LINEAR CLASSIFIERS

¢ The Problem: Consider a two class task with @,, @,

> g(x)=w'x+w,=0=
W X, AW, X+ W X, +W

» Assumex,, X, on thedecision hyperplane:
T T
O=W X; +W, =W X, +W, =

V_VT ()_(1 _Zz) =0 V)_(1’XZ
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» Hence: w _L on thehyperplane g(x) = v_vT X+w, =0

X, 4

wl=lw, , w,]

A J
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‘Wo‘ ‘g()_()‘
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LINEAR CLASSIFIERS P The Perceptron Algorithm

¢ The Perceptron Algorithm

» Assume linearly separable classes, I.e.,

Sw wW* x>0 VXxea
w* x <0 VX e,

%=1 *
» Thecase W X+ W,

falls under the above formulation, since

EaFIEaH

¢ WX x+W, =W'X=0
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» Our goal: Compute a solution, i.e., a hyperplane w,
so that

WTLQO:&e{

* The steps
1. Define a cost function to be minimized
2. Choose an algorithm to minimize the cost function
3. The minimum corresponds to a solution
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» The Cost Function
J(w) = (5W' X)

XeY

 Where Y'is the subset of the vectors wrongly classified
by w. When Y=(empty set) a solution is achieved and

J(w)=0

* Otherwise:
o,=-11f xeY and Xewm,
o,=+11f xeY and Xew,

J(w) =0
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« J(w) is piecewise linear

| J@w)=> (5w x)

xeY

» The Algorithm
 The philosophy of the gradient descent is adopted.
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Jow) |
\\ _ T
w(new) = w(old) + Aw Jw) g(@w X)
aw=—p 1 - wole \ o o/

av_v ﬁ» <ﬁ/

 Wherever valid

« This is the celebrated Perceptron Algorithm

oJ(w) _ 0 Sow x)=36,x

X— =

6V_V aV_V xeY xeY

w(t+1) =w(t) - p, > 5 X

xeY
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» An example:

o .~ e
w, ° P x

w(t+1) = w(t) + o, X o
=wW(t)-po,x (6,=-1) NGO

X

\

x

» The perceptron algorithm converges in a finite number
of iteration steps to a solution if

t t
lim E O, —> ®©, lim E pk2 < 400
t—oo t—o
k=0 k=0
_ C
e.g., - L :?
8
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¢ A useful variant of the perceptron algorithm

W (t+1)=w(t)

> ltisa

reward and punishment

T
w (t)x.. <0
Wt +1) =W (t) + pX ) . {— )x

X ) €@

w' ()X, =0

Vl(t+1)=Vi(t)—,0>L(t)1{ < e
2.0) 2

, otherwise

type of algorithm
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Example 3.2

Figure 3.4 shows four points in the two-dimensional space. Points (—1,0),(0, 1) belong
to class w;, and points (0, —1),(1,0) belong to class w>. The goal of this example is
to design a linear classifier using the perceptron algorithm in its reward and punishment
form. The parameter p is set equal to one, and the initial weight vector is chosen as w(0) =

[0,0,0]7 in the extended three-dimensional space. According to (3.21)—(3.23), the following
computations are in order:

x4
1 o
° * -
—1 1 X1
10
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—1 —1 —1
w'! (0) 0| =0 w=w+ 0| =
1 1 1
0
w (D] 1 | =1>0, w2 =w()
1

0 ]
w D -1 [ =1>0, w@=w-| -1 |= -
1J 1 0

1
w' (3) [ 0 —‘ =—-1<0, w4 = w3
1

11
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Step b.
]
w @ 01 =1>0, w0 =wk
1
Step 6.
0
w | 1 | =1>0, w©6) = w)
1
Step 7.

0
wT(G)[—l —l = —1<0, w() = w)
1

Since for four consecutive steps no correction is needed, all points are correctly classified
and the algorithm terminates. The solution is w = [—1,1,0]”. That is, the resulting linear
classifier is —x; + x> = 0, and it is the line passing through the origin shown in Figure 3.4.

12
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¢ The perceptron

W, 'S synapses or synaptic weights

w,  threshold

(b)

If w x4+ wy>0

If w x+wy<0

assign x to wq

assign x to w;

» The network Is called perceptron or neuron
» Itisa learning machine that learns from the training vectors

via the perceptron algorithm

13
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The Perceptron Algorithm
m Choose w(0) randomly
m Choose pg
ml=0
m Repeat
o Y =1

e Fori = 1toN
O Ifo,.w(t)Tx,- =0thenY = Y U {x;}

e End {For}
o w(it+ 1) =w) —pr) .cyOxX
e Adjust p;
ot =1t+1

m Untily =0
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» Example: At some stage ¢ the perceptron algorithm results in

w, =1 w,=1 w,=-0.5
X +X,—0.5=0

The corresponding
hyperplane is

" 0.4 ]

Xy

1

05
205

wit+D)=| 1 [-0.7(=1)|0.05|-0.7(+1)

1
0

[ —0.2]

0.75

1
0.5

(1.42 ]
0.51

-0.5

15
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¢ Least Squares Methods

> If classes are linearly separable,
the perceptron output results in +1

» If classes are NOT linearly separable, we shall compute the
weights W, W, ,..., W,

so that the difference between
» The actual output of the classifier, w' x , and

- The desired outputs, e.g. {+1 Tx ea

to be SMALL -lifx e,

16
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» SMALL, in the mean square error sense, means to choose W
so that the cost function

« JW)=E[(y —=w ' x)?]is minimum

N

« W =argminJ W)

« y the corresponding desired responses (targets)

17
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» Minimizing J w ) w.r. tow results in:

oJw) 0 T2t
v —aNE[(y w x)]=0

Elxx'lw =E[xy]=

where R, is the autocorrelation matrix

_E[Xlxl] E[X1X2]"' E[Xlxl]_
R, =E[XX' 1= v v e,
_E[x,xl] E[xX,]... E[x,x,]_
and E[x Y]
E[xy]= IS the crosscorrelation vector
| E[xy]]

18
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» Multi-class generalization

« The goal is to compute M linear discriminant functions:

T
g; (X) =Ww; X
according to the MSE.

 Adopt as desired responses y;
y. =1 If Xew
y. =0 otherwise

o Let
y= [y11 Yoies YM]T

e and the matrix

W = [Wl,V_V21--"V_VM]

19
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« The goal is to compute W:

=arg nevin E[Hz ~W' xﬂ arg mln E{i( x)z}

i=1

» The above is equivalent to a number M of MSE minimization
problems. That is:

Design each w;, so that its desired output is 1 for X € @.
and 0 for any other class.

20
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» Remark: The MSE criterion belongs to a more general class of cost
function with the following important property:

« The value of g.(x) is an estimate, in the MSE sense, of the
a-posteriori probability P(w. | X), provided that the desired responses
used during training are y, =1, X € @, and 0 otherwise.

21
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“ Sum of Error Squares Estimation

s SMALL in the sum of error squares sense means

> JWw) = Z(Y. NX;)

. training pairs that is, the input x;and its
{(y: . X, )} 1 corresponding class label y. (£1).

aJ(w) 62(% WX ) =0

22
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¢ Pseudoinverse Matrix

» Define
ks i
XT

X == | (an N x| matrix) y=
Xy ]

Y1

Yn _

corresponding
desired responses

> X' =[X,,X,,..oXy] (@1 xN matrix)

I ><

|<
|l
I><

i

23
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N N
Thus (Z)_(|T X)W = (ZliYi)
i=1 i=1
(XTX)W=X"y=
= (XTX) Xy
— X¢y

X#=(XTX)*XT| Pseudoinverse of X

» Assume V=] = X square and invertible. Then

(XTX)'XT=XXTX"=X"=

X=Xt

24
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» Assume N> [. Then, in general, there is no solution to
satisfy all equations simultaneously:

(T
X, W =Y,
XLW =Y
Xw=y: 72— 72 N equations > | unknowns
T
XNW =Yy

> The “solution” W =X "y corresponds to the minimum sum
of squares solution

25
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» Example:
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W, X, +W X, +w, =0

(28 224 48] 1.6

X"X =224 241 47|, X"y=| 01

48 47 10| | 0.0 |
(—3.13]

w=(X"X)"X"y=| 0.24
134
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» Mean square error regression: Lety e R} x e R’ be jointly
distributed random vectors with a joint pdf p(x, y)

 The goal: Given the value of x estimate the value of y. In the
pattern recognition framework, given x one wants to €stimate
the respective label y =+1.

» The MSE estimate y of y given X is defined as:
A - ~ 112
y =argminE [”y =1 }
« It turns out that:

=ely1x= [ypty 0y

The above is known as the regression of y given X and it is, In
general, a non-linear function of X
If p(x,y) Is Gaussian the MSE regressor IS linear.

28
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*+» The Bias — Variance Dilemma

A classifier g(x) Is a learning machine that tries to predict the
class label y of X. In practice, a finite data set D is used for its
training. Let us write g(X; D) . Observe that:

N
> For some training sets, D ={(y,,x, )|, the training may result
to good estimates, for some others the result may be worse.

» The average performance of the classifier can be tested against
the MSE optimal value, in the mean squares sense, that is:

Eo [(Q(L;D)—E[y |>L])2J

where E, is the mean over all possible data sets D.

29
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e The above Is written as:

Eo | (906D)-Ely [X]) |=
(Eo[9D)]-Ely Ix])" +Eo | (9(:D)~E5 [9(xiD)])’

* In the above, the first term is the contribution of the bias
and the second term is the contribution of the variance.

e For a finite D, there is a trade-off between the two terms.
Increasing bias it reduces variance and vice verse. This IS
known as the bias-variance dilemma.

 Using a complex model results in low-bias but a high
variance, as one changes from one training set to another.
Using a model results in but

30
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0 0.5 1

FIGURE 3.8

The data points are spread around the f(x) curve. The line g(x) = 0 exhibits zero variance but
high bias. The high degree polynomial curve, gi(x) = 0, always passes through the training
points and leads to low bias (zero bias at the training points) but to high variance.

31
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“* LOGISTIC DISCRIMINATION

> Let an M-class task, @, @,, ..., @, . In logistic discrimination,
the logarithm of the likelihood ratios are modeled via linear
functions, I.e.,

In( P (@ lﬁ)JZWioJrVLTL i=1,2,....M -1
P(a)M |&) |

» Taking into account that

iN|21|:)(a)i |)_():1

It can be easily shown that the above is equivalent with
modeling posterior probabilities as:

32
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1
P(a)M |)_(): M —1
1+ ZeXp(Wi,o+V_ViT)_()
i=1
exp(w. . +w ' X
P(a)i |&): p( i,0 —1 _)

M -1 T
1+ Z eXp(W ioTW; &)
=1
> For the two-class case it turns out that

1

Ple1%)= 1+exp (wo +wW' >_<)

_eplw, +w'x)
Plar]x)= 1+exp (S/vo +wW' >_<)

1=12,....M -1

33



LINEAR CLASSIFIERS P Logistic Discrimination

» The unknown parameters W,, W, ,, 1=1, 2, ..., M-1 are usually
estimated by maximum likelihood arguments.

» Logistic discrimination is a useful tool, since
« it allows linear modeling, and
« at the same time ensures posterior probabilities to add to one.

34
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¢+ Support Vector Machines (SVM)

» The goal: Given two linearly separable classes, design the

classifier g(x) = V_VT X+ W, =0

that leaves the maximum margin from both classes

direction 2

—_——
——
—

—— o —

\J

Xy

35
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» Margin: Each hyperplane is characterized by
« |ts direction in space, i.e., W

« Its position in space, i.e., W,

« For EACH direction,w, choose the hyperplane that
leaves the SAME distance from the nearest points from
each class. The margin Is twice this distance.

36
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> The distance of a point X from a hyperplane ; — g(X)
is given by s HWH

» Scale, W, W,, so that at the nearest points from each class the
discriminant function is £1.:

lg(x)| =1 {g(x) = +1for @, and g(x) = —1for w, |

» Thus the margin is given by
1 2

1
+ —
il

.
>
» Also, the following is valid {Vl X+W, 21 VX e,

w'x +w,<-1 VX e,

37
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» SVM (linear) classifier

g(xX) =W X+Ww,
» Minimize

2 w) = 3w’

» Subject to
y,(w' X, +w,)>1 i=12,..,N

y. =1 , forx; €,
y. =-1, forX; € w,

> The above is justified since by minimizing |w|

the margin i IS maximized
Wi

38
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» The above is a quadratic optimization task, subject to a set
of linear inequality constraints. The Karush-Kuhn-Tucker
conditions state that the minimizer satisfies:

0
- (1) 8_w L(w, w,, 4)=0

* (2) ai L(w, w,, 4) =0

Wo

*(3) 4 =0,i=12,...,N
- (4) A [yi(vlT X +wo)—1}=o,i -1,2,...,N

« Where L(e,®,®) isthe Lagrangian
N

L(w, Wy, 4) E%v_vTv_v—Z/l.[yi (W' %, +W,)]
i1

39
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» The solution: from the above, It turns out that

* W= ZN:/% Yi X
i1

* iﬂ“iyi =0
i=1

40
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» Remarks:
« The Lagrange multipliers can be either zero or positive.
Thus,
NS
- W= Zﬂ“i Yi X
=1
where N < N , corresponding to positive Lagrange
multipliers

— From constraint (4) above, i.e.,

ALy, (W' x. +w,)-1]=0, i=12,..,N

the vectors contributingto W  satisfy

.
W X +w,==%1 “
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— These vectors are known as SUPPORT VECTORS
and are the closest vectors, from each class, to the
classifier.

— Once W is computed, w, is determined from
conditions (4).

— The optimal hyperplane classifier of a support vector
machine is UNIQUE.

— Although the solution is unique, the resulting
Lagrange multipliers are not unique.

42
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» Dual Problem Formulation
« The SVM formulation is a convex programming problem,
with
— Convex cost function
— Convex region of feasible solutions
 Thus, its solution can be achieved by its dual problem, i.e.,

— maximize  L(w,w,, 1)
A

N
— subjectto  w= Zgi Y. X
=1

43
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« Combine the above to obtain

— maximize (Z/l ——Zﬁ/l VY% X;)

A
— subject to
N
> A4y =0
i=1
420

» Remarks:
 Support vectors enter via inner products

44
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» Non-Separable classes

Ly

45
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In this case, there is no hyperplane
such that

 Recall that the margin is defined as twice the distance
between the following two hyperplanes

V_VT)_H'Wo:l

and

W' X+w, =-1

46
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» The training vectors belong to one of three possible
categories

1) Vectors outside the band which are correctly
classified, I.e.,

Yi (V_VT)_("'WO) >1

2) Vectors inside the band, and correctly classified,
l.e.,

0<y (W X+w,) <1

3) Vectors misclassified, I.e.,

Yi(V_VT)_(+Wo)<O

47
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» All three cases above can be represented as

V(W' X+Wy)>1-¢&

1) —¢ =0
2) —>0<¢<1
3) —1<¢

fi are known as slack variables

48
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» The goal of the optimization is now two-fold
« Maximize margin
« Minimize the number of patterns with & >0,
One way to achieve this goal is via the cost

I, wy, &) = i +CY1(4)

where Cis a constant and

1 & >0
@y 7ol

 /(.)Is not differentiable. In practice, we use an
approximation

0w, £) = [ui €Y

 Following a similar procedure as before we obtain

49
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> KKT conditions

(1) V_V:i/liyi)_(i

(2) Z’li)’i =0

B) C—u—-A=0i=12,.,N

(4) &[yi(V_VTZi—I_WO)_l_I_fi]:O’ i:1’21""N
() w& =0, i=12,..,N

6) @, A =0, 1=12..,N

50
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» The associated dual problem

Maximize A(Zi——z A%:Y5% X;)

subject to 0<A<C,i=12,..,N

N

Z/lu)/i =0

i=1

» Remarks: The only difference with the separable
class case is the existence of C in the constraints

o1
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» Training the SVM

A major problem is the high computational cost. To this end,
decomposition techniques are used. The rationale behind
them consists of the following:

Start with an arbitrary data subset (working set) that can fit in
the memory. Perform optimization, via a general purpose
optimizer.

Resulting support vectors remain in the working set, while
others are replaced by new ones (outside the set) that violate
severely the KKT conditions.

Repeat the procedure.

The above procedure guarantees that the cost function
decreases.

Platt’s SMO algorithm chooses a working set of two samples,
thus analytic optimization solution can be obtained.

52
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-3-2-1 0 1 2 3 4 5

FIGURE 3.13

An example of two nonseparable classes and the resulting SVM linear classifier (full line) with
the associated margin (dotted lines) for the values (a) C = 0.2 and (b) C = 1000. In the latter
case, the location and direction of the classifier as well as the width of the margin have changed
in order to include a smaller number of points inside the margin.

53



LINEAR CLASSIFIERS P Support Vector Machines

» Multi-class generalization

Although theoretical generalizations exist, the most popular in
practice is to look at the problem as M two-class problems
(one against all).

‘one vs. all’ ‘one vs. one’
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