OPTIMAL FEATURE GENERATION

- In general, feature generation is a problem-dependent task. However, there are a few general directions common in a number of applications. We focus on three such alternatives.
 - Optimized features based on Scatter matrices (Fisher's linear discrimination).
 - The goal: Given an original set of *m* measurements $\underline{x} \in \mathbb{R}^{m}$, compute $\underline{y} \in \mathbb{R}^{\ell}$, by the linear transformation

$$\underline{y} = A^T \underline{x}$$

so that the J_3 scattering matrix criterion involving S_w , S_b is maximized. A^T is an $\ell \times m$ matrix.

• The basic steps in the proof:

$$-J_{3} = \operatorname{trace}(S_{W}^{-1} S_{m})$$

$$-S_{yW} = A^{T} S_{XW} A, \quad S_{yb} = A^{T} S_{Xb} A,$$

$$-J_{3}(A) = \operatorname{trace}\{(A^{T} S_{XW} A)^{-1} (A^{T} S_{Xb} A)\}$$

$$-\operatorname{Compute} A \text{ so that } J_{3}(A) \text{ is maximum.}$$

- The solution:
 - Let *B* be the matrix that diagonalizes simultaneously matrices S_{yw} , S_{yb} , i.e: $B^T S_{yw} B = I$, $B^T S_{yb} B = D$ where *B*, is a $\ell \times \ell$ matrix and *D*, a $\ell \times \ell$ diagonal matrix.

- Let C = AB an $m \times \ell$ matrix. If A maximizes $J_3(A)$ then $\left(S_{xw}^{-1}S_{xb}\right)C = CD$

The above is an eigenvalue-eigenvector problem. For an *M*-class problem, $S_{xw}^{-1}S_{xb}$ is of rank *M*-1.

If ℓ = M-1, choose C to consist of the M-1 eigenvectors, corresponding to the non-zero eigenvalues.

$$\underline{y} = C^T \underline{x}$$

The above guarantees maximum J_3 value. In this case: $J_{3,x} = J_{3,y}$.

 For a two-class problem, this results to the well known Fisher's linear discriminant

$$\underline{y} = \left(\underline{\mu}_1 - \underline{\mu}_2\right) S_{xw}^{-1} \underline{x}$$

For Gaussian classes, this is the optimal Bayesian classifier, with a difference of a threshold value .

- If *ℓ* < *M*-1, choose the *ℓ* eigenvectors corresponding to the *ℓ* largest eigenvectors.
- In this case, $J_{3,y} < J_{3,x}$, that is there is loss of information.
- Geometric interpretation. The vector \underline{y} is the projection of \underline{x} onto the subspace spanned by the eigenvectors of $\overline{S_{xw}^{-1}S_{xb}}$.

Principal Components Analysis

(The Karhunen – Loève transform):

The goal: Given an original set of *m* measurements $\underline{x} \in \mathbb{R}^m$ compute $y \in \mathbb{R}^\ell$

$$\underline{y} = A^T \underline{x}$$

for an orthogonal A, so that the elements of \underline{y} are optimally mutually uncorrelated.

That is

$$E[y(i)y(j)] = 0, i \neq j.$$

Sketch of the proof:

$$R_{y} = E\left[\underline{y}\underline{y}^{T}\right] = E\left[A^{T}\underline{x}\underline{x}^{T}A\right] = A^{T}R_{x}A.$$

5

OPTIMAL FEATURE GENERATION Principal Components Analysis (PCA)

• If A is chosen so that its columns \underline{a}_i are the orthogonal eigenvectors of R_x , then

$$R_{y} = A^{T} R_{x} A = \Lambda$$

where Λ is diagonal with elements the respective eigenvalues λ_i .

- Observe that this is a sufficient condition but not necessary. It **imposes** a specific orthogonal structure on *A*.
- Properties of the solution
 - Mean Square Error approximation. Due to the orthogonality of *A*:

$$\underline{x} = \sum_{i=0}^{m} y(i)\underline{a}_i, \quad y(i) = \underline{a}_i^T \underline{x}$$

- Define

$$\hat{\underline{x}} = \sum_{i=0}^{\ell-1} y(i)\underline{a}_i$$

The Karhunen-Loève transform minimizes the square error:

$$E\left[\left\|\underline{x}-\underline{\hat{x}}\right\|^{2}\right] = E\left[\left\|\sum_{i=\ell}^{m} y(i)\underline{a}_{i}\right\|^{2}\right]$$

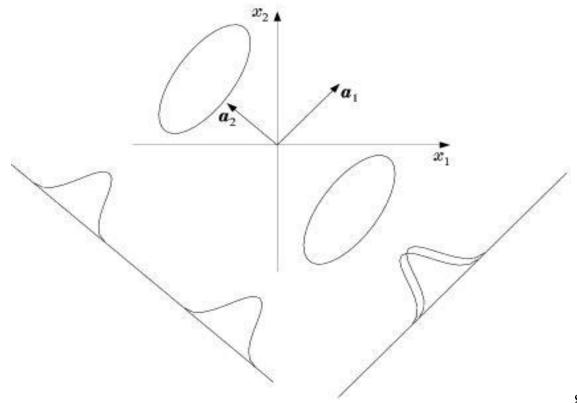
– The error is:

$$E\left[\left\|\underline{x}-\underline{\hat{x}}\right\|^{2}\right] = \sum_{i=\ell}^{m} \lambda_{i}$$

It can be also shown that this is the minimum mean square error compared to **any** other representation of x by an ℓ -dimensional vector.

OPTIMAL FEATURE GENERATION Principal Components Analysis (PCA)

- In other words, \hat{x} is the projection of x into the subspace spanned by the principal ℓ eigenvectors. However, for Pattern Recognition this is not the always the best solution.



• Total variance: It is easily seen that

$$\sigma_{\mathbf{y}(i)}^2 = E\left[\mathbf{y}^2(i)\right] = \lambda_i$$

Thus Karhunen-Loève transform makes the total variance maximum.

• Assuming \underline{y} to be a zero mean multivariate Gaussian, then the K-L transform maximizes the entropy:

$$H_{y} = -E \left[\ln P_{\underline{y}}(\underline{y}) \right].$$

of the resulting y process.

Subspace Classification. Following the idea of projecting in a subspace, the subspace classification classifies an unknown \underline{x} to the class whose subspace is closer to \underline{x} .

The following steps are in order:

- For each class, estimate the autocorrelation matrix R_i , and compute the *m* largest eigenvalues. Form A_i , by using respective eigenvectors as columns.
- Classify <u>x</u> to the class ω_i , for which the norm of the subspace projection is maximum

$$\left\|A_{i}^{T}\underline{x}\right\| > \left\|A_{j}^{T}\underline{x}\right\| \quad \forall i \neq j$$

According to Pythagoras theorem, this corresponds to the subspace to which \underline{x} is closer.

Independent Component Analysis (ICA)

In contrast to PCA, where the goal was to produce uncorrelated features, the goal in ICA is to produce statistically independent features. This is a much stronger requirement, involving higher to second order statistics. In this way, one may overcome the problems of PCA, as exposed before.

≻ The goal: Given \underline{x} , compute $y \in \mathbb{R}^{\ell}$

$$\underline{y} = W\underline{x}$$

so that the components of \underline{y} are statistically independent. In order the problem to have a solution, the following assumptions must be valid:

• Assume that \underline{x} is indeed generated by a linear combination of independent components

$$\underline{x} = \Phi \underline{y}$$

 Φ is known as the mixing matrix and W as the demixing matrix.

- Φ must be invertible or of full column rank.
- Identifiability condition: All independent components, *y*(*i*), must be non-Gaussian. Thus, in contrast to PCA that can always be performed, ICA is meaningful for non-Gaussian variables.
- Under the above assumptions, y(i)'s can be uniquely estimated, within a scalar factor.

- Common's method: Given <u>x</u>, and under the previously stated assumptions, the following steps are adopted:
 - Step 1: Perform PCA on \underline{x} :

$$\underline{y} = A^T \underline{x}$$

• Step 2: Compute a unitary matrix, \hat{A} , so that the fourth order cross-cumulants of the transform vector

$$\underline{y} = \hat{A}^T \hat{y}$$
 unitary: $\hat{A}^* \hat{A} = \hat{A} \hat{A}^* = I$

are zero. This is equivalent to searching for an \hat{A} that makes the squares of the auto-cummulants maximum,

$$\max_{\hat{A}\hat{A}^{T}=I}\Psi(\hat{A})=\sum \kappa_{4}\left(y(i)\right)^{2}$$

where, $\kappa_4(\cdot)$ is the 4th order auto-cumulant.

Cummulants:

 $\kappa_1(y(i)) = E[y(i)] = 0$

 $\kappa_2(y(i)y(j)) = E[y(i)y(j)]$

 $\kappa_3(y(i)y(j)y(k)) = E[y(i)y(j)y(k)]$

and the fourth-order cumulants are given by

 $\kappa_4(y(i)y(j)y(k)y(r)) = E[y(i)y(j)y(k)y(r)] - E[y(i)y(j)]E[y(k)y(r)]$

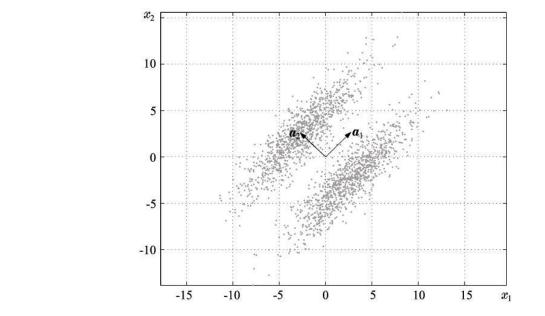
- E[y(i)y(k)]E[y(j)y(r)]

- E[y(i)y(r)]E[y(j)y(k)]

• Step 3:
$$W = \left(A\hat{A}\right)^T$$

➤ A hierarchy of components: which *l* to use? In PCA one chooses the principal ones. In ICA one can choose the ones with the least resemblance to the Gaussian pdf.

Example:



The principal component is $\underline{\alpha}_1$, thus according to PCA one chooses as y the projection of \underline{x} into $\underline{\alpha}_2$. According to ICA, one chooses as y the projection on α_1 . This is the least Gaussian. Indeed:

$$K_4(y_1) = -1.7$$

 $K_4(y_2) = 0.1$

Observe that across $\underline{\alpha}_2$, the statistics is bimodal. That is, no resemblance to Gaussian.