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� They produce a hierarchy of (hard) clusterings instead of a 

single clustering.

� Applications in:

� Social sciences

� Biological taxonomy

� Modern biology

� Medicine

� Archaeology

� Computer science and engineering
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� Let X = {x1,…,xN}, xi = [xi1,…,xil]
T. Recall that:

� In hard clustering each vector belongs exclusively to a single cluster.

� An m-(hard) clustering of X, , is a partition of X into m sets (clusters) 

C1,…, Cm , so that:

By the definition:  = {Cj, j = 1, …, m}

� Definition: A clustering 1 containing k clusters is said to be nested

in the clustering 2 containing r (< k) clusters, if each cluster in 1 is 

a subset of a cluster in 2.

We write 1 � 2
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� Example: Let 1={{x1,x3},{x4},{x2,x5}}, 2={{x1,x3,x4},{x2,x5}}, 

3={{x1,x4},{x3},{x2,x5}}, 4={{x1,x2,x4},{x3,x5}}.

It is 1 � 2, but not 1 � 3,1 � 4,1 � 1.

� Remarks:

• Hierarchical clustering algorithms produce a hierarchy of nested clusterings.

• They involve N steps at the most.

• At each step t, the clustering t is produced by t-1.

� Main categories:

• Agglomerative clustering algorithms: Here 0={{x1},…,{xN}}, 
N-1 ={{x1,…,xN}} and 0 � … � N-1.

• Divisive clustering algorithms: Here 0={{x1,…,xN}}, 
N-1= {{x1},…,{xN}} and N-1 � … � 0.
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AGGLOMERATIVE ALGORITHMS

� Let g(Ci,Cj) a proximity function between two clusters of X.

� Generalized Agglomerative Scheme (GAS)

� Initialization

• Choose 0={{x1},…,{xN}}

• t = 0

� Repeat

• t =t +1

• Choose (Ci,Cj) in t-1 such that

• Define Cq = Ci  Cj and produce t = (t -1 - {Ci,Cj}) {Cq}

� Until all vectors lie in a single cluster.
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�Remarks:

• If two vectors come together into a single cluster at level t of the 

hierarchy, they will remain in the same cluster for all subsequent 

clusterings. As a consequence, there is no way to recover a “poor”

clustering that may have occurred in an earlier level of hierarchy.

• Number of operations: O(N3)

8
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� Definitions of some useful quantities:

Let X ={x1,x2,…,xN}, with xi=[xi1,xi2,…,xil]
T.

� Pattern matrix (D(X)): An Nl matrix whose i-th row is xi (transposed).

� Proximity (similarity or dissimilarity) matrix (P(X)): An N N matrix 

whose (i,j) element equals the proximity (xi,xj) 
(similarity s(xi,xj), dissimilarity d(xi,xj)). 

� Example 1: Let X ={x1, x2, x3, x4, x5}, with x1=[1, 1]T, x2=[2, 1]T, 

x3=[5, 4]T, x4=[6, 5]T, x5=[6.5, 6]T.

Euclidean distance Tanimoto distance
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� Threshold dendrogram (or dendrorgram): It is an effective way of 

representing the sequence of clusterings which are produced by an 

agglomerative algorithm.

In the previous example, if                      is employed as the distance 

measure between two sets and the Euclidean one as the distance measure 

between two vectors, the following series of clusterings are produced: 
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� Proximity (dissimilarity or dissimilarity) dendrogram:  A dendrogram that takes 
into account the level of proximity (dissimilarity or similarity) where two 
clusters are merged for the first time.

� Example 2: In terms of the previous example, the proximity dendrograms that 
correspond to P’(X) and P(X) are

� Remark: One can readily observe the level in which a cluster is formed and the level 
in which it is absorbed in a larger cluster (indication of the natural clustering).

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

S
im

il
a

ri
ty

 s
ca

le

x
1

x
2

x
3

x
4

x
5

10

0

1

2

3

4

5

9

8

7

6
D

is
si

m
il

ar
it

y
 s

ca
le

x
1

x
2

x
3

x
4

x
5

(a) (b)

11

HIERARCHICAL CLUSTERING ALGORITHMS   � Agglomerative Algorithms



� Agglomerative algorithms are divided into:

� Algorithms based on matrix theory.

� Algorithms based on graph theory.

In the sequel we focus only on dissimilarity measures.

� Algorithms based on matrix theory.

• They take as input the N N dissimilarity matrix P0 = P(X).

• At each level t where two clusters Ci and Cj are merged to Cq, the 

dissimilarity matrix Pt is extracted from Pt -1 by:

 Deleting the two rows and columns of Pt that correspond to Ci and Cj.

 Adding a new row and a new column that contain the distances of newly 

formed Cq = Ci  Cj from the remaining clusters Cs, via a relation of the 

form

d(Cq,Cs)=f (d(Ci,Cs),d(Cj,Cs),d(Ci,Cj))

12
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• A number of distance functions comply with the following update equation

d(Cq,Cs)=ai d(Ci,Cs)+aj d(Cj,Cs)+b d(Ci,Cj)+c| d(Ci,Cs) - d(Cj,Cs) |

Algorithms that follow the above equation are:

� Single link (SL) algorithm (ai = 1/2, aj =1/2, b = 0, c = -1/2). In this case

d(Cq,Cs)=min{d(Ci,Cs), d(Cj,Cs)}

� Complete link (CL) algorithm (ai =1/2, aj =1/2, b = 0, c =1/2). In this case

d(Cq,Cs)=max{d(Ci,Cs), d(Cj,Cs)}

� Remarks:

• Single link forms clusters at low dissimilarities while complete link forms clusters at 
high dissimilarities.

• Single link tends to form elongated clusters (chaining effect ) while complete link
tends to form compact clusters.

• The rest algorithms are compromises between these two extremes.
13
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� Example:

(a) The data set X. 

(b) The single link algorithm 

dissimilarity dendrogram. 

(c) The complete link 

algorithm dissimilarity 

dendrogram
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� Weighted Pair Group Method Average (WPGMA) (ai =1/2, aj =1/2, b = 0, c = 0). 
In this case:

d(Cq,Cs)=(d(Ci,Cs) + d(Cj,Cs))/2

� Unweighted Pair Group Method Average (UPGMA) (ai=ni/(ni+nj), aj=nj/(ni+nj), 
b=0, c=0, where ni is the cardinality of Ci). In this case:

d(Cq,Cs)=(ni d(Ci,Cs) + nj d(Cj,Cs))/(ni+nj)

� Unweighted Pair Group Method Centroid (UPGMC) (ai=ni/(ni+nj),  aj=nj/(ni+nj), 
b= – ni nj/(ni+nj)

2, c = 0). In this case:

For the UPGMC, it is true that  dqs=||mq – ms||
2, where mq is the mean of Cq .
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� Weighted Pair Group Method Centroid (WPGMC) (ai=1/2, aj=1/2, b=-1/4, 
c=0). In this case

dqs=(dis + djs)/2 – dij /4

For WPGMC there are cases where dqs  max{dis, djs} (crossover)

� Ward or minimum variance algorithm. Here the distance d´ij between Ci and Cj is 

defined as

d´ij=(ni nj/(ni+nj)) ||mi – mj||
2

d´qs can also be written as

d´qs=((ni + nj )d´is + (ni + nj)d´js – nsd´ij )/(ni+nj+ns)

� Remark: Ward’s algorithm forms t +1 by merging the two clusters that lead to 

the smallest possible increase of the total variance, i.e.,
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� Example 3: Consider the following dissimilarity matrix (Euclidean distance)

All the algorithms produce the above sequence of clusterings at different proximity levels: 
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17

0={{x1}, {x2}, {x3}, {x4}, {x5}}, 

1={{x1, x2}, {x3}, {x4}, {x5}}, 

2={{x1, x2}, {x3}, {x4, x5}}, 

3={{x1, x2, x3}, {x4, x5}}, 

4={{x1, x2, x3, x4, x5}}
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� Monotonicity and crossover:

For the following dissimilarity matrix
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the dissimilarity dendrograms produced by 

single link, complete link and UPGMC (the 

same result is produced if WPGMC is 

employed) are: 

{x
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formed at lower 
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} 

(crossover)
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� Monotonicity condition:

If clusters Ci and Cj are selected to be merged in cluster Cq, at the t-th  

level of the hierarchy, the condition

d(Cq,Ck)  d(Ci,Cj)

must hold for all Ck, k ≠ i, j, q.

In other words, the monotonicity condition implies that a cluster is formed at 

higher dissimilarity level than any of its components.

� Remarks:

• Monotonicity is a property that is exclusively related to the clustering 

algorithm and not to the (initial) proximity matrix.

• An algorithm that does not satisfy the monotonicity condition, does not 

necessarily produce dendrograms with crossovers.

• Single link, complete link, UPGMA, WPGMA and the Ward’s algorithm 

satisfy the monotonicity condition, while UPGMC and WPGMC do not 

satisfy it.
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� Complexity issues:

• GAS requires, in general, O(N3) operations.

• More efficient implementations require O(N2logN) computational time.

• For a class of widely used algorithms, implementations that require O(N2)
computational time and O(N2) or O(N) storage have also been proposed.

• Parallel implementations on SIMD machines have also been considered.

20
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� Algorithms based on graph theory

Some basic definitions from graph theory: 

• A graph, G, is defined as an ordered pair G=(V,E), where V={vi: i=1,…,N}
is a set of vertices and E is a set of edges connecting some pairs of 
vertices. An edge connecting vi and vj is denoted by eij or (vi,vj).

• A graph is called undirected graph if there is no direction assigned to any 
of its edges. Otherwise, we deal with directed graphs.

• A graph is called unweighted graph if there is  no cost associated with any 
of its edges. Otherwise, we deal with weighted graphs.

• A path in G between vertices vi1 and vin is a sequence of vertices and 
edges of the form vi1 ei1i2vi2....vin-1ein-1invin.

• A loop in G is a path where vi1
and vin

coincide.

• A subgraph G´=(V´,E´) of G is a graph with V´  V and E´  E1, where E1

is a subset of E containing vertices that connect vertices of V´. Every 
graph is a subgraph to itself.

• A connected subgraph G´=(V´,E´) is a subgraph where there exists at least 
one path connecting any pair of vertices in V´.

21
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• A complete subgraph G´=(V´,E) is a subgraph where for any pair of vertices 

in V’ there exists an edge in E” connecting them.

• A maximally connected subgraph of G is a connected subgraph G´ of G that 

contains as many vertices of G as possible.

• A maximally complete subgraph of G is a complete subgraph G´ of G that 

contains as many vertices of G as possible.

Examples for the above, are shown in the following figure.
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� NOTE: In the framework of clustering, each vertex of a graph corresponds to 

a feature vector.

Useful tools for the algorithms based on graph theory are the threshold graph

and the proximity graph.

• A threshold graph G(a)

 is an undirected, unweighted graph with N nodes, each one 

corresponding to a vector of X. 

 No self-loops or multiple edges  between any two vertices are 

encountered. 

 The set of edges of G(a) contains those edges (vi, vj) for which the 

distance d(xi,xj) between the vectors corresponding to vi and vj is less 

than or equal to a.

• A proximity graph Gp(a) is a threshold graph G(a), all of whose edges 

(vi, vj) are weighted with the proximity measure d(xi,xj).

24
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(a) The threshold graph G(3), (b) the proximity (dissimilarity) graph Gp(3), 
(c) the threshold graph G(5), (d) the dissimilarity graph Gp(5), for the 

dissimilarity matrix P(X) given in example 1.
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� More definitions:

In this framework, we consider graphs G, of N nodes, where each node 

corresponds to a vector of X.

Valid clusters are connected components of G that satisfy an additional graph 

property h(k).

Typical graph properties for a connected subgraph G´ of G are:

• Node connectivity: The largest integer k such that all pairs of nodes of G´

are joined by at least k paths having no nodes in common.

• Edge connectivity: The largest integer k such that all pairs of nodes are 

joined by at least k paths having no edges in common.

• Node degree: The largest integer k such that each node has at least k
incident edges.

26
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Node connectivity :  

Edge connectivity :  

Node degree          :  3

3

3

27

HIERARCHICAL CLUSTERING ALGORITHMS   � Agglomerative Algorithms



• The proximity function gh(k)(Cr ,Cs) between two clusters is defined in 

terms of

 a proximity measure between vectors (nodes)

 certain constraints imposed by property h(k) on the subgraphs that are 

formed.

In mathematical language:

gh(k)(Cr ,Cs) =

minxuCr , xvCs{d(xu,xv)  a: the G(a) subgraph defined by  CrCs is 

(a) connected and either (b1) has the property h(k) or (b2) is complete}

� Graph theory-based algorithmic scheme (GTAS): It is the GAS in the context 

of graph theory. In the context of GTAS,  a pair of clusters (Ci,Cj) is selected 

to be merged according to:

, ( )

( )

, ( )

min ( , ),
( , )

max ( , ),

r s h k r s

h k i j

r s h k r s

g C C for dissimilarity functions
g C C

g C C for similarity functions

⎧⎪ ⎨
⎪⎩
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• Single link (SL) algorithm. Here

gh(k)(Cr ,Cs) = minxuCr , xvCs {d(xu ,xv)  a: the G(a) subgraph defined by 
CrCs is connected }  minxCr , yCs d(x, y) (why?)

• Remarks:

 No property h(k) or completeness is required.

 The SL stemming from the graph theory is exactly the same with the SL 
stemming from the matrix theory.

• Complete link (CL) algorithm. Here

gh(k)(Cr ,Cs) = minxuCr , xvCs {d(xu ,xv)  a: the G(a) subgraph defined by 
CrCs is complete}  maxxCr , yCs d(x, y) (why?)

• Remarks:

 No property h(k) is required.

 The CL stemming from graph theory is exactly the same with the CL 
stemming from matrix theory.
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� Example 5: For the dissimilarity 

matrix, 

SL and CL produce the same hierarchy 

of clusterings at the levels given in the 

table.
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� Remarks:

• SL poses the weakest possible graph condition (connectivity) for the 

formation of a cluster, while CL poses the strongest possible graph 

condition (completeness) for the formation of a cluster. 

• A variety of graph theory-based algorithms, that lie between these two 

extremes result for various choices of h(k).

 For k =1 all these algorithms collapse to the single link algorithm.

 As k increases, the resulting subgraphs approach completeness.
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� Clustering algorithms based on the Minimum Spanning Tree (MST)

� Definitions:

• Spanning Tree: It is a connected graph (containing all the vertices 

of the graph), with no loops (only one path connects any two 

vertices).

• Weight of a Spanning Tree: The sum of the weights of its edges 

(provided that they have been assigned with a weight).

• Minimum Spanning Tree (MST): A spanning tree with the smallest

weight among the spanning trees connecting all the vertices of the 

graph.
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� Remarks:

• The MST has N-1 edges.

• When all the weights are different from each other, the MST is unique. 

Otherwise, it may not be unique.

� Employing the GTAS and substituting gh(k)(Cr,Cs) with 

g(Cr,Cs) = minij{wij: xiCr , xjCs}

where wij = d(xi,xj), we can determine the MST.

� Alternatively, a hierarchy of clusterings may be obtained by the MST as 

follows: 

The clustering t at the t th level is the set of connected components of the 

MST, when only its t smallest weights are considered.

� Remark:

• The hierarchy produced by MST is the same with that produced by the 

single link algorithm, at least when all wij' s are different from each other.
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�Ties in the proximity matrix

• SL produces the same hierarchy of 
clusterings, independent of the 
order of consideration of edges 
with equal weights. 

• CL may produce different 
hierarchies, depending on the order 
of consideration of edges with 
equal weights.

• The other graph theory-based 
algorithms behave as the CL.

• The same trend appears in the 
matrix-based algorithms. In this 
case, ties may appear at a later 
stage of the algorithm.

�Example 6: Let

Note that P(2,3)=P(3,4).

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡



01275

10386

23039

78304

56940

P

35

(CL(a))

(SL)

(CL(b))

HIERARCHICAL CLUSTERING ALGORITHMS   � Agglomerative Algorithms



³﹍©0 ¿i1°mb1?

¾]°? ·m³[ č ¾1½ «FÃ`³﹍©0¿>G0a﹞ ·h¨i



DIVISIVE ALGORITHMS

� Let g(Ci,Cj) be a dissimilarity function between two clusters.

� Let Ctj denote the j th cluster of the t th clustering t, 

t = 0, …, N -1, j =1,…,t +1.

37
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� Generalized Divisive Scheme (GDS)

• Initialization

 Choose 0={X} as the initial clustering

 t = 0

• Repeat

 t = t +1

 For i = 1 to t

o Among all possible pairs of clusters (Cr ,Cs) that form a 
partition of Ct-1,i, find the pair (C1

t-1,i , C
2
t-1,i) that gives the 

maximum value for g.

 End for

 From the t pairs defined in the previous step, choose the one that 
maximizes g. Suppose that this is (C1

t -1,j, C
2
t -1,j).

 The new clustering is:

t = (t -1 – {Ct -1,j}){C1
t -1,j , C

2
t -1,j}

 Relabel the clusters of t.

• Until each vector lies in a single cluster.

38
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� Remarks:

• Different choices of g give rise to different algorithms.

• The GDS is computationally very demanding even for small N.

• Algorithms that rule out many partitions as not “reasonable”, 

under a prespecified criterion, have also been proposed.

• Algorithms where the splitting of the clusters is based on all 

features of the feature vectors are called polythetic algorithms. 

Otherwise, if the splitting is based on a single feature at each 

step, the algorithms are called monothetic algorithms.
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HIERARCHICAL ALGORITHMS FOR LARGE DATA SETS

� Since the number of operations required by GAS is greater than O(N2),

algorithms resulting by GAS are prohibitive for very large data sets 

encountered, for example, in web mining and bioinformatics. To overcome this 

drawback, various hierarchical algorithms of special type have been developed 

that are tailored  to handle large data sets.

Typical examples are:

� The CURE algorithm.

� The ROCK algorithm.

� The Chameleon algorithm.

41
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� The CURE (Clustering Using Representatives) algorithm

In CURE:

� Each cluster C is represented by a set of k > 1 representatives, denoted by R
C
.

� These representatives try to “capture” the shape of the cluster.

� They are chosen at the “border” of the cluster and then, they are pushed toward its 

mean, in order to discard the irregularities of the border.

More specifically, RC is determined as follows:

� Select xC, with the maximum distance from the mean mC of C and set R
C 

= {x}

� For i =2 to min{k,nC} (nC is the number of points in C)

• Determine y C – R
C

that lies farthest from the points of RC and set 

RC = RC {y}.

� Shrink the points x R
C

toward the mean mC in C by a factor a. That  is       

x = (1-a) x + a mC , x  R
C 

.
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CURE is a special case of GAS where the distance between two clusters is   

defined as:

� Worst case time complexity for CURE: O(N2log2N).

� This is prohibitive for very large data sets.

� Solution: Adoption of the random sampling technique.

The size N´ of a sample data set X´, created from X, via random   

sampling, should be sufficiently large in order to ensure that the 

probability of missing a cluster due to sampling is low.

,

( , ) min ( , )
C Ci j

i j
x R y R

d C C d x y
 



43

HIERARCHICAL CLUSTERING ALGORITHMS   � Hierarchical Algorithms for Large Data Sets



� CURE utilizing random sampling

� Identification of clusters

• Partition randomly X into p = N/N´ sample data sets.

• For each one of the p sample data sets.

– Apply the original version of CURE, until N´/q clusters (at the 
most) are formed (q is user-defined).

• Consider all the above p(N´/q) clusters (at the most) and apply the 
original CURE until the required number of clusters, m, is formed.

� Assignment of points to clusters

• For each of the m clusters select a random sample of representative 
points.

• Assign each point x that is not cluster representative to the cluster 
that contains the representative closest to it.
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� Remarks:

• CURE is sensitive to the parameters k, N´, a. Specifically:

 k must be large enough to capture the geometry of each cluster.

 N´ must be higher than a certain percentage of N

(typically N´  2.5% N)

 For small a CURE behaves like the MST algorithm, 

while for large a it resembles the algorithms that use a single point 

representative for each cluster.

• Worst case time complexity for CURE using random sampling: O(N´2log
2
N´)

• The algorithm exhibits low sensitivity with respect to outliers within the 

clusters.

• A few stages before its termination, CURE checks for clusters containing very 

few data points and removes them (since they are likely to be outliers).

• If N´/q is sufficiently large, compared to m, it is expected that the partition of 

X will not affect significantly the final clustering obtained by CURE.

• CURE can, in principle, reveal clusters of non-spherical or elongated shapes, 

as well as clusters of wide variance in size.

• CURE can be implemented efficiently using the heap and the k-d tree data 

structures. 45
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� The ROCK (RObust Clustering using linKs) algorithm

It is best suited for nominal (categorical) features.

� Some preliminaries

• Two points x,y X are considered neighbors if s(x,y)  θ, where s(.) is 

a similarity function and θ a user-defined threshold of similarity 

between two vectors.

• link(x,y) is the number of common neighbors between x and y.

� Assumption: There exists a function f(θ) (<1) such that:

“Each point assigned to a cluster Ci has approximately ni
f(θ) neighbors in   

Ci (ni is the number of points in Ci) ”

It can be proved that the expected total number of links among all pairs  

in Ci is ni
1+2f(θ).

∑∑
 


i jCx Cy

ji yxlinkCClink ),(),(

46

HIERARCHICAL CLUSTERING ALGORITHMS   � Hierarchical Algorithms for Large Data Sets



� ROCK is a special case of GAS where

• The closeness between two clusters is defined as

The denominator is the expected total number of links between the two 

clusters.

The larger the g(.), the more similar the clusters Ci and Cj are .

� The stopping criterion is: 

• the number of clusters become equal to a predefined number m or

• link(Ci,Cj) = 0 for every pair in a clustering t.

� Time complexity for ROCK: Similar to CURE for large N.

� Prohibitive for very large data sets.

� Solution: Adoption of random sampling techniques.
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� ROCK utilizing Random Sampling

• Identification of clusters

 Select a subset X´ of X via random sampling

 Run the original ROCK algorithm on X´

• Assignment of points to clusters

 For each cluster Ci select a set Li of nLi points

 For each z X-X´
o Compute ti =Ni /(nLi+1)

f(θ), 

where Ni is the number of neighbors of z in Li.

o Assign z to the cluster with the maximum ti.

� Remarks:

• A choice for f(θ ) is f(θ )=(1-θ )/(1+θ ), with (θ<1) .

• f(θ) depends on the data set and the type of clusters we are interested in.

• The hypothesis about the existence of f(θ ) is very strong. It may lead to 

poor results if the data do not satisfy it.
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� The Chameleon algorithm

� This algorithm is not based on a “static” modeling of clusters like CURE 

(where each cluster is represented by the same number of representatives) and 

ROCK (where constraints are posed through the function f(θ )).

� It enjoys both divisive and agglomerative features.

� Some preliminaries:

Let G=(V,E) be a graph where:

• each vertex of V corresponds to a data point in X.

• E is a set of edges connecting pairs of vertices in V. Each vertex is 

weighted by the similarity of the corresponding points.

� Edge cut set: Let C be a set of points corresponding to a subset of V.

Assume that C is partitioned into two nonempty sets Ci and Cj

The subset E´ij of E that connect Ci and Cj is called edge cut set.
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� Minimum cut set: Let |E´ij| be the sum of weights of the edges in E´ij. 

If |E´ij|=min(Cu,Cv)|Euv|, then (Ci ,Cj) is the minimum cut set of C.

� Minimum cut bisector: If Ci , Cj are constrained to be of approximate  

equal size, the minimum cut set (over all possible partitions of 

approximately equal size) is known as the minimum cut bisector.

� Example 7: The graph in the following figure consists of 5 vertices and the 

edges shown, each one weighted by the similarity of the points that 

correspond to the vertices it connects. The minimum cut set and the 

minimum cut bisector are shown.
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� Measuring the similarity between clusters

• Relative interconnectivity:

 Let Eij be the set of edges connecting points in Ci with points in Cj.

 Let Ei be the set of edges corresponding to the minimum cut bisector of Ci.

 Let |Ei|, |Eij| be the sum of the weights of the edges of Ei , Eij, respectively.

 Absolute interconnectivity between Ci, Cj = |Eij|

 Internal interconnectivity of Ci = |Ei|

– Relative interconnectivity between Ci, Cj: 

• Relative closeness:

 Let Sij be the average weight of the edges in Eij .

 Let Si be the average weight of the edges in Ei .

 Relative closeness between Ci and Cj:
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� The Chameleon algorithm

Preliminary phase

Create a k-nearest neighbor graph G=(V,E) such that:

• Each vertex of V corresponds to a data point.

• The edge between two vertices vi and vj is added to E if vi is one of the k-nearest 

neighbors of vj or vise versa.

Divisive phase

Set 0={X}

t =0

Repeat

• t =t +1

• Select the largest cluster C in t -1.

• Referring to E, partition C into two sets so that:

 the sum of the weights of the edge cut set between the resulting clusters is 

minimized.

 each cluster contains at least 25% of the vertices of C.

Until each cluster in t contains fewer than q points.
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The Chameleon algorithm (cont.)

Agglomerative phase

Set ’0  = t

t = 0

Repeat

• t =t +1

• Merge Ci, Cj in ’t -1 to a single cluster if 

Riij  TRI and RCij  TRC (A)

(if more than one Cj satisfy the conditions for a given Ci, the Cj with the highest

|Eij | is selected).

Until (A) does not hold for any pair of clusters in ’t -1.

Return ’t -1

ΝΟΤΕ: The internal structure of two clusters to be merged is of significant 
importance. The more similar the elements with in each cluster the
higher “their resistance” in merging with another cluster.
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� Remarks:

• Condition (A) can be replaced by max(Ci,Cj)
RIij RCij

a

• Chameleon is not very sensitive to the choice of the user-defined 

parameters k (typically it is selected between 5 and 20), q
(typically chosen in the range 1 to 5% of the total number of data 

points), TRI , TRC and/or a.

• Chameleon is well suited for large data sets 

(better estimation of |Eij|, |Ei|, Sij, Si)

• For large N, the worst-case time complexity of the algorithm is 

O(N(log2N+m)), where m is the number of clusters formed by the 

divisive phase.
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� Example 8: For the clusters shown in the figure we have: 

|E1|=0.48, |E2|=0.48, |E3|=1.45, |E4|=1.45, 

|S1|=0.48, |S2|=0.48, |S3|=0.725, |S4|=0.725, 

|E12|=0.4, |E34|=0.6, |S12|=0.4, |S34|=0.6.

Thus, 

RI12=0.833, RI34=0.414

RC12=0.833, RC34=0.828

In conclusion:

Both RI and RC favor the merging

C1 and C2 against the merging of 

C3 and C4.

Note that MST would merge C3 and C4 instead of C1 and C2.
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CHOICE OF THE BEST NUMBER OF CLUSTERS

� A major issue associated with hierarchical algorithms is:

“How the clustering that best fits the data is extracted from a hierarchy of clusterings?”

Some approaches:

� Search in the proximity dendrogram for clusters that have a large lifetime (the 

difference between the proximity level at which a cluster is created and the 

proximity level at which it is absorbed into a larger cluster (however, this 

method involves human subjectivity)).

� Define a function h(C) that measures the dissimilarity between the vectors of 

the same cluster C. Let  be an appropriate threshold for h(C). Then t is the 

final clustering if there exists a cluster C in t +1 with dissimilarity between its 

vectors (h(C)) greater than  (extrinsic method). The final clustering t must 

satisfy the following condition:

dssmin(Ci,Cj) > max {h(Ci),h(Cj)},    Ci,Cj  t

In words, in the final clustering, the dissimilarity between every pair of clusters 

is larger than the “self-similarity” of each one of them (intrinsic method).

57

HIERARCHICAL CLUSTERING ALGORITHMS   � Hierarchical Algorithms for Large Data Sets



³﹍©0 ¿i1°mb1?

¾]°? ·m³[ č ¾1½ «FÃ`³﹍©0¿>G0a﹞ ·h¨i



بازشناسی الگو
P
re
p
a
re
d
 b
y
 K
a
z
im

 F
o
u
la
d
i  
 |
  
 S
p
ri
n
g
 2
0
1
7
  
| 
  
2
n
d
E
d
it
io
n

59

¿¨q0 ︹>°﹞

S. Theodoridis, K. Koutroumbas, 

Pattern Recognition, 

Fourth Edition, Academic Press, 2009.

Chapter 13


