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From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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For z € R:

p(z) = N(u,0°)

7o 55 ]

where
qu[x]zj_oo (x) da
st = Bl - = [ (@ — 1) pla) d






Prepared by Kazim Fouladi | Spring 2017 | 2" Edition

—
3 ”}; b/

\% oS0 i)l

dllen o

siiedia i yl€ IS 6

px|w)P(w;)

AN

decision
boundary

From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.



VA

Prepared by Kazim Fouladi | Spring 2017 | 2" Edition

-
’M’?b/

glle 2o s
s ilasia asl€ JSs 5
For x € R%:
p(x) = N(p, X)

where
p = FE[x] = /Xp(x) dx

S = Bl(x — p)(x — )] = / (x — ) (x — )T p(x) dx

[cuie ol j3a] (positive-definite) cuie faae 5 o580 O
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Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean p. The loci of points of constant density are the ellipses for which
(x — ) TS (x — p) is constant, where the eigenvectors of 3 determine the
direction and the corresponding eigenvalues determine the length of the principal
axes. The quantity 72 = (x — u)"S ! (x — p) is called the squared Mahalanobis

distance from x to p.
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e Recall that, given x € RY, A €¢ R™>* y = Alx e R,
if 2~ N(p,X), then y ~ N(ATpu, ATSA).

e As a special case, the whitening transform
A, =dA 2

where
® is the matrix whose columns are the orthonormal
eigenvectors of 3,
A is the diagonal matrix of the corresponding
eigenvalues,

gives a covariance matrix equal to the identity matrix I.
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From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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e Discriminant functions for minimum-error-rate classification
can be written as

g;(x) = In p(x|w;) + In P(w;)

o For p(x|wi) = N(p;, 3¢)

1 d 1
01() = (1) 55 () — 52— IS+ P ()
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552 +1n P(w;),

gi(x) = —

[ = pall* = (¢ = p)" (x = psy).

Co g2
Case 1: > = 0T 00— L utes st +1n PG

Discriminant functions are 9i(X) = Wix + wip,

gi(x) = W,LTX + w;p  (linear discriminant)

where
1
Wi = o2 kg
1
Wio = ~5—3 pi i+ In P(w;)

(w;o is the threshold or bias for the i'th category)
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Case 1: ¥, = ¢’1

e Decision boundaries are the hyperplanes g;(x) = g;(x),
and can be written as

wl(x — %) =0
where

W= H; — Ky

1 0'2 P(wz)
xo = (1 + 1j) — In (1 — 1)
2 7l =l P(wy) !

e Hyperplane separating R; and R; passes through the
point xq and is orthogonal to the vector w.
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From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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Case 1: ¥, = o1

Special case when P(w;) are the same fori =1,... cis
the minimum-distance classifier that uses the decision
rule

assign x to w;» where ¢* = arg Zirlunc |lx — p|
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From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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Case 2: X, = X

Discriminant functions are
gi(x) = wix +wy (linear discriminant)

where

From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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Case 2: X, =X

e Decision boundaries can be written as
wl(x —x) =0
where

w=3""(p— 1)
o= Loy In(P(wi)/Pw;))
0 2(#% + l’l’,]) (g — Mj)TE_l(Hi — IJj)

(b — Hj)

e Hyperplane passes through x¢ but is not necessarily
orthogonal to the line between the means.

From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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Case 3: X; = arbitrary

e Discriminant functions are

gi(x) = x"W;ix+w!x+wj (quadratic discriminant)

where
1
W, =—-3%"
2
w; =3,

e Decision boundaries are hyperquadrics.

From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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Pattern Classification, John Wiley & Sons, Inc., 2001.
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Pattern Classification, John Wiley & Sons, Inc., 2001.
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From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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BAYESIAN CLASSIFIER FOR NORMAL DISTRIBUTIONS

% Multivariate Gaussian pdf

0)=— leXp(—%(z—gi)TZ?(z—g,.))

2m)?[z,|-

p(x

W= Eh] /X ¢ matrix in ,

%, = Bl -p )x-p )]

called covariance matrix

98



CLASSIFIERS BASED ON BAYES DECISION THEORY P> Bayesian Classifier For Normal Distributions

% In(.) is monotonic. Define:
> &%) =In(p(xw,)P(w,)) =
In p(x|w ) +1n P(e,)

1
> g,-(z)=—E(z—gi)TZZl(?_c—gi)+1nP(00i)+C,-

C, = —(g) In2m— (%) ln‘Zi‘

2
» Example: > = o 0
0 o

99



CLASSIFIERS BASED ON BAYES DECISION THEORY P Bayesian Classifier For Normal Distributions

1 1
> &(x)=—- > (x12+x22)+_2(ui1x1+ui2x2)
20 0]
~ ) I P©) 4G,

That 1s, g/(x) 1s quadratic and the surfaces
g(x)—g,(x)=0
quadrics, ellipsoids, parabolas, hyperbolas, pairs of lines.

Xy . . . - . . . . Ty — .
3 4

For | v
example: 3 | e @

Wy

(a) (b)
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CLASSIFIERS BASED ON BAYES DECISION THEORY P> Bayesian Classifier For Normal Distributions

¢ Decision Hyperplanes

T
» Quadratic terms: X X ; 1{
If ALL 2.=2% (the same) the quadratic terms are

not of interest. They are not involved in
comparisons. Then, equivalently, we can write:

T
gi(ﬁ) =W, Xtw,

W= Z_IEZ-

W, = In P((Di) — %ETiZ_IEZ_

Discriminant functions are LINEAR
101
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> Let in addition: iyt
¥ =0’l. Then — - it
1 / ~.
8/(x)=—W x+w,
o
g:(x)=g(x)-g,(x)=0 ? "’
=w' (x—x,)
w=p o= |
1 P(m) 4 —U.
Xo ZE(M' +MJ.)—02 In PE(DI; —
—1 —_ (l) ) _
2 TS

102



CLASSIFIERS BASED ON BAYES DECISION THEORY P> Bayesian Classifier For Normal Distributions

> Nondiagonal: ¥ # g2

w=Z" (U —p )
1 P(w. TH
_O—E(g,ﬂi.)— (P(m’)) ;
] (®;) ‘M.—M. ;
lx], . = (x"Z7" x)

not normal top — W
» Decision hyperplane < P
normal to X7 (U — u)

103
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¢ Minimum Distance Classifiers
1 :
> P(o,)= Y3 equiprobable
_ 1 T Z—l .
> 8&(x)= —5@—&.) (x—1)

> X=0°1: Assignx >, :

Euclidean Distance: d, = Hg — U

—i

smaller

> X#0°1: Assignx —> o, :

Mahalanobis Distance:  d,, =((x—U. ) 27 (x - H))?

smaller

1

104
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A A
Xy X2
2 \ycv,
P e
/7
N
vy, / 2 }\1(3 (2]
N
[
i
/
2B
AS
M1 gld -
7
M2
X X
@ 1 ) 1
equal Euclidean distance equal Mahalanobis distance

from the mean points of each class.

In the two-dimensional space, they are circles in the case of Euclidean distance and ellipses in the case of
Mabhalanobis distance. Observe that in the latter case the decision line is no longer orthogonal to the line

segment joining the mean values. It turns according to the shape of the ellipses.
105
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“* Example:
Given w,, w, : P(®,) = P(w,) and p(x|m,) = N(Elaz)a

0 3] 1.1 0.3
p(ﬁ‘ﬂ)z):N(EfZ),El: 0 My = 3 2= 0.3 1.9

]

1.0
classify the vector x = {2 2} using Bayesian classification :

g _[ 095 0.5
@ =
—-0.15 0.55

e Compute Mahalanobis d,, fromu,, W, : d’m1 = 1.0, 2.2]

1.0 , [-2.0
> =2952, d%n2=[-2.0, —0.8]= =3.672
2.2 8

e Classify x — w,. Observethatd,, <d,, 106
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R.O. Duda, P.E. Hart, and D.G. Stork,
Pattern Classification,
Second Edition, John Wiley & Sons, Inc., 2001.
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BAYESIAN DECISION THEORY

2.1 INTRODUCTION

STATE OF
NATURE

PRIOR

Bayesian decision theory is a fundamental statistical approach (o the problem of
pattern classification. This approach is based on quantifying the tradeoffs between
various classification decisions using probability and the costs that accompany such
decisions. It makes the assumption that the decision problem is pesed in probabilistic
terms, and that all of the relevant probability values are known. In this chapter we
develop the fundamentals of this theory and we show how it can be viewed as being

simply a ization of proced in subsequent chapters we will
consider the problems that arise when the p ilistic structure is not
known.

While we will give a quite general, abstract development of Bayesian decision
theory in Section 2.2, we begin our discussion with a specific example. Let us re-
consider the hypothetical problem posed in Chapter | of designing a classifier to
separate two kinds of fish: sea bass and salmon, Suppose that an observer watching.
fish arrive along the conveyor belt finds it hard to predict what type will emerge next
and that the sequence of types of fish appears to be random. In decision-theoretic
terminology we would say that as each fish emerges nature is in one or the other of
the two possible states: Either the fish is a sea bass or the fish is a salmon. We let @
denote the state of nature, with w = wy for sea bass and w = w; for salmon. Because
the state of nature is so unpredictable, we consider w to be a variable that must be
described probabilistically.

If the catch produced as much sea bass as salmon, we would say that the nexi fish
is equally likely to be sea bass or salmon. More generally, we assume that there is
some a priori probability (or simply prior) P(w,) that the next fish is sea bass, and
some prior probability P{w;) that it is salmon. If we assume there are no other types
of fish relevant here, then P(w;) and P{wn) sum to one. These prior probabilities
reflect our prior knowledge of how likely we are to get a sea bass or salmon before
the fish actually appears. It might, for instance, depend upon the time of year or the
choice of fishing area.

Suppose for a moment that we were forced to make a decision about the type of
fish that will appear next without being allowed to see it. For the moment, we shall
assume that any incorrect classification entails the same cost or consequence, and

20
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Pattern Recognition B

Classifiers Based on
Bayes Decision Theory

2.1 INTRODUCTION

This is the first chapter, out of three, dealing with the design of the classifier in a
pattern recognition system. The approach to be followed builds upon probabilistic
arguments stemming from the statistical nature of the generated features. As has
already been pointed out in the introductory chapter, this is due to the statistical
variation of the patterns as well as to the noise in the measuring sensors. Adopting
this reasoning as our kickoff point, we will design classifiers that classify an unknown
pattern in the most probable of the classes. Thus, our task now becomes that of
defining what “most probable” means.

Given a classification task of M classes,w, w3, ..., ayy,and an unknown pattern,
which is represented by a feature vector x, we form the M conditional probabilities
Plwg|x),f=1,2,...,M. Sometimes, these are also referred to as a posteriori
probabilities. In words, each of them represents the probability that the unknown
pattern belongs to the respective class w;, given that the corresponding feature
vector takes the value x. Who could then argue that these conditional probabilities
are not sensible choices to quantify the term maost probable? Indeed, the classifiers
to be considered in this chapter compute either the maximum of these M values
s Theodoridis or, equivalently, the maximum of an appropriately defined function of them. ‘The
unknown pattern is then assigned to the class corresponding to this maximum.

The first task we are faced with is the computation of the conditional proba-
bilities. The Bayes rule will once more prove its usefulness! A major effort in this
chapter will be devoted to techniques for estimating probability density functions
(pdf), based on the available experimental evidence, that is, the feature vectors
corresponding to the patterns of the training set.

itroumbas

S. Theodoridis, K. Koutroumbas,
Pattern Recognition,
Fourth Edition, Academic Press, 2009.

2.2 BAYES DECISION THEORY

We will initially focus on the two-class case. Let wy, w> be the two classes in which
our patterns belong. In the sequel. we assume that the @ priori probabilities 13

Chapter 2
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