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CLUSTERING ALGORITHMS VIA 

FUNCTION OPTIMIZATION 

 In this context the clusters are assumed to be described by a parametric specific 
model whose parameters are unknown
(all parameters are included in a vector denoted by θ ).

Examples:

 Compact clusters. Each cluster Ci is represented by a point mi in 
the l-dimensional space. Thus θ = [m1

T, m2
T, … , mm

T ]T.

 Ring-shaped clusters. Each cluster Ci is modeled by a hypersphere C(ci,ri), 
where ci and ri are its center and its radius, respectively. Thus 

θ = [c1
T, r1, c2

T, r2, … , cm
T, rm]T.

A cost J(θ ) is defined as a function of the data vectors in X and θ.
Optimization of J (θ ) with respect to θ results in
θ that characterizes optimally the clusters underlying X.

The number of clusters m is a priori known in most of the cases.
3
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 Cost optimization clustering algorithms considered in the sequel

 Mixture decomposition schemes.

 Fuzzy clustering algorithms.

 Possibilistic clustering algorithms.

5
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 Mixture Decomposition (MD) schemes

 Here, each vector belongs to a single cluster with a certain probability

 MD schemes rely on the Bayesian framework:

A vector xi is appointed to cluster Cj if

P(Cj| xi) > P(Ck| xi),   k = 1,…, m,  k ≠ j.

However:

 No cluster labeling information is available for the data vectors

 The a priori cluster probabilities P(Cj)  Pj are also unknown

 A solution: Adoption of the EM algorithm

• E-step

where

θ = [θ1
Τ, …, θm

T]T (θj the parameter vector corresponding to Cj)

P = [P1, …, Pm]T (Pj the a priori probability for Cj)

Θ = [θ T, PT ]T
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• M-step

Θ(t + 1) = arg maxΘQ(Θ; Θ(t))

More specifically, the M-step results in:

For θj’s:

(*) Provided that all pairs of  (θk , θj ) are functionally independent.

For Pj’s:

(**) Taking into account the constraints P
k
 0, k = 1, …, m and P

1 
+ P

2 
+… + P

m
= 1.

Thus, the EM algorithm for this case may be stated as follows:
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 Generalized Mixture Decomposition Algorithmic Scheme (GMDAS)

 Choose initial estimates, θ = θ (0) and P =P(0).

 t = 0

 Repeat

• Compute

, i = 1, …, N,    j =1, …, m (1)

• Set θj (t+1) equal to the solution of the equation

(2)

with respect to θj , for j = 1, …, m.

• Set

, j = 1, …, m (3)

• t = t + 1

 Until convergence, with respect to Θ, is achieved.
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 Remarks:

• A termination condition for GMDAS is 

||Θ(t +1)  Θ(t)|| < ε

where ||.|| is an appropriate vector norm and 

ε is a small user-defined constant.

• The above scheme is guaranteed to converge to a global or a local maximum 

of the loglikelihood function.

• Once the algorithm has converged, xí’s are assigned to clusters according to 

the Bayes rule.
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 Compact and Hyperellipsoidal Clusters

In this case :

• each cluster Cj is modeled by a normal distribution N(μj, Σj ). 

• θj consists of the parameters of μj

and the (independent) parameters of Σj .

It is

For this case: 

• Eq. (1) in GMDAS is replaced by

• Eq. (2) in GMDAS is replaced by the equations
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 Remark:

• The above scheme is computationally very demanding since it requires 

the inversion of the m covariance matrices at each iteration step. Two 

ways to deal with this problem are:

• The use of a single covariance matrix for all clusters.

• The use of different diagonal covariance matrices.
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 Example 1: 

 (a) Consider three two-dimensional normal distributions with mean values:

μ1 =[1, 1]T, μ2  =[3.5, 3.5]T, μ3 = [6, 1]T

and covariance matrices

respectively.

A group of 100 vectors stem from each distribution. 

These form the data set X.
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Cluster 1 Cluster 2 Cluster 3

1st distribution 99 0 1

2nd distribution 0 100 0

3rd distribution 3 4 93

14

Confusion matrix:

The algorithm reveals accurately the underlying structure.



(b) The same as (a) but now μ1 = [1, 1]T, μ2 = [2, 2]T, μ3 = [3, 1]T

(The clusters are closer).

15

Cluster 1 Cluster 2 Cluster 3

1st distribution 85 4 11

2nd distribution 35 56 9

3rd distribution 26 0 74

The algorithm reveals the underlying structure less accurately.

Confusion matrix:
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 Fuzzy clustering algorithms

 Each vector belongs simultaneously to more than one clusters.

 A fuzzy m-clustering of X, is defined by a set of functions 

uj: X A  [0, 1],  j =1, …, m.

If A ={0,1}, a hard m-clustering of X is produced.

 uj(xi) denotes the degree of membership of xi in cluster Cj. It is

u1(xi) + u2(xi) +… + um(xi) = 1

 The number of clusters m is assumed to be known a priori.
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 Fuzzy clustering algorithms (cont)

 Cost function definition

Let 

• θj be the representative vector of Cj.

• θ  [θ1
T, …, θm

T]T.

• U  [uij] = [uj(xi)]

• d(xi,θj) be the dissimilarity between xi and θj

• q (> 1) a parameter called fuzzifier.

18



 Fuzzy clustering algorithms (cont)

 Most fuzzy clustering schemes result from the minimization of :

Subject to the constraints:

where

uij [0,1],   i =1, …, N,   j =1, …, m

and
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 Remarks:

• The degree of membership of xi in Cj cluster is related to the grade of 

membership of xi in rest m 1 clusters.

• If q =1, no fuzzy clustering is better than the best hard clustering in terms of 

Jq(θ,U).

• If q > 1, there are fuzzy clusterings with lower values of  Jq(θ,U) than the best 

hard clustering.
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 Fuzzy clustering algorithms (cont)

 Minimizing Jq(θ, U) :

Minimization Jq(θ,U) with respect to U, subject to the constraints leads to the 

following Lagrangian function,

Minimizing JLan(θ,U) with respect to urs, we obtain

Setting the gradient of J (θ,U), with respect to θ, equal to zero we obtain,

The last two equations are coupled. Thus, no closed form solutions are 

expected. Therefore, minimization is carried out iteratively.
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 Generalized Fuzzy Algorithmic Scheme (GFAS)

• Choose θj(0) as initial estimate for θj, j =1, …, m.

• t = 0

• Repeat

 For i =1 to N

o For j =1 to m

(A)

o End {For-j}

 End {For-i}

 t = t + 1

 For j =1 to m

o Parameter updating: Solve

(B)

with respect to θj and set θj(t) equal to this solution.

 End {For-j}

• Until a termination criterion is met
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 Remarks:

• A candidate termination condition is

||θ(t)  θ(t 1)|| < ε, 

where ||.|| is any vector norm and ε a user-defined constant.

• GFAS may also be initialized from U(0) instead of θj(0), j =1, …, m and start 

iterations with computing θj first.

• If a point xi coincides with one or more representatives, then it is shared 

arbitrarily among the clusters whose representatives coincide with xi, subject 

to the constraint that the summation of the degree of membership over all 

clusters sums to 1.
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 Fuzzy Clustering – Point Representatives

 Point representatives are used in the case of compact clusters

 Each θj consists of l parameters

 Every dissimilarity measure d(xi,θj) between two points can be used

 Common choices for d(xi,θj) are

• d(xi,θj) = (xi  θj)
TA(xi  θj),

where A is symmetric and positive definite matrix. 

In this case:

d(xi,θj) / θj = 2A(θj  xi).

Thus the updating equation (B) in GFAS becomes

 GFAS with the above distance is also known as Fuzzy c-Means (FCM) or Fuzzy k-Means

algorithm.

 FCM converges to a stationary point of the cost function or it has at least one subsequence that 

converges to a stationary point. This point may be a local (or global) minimum or a saddle point.
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 Fuzzy clustering – Point representatives (cont.)

• The Minkowski distance

where p is a positive integer and xik, θjk are the k-th coordinates of xi
and θj.

For even and finite p, the differentiability of d(xi,θj) is guaranteed. In

this case the updating equation (B) of GFAS gives 

a system of l nonlinear equations with l unknowns.

GFAS algorithms with the Minkowski distance are also known as pFCM algorithms.
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 Fuzzy Clustering – Point representatives (cont.)

 Example 2(a): 

• Consider the setup of example 1(a). 

• Consider GFAS with distances

(i) d(xi,θj) = (xi  θj)
TA(xi  θj), with A being the identity matrix

(ii) d(xi,θj) = (xi  θj)
TA(xi  θj), with 

(iii) The Minkowski distance with p = 4.

 Example 2(b):

• Consider the setup of example 1(b).

• Consider GFAS with the distances considered in example 2(a).
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The corresponding confusion matrices for example 2(a) and 2(b) are
(Here a vector is assigned to the cluster for which uij has the maximum value.)

For the example 2(a)

For the example 2(b)

 Remarks:

• In Ai and Aiii (example 2(a)) almost all vectors from the same distribution are 
assigned to the same cluster.

• The closer the clusters are, the worse the performance of all the algorithms.

• The choice of matrix A in d(xi,θj) = (xi- θj)
TA(xi- θj) plays an important role to the 

performance of the algorithm.
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 Fuzzy Clustering – Quadric surfaces as representatives
Here the representatives are quadric surfaces
(hyperellipsoids, hyperparaboloids, etc.)

 General form of an equation describing a quadric surface Q:

1. xTAx + bTx + c = 0,

where A is an l  l symmetric matrix, b is an l  1 vector, c is a scalar and 
x = [x1,…,xl]

T.

For various choices of these quantities we obtain hyperellipses, 
hyperparabolas and so on.

2. qTp = 0, 

where

q = [x1
2, x2

2,…, xl
2, x1x2,…, xl-1xl, x1, x2,…, xl, 1]T

and 

p =[p1, p2,…, pl, pl+1,…, pr, pr+1,…, ps]
T

with r = l(l +1)/2 and s = r + l + 1.

NOTE: The above representations of Q are equivalent.
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 Fuzzy Clustering – Quadric surfaces as representatives (cont)

First concern:“Definition of the distance of a point x to a quadric surface Q”

 Types of distances

• (Squared) Algebraic distance:

da
2(x,Q)=(xTAx + bTx + c)2  pTMp,

where M =qqT.

• Perpendicular distance:

dp
2(x,Q)=minz ||x  z||2

subject to the constraint

zTAz + bTz + c =0

In words, dp
2(x,Q) is the distance between x and the closest to x point that lies 

in Q.
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 Fuzzy Clustering – Quadric surfaces as representatives (cont)

• Radial distance (only when Q is a hyperellipsoidal):

For Q hyperellipsoidal, the representative equation can become

(x-c)TA(x-c)=1

where c is the center of the ellipse and A a positive definite symmetric 
matrix defining major axis, minor axis and orientation.

Then the following is true

dr
2(x,Q)=||x-z||2,

subject to the constraints

(z-c)TA(z-c)=1

and

(z-c)=a(x-c)

In words, 

 the intersection point z between the line segment x-c and Q is 
determined

 the squared Euclidean distance between x and z is computed.
30



 Fuzzy Clustering – Quadric surfaces as representatives (cont)

• (Squared) Normalized radial distance (only when Q is a hyperellipsoidal):

dnr
2(x,Q)=(((x-c)TA(x-c))1/2-1)2

 Example 3:

• Consider two ellipses Q and Q1, centered at c=[0, 0]T, with A=diag(0.25, 1) 

and A1=diag(1/16, ¼), respectively.

• Let P(x1,x2) be a point in Q1 moving from A(4,0) to B(-4,0), with x2>0.

31



• da and dnr do not vary as P moves.

• dr can be used as an approximation of dp, when Q is a hyperellipsoid.

32

 Fuzzy Clustering – Quadric surfaces as representatives (cont)



 Fuzzy Clustering – Quadric surfaces as representatives (cont)

Fuzzy Shell Clustering Algorithms

 The Adaptive Fuzzy C-Shells (AFCS) algorithm.

• It recovers hyperellipsoidal clusters.

• It is the result of the minimization of the cost function

with respect to uij,’s, cj’s, Aj’s, j=1,…,m.

• AFCS stems from GFAS, with the “parameter updating” being as follows:

 Parameter updating:

o Solve with respect to cj and Aj the following equations
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where:

o Set cj(t) and Aj(t), j=1,…,m, equal to the resulting solution

 Example 4: Thick dots represent the points of the data set. Thin dots represent 

(a) the initial estimates and (b) the final estimates of the ellipses
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 Fuzzy Clustering – Quadric surfaces as representatives (cont)

 The Fuzzy C Ellipsoidal Shells (FCES) Algorithm

• It recovers hyperellipsoidal clusters.

• It is the result of the minimization of the cost function

• FCES stems from GFAS. Setting the derivative of Jr(θ,U) with respect to 
cj’s and Aj’s  equal to zero, the “parameter updating” part of the algorithm 
follows.

 The Fuzzy C Quadric Shells (FCQS) Algorithm

• It recovers general hyperquadric shapes.

• It is the result of the minimization of the cost function

subject to constraints such as:
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 Fuzzy Clustering – Quadric surfaces as representatives (cont)

(i) ||pj||
2=1,   (ii)

(iii) pj1=1,   (iv) pjs
2=1,     (v)

• FCQS stems from GFAS. Setting the derivative of Jr(θ,U) with respect to 
pj’s equal to zero and taking into account the constraints,  the “parameter 
updating” part of the algorithm follows.

 The Modified Fuzzy C Quadric Shells (MFCQS) Algorithm

• It recovers hyperquadric shapes.

• It results from the GFAS scheme where

 The grade of membership of a vector xi in a cluster is determined 
using the perpendicular distance.

 The updating of the parameters of the representatives is carried out 
using the parameter updating part of FCQS (where the algebraic 
distance is used).
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 Fuzzy Clustering – Hyperplanes as representatives

Algorithms that recover hyperplanar clusters.

 Fuzzy c-varieties (FCV) algorithm

• It is based on the minimization of the distances of the vectors in X from 

hyperplanes.

• Disadvantage: It tends to recover very long clusters and, thus,  collinear 

distinct clusters may be merged to a single one.

 Gustafson-Kessel (GK) algorithm

• Each planar cluster is represented by a center cj and a covariance matrix 

Σj, i.e.,  θj=(cj, Σj).

• The distance between a point x and the j-th cluster is defined as

dGK
2(x,θj)=|Σj|

1/l(x-cj)
TΣj

-1(x-cj)

• The GK algorithm is derived via the minimization of the cost function
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 Fuzzy Clustering – Hyperplanes as representatives (cont)

• The GK algorithm stems from GFAS. Setting the derivative of JGK(θ,U) 

with respect to cj’s and Aj’s equal to zero, the “parameter updating” part 

of the algorithm becomes:





 Example 5:
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• In the first case, the clusters are well separated and the GK-algorithm 

recovers them correctly.

• In the second case, the clusters are not well separated and the GK-

algorithm fails to recover them correctly.
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 Possibilistic Clustering

 Unlike fuzzy clustering, the constraints on uij’s are

• uij [0, 1]

• maxj=1,…,m uij > 0,   i=1,…,N

•

 Possibilistic clustering algorithms result from the optimization of cost 

functions like

where ηj are suitably chosen positive constants (see below). The 2nd term is 

inserted in order to avoid the trivial zero solution for the uij’ s.

(other choices for the second term of the cost function are also possible (see below)).

 Setting J(θ,U)/ uij=0 we obtain:
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 Possibilistic clustering (cont)

 Generalized Possibilistic Algorithmic Scheme (GPAS)

• Fix ηj, j=1,…,m.

• Choose θj(0) as the initial estimates of θj , j=1,…,m.

• t=0

• Repeat 

 For i=1 to N

o For j=1 to m

o End {For-j}

 End {For-i}

 t=t+1
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 Possibilistic clustering (cont)

 Generalized Possibilistic Algorithmic Scheme (GPAS) (cont)

 For j=1 to m

o Parameter updating: Solve

with respect to θj and set θj(t) equal to the computed solution

 End {For j}

• Until a termination criterion is met

 Remarks:

• ||θ(t)-θ(t-1)||<ε may be employed as a termination condition.

• Based on GPAS, a possibilistic algorithm can be derived, for each fuzzy 

clustering algorithm derived previously.
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 Possibilistic clustering (cont)
Two observations

• Decomposition of J(θ,U): Since for each vector xi, uij’s, j=1,…,m are 
independent from each other, J(θ,U) can be written as 

where

Each Jj corresponds to a different cluster and minimization of J(θ,U) with 
respect to uij’s can be carried out separately for each Jj.

• About ηj’s: 

 They determine the relative significance of the two terms in J(θ,U).

 They are related to the size and the “shape” of the Cj’s, j=1,…,m. 

 They may be determined as follows:

o Run the GFAS algorithm and after its convergence estimate ηj’s as

or

o Run the GPAS algorithm





m

j

j
JUJ

1

),(

 
 


N

i

N

i

q

ijjji

q

ijj uxduJ
1 1

)1(),( 

44







N

i

q

ij

N

i ji

q

ij

j

u

xdu

1

1
),( 









au

au ji

j

ij

ij

xd

1

),( 




 Possibilistic clustering (cont)

 Remark:

High values of q:

• In possibilistic clustering imply almost equal contributions of all vectors 

to all clusters

• In fuzzy clustering imply increased sharing of the vectors among all 

clusters.

 The mode-seeking property

• Unlike  GMDAS and GFAS which are partition algorithms (they 

terminate with the predetermined number of clusters no matter how many 

clusters are naturally formed in X), GPAS is a mode-seeking algorithm (it 

searches for dense regions of vectors in X).

• Advantage: The number of clusters need not be a priori known.

• If the number of clusters in GPAS, m, is greater than the true number of 

clusters k in X, some representatives will coincide with others. If m<k, 

some (and not all) of the clusters will be captured.

45



³﹍©0 ¿i1°mb1?

¾]°? ·m³[ č
·°Ãc½ ︹?1G ¾b1i ·°Â¼? a? ¿°F>﹞ ¾1½ «FÃ`³﹍©0



 Hard Clustering Algorithms

Each vector belongs exclusively to a single cluster. This implies that:

 uij{0, 1},    j=1,…,m



That is, it can be seen as an extreme special case of the fuzzy algorithmic 

schemes.

However, now,  the cost function

is not differentiable with respect to θj.

Despite that, the two-step optimization procedure (with respect to uij’s and with 

respect to θj’s) adopted in GFAS is applied also here, taking into account that, for 

fixed θj’s, the uij’s that minimize J(θ,U) are chosen as
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 Hard Clustering Algorithms (cont)

 Generalized Hard Algorithmic Scheme (GHAS)

• Choose θj(0) as initial estimates for θj, j=1,…,m.

• t=0

• Repeat

 For i=1 to N

o For j=1 to m

Determination of the partition:

o End {For-j}

 End {For-i}

 t=t+1
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 Hard Clustering Algorithms (cont)
 Generalized Hard Algorithmic Scheme (GHAS) (cont.)

 For j=1 to m

o Parameter updating: Solve

o with respect to θj and set θj(t) equal to the computed solution

 End {For-j}

• Until a termination criterion is met

 Remarks:

• In the update of each θj, only the vectors xi for which uij(t-1)=1 are used.

• GHAS may terminate when either

 ||θ(t)-θ(t-1)||<ε or

 U remains unchanged for two successive iterations.
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 Hard Clustering Algorithms (cont)

 More Remarks:

• For each hard clustering algorithm there exists a corresponding fuzzy 

clustering algorithm. The updating equations for the parameter vectors θj

in the hard clustering algorithms are obtained from their fuzzy 

counterparts for q=1.

• Hard clustering algorithms are not as robust as the fuzzy clustering 

algorithms when other than point representatives are used.

• The two-step optimization procedure in GHAS does not necessarily lead 

to a local minimum of J(θ,U).
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 Hard Clustering Algorithms (cont)

 The Isodata or k-Means or c-Means algorithm

General comments

• It is a special case of GHAS where

 Point representatives are used.

 The squared Euclidean distance is employed.

• The cost function J(θ,U) becomes now

• Applying GHAS in this case, it turns out that it converges to a minimum 

of the cost function.

• Isodata recovers clusters that are as compact as possible.

• For other choices of the distance (including the Euclidean), the algorithm 

converges but not necessarily to a minimum of J(θ,U).
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 Hard Clustering Algorithms (cont)

 The Isodata or k-Means or c-Means algorithm

• Choose arbitrary initial estimates θj(0) for the θj’ s, j=1,…,m.

• Repeat

 For i=1 to N

o Determine the closest representative, say θj, for xi

o Set b(i)=j.

 End {For}

 For j=1 to m

o Parameter updating: Determine θj as the mean of the vectors 
xiX with b(i)=j.

 End {For}

• Until no change in θj’ s occurs between two successive iterations

 Example 6(a): The k-means algorithm with m=3 identifies successfully the 
clusters in the data set of example 1(a). The confusion matrix is


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
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


9109

01000

3394
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 Hard Clustering Algorithms – k-means (cont)

 Example 6(b): (i) Consider two 2-dimensional Gaussian distributions 

N(μ1,Σ1), N(μ2,Σ2), with μ1=[1, 1]T, μ2=[8, 1]T, Σ1=1.5I and Σ2=I. (ii) Generate 

300 points from the 1st distribution and 10 points from the 2nd distribution. 

(iii) Set m=2 and initialize randomly θj’s (θjμj).

After convergence the large group has been split into two clusters.

Its right part has been assigned to the same cluster with the points of the small 

group (see figure below).

This indicates that k-means cannot deal accurately with clusters having 

significantly different sizes.
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Hard Clustering Algorithms – k-means (cont)

 Remarks:

• k-means recovers compact clusters.

• Sequential versions of the k-means, where the updating of the 

representatives takes place immediately after the identification of the 

representative that lies closer to the current input vector xi, have also been 

proposed.

• A variant of the k-means results if the number of vectors in each cluster is 

constrained a priori.

• The computational complexity of the k-means is O(Nmq), where q is the 

number of iterations required for convergence. In practice, m and q are 

significantly less than N, thus, k-means becomes eligible for processing 

large data sets.

 Further remarks:

Some drawbacks of the original k-means accompanied with the variants of 

the k-means that deal with them are discussed next.
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 Hard Clustering Algorithms – k-means (cont)

 Drawback 1: Different initial partitions may lead k-means to produces

different final clusterings, each one corresponding to a different local 

minimum.

Strategies for facing drawback 1:

• Single run methods

 Use a sequential algorithm (discussed previously) to produce initial 

estimates for θj’s.

 Partition randomly the data set into m subsets and use their means as 

initial estimates for θj’ s.

• Multiple run methods

 Create different partitions of X, run k-means for each one of them 

and select the best result. 

 Compute the representatives iteratively, one at a time, by running k-

means mN times. It is claimed that convergence is independent of the 

initial estimates of θj’ s.

• Utilization of tools from stochastic optimization techniques (simulated 

annealing, genetic algorithms etc).
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 Hard Clustering Algorithms – k - means (cont)

 Drawback 2: Knowledge of the number of clusters m is required a priori.

Strategies for facing drawback 2:

• Employ splitting, merging and discarding operations of the clusters 

resulting from k-means.

• Estimate m as follows:

 Run a sequential algorithm many times for different thresholds of 

dissimilarity Θ.

 Plot Θ versus the number of clusters and identify the largest plateau 

in the graph and set m equal to the value that corresponds to this 

plateau.
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 Hard Clustering Algorithms – k - means (cont)

 Drawback 3: k-means is sensitive to outliers and noise. 

Strategies for facing drawback 3:

• Discard all “small” clusters (they are likely to be formed by outliers).

• Use a k-medoids algorithm (see below), where a cluster is represented by 

one of its points.

 Drawback 4: k-means is not suitable for data with nominal (categorical) 

coordinates. 

Strategies for facing drawback 4:

• Use a k-medoids algorithm.
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 Hard Clustering Algorithms

 k-Medoids Algorithms

• Each cluster is represented by a vector selected among the elements of X

(medoid). 

• A cluster contains

 Its medoid

 All vectors in X that

o Are not used as medoids in other clusters

o Lie closer to its medoid than the medoids representing other 

clusters.

Let Θ be the set of medoids of all clusters, IΘ the set of indices of the points in 

X that constitute Θ and IX-Θ the set of indices of the points that are not 

medoids.

• Obtaining the set of medoids Θ that best represents the data set, X is 

equivalent to minimizing the following cost function
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 k-Medoids Algorithms (cont)
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 Representing clusters with mean malues vs representing clusters with medoids

60

Mean Values Medoids

1.

Suited only for continuous domains

1.

Suited for either cont. or discrete domains

2.

Algorithms using means are sensitive to 

outliers

2.

Algorithms using medoids  are less 

sensitive to outliers

3.

The mean possess a clear geometrical 

and statistical meaning

3.

The medoid has not a clear geometrical 

meaning

4.

Algorithms using means are not 

computationally demanding

4.

Algorithms using medoids are more 

computationally demanding
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 k-Medoids Algorithms (cont)

 Example 7: (It illustrates the first two points in the above comparison)

(a) The five-point two-dimensional set stems from the discrete domain 

D={1,2,3,4,…}x{1,2,3,4,…}. Its medoid is the circled point and its mean is  

the “+” point, which does not belong to D.

(b)  In the six-point two-dimensional set , the point (9,2) can be considered as an 

outlier. While the outlier affects significantly the mean of the set, it does not 

affect its medoid.
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 Hard Clustering Algorithms - k-Medoids Algorithms (cont)

Algorithms to be considered

 PAM (Partitioning Around Medoids)

 CLARA (Clustering LARge Applications)

 CLARANS (Clustering Large Applications based on RANdomized Search)

 The PAM algorithm

• The number of clusters m is required a priori.

Definitions-preliminaries

• Two sets of medoids Θ and Θ´, each one consisting of m elements, are 

called neighbors if they share m-1 elements.

• A set Θ of medoids with m elements can have m(N-m) neighbors.

• Let Θij denote the neighbor of Θ that results if xj, jIX-Θ replaces xi, iIΘ.

• Let ΔJij=J(Θij ,Uij) - J(Θ ,U).



 Hard Clustering Algorithms - k-Medoids Algorithms (cont)

 The PAM algorithm

• Determination of Θ that best represents the data

 Generate a set Θ of m medoids, randomly selected out of X.

 (A) Determine the neighbor Θqr, qIΘ, rIX-Θ among the m(N-m) 

neighbors of Θ for which ΔJqr=min iIΘ, jIX-Θ
ΔJij.

 If ΔJqr< 0 is negative then

o Replace Θ by Θqr

o Go to (A)

 End

• Assignment of points to clusters

 Assign each xIX-Θ to the cluster represented by the closest to x

medoid.

Computation of ΔJij. It is defined as:

where Chij is the difference in J, resulting from the (possible) assignment of 

the vector xhX-Θ from the cluster it currently belongs to another, as a 

consequence of the replacement of xiΘ by xjX-Θ.


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 Hard Clustering Algorithms - k-Medoids Algorithms (cont)

 The PAM algorithm (cont)

Computation of Chij:

• xh belongs to the cluster represented by xi (xh2Θ denotes the second 

closest to xh representative) and d(xh, xj)  d(xh, xh2). Then

Chi j= d(xh, xh2) - d(xh, xi)  0

• xh belongs to the cluster represented by xi (xh2Θ denotes the second 

closest to xh representative) and d(xh, xj)  d(xh, xh2). Then

Chij = d(xh, xj) - d(xh, xi) (><) 0
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 Hard Clustering Algorithms - k-Medoids Algorithms (cont)

 The PAM algorithm (cont)

Computation of Chij (cont.):

• xh is not represented by xi (xh1 denotes the closest to xh medoid) and d(xh, 

xh1)  d(xh, xj). Then

Chij=0

• xh is not represented by xi (xh1 denotes the closest to xh medoid) and d(xh, 

xh1) > d(xh, xj). Then

Chij = d(xh, xj) - d(xh, xh1)  < 0



 Hard Clustering Algorithms - k-Medoids Algorithms (cont)

 The PAM algorithm (cont)

 Remarks:

• Experimental results show the PAM works satisfactorily with small data 

sets.

• Its computational complexity per iteration is O(m(N-m)2). Unsuitable for 

large data sets.
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 Hard Clustering Algorithms - k-Medoids Algorithms (cont)

 The CLARA algorithm

• It is more suitable for large data sets.

• The strategy:

 Draw randomly a sample X΄ of size N΄ from the entire data set.

 Run the PAM algorithm to determine  Θ΄ that best represents X΄.

 Use Θ΄ in the place of Θ to represent the entire data set X.

• The rationale:

 Assuming that X´ has been selected in a way representative of the 
statistical distribution of the data points in X, Θ΄ will be a good 
approximation of Θ, which would have been produced if PAM were 
run on X. 

• The algorithm:

 Draw s sample subsets of size N΄ from X, denoted by X΄1,…,X΄s

(typically s = 5, N΄ = 40+2m).

 Run PAM on each one of them and identify Θ΄1,…,Θ΄s.

 Choose the set Θ΄j that minimizes

based on the entire data set X.
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 Hard Clustering Algorithms - k-Medoids Algorithms (cont)

 The CLARANS algorithm

• It is more suitable for large data sets.

• It follows the philosophy of PAM with the difference that only a fraction q(<m(N-m)) of the 

neighbors of the current set of medoids is considered.

• It performs several runs (s) starting from different initial conditions for Θ.

• The algorithm:

 For i=1 to s

o Initialize randomly Θ.

o (A) Select randomly q neighbors of Θ.

o For j=1 to q

* If the present neighbor of Θ is better than Θ (in terms of J(Θ,U))   

then

-- Set Θ equal to its neighbor

-- Go to (A)

* End If

o End For

o Set Θi=Θ

 End For 

 Select the best Θi with respect to J(Θ,U). 

 Based on this set of medoids assign each vector xX-Θ to 

the cluster whose representative is closest to x.
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Hard Clustering Algorithms - k-Medoids Algorithms (cont)

The CLARANS algorithm (cont)

Remarks:

• CLARANS depends on q and s. Typically, s=2 and 

q=max(0.125m(N-m), 250)

• As q approaches m(N-m) CLARANS approaches PAM and the complexity 

increases.

• CLARANS can also be described in terms of graph theory concepts.

• CLARANS unravels better quality clusters than CLARA.

• In some cases, CLARA is significantly faster than CLARANS.

• CLARANS retains its quadratic computational nature and thus it is not 

appropriate for very large data sets.
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