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 Remember: Bayes rule

 Here: The class to which a feature vector

belongs depends on:

 Its own value

 The values of the other features

 An existing relation among the various classes

ijxPxP ji    ),()( 
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 This interrelation demands the classification to be 

performed simultaneously for all available feature 

vectors

 Thus, we will assume that the training vectors

occur in sequence, one after the other

and we will refer to them as observations
Nx,...,x,x 21
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 The Context Dependent Bayesian Classifier

 Let

 Let

 Let      be a sequence of classes, that is

There are MN of those

 Thus, the Bayesian rule can equivalently be stated as
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 Markov Chain Models (for class dependence)

NOW remember:
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 Assume:

 statistically mutually independent 

 The pdf in one class independent of the others, then
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 From the above, the Bayes rule is readily seen to be 

equivalent to:

that is, it rests on

 To find the above maximum in brute-force task we 

need Ο(NMΝ ) operations!!
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 The Viterbi Algorithm

8

CONTEXT DEPENDENT CLASSIFICATION   � The Viterbi Algorithm



 Thus, each Ωi corresponds to one path through the trellis 

diagram.  One of them is the optimum (e.g., black).  The 

classes along the optimal path determine the classes to which 

ωi are assigned.

 To each transition corresponds a cost.  For our case

•

•

•
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• Equivalently

where,

• Define the cost up to a node , k,
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 Bellman’s principle now states

 The optimal path terminates at 

• Complexity O (NM2)
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 Channel Equalization

 The problem

•

•

•
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 Example

•

•

• In xk three input symbols are involved:

Ik, Ik-1, Ik-2
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0 0 0 0 0 ω1

0 0 1 0 1 ω2

0 1 0 1 0.5 ω3

0 1 1 1 1.5 ω4

1 0 0 0.5 0 ω5

1 0 1 0.5 1 ω6

1 1 0 1.5 0.5 ω7

1 1 1 1.5 1.5 ω8
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Not all transitions are allowed

•

• Then

•
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• In this context, ωi are related to states.  Given 

the current state and the transmitted bit, Ik, we 

determine the next state. The probabilities 

P(ωi|ωj) define the state dependence model.

The transition cost

•

for all allowable transitions
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 Assume:

• Noise white and Gaussian

• A channel impulse response    estimate to be 
available

•

•

• The states are determined by the values of the binary
variables

Ik-1,…,Ik-n+1
For n = 3, there will be 4 states

f̂
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 Hidden Markov Models

 In the channel equalization problem, the states are 
observable and can be “learned” during the training 
period

 Now we shall assume that states are not observable and 
can only be inferred from the training data

 Applications:

• Speech and Music Recognition

• OCR

• Blind Equalization

• Bioinformatics
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 An HMM is a stochastic finite state automaton, that 
generates the observation sequence, x1, x2,…, xN

 We assume that: The observation sequence is produced as 
a result of successive transitions between states, upon 
arrival at a state:
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 This type of modeling is used for nonstationary stochastic 
processes that undergo distinct transitions among a set of 
different stationary processes.
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Examples of HMM:

• The single coin case: Assume a coin that is tossed behind 
a curtain. All it is available to us is the outcome, i.e., H or 
T. Assume the two states to be:

S = 1H             S = 2T

This is also an example of a random experiment with 
observable states. The model is characterized by a single 
parameter, e.g., P (H). Note that

P (1|1) = P (H)             P (2|1) = P (T) = 1 – P (H)

21

CONTEXT DEPENDENT CLASSIFICATION   � Hidden Markov Models



• The two-coins case: For this case, we observe a sequence 

of H or T. However, we have no access to know which 

coin was tossed. Identify one state for each coin. This is 

an example where states are not observable.  H or T can 

be emitted from either state. The model depends on four

parameters.

P1(H ), P2(H ),    P (1|1), P (2|2)
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• The three-coins case example is shown below:

• Note that in all previous examples, specifying the model is

equivalent to knowing:

– The probability of each observation (H,T) to be emitted from

each state.

– The transition probabilities among states: P (i|j).
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 A general HMM model is characterized by the following
set of parameters

• Κ, number of states

•

•

•

( ),  1, 2,...,p x i i K
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That is:

 What is the problem in Pattern Recognition

• Given M reference patterns, each described by an 

HMM, find the parameters, S, for each of them 

(training)

• Given an unknown pattern, find to which one of 

the M, known patterns, matches best (recognition)

} ),(),( ),({ KiPixpjiPS 
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 Recognition: Any path method

• Assume the M models to be known (M classes).

• A sequence of observations, X, is given.

• Assume observations to be emissions upon the 

arrival on successive states

• Decide in favor of the model S* (from the M

available) according to the Bayes rule

for equiprobable patterns

)(maxarg* XSPS
S


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• For each model S there is more than one possible sets 

of successive state transitions Ωi, each with 

probability

Thus:

• For the efficient computation of the above DEFINE
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• Observe that

1

( ) ( )
S

N

K

N
i

P X S i



28

Compute this for each S
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• Some more quantities

–

–
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 Training

• The philosophy:

Given a training set X, known to belong to the 

specific model, estimate the unknown parameters of 

S, so that the output of the model, e.g.

to be maximized

 This is a ML estimation problem with missing data
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 Assumption:  Data x discrete 

 Definitions:

•

•
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 The Algorithm:

• Initial conditions for all the unknown parameters.

• Step 1:  From the current estimates of the model 

parameters reestimate the new model S from
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• Step 2:  Compute

go to step 1.  Otherwise stop

• Remarks:

– Each iteration improves the model 

– The algorithm converges to a maximum (local or 

global)

– The algorithm is an implementation of the EM 

algorithm
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