CLUSTERING

A Basic Concepts

In clustering or unsupervised learning no training data, with class labeling, are available. The goal becomes: Group the data into a number of sensible clusters (groups). This unravels similarities and differences among the available data.

> Applications:

- Engineering
- Bioinformatics
- Social Sciences
- Medicine
- Data and Web Mining
- ➤ To perform clustering of a data set, a clustering criterion must first be adopted. Different clustering criteria lead, in general, to different clusters.

➤ A simple example

Blue shark, sheep, cat, dog

Lizard, sparrow, viper, seagull, gold fish, frog, red mullet

- 1. Two clusters
- 2. Clustering criterion: How mammals bear their progeny

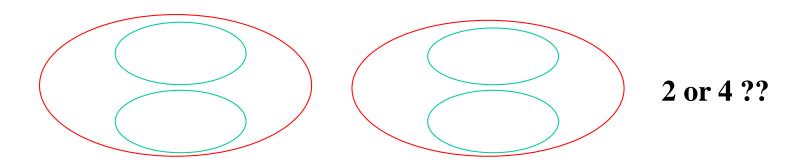
Gold fish, red mullet, blue shark Sheep, sparrow, dog, cat, seagull, lizard, frog, viper

- 1. Two clusters
- 2. Clustering criterion: Existence of lungs

Clustering task stages

- > Feature Selection: Information rich features-Parsimony
- > Proximity Measure: This quantifies the term similar or dissimilar.
- > Clustering Criterion: This consists of a cost function or some type of rules.
- > Clustering Algorithm: This consists of the set of steps followed to reveal the structure, based on the similarity measure and the adopted criterion.
- **Validation of** the results.
- > Interpretation of the results.

➤ A simple example: How many clusters??



* Basic application areas for clustering

- > Data reduction. All data vectors within a cluster are substituted (represented) by the corresponding cluster representative.
- > Hypothesis generation.
- > Hypothesis testing.
- > Prediction based on groups.

- Clustering Definitions
 - ➤ Hard Clustering: Each point belongs to a single cluster
 - Let $X = \{\underline{x}_1, \underline{x}_2, ..., \underline{x}_N\}$
 - An *m*-clustering R of X, is defined as the partition of X into m sets (clusters), C_1, C_2, \ldots, C_m , so that

$$C_i \neq \emptyset, i = 1, 2, ..., m$$

$$U_{i=1}^m C_i = X$$

$$C_i \cap C_j = \emptyset, i \neq j, i, j = 1, 2, ..., m$$

In addition, data in C_i are more similar to each other and less similar to the data in the rest of the clusters.

Quantifying the terms similar-dissimilar depends on the types of clusters that are expected to underlie the structure of X.

> Fuzzy clustering: Each point belongs to all clusters up to some degree.

A fuzzy clustering of X into m clusters is characterized by m functions

$$u_j: \underline{x} \to [0,1], \ j = 1,2,...,m$$

$$\sum_{j=1}^{m} u_{j}(\underline{x}_{i}) = 1, i = 1, 2, ..., N$$

$$0 < \sum_{i=1}^{N} u_{j}(\underline{x}_{i}) < N, \ j = 1, 2, ..., m$$

These are known as membership functions. Thus, each \underline{x}_i belongs to any cluster "up to some degree", depending on the value of

$$u_{j}(\underline{x}_{i}), j = 1,2,...,m$$

 $u_j(\underline{x}_i)$ close to $1 \Rightarrow$ high grade of membership of \underline{x}_i to cluster j. $u_j(\underline{x}_i)$ close to $0 \Rightarrow$ low grade of membership.

TYPES OF FEATURES

- ❖ With respect to their <u>domain</u>
 - \triangleright Continuous (the domain is a continuous subset of \Re).
 - > Discrete (the domain is a finite discrete set).
 - *Binary* or *dichotomous* (the domain consists of two possible values).
- ❖ With respect to the <u>relative significance of the values they take</u>
 - Nominal (the values code states, e.g., the sex of an individual).
 - ➤ Ordinal (the values are meaningfully ordered, e.g., the rating of the services of a hotel (poor, good, very good, excellent)).
 - ➤ Interval-scaled (the difference of two values is meaningful but their ratio is meaningless, e.g., temperature).
 - > Ratio-scaled (the ratio of two values is meaningful, e.g., weight).

PROXIMITY MEASURES

- * Between vectors
 - Dissimilarity measure (between vectors of X) is a function

$$d: X \times X \longrightarrow \mathbb{R}$$

with the following properties

$$\exists d_0 \in \Re: \ -\infty < d_0 \le d(\underline{x}, \underline{y}) < +\infty, \ \forall \underline{x}, \underline{y} \in X$$

•
$$d(\underline{x},\underline{x}) = d_0, \ \forall \underline{x} \in X$$

•
$$d(\underline{x}, \underline{y}) = d(\underline{y}, \underline{x}), \ \forall \underline{x}, \underline{y} \in X$$

If in addition

•
$$d(\underline{x}, \underline{y}) = d_0$$
 if and only if $\underline{x} = \underline{y}$

•
$$d(\underline{x},\underline{z}) \le d(\underline{x},y) + d(y,\underline{z}), \ \forall \underline{x},y,\underline{z} \in X$$

(triangular inequality)

d is called a metric dissimilarity measure.

> Similarity measure (between vectors of X) is a function

$$s: X \times X \longrightarrow \mathbb{R}$$

with the following properties

$$\cdot \exists s_0 \in \mathbb{R} : -\infty < s(\underline{x}, \underline{y}) \le s_0 < +\infty, \ \forall \underline{x}, \underline{y} \in X$$

•
$$s(\underline{x},\underline{x}) = s_0, \ \forall \underline{x} \in X$$

•
$$s(\underline{x}, \underline{y}) = s(\underline{y}, \underline{x}), \ \forall \underline{x}, \underline{y} \in X$$

If in addition

- $s(\underline{x}, y) = s_0$ if and only if $\underline{x} = y$
- $s(\underline{x}, y)s(y, \underline{z}) \le [s(\underline{x}, y) + s(y, \underline{z})]s(\underline{x}, \underline{z}), \ \forall \underline{x}, y, \underline{z} \in X$ s is called a metric similarity measure.

* Between sets

Let $D_i \subset X$, i = 1, ..., k and $U = \{D_1, ..., D_k\}$

A proximity measure \wp on U is a function

$$\wp: U \times U \longrightarrow \mathbb{R}$$

A dissimilarity measure has to satisfy the relations of dissimilarity measure between vectors, where D_i 's are used in place of \underline{x} , \underline{y} (similarly for similarity measures).

PROXIMITY MEASURES BETWEEN VECTORS

- * Real-valued vectors
 - **Dissimilarity measures (DMs)**
 - Weighted l_p metric DMs

$$d_p(\underline{x},\underline{y}) = \left(\sum_{i=1}^l w_i \mid x_i - y_i \mid^p\right)^{1/p}$$

Interesting instances are obtained for

- -p = 1 (weighted Manhattan norm)
- -p = 2 (weighted Euclidean norm)
- $-p = \infty (d_{\infty}(\underline{x},\underline{y}) = \max_{1 \le i \le l} w_i |x_i y_i|)$

Other measures

$$- d_G(\underline{x}, \underline{y}) = -\log_{10} \left(1 - \frac{1}{l} \sum_{j=1}^{l} \frac{|x_j - y_j|}{b_j - a_j} \right)$$

where b_i and a_i are the maximum and the minimum values of the j-th feature, among the vectors of X(dependence on)the current data set)

$$- d_{\mathcal{Q}}(\underline{x}, \underline{y}) = \sqrt{\frac{1}{l} \sum_{j=1}^{l} \left(\frac{x_j - y_j}{x_j + y_j} \right)^2}$$

- > Similarity measures
 - Inner product

$$S_{inner}(\underline{x},\underline{y}) = \underline{x}^T \underline{y} = \sum_{i=1}^l x_i y_i$$

Tanimoto measure

$$S_T(\underline{x}, \underline{y}) = \frac{\underline{x}^T \underline{y}}{\|\underline{x}\|^2 + \|\underline{y}\|^2 - \underline{x}^T \underline{y}}$$

•
$$s_T(\underline{x}, \underline{y}) = 1 - \frac{d_2(\underline{x}, \underline{y})}{\|\underline{x}\| + \|\underline{y}\|}$$

❖ Discrete-valued vectors

- \blacktriangleright Let $F=\{0,1,\ldots,k-1\}$ be a set of symbols and $X=\{\underline{x}_1,\ldots,\underline{x}_N\}\subset F^l$
- ightharpoonup Let $A(\underline{x},\underline{y}) = [a_{ii}]$, i, j = 0,1,...,k-1, where a_{ii} is the number of places where \underline{x} has the *i*-th symbol and \underline{y} has the *j*-th symbol.

NOTE:
$$\sum_{i=0}^{k-1} \sum_{j=0}^{k-1} a_{ij} = l$$

Several proximity measures can be expressed as combinations of the elements of $A(\underline{x},\underline{y})$.

- > Dissimilarity measures:
 - The Hamming distance (number of places where <u>x</u> and <u>y</u> differ)

$$d_H(\underline{x},\underline{y}) = \sum_{i=0}^{k-1} \sum_{\substack{j=0\\j\neq i}}^{k-1} a_{ij}$$

• The l_1 distance

$$d_1(\underline{x},\underline{y}) = \sum_{i=1}^l |x_i - y_i|$$

> Similarity measures:

Similarity measures:

• Tanimoto measure:
$$s_{T}(\underline{x},\underline{y}) = \frac{\sum_{i=1}^{k-1} a_{ii}}{n_{x} + n_{y} - \sum_{i=1}^{k-1} \sum_{j=1}^{k-1} a_{ij}}$$

$$\frac{k-1}{k-1} \frac{k-1}{k-1}$$

where
$$n_x = \sum_{i=1}^{k-1} \sum_{j=0}^{k-1} a_{ij}, \quad n_y = \sum_{i=0}^{k-1} \sum_{j=1}^{k-1} a_{ij},$$

• Measures that exclude
$$a_{00}$$
: $\sum_{i=1}^{k-1} a_{ii} / l$ $\sum_{i=1}^{k-1} a_{ii} / (l - a_{00})$

• Measures that include
$$a_{00}$$
:
$$\sum_{i=0}^{k-1} a_{ii} / l$$

Mixed-valued vectors

Some of the coordinates of the vectors \underline{x} are real and the rest are discrete.

Methods for measuring the proximity between two such \underline{x}_i and \underline{x}_i :

- Adopt a proximity measure (PM) suitable for real-valued vectors.
- > Convert the real-valued features to discrete ones and employ a discrete PM.

The more general case of mixed-valued vectors:

➤ Here nominal, ordinal, interval-scaled, ratio-scaled features are treated separately.

$$S(\underline{x}_i, \underline{x}_j) = \sum_{q=1}^l S_q(\underline{x}_i, \underline{x}_j) / \sum_{q=1}^l W_q$$

In the above definition:

- $w_q = 0$, if at least one of the q-th coordinates of \underline{x}_i and \underline{x}_j are undefined or both the q-th coordinates are equal to 0. Otherwise $w_q=1$.
- If the q-th coordinates are binary, $s_q(\underline{x}_i,\underline{x}_i) = 1$ if $x_{ia} = x_{ia} = 1$ and 0 otherwise.
- If the q-th coordinates are nominal or ordinal, $s_q(\underline{x_i},\underline{x_i}) = 1$ if $x_{iq} = x_{iq}$ and 0 otherwise.
- If the q-th coordinates are interval or ratio scaled-valued

$$s_q(\underline{x}_i, \underline{x}_j) = 1 - |x_{iq} - x_{jq}| / r_q,$$

where r_q is the interval where the q-th coordinates of the vectors of the data set X lie.

Fuzzy measures

Let \underline{x} , $\underline{y} \in [0,1]^l$. Here the value of the *i*-th coordinate, x_i of \underline{x} , is **not** the outcome of a measuring device.

- \triangleright The closer the coordinate x_i is to 1 (0), the more likely the vector \underline{x} possesses (does not possess) the i-th characteristic.
- \triangleright As x_i approaches 0.5, the certainty about the possession or not of the *i*-th feature from *x* decreases.

$$s(x_i, y_i) = \max(\min(1-x_i, 1-y_i), \min(x_i, y_i))$$

A possible similarity measure that can quantify the above is:

Then
$$S_F^q(\underline{x},\underline{y}) = \left(\sum_{i=1}^l s(x_i,y_i)^q\right)^{1/q}$$

Missing data

For some vectors of the data set X, some features values are unknown

Ways to face the problem:

- > Discard all vectors with missing values (not recommended for small data sets)
- \triangleright Find the mean value m_i of the available *i*-th feature values over that data set and substitute the missing *i*-th feature values with m_i .
- \triangleright Define b_i =0, if both the *i-th* features x_i , y_i are available and 1 otherwise. Then

$$\mathcal{O}(\underline{x}, \underline{y}) = \frac{l}{l - \sum_{i=1}^{l} b_i} \sum_{all \ i: \ b_i = 0} \phi(x_i, y_i)$$

where $\phi(x_i, y_i)$ denotes the PM between two scalars x_i , y_i .

 \triangleright Find the average proximities $\phi_{avg}(i)$ between all feature vectors in X along all components. Then

$$\wp(\underline{x},\underline{y}) = \sum_{i=1}^{l} \psi(x_i, y_i)$$

where $\psi(x_i, y_i) = \phi(x_i, y_i)$, if both x_i and y_i are available and $\phi_{avg}(i)$ otherwise.

PROXIMITY FUNCTIONS BETWEEN A VECTOR AND A SET

- \bigstar Let $X=\{\underline{x}_1,\underline{x}_2,\ldots,\underline{x}_N\}$ and $C\subset X,\underline{x}\in X$
- \clubsuit All points of C contribute to the definition of $\wp(x, C)$
 - > Max proximity function

$$\wp_{\max}^{ps}(\underline{x},C) = \max_{\underline{y} \in C} \wp(\underline{x},\underline{y})$$

> Min proximity function

$$\wp_{\min}^{ps}(\underline{x}, C) = \min_{\underline{y} \in C} \wp(\underline{x}, \underline{y})$$

> Average proximity function

$$\wp_{avg}^{ps}(\underline{x}, C) = \frac{1}{n_C} \sum_{\underline{y} \in C} \wp(\underline{x}, \underline{y})$$
 n_C is the cardinality of C

- $riangle A representative(s) of C, r_C, contributes to the definition of <math>\mathfrak{S}(x,C)$

In this case: $(x,C) = (x,r_C)$

Typical representatives are:

> The mean vector:

$$\underline{m}_p = \left(\frac{1}{n_C}\right) \sum_{v \in C} \underline{y}$$

where n_C is the cardinality of C

> The mean center:

 $\underline{m}_C \in C: \sum_{y \in C} d(\underline{m}_C, \underline{y}) \le \sum_{y \in C} d(\underline{z}, \underline{y}), \quad \forall \underline{z} \in C$

> The median center:

 $\underline{m}_{med} \in C$: $med(d(\underline{m}_{med}, y) | y \in C) \leq med(d(\underline{z}, y) | y \in C), \forall \underline{z} \in C$

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are useful in certain applications (e.g., object identification using clustering techniques).

d: a dissimilarity

measure

PROXIMITY FUNCTIONS BETWEEN SETS

- \bigstar Let $X=\{\underline{x}_1,...,\underline{x}_N\}$, D_i , $D_i\subset X$ and $n_i=|D_i|$, $n_i=|D_i|$
- \clubsuit All points of each set contribute to $\wp(D_i, D_i)$
 - \triangleright Max proximity function (measure but not metric, only if \wp is a similarity measure)

$$\wp_{\max}^{ss}(D_i, D_j) = \max_{\underline{x} \in D_i, \underline{y} \in D_j} \wp(\underline{x}, \underline{y})$$

 \triangleright Min proximity function (measure but not metric, only if \wp is a dissimilarity measure)

$$\wp_{\min}^{ss}(D_i, D_j) = \min_{\underline{x} \in D_i, y \in D_j} \wp(\underline{x}, \underline{y})$$

➤ Average proximity function (not a measure, even if ℘ is a measure)

$$\wp_{avg}^{ss}(D_i, D_j) = \left(\frac{1}{n_i n_j} \right) \sum_{x \in D_i} \sum_{x \in D_j} \wp(\underline{x}, \underline{y})$$

- \clubsuit Each set D_i is represented by its representative vector \underline{m}_i
 - \triangleright Mean proximity function (it is a measure provided that \wp is a measure):

$$\wp_{mean}^{ss}(D_i, D_j) = \wp(\underline{m}_i, \underline{m}_j)$$

NOTE: Proximity functions between a vector <u>x</u> and a set C may be derived from the above functions if we set $D_i = \{\underline{x}\}.$

> Remarks:

- Different choices of proximity functions between sets may lead to totally different clustering results.
- Different proximity measures between vectors in the same proximity function between sets may lead to totally different clustering results.
- The only way to achieve a proper clustering is
 - by trial and error and,
 - taking into account the opinion of an expert in the field of application.