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CONTEXT DEPENDENT CLASSIFICATION

“* Remember: Bayes rule

P(o

xX)> P(@,|x), V) #i

¢ Here: The class to which a feature vector
belongs depends on:

> Its own value
» The values of the other features

» An existing relation among the various classes



CONTEXT DEPENDENT CLASSIFICATION

¢ This interrelation demands the classification to be
performed simultaneously for all available feature
vectors

¢ Thus, we will assume that the training vectors
X;,X,,...,X 0occur in sequence, one after the other
and we will refer to them as observations



CONTEXT DEPENDENT CLASSIFICATION P The Context Dependent Bayesian Classifier

¢ The Context Dependent Bayesian Classifier
» Let X:{)_Cl,)_Cz,...,)_CN}
>Let @, i=12,... M

> Let £2.be a sequence of classes, that is
Q :w,0,..0,

There are MY of those

» Thus, the Bayesian rule can equivalently be stated as

X->Q P(Qi‘X)>P(Qj‘X) Vi#j, i j=12..M"
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¢ Markov Chain Models (for class dependence)

P(w,

®. ,0,

k-1 )

90 a)il) — P(wik a)ik_l)

NOW remember:

PQ)=P@,0,..0 )

N

o ,..0)P@ o ,..0).P®)

o, ))P(w,)

P(L,) = (HP((()lk




CONTEXT DEPENDENT CLASSIFICATION P Markov Chain Models

** Assume:

» X, statistically mutually independent
» The pdf in one class independent of the others, then

p(X|Q)= Hp()_ck\wik)




CONTEXT DEPENDENT CLASSIFICATION P Markov Chain Models

*» From the above, the Bayes rule is readily seen to be
equivalent to:

P(Q,

X)(><)P(Q,|X)
P(Q,) p(X|Q)(><)P(Q,)p(X|Q))

thatis, it rests on | P(X|Q)P(Q,) = P(@, ) p(x, |, ).
N
[1P@, 0 )ri o)
k=2

¢ To find the above maximum in brute-force task we
need O(NM") operations!!
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¢ The Viterbi Algorithm

w, ® ) ®

/g

W, ., ©® ¢

¢¢¢¢¢¢¢¢¢¢

éx’ "N"'



CONTEXT DEPENDENT CLASSIFICATION P The Viterbi Algorithm

» Thus, each (2 corresponds to one path through the trellis
diagram. One of them 1s the optimum (e.g., black). The
classes along the optimal path determine the classes to which
@; are assigned.

» To each transition corresponds a cost. For our case

. d(a)a)

U1

)=P(o,

@ ).p(x,|®,)

. d@,,0,)=P@,)p(x,o,)

Ha? (@, 0, )= p(X|Q)P(Q,)



CONTEXT DEPENDENT CLASSIFICATION P The Viterbi Algorithm

* Equivalently

N . N
InD=>) Ind(,)=D=)d(.,.)
k=1 k=1

where,

d(a)lk ? a)ik—l ) =In C:’(G)lk ? a)ik—l )

* Define the cost up to a node , k,

k
D(w)= d@,,,)
r=I

10
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» Bellman’s principle now states

D, (@ )=max| D, (@

I
1

.0, =1L2,... M

)+d(@, , @

®, )

D, (@) =0

» The optimal path terminates at (();V

w. =argmax D__ (@, )

l
N a)iN

« Complexity O (NM?)

11
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¢ Channel Equalization
» The problem

e x, =fU,,1,_,....1,_,..)+n,
_ T
o Xy S[X X e X ]

([ ] Ek %]kOr]k_r

A

x, — |equalizer — I,

—-r

12



CONTEXT DEPENDENT CLASSIFICATION P Channel Equalization

» Example

« x, =051, +1, _,+n,

Ak
¢ X, = , =2
X1

* In x, three input symbols are involved:

Ik’ Ik-]’ Ik-2
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1.5}

0.5

-0.5

L | Ly | Ly | X | X

0 0 0 0 0 | o
0 0 1 0 1 @,
0 1 0 1 |05 ]| o
0 1 1 1 | 15| o
1 0 0 105| 0 | o
1o 1]o05 o,
1 1 0 |15]05] o
L1 |1 |[15]15] e
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» Not all transitions are allowed

* (]ka]k—p]k—z) =(0,0,1)

 Then (1.0,0)
T
(L Ly 1) L
(0,0,0)
@s 0.5i=51
o 7 _ T
@, P(w,|w,) =
\ \

0, otherwise

15
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* In this context, o, are related to states. Given
the current state and the transmitted bit, 7,, we
determine the next state. The probabilities
P(w,| w;) define the state dependence model.

> The transition cost

) d(a)lk ? a)ik—l ) ~ da)zk QC)
= (@ =)' ) (5= )

_lk

o sz _Eik

for all allowable transitions

16
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> Assume:
* Noise white and Gaussian

» A channel impulse response f estimate to be
available

=S U L)) = 1y

d@ ,0 )=Inp(x @ )=Inpn,)

S ET L/ A ) &

The states are determined by the values of the binary
variables

L e odins
For n = 3, there will be 4 states
17
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¢ Hidden Markov Models

» In the channel equalization problem, the states are
observable and can be “learned” during the training

period

> Now we shall assume that states are not observable and
can only be inferred from the training data

» Applications:
* Speech and Music Recognition
« OCR
 Blind Equalization
 Bioinformatics

18



CONTEXT DEPENDENT CLASSIFICATION » Hidden Markov Models

» An HMM is a stochastic finite state automaton, that
generates the observation sequence, x;, X,,..., Xy

» We assume that: The observation sequence is produced as
a result of successive transitions between states, upon
arrival at a state:

X
k

~

19
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» This type of modeling is used for nonstationary stochastic
processes that undergo distinct transitions among a set of
different stationary processes.

p|l)

P(1]1) P(2]2) PGB)
S~ .A, \“é \\’.A/
P(2|1) P(3[2)
p(x]2) p(x[3)
i . ‘\'\
, ‘\\ ﬁ“\\_l /N
.fa ) \"'-\\ N f .\ﬂ'\f S~
||'|I 7 \\ J B -\\ ~
x v v
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» Examples of HMM:

* The single coin case: Assume a coin that 1s tossed behind
a curtain. All 1t 1s available to us 1s the outcome, 1.e., Hor
7. Assume the two states to be:

S=12>H S§S=22>T
This 1s also an example of a random experiment with

observable states. The model 1s characterized by a single
parameter, €.g., P(H). Note that

P(1[1) = P(H) PQ2I1)=P(T)=1-P(H)

P(1]1)=P(H) P(2|2)=1-P(H)

P(112)=P(H)
P(H) 1-P(H)

(a) 21
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* The two-coins case: For this case, we observe a sequence
of Hor 7. However, we have no access to know which
coin was tossed. Identify one state for each coin. This is
an example where states are not observable. Hor 7 can
be emitted from either state. The model depends on four

parameters.

P(1]1) P(2]2)

P(112)=1-P(2]2)
A Py(H)

P(Ty=1-F (H) E(T)=1-P,

(b) 22
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* The three-coins case example 1s shown below:

1|1 P(2)2
P(1[1) PRI (2[2)

P(1[2)

P(2[3)

P3|1)

P(3]2)

P(H) Py(H) Py(H)
PADY=1-P(H)  PAT=1-By(H)  P(T)=1-Py(H)

» Note that in all previous examples, specifying the model i1s
equivalent to knowing:

— The probability of each observation (H,T) to be emitted from
each state.

— The transition probabilities among states: P (i]j).

23
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»> A general HMM model is characterized by the following
set of parameters

« K, number of states

P(ilj),i,j=12,..,K

p(g‘i), i=12,....K

P(i),i=1,2,..., K, initial state probabilities, P(.)

24
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That 1s:

S = {P(i)), p(x]i), P(i), K}

» What is the problem in Pattern Recognition

« Given M reference patterns, each described by an
HMM, find the parameters, S, for each of them
(training)

* Given an unknown pattern, find to which one of
the M, known patterns, matches best (recognition)

25
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» Recognition: Any path method
e Assume the M models to be known (M classes).
* A sequence of observations, X, 1s given.

« Assume observations to be emissions upon the
arrival on successive states

 Decide in favor of the model S™ (from the M
available) according to the Bayes rule

S" =arg max P(S‘X)

for equiprobable patterns

S  =arg max p(X‘S)

26
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» For each model S'there 1s more than one possible sets
of successive state transitions £2, each with

probability P(C,[S)

Thus: P(X|S) =Y p(X.,Q/9)

= 2. P(X|Q, )P,

5)

 For the efficient computation of the above DEFINE

- a(ikﬂ) = p(zlﬂ“‘ﬂzkﬂﬂikﬂ“s)

P (i, ‘ik )P (X4 ‘ik+1 )

T

4 .
History Local activity

27
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i=K, i=K, i\ =K, i =K, i=
. . ........... . . ........... .
® ® - ® ® @
® P P(glt) ®
. ‘ .
a(y) L]a'(zkﬂ )
<
. P(wk+1|ik+l)
® ® - @ ® - o
X X Xy Lo Xy

e Observe that

PX|9)=" aliy)

Compute this for each S

28
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* Some more quantities

o ﬁ(ik):p(£k+19£k+29"'9£N‘ik9S)
= Zﬂ(ikﬂ )P(ikﬂ ik )p()_ckﬂ‘ikﬂ)

Tk

- G = (X X0 |S)
— a(ik ):B(lk)

29
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» Training
e The philosophy:

Given a training set X, known to belong to the
specific model, estimate the unknown parameters of
S, so that the output of the model, e.g.

p(X‘S) — Za(izv)

In=1

to be maximized

» This is a ML estimation problem with missing data

30
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» Assumption: Data x discrete

xei{l2,..r}= p(;‘i) = P(z‘i)

> Definitions:

a(i, = i)P(j‘i)P(Ekﬂ‘j),B(ikﬂ =J)

’ é:k(iaj): P(X‘S)

a(ik — i)ﬂ(ik =)
P(X|S)

- 7=

31
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» The Algorithm:

e Initial conditions for all the unknown parameters.
Compute P( X|S )

« Step 1: From the current estimates of the model
parameters reestimate the new model .S from

ka(l J)

- P(J‘l) Nl

Z 7. (i)

£:

7 (@)

— Fl(r‘i) = =

%,
A

)

— P(i)=7,(i)

# of transitions from i to j ]

# of transitions from i

[:

atstateiand x =r
# of being at state i

32
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e Step 2: Compute P(X‘g). If P(X|S)-P(X|S)>e, S=S
go to step 1. Otherwise stop

e Remarks:

— Each iteration improves the model

S: P(X‘g) > P(X]S)

— The algorithm converges to a maximum (local or
global)

— The algorithm 1s an implementation of the EM
algorithm

33



