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if P P
Decide et (wl) > Pluw)
wy otherwise

wy

P(w,) Z P(uw,)

wy P(w;) > P(w,)
Wy Pw;) < P(w,)

P(error) = min{P(w,), P(ws)}
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wy if P(wl) > P(w2>

wy otherwise

Decide
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BAYES RULE
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P(wj|x) =

where p(x) = > " p(x|w;) P(w;).

p(x|w;) P(w;)
p(x)

posterior =

P(model | data) =

likelihood x prior

evidence

P(data | model)P(model)

P(data)
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Decide {w1 if P(wi|z) > P(ws|z)

we otherwise

P(w, | x)zp(% | x)
w, P(w, | x) > P(w, | x)
W, P(w, | x) < P(w, | x)
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wy if P(wl\x) > P(’UJ2|ZC)

Decide _
we otherwise
wy
P(w, | )2 Plu, | %
Wy
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Decide wyif p(alwg) = Plwy)

w9 otherwise

Prepared by Kazim Fouladi | Spring 2017 | 2" Edition

P
’U’;ﬁb/



Yy

S paaual syl

MAKING A DECISION

1S5 seaaline 5l G s oS praal

Decide _
we otherwise
>
P(w, | x)= P(w, | x)
Wy
p(x | w) = p(x | wy) = Plw)Z Pluy)

wy if P(wi|x) > P(ws|x)
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From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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w* = argmax P(w, | x)
1

= arg max P(w,)p(x | w,)

P(’wl)p(x | w1)

P(w2)p(x ‘ w2) \’arg X

P(w,)p(x | w,)
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PROBABILITY OF ERROR

Decide { ! it P(wllx) > P(ws|z)
w9 Otherwise

P(wq|z) if we decide w

P(error|z) = {

P(ws|x) if we decide w;

o

P(error) = /_OO p(error,x) dr = / P(error|x) p(x) dx

o0 — 00

P(error|x) = min{ P(w;|x), P(ws|x)}
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For the two-category case

P(error) = P(x € R, w1) + P(x € Ry, wo)
= P X € Rg‘wl) (’LUl) + P(X € R1|w2)P(w2)

/ (x|wy) P wl)dx+/Rlp(X\w2) P(ws) dx

From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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e For the multicategory case

P(error) =1 — P(correct)

= 1—iP(X€RZ’,wi)

1=1

=1 — ZP(X € Ri‘wi)P(wi)

_1- ; /R plochun) Plur) dx

From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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CLASSIFIERS BASED ON BAYES DECISION THEORY

+» Statistical nature of feature vectors

X = [x],xz,..., X, I

¢ Assign the pattern represented by feature vector x
to the most probable of the available classes

®,,0,,..., 0,

Thatis X — ®, : P (o,

X)

maximum

32



CLASSIFIERS BASED ON BAYES DECISION THEORY §P Bayes Decision Theory

¢ Computation of a-posteriori probabilities
» Assume known

e a-priori probabilities

P(w,), P(®,)..., P(®,)

» p(Hw,),i=12...M

This 1s also known as the likelihood of

X war. to ..
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CLASSIFIERS BASED ON BAYES DECISION THEORY §P Bayes Decision Theory

> The Bayes rule (M= 2)

p(X)P(0,]x) = p(x|o,)P(0,) =
P 1)~ PIOIP®)
p(x)
where

p(x) = Zp(z ;) P(®,)

34



CLASSIFIERS BASED ON BAYES DECISION THEORY P The Bayes Classification Rule

“* The Bayes classification rule (for two classes M= 2)

» Given x classify it according to the rule

If P(,|x) > P(0,]x) x— o,

It P(m2‘§)>P(m1‘E) X — W,

» Equivalently: classify x according to the rule

p({‘(Dl)P((DI) 2 p(ﬁ‘mz)P(mz)

» For equiprobable classes the test becomes

p(£|0)1) 2 P(§|(1)2)

35
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p(x|w)

p(xlw,)

Ly

A

=
Y
A

R,

R(— ) and R,(— w,)

\ )

36
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“* Equivalently in words: Divide space in two regions

If xe R, = xmwo,
If xe R, = x1n W,

¢ Probability of error
» Total shaded area

P, = [ p(afo,)dx + [ p(afo, dx

¢ Bayesian classifier is OPTIMAL with respect to
minimizing the classification error probability!!!!

37



CLASSIFIERS BASED ON BAYES DECISION THEORY P> The Bayes Classification Rule

. prlw,)
p(r|jw) ava
/N
/
/
"/
.’f
/
/ ;
ﬂ'fj :
/ 5
/ 2\
/f’
/ é
e 5
x, x
- R, — R, »-

» Indeed: Moving the threshold the total shaded area
increases by the extra “grey” area.

38



CLASSIFIERS BASED ON BAYES DECISION THEORY P The Bayes Classification Rule

¢ The Bayes classification rule for many (M > 2) classes:
» Given x classifyitto o, if:

P(o,]x) > P(w |x) Vj#i

» Such a choice also minimizes
the classification error probability

39
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OVERALL RISK
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R = /R(a(x)\x)p(x) dx
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BAYES DECISION RULE FOR MINIMIZING THE OVERALL RISK
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x)

o = argmin R(c,

al

= argmin » Ao, ‘ w; ) P(w, ‘ X)
o 0
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BAYES DECISION RULE FOR MINIMIZING THE OVERALL RISK

a* = argmin R(« ‘X = argmmZ)\ ‘wj)P(wj‘X)

al

e Define
aq: deciding w;
o deciding wo
Aij = AMai|w;)

e Conditional risks can be written as

R(Of1|X) = )\11 P(w1|x) + )\12 P(U}Q‘X)
R(Oz2|X) = )\21 P(w1|x) + )\22 P(wg\x)

SIS Sy pas o0 5100 D preaS (s002l3
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BAYES DECISION RULE FOR MINIMIZING THE OVERALL RISK

P g e JS S pani oo 5150 s paeual (sacls

wq if ()\21 — )\11)P(w1|x) > ()\12 — )\22)P(UJ2|X)

we Otherwise

Decide

p(x|w:) - (A12 — Aag) P(ws)
p(x|wz) = (A21 — A11) P(wr)

\ J
Y

2\
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T 0 ifi=9
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From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.



CLASSIFIERS BASED ON BAYES DECISION THEORY P The Bayes Classification Rule

** Minimizing the average risk
» For each wrong decision, a penalty term is assigned since some
decisions are more sensitive than others

50



CLASSIFIERS BASED ON BAYES DECISION THEORY P The Bayes Classification Rule

» For M=2

* Define the loss matrix
A A
[ = |: 11 12
}‘21 }“22

* Ay penalty term for deciding class o, ,
although the pattern belongs to ®, , etc.

» Risk with respect to 0,

n=Ay | PGlo)dx+h, | plajo)dx
R, R,

51



CLASSIFIERS BASED ON BAYES DECISION THEORY P The Bayes Classification Rule

» Risk with respect to 0,

r, =My JP(E‘(Dz)dE +A JP(E‘mz )dx
R, R,

Probabilities of wrong decisions,
weighted by the penalty terms

» Average risk

r=nP(w)+nP(w,)

52



CLASSIFIERS BASED ON BAYES DECISION THEORY P The Bayes Classification Rule

% Choose R, and R, so that r is minimized

% Then assign x to o, if
t E}"1117({‘0)1)})(@1)+}"21p(£‘m2)P((Dz) <
2 Eklzp(ﬁ‘wl)P(wl)+}‘22p(£‘w2)P((D2)

** Equivalently:
assign X in,; (w,) 1f

p()_c‘wl) > (<) P(w,) Ay =4,
p(ﬁ‘wz) P(w) A, -4,

612 . likelihood ratio

612

53
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o If

P(O‘)1):P(mz):l and A, =4, =0

2
x>0, if P(x|o)> Plx| o)
12

x— o, if P(x|m,)>P(x|o)—=*
21

if A, =A, =

Minimum classification error probability

54
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¢ An example:

~ (o) :ﬁexpexz)

- p(xjw,) = \/EeXp( (x=1)%)

— P((Dl):P((Dz):l

2
0 0.5
— L =
1.0 0

55



CLASSIFIERS BASED ON BAYES DECISION THEORY P The Bayes Classification Rule

» Then the threshold value is:

x, for minimum P, :

X, : exp(—xz) = exp(—(x — 1)2) =
1

Xo ==

2

» Threshold )ACO for minimum r
X, exp(—x°) =2exp(—(x—1)*) =
¢ (=) 1
2 2

56
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Thus X, moves to the left of % = X,

(WHY?)

p(r|w)

57






04 oS0 i)l

Sasds auls
DISCRIMINANT FUNCTION
La e S 55 50 L3 oS pranal 51 (b S s
Discrin;inant }Tunction
1, &l s SS8S ceu

gi(x),i = 1,...,c
classifier assigns a feature vector x to class w; if

gi(x) > gj(x) Vj F#i

" = argmax g,(x)
1

Prepared by Kazim Fouladi | Spring 2017 | 2" Edition

P



Prepared by Kazim Fouladi | Spring 2017 | 2" Edition

<
’”’;ﬁb/

DISCRIMINANT FUNCTION

S8 il 5 L o sae (Lol (5 S (5803 guindial S (20l ,BA L

action

(e.g., classification)

discriminant
functions

From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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DISCRIMINANT FUNCTION

e For the classifier that minimizes conditional risk
9i(x) = —R(o|x)
e For the classifier that minimizes error

g9i(x) = P(w;|x)
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DISCRIMINANT FUNCTION
0.3 p(xlo)P(®))
0.2
0.1
Decision
Boundary
These functions divide the feature space into ¢ decision regions Ry, ..., R.

separated by decision boundaries

From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification, John Wiley & Sons, Inc., 2001.
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p(x|w;) P(w;)

gl(x) = P(WZ‘X) = "¢
;p(XM)P(%’)

9i(x) = p(x|wi) P(wi)

gi(x) = In p(x|w;) +In P(w;)
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Dichotomizer Function

9(x) = g91(x) = g2(x)

Decide wy if g(x) > 0; otherwise decide ws.
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DISCRIMINANT FUNCTIONS & DECISION SURFACES

< If R,R, arecontiguous: g(x)=P(w;|x) —P(U)j‘)_c) =0

R, : P(w,

x) > P(o,|x)

g(x)=0

R, : P(0,]x)> P(0,|x)

1s the surface separating the regions.
On one side 1s positive (+), on the other is negative (-).
It 1s known as Decision Surface
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CLASSIFIERS BASED ON BAYES DECISION THEORY » Discriminant Functions & Decision Surfaces

¢ If f{.) monotonic, the rule remains the same if we use:

x— o, if : f(P(o]x)> f(P(o,|x) Vi

* g(x)=f(P(w,

X)) isa discriminant function

¢ In general, discriminant functions can be defined independent
of the Bayesian rule.
They lead to suboptimal solutions, yet if chosen
appropriately, can be computationally more tractable.
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R.O. Duda, P.E. Hart, and D.G. Stork,
Pattern Classification,
Second Edition, John Wiley & Sons, Inc., 2001.
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BAYESIAN DECISION THEORY

2.1 INTRODUCTION

STATE OF
NATURE

PRIOKR

Bayesian decision theory is a fundamental statistical approach (o the problem of
pattern classification. This approach is based on quantifying the tradeoffs between
various classification decisions using probability and the costs that accompany such
decisions. It makes the assumption that the decision problem is pesed in probabilistic
terms, and that all of the relevant probability values are known. In this chapter we
develop the fundamentals of this theory and we show how it can be viewed as being

simply a ization of procedures; in subsequent chapters we will
consider the problems that arise when the p ilistic structure is not
known.

While we will give a quite general, abstract development of Bayesian decision
theory in Section 2.2, we begin our discussion with a specific example. Let us re-
consider the hypothetical problem posed in Chapter | of designing a classifier to
separate two kinds of fish: sea bass and salmon, Suppose that an observer watching.
fish arrive along the conveyor belt finds it hard to predict what type will emerge next
and that the sequence of types of fish appears to be random. In decision-theoretic
terminology we would say that as each fish emerges nature is in one or the other of
the two possible states: Either the fish is a sea bass or the fish is a salmon. We let @
denote the state of nature, with w = wy for sea bass and w = w; for salmon. Because
the state of nature is so unpredictable, we consider w to be a variable that must be
described probabilistically.

If the catch produced as much sea bass as salmon, we would say that the nexi fish
is equally likely to be sea bass or salmon. More generally, we assume that there is
some a priori probability (or simply prior) P(w,) that the next fish is sea bass, and
some prior probability P{w;) that it is salmon. If we assume there are no other types
of fish relevant here, then P(w;) and P{wn) sum to one. These prior probabilities
reflect our prior knowledge of how likely we are to get a sea bass or salmon before
the fish actually appears. It might, for instance, depend upon the time of year or the
choice of fishing area.

Suppose for a moment that we were forced to make a decision about the type of
fish that will appear next without being allowed to see it. For the moment, we shall
assume that any incorrect classification entails the same cost or consequence, and
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Pattern Recognition B

Classifiers Based on
Bayes Decision Theory

2.1 INTRODUCTION

This is the first chapter, out of three, dealing with the design of the classifier in a
pattern recognition system. The approach to be followed builds upon probabilistic
arguments stemming from the statistical nature of the generated features. As has
already been pointed out in the introductory chapter, this is due to the statistical
variation of the patterns as well as to the noise in the measuring sensors. Adopting
this reasoning as our kickoff point, we will design classifiers that classify an unknown
pattern in the most probable of the classes. Thus, our task now becomes that of
defining what “most probable” means.

Given a classification task of M classes,w, w3, ..., ayy,and an unknown pattern,
which is represented by a feature vector x, we form the M conditional probabilities
Plwg|x),f=1,2,...,M. Sometimes, these are also referred to as a posteriori
probabilities. In words, each of them represents the probability that the unknown
pattern belongs to the respective class w;, given that the corresponding feature
vector takes the value x. Who could then argue that these conditional probabilities
are not sensible choices to quantify the term maost probable? Indeed, the classifiers
to be considered in this chapter compute either the maximum of these M values
s Theodoridis or, equivalently, the maximum of an appropriately defined function of them. ‘The
unknown pattern is then assigned to the class corresponding to this maximum.

The first task we are faced with is the computation of the conditional proba-
bilities. The Bayes rule will once more prove its usefulness! A major effort in this
chapter will be devoted to techniques for estimating probability density functions
(pdf), based on the available experimental evidence, that is, the feature vectors
corresponding to the patterns of the training set.

itroumbas

S. Theodoridis, K. Koutroumbas,
Pattern Recognition,
Fourth Edition, Academic Press, 2009.

2.2 BAYES DECISION THEORY

We will initially focus on the two-class case. Let wy, w> be the two classes in which
our patterns belong. In the sequel. we assume that the @ priori probabilities 13
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