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OTHER CLUSTERING ALGORITHMS

 The following types of algorithms will be considered:

 Graph theory based clustering algorithms.

 Competitive learning algorithms.

 Valley seeking clustering algorithms.

 Cost optimization clustering algorithms based on:

• Branch and bound approach.

• Simulated annealing methodology.

• Deterministic annealing.

• Genetic algorithms.

 Density-based clustering algorithms.

 Clustering algorithms for high dimensional data sets.
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GRAPH THEORY BASED CLUSTERING 

ALGORITHMS

 In principle, such algorithms  are capable of detecting clusters of various shapes, 

at least when they are well separated.

In the sequel we discuss algorithms that are based on:

 The Minimum Spanning Tree (MST).

 Regions of influence.

 Directed trees.

5



 Minimum Spanning Tree (MST) algorithms
Preliminaries: 

Let 

 G be the complete graph, each node of which corresponds to a point of the 
data set X.

 e=(xi,xj) denote an edge of G connecting xi and xj.

 wed(xi, xj) denote the weight of the edge e.

Definitions:

 Two edges e1 and e2 are k steps away from each other if the minimum path 
that connects a vertex of e1 and a vertex of e2 contains k-1 edges.

 A Spanning Tree of G is a connected graph that:

• Contains all the vertices of the graph.

• Has no loops.

 The weight of a Spanning Tree is the sum of weights of its edges.

 A Minimum Spanning Tree (MST) of G is a spanning tree with minimum 
weight (when all we’s are different from each other, the MST is unique).

6



 Minimum Spanning Tree (MST) algorithms (cont)
Sketch of the algorithm:

Determine the MST of G.

Remove the edges that are “unusually” large compared with their 
neighboring edges (inconsistent edges).

 Identify as clusters the connected components of the MST, after the 
removal of the inconsistent edges.

Identification of inconsistent edges.

For a given edge e of the MST of G:

• Consider all the edges that lie k steps away from it.

• Determine the mean me and the standard deviation σe of their weights.

• If we lies more than q (typically q=2) standard deviations σe from me, 
then:

• e is characterized as inconsistent.

• Else

• e is characterized as consistent.

• End  if

7



 Minimum Spanning Tree (MST) algorithms (cont)

 Example 1:

For the MST in the figure and for k=2 and q=3 we have:

For e0: we0
=17, me0

=2.3, σe0 
=0.95. we0

lies 15.5*σe0
away from me0

, hence

it is inconsistent.

For e11: we11 
=3, me11

=2.5, σe11 
=2.12. we11

lies 0.24*σe11
away from me11

, hence

it is consistent.
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 Minimum Spanning Tree (MST) algorithms (cont)

 Remarks:

• The algorithm depends on the choices of k and q.

• The algorithm is insensitive to the order in which the data points are 

considered.

• No initial conditions are required, no convergence aspects are involved.

• The algorithm works well for many cases where the clusters are well 

separated.

• A problem may occur when a “large” edge e has another “large” edge as 

its neighbor. In this case, e is likely not to be characterized as inconsistent 

and the algorithm may fail to unravel the underlying clustering structure 

correctly.

9



 Algorithms based on Regions of Influence (ROI)

Definition: The region of influence of two distinct vectors xi, xjX is defined as:

R(xi, xj)={x: cond(d(x, xi), d(x, xj), d(xi, xj)), xi≠ xj}

where cond(d(x, xi), d(x, xj), d(xi, xj)) may be defined as:

a) max{d(x, xi), d(x, xj)}< d(xi, xj),

b) d2(x, xi) + d2(x, xj) < d2(xi, xj),

c) (d2(x, xi) + d2(x, xj) < d2(xi, xj) ) OR ( σ min{d(x, xi), d(x, xj)} < d(xi, xj) ),

d) (max{d(x, xi), d(x, xj)} < d(xi, xj) ) OR ( σ min{d(x, xi), d(x, xj)} < d(xi, 

xj)),

where σ affects the size of the ROI defined by xi, xj and is called relative edge 

consistency.

10



 Algorithms based on Regions of Influence (cont)

Algorithm based on ROI

 For i=1 to N

• For j=i+1 to N

 Determine the region of influence R(xi,xj)

 If R(xi,xj)  (X-{xi,xj}) =  then

o Add the edge connecting xi,xj.

 End if

• End For

 End For

 Determine the connected components of the resulted graph and identify them 

as clusters.

In words:

 The edge between xi and xj is added to the graph if no other vector in X lies 

in R(xi,xj).

 Since for xi and xj close to each other it is likely that R(xi,xj) contains no 

other vectors in X, it is expected that close to each other points will be 

assigned to the same cluster. 11



 Algorithms based on Regions of Influence (cont)

 Remarks:

• The algorithm is insensitive to the order in which the pairs are considered.

• In the choices of cond in (c) and (d), σ must be chosen a priori.

• For the resulting graphs: 

 if the choice (a) is used for cond, they are called relative neighborhood 

graphs (RNGs)

 if the choice (b) is used for cond , they are called Gabriel graphs (GGs)

• Several results  show that better clusterings are produced when (c) and (d) 

conditions are used in the place of cond, instead of (a) and (b).

12



 Algorithms based on Directed Trees

Definitions:

 A directed graph is a graph whose edges are directed.

 A set of edges ei1
,…,eiq

constitute a directed path from a vertex A to a 

vertex B, if, 

• A is the initial vertex of ei1

• B is the final vertex of eiq

• The destination vertex of the edge eij
, j = 1,…,q-1, is the departure 

vertex of the edge eij+1
.

• (In figure (a) the sequence e1, e2, e3 constitute a directed path 

connecting the vertices A and B).

13



 Algorithms based on Directed Trees (cont)

 A directed tree is a directed graph with a specific node A, known as root, such 
that,

• Every node B≠A of the tree is the initial node of exactly one edge.

• No edge departs from A.

• No circles are encountered (see figure (b)).

 The neighborhood of a point xiX is defined as

ρi(θ)={xjX: d(xi,xj)  θ, x j≠ xi}

where θ determines the size of the neighborhood.

 Also let

• ni=|ρi(θ)| be the number of points of X lying within ρi(θ)

• gij=(nj-ni)/d(xi,xj)

Main philosophy of the algorithm

Identify the directed trees in a graph whose vertices are points of X, so 
that each directed tree corresponds to a cluster.

14



 Algorithms based on Directed Trees (cont

Clustering Algorithm based on Directed Trees

 Set θ to a specific value.

 Determine ni, i=1,…,N.

 Compute gij, i,j=1,…,N, i≠j.

 For i=1 to N

• If ni=0 then

 xi is the root of a new directed tree.

• Else

 Determine xr such that gir=maxxjρi(θ)gij

 If gir<0 then

o xi is the root of a new directed tree.

 Else if gir>0 then

o xr is the parent of xi (there exists a directed edge from xi to xr).

15



 Algorithms based on Directed Trees (cont)

Clustering Algorithm based on Directed Trees (cont)

 Else if gir=0 then

o Define Ti={xj: xjρi(θ), gij=0}.

o Eliminate all the elements xjTi, for which there exists a directed 

path from xj to xi.

o If the resulting Ti is empty then

* xi is the root of a new directed tree

o Else

* The parent  of xi is xq such that d(xi, xq)=minxsTi
d(xi, xs).

o End if

 End if

• End if

 End for

 Identify as clusters the directed trees formed above.

16



 Algorithms based on Directed Trees (cont)

 Remarks:

• The root xi of a directed tree is the point in ρi(θ) with the most dense 

neighborhood.

• The branch that handles the case gir = 0 ensures that no circles occur.

• The algorithm is sensitive to the order of consideration of the data points.

• For proper choice of θ and large N, this scheme behaves as a mode-

seeking algorithm (see a later section).

 Example 2: In the figure below, the size of the edge of the grid is 1 

and θ=1.1. The above algorithm gives the directed trees 

shown in the figure.
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COMPETITIVE LEARNING ALGORITHMS

 The main idea

 Employ a set of representatives wj (in the sequel we consider only point 

representatives).

 Move them to regions of the vector space that are “dense” in vectors of X.

 Comments

 In general, representatives are updated each time a new vector xX is 

presented to the algorithm (pattern mode algorithms).

 These algorithms do not necessarily stem from the optimization of a cost 

function.

 The strategy

 For a given vector x

• All representatives compete to each other

• The winner (representative that lies closest to x) moves towards x.

• The losers (the rest of the representatives) either remain unchanged or 

move towards x but at a much slower rate.

19



Generalized Competitive Learning Scheme (GCLS)

 t=0

 m=minit (initial number of iterations)

 (A) Initialize any other necessary parameters (depending on the specific scheme).

 Repeat

• t=t+1

• Present a new randomly selected xX to the algorithm.

• (B) Determine the winning representative wj.

• (C) If ((x is not “similar” to wj) OR (other condition)) AND (m<mmax) (maximum 

allowable number of clusters) then

 m=m+1

 wm=x

• Else

 (D) Parameter updating

• End

 (E) Until (convergence occurred) OR (t > tmax) (max allowable no of iterations)

 Assign each xX to the cluster whose representative wj lies closest to x.
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 Remarks:

• h(x,wi) is an appropriately defined function (see below).

• η and η´ are the learning rates controlling the updating of the winner and 

the losers, respectively (η´ may differ from looser to looser).

• A threshold of similarity Θ (carefully chosen) controls the similarity 

between x and a representative wj. 

 If d(x, wj) > Θ, for some distance measure, x and wj are considered as 

dissimilar.

• The termination criterion is ||W(t)-W(t-1)|| < ε, where W=[w1
T,…,wm

T]T.

• With appropriate choices of (A), (B), (C) and (D), most competitive 

learning algorithms may be viewed as special cases of GCLS.

21



 Basic Competitive Learning Algorithm

Here the number of representatives m is constant. 

The algorithm

 t=0

 Repeat

• t=t+1

• Present a new randomly selected xX to the algorithm.

• (B) Determine the winning representative wj on x as the one for which

d(x,wj)=mink=1,…,md(x,wk) (*).

• (D) Parameter updating

• End

 (E) Until (convergence occurred) OR (t>tmax) (max allowable no of iterations)

 Assign each xX to the cluster whose representative wj lies closest to x.

------------------

(*) d(.) may be the Euclidean distance or other distances (e.g., Itakura-Saito distortion). In 

addition similarity measures may be used (in this case min is replaced by max).

(**) η is the learning rate and takes values in [0, 1].














otherwisetw

winnertheiswiftwxtw
tw

j

jjj

j

),1(

(**))),1(()1(
)(



22



 Basic Competitive Learning Algorithm (cont)

 Remarks:

• In this scheme losers remain unchanged. The winner, after the updating, lies 

in the line segment formed by wj(t-1) and x.

• A priori knowledge of the number of clusters is required.

• If a representative is initialized far away from the regions where the points 

of X lie, it will never win.

Possible solution: Initialize all representatives using vectors of X.

• Versions of the algorithm with variable learning rate have also been studied.

23



 Leaky Learning Algorithm

The same with the Basic Competitive Learning Algorithm except part (D), the 

updating equation of the representatives, which becomes

where ηw and ηl are the learning rates in [0, 1] and ηw>>ηl.

 Remarks:

• All representatives move towards x but the losers move at a much slower 

rate than the winner does.

• The algorithm does not suffer from the problem of poor initialization of the 

representatives (why?).

• An algorithm in the same spirit is the “neural-gas” algorithm, where ηl

varies from loser to loser and decays as the corresponding representatives 

lie away from x. This algorithm results from the optimization of a cost 

function.
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 Conscientious Competitive Learning Algorithms

Main Idea: Discourage a representative from winning if it has won many times in the 
past. Do this by assigning a “conscience” to each representative.

A simple implementation

 Equip each representative wj, j=1,…,m, with a counter fj that counts the times 
that wj wins.

 At part (A) (initialization stage) of GCLS set fj=1, j=1,…,m.

 Define the distance d*(x,wj) as

d*(x,wj)= d (x,wj) fj.

(the distance is penalized to discourage representatives that have won many 
times)

 Part (B) becomes

• The representative wj is the winner on x if

d*(x,wj)=mink=1,…,md*(x,wk)

• fj(t)=fj (t-1)+1

 Parts (C) and (D) are the same as in the Basic Competitive Learning Algorithm

 Also m=minit=mmax

25



 Self-Organizing Maps

 Here interrelation between representatives is assumed.

 For each representative wj a neighborhood of representatives Qj(t) is defined, 

centered at wj.

 As t (number of iterations) increases, Qj(t) shrinks and concentrates around wj.

 The neighborhood is defined with respect to the indices j and it is independent 

of the distances between representatives in the vector space. 

26
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 Self Organizing Maps (cont.)

 If wj wins on the current input x all the representatives in Qj(t) are updated (Self 

Organizing Map (SOM) scheme).

 SOM (in its simplest version) may be viewed as a special case of GCLS if

• Parts (A), (B) and (C) are defined as in the basic competitive learning 

scheme.

• In part (D), if wj wins on x, the updating equation becomes:

where η(t) is a variable learning rate satisfying certain conditions. 

 After convergence, neighboring representatives also lie “close” in terms of their 

distance in the vector space (topographical ordering) (see fig. (d)).
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 Supervised Learning Vector Quantization (VQ)

In this case 

 each cluster is treated as a class (m compact classes are assumed)

 the available vectors have known class labels.

The goal:

Use a set of  m representatives and place them in such a way so that each class is 

“optimally” represented.

The simplest version of VQ (LVQ1) may be obtained from GCLS as follows:

 Parts (A), (B) and (C) are the same with the basic competitive learning scheme.

 In part (D) the updating for wj’ s is carried out as follows
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 Supervised Learning Vector Quantization (cont.)

In words:

 wj is moved:

• Toward x if wj wins and x belongs to the j-th class.

• Away from x if wj wins and x does not belong to the j-th class.

 All other representatives remain unaltered.
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VALLEY-SEEKING CLUSTERING ALGORITHMS

 Let p(x) be the density function describing the distribution of the vectors in X.

Clusters may be viewed as peaks of p(x) (clusters) separated by valleys.

Thus one may

 Identify these valleys and

 Try to move the borders of the clusters in these valleys.

A simple method in this spirit.

Preliminaries

 Let the distance d(x,y) be defined as

d(x,y)=(y-x)TA(y-x),

where A is a positive definite matrix

 Let the local region of x, V(x), be defined as

V(x)={yX-{x}: d(x,y)a},

where a is a user-defined parameter

 kj
i be the number of vectors of the j cluster that belong to V(xi)-{xi}.

 ci{1,…,m} denote the cluster to which xi belongs.

31



 Valley-Seeking Clustering Algorithms (cont.)

Valley-Seeking algorithm

 Fix a.

 Fix the number of clusters m.

 Define an initial clustering X.

 Repeat

• For i=1 to N

– Find j: kj
i=maxq=1,…,mkq

i

 Set ci=j

• End For

• For i=1 to N

 Assign xi to cluster Cci
.

• End For

 Until no reclustering of vectors occurs.

32



 Valley-Seeking Clustering Algorithms (cont.)

The algorithm 

 Moves a window d(x,y)  a at x and counts the points from different clusters in 

it.

 Assigns x to the cluster with the larger number of points in the window (the 

cluster that corresponds to the highest local pdf).

In other words

 The boundary is moved away from the “winning” cluster (close similarity with

Parzen windows).

 Remarks:

• The algorithm is sensitive to a. It is suggested to perform several runs, for 

different values of a.

• The algorithm is of a mode-seeking nature (if more than enough clusters 

are initially appointed, some of them will be empty).

33



 Valley-Seeking Clustering Algorithms (cont.)

 Example 3: Let X={x1,…,x10} and a=1.1415. X contains two clusters 

C1={x1,…,x5}, C2={x6,…,x10}.

(a) Initially two clusters are considered separated by b1. After the convergence

of the algorithm, C1 and C2 are identified (equivalently b1 is moved between

x4 and x6).

(b) Initially two clusters are considered separated by b1, b2 and b3. After the 

convergence of the algorithm, C1 and C2 are identified (equivalently b1 and 

b2 are moved to the area where b3 lies).

(c) Initially three clusters are considered separated by b1, b2, b3, b4. After the 

convergence of the algorithm, only two clusters are identified, C1 and C2

(equivalently b1, b2, b3 and b4 are moved between x4 and x6).
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CLUSTERING VIA COST OPTIMIZATION (REV.)

 Branch and Bound Clustering Algorithms

 They compute the globally optimal solution to combinatorial problems.

 They avoid exhaustive search via the employment of a monotonic criterion J.

Monotonic criterion J: if k vectors of X have been assigned to clusters, the 

assignment of an extra vector to a cluster does not decrease the value of J.

Consider the following 3-vectors, 2-class case

121: 1st, 3rd vectors belong to class 1

2nd vector belongs  to class 2.

(leaf of the tree)

12x: 1st vector belongs to class 1

2nd vector belongs to class 2

3rd vector is unassigned 

(Partial clustering- node of the tree).

36



 Branch and Bound Clustering Algorithms

How exhaustive search is avoided

 Let B be the best value for criterion J computed so far.

 If at a node of the tree, the corresponding value of J is greater than B, no further 

search is performed for all subsequent descendants springing from this node.

 Let   Cr=[c1,…,cr], 1  r  N, denotes a partial clustering where 

ci{1,2,…,m},  ci=j if the vector xi belongs to cluster Cj and xr+1,…,xN are   

yet unassigned.

For compact clusters and fixed number of clusters, m, a suitable cost     

function is

where mci
is the mean vector of the cluster Cci

with nj(Cr) being the number of vectors x{x1,…,xr} that belong to    

cluster Cj.
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 Branch and Bound Clustering Algorithms (cont.)

 Initialization

• Start from the initial node and go down to a leaf. Let B be the cost of the 

corresponding clustering (initially set B=+).

 Main stage

• Start from the initial node of the tree and go down until either

 (i) A leaf is encountered. 

o If the cost B´ of the corr. clustering C´ is smaller than B then

* B=B´

* C´ is the best clustering found so far

o End if

 Or (ii) a node q with value of J greater than B is encountered. Then

o No subsequent clustering branching from q is considered.

o Backtrack to the parent of q, qpar, in order to span a different path.

o If all paths branching from qpar have been considered then

* Move to the grandparent of q.

o End if

 End if

 Terminate when all possible paths have been considered explicitly or implicitly.
38



 Branch and Bound Clustering Algorithms (cont.)

 Remarks:

• Variations of the above algorithm, where much tighter bounds of B are used 

(that is many more clusterings are rejected without explicit consideration) 

have also been proposed.

• A disadvantage of the algorithm is the excessive (and unpredictable) 

amount of required computational time.
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 Simulated Annealing

 It guarantees (under certain conditions) in probability, the computation of  the 

globally optimal solution of the problem at hand via the minimization of  a cost 

function J.

 It may escape from local minima since it allows moves that temporarily may 

increase the value of J.

Definitions

 An important parameter of the algorithm is the “temperature” T, which 

starts at a high value and reduces gradually. 

 A sweep is the time the algorithm spents at a given temperature so that 

the system can enter the “thermal equilibrium”.

Notation

 Tmax is the initial value of the temperature T.

 Cinit is the initial clustering.

 C is the current clustering.

 t is the current sweep.
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 The algorithm:

• Set T=Tmax and C=Cinit.

• t=0

• Repeat

 t=t+1

 Repeat

o Compute J(C)

o Produce a new clustering, C´, by assigning a randomly chosen vector 

from X to a different cluster.

o Compute J(C´)

o If ΔJ = J(C´)-J(C)<0 then

* (A) C=C´

o Else

* (B) C=C´, with probability P(ΔJ)=e-ΔJ/T.

o End if

 Until an equilibrium state is reached at this temperature.

 T=f(Tmax,t)

• Until a predetermined value Tmin for T is reached. 41



 Simulated Annealing (cont.)

 Remarks:

• For T, p(ΔJ)1. Thus almost all movements of vectors between clusters are 

allowed.

• For lower values of T fewer moves of type (B) (from lower to higher cost 

clusterings) are allowed.

• As T0 the probability of moves of type (B) tends to zero.

• Thus as T decreases, it becomes more probable to reach clusterings that 

correspond to lower values of J.

• Keeping T positive, we ensure a nonzero probability for escaping from a local 

minimum.

• We assume that the equilibrium state has been reached

”If for k successive random reassignments of vectors, C remains  

unchanged.”

• A schedule for lowering T that guarantees convergence to the global minimum 

with probability 1, is

T=Tmax / ln(1+t)
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 Deterministic Annealing (DA)

 It is inspired by the phase transition phenomenon observed when the 

temperature of a material changes. It involves the parameter β=1/T, 

where T is defined as in simulated annealing.

 The Goal of DA: Locate a set of representatives wj, j=1,…,m (m is fixed) in 

appropriate positions so that a distortion function J is minimized.

J is defined as

 By defining Pir as the probability that xi belongs to Cr, r=1,…,m, we can write:

 Then, the optimal value of wr satisfies the following condition:
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 Deterministic Annealing (cont.)

Assumption: d(x,w) is a convex function of w for fixed x.

 Stages of the algorithm

• For β=0, all Pij’s are equal to 1/m, for all xi’s, i=1,…,N. Thus

Since d(x,w) is a convex function, d(x1,wr)+…+d(xN,wr) is a convex 

function. All representatives coincide with its unique global minimum (all 

the data belong to a single cluster).

• As β increases, it reaches a critical value where Pir “depart sufficiently” 

from the uniform model. Then the representatives split up in order to 

provide an optimal presentation of the data set at the new phase.

• The increase of β continues until Pij approach the hard clustering model (for 

all xi, Pir1 for some r, and Pij0 for j≠r).
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 Deterministic Annealing (cont.)

 Remarks:

• It is not guaranteed that it reaches  the globally optimum clustering.

• If m is chosen greater than the “actual” number of clusters, the algorithm 

has the ability to represent the data properly.
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 Clustering using genetic algorithms (GA)

A few hints concerning genetic algorithms

 They have been inspired by the natural selection mechanism (Darwin).

 They consider a population of solutions of the problem at hand and they 

perform certain operators to this, so that the new population is improved 

compared to the previous one (in terms of a criterion function J).

 The solutions are coded and the operators are applied on the coded versions of 

the solutions.

The most well-known operators are:

 Reproduction: 

• It ensures that, in probability, the better (worse) a solution in the current 

population is, the more (less) replicates it has in the next population.

 Crossover: 

• It applies to the temporary population produced after the application of the 

reproduction operator.

• It selects pairs of solutions randomly, splits them at a random position and 

exchanges their second parts.
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 Clustering using genetic algorithms (cont.)

 Mutation:

• It applies after the reproduction and the crossover operators.

• It selects randomly an element of a solution and alters it with some 

probability.

• It may be viewed as a way out of getting stuck in local minima.

Aspects/Parameters that affect the performance of the algorithm

 The coding of the solutions.

 The number of solutions in a population, p.

 The probability with which we select two solutions for crossover.

 The probability with which an element of a solution is mutated.
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 Clustering using genetic algorithms (cont.)

GA Algorithmic scheme

 t=0

 Choose an initial population t of solutions.

 Repeat

• Apply reproduction on t and let t´ be the resulting temporary 

population.

• Apply crossover on t´ and let t´´ be the resulting temporary population.

• Apply mutation on t´´ and let t+1 be the resulting population.

• t=t+1

 Until a termination condition is met.

 Return 

• either the best solution of the last population, 

• or the best solution found during the evolution of the algorithm.

48



 Clustering using genetic algorithms (cont.)

Genetic Algorithms in Clustering

The characteristics of a simple GA hard clustering algorithm suitable for  

compact clusters, whose number m is fixed, is discussed next.

 A (not unique) way to code a solution is via the cluster representatives.

[w1, w2,…, wm]

 The cost function in use is

where

 The allowable cut points for the crossover operator are between different 

representatives.

 The mutation operator selects randomly a coordinate and decides randomly to 

add a small random number to it.
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 Clustering using genetic algorithms (cont.)

 Remark:

• An alternative to the above scheme results if prior to  the application of 

the reproduction operator, the hard clustering algorithm (GHAS), 

described in the previous chapter, runs p times, each time using a 

different solution of the current population as the initial state. The p

resulting solutions constitute the population on which the reproduction 

operator will be applied.
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DENSITY-BASED ALGORITHMS FOR LARGE DATA 

SETS
These algorithms:

 Consider clusters as regions in the l-dimensional space that are “dense” in points of 

X.

 Have, in principle, the ability to recover arbitrarily shaped clusters.

 Handle efficiently outliers.

 Have time complexity less than O(N2).

Typical density-based algorithms are:

 The DBSCAN algorithm.

 The DBCLASD algorithm.

 The DENCLUE algorithm.
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 The Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) Algorithm.

The “density” around a point x is estimated as the number of points in X that fall 
inside a certain region of the l-dimensional space surrounding x.

Notation

 Vε(x) is the hypersphere of radius ε (user-defined parameter) centered at x.

 Nε(x) the number of points of X lying in Vε(x).

 q is the minimum number of points of X that must be contained in Vε(x), in 
order for x to be considered an “interior” point of a cluster.

Definitions

1. A point y is directly density reachable from a point x if

(i) yVε(x)

(ii) Nε(x)q (fig. (a)).

2. A point y is density reachable from a point x in X if there is a sequence of points 
x1, x2,…, xpX, with x1=x, xp=y, such that xi+1 is directly density reachable 
from xi (fig. (b)).
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 The DBSCAN Algorithm (cont.)

3. A point x is density connected to a point yX if there exists zX such  

that both x and y are density reachable from z (fig. (c)).

(a) (b)

(c)

x y x

y

x2 x3

x

y

z
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Example 4: Assuming that 
q=5, (a) y is directly density 
reachable from x, but not vice 
versa, (b) y is density 
reachable from x, but not vice 
versa, and (c) x and y are 

density connected (in addition, 
y is density reachable from x, 

but not vice versa).



 The DBSCAN Algorithm (cont.)

4. A cluster C in DBSCAN is defined as a nonempty subset of X satisfying 

the following conditions:

• If x belongs to C and yX is density reachable from x, then yC.

• For each pair (x,y)C, x and y are density connected.

5. Let C1,…,Cm be the clusters in X. The set of points that are not  

connected in any of the C1,…,Cm is known as noise.

6. A point x is called a core (noncore) point if it has at least (less than) q

points in its neighborhood. A noncore point may be either 

• a border point of a cluster (that is, density reachable from a core point) or

• a noise point (that is, not density reachable from other points in X).
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 The DBSCAN Algorithm (cont.)

Proposition 1: If x is a core point and D is the set of points in X that are density 

reachable from x, then D is a cluster.

Proposition 2: If C is a cluster and x is a core point in C, then C equals to the set of 

the points yX that are density reachable from x.

Therefore: A cluster is uniquely determined by any of its core points.

Notation

 Xun is the set of points in X that have not been considered yet.

 m denotes the number of clusters.
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 The DBSCAN Algorithm (cont.)
DBSCAN Algorithm

 Set Xun=X

 Set m=0

 While Xun ≠  do

• Arbitrarily select a xXun

• If x is a noncore point then

 Mark x as noise point

 Xun=Xun-{x}

• End if

• If x is a core point then

 m=m+1

 Determine all density-reachable points in X from x.

 Assign x and the previous points to the cluster Cm. The border points 
that may have been marked as noise are also assigned to Cm.

 Xun=Xun-Cm

• End {if}

 End {while}
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 The DBSCAN Algorithm (cont.)
 Important notes:

• If a border point y of a cluster C is selected, it will be marked initially as a 
noise point. However, when a core point x in C will be selected later on, y
will be identified as a density-reachable point from x and it will assigned 
to C.

• If a noise point y is selected, it will be marked as such and since it is not 
density reachable by any of the core points in X, its “noise” label will 
remain unaltered.

 Remarks:

• The parameters ε and q influence significantly the performance of 
DBSCAN. These should selected such that the algorithm is able to detect 
the least “dense” cluster (experimentation with several values for ε and q
should be carried out).

• Implementation of DBSCAN using R*-tree data structure can achieve 
time complexity of O(Nlog2N) for low-dimensional data sets.

• DBSCAN is not well suited for cases where clusters exhibit significant 
differences in density as well as for applications of high-dimensional 
data.
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 The Distribution-Based Clustering of LArge Spatial Databases 
(DBCLASD) Algorithm

Key points of the algorithm:

 The distance d of a point xX to its nearest neighbor is considered as a 
random variable.

 The “density” is quantified in terms of the probability distribution of d.

 Under the assumption that the points in each cluster are uniformly distributed, 
the distribution of d can be derived analytically.

 A cluster C is defined as a nonempty subset of X with the following 
properties:

• The distribution of the distances, d, between points in C and their nearest 
neighbors is in agreement with the distribution of d derived theoretically, 
within some confidence interval.

• It is the maximal set with this property (insertion of additional points 
neighboring to points in C will cause (a) not to hold anymore).

• It is connected. Having applied a grid of cubes on the feature space, this 
property implies that for any pair of points (x,y) from C there exists a 
path of adjacent cubes that contains at least one point in C that connects x
and y.
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 The DBCLASD Algorithm (cont.)

 Points are considered in a sequential manner.

 A point that has been assigned to a cluster may be reassigned to another 

cluster at a later stage of the algorithm.

 Some points are not assigned to any of the clusters determined so far, but they 

are tested again at a later stage.

 Remarks:

• DBCLASD is able to determine arbitrary shaped clusters of various 

densities in X.

• It requires no parameter definition.

• Experimental results show that:

 the runtime of DBCLASD is roughly twice the runtime of DBSCAN.

 DBCLASD outperforms CLARANS by a factor of at least 60.
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 The DENsity-based  CLUstEring (DENCLUE) Algorithm

Definitions

The influence function f y(x) for a point yX is a positive function that  

decays to zero as x “moves away” from y (d(x,y)). Typical examples 

are:

,

where σ is a user-defined function.

The density function based on X is defined as (Remember the Parzen  

windows):

The Goal:

(a) Identify all “significant” local maxima, xj
*, j=1,…,m of f X(x)

(b) Create a cluster Cj for each xj
* and assign to Cj all points of X that lie 

within the “region of attraction” of xj
*.
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 The DENCLUE Algorithm (cont.)

Two clarifications

 The region of attraction of xj
* is defined as the set of points in x l such that 

if a “hill-climbing” (such as the steepest ascent) method is applied, initialized 

by x, it will terminate arbitrarily close to xj
*.

 A local maximum is considered as significant if f X(xj
*)  ξ (ξ is a user-

defined parameter).

Approximation of f X(x)

where Y(x) is the set of points in X that lie “close” to x.

The above framework is used by the DENCLUE algorithm.
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 The DENCLUE Algorithm (cont.)
DENCLUE algorithm

 Preclustering stage (identification of regions dense in points of X)

• Apply an l-dimensional grid of edge-length 2σ in the l space.

• Determine the set Dp of the hypercubes that contain at least one point of 
X.

• Determine the set Dsp( Dp) that contains the “highly populated” cubes of 
Dp (that is, cubes that contain at least ξc>1 points of X).

• For each cDsp define a connection with all neighboring cubes cj in Dp

for which d(mc,mcj
) is no greater than 4σ, where mc, mcj

are the means of 
c and cj, respectively.

 Main stage

• Determine the set Dr that contains: 

 the highly populated cubes and 

 the cubes that have at least one connection with a highly populated 
cube.

• For each point x in a cube cDr determine Y(x) as the set of points that 
belong to cubes cj in Dr such that the mean values of cjs lie at distance 
less than λσ from x (typically λ=4).
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 The DENCLUE Algorithm (cont.)

DENCLUE algorithm (cont.)

 For each point x in a cube cDr

• Apply a hill climbing method starting from x and let x* be the local 

maximum to which the method converges.

• If x* is a significant local maximum (f X(x*)  ξ) then

 If a cluster C associated with x* has already been created then

o x is assigned to C

 Else

o Create a cluster C associated with x*

o Assign x to C

 End if

• End if

 End for
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 The DENCLUE Algorithm (cont.)

 Remarks:

• Shortcuts allow the assignment of points to clusters, without having to 

apply the hill-climbing procedure.

• DENCLUE is able to detect arbitrarily shaped clusters.

• The algorithm deals with noise very satisfactory.

• The worst-case time complexity of DENCLUE is O(Nlog2N).

• Experimental results indicate that the average time complexity is 

O(log2N).

• It works efficiently with high-dimensional data.
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CLUSTERING ALGORITHMS FOR HIGH-

DIMENSIONAL DATA SETS

 What is a High-dimensionality space?

Dimensionality l of the input space with

20  l  few thousands

indicate high-dimensional data sets.

 Problems of considering simultaneously all dimensions in high-dimensional data 
sets:

 “Curse of dimensionality”. As a fixed number of points spread out in high-
dimensional spaces, they become almost equidistant (that is, the terms 
similarity and dissimilarity tend to become meaningless).

 Several dimensions may be  irrelevant to the identification of the clusters (that 
is, the clusters usually are identified in subspaces of the original feature space).

 A way out: Work on subspaces of dimension lower than l.

 Main approaches:

• Dimensionality reduction clustering approach.

• Subspace clustering approach.
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 An example:

C1

C2

x2

1x

x2

1x

x3

(a) (b)

C1 C2
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 Dimensionality Reduction Clustering Approach

Main  idea

 Identify an appropriate l´-dimensional space Hl´ (l´ < l).

 Project the data points in X into Hl´.

 Apply a clustering algorithm on the projections of the points of X into Hl´.

Identification of Hl´ may be carried out using either by:

• Feature generation methods,

• Feature selection methods,

• Random projections.
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 Dimensionality Reduction Clustering Approach (cont.)

Feature generation methods

 In general, these methods preserve the distances between the points in the 

high-dimensional space, when these are mapped to the lower-dimensional 

space.

 They are very useful in producing compact representations of the original 

high-dimensional feature space.

 Some of them may be integrated within a clustering algorithm (k-means, 

EM).

 They are useful in cases where a significant number of features contributes to 

the identification of the clusters.

 Typical Methods in this category are: 

• Principal component analysis (PCA).

• Singular value decomposition (SVD).

• Nonlinear PCA.

• Independent component analysis (ICA).
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 Dimensionality Reduction Clustering Approach (cont.)

Feature selection methods

 They identify the features that are the main contributors to the formation of 

the clusters.

 The criteria used to evaluate the “goodness” of a specific subset of features 

follow either the

• Wrapper model (The clustering algorithm is first chosen and a set of 

features F
i

is evaluated through the results obtained from the application 

of the algorithm to X, where for each point only the features in F
i

are 

taken into account).

• Filter model (The evaluation of a subset of features is carried out using 

intrinsic properties of the data, prior to the application of the clustering 

algorithm).

 They are useful when all clusters lie in the same subspace of the feature 

space.
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 Dimensionality Reduction Clustering Approach (cont.)
Clustering using Random Projections: 

Here Hl’ is identified in a random manner.

Note: The projection of an l-dimensional space to an l´-dimensional space (l´ < l) 
is uniquely defined via an  l´ x l projection matrix A.

Issues to be addressed:

(a)  The proper estimate of l´. Estimates of l´ guarantee that the distances 
between the points of X, in the original data set will be preserved (with some 
distortion) after the projection to a randomly chosen l´-dimensional space, 
whose projection matrix is constructed via certain probabilistic rules 
(Preservation of distances does not necessarily preserve clusters).

(b)  The definition of the projection matrix A. Possible rules for constructing A
are: 

1. Set each of its entries equal to a value stemming from an i.i.d. zero mean, 
unit variance Gaussian distribution and then normalize each row to the 
unit length.

2. Set each entry of A equal to -1 or +1, with probability 0.5.

3. Set each entry of A equal to +3, -3 or 0, with probabilities 1/6, 1/6, 
2/3, respectively.
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 Dimensionality Reduction Clustering Approach (cont.)

Having defined A:

 Project the points of X into Hl´

 Perform a clustering algorithm on the projections of the points of X into Hl´.

Problem: Different random projections may lead to totally different results.

Solution:

 Perform several random projections Hl’.

 Apply a clustering algorithm on the projections of X to each Hl’.

 Combine the clustering results and produce the final clustering.

A method in the above spirit is described next (O(N 2)).
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Clustering using Random Projections

 Select l´.

 Generate A1,…,Ar different projection matrices using the (b.1) rule given 
above.

 For s=1 to r

• Run GMDAS for the s-th random projection of X.

• Compute the probability that xi belongs to the j-th cluster of the s
projection, P(Cj

s|xi), i=1,…,N,  j=1,…,ms.

• Create the similarity matrix Ps, where Pij
s is the probability that xi and xj

belong to the same cluster,

 End for

 Compute the average proximity matrix P, so that Pij is the average of Pij
s s, 

s=1,…,r.

 Apply GAS (actually its complete link version) on P.

 Plot the similarity between the closest pair of clusters at each iteration versus 
the number of iterations.

 Select the clustering that corresponds to the most abrupt decrease in the plot.
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 Subspace Clustering Approach

 This approach deals with the problem where clusters are formed in different 

subspaces of the feature space.

 The subspace clustering algorithms (SCA) reveal clusters as well as the 

subspaces where they reside.

 SCA can be divided into two main categories

• Grid-based SCAs

• Point-based SCAs.

Grid-based Subspace Clustering Algorithms (GBSCAs)

Main strategy:

1) Identification of the subspaces of the feature space that are likely to contain 

clusters.

2) Determination of the clusters lying in each of these subspaces.

3) Description of the resulting clusters.
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Grid-based Subspace Clustering Algorithms (cont.)

1) Identification of subspaces

• Here an l-dimensional grid is applied on the feature space and the 

subspaces that are likely to contain clusters are identified based on the k-

dimensional units (boxes) (k  l) defined by the grid.

• In order to avoid to consider explicitly all the possible subspaces, the 

algorithms establish certain criteria that comply with the so-called 

downward closure property.

• Downward closure (DC) property: If a criterion is satisfied in a k-

dimensional space, it is also satisfied in all of its (k-1)-dimensional 

subspaces.

• Due to the DC property, identification of subspaces is carried out in an 

iterative bottom-up fashion (from lower to higher dimensional subspaces).

2) Determination of the clusters

Clusters are identified as maximally connected components of units in each of 

the subspaces defined in the previous step.
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Grid-based Subspace Clustering Algorithms (cont.)

Two popular GBSCAs are:

 The CLIQUE.

 The ENCLUS.

 The CLIQUE (CLustering In QUEst) Algorithm

Preliminaries – Definitions

Assume that an l-dimensional grid of edge-size ξ is applied on the  

feature space.

• A unit u of the grid is written as ut1
x…x utk

 (ut1
,…, utk

) (t1<…<tk, k  l), 

where uti
=[ati

,bti
) is a right-open interval in the partitioning of the ti-th 

dimension of the feature space (e.g., t1=2, t2=5, t3=7 indicates a unit lying in 

the subspace spanned by x2, x5 and x7 dimensions).

• A point x is contained in a k-dimensional unit u=(ut1
,…, utk

) if ati
 xti

< bti
for all ti.

• The selectivity of a unit u is defined as the fraction of the total number of 

data points (N) contained in u.

• A unit u is called dense if its selectivity is greater than a user-defined 

threshold τ. 77



 The CLIQUE  Algorithm (cont.)

• Two k-dimensional units u=(ut1
,…, utk

) and u´=(ut1
´,…, utk

´ ) share a face if 

there are (k-1)-dimensions (e.g., xt1
,…,xtk-1

), such that utj
=utj

´,  j=1,2,…,k-1 and 

either atk
=btk

´ or btk
=atk

´.

• Two k-dimensional units are said to be directly connected if they have in 

common a (k-1)-dimensional face.

• Two k-dimensional units u1 and u2 are said to be connected if there exists a 

sequence of k-dimensional units, v1,…,vs, with v1=u1 and vs=u2, such that each

pair (vi,vi+1) of units is directly connected.

• In CLIQUE, a cluster is defined as a maximal set of connected dense units in k

dimensions.

• Downward closure property of the density: “If there is a dense unit u in a k-

dimensional space, there are also dense units in the projections of u in all (k-1)-

dimensional subspaces of the k-dimensional space”.
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 Example 5: A two dimensional grid of lines of 

edge size ξ applied in the two-dimensional 

feature space.

• Two-dimensional and one-dimensional 

units are defined.

• ui
q denotes the i-th one dimensional unit 

along xq

• uij denotes the two dimensional unit 

resulting from the Cartesian product of the 

i-th and j-th intervals along x1 and x2, 

respectively.

• For τ=3:

 u1
1, u2

1, u4
1, u2

2 are one-dimensional 

dense units, each containing 4, 4, 4 

and 9 points, respectively.

 u12 and u22 are two-dimensional dense 

units each containing 4 points.

• u12 and u22 are directly connected.

x2

1xu
1

u
1

u
1

u
1

1 2 3 4

u
2

1

12u

u
2

u
2

2

3

4

22u

u
2

ξ

ξ

79

• The downward closure 
property of the density 
is shown for units u12, 
u22.



 The CLIQUE  Algorithm (cont.)

Main stages of CLIQUE

1. Identification of subspaces.

2. Identification of clusters.

3. “Description” of clusters.

1. Identification of subspaces

A. Determination of dense units

• Determine the set D1 of all one-dimensional dense units.

• k=1

• While Dk ≠  do

 k=k+1

 Determine the set Dk as the set of all the k-dimensional dense units all 

of whose (k-1)-dimensional projections, belong to Dk-1.

• End while
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 The CLIQUE  Algorithm (cont.)

B. Determination of high coverage subspaces.

• Determine all the subspaces that contain at least one dense unit. 

• Sort these subspaces in descending order according to their coverage 

(fraction of the num. of points of the original data set they contain).

• Optimize a suitably defined Minimum Description Length criterion 

function and determine a threshold under which a coverage is considered 

“low”.

• Select the subspaces with “high” coverage. 
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 The CLIQUE  Algorithm (cont.)

2. Identification of clusters

• For each high coverage subspace S do 

 Consider the set E of all the dense units in S.

 While E≠
o m´ =1

o Select a randomly chosen unit u from E.

o Assign to Cm´, u and all units of E that are connected to u.

o E=E-Cm´

 End while

• End for

The clusters in the data set are all clusters identified in all high coverage 

subspaces (they are consisted of units).
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 The CLIQUE  Algorithm (cont.)

3. Minimal description of clusters

The minimal description of a cluster C, produced by the above  

procedure, is the minimum possible union of hyperrectangular regions.

For example 

• A  B is the minimum cluster description of the shaded region.

• C  D  E is a non-minimal cluster description of the same region.
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 The CLIQUE  Algorithm (cont.)

3. Minimal description of clusters (algorithm)

For each cluster C do

1st stage

• c=0

• While C ≠ 
 c=c+1

 Choose a dense unit in C

 For i=1 to l

o Grow the unit in both directions along the i-th dimension, trying to 
cover as many units in C as possible (boxes that are not belong to C
should not be covered).

 End for

 Define the set I containing all the units covered by the above procedure

 C=C-I

• End while

2nd stage

• Remove all covers whose units are covered by at least another cover.
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 The CLIQUE  Algorithm (cont.)
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 Example 6:

•ui
q, uij are defined as in 

example 5.

•ξ=1 and τ=8% (thus, each 

unit containing more than 
5 points is considered to 

be dense).

•The points in u48 and u58, 
u75 and u76, u83 and u93 are 

collinear.



 Example 6 (cont.)

Identification of subspaces

One-dimensional dense units:

D1={u2
1, u3

1, u4
1, u5

1, u8
1, u9

1, u1
2, u2

2, u3
2, u5

2, u6
2}

Two-dimensional dense units:

D2={u21, u22, u32, u33, u83, u93}

Notes:

• Although each one of the u48, u75, u76 contains more that 5 points, they are not included 

in D2.

• Although it seems unnatural for u83 and u93 to be included in D2, they are included since 

u3
2 is dense.

• All subspaces of the two-dimensional space contain clusters.

Identification of clusters

One-dimensional clusters:

C1={u2
1, u3

1, u4
1, u5

1}, C2={u8
1, u9

1}, C3={u1
2, u2

2, u3
2}, C4={u5

2, u6
2}.

Two-dimensional clusters:

C5={u21, u22, u32, u33}, C6={u83, u93}.
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 Example 6 (cont.):

Description of clusters

C1={(x1): 1 x1<5}

C2={(x1): 7 x1<9}

C3={(x2): 0 x2<3}

C4={(x2): 4 x2<6}

C5={(x1, x2): 1 x1<2, 0 x2<2}{(x1, x2): 2 x1<3, 1 x2<3}

C6={(x1, x2): 7 x1<9, 2 x2<3}

Note that C2 and C6 are 

essentially the same cluster, 

which is reported twice by 

the algorithm.
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 The CLIQUE  Algorithm (cont.)

 Remarks:

• CLIQUE determines automatically the subspaces of the feature space where 

high-density clusters exist.

• It is insensitive to the order of the presentation of the data.

• It does not impose any data distribution hypothesis on the data set.

• It scales linearly with N but scales exponentially with l.

• The accuracy of the determined clusters may be degraded because the clusters 

are given not in terms of points of X but in terms of dense units.

• The performance of the algorithm depends heavily on the choices of ξ and τ.

• There is a large overlap among the reported clusters.

• There is a risk of losing small but meaningful clusters, after the pruning of 

subspaces based on their coverage.
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Grid-based Subspace Clustering Algorithms (cont.)
 The ENCLUS  Algorithm

• It follows the three-stage philosophy of CLIQUE (identification of subspaces, 
determination of clusters, description of clusters).

• The last two stages of ENCLUS are the same with those of CLIQUE.

1. Identification of subspaces that contain clusters

Definitions

• Entropy H(Xk) of a k-dimensional subspace Xk (k  l ) of X:

 Apply a k-dimensional grid on X k.

 Measure the percentage of points that fall within  each one of the n grid 
units.

 Compute the entropy as

where n is the total number of units.

• Downward closure property of entropy: “If a k-dimensional space is of low 
entropy all of its (k-1)-dimensional subspaces are also of low entropy”.

 
 n

i ii

k ppXH
1 2

log)(

89



 The ENCLUS  Algorithm (cont.)

• Interest interest( Xk ) of a k-dimensional subspace Xk (k  l) of X:

where t1<…<tk (k  l) and  xtj
k denotes the j dimension of Xk.

 It measures the degree of correlation among the dimensions of Xk.

 The higher the interest the stronger the correlation among the dimensions of 

Xk.

 The minimum value of the interest is zero. In this case, the dimensions of Xk

are independent to each  other.

• A subspace with “low” entropy (below a user-defined threshold ω) is considered 

to have  a good clustering.

• A significant subspace is a subspace with good clustering and interest above a 

user-defined threshold ε.

 
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j

kk

t
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 The ENCLUS  Algorithm (cont.)

ENCLUS seeks for subspaces Xk with:

• High coverage (high percentage of points covered by all dense units in Xk). 

• High density of points in the dense units in the subspace.

• High correlation among the dimensions of the subspace.

 Remarks:

• The above requirements are indicative of a subspace with nonrandom structure.

• Also, a subspace with a strong clustering structure has lower entropy than a 

subspace where data do not show any clustering tendency.

Notation

Bk: the set of significant k-dimensional subspaces.

Dk: the set of subspaces that have good clustering but they are of low interest.

A1: the set of all one-dimensional subspaces
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 The ENCLUS  Algorithm (cont.)

2. Determination of significant subspaces

• Based on A1, determine B1 and D1.

• k=1

• Repeat

 Determine Ak+1 as the set containing all the (k+1)-dimensional subspaces E

such that

o E is the result of the union of two k-dimensional subspaces in Dk

sharing (k-1) dimensions and

o All k-dimensional projections of E belong to Dk

 k=k+1

• Until Ak=
• Return the significant subspaces B1…Bk-1.

The rest stages of the algorithm are applied on the significant subspaces extracted 

above.
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 The ENCLUS  Algorithm (cont.)

 Remarks:

• ENCLUS is insensitive to the order of consideration of the data.

• It can unravel arbitrarily shaped clusters.

• The computational time required by ENCLUS scales linearly with N.

• There is a significant overlap among the reported clusters.

• ENCLUS depends heavily on the choice of the edge of the grid as well as on 

the parameters ω and ε.

• Other Grid-based subspace clustering algorithms are

• MAFIA

• Cell-based clustering method (CBF)

• CLTree algorithm.
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 Subspace Clustering Approach (cont.)
Point-based Subspace Clustering Algorithms (PBSCA)

In these algorithms

 The clusters are defined in terms of data points of X.

 Each data point contribute to a single cluster.

 The clusters as well as the subspaces in which they live are simultaneously 
determined in an iterative fashion.

Typical PBSCAs

 PROCLUS

 ORCLUS

 The PROCLUS algorithm

• Its main idea is to generate an initial set of medoids and to iterate until an 
“optimum” set of medoids results, estimating at the same time the subspace 
where each cluster resides.

• Inputs of the algorithm: number of clusters, m, average dimensionality, s.

• It consists of three stages: the initialization stage, the iterative 

stage and the refinement stage.
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 The PROCLUS algorithm (cont.)

1. Initialization stage (a, b are user-defined parameters).

• Generate a sample X´ of size am from X, via random selection.

• Generate, via random selection, a subset X´´ of X´ of size bm (b<a) such that 

each of the points in X´´ lies as far as possible from the other points in X´´.

• Generate, via random selection, the subset Θ of X´´ of size m and let IΘ

denoting the corresponding index set.

• The elements of Θ are taken as the initial estimates of the medoids of the m

clusters.
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 The PROCLUS algorithm (cont.)

2. Iterative stage

• Set cost=
• iter=0

• Repeat

 iter=iter+1

 (A) For each iIΘ determine the set of dimensions Di of the subspace 

where the cluster Ci lives.

 (B) For each iIΘ determine the corresponding cluster Ci.

 (C) Compute the cost J(Θ) associated with Θ.

 If J(Θ) < cost then

o Θbest=Θ

o cost=J(Θbest)

 End if

 (D) Determine the “bad” medoids of Θbest.

 Set Θ=Θbest and replace its bad medoids with randomly selected points 

from X´´.

• Until a termination condition is satisfied. 96



Iterative stage (cont.)

(A) Determination of cluster subspaces

• For each point xi, iIΘ, 

 the set of points L that consists of points in X that lie in a sphere around xi

of appropriate radius is determined.

 The “concentration” of the distances between xi and each xL along each 

direction is measured. 

• Among the total number of ml dimensions, the ms dimensions with the lowest 

concentration are selected for the identification of the subspaces Di s that 

correspond to the clusters Ci s

(B) Determination of the clusters

For each point xX

• Its one-dimensional distances from each xi, iIΘ, along each dimension of Di

are computed and their mean, denoted by disti is determined.

• x is assigned to the cluster with the minimum disti.
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Iterative stage (cont.)

(C) Computation of J(Θ)

• For each xX the lowest disti, denoted by dist, is computed.

• J(Θ) is computed as the average of these dist s.

(D) Determination of “bad” medoids

A medoid is considered “bad” if either

(a) Its corresponding cluster has the least number of points or,

(b) its corresponding cluster has less than (N/m)q points, where q is a user-defined 

constant (typically q=0.1).

3. Refinement stage

After the completion of the iteration stage, 

• Di s are recomputed based on more precise information.

• Ci s are recomputed based on the above defined Di s.
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 Remarks:

• PROCLUS is biased toward hyperspherically shaped clusters.

• Cluster subspaces must be of similar size (since the average dimensionality is 

an input to the algorithm).

• The Initialization stage is crucial since it is desirable to obtain representative 

points from all physical clusters.

• PROCLUS is somewhat faster than CLIQUE on large data sets.

• Its required computational effort increases linearly with the dimension of the 

feature space l.
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Point-based Subspace Clustering Algorithms (cont.)

 The ORCLUS algorithm

Key points

• This is a point based SCA of agglomerative hierarchical nature.

• At each iteration 

 the number of clusters decreases from an initial value m0 to a final user-

defined value m.

 the dimensionality decreases from l0 (the dimensionality of the feature 

space) to a final user-defined value l.

• The reduction in the number of clusters as well as  in the dimensionality must 

be carried out in the same number of iterations.

• The subspace where each cluster lies is represented by vectors that are not 

necessarily parallel to the axes of the original feature space.
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 Remarks:

• ORCLUS is biased toward hyperspherical clusters.

• The required computational time is O(m0
3+m0Nl0+m0

2l0
3). That is,

 It increases linearly with N.

 It increases cubically with l0.

• Computational time may be reduced by adopting random sampling techniques.

• Increased values of m0 may improve the quality of the final clustering.

• The subspaces of all clusters are restricted to the same dimensionality.
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Point-based Subspace Clustering Algorithms (cont.)

 Remarks (GBSCAs vs PBSCAs):

• In GBSCAs, all clusters are represented as unions of dense units (rough 

description), while in PBSCAs they are represented in terms of data points 

(exact description).

• In GBSCAs a point may contribute to more than one cluster in different 

subspaces through its projections, while in PBSCAs each point contributes to a 

single cluster.

• In GBSCAs the identification of clusters is carried out only after the 

determination of the appropriate subspaces. In PBSCAs the clusters as well as 

the appropriate subspaces are simultaneously determined in an iterative 

fashion.

• GBSCAs are able, in principle, to unravel arbitrarily shaped clusters, while 

PBSCAs are biased toward hyperspherically-based clusters.

• The computational time required by most of the GBSCAs and PBSCAs scales 

linearly with N, the number of points.

• The computational time required by the above GBSCAs increases 

exponentially with the dimensionality of the input space, l, whereas in PBSCAs

it exhibits a polynomial dependence.
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 Remarks (GBSCAs vs PBSCAs) (cont.):

• In GBSCAs there are no restrictions concerning the dimensionality of the 

subspaces, whereas the PBSCAs pose constraints on it.

• In GBSCAs there exists a large overlap in the resulting clusters. On the 

contrary, most of the PBSCAs produce disjoint clusters.

• Both GBSCAs and PBSCAs are sensitive to the choice of the involved user-

defined parameters.
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MISCELLANEOUS CLUSTERING ALGORITHMS

Clustering algorithms based on a variety of ideas not included in the above main 

categories have also been developed. Such algorithms are:

 Algorithms based on the so-called tabu search method, where the next 

state of the algorithm is selected from a set of candidate clusterings resulting 

from the current state of the algorithm.

 Algorithms inspired by physical laws. 

 Algorithms that combine ideas from fuzzy clustering and agglomerative 

algorithms.

 Algorithms based on conceptual distances.

 Algorithms that employ graph theory-based concepts in a probabilistic 

framework.

 Algorithms that combine data partitions resulting from different clustering 

algorithms.

 Algorithms that state the clustering problem in information theoretic terms, such 

as entropy.
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 Algorithms that employ the wavelet transform (for large data sets with low 

dimensionality).

 Algorithms that impose constraints on the data points or on specific parameters.

 Algorithms using Hidden Markov Models (HMMs).
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