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 Basic Concepts

In clustering or unsupervised learning no training data, with class 

labeling, are available. The goal becomes: Group the data into a 

number of sensible clusters (groups). This unravels similarities and 

differences among the available data.

 Applications:

• Engineering

• Bioinformatics

• Social Sciences

• Medicine

• Data Mining and Web Mining

 To perform clustering of a data set, a clustering criterion must first 

be adopted.  Different clustering criteria lead, in general, to 

different clusters.

4
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 A simple example

5

blue shark, 

sheep, cat,

dog

lizard, sparrow, 

viper, seagull, gold 

fish, frog, red mullet

1. Two clusters

2. Clustering 

criterion:

How animals bear

their progeny

gold fish, red 

mullet, blue 

shark

sheep, sparrow, 

dog, cat, seagull, 

lizard, frog, viper

1. Two clusters

2. Clustering criterion:

Existence of lungs
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 Clustering task stages

 Feature Selection: Information rich features-Parsimony

 Proximity Measure:  This quantifies the term similar or 
dissimilar.

 Clustering Criterion:  This consists of a cost function or 
some type of rules.

 Clustering Algorithm:  This consists of the set of  steps
followed to reveal the structure, based on the similarity 
measure and the adopted criterion.

 Validation of the results.

 Interpretation of the results.

6
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 Depending on the similarity measure, the clustering criterion 

and the clustering algorithm different clusters may result.  

 Subjectivity is a reality to live with from now on.

 A simple example:  How many clusters??

7

2 or 4 ??
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 Basic application areas for clustering 

 Data reduction. 

All data vectors within a cluster are substituted (represented) 

by the corresponding cluster representative.

 Hypothesis generation.

 Hypothesis testing.

 Prediction based on groups.

8
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 Clustering Definitions

 Hard Clustering: Each point belongs to a single cluster

• Let 

• An m-clustering R of X, is defined as the partition of 

X into m sets (clusters), C1, C2,…,Cm, so that

In addition, data in Ci are more similar to each other and 

less similar to the data in the rest of the clusters.  

Quantifying the terms similar-dissimilar depends on the types 

of clusters that are expected to underlie the structure of X.
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 Fuzzy clustering:  Each point belongs to all clusters up to 
some degree.

A fuzzy clustering of X into m clusters is characterized by m
functions
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.cluster   to of membership of gradehigh 1   toclose )( jxxu iij 

 .membership of grade low0   toclose )( ij xu

mjxu ij ,...,2,1  ),( 

These are known as membership functions.  

Thus, each xi belongs to any cluster “up to some degree”, 
depending on the value of
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TYPES OF FEATURES

 With respect to their domain

 Continuous (the domain is a continuous subset of ).

 Discrete (the domain is a finite discrete set).

• Binary or dichotomous (the domain consists of two possible values).

 With respect to the relative significance of the values they take

 Nominal (the values code states, e.g., the sex of an individual).

 Ordinal (the values are meaningfully ordered, e.g., the rating of the services 

of a hotel (poor, good, very good, excellent)).

 Interval-scaled (the difference of two values is meaningful but their ratio is 

meaningless, e.g., temperature).

 Ratio-scaled (the ratio of two values is meaningful, e.g., weight).

12

CLUSTERING   � Clustering Definitions  �� Types of Features



³﹍©0 ¿i1°mb1?

¾]°? ·m³[ č·Ã1C «Â½1﹀﹞



بازشناسی الگو
P
re
p
a
re
d
 b
y
 K
a
z
im

 F
o
u
la
d
i  
 |
  
 F
a
ll 
2
0
1
8
  
| 
  
2
n
d
E
d
it
io
n

14

¿﹊Ã\c± ¾1½`1Â︺﹞
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Dissimilarity Measure (Distance)
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Similarity Measure
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Between Vectors
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Between Sets
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Between a Vector and a Set



PROXIMITY MEASURES

 Between vectors

Dissimilarity measure (between vectors of X) is a 
function

with the following properties

•

•

•

:d X X 

15
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If in addition

•

•

(triangular inequality)

d is called a metric dissimilarity measure.
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Similarity measure (between vectors of X) is a function

with the following properties

•

•

•

17
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CLUSTERING   � Clustering Definitions  �� Proximity measures



If in addition

•

•

s is called a metric similarity measure.

18
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 Between sets

Let Di  X, i = 1, … , k and U = {D1,…,Dk}                          

A proximity measure  on U is a function

A dissimilarity measure has to satisfy the relations of dissimilarity 

measure between vectors, where Di
’s are used in place of x, y

(similarly for similarity measures).

19

:U U  �
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PROXIMITY MEASURES BETWEEN VECTORS

 Real-valued vectors

 Dissimilarity measures (DMs)

• Weighted lp metric DMs

Interesting instances are obtained for

– p = 1 (weighted Manhattan norm)

– p = 2 (weighted Euclidean norm)

– p = ∞ (d(x,y) = max1il wi |xi  yi| )


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• Other measures

–

where bj and aj are the maximum and the minimum values 

of the j-th feature, among the vectors of X

(dependence on the current data set)

–
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 Similarity measures

• Inner product

• Tanimoto measure

•
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 Discrete-valued vectors

 Let F = {0, 1, …, k1} be a set of symbols and X = {x1,…,xN}  Fl

 Let A(x,y) = [aij], i, j = 0,1,…, k1, where aij is the number of places 

where x has the i-th symbol and y has the j-th symbol.

NOTE:

Several proximity measures can be expressed as combinations of the elements 

of A(x,y).

 Dissimilarity measures:

• The Hamming distance (number of places where x and y differ)

• The l1 distance
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 Similarity measures:

• Tanimoto measure :

where

• Measures that exclude a00:

• Measures that include a00: 
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 Mixed-valued vectors

Some of the coordinates of the vectors x are real and the rest are discrete.

Methods for measuring the proximity between two such xi and xj:

 Adopt a proximity measure (PM) suitable for real-valued vectors.

 Convert the real-valued features to discrete ones and employ a discrete PM.

The more general case of mixed-valued vectors:

 Here nominal, ordinal, interval-scaled, ratio-scaled features are treated 

separately.

25
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The similarity function between xi and xj is:

In the above definition:

• wq = 0, if at least one of the q-th coordinates of xi and xj are undefined 

or both the q-th coordinates are equal to 0. Otherwise wq = 1.

• If the q-th coordinates are binary, sq(xi,xj) =1 if xiq=xjq=1 and 0 

otherwise.

• If the q-th coordinates are nominal or ordinal, sq(xi,xj) =1 if xiq=xjq and 

0 otherwise.

• If the q-th coordinates are interval or ratio scaled-valued

where rq is the interval where the q-th coordinates of the vectors of the 

data set X lie.
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 Fuzzy measures

Let x, y[0,1]l. Here the value of the i-th coordinate, xi, of x, is not the 

outcome of a measuring device.

 The closer the coordinate xi is to 1 (0), the more likely the vector x

possesses (does not possess) the i-th characteristic.

 As xi approaches 0.5, the certainty about the possession or not of 

the i-th feature from x decreases.

A possible similarity measure that can quantify the above is:

Then
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 Missing data

For some vectors of the data set X, some features values are unknown

Ways to face the problem:

 Discard all vectors with missing values 
(not recommended for small data sets)

 Find the mean value mi of the available i-th feature values over that data set 
and substitute the missing i-th feature values with mi.

 Define bi = 0, if both the i-th features xi, yi are available and 1 otherwise. 
Then 

where (xi ,yi) denotes the PM between two scalars xi , yi.

 Find the average proximities avg(i) between all feature vectors in X along 
all components. Then

where (xi,yi) = (xi,yi), if both xi and yi are available and avg(i) otherwise.


 




0:
1

),(),(

i
biall

iil

i i

yx
bl

l
yx 





l

i

ii
yxyx

1

),(),( 

28

CLUSTERING   � Clustering Definitions  �� Proximity measures



PROXIMITY FUNCTIONS BETWEEN A VECTOR AND A SET

 Let X ={x1, x2, …, xN} and C  X, x  X

 All points of C contribute to the definition of (x, C)

 Max proximity function

 Min proximity function

 Average proximity function

),(max),(max yxCx Cy

ps  

),(min),(
min

yxCx Cy

ps  
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 A representative(s) of C, rC , contributes to the definition of (x,C)

In this case: (x,C)=(x,rC)

Typical representatives are:

 The mean vector:

 The mean center:

 The median center:

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are useful in certain 
applications (e.g., object identification using clustering techniques).
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where nC is the cardinality of C

d : a dissimilarity 

measure
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PROXIMITY FUNCTIONS BETWEEN SETS

 Let X ={x1,…,xN}, Di, Dj X and ni = |Di|, nj = |Dj|

 All points of each set contribute to (Di,Dj)

 Max proximity function (measure but not metric, only if  is a 

similarity measure)

 Min proximity function (measure but not metric, only if  is a 

dissimilarity measure)

 Average proximity function (not a measure, even if  is a measure)
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 Each set Di is represented by its representative vector mi

 Mean proximity function 

(it is a measure provided that  is a measure):



NOTE: Proximity functions between a vector x and a set C may be derived 

from the above functions if we set Di ={x}.
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 Remarks:

• Different choices of proximity functions between sets may lead to 

totally different clustering results.

• Different proximity measures between vectors in the same proximity 

function between sets may lead to totally different clustering results.

• The only way to achieve a proper clustering is 

 by trial and error and,

 taking into account the opinion of an expert in the field of application.

33
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