== I

B> € slacus gusdiub
Nonlinear Classifiers

3 58 ’a.\élS
ﬁwSJ&wabﬁu‘d
O‘J-G:‘ S aaly

http://courses.fouladi.ir/pr






In the previous chapter we dealt with the design of linear classifiers
described by linear discriminant functions (hyperplanes) g(x).

In the simple two-class case,we saw that the perceptron algorithm
computes the weights of the linear function g(x), provided that the
classes are linearly separable .

For nonlinearly separable classes, linear classifiers were optimally
designed, for example, by minimizing the squared error .

In this chapter we will deal with problems that are not linearly
separable and for which the design of a linear classifier, even in an
optimal way, does not lead to satisfactory performance. The design of
nonlinear classifiers emerges now as an inescapable necessity.






NONLINEAR CLASSIFIERS

¢ The XOR problem
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NONLINEAR CLASSIFIERS P The XOR Problem

¢ There is no single line (hyperplane) that separates class A
from class B. On the contrary, AND and OR operations are
linearly separable problems
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FIGURE 4.2

Classes A and B for (a) the AND and (b) OR problems.

FIGURE 4.3

A perceptron realizing an OR gate.
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¢ The Two-Layer Perceptron

» For the XOR problem, draw two, instead, of one lines

A




NONLINEAR CLASSIFIERS P The Two-Layer Perceptron

» Then class B is located outside the shaded area and class A
inside. This 1s a two-phase design.

* Phase 1: Draw two lines (hyperplanes)
g (¥)=g,(x)=0

Each of them i1s realized by a perceptron.
The outputs of the perceptrons will be

0
Y; =f(gi(§))={1 i=1,2

depending on the position of x.

* Phase 2: Find the position of x w.r.Z. both lines, based on

the values of y,, y..
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NONLINEAR CLASSIFIERS P The Two-Layer Perceptron

1%t phase ond
Xy X3 Y1 Y2 phase
0 0 0(-) 0(-) B(0)
0 1 1(+) 0(-) A(l)
1 0 1(+) 0(-) A(l)
1 1 1(+) 1(+) B(0)

* Equivalently:
The computations of the first phase perform a mapping

zﬁzz[yla YQ]T



NONLINEAR CLASSIFIERS P The Two-Layer Perceptron

The decision is now performed on the transformed y data.

A
Ys

B
*ay s+

B A -
oo %(y)=0 "0 g

This can be performed via a second line,
which can also be realized by a perceptron.
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NONLINEAR CLASSIFIERS P The Two-Layer Perceptron

» Computations of the first phase perform a mapping

linearly separable one.

that transforms the nonlinearly separable problem to a

> The architecture

13



NONLINEAR CLASSIFIERS P The Two-Layer Perceptron

 This 1s known as the two layer perceptron with one
hidden and one output layer. The activation functions

are
0
fO)=
1
» The neurons (nodes) of the figure realize the following
lines (hyperplanes)

1
g (x)=x +x, _520

3
g,(x)=x +x, _520

1
g(z)=y1—2y2—5=0

14



NONLINEAR CLASSIFIERS P The Two-Layer Perceptron
¢ Classification capabilities of the two-layer perceptron

» The mapping performed by the first layer neurons is onto the vertices
of the unit side square, e.g., (0, 0), (0, 1), (1, 0), (1, 1).

» The more general case,
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NONLINEAR CLASSIFIERS P The Two-Layer Perceptron

xe R’
)L%)iz[yl,...,yp]T, y,€{0,1} i=1,2,.,p

performs a mapping of a vector
onto the vertices of the unit side H, hypercube

» The mapping is achieved with p neurons each realizing a
hyperplane.

» The output of each of these neurons is 0 or 1 depending on
the relative position of x w.r.t. the hyperplane.

16



NONLINEAR CLASSIFIERS P The Two-Layer Perceptron

» Intersections of these hyperplanes form regions in the
[-dimensional space. Each region corresponds to a vertex
of the H, unit hypercube.

17



NONLINEAR CLASSIFIERS P The Two-Layer Perceptron

For example,

the 001 vertex corresponds to the region which is located

to the (-) side of g,(x) =0
to the (-) side of g,(x) =0
to the (+) side of g;(x) =0
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NONLINEAR CLASSIFIERS P The Two-Layer Perceptron

» The output neuron realizes a hyperplane in the transformed »
space, that separates some of the vertices from the others.

» Thus, the two layer perceptron has the capability to classify
vectors into classes that consist of unions of polyhedral
regions: But NOT ANY union. It depends on the relative
position of the corresponding vertices.

19
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¢ Three-layer perceptrons

» The architecture

Ly e >
D A
", —

P 7

p
'Jr'; - >
input [*hidden 2" hidden output
layer layer layer layer

» This is capable to classify vectors into classes consisting of
ANY union of polyhedral regions.

» The idea is similar to the XOR problem. It realizes more than

one planes in the y € R” space. )



NONLINEAR CLASSIFIERS P The Three-Layer Perceptron

» The reasoning

» For each vertex, corresponding to class, say A, construct
a hyperplane which leaves THIS vertex on one side (+)
and ALL the others to the other side (-).

» The output neuron realizes an OR gate

» Overall:

The first layer of the network forms the hyperplanes,
The second layer forms the regions, and
The output neuron forms the classes.

¢ Designing Multilayer Perceptrons

» One direction is to adopt the above rationale and develop a
structure that classifies correctly all the training patterns.

» The other direction is to choose a structure and compute the

synaptic weights to optimize a cost function. .
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¢ The Backpropagation Algorithm

» This is an algorithmic procedure that computes the synaptic
weights iteratively, so that an adopted cost function is
minimized (optimized)

» In a large number of optimizing procedures, computation of
derivatives are involved. Hence, discontinuous activation
functions pose a problem, i.e.,

1
0 x<

f

» There is always an escape path!!! The logistic function

fy=—

1+ exp(—ax)

1s an example. Other functions are also possible and in some

cases more desirable. 9y
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J(x)
1

f)=—

1+ exp(—ax)

a;>a,>a,

25



NONLINEAR CLASSIFIERS P The Three-Layer Perceptron PP The Backpropagation Algorithm

» The steps:
* Adopt an optimizing cost function, e.g.,
— Least Squares Error
— Relative Entropy

between desired responses and actual responses of
the network for the available training patterns. That
1s, from now on we have to live with errors. We only
try to minimize them, using certain criteria.

» Adopt an algorithmic procedure for the optimization
of the cost function with respect to the synaptic
weights, e.g.,

— Gradient descent
— Newton’s algorithm

— Conjugate gradient y



NONLINEAR CLASSIFIERS P The Three-Layer Perceptron PP The Backpropagation Algorithm

 The task is a nonlinear optimization one. For the
gradient descent method

w (new) = w} (old) + Aw;
oJ
ow,

Aw; =—l

27



NONLINEAR CLASSIFIERS P The Three-Layer Perceptron PP The Backpropagation Algorithm

» The Procedure:
* Initialize unknown weights randomly with small values.

» Compute the gradient terms backwards, starting with the
weights of the last (3™) layer and then moving towards the
first

» Update the weights
» Repeat the procedure until a termination procedure is met

» Two major philosophies:

» Batch mode: The gradients of the last layer are computed
once ALL training data have appeared to the algorithm, i.e.,
by summing up all error terms.

 Pattern mode: The gradients are computed every time a new
training data pair appears. Thus gradients are based on
successive individual errors.

28



NONLINEAR CLASSIFIERS P The Three-Layer Perceptron PP The Backpropagation Algorithm
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» A major problem:

The algorithm may converge to a local minimum

J(w)1

) Initial point
e Final point

* Optimum

30
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» The Cost function choice
Examples:
» The Least Squares

J= iE(i)

E(i)= Z_e,f, (i) = Z_(ym (i) =3, ()

i=12,..,N

y ()= Desired response of the m output neuron
" (1 or 0) for x(i7)

)A?m (i)—  Actual response of the m“ output neuron, in
the interval [0, 1], for input x(7)
32



NONLINEAR CLASSIFIERS P The Three-Layer Perceptron PP The Backpropagation Algorithm

* The cross-entropy

J = iE(i)
E(i) = Z (O p, (@)+A-y, ) In(1-3, ()}

This presupposes an interpretation of y and y as probabilities

» Classification error rate. This is also known as
discriminative learning. Most of these techniques use a
smoothed version of the classification error.

33
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» Remark 1:

A common feature of all the above is the danger of local
minimum convergence.

“Well formed” cost functions guarantee convergence to a
“good” solution, that is one that classifies correctly
ALL training patterns, provided such a solution exists.

The cross-entropy cost function is a well formed one. The
Least Squares is not.

34
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» Remark 2:

» Both, the Least Squares and the cross entropy lead to output
values V, (7) that approximate optimally class a-posteriori
probabilities!!!

,(0) = P(w,,|x(i))

That is, the probability of class @,, given x(7).

This is a very interesting result. It does not depend on the
underlying distributions. It is a characteristic of certain cost
functions. How good or bad is the approximation, depends
on the underlying model. Furthermore, it is only valid at the
global minimum.

35
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» Choice of the network size.

How big a network can be?
How many layers and how many neurons per layer??

There are two major directions

* Pruning Techniques: These techniques start from a large
network and then weights and/or neurons are removed
iteratively, according to a criterion.

 Constructive techniques:
They start with a small network and keep increasing it,
according to a predetermined procedure and criterion.

37



NONLINEAR CLASSIFIERS P The Three-Layer Perceptron PP The Backpropagation Algorithm

— Methods based on parameter sensitivity

oJ = Z g,ow; + %Z hii5wi2 T %Z Z hij&wi&wi
i i I

+ higher order terms where
0J 9°J
h

8i _a—wl.’ I dw,0w;

Near a minimum and assuming that
1
oJ = EZ hii§wi2

38
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Pruning is now achieved in the following procedure:

v’ Train the network using Backpropagation
for a number of steps

v Compute the saliencies
hiiwi2
S, =
2

v Remove weights with small s..

v" Repeat the process

— Methods based on function regularization

J = ﬁ: E(i)+aE, (w)

39
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The second term favours small values for the weights, e.g.,

E (@)= h(w})

2
Wi

2
h (Wk ) — 2 2
W, +w,
where w, =1
After some training steps, weights with small values are
removed.

 Constructive techniques:
They start with a small network and keep increasing it,
according to a predetermined procedure and criterion.

40
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» Remark:
Why not start with a large network and leave the algorithm
to decide which weights are small??
This approach is just naive. It overlooks that classifiers must
have good generalization properties. A large network can
result in small errors for the training set, since it can learn the
particular details of the training set. On the other hand, it will
not be able to perform well when presented with data unknown
to it. The size of the network must be:

 Large enough to learn what makes data of the same class
similar and data from different classes dissimilar

« Small enough not to be able to learn underlying differences
between data of the same class.

This leads to the so called overfitting.

41
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(a) Error convergence curves for the adaptive momentum (dark line) and the momentum algo-
rithms. Note that the adaptive momentum leads to faster convergence. (b) The decision curve
formed by the multilayer perceptron.

43



NONLINEAR CLASSIFIERS P The Three-Layer Perceptron PP The Backpropagation Algorithm

Example:
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» Overtraining is another side of the same coin, i.e.,
the network adapts to the peculiarities of the training set.

error

fest set

training set

number of epochs

45
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*¢* Generalized Linear Classifiers

» Remember the XOR problem. The mapping

_| /(&)
X—=>y=
- /(&)

f() N The activation function transforms the
nonlinear task into a linear one.

» In the more general case:
e Let x€ R'and a nonlinear classification task.

£0),i=12,..k

47



NONLINEAR CLASSIFIERS P Generalized Linear Classifiers

 Are there any functions and an appropriate k, so that
the mapping ~ _
fi(®)

x—>y=

_f k (E)_
transforms the task into a linear one, in the y€ R ¢

space?

« If this is true, then there exists a hyperplane w € R ¢
so that

If w0+yTy>0, XE W,
w0+mTy<O, XE M,

48



NONLINEAR CLASSIFIERS P Generalized Linear Classifiers

» In such a case this is equivalent with approximating the
nonlinear discriminant function g(x), in terms of

e, f.(x)

g(x)=w, +Zwl~fi(£) > 0

» Given f;(x) , the task of computing the weights is a
linear one.

» How sensible is this??

* From the numerical analysis point of view, this is
justified if ~ f,(x) are interpolation functions.

* From the Pattern Recognition point of view, this is
justified by Cover’s theorem

49



FIGURE 4.17

Generalized linear classifier.

50
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¢ Capacity of the /-dimensional space in Linear Dichotomies

> Assume N pointsin R’ assumed to be in general position,

that 1s:

Not /+1 of these lie on a ¢/ —1 dimensional space

not in general
position

general
position

52



NONLINEAR CLASSIFIERS P Generalized Linear Classifiers
» Cover’s theorem states: The number of groupings that can

be formed by (I-1)-dimensional hyperplanes to separate N
points in two classes is

-1 N-1) (N1
O, )= 22( j ( i j:(N—l—i)!i!

Example: N=4,1=2,0(4,2)=14

Be

4 5
Notice: The total number of possible groupings is 2*=16

53
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Figure 4.18 shows two examples of such hyperplanes resulting in O(4, 2) = 14 and
0(3, 2) = 8 two-class groupings, respectively. The seven lines of Figure 4.18a form
the following groupings. [(ABCD)], [A,(BCD)], [B,(ACD)], [C,(ABD)], [D,(ABC)],
[(AB),(CD)], and [(AC),(BD)]. Each grouping corresponds to two possibilities. For
example, (ABCD) can belong to either class w; or ws.

forN <I+1,0(N,l)=2N

\\B' V s
B , e
iy Ce
- N
@ (b)
FIGURE 4.18 04,2) = 14 0(3,2) =8

Number of linear dichotomies (a) for four and (b) for three points.
54
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» Probability of grouping N points in two linearly separable
classes is

O(N, 1) ,

2—N =Py
P | —— =m

;j?_\\
H\ L>1,

A g
_ ?“‘%'\-.. N =r(l+1)

\.\\\' .

Y



NONLINEAR CLASSIFIERS P Generalized Linear Classifiers

Thus, the probability of having N points in linearly
separable classes tends to 1, for large [,

provided N<2(l +1)

Hence, by mapping to a higher dimensional space, we
increase the probability of linear separability, provided
the space 1s not too densely populated.

56
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¢ Radial Basis Function Networks (RBF)

» Choose

g

&
g . / . .

C 1 C2 C3

58



NONLINEAR CLASSIFIERS P Radial Basis Function Networks (RBF)

Equivalent to a single layer network, with RBF
activations and linear output node.

59
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» Example: The XOR problem

* Define:

60



NONLINEAR CLASSIFIERS P Radial Basis Function Networks (RBF)

(0,0)

(11)0\

|

>

£y

yzll
. B
1
Ae
OB
0 1} yr
gy)=y,+y,-1=0

2(x) = exp(-Jx—¢ [+ exp(-|x—c,[ ) -1=0

61



NONLINEAR CLASSIFIERS P Radial Basis Function Networks (RBF)

» Training of the RBF networks

Fixed centers: Choose centers randomly among the data
points. Also fix ¢;’s. Then

gxX)=wy+w y

is a typical linear classifier design.

Training of the centers: This is a nonlinear optimization task

Combine supervised and unsupervised learning procedures.

The unsupervised part reveals clustering tendencies of the

data and assigns the centers at the cluster representatives.
62
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¢ Universal Approximators

It has been shown that any nonlinear continuous function can be
approximated arbitrarily close, both, by a two layer perceptron,
with sigmoid activations, and an RBF network, provided a large
enough number of nodes is used.

“* Multilayer Perceptrons vs. RBF networks

» MLP’s involve activations of global nature. All points on a
plane ng = ¢ give the same response.

» RBF networks have activations of a local nature, due to the
exponential decrease as one moves away from the centers.

» MLP’s learn slower but have better generalization properties

64
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¢ Support Vector Machines: The non-linear case

» Recall that the probability of having linearly separable
classes increases as the dimensionality of the feature
vectors increases. Assume the mapping:

xeR - yeR", k>I
Then use SVM in R*

» Recall that in this case the dual problem formulation will be

N
1
maxiﬁmize (Z A - EZ ALYy, Xl.T Xj)
4 i=1 i,

where y € R*

66
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Also, the classifier will be
gy =w y+w,
NS
=2 Anyy
i=1
where x — ye R*

Thus, inner products in a high dimensional space are
involved, hence

» High complexity

67
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» Something clever: Compute the inner products in the
high dimensional space as functions of inner products
performed in the low dimensional space!!!

» Is this POSSIBLE?? Yes. Here is an example
Let x=[x, x,] € R?

2
X

Let x—>y= x/lexz e R’

2
X,

Then, it is easy to show that

y Y, =(x; x,)".

68
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> Mercer’s Theorem

Letx —» ®(x)e H

Then, the inner product in A
3@, (1), () =K(x, )

vz/here

[ K(x,y)g(x)g(y)dxdy >0
for any g(x), x:

[ & (x)dx <+e

K(x,y) symmetric function known as kernel.

69
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» The opposite is also true. Any kernel, with the above properties,
corresponds to an inner product in SOME space!!!

» Examples of kernels

e Radial Basis Functions: ,
lx—]
0_2

K(x,z) =exp| -
» Polynomial:
K(x,z)=(x z+D", ¢>0
» Hyperbolic Tangent:
K(x,z) = tanh(Bx' z+7)

for appropriate values of £, 7.

70
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» SVM Formulation

» Step 1: Choose appropriate kernel. This
implicitly assumes a mapping to a
higher dimensional (yet, not known)
space.

1
» Step 2: m/?X(Zﬂz _Ez/liﬂjyl'yjl{(ﬁia)_cj))
4 i

subjectto: 0<A <C, i=1,2,..,N

Zﬂ’iy ;=0
This results to an implicit combination

NS
W= Z/Iiyiﬂ(&-)
i=1

71
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« Step 3: Assign x to
N, o
g(l):Zﬂiyi +w, 20
i=1 )
e The SVM Architecture
(,,\\
“ \\\\\\ T ﬂ\K('rl »@l\
N 7/ N A
\\ //\_\\ // . N /%
/ /)<\ / A\ //
) - K(ae,
2 o Ko, 2)
N X L
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C AN
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3 o S Kty o0)
N
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FIGURE 4.24

Example of a nonlinear SVM classifier for the case of two nonlinearly separable classes. The
Gaussian RBF kernel was used. Dotted lines mark the margin and circled points the support
vectors. 73
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+* Decision Trees

This is a family of non-linear classifiers. They are multistage decision

systems, in which classes are sequentially rejected, until a finally accepted
class is reached. To this end:

» The feature space is split into unique regions in a sequential manner.

» Upon the arrival of a feature vector, sequential decisions, assigning
features to specific regions, are performed along a path of nodes of an
appropriately constructed tree.

» The sequence of decisions is applied to individual features, and the
queries performed in each node are of the type:

is feature X, <

where «a is a pre-chosen (during training) threshold.
75
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» The figures below are such examples. This type of trees is known
as Ordinary Binary Classification Trees (OBCT). The decision
hyperplanes, splitting the space into regions, are parallel to the axis
of the spaces. Other types of partition are also possible, yet less

popular.
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» Design Elements that define a decision tree.

« Each node, ¢, is associated with a subset X, C X, where X is the
training set. At each node, X, 1s split into two (binary splits)
disjoint descendant subsets X, y-and X, ,, where

XyN X;n=0
X yY X, n=4X,

X, y1s the subset of X, for which the answer to the query at node
tis YES. X, yis the subset corresponding to NO. The split is
decided according to an adopted question (query).

77
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* A splitting criterion must be adopted for the best split of X, into
X,yand X, .

A stop-splitting criterion must be adopted that controls the
growth of the tree and a node is declared as terminal (leaf).

 Arule is required that assigns each (terminal) leaf to a class.

78
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» Set of Questions: In OBCT trees the set of questions is of the type
is X, <0 ?

The choice of the specific x; and the value of the threshold «, for
each node ¢, are the results of searching, during training, among the
features and a set of possible threshold values. The final
combination is the one that results to the best value of a criterion.

79
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» Splitting Criterion: The main idea behind splitting at each node is
the resulting descendant subsets X, y-and X, 5 to be more class
homogeneous compared to X, Thus the criterion must be in
harmony with such a goal. A commonly used criterion is the node

impurity:
M
1(1y=~)_ Pl |t)log, P(a, | 1)
i=1
and P (a)l. | ) =~ N

N

t

where NV ,’ 1s the number of data points in X, that belong to class w,
The decrease in node impurity is defined as:

N,y N,y
Al(t)=1()- N ](tY)_TI(tN)

80
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Example 4.2

In a tree classification task, the set X;, associated with node ¢, contains Ny = 10 vectors. Four
of these belong to class wy, four to class w>, and two to class w3, in a three-class classification
task. The node splitting results into two new subsets X;y, with three vectors from w,, and
one from w2, and X,y with one vector from w;, three from w>, and two from w3. The goal is
to compute the decrease in node impurity after splitting.

We have that

() 41 i 41 4 2 log, 2 = 1.521
= == logy — — — 10gp — — — 10y — = 1.52
10 75270 10 210 10 2710
% % m. 1 i
I(ty) = —Zlogz i Zlog_, i = (0.815
Fh= — fost s — 2 B 2 — = Wit = = T T2
)= —=1log, - — =log, = — —log, — = 1.472
A 6 2§ 6 2§ & g

Hence, the impurity decrease after splitting is

A

AI(t) = 1.521 (0.815) - (1.472) = 0.315
= L&Y — =—{U.01)) — ——(1:2/a) = UL
10 10
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* The goal is to choose the parameters in each node (feature and
threshold) that result in a split with the highest decrease in
impurity.

« Why highest decrease? Observe that the highest value of 7(?)1s
achieved if all classes are equiprobable, 1.e., X, 1s the least
homogenous.

» Stop - splitting rule. Adopt a threshold 7"and stop splitting a node
(i.e., assign it as a leaf), if the impurity decrease is less than 7. That
is, node 7 1s “pure enough”.

» Class Assignment Rule: Assign a leaf to a class w;, where:
j=argmax P(w, | 1)
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NONLINEAR CLASSIFIERS P Decision Trees

» Summary of an OBCT algorithmic scheme:

e Begin with the root node, i.e., X; = X
e For each new node ¢

+ For every feature rp. k=1,2.....1
« For every value apn,.n=1,2,....] Nt
« Generate X,y and X, according to the answer in the question: is
Y tN g q
Ik(?) < g, 2=1,2,... N;
« Compute the impurity decrease

- En'd

« Choose apy, leading to the maximum decrease w.r. to zp
+ End

# Choose rp, and associated oy, leading to the overall maximum de-
crease of iImpurity

+ If stop-splitting rule 1s met declare node t as a leaf and designate it
with a class label

+ If not, generate two descendant nodes ty- and ¢, with associated subsets
Xey and Xy, depending on the answer to the question: 18 x5, < apyn,

s End
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NONLINEAR CLASSIFIERS P Decision Trees
» Remarks:

A critical factor in the design is the size of the tree. Usually one
grows a tree to a large size and then applies various pruning
techniques.

 Decision trees belong to the class of unstable classifiers. This
can be overcome by a number of “averaging” techniques.
Bagging is a popular technique. Using bootstrap techniques in
X, various trees are constructed, 7, /=1, 2, ..., B. The decision
is taken according to a majority voting rule.
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Chapter 4 (4-1 .. 4-20)

P

Theodoridis

utroumbas

Nonlinear Classifiers

4.1 INTRODUCTION

In the previous chapter we dealt with the design of linear classifiers described by
linear discriminant functions (hyperplanes) g{x). In the simple two-class case, we
saw that the perceptron algorithm computes the weights of the linear function gix),
provided that the classes are linearly separable. For nonlinearly separable classes,
linear classifiers were optimally designed, for example, by minimizing the squared
error. In this chapter we will deal with problems that are not linearly separable
and for which the design of a linear classifier, even in an optimal way, does not lead
to satisfactory performance. The design of nonlinear classifiers emerges now as an
inescapable necessity.

4.2 THE XOR PROBLEM

To seek nonlinearly separable problems one does not need to go into complicated
situations. The wellknown Exdusive OR (XOE) Boolean function is a typical exam-
ple of such a problem. Boolean functions can be interpreted as classification tasks
Indeed, depending on the values of the input binary data x = [xy. %2, ..., 2], the
output is either 0 or 1, and x is classified into one of the two classes A(1) or B(0)
The corresponding truth table for the XOR operation is shown inTable 4.1.

Figure 4.1 shows the position of the classes in space. It is apparent from this
figure that no single straight line exists that separates the two classes. In contrast,
the other two Boolean functions, AND and OR, are linearly separable. The corres-
ponding truth tables for the AND and OR operations are given in Table 4.2 and the
respective class positions in the two-dimensional space are shown in Figure 4.2a
and 4.2b. Figure 4.3 shows a perceptron, introduced in the previous chapter, with
synaptic weights computed so as to realize an OR gate (verify).

Our major concern now is first to tackle the XOR problem and then to extend
the procedure to more general cases of nonlinearly separable classes. Our kickoff
point will be peometry.
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Chapter 6
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MULTILAYER NEURAL
NETWORKS

6.1 INTRODUCTION

We saw in Chapter 5 a number of methads for training classifiers consisting of in-
put units connected by modifiable weights to output units. The LMS algerithm, in
particular, provided a powerful gradient descent method for reducing the error. even
when the patterns are not linearly separable. Unfortunately, the class of solutions
that can be obtained from such networks—comprising hyperplane decision bound-
aries—while surprisingly good on a range of real-world problems, is simply not gen-
cral enough in demanding applications: there are many problems for which linear
discriminants are insufficient for minimum error.

With a clever choice of nonlinear @ functions, however, we can obtain arbitrary
decision regions, in particular those leading to minimum error. The central difficulty
is, naturally, choosing the appropriate nonlinear functions, One brute force approach
might be to choose a complete basis set such as all polynomials, but this will not
waork; such a classifier would have too many free parameters to be determined from
a limited number of training patterns (Chapter 9). Alternatively, we may have prior
knowledge relevant to the classification problem and this might guide our choice of
nonlinearity. However, we have seen no principled or automatic method for finding
the =3

in the absence of such i ion. What we seek, then, is a way to
learn th incarity at the i the lincar diserimi; This is th
of multilayer neural networks or multi The

the nonlinear mapping are leamned at the same time as those govemning I]m hnur
discriminant.

We shall revisit the limitations of the two-layer networks of the previous chap-
ter,” and see how three- and four-layer nets overcome those drawbacks—indeed

*Some authors describe such nctwarks as single layer networks becasse they have oaly one layer of
modifisble weights, but we shall instead refer 1o them based on the number of layers of unis.
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Chapter 8 (8-1 .. 8-4)
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NONMETRIC METHODS

8.1 INTRODUCTION

NOMINAL DATA

PROPERTY
D-TUPLE

STRING

We have cnn,sldeled pmwm recognition based on feature vectors of real-valued and
and in all cases there has been a natural measure of distance
between vectors. For instance in the nearest-neighbor classifier the notion figures
conspicuously—indeed it is the core of the technique—while for neural networks
the notion of similarity appears when two input vectors sufficiently “close” lead 1o
similar outputs. Most practical pattern recognition methods address problems of this
sort, where feature vectors are real-valued and there exists some notion of mel.nc

But supp: problem involves nominal data—for i d
tions that are discrete and without any natural notion of similarity or even nni:rmg
Consider the use of i ion about teeth in th ification of fish and sea mam-

mals. Some teeth are small and fine (as in baleen whales) for straining tiny prey from
the sea. Others (as in sharks) come in multiple rows. Some sea creatures, such as
walruses, have tusks. Yet others, such as squid, lack teeth altogether. There is no
clear notion of similarity (or metric) for this information about teeth. For instance,
the teeth of a baleen whale and the tusks of a walrus are no more “similar” than are
the teeth of a shark to the teeth in a flounder.

Thus in this chapter our anention mms away from describing patterns by vec-
tors of real numbers and toward using lists of attributes. A common approach is
to specify the values of a fixed number of properties by a property d-tuple For
example, consider describing a piece of fruit by four properties: color, texture,
taste and size. Then a particular piece of fruit might be described by the 4-tple
[red, shiny, sweet, small}, which is a shorthand for celer = red, texture =
shiny, taste = sweet and size = small. Another common approach is to de-
scribe the pattern by a variable length string of nominal attributes, such as a sequence
of base pairs in a segment of DNA—for example, “AGCTTCAGATTCCA.™ Such lists
or strings might themselves be the output of other component classifiers of the type
we have seen elsewhere. For instance, we might train a neural network to recognize
different component brush strokes used in Chinese and Japanese characters (roughly
a dozen basic forms); a classifier would then accept as inputs a list of these nominal
atributes and make the final, full character classification.

*We often put strings between quotation marks, particularly if this will help to avuid ambiguitics.
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