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 The goals:

 Select the “optimum” number of features

 Select the “best” features

 Large has a three-fold disadvantage:

 High computational demands

 Low generalization performance

 Poor error estimates
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 Given N

must be large enough to learn

– what makes classes different

– what makes patterns in the same class similar

must be small enough not to learn what makes patterns of the

same class different.

• In practice, has been reported to be a sensible choice 

for a number of cases.

 Once has been decided, choose the most informative features

• Best:  Large between class distance, 

Small within class variance

3/Νl 
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 The basic philosophy

 Discard individual features with poor information content

 The remaining information rich features are examined jointly as 

vectors

 Feature Selection Based on Statistical Hypothesis Testing

 The Goal:  For each individual feature, find whether the values, 

which the feature takes for the different classes, differ 

significantly.

That is, answer

The values of the feature differ significantly

The values of the feature do not differ significantly

If they do not differ significantly reject feature from subsequent 

stages.

 Hypothesis Testing Basics
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 The steps:

• N measurements                                are known

• Define a function of them

test statistic

so that is easily parameterized in terms of θ.

• Let D be an interval, where has a high probability to lie under

0, i.e., ( |θ0)

• Let D  be the complement of D

D Acceptance Interval

D Critical Interval

• If , resulting from 

lies in we accept H0, otherwise we reject it.
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 Probability of an error

• ρ is preselected and it is known as the significance level.
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 Application:  The known variance case:

 Let be a random variable and the experimental samples,

, are assumed mutually independent. Also let

 Compute the sample mean

 This is also a random variable with mean value

That is, it is an Unbiased Estimator
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 The variance

Due to independence

That is, it is Asymptotically Efficient

 Hypothesis test

 Test Statistic: Define the variable
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 Central limit theorem under H0

 Thus, under H0
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 The decision steps

• Compute from , = 1, 2, …, 

• Choose significance level ρ

• Compute from (0,1) tables D = [- ρ , ρ]

 An example: A random variable has variance 

σ 2 = (0.23)2.  Ν = 16 measurements are obtained giving

. The significance level is ρ = 0.05.  

Test the hypothesis
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 Since σ2 is known, is (0,1).  

From tables, we obtain the values with acceptance 
intervals [- ρ , ρ] for normal (0,1)

 Thus
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1-ρ 0.8 0.85 0.9 0.95 0.98 0.99 0.998 0.999

ρ 1.28 1.44 1.64 1.96 2.32 2.57 3.09 3.29
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 Since lies within the above acceptance interval,
we accept H0, i.e.,

The interval [1.237, 1.463] is also known as confidence 
interval at the 1 - ρ = 0.95 level.

We say that:  There is no evidence at the 5% level that the 
mean value is not equal to 
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 The Unknown Variance Case

 Estimate the variance.  The estimate

is unbiased, i.e.,

 Define the test statistic
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 This is no longer Gaussian.  If is Gaussian, then

follows a -distribution, with -1 degrees of freedom

 An example:
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 Table of acceptance intervals for t -distribution



accepted is 4.1ˆ Thus,

493.1ˆ207.1
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Degrees of 

Freedom 1-ρ 0.9 0.95 0.975 0.99

12 1.78 2.18 2.56 3.05

13 1.77 2.16 2.53 3.01

14 1.76 2.15 2.51 2.98

15 1.75 2.13 2.49 2.95

16 1.75 2.12 2.47 2.92

17 1.74 2.11 2.46 2.90

18 1.73 2.10 2.44 2.88

FEATURE SELECTION    Feature Selection Based on Statistical Hypothesis Testing



16

 Application in Feature Selection

 The goal here is to test against zero the difference μ1-μ2 of 

the respective means in 

ω1, ω2 of a single feature.

 Let = 1, …, N , the values of a feature in ω1

 Let = 1, …, N , the values of the same feature in ω2

 Assume in both classes

(unknown or not)

 The test becomes
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 Define

 Obviously

[ ] μ1-μ2

 Define the average

 Known Variance Case:  Define

• This is (0,1) and one follows the procedure as before.
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 Unknown Variance Case:

Define the test statistic

• q is -distribution with 2N-2 degrees of freedom,

• Then apply appropriate tables as before.

 Example: The values of a feature in two classes are:

ω1: 3.5, 3.7, 3.9, 4.1, 3.4, 3.5, 4.1, 3.8, 3.6, 3.7

ω2: 3.2, 3.6, 3.1, 3.4, 3.0, 3.4, 2.8, 3.1, 3.3, 3.6

Test if the mean values in the two classes differ 

significantly, at the significance level ρ = 0.05
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We have

For N = 10

 From the table of the -distribution with 2N-2=18 degrees of 

freedom and ρ = 0.05, we obtain D = [-2.10,2.10] and since 

q=4.25 is outside D, 1 is accepted and the feature is selected.
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 Class Separability Measures

The emphasis so far was on individually considered features. However,
such an approach cannot take into account existing correlations among 
the features. That is, two features may be rich in information, but if 
they are highly correlated we need not consider both of them. To this 
end, in order to search for possible correlations, we consider features 
jointly as elements of vectors. To this end:

 Discard poor in information features, by means of a statistical test.

 Choose the maximum number,   , of features to be used. This is 
dictated by the specific problem (e.g., the number, , of available 
training patterns and the type of the classifier to be adopted). 


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 Combine remaining features to search for the “best” combination. 

To this end:

• Use different feature combinations to form the feature vector. 

Train the classifier, and choose the combination resulting in the 

best classifier performance.

A major disadvantage of this approach is the high complexity. 

Also, local minima, may give misleading results.

• Adopt a class separability measure and choose the best feature 

combination against this cost.
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 Class separability measures: Let     be the current feature 

combination vector.

• Divergence. To see the rationale behind this cost, consider the

two-class case. Obviously, if on the average the

value of is close to zero, then should be a

poor feature combination. Define:

12 is known as the divergence and can be used as a class 

separability measure.

x

x
)|(

)|(
ln

2

1





xp

xp

xd
xp

xp
xpD 






)|(

)|(
ln)|(

2

1
112






xd
xp

xp
xpD 






)|(

)|(
ln)|(

1

2
221






211212 DDd 

FEATURE SELECTION    Class Separability Measures



23

– For the multi-class case, define for every pair of classes 

 ,  ; and the average divergence is defined as

– Some properties:

– Large values of d are indicative of good feature combination.
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 Scatter Matrices. These are used as a measure of the way data are 

scattered in the respective feature space.

• Within-class scatter matrix

where

and

the number of training samples in  .

Trace { } is a measure of the average variance of the features.
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• Between-class scatter matrix

Trace { } is a measure of the average distance of the mean of 

each class from the respective global one.

• Mixture scatter matrix

It turns out that:
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Measures based on Scatter Matrices.

•

•

•

• Other criteria are also possible, by using various combinations of

.

The above J1, J2, J3 criteria take high values for the cases where:

• Data are clustered together within each class.

• The means of the various classes are far.
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• Fisher’s discriminant ratio. In one dimension and for two

equiprobable classes the determinants become:

and

known as Fischer’s ratio.
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 Ways to combine features:

Trying to form all possible combinations of features from an original

set of selected features is a computationally hard task. Thus, a number

of suboptimal searching techniques have been derived.

 Sequential forward selection. Let x1, x2, x3, x4 the available features

( =4). The procedure consists of the following steps:

• Adopt a class separability criterion (could also be the error 

rate of the respective classifier). Compute its value for ALL

features considered jointly [x1, x2, x3, x4]
T.

• Eliminate one feature and for each of the possible resulting 

combinations, that is [x1, x2, x3]
T, [x1, x2, x4]

T, [x1, x3, x4]
T, 

[x2, x3, x4]
T, compute the class reparability criterion value C. 

Select the best combination, say [x1, x2, x3]
T.


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• From the above selected feature vector eliminate one feature and 

for each of the resulting combinations,             ,             ,

compute and select the best combination.

The above selection procedure shows how one can start from   

features and end up with the “best” ones. Obviously, the choice is 

suboptimal. The number of required calculations is:

In contrast, a full search requires:

operations.



 )1()1(
2

1
1  mm

)!(!

!

 










m

mm

T

2 ][ 1 , xx
T

3][ 2 , xx T

31 ][ , xx

C

m

FEATURE SELECTION    Feature Subset Selection



31

 Sequential backward selection. 

Here the reverse procedure is followed.

• Compute C for each feature. Select the “best” one, say x1

• For all possible 2D combinations of x1, i.e., [x1, x2], [x1, x3], 

[x1, x4] compute C and choose the best, say [x1, x3].

• For all possible 3D combinations of [x1, x3], e.g., [x1, x3, x2],

etc., compute C and choose the best one.

The above procedure is repeated till the “best” vector with

features has been formed. This is also a suboptimal technique, 

requiring:

operations.
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 Floating Search Methods

The above two procedures suffer from the nesting effect. Once a bad 

choice has been done, there is no way to reconsider it in the 

following steps.

In the floating search methods one is given the opportunity in 

reconsidering a previously discarded feature or to discard a feature 

that was previously chosen.

The method is still suboptimal, however it leads to improved

performance, at the expense of complexity.
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