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 The Problem: Consider a two class task with ω1, ω2
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 The Perceptron Algorithm

 Assume linearly separable classes, i.e.,

 The case

falls under the above formulation, since

•

•
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 Our goal:  Compute a solution, i.e., a hyperplane w,

so that

• The steps

1. Define a cost function to be minimized

2. Choose an algorithm to minimize the cost function

3. The minimum corresponds to a solution
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The Cost Function

• Where Y is the subset of the vectors wrongly classified

by w. When Y=(empty set) a solution is achieved and

• Otherwise: 
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• is piecewise linear (WHY?)

The Algorithm

• The philosophy of the gradient descent is adopted.
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• Wherever valid

• This is the celebrated Perceptron Algorithm
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An example:

The perceptron algorithm converges in a finite number 

of iteration steps to a solution if
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 A useful variant of the perceptron algorithm

 It is a   reward and punishment type of algorithm

( )

( )

( ) 1

( )

( )

( ) 2

( ) 0
( 1) ( )  , 

( ) 0
( 1) ( ) , 

( 1) ( )   , otherwise

T

t

t

t

T

t

t

t

w t x
w t w t x

x

w t x
w t w t x

x

w t w t







 
   



 
   



 

LINEAR CLASSIFIERS    The Perceptron Algorithm



10

LINEAR CLASSIFIERS    The Perceptron Algorithm



11

LINEAR CLASSIFIERS    The Perceptron Algorithm



12

LINEAR CLASSIFIERS    The Perceptron Algorithm



13

 The perceptron

0

'     synapses or synaptic weights

       threshold

iw s

w

 It is a learning machine that learns from the training vectors

via the perceptron algorithm

 The network is called perceptron or neuron
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Example: At some stage t the perceptron algorithm results in

The corresponding 

hyperplane is
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 Least Squares Methods

 If classes are linearly separable, 

the perceptron output results in 

 If classes are NOT linearly separable, we shall compute the 

weights

so that the difference between

• The actual output of the classifier,          , and

• The desired outputs, e.g.
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 SMALL, in the mean square error sense, means to choose        

so that the cost function

•

•

•
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Minimizing

where Rx is the autocorrelation matrix

and 
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Multi-class generalization

• The goal is to compute M linear discriminant functions:

according to the MSE.

• Adopt as desired responses yi:

• Let

• and the matrix
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• The goal is to compute    :

• The above is equivalent to a number M of MSE minimization 
problems. That is:

Design each      so that its desired output is 1 for           
and 0 for any other class.
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 Remark: The MSE criterion belongs to a more general class of cost 
function with the following important property:

• The value of            is an estimate, in the MSE sense, of the
a-posteriori probability               , provided that the desired responses 
used during training are                         and 0 otherwise.
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 SMALL in the sum of error squares sense means



:  training pairs that is, the input xi and its

corresponding class label  (±1).
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 Pseudoinverse Matrix

 Define
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Thus

 Assume N = X square and invertible.  Then
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 Assume N > .  Then, in general, there is no solution to 

satisfy all equations simultaneously:

 The “solution” corresponds to the minimum sum

of squares solution
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 Example:
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Mean square error regression: Let          ,             be  jointly
distributed random vectors with a joint pdf

• The goal: Given the value of      estimate the value of    . In the 
pattern recognition framework, given      one wants to estimate 
the respective label            .

• The MSE estimate     of      given       is defined as:

• It turns out that:

The above is known as the regression of       given     and it is, in 
general, a non-linear function of      . 
If             is Gaussian the MSE regressor is linear.
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 The Bias – Variance Dilemma

A classifier          is a learning machine that tries to predict the 

class label of    . In practice, a finite data set is used for its 

training. Let us write               . Observe that:

 For some training sets,                           , the training may result 

to good estimates, for some others the result may be worse.

 The average performance of the classifier can be tested against 

the MSE optimal value, in the mean squares sense, that is:

where is the mean over all possible data sets D.
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• The above is written as:

• In the above, the first term is the contribution of the bias
and the second term is the contribution of the variance.

• For a finite D, there is a trade-off between the two terms. 
Increasing bias it reduces variance and vice verse. This is 
known as the bias-variance dilemma.

• Using a complex model results in low-bias but a high 
variance, as one changes from one training set to another. 
Using a simple model results in high bias but low variance.
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 Let an     -class task,                        . In logistic discrimination, 

the logarithm of the likelihood ratios are modeled via linear 

functions, i.e.,

 Taking into account that 

it can be easily shown that the above is equivalent with 

modeling posterior probabilities as:

 LOGISTIC DISCRIMINATION
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 For the two-class case it turns out that
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 The unknown parameters                                            are usually 

estimated by maximum likelihood arguments.

 Logistic discrimination is a useful tool, since 

• it allows linear modeling, and 

• at the same time ensures posterior probabilities to add to one.
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 The goal:  Given two linearly separable classes, design the 

classifier

that leaves the maximum margin from both classes

0)( 0  wxwxg
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 Support Vector Machines (SVM)
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Margin:  Each hyperplane is characterized by

• Its direction in space, i.e., 

• Its position in space, i.e.,

• For EACH direction, , choose the hyperplane that 

leaves the SAME distance from the nearest points from 

each class. The margin is twice this distance.

w

0w

w

LINEAR CLASSIFIERS    Support Vector Machines



37

 The distance of a point     from a hyperplane 

is given by 

 Scale, so that at the nearest points from each class the 

discriminant function is ±1:

 Thus the margin is given by

 Also, the following is valid
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 SVM (linear) classifier

Minimize

 Subject to

 The above is justified since by  minimizing

the margin is maximized
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 The above is a quadratic optimization task, subject to a set 

of linear inequality constraints.  The Karush-Kuhn-Tucker

conditions state that the minimizer satisfies:

• (1)

• (2)

• (3)

• (4)

• Where is the Lagrangian
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 The solution:  from the above, it turns out that

•

•
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 Remarks:

• The Lagrange multipliers can be either zero or positive.

Thus,

–

where , corresponding to positive Lagrange

multipliers

– From constraint (4) above, i.e.,

the vectors contributing to
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– These vectors are known as SUPPORT VECTORS
and are the closest vectors, from each class, to the 
classifier.

– Once     is computed,     is determined from 
conditions (4).

– The optimal hyperplane classifier of a support vector 
machine is UNIQUE.

– Although the solution is unique, the resulting 
Lagrange multipliers are not unique. 

w 0w
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 Dual Problem Formulation

• The SVM formulation is a convex programming problem, 

with

– Convex cost function

– Convex region of feasible solutions

• Thus, its solution can be achieved by its dual problem, i.e.,

– maximize

– subject to
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• Combine the above to obtain

– maximize

– subject to
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• Support vectors enter via inner products
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 Non-Separable classes
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In this case, there is no hyperplane 

such that

• Recall that the margin is defined as twice the distance 

between the following two hyperplanes
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 The training vectors belong to one of  three possible 

categories

1) Vectors outside the band which are correctly

classified, i.e.,

2) Vectors inside the band, and correctly classified,

i.e.,

3) Vectors misclassified, i.e.,
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 All three cases above can be represented as

1)

2)

3)

are known as slack variables
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 The goal of the optimization is now two-fold

• Maximize margin

• Minimize the number of patterns with           ,

One way to achieve this goal is via the cost

where C is a constant and

• I(.) is not differentiable.  In practice, we use an 

approximation

• Following a similar procedure as before we obtain
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 KKT conditions
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 The associated dual problem

Maximize

subject to

 Remarks: The only difference with the separable

class case is the existence of     in the constraints
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 Training the SVM

A major problem is the high computational cost. To this end, 

decomposition techniques are used. The rationale behind 

them consists of the following:

• Start with an arbitrary data subset (working set) that can fit in 

the memory. Perform optimization, via a general purpose 

optimizer.

• Resulting support vectors remain in the working set, while 

others are replaced by new ones (outside the set) that violate 

severely the KKT conditions.

• Repeat the procedure.

• The above procedure guarantees that the cost function 

decreases.

• Platt’s SMO algorithm chooses a working set of two samples, 

thus analytic optimization solution can be obtained.
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Multi-class generalization

Although theoretical generalizations exist, the most popular in 

practice is to look at the problem as M two-class problems 

(one against all).
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