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 Basic Concepts

In clustering or unsupervised learning no training data, with class 

labeling, are available. The goal becomes: Group the data into a 

number of sensible clusters (groups). This unravels similarities and 

differences among the available data.

 Applications:

• Engineering

• Bioinformatics

• Social Sciences

• Medicine

• Data Mining and Web Mining

 To perform clustering of a data set, a clustering criterion must first 

be adopted.  Different clustering criteria lead, in general, to 

different clusters.
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 A simple example

5

blue shark, 

sheep, cat,

dog

lizard, sparrow, 

viper, seagull, gold 

fish, frog, red mullet

1. Two clusters

2. Clustering 

criterion:

How animals bear

their progeny

gold fish, red 

mullet, blue 

shark

sheep, sparrow, 

dog, cat, seagull, 

lizard, frog, viper

1. Two clusters

2. Clustering criterion:

Existence of lungs
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 Clustering task stages

 Feature Selection: Information rich features-Parsimony

 Proximity Measure:  This quantifies the term similar or 
dissimilar.

 Clustering Criterion:  This consists of a cost function or 
some type of rules.

 Clustering Algorithm:  This consists of the set of  steps
followed to reveal the structure, based on the similarity 
measure and the adopted criterion.

 Validation of the results.

 Interpretation of the results.

6
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 Depending on the similarity measure, the clustering criterion 

and the clustering algorithm different clusters may result.  

 Subjectivity is a reality to live with from now on.

 A simple example:  How many clusters??

7

2 or 4 ??
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 Basic application areas for clustering 

 Data reduction. 

All data vectors within a cluster are substituted (represented) 

by the corresponding cluster representative.

 Hypothesis generation.

 Hypothesis testing.

 Prediction based on groups.

8
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 Clustering Definitions

 Hard Clustering: Each point belongs to a single cluster

• Let 

• An m-clustering R of X, is defined as the partition of 

X into m sets (clusters), C
1
, C

2
,…,Cm, so that

In addition, data in C
i
are more similar to each other and 

less similar to the data in the rest of the clusters.  

Quantifying the terms similar-dissimilar depends on the types 

of clusters that are expected to underlie the structure of X.
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 Fuzzy clustering:  Each point belongs to all clusters up to 
some degree.

A fuzzy clustering of X into m clusters is characterized by m
functions
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These are known as membership functions.  

Thus, each xi belongs to any cluster “up to some degree”, 
depending on the value of
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TYPES OF FEATURES

 With respect to their domain

 Continuous (the domain is a continuous subset of ℜ).

 Discrete (the domain is a finite discrete set).

• Binary or dichotomous (the domain consists of two possible values).

 With respect to the relative significance of the values they take

 Nominal (the values code states, e.g., the sex of an individual).

 Ordinal (the values are meaningfully ordered, e.g., the rating of the services 

of a hotel (poor, good, very good, excellent)).

 Interval-scaled (the difference of two values is meaningful but their ratio is 

meaningless, e.g., temperature).

 Ratio-scaled (the ratio of two values is meaningful, e.g., weight).

12
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PROXIMITYMEASURES
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Proximity Measure

 E½1>m ª]︻ `1Â︺﹞Ě·¨q1﹁ę
Dissimilarity Measure (Distance)

E½1>m `1Â︺﹞
Similarity Measure

1½`0\a? ¯Â?
Between Vectors

1½ ·︻³¬N﹞ ¯Â?
Between Sets

·︻³¬N﹞ ² `0\a? ¯Â?
Between a Vector and a Set



PROXIMITY MEASURES

 Between vectors

Dissimilarity measure (between vectors of X) is a 
function

with the following properties

•

•

•

: × ⎯⎯→d X X R

15

Xyxyxddd ∈∀+∞<≤<−∞ℜ∈∃ ,,),(:
00
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0
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If in addition

•

•

(triangular inequality)

d is called a metric dissimilarity measure.
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Similarity measure (between vectors of X) is a function

with the following properties

•

•

•
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0 0
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If in addition

•

•

s is called a metric similarity measure.
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 Between sets

Let D
i 
⊂ X, i = 1, … , k and U = {D

1
,…,D

k
}                          

A proximity measure ℘ on U is a function

A dissimilarity measure has to satisfy the relations of dissimilarity 

measure between vectors, where D
i
’s are used in place of x, y

(similarly for similarity measures).

19

:℘ × ⎯⎯→U U R
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PROXIMITY MEASURES BETWEEN VECTORS

 Real-valued vectors

 Dissimilarity measures (DMs)

• Weighted lp metric DMs

Interesting instances are obtained for

– p = 1 (weighted Manhattan norm)

– p = 2 (weighted Euclidean norm)

– p = ∞ (d∞(x,y) = max
1≤i≤l wi |xi − yi| )
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• Other measures

–

where bj and aj are the maximum and the minimum values 

of the j-th feature, among the vectors of X

(dependence on the current data set)

–
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 Similarity measures

• Inner product

• Tanimoto measure

•
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 Discrete-valued vectors

 Let F = {0, 1, …, k−1} be a set of symbols and X = {x1,…,xN} ⊂ Fl

 Let A(x,y) = [aij], i, j = 0,1,…, k−1, where aij is the number of places 

where x has the i-th symbol and y has the j-th symbol.

NOTE:

Several proximity measures can be expressed as combinations of the elements 

of A(x,y).

 Dissimilarity measures:

• The Hamming distance (number of places where x and y differ)

• The l
1

distance
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 Similarity measures:

• Tanimoto measure :

where

• Measures that exclude a00:

• Measures that include a00: 
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 Mixed-valued vectors

Some of the coordinates of the vectors x are real and the rest are discrete.

Methods for measuring the proximity between two such xi and xj:

 Adopt a proximity measure (PM) suitable for real-valued vectors.

 Convert the real-valued features to discrete ones and employ a discrete PM.

The more general case of mixed-valued vectors:

 Here nominal, ordinal, interval-scaled, ratio-scaled features are treated 

separately.

25
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The similarity function between xi and xj is:

In the above definition:

• wq = 0, if at least one of the q-th coordinates of xi and xj are undefined 

or both the q-th coordinates are equal to 0. Otherwise wq = 1.

• If the q-th coordinates are binary, sq(xi,xj) =1 if xiq=xjq=1 and 0 

otherwise.

• If the q-th coordinates are nominal or ordinal, sq(xi,xj) =1 if xiq=xjq and 

0 otherwise.

• If the q-th coordinates are interval or ratio scaled-valued

where rq is the interval where the q-th coordinates of the vectors of the 

data set X lie.

,/||1),( qjqiqjiq rxxxxs −−=

26


==

=
l

q

q

l

q

jiqji wxxsxxs

11

/),(),(

CLUSTERING    Clustering Definitions   Proximity measures



 Fuzzy measures

Let x, y∈[0,1]l. Here the value of the i-th coordinate, x
i, 

of x, is not the 

outcome of a measuring device.

 The closer the coordinate xi is to 1 (0), the more likely the vector x

possesses (does not possess) the i-th characteristic.

 As xi approaches 0.5, the certainty about the possession or not of 

the i-th feature from x decreases.

A possible similarity measure that can quantify the above is:

Then
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 Missing data

For some vectors of the data set X, some features values are unknown

Ways to face the problem:

 Discard all vectors with missing values 
(not recommended for small data sets)

 Find the mean value mi of the available i-th feature values over that data set 
and substitute the missing i-th feature values with mi.

 Define bi = 0, if both the i-th features xi, yi are available and 1 otherwise. 
Then 

where φ(xi ,yi) denotes the PM between two scalars xi , yi.

 Find the average proximities φavg(i) between all feature vectors in X along 
all components. Then

where ψ(xi,yi) = φ(xi,yi), if both xi and yi are available and φavg(i) otherwise.
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PROXIMITY FUNCTIONS BETWEEN A VECTOR AND A SET

 Let X ={x
1
, x

2
, …, xN} and C ⊂ X, x ∈ X

 All points of C contribute to the definition of ℘(x, C)

 Max proximity function

 Min proximity function

 Average proximity function

),(max),(
max

yxCx Cy

ps ℘=℘ ∈

),(min),(
min

yxCx Cy

ps ℘=℘ ∈

29


∈

℘=℘
CyC

ps

avg yx
n

Cx ),(
1

),( n
C

is the cardinality of C
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 A representative(s) of C, rC , contributes to the definition of ℘(x,C)

In this case: ℘(x,C)=℘(x,r
C
)

Typical representatives are:

 The mean vector:

 The mean center:

 The median center:

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are useful in certain 
applications (e.g., object identification using clustering techniques).
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where nC is the cardinality of C

d : a dissimilarity 

measure
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PROXIMITY FUNCTIONS BETWEEN SETS

 Let X ={x1,…,xN}, Di, Dj ⊂ X and ni = |Di|, nj = |Dj|

 All points of each set contribute to ℘(Di,Dj)

 Max proximity function (measure but not metric, only if ℘ is a 

similarity measure)

 Min proximity function (measure but not metric, only if ℘ is a 

dissimilarity measure)

 Average proximity function (not a measure, even if ℘ is a measure)
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 Each set Di is represented by its representative vector mi

 Mean proximity function 

(it is a measure provided that ℘ is a measure):



NOTE: Proximity functions between a vector x and a set C may be derived 

from the above functions if we set Di ={x}.
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 Remarks:

• Different choices of proximity functions between sets may lead to 

totally different clustering results.

• Different proximity measures between vectors in the same proximity 

function between sets may lead to totally different clustering results.

• The only way to achieve a proper clustering is 

− by trial and error and,

− taking into account the opinion of an expert in the field of application.

33
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