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 The XOR problem

x1 x2 XOR Class

0 0 0 B

0 1 1 A

1 0 1 A

1 1 0 B
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 There is no single line (hyperplane) that separates class A 

from class B. On the contrary, AND and OR operations are 

linearly separable problems
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 The Two-Layer Perceptron

 For the XOR problem, draw two, instead, of one lines
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 Then class B is located outside the shaded area and class A 

inside. This is a two-phase design.

• Phase 1: Draw two lines (hyperplanes)

Each of them is realized by a perceptron.  The outputs of 

the perceptrons will be

depending on the position of .

• Phase 2:  Find the position of w.r.t. both lines, based on 

the values of 1, 2.
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• Equivalently:  The computations of the first phase 

perform a mapping

1st phase 2nd

phasex1 x2 y1 y2

0 0 0(-) 0(-) B(0)

0 1 1(+) 0(-) A(1)

1 0 1(+) 0(-) A(1)

1 1 1(+) 1(+) B(0)

Tyyyx ] ,[ 21
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The decision is now performed on the transformed data.

This can be performed via a second line, which can also be 

realized by a perceptron.
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 Computations of the first phase perform a mapping

that transforms the nonlinearly separable problem to a 

linearly separable one.

 The architecture
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• This is known as the two layer perceptron with one

hidden and one output layer.  The activation functions 

are

• The neurons (nodes) of the figure realize the following

lines (hyperplanes)
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 Classification capabilities of the two-layer perceptron

 The mapping performed by the first layer neurons is onto the vertices

of the unit side square, e.g.,  (0, 0), (0, 1), (1, 0), (1, 1).

 The more general case,
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performs a mapping of a vector

onto the vertices of the unit side hypercube

 The mapping is achieved with neurons each realizing a 

hyperplane. 

 The output of each of these neurons is 0 or 1 depending on 

the relative position of w.r.t. the hyperplane.
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 Intersections of these hyperplanes form regions in the

dimensional space.  Each region corresponds to a vertex

of the unit hypercube.

NONLINEAR CLASSIFIERS    The Two-Layer Perceptron



13

For example, 

the 001 vertex corresponds to the region which is located 

to the (-) side of g1 ( ) = 0

to the (-) side of g2 ( ) = 0

to the (+) side of g3 ( ) = 0

NONLINEAR CLASSIFIERS    The Two-Layer Perceptron



14

 The output neuron realizes a hyperplane in the transformed  

space, that separates some of the vertices from the others. 

 Thus, the two layer perceptron has the capability to classify 

vectors into classes that consist of unions of polyhedral 

regions.  But NOT ANY union.  It depends on the relative 

position of the corresponding vertices.

y
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 Three-layer perceptrons

 The architecture

 This is capable to classify vectors into classes consisting of 

ANY union of polyhedral regions.

 The idea is similar to the XOR problem. It realizes more than 

one planes in the space.
pRy
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 The reasoning 

• For each vertex, corresponding to class, say A, construct 
a hyperplane which leaves THIS vertex on one side (+) 
and ALL the others to the other side (-).

• The output neuron realizes an OR gate

 Overall:

The first layer of the network forms the hyperplanes, 
The second layer forms the regions, and 
The output neuron forms the classes.

 Designing Multilayer Perceptrons
 One direction is to adopt the above rationale and develop a 

structure that classifies correctly all the training patterns.

 The other direction is to choose a structure and compute the 
synaptic weights to optimize a cost function. 
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 The Backpropagation Algorithm

 This is an algorithmic procedure that computes the synaptic 

weights iteratively, so that an adopted cost function is 

minimized (optimized)

 In a large number of optimizing procedures, computation of 

derivatives are involved.  Hence, discontinuous activation 

functions pose a problem, i.e.,

 There is always an escape path!!!  The logistic function

is an example. Other functions are also possible and in some 

cases more desirable.
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 The steps:

• Adopt an optimizing cost function, e.g.,

– Least Squares Error

– Relative Entropy

between desired responses and actual responses of 

the network for the available training patterns. That 

is, from now on we have to live with errors. We only 

try to minimize them, using certain criteria.

• Adopt an algorithmic procedure for the optimization 

of the cost function with respect to the synaptic 

weights, e.g.,

– Gradient descent

– Newton’s algorithm

– Conjugate gradient
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• The task is a nonlinear optimization one.  For the 

gradient descent method
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 The Procedure:

• Initialize unknown weights randomly with small values.

• Compute the gradient terms backwards, starting with the 

weights of the last (3rd) layer and then moving towards the 

first

• Update the weights

• Repeat the procedure until a termination procedure is met

 Two major philosophies:

• Batch mode:  The gradients of the last layer are computed 

once ALL training data have appeared to the algorithm, i.e., 

by summing up all error terms.

• Pattern mode:  The gradients are computed every time a new 

training data pair appears.  Thus gradients are based on 

successive individual errors.
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 A major problem:  

The algorithm may converge to a local minimum
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 The Cost function choice

Examples:

• The Least Squares

Desired response of the th output neuron

(1 or 0)  for

Actual response of the th output neuron, in 

the interval [0, 1], for input
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• The cross-entropy

This presupposes an interpretation of and ŷ as probabilities

 Classification error rate.  This is also known as

discriminative learning. Most of these techniques use a 

smoothed version of the classification error.
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 Remark 1:  

A common feature of all the above is the danger of local 

minimum convergence.  

“Well formed” cost functions guarantee convergence to a 

“good” solution, that is one that classifies correctly 

ALL training patterns, provided such a solution exists.  

The cross-entropy cost function is a well formed one. The 

Least Squares is not.
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 Remark 2:

 Both, the Least Squares and the cross entropy lead to output 

values that approximate optimally class a-posteriori 

probabilities!!!

That is, the probability of class given .

This is a very interesting result.  It does not depend on the 

underlying distributions.  It is a characteristic of certain cost 

functions.  How good or bad is the approximation, depends 

on the underlying model.  Furthermore, it is only valid at the 

global minimum.
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 Choice of the network size.

How big a network can be.  

How many layers and how many neurons per layer??  

There are two major directions

• Pruning Techniques: These techniques start from a large 

network and then weights and/or neurons are removed 

iteratively, according to a criterion.

• Constructive techniques:

They start with a small network and keep increasing it, 

according to a predetermined procedure and criterion.
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—Methods based on parameter sensitivity

+ higher order terms where

Near a minimum and assuming that
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Pruning is now achieved in the following procedure:

Train the network using Backpropagation 

for a number of steps

 Compute the saliencies

 Remove weights with small .

 Repeat the process

—Methods based on function regularization
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The second term favours small values for the weights, e.g.,

where

After some training steps, weights with small values are 

removed.

• Constructive techniques:

They start with a small network and keep increasing it, 

according to a predetermined procedure and criterion.
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 Remark:

Why not start with a large network and leave the algorithm 

to decide which weights are small??  

This approach is just naïve. It overlooks that classifiers must 

have good generalization properties.  A large network can 

result in small errors for the training set, since it can learn the 

particular details of the training set.  On the other hand, it will 

not be able to perform well when presented with data unknown 

to it.  The size of the network must be:

• Large enough to learn what makes data of the same class 

similar and data from different classes dissimilar

• Small enough not to be able to learn underlying differences 

between data of the same class.  

This leads to the so called overfitting.
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Example:
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 Overtraining is another side of the same coin, i.e., 

the network adapts to the peculiarities of the training set.
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 Generalized Linear Classifiers

 Remember the XOR problem. The mapping

The activation function transforms the 

nonlinear task into a linear one.

 In the more general case:

• Let and a nonlinear classification task.











))((

))((

2

1

xgf

xgf
yx

(.)f

lRx

kifi ,...,2,1 (.), 

NONLINEAR CLASSIFIERS    Generalized Linear Classifiers



36

• Are there any functions and an appropriate , so that 

the mapping

transforms the task into a linear one, in the 

space?

• If this is true, then there exists a hyperplane

so that
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 In such a case this is equivalent with approximating the 

nonlinear discriminant function ( ), in terms of           

i.e.,

 Given , the task of computing the weights is a 

linear one.

 How sensible is this??

• From the numerical analysis point of view, this is

justified if are interpolation functions.

• From the Pattern Recognition point of view, this is

justified by Cover’s theorem
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 Capacity of the -dimensional space in Linear Dichotomies

 Assume N points in assumed to be in general position, 

that is: 

Not of these lie on a dimensional space1 1
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 Cover’s theorem states:  The number of groupings that can 

be formed by ( -1)-dimensional hyperplanes to separate N
points in two classes is

Example: N=4, l=2, O(4,2)=14

Notice: The total number of possible groupings is   24=16
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 Probability of grouping N points in two linearly separable 

classes is

l
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Thus, the probability of having N points in linearly

separable classes tends to 1, for large ,

provided N < 2( +1)

Hence, by mapping to a higher dimensional space, we 

increase the probability of linear separability, provided 

the space is not too densely populated.
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 Radial Basis Function Networks (RBF)

 Choose
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Equivalent to a single layer network, with RBF 

activations and linear output node.
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 Example: The XOR problem

• Define:

•
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 Training of the RBF networks

• Fixed centers:  Choose centers randomly among the data 

points.  Also fix σ ’s.  Then

is a typical linear classifier design.

• Training of the centers:  This is a nonlinear optimization task

• Combine supervised and unsupervised learning procedures.

• The unsupervised part reveals clustering tendencies of the 

data and assigns the centers at the cluster representatives.
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 Universal Approximators

It has been shown that any nonlinear continuous function can be 

approximated arbitrarily close, both, by a two layer perceptron, 

with sigmoid activations, and an RBF network, provided a large 

enough number of nodes is used.

Multilayer Perceptrons vs. RBF networks

MLP’s involve activations of global nature. All points on a 

plane give the same response.

 RBF networks have activations of a local nature, due to the 

exponential decrease as one moves away from the centers.

MLP’s learn slower but have better generalization properties

cxwT 

NONLINEAR CLASSIFIERS    Universal Approximators



50

 Support Vector Machines: The non-linear case

 Recall that the probability of having linearly separable 
classes increases as  the dimensionality of the  feature 
vectors increases. Assume the mapping:

Then use SVM in

 Recall that in this case the dual problem formulation will be
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Also, the classifier will be

Thus, inner products in a high dimensional space are 
involved, hence

• High complexity
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 Something clever:  Compute the inner products in the 

high dimensional space as functions of inner products 

performed in the low dimensional space!!!

 Is this POSSIBLE?? Yes. Here is an example

Then, it is easy to show that
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Mercer’s Theorem

Then, the inner product in H

where

for any ( ), :

symmetric function known as kernel.
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 The opposite is also true.  Any kernel, with the above properties, 

corresponds to an inner product in SOME space!!!

 Examples of kernels

• Radial  Basis Functions:

• Polynomial:

• Hyperbolic Tangent:

for appropriate values of β, γ.
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 SVM Formulation 

• Step 1: Choose appropriate kernel.  This 

implicitly assumes a mapping to a 

higher dimensional (yet, not known)

space.

• Step 2:

This results to an implicit combination

,
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• Step 3: Assign to

• The SVM Architecture

1

2

0

1

( )  , ) 0







 

NONLINEAR CLASSIFIERS    Support Vector Machines: The non-linear case



57



58

 Decision Trees

This is a family of non-linear classifiers. They are multistage decision 
systems, in which classes are sequentially rejected, until a finally accepted 
class is reached. To this end:

 The feature space is split into unique regions in a sequential manner.

 Upon the arrival of a feature vector, sequential decisions, assigning 
features to specific regions, are performed along a path of nodes of an 
appropriately constructed tree.

 The sequence of decisions is applied to individual features, and the 
queries performed in each node are of the type:

is feature

where α is a pre-chosen (during training) threshold.


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 The figures below are such examples. This type of trees is known 

as Ordinary Binary Classification Trees (OBCT). The decision 

hyperplanes, splitting the space into regions, are parallel to the axis 

of the spaces. Other types of partition are also possible, yet less 

popular.
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 Design Elements that define a decision tree.

• Each node, , is associated with a subset              , where is the 

training set. At each node, Xt is split into two (binary splits) 

disjoint descendant subsets Xt,Y and Xt,N, where

Xt,Y  Xt,N = Ø

Xt,Y  Xt,N = Xt

Xt,Y is the subset of Xt for which the answer to the query at node 

t is YES. Xt,N is the subset corresponding to NO. The split is 

decided according to an adopted question  (query).

XΧ t 
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• A splitting criterion must be adopted for the best split of into 

and .

• A stop-splitting criterion must be adopted that controls the 

growth of the tree and a node is declared as terminal (leaf).

• A rule is required that assigns each (terminal) leaf to a class.
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 Set of Questions: In OBCT trees the set of questions is of the type

is ?

The choice of the specific xi and the value of the threshold α, for 

each node , are the results of searching, during training, among the 

features and a set of possible threshold values. The final 

combination is the one that results to the best value of a criterion.


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 Splitting Criterion: The main idea behind splitting at each node is 

the resulting descendant subsets Xt,Y and Xt,N to be more class 

homogeneous compared to Xt. Thus the criterion must be in 

harmony with such a goal. A commonly used criterion is the node 

impurity:

and

where       is  the number of data points in that belong to class i.
The decrease in node impurity is defined as:
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• The goal is to choose the parameters in each node (feature and 

threshold) that result in a split with the highest decrease in 

impurity.

• Why highest decrease? Observe that the highest value of I(t) is 

achieved if all classes are equiprobable, i.e., Xt is the least

homogenous.

 Stop - splitting rule. Adopt a threshold T and stop splitting a node 

(i.e., assign it as a leaf), if the impurity decrease is less than T. That 

is, node is “pure enough”.

 Class Assignment Rule: Assign a leaf to a class j , where:

)|(maxarg tPj i
i


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 Summary of an OBCT algorithmic scheme:
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 Remarks:

• A critical factor in the design is the size of the tree. Usually one 

grows a tree to a large size and then applies various pruning

techniques.

• Decision trees belong to the class of unstable classifiers. This 

can be overcome by a number of “averaging” techniques. 

Bagging is a popular  technique. Using bootstrap techniques in 

X, various trees are constructed, Ti, i=1, 2, …, B. The decision 

is taken according to a majority voting rule.
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 Combining Classifiers

The basic philosophy behind the combination of different classifiers 

lies in the fact that even the “best” classifier fails in some patterns that 

other classifiers may classify correctly. Combining classifiers aims at 

exploiting this complementary information residing in the various 

classifiers.

Thus, one designs different optimal classifiers and then combines the 

results with a specific rule.

 Assume that each of the, say, L designed classifiers provides at its 

output the posterior probabilities:

, ..., M, ixP i 21 ),|( 
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• Product Rule: Assign to the class :

where                     is the respective posterior probability of the th

classifier.

• Sum Rule: Assign to the class :

x i

 
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• Majority Voting Rule: Assign    to the class for which there is a 

consensus or when at least    of the classifiers agree on the class 

label of     where:

otherwise the decision is rejection, that is no decision is taken.

Thus, correct decision is made if the majority of the classifiers 

agree on the correct label, and wrong decision if the majority 

agrees in the wrong label.

x

c
x

1,   even
2

1
,   odd

2




 



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 Dependent or not Dependent classifiers?

• Although there are not general theoretical results, experimental 

evidence has shown that the more independent in their decision 

the classifiers are, the higher the expectation should be for 

obtaining improved results after combination. 

However, there is no guarantee that combining classifiers 

results in better performance compared to the “best” one 

among the classifiers.
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 Towards Independence: A number of Scenarios.

• Train the individual classifiers using different training data 

points. To this end, choose among a number of possibilities:

– Bootstrapping: This is a popular technique to combine unstable 

classifiers such as decision trees (Bagging belongs to this 

category of combination).

– Stacking: Train the combiner with data points that have been 

excluded from the set used to train the individual classifiers.

– Use different subspaces to train individual classifiers:

According to the method, each individual classifier operates in 

a different feature subspace. That is, use different features for 

each classifier.
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 Remarks:

• The majority voting and the summation schemes rank among 

the most popular combination schemes.

• Training individual classifiers in different subspaces seems to 

lead to substantially better improvements compared to classifiers 

operating in the same subspace.

• Besides the above three rules, other alternatives are also possible, 

such as to use the median value of the outputs of individual 

classifiers.
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