

درس ۱۷

خوشەبندى فازى

Fuzzy Clustering

کاظم فولادی دانشکده مهندسـی برق و کامپیوتر دانشگاه تهران

http://courses.fouladi.ir/pr

Fuzzy Clustering Algorithms

What is Clustering?

Crisp & Fuzzy Clustering

C-Means Clustering

Fixed number of clusters. One centroid per cluster.

Each data point belongs to the cluster corresponding to the closest centroid.

C-Means Clustering

$$J = \sum_{i=1}^{c} J_i = \sum_{i=1}^{c} \left(\sum_{k, x_k \in G_i} d(\mathbf{x}_k - \mathbf{c}_i) \right)$$

C-Means Clustering

Fuzzy C-Means Clustering

Fixed number of clusters. One centroid per cluster.

Clusters are fuzzy sets.

Membership degree of a point can be any number between 0 and 1.

Sum of all degrees for a point must add up to 1.

C-Means
$$J = \sum_{i=1}^{c} J_i = \sum_{i=1}^{c} \left(\sum_{k, x_k \in G_i} d(x_k - c_i) \right)$$

Fuzzy
C-Means
(FCM) $J = \sum_{i=1}^{c} J_i = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^m d_{ij}^2$
membership
degree

Fuzzy C-Means Clustering

Note: formulas are result of the method of Lagrange multipliers as applied to aforementioned cost function

