable.  H or T can 

be emitted from either state. The model depends on four

parameters.

P
1
(H ), P

2
(H ),    P (1|1), P (2|2)
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• The three-coins case example is shown below:

• Note that in all previous examples, specifying the model is

equivalent to knowing:

– The probability of each observation (H,T) to be emitted from

each state.

– The transition probabilities among states: P (i|j).
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 A general HMM model is characterized by the following
set of parameters

• Κ, number of states

•

•

•
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That is:

 What is the problem in Pattern Recognition

• Given M reference patterns, each described by an 

HMM, find the parameters, S, for each of them 

(training)

• Given an unknown pattern, find to which one of 

the M, known patterns, matches best (recognition)

} ),(),( ),({ KiPixpjiPS =
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 Recognition: Any path method

• Assume the M models to be known (M classes).

• A sequence of observations, X, is given.

• Assume observations to be emissions upon the 

arrival on successive states

• Decide in favor of the model S* (from the M

available) according to the Bayes rule

for equiprobable patterns
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• For each model S there is more than one possible sets 

of successive state transitions Ω
i
, each with 

probability

Thus:

• For the efficient computation of the above DEFINE
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• Observe that
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• Some more quantities

–

–
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 Training

• The philosophy:

Given a training set X, known to belong to the 

specific model, estimate the unknown parameters of 

S, so that the output of the model, e.g.

to be maximized

 This is a ML estimation problem with missing data
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 Assumption:  Data x discrete 

 Definitions:

•

•
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 The Algorithm:

• Initial conditions for all the unknown parameters.

• Step 1:  From the current estimates of the model 

parameters reestimate the new model S from
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• Step 2:  Compute

go to step 1.  Otherwise stop

• Remarks:

– Each iteration improves the model 

– The algorithm converges to a maximum (local or 

global)

– The algorithm is an implementation of the EM 

algorithm
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