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CLUSTERING ALGORITHMS VIA
FUNCTION OPTIMIZATION

+¢ In this context the clusters are assumed to be described by a parametric specific
model whose parameters are unknown
(all parameters are included in a vector denoted by &).

Examples:
» Compact clusters. Each cluster C, is represented by a point m; in
the /-dimensional space. Thus 8= [m,”, m,%, ..., m,T]7.

» Ring-shaped clusters. Each cluster C, is modeled by a hypersphere C(c,,r;),
where ¢; and r; are its center and its radius, respectively. Thus

O=[chr,chry...,c,5rl.

¢ A cost J(8) is defined as a function of the data vectors in X and 6.
Optimization of /(&) with respect to fresults in
Bthat characterizes optimally the clusters underlying X.

¢ The number of clusters  is a priori known in most of the cases.



FIGURE 14.1

(b)

(a) Compact clusters. (b) Spherical clusters.



¢ Cost optimization clustering algorithms considered in the sequel

» Mixture decomposition schemes.
» Fuzzy clustering algorithms.
» Possibilistic clustering algorithms.






¢ Mixture Decomposition (MD) schemes
» Here, each vector belongs to a single cluster with a certain probability
» MD schemes rely on the Bayesian framework:

A vector x; is appointed to cluster C; if
P(CJ| -X;) > P(Ck‘ -Xi)a k - 1)”': m, k#]

However:
» No cluster labeling information is available for the data vectors
» The a priori cluster probabilities P(C;) = P, are also unknown

» A solution: Adoption of the EM algorithm
* E-step Nom
0(0;0(1) =Y > P(C;| x;0(1)In(p(x; |C;;0)P,)

i=1 j=1
where



* M-step
O(t + 1) = arg maxg Q(Q; (1))

More specifically, the M-step results in:

For _«9]-’5:

N m a )
2.2 P(C; 15507 - Inplx;1€;30,)=0

i=l j=1 2
(*) Provided that all pairs of (&, §;) are functionally independent.
For P/s:

1 N (%)
P, =ﬁ;P(C,- | x,;0(1))

(**) Taking into account the constraints P,= 0, k=1, ..., mand P, + P, +

Thus, the EM algorithm for this case may be stated as follows:

.tP, =1



¢ Generalized Mixture Decomposition Algorithmic Scheme (GMDAS)

» Choose initial estimates, /= ¢(0) and P =P(0).
»t=0
» Repeat

| C.;8.(1))P.
« Compute P(C;|x;0(t)) = px;[C0,)E (@)

" p(x,1C0,(0)P(2)
,i=1,..,N, j=1,...,m (1)

* Set 6;(¢+1) equal to the solution of the equation

N m a

> P(C, | x:00) = -Inp(x, C;:0,) =0

i=1 j=1 v,
with respectto &;, forj=1, ..., m.
* Set

1 & :

P+ == P(C,|5:0(0) »j=1, ...
e t=1+1 -
» Until convergence, with respect to ©, is achieved.

(2)

3)



» Remarks:
* A termination condition for GMDAS is
19(t +1) — O@)|| <=

where ||.|| 1s an appropriate vector norm and
€ 1is a small user-defined constant.

* The above scheme 1s guaranteed to converge to a global or a local maximum
of the loglikelihood function.

* Once the algorithm has converged, x’s are assigned to clusters according to
the Bayes rule.
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» Compact and Hyperellipsoidal Clusters
In this case :
« cach cluster C; is modeled by a normal distribution Ny, X)).

e 0 r consists of the parameters of iy
and the (independent) parameters of .
It is
1 C;0,)=1 DN =7 =12
np(x|C;;0))= HW—E@—&) pE-p) o Lj=12,,m
For this case:

* Eq. (1) in GMDAS is replaced by
PG eXp(—;(z—Ej(t))TZ}1 (O(x—p ()P0

Do Z @ exp(= ; (x—p, ) Z (O —p ONPO)

P(C; | x;0(1) =

* Eq. (2) in GMDAS is replaced by the equations

> P(C, 15500, 3 P(C, 15,2000, ~1 (). 1 ()
W+ =+% T+ =+ N
2 P(C; | x,;0(1) 2 P(C;]x,:0(0)

11



> Remark:

» The above scheme 1s computationally very demanding since it requires
the inversion of the m covariance matrices at each iteration step. Two
ways to deal with this problem are:

» The use of a single covariance matrix for all clusters.

» The use of different diagonal covariance matrices.

12



» Example 1:
» (a) Consider three two-dimensional normal distributions with mean values:

/'_ll :[]‘J I]TJ :l;IQ :[3'5: 35]T9 /;l3: [6: 1]T
and covariance matrices

1 -03 1 03 1 0.7
2, = , 2, = , 23 = ;
-03 1 03 1 0.7 1

respectively.

A group of 100 vectors stem from each distribution.

These form the data set X.

13
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(a) A data set that consists of three groups of points. (b) The results from the application of
GMDAS when normal mixtures are used.

Confusion matrix:

Cluster 1 | Cluster 2 | Cluster 3
15t distribution 99 0 1
2nd distribution 0 100 0
3 distribution 3 4 93

The algorithm reveals accurately the underlying structure.

14




(b) The same as (a) but now &, =[1, 117, i, =12, 2]7, z5=1[3, 117

(The clusters are closer).
6 —

@

FIGURE 14.4
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(b)

(a) The data set, which consists of three overlapping groups of points. (b) The results of the
GMDAS when Gaussian mixtures are used.

Confusion matrix:

Cluster 1 | Cluster 2 | Cluster 3
1%t distribution 85 4 11
2nd distribution 35 56 9
3t distribution 26 0 74

The algorithm reveals the underlying structure less accurately.

15






¢ Fuzzy clustering algorithms
» Each vector belongs simultaneously to more than one clusters.
» A fuzzy m-clustering of X, is defined by a set of functions
up X —>A=[0,1], j=1,....m.
If A ={0,1}, a hard m-clustering of X i1s produced.
» u(x;) denotes the degree of membership of x; in cluster C;. It is
) (x;) T uy(x;) +o.. o, (x) =1

» The number of clusters m is assumed to be known a priori.

17



¢ Fuzzy clustering algorithms (cont)

» Cost function definition
Let
* 0;be the representative vector of C;.
« 0=[67...,0""
. U= uy] = D)

* d(x,0) be the dissimilarity between x; and g,

e g (> 1) a parameter called fuzzifier.

18



¢ Fuzzy clustering algorithms (cont)

» Most fuzzy clustering schemes result from the minimization of :

N m
Jq(QaU) = Zzu;{d(ﬁmgj)
i=1 j=I
Subject to the constraints: Z”if =1, i=1.,N

Jj=1

where

and

19



> Remarks:

* The degree of membership of x; in C; cluster is related to the grade of
membership of x; in rest m —1 clusters.

« If g =1, no fuzzy clustering is better than the best hard clustering in terms of

1B

* Ifg> 1, there are fuzzy clusterings with lower values of J (6 U) than the best
hard clustering.

20



% Fuzzy clustering algorithms (cont)
» Minimizing J (6, U) :
Minimization J,(6,U) with respect to U, subject to the constraints leads to the
following Lagrangian function,

J,. (0,U)= ZZuqd(_l,e.)—i}»{iulj—lJ

(6,U) with respect to u_, we obtain

u. = ! , r=L.,.N, s=1,...m.

rs 1
Z d(x 9 ) - -1
= d(x,.8))
Setting the gradient of J (6,U), with respect to €, equal to zero we obtain,
aJ(e U) ad(xl,e )
-2

Minimizing J, ,, o

=0, j=1l...m

—]
The last two equatlons are coupled. Thus, no closed form solutions are
expected. Therefore, minimization is carried out iteratively.

21



» Generalized Fuzzy Algorithmic Scheme (GFAS)
* Choose 0(0) as initial estimate for 8, j =1, ..., m.
e t=0
* Repeat
— Fori=lto N
o Forj=1tom

d(x;,9; qll
o e Y

o End {For-j}
— End {For-i}
—t=t+1
— Forj=1tom
0 Parameter updating: Solve

v dd(x,.9,
Zu{j(t—l)%:o. (B)

i=1 ~2j

with respect to 6;and set 0(7) equal to this solution.

— End {For-j}
e Until a termination criterion is met

22



A candidate termination condition 1s

147 - Az =1)]| <e,

where ||.|| 1s any vector norm and ¢ a user-defined constant.

GFAS may also be initialized from U0) instead of £(0),j=1, ..., m and start
iterations with computing &, first.

If a point x; coincides with one or more representatives, then it is shared
arbitrarily among the clusters whose representatives coincide with x,, subject
to the constraint that the summation of the degree of membership over all
clusters sums to 1.

23



¢ Fuzzy Clustering — Point Representatives
» Point representatives are used in the case of compact clusters
» Each @, consists of / parameters
» Every dissimilarity measure d(x, ) between two points can be used
» Common choices for d(x, 0) are
© dx, _@) =(x; — _@) TA(x; - _‘2);
where A is symmetric and positive definite matrix.

In this case:
0d(x,6) /06, = 2A(6 - x).

Thus the updating equation (B) in GFAS becomes
N N
0,()=>" ut(t-x, /3" ul(t-1)

» GFAS with the above distance is also known as Fuzzy c-Means (FCM) or Fuzzy k-Means
algorithm.

» FCM converges to a stationary point of the cost function or it has at least one subsequence that
converges to a stationary point. This point may be a local (or global) minimum or a saddle point.

24



“* Fuzzy clustering — Point representatives (cont.)
» The Minkowski distance

1
l P
d(Eij) = £Z| Xik _ejk ‘pJ

k=1
where p is a positive integer and x;, 6, are the k-th coordinates of x;
and 0.
For even and finite p, the differentiability of d(x; §) is guaranteed. In
this case the updating equation (B) of GFAS gives

a (6 ir xir )p_l
Z ui? (t-1) : 1
i=1 I Py,
k=1 xik - ejk ) g

a system of / nonlinear equations with / unknowns.

=0, r=1..1

GFAS algorithms with the Minkowski distance are also known as pFCM algorithms.

25



¢ Fuzzy Clustering — Point representatives (cont.)

» Example 2(a):
» Consider the setup of example 1(a).

» Consider GFAS with distances
(1) d(x,8) = (x;,— 0 )TA(x, — 8), with A being the identity matrix

. : 2 15
(i) d(&i’_ej) = (x;— _Hj)TA(Ei_ _@); with 4= [1.5 ) }
(111) The Minkowski distance with p = 4.
» Example 2(b):

» Consider the setup of example 1(b).
* Consider GFAS with the distances considered in example 2(a).

26



The corresponding confusion matrices for example 2(a) and 2(b) are
(Here a vector is assigned to the cluster for which u;; has the maximum value.)

For the example 2(a)

98 2 0 63 11 26 %% 0 4
4 =114 84 2 A,=15 95 0 4,=111 89 0
11 0 89 39 23 38 13 2 85
For the example 2(b)
51 46 3 79 21 O 51 3 46
A =14 47 39| A,=(19 58 23| A'.,=137 62 1
43 0 57 28 41 31 11 36 353

» Remarks:

* InA, and A;; (example 2(a)) almost all vectors from the same distribution are
assigned to the same cluster.

» The closer the clusters are, the worse the performance of all the algorithms.

* The choice of matrix A in d(x, 0) = (x- _Hj)TA(gi- 8) plays an important role to the
performance of the algorithm.

27



¢ Fuzzy Clustering — Quadric surfaces as representatives

Here the representatives are quadric surfaces
(hyperellipsoids, hyperparaboloids, etc.)

» General form of an equation describing a quadric surface Q:

1. xTAx + b'x + ¢ =0,

where A is an [ X [ symmetric matrix, b1is an [/ X 1 vector, c 1s a scalar and
_ T
x=[x;...x]".

For various choices of these quantities we obtain hyperellipses,
hyperparabolas and so on.

Tor —

2.g'p=0,
where
g =X X2 X2 X Xgyeey XXy Xy Xgyeoy X 11T
and

P=lPy Poeeos Py Preps Py Prape-o P17
withr=I(l+1)2ands=r+1+ 1.

NOTE: The above representations of Q are equivalent.
28



¢ Fuzzy Clustering — Quadric surfaces as representatives (cont)

First concern: “Definition of the distance of a point X to a quadric surtace Q”
» Types of distances

* (Squared) Algebraic distance:
d X%, Q)=(x"Ax + b"x + ¢)? = p"Mp,
where M =qq”.

» Perpendicular distance:
d,*(x, Q)=min,lx — z||?

subject to the constraint
ZTAz+bTz+ ¢ =0

In words, d,*(x, Q) is the distance between x and the closest to x point that lies
in Q.

29



¢ Fuzzy Clustering — Quadric surfaces as representatives (cont)

 Radial distance (only when Qs a hyperellipsoidal):
For Q hyperellipsoidal, the representative equation can become

(x-0)"A(x-0)=1

where cis the center of the ellipse and A a positive definite symmetric
matrix defining major axis, minor axis and orientation.

Then the following is true
d(x,Q)=|x-2,
subject to the constraints
(z0)"A(z0)=1
and
(z9=a(x-0)
In words,

— the intersection point zbetween the line segment x-c and Qs
determined

— the squared Euclidean distance between x and z1s computed. 30



“* Fuzzy Clustering — Quadric surfaces as representatives (cont)
* (Squared) Normalized radial distance (only when Qs a hyperellipsoidal):
4% Q=(((x-9"A(x-¢))"*-1)?

» Example 3:

* Consider two ellipses Qand Q,, centered at ¢=[0, 0]7, with A=diag(0.25, 1)
and A,=diag(1/16, '), respectively.
* Let Ax,,x,) be a point in Q; moving from A(4,0) to B(-4,0), with x,>0.

X, A

31



% Fuzzy Clustering — Quadric surfaces as representatives (cont)

3.5
3
d,
2571
2
d,
15T
d,
'a,
05r
0 L 1 1 4 1 L 1
4 2 0 2 4

* d,and d,do not vary as Pmoves.
* d,can be used as an approximation of d, when Qis a hyperellipsoid.

32



¢ Fuzzy Clustering — Quadric surfaces as representatives (cont)
Fuzzy Shell Clustering Algorithms

» The Adaptive Fuzzy C-Shells (AFCS) algorithm.
* It recovers hyperellipsoidal clusters.
* It is the result of the minimization of the cost function
N m
S, (0,U)=2 > uld, (x,0))
i=1 j=1
with respect to u;,’s, ¢7s, A/s, /=1,...,m.
» AFCS stems from GFAS, with the “parameter updating” being as follows:
— Parameter updating:
o Solve with respect to ¢;and A, the following equations

Lo d@0)
R o I

od8)
;u,,-(t 1) 5.0,) (x,—c,)(x,—¢,) =0 .



where:
¢2<x,.,0.)=<z,.—c->TA.(x.—gj),
d, (x,0,)=(4(x,,0,)-1)’

o Set ¢(9) and A(9), /~1,...,m, equal to the resulting solution

» Example 4: Thick dots represent the points of the data set. Thin dots represent
(a) the initial estimates and (b) the final estimates of the ellipses

Ao
# L™
{5 ™
P %
o %
i Phi ¥
A
*f i o
. e 7 ?XA s
gl H P R
s " ; ! - 3
* % 3 ;(* ¥ %
X H d H
* *
: %, - i
o, : " ¥ % 19 fx;) F ?’éx)v é‘”\
* N J i e ¥ % 4
* W B % i % % &k L w:
%, M@,WMA # Sgpntprl | kS Seguget i St
%’k W %Y« %«’*
" - " .
’W""‘Mﬁ.ew’é‘w 1 1 1 i T &:QM

(a) (b)
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¢ Fuzzy Clustering — Quadric surfaces as representatives (cont)

» The Fuzzy C Ellipsoidal Shells (FCES) Algorithm
* It recovers hyperellipsoidal clusters.
* It is the result of the minimization of the cost function

J,0.U) =YY uld’(x,0))

i=1 j=1

* FCES stems from GFAS. Setting the derivative of J (8, U) with respect to
¢/sand A’s equal to zero, the “parameter updating” part of the algorithm
ollows.

» The Fuzzy C Quadric Shells (FCQS) Algorithm
* It recovers general hyperquadric shapes.
* It is the result of the minimization of the cost function

N m N m
JO.U)= > uid}(x,0)=2>uip Mp, (p =0)

i=l j=I i=1 j=I

subject to constraints such as: 35



¢ Fuzzy Clustering — Quadric surfaces as representatives (cont)
. .. r+l
M llpfP=1. i) X P =1
. / r
(i) p;=1, (iv) p2=1, (V) | Zk:l pjz.k +O’52k=1+1 pjz.k 1> =1

« FCQS stems from GFAS. Setting the derivative of J (8, U) with respect to
p;’s equal to zero and taking into account the constraints, the “parameter
updating” part of the algorithm follows.

» The Modified Fuzzy C Quadric Shells (MFCQS) Algorithm
[t recovers hyperquadric shapes.
It results from the GFAS scheme where

— The grade of membership of a vector x;1in a cluster is determined
using the perpendicular distance.

— The updating of the parameters of the representatives is carried out
using the parameter updating part of FCQS (where the algebraic
distance 1s used).

36



“* Fuzzy Clustering — Hyperplanes as representatives

Algorithms that recover hyperplanar clusters.
» Fuzzy c-varieties (FCV) algorithm

» [t is based on the minimization of the distances of the vectors in X from
hyperplanes.

» Disadvantage: It tends to recover very long clusters and, thus, collinear
distinct clusters may be merged to a single one.

» Gustafson-Kessel (GK) algorithm

* Each planar cluster is represented by a center ¢;and a covariance matrix
2. le., 07(c, 2).
» The distance between a point x and the j~th cluster is defined as

A (x,0)=|1 2] (x-c) "2 (x-¢)

* The GK algorithm is derived via the minimization of the cost function

N m
Jac(@U) =D D ufde (x,,6,)) 37
i=l j=1



% Fuzzy Clustering — Hyperplanes as representatives (cont)

* The GK algorithm stems from GFAS. Setting the derivative of J, (6, 1)
with respect to ¢/s and A/’s equal to zero, the “parameter updating” part
of the algorithm becomes:

S ul(t-Dyx,

_ ¢, ()=
zl_:l ug(t=1)
S ul(t-1(x, — ¢ (O)x, —c, (1)
_ Z _ i=1 ¥ =i =J =i =J
j(l) - N q
Zi=l uij (t - 1)
» Example 5:
3 ,é% e 3 l‘
¥ * - *
o xx*ig “s oK ‘
2 )&5; >§;¥ 2 “. ’&;K*
Ky ¥ L *
£ owd &
%5 ¥a
1 **% %ﬁ%* 1 %** ..’. 1
0 ¥%* %%&WZ%%** i*x% %&ﬁ& ¢ 0 XXX X%&*&%XX §>< X %%& g
£ Be
1 1

2 -1 0 1 2 ) -1 0 1 2 38

(a) (b)



35 3
L i X Ly % ¥
*K ¥ XX ¥
92{ sk K >2< ek X
=
2 %% k" 2 *x X
Kk K Xeg K
Nl e
1 % % % 1 % *.o
Faonog K I B oo X060 K e 80 ol racte t
e * Kk °
X x ¥ [ ]
0 ¥ ¥ 0 X ‘e
¥ E e %
* °_ -
;@% *X X;*é ..
-1 -1
2 -1 0 1 2 2 -1 0 1 2
(a) (b)

* In the first case, the clusters are well separated and the GK-algorithm
recovers them correctly.

* In the second case, the clusters are not well separated and the GK-
algorithm fails to recover them correctly.
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% Possibilistic Clustering

» Unlike fuzzy clustering, the constraints on ;s are
* u;€ [0,1]
* max., ,u;>0, ~FL...N

0<>" u, <N, i=L.,N

» Possibilistic clustering algorithms result from the optimization of cost
functions like

JO) =Y > ud(x,0)+ Y, Y (-u,)"

i=l j=1

where 7, are suitably chosen positive constants (see below). The 2"d term is
inserted in order to avoid the trivial zero solution for the ;.

(other choices for the second term of the cost function are also possible (see below)).

> Setting A 0,U)/ du;=0 we obtain: { d(x. gl)qul
w, = 1/ | 1+ —"—==
7,

41



¢ Possibilistic clustering (cont)

» Generalized Possibilistic Aleorithmic Scheme (GPAS)
e Fix 77].,]'=1,...,m.

* Choose QJ(O) as the initial estimates of 1_%-, Fl,...,m.
e =0
* Repeat
— ForFlto N
o For =1 to m

o=
1, ()= 1 1+[do_c,.,g,<r»Jq
1
0 End {FOI'_]}
— End {For-7;
- £

42



¢ Possibilistic clustering (cont)
» Generalized Possibilistic Algorithmic Scheme (GPAS) (cont)
— For =1 to m

o Parameter updating: Solve

N od(x,,0 .
> ue-n 8~
g,

i=1

with respect to 6;and set 0(¢) equal to the computed solution
— End {For j}

e Until a termination criterion is met

» Remarks:
* [|A9)-A#1)[|<emay be employed as a termination condition.

» Based on GPAS, a possibilistic algorithm can be derived, for each fuzzy
clustering algorithm derived previously.

43



¢ Possibilistic clustering (cont)
» Two observations

* Decomposition of A(g,U): Since for each vector x, u;’s, /~1,...,mare
independent from each other, J( 6,U) can be wrltten as

J(Q,U)zZJj

where
J Zuqal(x,,e)m Z(l u,)

Each J; corresponds to a different cluster and minimization of A €,U) with
respect to u;’s can be carried out separately for each J.

* About 7/’s:
— They determine the relative significance of the two terms in A 6, ).
— They are related to the size and the “shape” of the C7’s, ~1,...,m
— They may be determined as follows:
o Run the GFAS algorithm and after its convergence estimate 7,’s as

or
S wld(x,,6,) 2 dG8))
o Run tH¢ GPAS 2@’0 &hm ;= ngl

44



¢ Possibilistic clustering (cont)
» Remark:
High values of ¢

* In possibilistic clustering imply almost equal contributions of all vectors
to all clusters

* In fuzzy clustering imply increased sharing of the vectors among all
clusters.

» The mode-seeking property

* Unlike GMDAS and GFAS which are partition algorithms (they
terminate with the predetermined number of clusters no matter how many
clusters are naturally formed in X), GPAS is a mode-seeking algorithm (it
searches for dense regions of vectors in X).

» Advantage: The number of clusters need not be a priori known.

* If the number of clusters in GPAS, m, is greater than the true number of
clusters kin X, some representatives will coincide with others. If m<k,
some (and not all) of the clusters will be captured.

45






“* Hard Clustering Algorithms

Each vector belongs exclusively to a single cluster. This implies that:
»  uel{0, 1}, Fl....m

> Zj’:l uij =1

That is, it can be seen as an extreme special case of the fuzzy algorithmic
schemes.

However, now, the cost function
N m
JOU) =) > uyd(x,,0,)
i=1 j=l1

is not differentiable with respect to 0.

Despite that, the two-step optimization procedure (with respect to u;’s and with

respect to 0’s) adopted in GFAS is applied also here, taking into account that, for
fixed s, the u,;’s that minimize A8, U) are chosen as

1, if d(x;,0,)=min,_

; o, i=L.,N
0, otherwise

47



“* Hard Clustering Algorithms (cont)
» Generalized Hard Algorithmic Scheme (GHAS)
* Choose QJ(O) as initial estimates for _(9]-, Fl,...,m.

e =0
* Repeat
— For =l to N
o For =1 to m
Determination of the partition.
L if dx,0,t)=min_, , d(x,0,)
u; (1) =
0, otherwise
o End {For-;}
— End {For-1}
— t=tt1

48



¢ Hard Clustering Algorithms (cont)
» Generalized Hard Algorithmic Scheme (GHAS) (cont.)
— For =1 to m
o Parameter updating: Solve

Zu,,( _DBd(xl,@ )

o with respect to &;and set 6(¢) equal to the computed solution
— End {For-;}
 Until a termination criterion is met

J

» Remarks:
* In the update of each @, only the vectors x; for which u,(#1)=1 are used.
* GHAS may terminate when either

— [|AD-A#1)||<e or

— Uremains unchanged for two successive iterations.

49



¢ Hard Clustering Algorithms (cont)
» More Remarks:

* For each hard clustering algorithm there exists a corresponding fuzzy
clustering algorithm. The updating equations for the parameter vectors 6,
in the hard clustering algorithms are obtained from their fuzzy
counterparts for g=1.

» Hard clustering algorithms are not as robust as the fuzzy clustering
algorithms when other than point representatives are used.

» The two-step optimization procedure in GHAS does not necessarily lead
to a local minimum of A8, U).

50



* Hard Clustering Algorithms (cont)

» The Isodata or k-Means or c-Means algorithm
General comments
* It is a special case of GHAS where
— Point representatives are used.
— The squared Euclidean distance is employed.
* The cost function A &,U)) becomes now

N m
JOU)=2 > u;llx, =0,

i=1 j=1

» Applying GHAS in this case, it turns out that it converges to a minimum
of the cost function.

* Isodata recovers clusters that are as compact as possible.

 For other choices of the distance (including the Euclidean), the algorithm
converges but not necessarily to a minimum of A6, V).

51



¢ Hard Clustering Algorithms (cont)

» The Isodata or k-Means or c-Means algorithm
» Choose arbitrary initial estimates _(9](0) for the _@-’ s, ~1,...,m.
* Repeat
— For /F1to N
o Determine the closest representative, say _@-, for x;
o Set H(1)=/.
— End {For}
— For =1 to m
o Parameter updating: Determine @ as the mean of the vectors
xe Xwith b(i)=. ’
— End {For}
* Until no change in &/ s occurs between two successive iterations

» Example 6(a): The k-means algorithm with 773 identifies successfully the
clusters in the data set of example 1(a). The confusion matrix is

94 3 3
A= 0 100 O
9 0 91 52



¢ Hard Clustering Algorithms — k-means (cont)

» Example 6(b): (1) Consider two 2-dimensional Gaussian distributions
Myy,2), M, %), with g=[1, 117, 1,=[8, 117, 2\=1.57and 2,=I. (ii) Generate
300 points from the 1% distribution and 10 points from the 2™ distribution.
(ii1) Set 77=2 and initialize randomly &’s (0=u)).

After convergence the large group has been split into two clusters.

Its right part has been assigned to the same cluster with the points of the small
group (see figure below).

This indicates that k-means cannot deal accurately with clusters having
significantly different sizes.
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Hard Clustering Algorithms — k-means (cont)
» Remarks:
» k-means recovers compact clusters.

» Sequential versions of the k-means, where the updating of the
representatives takes place immediately after the identification of the
representative that lies closer to the current input vector x, have also been
proposed.

» A variant of the k-means results if the number of vectors in each cluster is
constrained a priori.

» The computational complexity of the k-means is O Nmg), where ¢ is the
number of iterations required for convergence. In practice, m and g are
significantly less than A, thus, k-means becomes eligible for processing
large data sets.

» Further remarks:

Some drawbacks of the original k-means accompanied with the variants of
the k-means that deal with them are discussed next.
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¢ Hard Clustering Algorithms — k-means (cont)
» Drawback 1: Different initial partitions may lead k-means to produces

different final clusterings, each one corresponding to a ditferent local
minimuin.

Strategies for facing drawback 1:
* Single run methods

— Use a sequential algorithm (discussed previously) to produce initial
estimates for s.

— Partition randomly the data set into 2 subsets and use their means as
initial estimates for &, s.

« Multiple run methods

— Create different partitions of X, run k-means for each one of them
and select the best result.

— Compute the representatives iteratively, one at a time, by running k-
means mN times. It is claimed that convergence is independent of the
initial estimates of 0 s.

« Utilization of tools from stochastic optimization techniques (simulated

annealing, genetic algorithms etc).
55



* Hard Clustering Algorithms — k - means (cont)
» Drawback 2: Knowledge of the number of clusters m is required a priori.
Strategies for facing drawback 2:

* Employ splitting, merging and discarding operations of the clusters
resulting from k-means.

* Estimate m as follows:
— Run a sequential algorithm many times for different thresholds of
dissimilarity .
— Plot @ versus the number of clusters and i1dentify the largest plateau

in the graph and set m equal to the value that corresponds to this
plateau.
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* Hard Clustering Algorithms — k - means (cont)
» Drawback 3: k-means is sensitive to outliers and noise.
Strategies for facing drawback 3:
* Discard all “small” clusters (they are likely to be formed by outliers).

» Use a k-medoids algorithm (see below), where a cluster is represented by
one of its points.

» Drawback 4: k-means is not suitable for data with nominal (categorical)
coordinates.

Strategies for facing drawback 4:
» Use a k-medoids algorithm.

57



* Hard Clustering Algorithms
» k-Medoids Algorithms
» Each cluster is represented by a vector selected among the elements of X
(medoid).

* A cluster contains
— Its medoid
— All vectors in X that

o Are not used as medoids in other clusters

o Lie closer to its medoid than the medoids representing other
clusters.

Let @be the set of medoids of all clusters, 7, the set of indices of the points in
X that constitute @ and /., the set of indices of the points that are not
medoids.

» Obtaining the set of medoids @ that best represents the data set, X'is
equivalent to minimizing the following cost function

58



» k-Medoids Algorithms (cont)

J(@,U) = Z Zuijd(&-a&)

iely_g j€lg
with
L, if d(x,x;)=min

q€lq

0, otherwise

d(x;,x,)
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» Representing clusters with mean malues vs representing clusters with medoids

Mean Values

Medoids

1.
Suited only for continuous domains

1.
Suited for either cont. or discrete domains

2.

Algorithms using means are sensitive to
outliers

2.

Algorithms using medoids are less
sensitive to outliers

3.

The mean possess a clear geometrical
and statistical meaning

3.

The medoid has not a clear geometrical
meaning

-+

Algorithms using means are not
computationally demanding

4.

Algorithms using medoids are more
computationally demanding
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» k-Medoids Algorithms (cont)

» Example 7: (It illustrates the first two points in the above comparison)
(a) The five-point two-dimensional set stems from the discrete domain
D={1,2,3,4,...}x{1,2,3,4,...}. Its medoid is the circled point and its mean is
the “+’ point, which does not belong to .

(b) In the six-point two-dimensional set , the point (9,2) can be considered as an
outlier. While the outlier affects significantly the mean of the set, it does not
affect its medoid.
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@ (b)
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* Hard Clustering Algorithms - k-Medoids Algorithms (cont)
Algorithms to be considered
» PAM (Partitioning Around Medoids)
» CLARA (Clustering LARge Applications)
» CLARANS (Clustering Large Applications based on RANdomized Search)

» The PAM aloorithm

» The number of clusters m is required a priori.

Definitions-preliminaries

* Two sets of medoids @ and @, each one consisting of m elements, are
called neighbors if they share m-1 elements.

* A set ®of medoids with m elements can have m(/N-m) neighbors.
* Let @, denote the neighbor of @ that results if x;, j€ Iy 5 replaces x, € I,
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“* Hard Clustering Algorithms - k-Medoids Algorithms (cont)
» The PAM algorithm

» Determination of ® that best represents the data
— Generate a set ® of m medoids, randomly selected out of X.

— (A) Determine the neighbor @,,, g€ Iy, 1€ Iy 5 among the m(N-m)
neighbors of @ for which A/, =min AT

— If AJ,< 0 is negative then j
o Replace @by O,
o Goto(A)

— End

» Assignment of points to clusters

ic [@, JE [X—@

— Assign each xe I, 4 to the cluster represented by the closest to x
medoid.

Computation of AJ;. It is defined as: AT, = Zhel Gy

where C),;1s the difference in J, resulting from the (possible) assignment of
the vector x,€ X-@ from the cluster it currently belongs to another, as a
consequence of the replacement of x€ @by x€ X-0O.
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¢ Hard Clustering Algorithms - k-Medoids Algorithms (cont)
» The PAM algorithm (cont)
Computation of C};:

* x, belongs to the cluster represented by x; (x,,£ @ denotes the second
closest to x, representative) and d(x,, ;(J) > dx,, x,,). Then
® X,

Chij= A Xy Xpp) - d Xy X) 20 f

* x,belongs to the cluster represented by x; (x,,£ @ denotes the second
closest to x, representative) and dx,, x) < dx,,X,,). Then
® X ® ‘1\’-0 X

S P
Cpy= dx; X)) - dxp, X)) (>) 0’ Xj « h°.

o
X h h



¢ Hard Clustering Algorithms - k-Medoids Algorithms (cont)

> The PAM alcorithm (cont)

Computation of €, (cont.):
* X, 1s not represented by x; (x,, denotes the closest to x, medoid) and dx,,

K]ﬂ) < O(K]p Kj) Then Xj
C]Hj:O .X ‘
X
X h1

* Xx,1s not represented by x; (x,, denotes the closest to x, medoid) and d x,,
x3) > d(x;, x). Then

Cszz d x;, é}) - dx;, x,) <0

X hi 65



¢ Hard Clustering Algorithms - k-Medoids Algorithms (cont)
» The PAM algorithm (cont)

» Remarks:

» Experimental results show the PAM works satisfactorily with small data
sets.

« Its computational complexity per iteration is O(m( N-m)?). Unsuitable for
large data sets.
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% Hard Clustering Algorithms - k-Medoids Algorithms (cont)
» The CLARA algorithm
« It is more suitable for large data sets.

» The strategy:
— Draw randomly a sample X "of size N from the entire data set.
— Run the PAM algorithm to determine @ “that best represents X"
— Use @ "in the place of @to represent the entire data set X.

* The rationale:

— Assuming that X "has been selected in a way representative of the
statistical distribution of the data points in X, @ “will be a good
approximation of @, which would have been produced if PAM were
run on X

e The algorithm:

— Draw s sample subsets of size N from X, denoted by X 7,,..., X
(typically s=35, N'=40+2m).

— Run PAM on each one of them and identify @,,...,0".

— Choose the set @ ; that minimizes

J(©',U)= _Zielxe' ZJE[@, uijd(lia)_cj)
based on the entire data set X 67



¢ Hard Clustering Algorithms - k-Medoids Algorithms (cont)
» The CLARANS algorithm
« It is more suitable for large data sets.

+ It follows the philosophy of PAM with the difference that only a fraction g(<m(N-m)) of the
neighbors of the current set of medoids is considered.

It performs several runs (s) starting from different initial conditions for @.
* The algorithm:
— For~ltos
o Initialize randomly ©.
o (A) Select randomly gneighbors of ©.
o For ~1to g

* If the present neighbor of @ is better than @ (in terms of A ©, V))
then

-- Set @ equal to its neighbor
--Goto (A)
* End If
o End For
o Set @=0O
— End For
— Select the best @ with respect to A O, ).
— Based on this set of medoids assign each vector xe X-®to

the cluster whose representative is closest to x. 6



Hard Clustering Algorithms - k-Medoids Algorithms (cont)
» The CLARANS algorithm (cont)
» Remarks:
« CLARANS depends on g and s. Typically, s=2 and
g=max(0.125m( N-m), 250)
» As gapproaches m(N-m) CLARANS approaches PAM and the complexity
increases.

* CLARANS can also be described in terms of graph theory concepts.
* CLARANS unravels better quality clusters than CLARA.
* In some cases, CLARA is significantly faster than CLARANS.

* CLARANS retains its quadratic computational nature and thus it is not
appropriate for very large data sets.
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A

Clustering Algorithms Ill:
Schemes Based on
Function Optimization

14.1 INTRODUCTION

One of the most commonly used families of clustering schemes relies on the
optimization of a cost function J using differential calculus techniques (e.g., see
[Duda 01, Bezd 80, Bobr 91, Kris 95a, Kris 95b]). The cost J is a function of the
vectors of the data set X and it is parameterized in terms of an unknown parame-
ter vector, #. For most of the schemes of the family, the number of clusters, m, is
assumed to be known.

Our goal is the estimation of @ that characterizes best the clusters underly-
ing X. The parameter vector @ is strongly dependent on the shape of the clusters.
For example, for compact clusters (see Figure 14.1a), it is reasonable to adopt as
parameters a set of m points, m;, in the /-dimensional space, each corresponding to
acluster—thus, 8 = [m, ", m ,myT17. Onthe other hand, if ring-shaped clus-
ters are expected (see Figure 14.1b), it is reasonable to use m hyperspheres C(c;, 1),
i=1,..., im, as representatives, where ¢; and r; are the center and the radius of
the ith hypersphere, respectively. In this case,@ = [c17,r1.¢27 ra, ... " rm] 7.

Spherical or, in general, shell-shaped clusters' are encountered in many robot
: Theodoridis vision applications. The basic problem here is the identification of objects (pat-
g in a scene (which is a region in the three-dimensional space), and
ation of their relative positions, using a single or several images (two-
dimensional projections of the scene). An important task of this problem is the
identification of the boundaries of the objects in the image. Given an image (see.e.g.,
Figure 14.2a), we may identify the pixels that constitute the boundary of the objects
using appropriate operators (see. e.g., [Horn 86, Kare 94]) (see Figure 14.2b). Then,

itroumbas

S Theodoridis K Koutroumbas the boundaries of the objects may be considered as shell-shaped or linear-shaped
° > : 4 clusters and clustering algorithms may be mobilized in order to recover their exact
Pattern Recognition’ shape and location in the image. In fact, clustering techniques have exhibited

Fourth Edition, Academic Press, 2009.

! These may be hyperellipsoids, hyperparabolas, etc. 701
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