OPTIMAL FEATURE GENERATION

¢ In general, feature generation is a problem-dependent task.
However, there are a few general directions common in a
number of applications. We focus on three such alternatives.

» Optimized features based on Scatter matrices
(Fisher’s linear discrimination).

» The goal: Given an original set of m measurements
x € R", compute y € R’, by the linear transformation
y=A"x

so that the J, scattering matrix criterion involving S, S, Is
maximized. AT is an (xm matrix.
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 The basic steps in the proof:
— J3 = trace(S,,t S,)
=A'S A Sp=ASHA
- J?,(A) = trace{(A7S,, AL (A7S,,A)}

— Compute Aso that J4(A) Is maximum.
 The solution:

— Let B be the matrix that diagonalizes simultaneously
matrices S, S, |

BTSyWB /,B'S,B=D
where B, Is a {x{matrix and D, a £x¢diagonal matrix.
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— Let C= ABan mx{matrix. If A maximizes J(A) then
(S.:8,,)C=CD

xw ™ xb
The above is an eigenvalue-eigenvector problem. For an
M-class problem, S_=S  is of rank M-1.

= |If /= M-1, choose C to consist of the M-1 eigenvectors,
corresponding to the non-zero eigenvalues.

y=C'"x
The above guarantees maximum J; value.
In this case: 4, = &4 ,,.
= For a two-class problem, this results to the well known

Fisher’s linear discriminant

X:(ﬁﬁ_'uz)S_l)—c

— xw

For Gaussian classes, this is the optimal Bayesian
classifier, with a difference of a threshold value .
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= |f /< M-1, choose the £eigenvectors corresponding to the
[ largest eigenvectors.

= Inthis case, J; < J;, , that is there is loss of information.

— Geometric interpretation. The vector Y is the projection
of X onto the subspace spanned by the eigenvectors
of S_.S

xw> xb "
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“* Principal Components Analysis
(The Karhunen — Loéve transform):
» The goal: Given an original set of m measurements x € R™
compute y e R’
- y=A"x

for an orthogonal A, so that the elements of Y are optimally
mutually uncorrelated.

That IS
E[y@)y(j)|=0,i=# j.

» Sketch of the proof:
R, = E[XXT] = E[AT )_C)_CTA:| = ATRXA.
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* If Ais chosen so that its columns a; are the orthogonal
eigenvectors of R, then

R =A'RA=A
where Ais diagonal with elements the respective
eigenvalues A;

» Observe that this is a sufficient condition but not
necessary. It imposes a specific orthogonal structure on A.

» Properties of the solution
« Mean Square Error approximation.
Due to the orthogonality of A:

x=Y v, yi)=ax

i=0
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— Define .

X= Z y(1)a,

— The Karhunen-Loéve transform minimizes the
square error:

o -
Elx— 3 |= [ |3 y(ia,
— The error Is: L -
e[x-3 =3 4
i=¢

It can be also shown that this is the minimum mean
square error compared to any other representation of x
by an dimensional vector.
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— In other words, X is the projection of X into the
subspace spanned by the principal £eigenvectors.
However, for Pattern Recognition this is not the
always the best solution.
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» Total variance: It is easily seen that
2 27\ |
Oy = E[y (l)] =4

Thus Karhunen-Loéve transform makes the total
variance maximum.

 Assuming Y to be a zero mean multivariate Gaussian,
then the K-L transform maximizes the entropy:

H,=-E|InP(y) |

of the resulting y process.
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» Subspace Classification. Following the idea of projecting in a
subspace, the subspace classification classifies an unknown X to
the class whose subspace is closer to X.

The following steps are in order:

» For each class, estimate the autocorrelation matrix R;, and
compute the m largest eigenvalues. Form A, by using
respective eigenvectors as columns.

e Classify X to the class w; for which the norm of the subspace
projection is maximum

|47 > 47 2] Vi

According to Pythagoras theorem, this corresponds to the
subspace to which X is closer.
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¢ Independent Component Analysis (ICA)

In contrast to PCA, where the goal was to produce uncorrelated
features, the goal in ICA is to produce statistically independent
features. This Is a much stronger requirement, involving higher to
second order statistics. In this way, one may overcome the

problems of PCA, as exposed before.
» The goal: Given x, compute y e R’
y=Wx
so that the components of Y are statistically independent.
In order the problem to have a solution, the following

assumptions must be valid:
« Assume that X Is indeed generated by a linear combination
of independent components

XZ@X 11
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@ is known as the mixing matrix and
W as the demixing matrix.

« @ must be invertible or of full column rank.

o |dentifiability condition: All independent components, y(i),
must be non-Gaussian. Thus, in contrast to PCA that can
always be performed, ICA is meaningful for non-Gaussian
variables.

 Under the above assumptions, y(i)’s can be uniquely
estimated, within a scalar factor.

12
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» Common’s method: Given X, and under the previously
stated assumptions, the following steps are adopted:

 Step 1: Perform PCAon X:
y=A"X

 Step 2: Compute a unitary matrix,f\, so that the fourth order
cross-cummulants of the transform vector

ATA I 'A*A:AA*:
X: A y unitary: A A=AA =1

are zero. This is equivalent to searching for an A that makes
the squares of the auto-cummulants maximum,

max ¥(4) = " ke, (y()’

where, #, (-) is the 4 order auto-cumulant.
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Cummulants:

kK1(y(@) = E[y@] =0
K2(y@Oy () = E[y@y( )]

K3 @Oy HyRY) = E[y@y( HyR)]

and the fourth-order cumulants are given by
k4 (Y@OYCPyRY(r)) = E[y@Oy( DyRy )] — E[ y@Oy(DIET YRy ()]
— E[y@yRIE[y( )y (]

— E[y(@DyMIE[y(DyR)]
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. Step3; W = (AA)T

» A hierarchy of components: which £to use? In PCA one
chooses the principal ones. In ICA one can choose the ones
with the least resemblance to the Gaussian pdf.
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» Example: i
10
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The principal component is ¢, thus according to PCA one chooses as y the
projection of X into &, . According to ICA, one chooses as y the projection
on ¢,. This Is the least Gaussian. Indeed:

K,(y,) = -1.7
K,(y,) = 0.1

Observe that across ¢, , the statistics is bimodal. That is, no resemblance to

Gaussian.
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