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LINEAR CLASSIFIERS

¢ The Problem: Consider a two class task with o, o,

> g(x)=w x+w,=0=

WX WX, o tw X, tw

» Assume x,, x, on the decision hyperplane:

T T
O=w x,+tw,=w x,+w, =

w (x,—x,)=0 Vx,,x,



LINEAR CLASSIFIERS

» Hence: w L on the hyperplane | g(x) = v_sz +w,=0

—— w'=[w, , w,]

w

d







LINEAR CLASSIFIERS P The Perceptron Algorithm

¢ The Perceptron Algorithm

» Assume linearly separable classes, i.¢.,

. *VL*T)L>O Vx e w
w o
w* x<0 Vxeow,

w1 *
» The case w X+ Ww,

falls under the above formulation, since
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» Our goal: Compute a solution, i.e., a hyperplane w,

so that

T (()1

w xz20 = xe€
Q.
2

* The steps
1. Define a cost function to be minimized
2. Choose an algorithm to minimize the cost function

3. The minimum corresponds to a solution
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» The Cost Function

Jw)=) (5w x)

xeY

« Where Yis the subset of the vectors wrongly classified
by w. When Y=(empty set) a solution 1s achieved and

J(w)=0

e Otherwise:

o.=-1if xeY and xe w,

X

o.=+1if xeY and x€ w,

J(w) =0

10
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* Jw) 1s piecewise linear

Jw)= (5w x) /
“".‘\ xeY , /
h \\\\ - P 4
» The Algorithm

* The philosophy of the gradient descent 1s adopted.

11



LINEAR CLASSIFIERS P The Perceptron Algorithm
Jowy |

w(new) = w(old)+ Aw

e Wherever valid

.::\ Aw

=X

xeY

 This 1s the celebrated Perceptron Algorithm

aJ(LV) 8 25”_‘/& Z

ow

Y xeY

wt+D)=w(t)-p, Y .x

xeY

X — =

Sw' x)

Aw
L |
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» An example:

w(t+1)=w(®)+p0,x o
=w()-p0.x (4,=-1)

\

» The perceptron algorithm converges in a finite number

of 1teration steps to a solution i1f

t—>oo t—>oo

c
e.g.,: PO, = "

! 4
lim ) p, — oo, im > p,” < +oo
k=0 k=0
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¢ A useful variant of the perceptron algorithm

! <0
Wt +1) w0+ pr, o 1% OXo
_(t)E Cl)
! >0
Wt +1)=w () - px g, 1% OLo
X 1) € W,
w+1D)=w(t) , otherwise

» Iti1s a |reward and punishment | type of algorithm

14
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Example 3.2

Figure 3.4 shows four points in the two-dimensional space. Points (=1, 0), (0, 1) belong
to class wy, and points (0, —1),(1,0) belong to class w,. The goal of this example is
to design a linear classifier using the perceptron algorithm in its reward and punishment
form. The parameter p is set equal to one, and the initial weight vector is chosen as w(0) =

[0,0,0]” in the extended three-dimensional space. According to (3.21)—(3.23), the following
computations are in order:

x, 4

1 e

15
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—i =]
w! (0) 0 | =0 w()=w)+ 0 | =
1 1
.
wl (D] 1 | =1>0. w2 = w)
1
N .
w! ) -1 | =1>0, w@)=w)-| -1 | =
1 1
T
w3l 0 | =-1<0 w@ = w3
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Step b.

w%4)|7 O—‘ =1>0, w() = w4
1

Step 6.

0
w' G| 1 | =1>0, w©) = w)
1

Step /.

0
wT(6){—1 —‘ = —1<0, w) = w)
1

Since for four consecutive steps no correction is needed, all points are correctly classified
and the algorithm terminates. The solution is w = [—1,1,0]17. That is, the resulting linear
classifier is —x; + a2 = 0, and it is the line passing through the origin shown in Figure 3.4.

17
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¢ The perceptron

w
x) 0

(@)

w.'s synapses or synaptic weights
w, threshold

(b)

If

If

w! x + wo >0

ll’r.\‘ + wo <0

assign x to w

assign x to w»

» The network is called perceptron or neuron

» It is alearning machine that learns from the training vectors

via the perceptron algorithm

18
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The Perceptron Algorithm

Choose w(0) randomly

Choose pg

t=0

Repeat

Y =0

Fori = 1toN
o If Sxiw(t)Tx,- =0then Y = Y U {x;}

End {For}
wt+ 1) =wl) —pr) .cyOxX
Adjust p;
t=1+1

m UntilY =0

19
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» Example: At some stage ¢ the perceptron algorithm results in

X

w=1Lw =1 w,=-05 'R
x,+x,—05=0
The corresponding 051"
hyperplane 1s
OF
0243 0 05 Lo
1 0.4 —0.2] [1.42]
wit+D=| 1 |-0.7(=1)]0.05|-0.7(+1) 0.75 |=| 0.51
—-0.5 1 1] [-05]

20
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¢ Least Squares Methods

» If classes are linearly separable,
the perceptron output results in +1

» If classes are NOT linearly separable, we shall compute the
weights W, W,,..., W,

so that the difference between
» The actual output of the classifier, w' x , and

{+1 ifx e w,

-lifx € w,

e The desired outputs, e.g.
to be SMALL

22
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» SMALL, in the mean square error sense, means to choose W
so that the cost function

« JW)=E[(y -w' x)*]is minimum

N

e w =argminJ (w)

« y the corresponding desired responses (targets)

23
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» Minimizing J (w ) w.r. tow_results in :

aJ(VL)_i o T N2 —
> —aWE[(y w x)]1=0

T

=2E[x(y —x w)]=
Elxx' w =FE[xy]=

w=R"E[xy]

where R, 1s the autocorrelation matrix

_E[xlxl] E[x,x,]... E[xlx,]_
R =SE[XX ]=| coeeeiiee s i e,
_E[x1x1] Elx,x, ] Elx,x,]
and Elxy]
Elxy]l=| .. 1s the crosscorrelation vector
Elx,y]

24
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» Multi-class generalization

* The goal 1s to compute M linear discriminant functions:

g (x)=w; x
according to the MSE.

» Adopt as desired responses y;
y.=1 1 xew

¥y, =0 otherwise

* Let .
Y= [ylayzw-aJ/M]

e and the matrix

W =W, Wy wy, |

25
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* The goal 1s to compute V-

W = arg min E[HZ - WTE‘H = argmin E{i (J’z- —w'

« The above is equivalent to a number M of MSE minimization
problems. That 1s:

Design each w;, so that its desired output is 1 for xe @,
and O for any “other class.

26
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» Remark: The MSE criterion belongs to a more general class of cost
function with the following important property:

* The value of g,(x) is an estimate, in the MSE sense, of the
a-posteriori probability P(w, | x), provided that the desired responses
used during training are y, =1,x€ @, and 0 otherwise.

27
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¢ Sum of Error Squares Estimation

¢ SMALL in the sum of error squares sense means

N
T 2
>Jw)=> (y,-w x,)
l =1N . training pairs that is, the input x; and its
{Vix) o corresponding class label y, (£1).

28
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** Pseudoinverse Matrix
> Define

corresponding

X =|7* | (an N X/ matrix) y .
= desired responses

> X' =[x,,x,,...,xy] (an!XxXN matrix)

> X'

&
|
M=
[=
=

\%
S
~
<
]
M-
2
=
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N N
Thus (Z )_CiT)_Cz')V_AV — (Z )_Ciyi)
i=1 i=1

X' X)w=X"y=
w=(X"X)"X"y

:Xiy

X =(X"X)'X"| Pseudoinverse of X

» Assume N=1 = X square and invertible. Then

XXX =XxX"X"=X"=

X'=x"

30
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» Assume N> [. Then, in general, there 1s no solution to
satisfy all equations simultaneously:

(T
X W =Y,
X oW
Xw =y QTR 02 N equations >/ unknowns
X VW =V

> The “solution” w =X #)_/ corresponds to the minimum sum
of squares solution

31
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» Example: To.470.6][0.170.2][0.3
“ '{0.5}{0.5}{0.4}{0.7}{0.3}
[0.47[0.61[0.7][0.8][0.7
“ '{0.6}{0.2}{0.4}{0.6}{0.5}
— 0.4 0.5
! : 0.6 0.5
_ o = : 0.1 04
- 02 0.7
03 0.3
04 0.6
| 0.6 0.2
_ . _ 0.7 0.4

n . 0.8 0.6
0 1 I 1 1 1 1 1 1 1 ‘ _07 05

e e e e e ped e e

I
|’
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wx, tw,x,+w,=0

(28 224 48] 1.6
X'X =224 241 4.7 ,XTX: 0.1
48 47 10 0.0 |

[ —3.13

w=(X"X)"X"y=| 0.24
| 1.34 |
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> Mean square error regression: Let ye RY xe R’ be jointly
distributed random vectors with a joint pdf p(x, y)

* The goal: Given the value of x estimate the value of y. In the
pattern recognition framework, given x one wants to estimate
the respective label y =+].

* The MSE estimate y of y given x is defined as:

= argmin |y 5

e It turns out that:
b= Ely|x]= jzp(z@dz

The above 1s known as the regression of y given X and it is, in
general, a non-linear function of x .
If p(x,y) is Gaussian the MSE regressor is linear.

35
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** The Bias — Variance Dilemma

A classifier g(x) 1s a learning machine that tries to predict the
class label y of x. In practice, a finite data set D is used for its
training. Let us write g(x; D) . Observe that:

19—=—i

to good estimates, for some others the result may be worse.

» For some training sets, D = {( V.,X )}jv the training may result

» The average performance of the classifier can be tested against
the MSE optimal value, in the mean squares sense, that is:

E, [(g(JL;D)—E[y |£])2}

where E, is the mean over all possible data sets D.

36
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 The above 1s written as:

L, [(g(L;D)—E[y |£])2J=

(Eo[g@:D)]-Ely |5)) +E, | (8:D)~E, [g@:D)]) |

* In the above, the first term 1s the contribution of the bias
and the second term 1s the contribution of the variance.

* For a finite D, there 1s a trade-off between the two terms.
Increasing bias it reduces variance and vice verse. This 1s
known as the bias-variance dilemma.

« Using a complex model results in low-bias but a high
variance, as one changes from one training set to another.
Using a model results in but

37
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FIGURE 3.8

The data points are spread around the f(x) curve. The line g(x) = 0 exhibits zero variance but

high bias. The high degree polynomial curve, g;(x) = 0, always passes through the training
points and leads to low bias (zero bias at the training points) but to high variance.
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“* LOGISTIC DISCRIMINATION

» Let an M-class task, @,, @,, ..., w,, . In logistic discrimination,
the logarithm of the likelihood ratios are modeled via linear
functions, 1.e.,

n =w, ,tw, x, i=12,....M -1
P(wM|3£) ’

— ]

» Taking into account that

zﬁip(wi x)=1

it can be easily shown that the above 1s equivalent with
modeling posterior probabilities as:

40
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1

P(wM |x): M-1
1+ Zexp(w +w, 1)
i=l

» For the two-class case it turns out that

1
P<w2|§): '

1+ exp(wo + V_VTE)

_explw, +w'x)
Pl |x)= 1+ exp(ivo +w 1)

41
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» The unknown parameters w;, w,,, i =1, 2, ..., M-1 are usually
estimated by maximum likelihood arguments.

» Logistic discrimination is a useful tool, since
* 1t allows linear modeling, and

* at the same time ensures posterior probabilities to add to one.

42
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¢ Support Vector Machines (SVM)

» The goal: Given two linearly separable classes, design the

lassifi
classifier 2(x) :V_VT£+W0 ~ 0

that leaves the maximum margin from both classes

direction 2

e —
— e —
—— e —
— —
—

Yy

Xy

44
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» Margin: Each hyperplane is characterized by
e Its direction in space, 1.€., W

* Its position in space, 1.€., W,

e For EACH direction,w, choose the hyperplane that
leaves the SAME distance from the nearest points from
each class. The margin 1s twice this distance.

45
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» The distance of a point x from a hyperplane , — g()

1s given by : Hv_vH

» Scale, w, W,, so that at the nearest points from each class the
discriminant function is £1:

g(x)|=1 1g(x) = +1for w, and g(x) =1 for w, |

» Thus the margin is given by

1 1 2
_|_

w| ] [

-

T
>
> Also, the following is valid )% £TWe=1 Vie®

T
w xtw,<-1 Vxew,

\—

46
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» SVM (linear) classifier
g(x)=w x+w,
> Minimize
| 2
J(w)=—|w
) =L |

» Subject to
yl.(v_vT)_cl.+w0)21, i=12,...N
y, =1 ,forx, eaw,

y,=-1, forx, € w,

> The above is justified since by minimizing |wj

2

—— 1S maximized
Wi

the margin

47
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» The above is a quadratic optimization task, subject to a set
of linear inequality constraints. The Karush-Kuhn-Tucker
conditions state that the minimizer satisfies:

e (1) L Loww,, 2)=0
ow
)

. () L(w, wy, A)=0
ow,

*(3) 420,i=1,2,...,N
c (@) Ay, x, +w)-1|=0,i=12,..N

 Where L(e,®,®) isthe Lagrangian
1 N
L(w, w,, A) = Ev_vTv_v— > ALy (w x, +w,)]
i=1

48
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» The solution: from the above, it turns out that

N
: K:Z/liyiﬁi

i=1

ﬂiyi =0

M=

49
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» Remarks:

e The Lagrange multipliers can be either zero or positive.
Thus,

NS
- W= Z/liyiﬁi
i=1

where N < N, corresponding to positive Lagrange
multipliers

— From constraint (4) above, 1.e.,

ALy, (W' x, +w,)-1]1=0, i=12,.,N
the vectors contributingto W  satisty

V_VTEZ- +w, ==l

50
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— These vectors are known as SUPPORT VECTORS
and are the closest vectors, from each class, to the
classifier.

— Once w 1s computed, w, 1s determined from
conditions (4).

— The optimal hyperplane classifier of a support vector
machine 1s UNIQUE.

— Although the solution is unique, the resulting
Lagrange multipliers are not unique.

51
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» Dual Problem Formulation
 The SVM formulation 1s a convex programming problem,
with
— Convex cost function
— Convex region of feasible solutions
e Thus, its solution can be achieved by its dual problem, 1.e.,

— maximize L(w,w,,A)

N
— subjectto  w= Zﬂiyizi

i=1

N
Zﬂiyi =0
i=1

4>

0

52
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 Combine the above to obtain

N

1

— max/%mize (Z j’i o EZ ﬂiﬁjyiyjizr Ej)
i=1 ij

— subject to
N
Zﬂ’iyi =0
i=1
A20
» Remarks:

* Support vectors enter via inner products

53
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» Non-Separable classes

€

54
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In this case, there is no hyperplane
such that

T
WX

tw, 21, Vx

» Recall that the margin 1s defined as twice the distance
between the following two hyperplanes

w x+w =1
and

W x+w, =—1

55
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» The training vectors belong to one of three possible
categories

1) Vectors outside the band which are correctly
classified, 1.e.,

y,(w x+w,)>1

2) Vectors inside the band, and correctly classified,
1.e.,

0<y,(w x+w)<I

3) Vectors misclassified, 1.e.,

y,(w x+w,)<0

56
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» All three cases above can be represented as

yi(V_VTE_I'WO) 2 l_é:i

1) —¢& =0
2) —0<¢, <1
3) —>I<E,

f ; are known as slack variables

57
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» The goal of the optimization is now two-fold
e Maximize margin
 Minimize the number of patterns with & >0,
One way to achieve this goal 1s via the cost

T, O = o +CY1(E)

where (C'i1s a constant and

1(§->={(1) g ig}

 /(.)1s not differentiable. In practice, we use an
approximation

1 N
J(V_Va Wos ﬁ) = 5”1/_‘/”2 T CZ:; fi

» Following a similar procedure as before we obtain

58
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» KKT conditions

N
(D) w= Ziiyzﬁi
i=1

N
(2) Zj‘iyi =0
i=1
(3) C—u—A =0,i=12,...N
(4) Aly.(w x, +w,)—1+&]1=0, i=12,.,N
5) ué =0, i=12,..,N
6) w.,A. >0, i=12,..N

59
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» The associated dual problem

N
L] L] 1
Maximize A3 4 =~ Y A4y, x))
i=1 i,

subjectto <A <C,i=12,.,N

N
Zﬂ’iyi =0
i=1

» Remarks: The only difference with the separable
class case 1s the existence of C in the constraints

60
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» Training the SVM

A major problem is the high computational cost. To this end,
decomposition techniques are used. The rationale behind
them consists of the following:

Start with an arbitrary data subset (working set) that can fit in
the memory. Perform optimization, via a general purpose
optimizer.

Resulting support vectors remain in the working set, while
others are replaced by new ones (outside the set) that violate
severely the KKT conditions.

Repeat the procedure.

The above procedure guarantees that the cost function
decreases.

Platt’s SMO algorithm chooses a working set of two samples,
thus analytic optimization solution can be obtained.
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FIGURE 3.13

An example of two nonseparable classes and the resulting SVM linear classifier (full line) with
the associated margin (dotted lines) for the values (a) € = 0.2 and (b) C = 1000. In the latter
case, the location and direction of the classifier as well as the width of the margin have changed
in order to include a smaller number of points inside the margin.
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» Multi-class generalization

Although theoretical generalizations exist, the most popular in
practice 1s to look at the problem as M two-class problems
(one against all).

‘one vs. all’ ‘one vs. one’

63
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Chapter 3

K%

Linear Classifiers

3.1 INTRODUCTION

Our major concern in Chapter 2 was to design classifiers based on probability
density or probability functions. In some cases, we saw that the resulting classifiers
were equivalent to a set of linear discriminant functions. In this chapter, we will
focus on the design of linear classifiers, regardless of the underlying distributions
describing the training daia. The major advantage of linear classifiers is their sim-
plicity and computational attractiveness. The chapter starts with the assumption
that all feature vectors from the available classes can be classified correctly using a
linear classifier, and we will develop techniques for the computation of the corre-
sponding linear functions. In the sequel we will focus on a more general problem,
in which a linear classifier cannot correctly classify all vectors, yet we will seek
ways to design an optimal Iinear classifier by adopting an approprate optimality
criterion.

3.2 LINEAR DISCRIMINANT FUNCTIONS

AND DECISION HYPERPLANES
Let us once more focus on the two-class case and consider linear discriminant
functions. Then the respective decision hypersurface in the /-dimensional feature
space is a hyperplane, that is

gx) = wlx+ug =0 G.n
where w = [un,wz2,..., u':IT' is known as the weight recior and wo as the thresh-
old. If x,x; are two points on the decision hyperplane, then the following is

valid
0=uw'x1 +uwp=w'x2+ -
= 1+Hun = x2+wn =

ulrgx| —x3)=10 {3.2)

91
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Chapter 5

—

LINEAR DISCRIMINANT
FUNCTIONS

5.1 INTRODUCTION

TRAINING ERROR

We assumed in Chapter 3 that the forms for the under]ymg probability densities
were known, and that we will use the traini to the values of their
parameters. In this chapter we shall instead assume we know the proper forms for
the discriminant functions, and use the samples to estimate the values of parameters
of the classifier. We shall ine various procedures for determining discriminant
functions, some of which are statistical and some of which are not. None of them,
however, requires knowledge of the forms of underlying probability distributions,
and in this limited sense they can be said to be nonparametric.

Throughout this chapter we shall be concerned with discriminant functions that
are either linear in the components of x, or linear in some given set of functions
of x. Linear discriminant functions have a variety of pleasant analytical properties.
As we have seen in Chapter 2, they can be optimal if the underlying distributions
are cooperative, such as Gaussians having equal covariance, as might be obtained
through an intelligent choice of feature detectors. Even when they are not optimal,
we might be willing to sacrifice some performance in order to gain the advantage
of their simplicity. Linear discriminant functions are relatively easy to compute and
in the absence of information suggesting otherwise, linear classifiers are attractive
candidates for initial, trial classifiers. They also illustrate a number of very important
principles that will be used more fully in neural networks (Chapter 6).

The problem of finding a linear discriminant function will be formulated as a
problem of minimizing a criterion function. The obvious criterion function for clas-
sification purposes is the sample risk, or training error—the average loss incurred
in classifying the set of training samples. We must emphasize right away, however,
that despite the attractiveness of this criterion, it is fraught with problems. While our
goal will be to classify novel test patterns, a small training error does not guarantee
a small test error—a fascinating and subtle problem that will command our attention
in Chapter 9. As we shall see here, it is difficult to derive the minimum-risk lin-
ear discriminant anyway, and for that reason we investigate several related criterion
functions that are analytically more tractable.
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