
 In general, feature generation is a problem-dependent task. 

However, there are a few general directions common in a 

number of applications. We focus on three such alternatives.

 Optimized features based on Scatter matrices 
(Fisher’s linear discrimination). 

• The goal: Given an original set of measurements

, compute , by the linear transformation

so that the scattering matrix criterion involving , is
maximized. is an matrix.
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• The basic steps in the proof:

– J3 = trace(Sw
-1 Sm)

– Syw = ATSxwA, Syb = ATSxbA,

– J3(A) = trace{(ATSxwA)-1 (ATSxbA)}

– Compute A so that J3(A) is maximum.

• The solution:

– Let B be the matrix that diagonalizes simultaneously

matrices Syw, Syb , i.e:

BTSywB = I , BTSybB = D

where B, is a ℓ ℓ matrix and D, a ℓ ℓ diagonal matrix.

2

OPTIMAL FEATURE GENERATION



– Let C = AB an m ℓ matrix. If A maximizes J3(A) then

The above is an eigenvalue-eigenvector problem. For an 

M-class problem,             is of rank -1.

 If ℓ = M-1, choose C to consist of the M-1 eigenvectors, 

corresponding to the non-zero eigenvalues.

The above guarantees maximum J3 value.

In this case: J3,x = J3,y .

 For a two-class problem, this results to the well known 

Fisher’s linear discriminant

For Gaussian classes, this is the optimal Bayesian 

classifier, with a difference of a threshold value .
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 If ℓ < M-1, choose the ℓ eigenvectors corresponding to the

ℓ largest eigenvectors.

 In this case, J3,y< J3,x , that is there is loss of information.

– Geometric interpretation. The vector      is the projection

of      onto the subspace spanned by the eigenvectors

of           .
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Principal Components Analysis

(The Karhunen – Loève transform):

 The goal: Given an original set of measurements

compute

for an orthogonal A, so that the elements of      are optimally 

mutually uncorrelated.

That is

 Sketch of the proof:
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• If A is chosen so that its columns     are the orthogonal 

eigenvectors of , then

where Λ is diagonal with elements the respective 

eigenvalues λi.

• Observe that this is a sufficient condition but not 

necessary. It imposes a specific orthogonal structure on A.

 Properties of the solution

• Mean Square Error approximation.

Due to the orthogonality of A:
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 Define

 The Karhunen-Loève transform minimizes the 

square error:

 The error is:

It can be also shown that this is the minimum mean 

square error compared to any other representation of 

by an ℓ-dimensional vector.
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 In other words,    is the projection of     into the 

subspace spanned by the principal ℓ eigenvectors. 

However, for Pattern Recognition this is not the 

always the best solution.
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• Total variance: It is easily seen that

Thus Karhunen-Loève transform makes the total 

variance maximum.

• Assuming     to be a zero mean multivariate Gaussian,

then the K-L transform maximizes the entropy:

of the resulting process.
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 Subspace Classification. Following the idea of projecting in a 

subspace, the subspace classification classifies an unknown     to 

the class whose subspace is closer to .

The following steps are in order:

• For each class, estimate the autocorrelation matrix , and 

compute the largest eigenvalues. Form , by using 

respective eigenvectors as columns.

• Classify    to the class ωi, for which the norm of the subspace 

projection is maximum

According to Pythagoras theorem, this corresponds to the 

subspace to which     is closer.
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 Independent Component Analysis (ICA)

In contrast to PCA, where the goal was to produce uncorrelated

features, the goal in ICA is to produce statistically independent

features. This is a much stronger requirement, involving higher to 

second order statistics. In this way, one may overcome the 

problems of PCA, as exposed before.

The goal: Given , compute

so that the components of     are statistically independent. 

In order  the problem to have a solution, the following 

assumptions must be valid:

• Assume that     is indeed generated by a linear combination

of independent components
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Φ is known as the mixing matrix and 

W as the demixing matrix.

• Φ must be invertible or of full column rank.

• Identifiability condition: All independent components, ( ),

must be non-Gaussian. Thus, in contrast to PCA that can 

always be performed, ICA is meaningful for non-Gaussian 

variables. 

• Under the above assumptions, ( )’s can be uniquely 

estimated, within a scalar factor.
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Common’s method: Given   , and under the previously 
stated assumptions, the following steps are adopted:

• Step 1: Perform PCA on :

• Step 2: Compute a unitary matrix,   , so that the fourth order 
cross-cummulants of the transform vector

are zero. This is equivalent to searching for an     that makes 
the squares of the auto-cummulants maximum,

where, is the 4th order auto-cumulant.
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• Step 3:

A hierarchy of components: which ℓ to use? In PCA one 

chooses the principal ones. In ICA one can choose the ones 

with the least resemblance to the Gaussian pdf. 
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Example:
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The principal component is     , thus according to PCA one chooses as the 
projection of     into      . According to ICA, one chooses as the projection 
on     . This is the least Gaussian. Indeed:

4( 1) =  -1.7

4( 2) =   0.1

Observe that across      , the statistics is bimodal. That is, no resemblance to 
Gaussian.
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