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COMBINING CLASSIFIERS

% Combining Classifiers

The basic philosophy behind the combination of different classifiers
lies in the fact that even the “best” classifier fails in some patterns that
other classifiers may classify correctly. Combining classifiers aims at
exploiting this complementary information residing in the various
classifiers.

Thus, one designs different optimal classifiers and then combines the
results with a specific rule.
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FIGURE 4.29

L classifiers are combined in order to provide the final decision for an input pattern. The individual
classifiers may operate in the same or in different feature spaces.



COMBINING CLASSIFIERS

» Assume that each of the, say, L designed classifiers provides at its
output the posterior probabilities:

P |x),i=12 .. M

* Product Rule: Assign X to the class @:

L
[ = argmaxHPj(a)k | x)
k Jj=1
where P] (a)k | z) is the respective posterior probability of the j*
classifier.

* Sum Rule: Assign x to the class @);:

L
i=argmaXZPj(a)k | x)
k

J=1



COMBINING CLASSIFIERS

* Majority Voting Rule: Assign X to the class for which there is a
consensus or when at least ¢ of the classifiers agree on the class
label of X where:

V

L
—+1, L even
2

LAl ) odd
>

N

otherwise the decision is rejection, that is no decision is taken.

Thus, correct decision is made if the majority of the classifiers
agree on the correct label, and wrong decision if the majority
agrees in the wrong label.



COMBINING CLASSIFIERS

» Dependent or non-Dependent classifiers?

 Although there are not general theoretical results, experimental
evidence has shown that the more independent in their decision
the classifiers are, the higher the expectation should be for
obtaining improved results after combination.

* However, there is no guarantee that combining classifiers
results in better performance compared to the “best” one
among the classifiers.



COMBINING CLASSIFIERS

» Towards Independence: A number of Scenarios.

* Train the individual classifiers using different training data
points.

10 this end, choose among a number of possibilities:

— Bootstrapping: This is a popular technique to combine unstable
classifiers such as decision trees.
(Bagging belongs to this category of combination.)

— Stacking: Train the combiner with data points that have been
excluded from the set used to train the individual classifiers.

— Use different subspaces to train individual classifiers:
According to the method, each individual classifier operates in
a different feature subspace. That is, use different features for
each classifier.



COMBINING CLASSIFIERS

* The majority voting and the summation schemes rank among
the most popular combination schemes.

 Training individual classifiers in different subspaces seems to
lead to substantially better improvements compared to
classifiers operating in the same subspace.

 Besides the above three rules (product, sum, majority),
other alternatives are also possible, such as to use
the median value of the outputs of individual classifiers.







AR

eaaadlal Susal

ENSEMBLE LEARNING

Prepared by Kazim Fouladi | Fall2018 | 2"d Edition

P

sha!l i) 5ol (slasaly

D

¢

Original
Training data

U <

[N

‘U‘.wd‘.%:l‘

Gllaia slasals 2

!
!

JLA;!‘
(sLAodIsS(s_\:s:sG:s.la
PR LR

<4

O
@)
N

R

—

!
!

O &

Q)

—

=

S 5
Lhémcsd.uﬁda



Y

Laou3iS sulsdials (S 3

ol oS 55 el 53

FIXED COMBINATION RULES
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Rule Fusion function f(-)

Sum yi= ISE, dy

Weighted sum | y; = X jw;dji,wj = 0,2 ;wj =

Median vi = median;dj;

Minimum Vi = min;dj

Maximum Vi = max; dji

Product vi = [1;d;i : e

C, |G G

dq 0.2 |1 0.5 0.3
d> 0.0 | 0.6 0.4
d3 04|04 0.2
Sum 0.2 | 0.5 0.3
Median 0.2 | 0.5 0.3
Minimum | 0.0 | 0.4 0.2
Maximum | 0.4 | 0.6 0.4
Product 0.0 | 0.12 | 0.024
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WHY DOES IT WORK?

* Suppose there are 25 base classifiers
» Each classifier has error rate, € = 0.35
» Assume classifiers are independent
* Probability that the ensemble classifier makes a wrong prediction:

f (23 i 25-i _
: E lEd=€)""=0.06
% i=13\_ 1
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Fasola s om sl )

P(c|x)= Y P(C|x,M)P(M,)

J
all models ‘M f

fasols can sl Jites Lad) S

Var(y):Var(Zj:%dj) —Var(Zdj L1 varla )= %Var(dj)
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K classes; L problems

Code matrix W codes classes in terms of learners

One per class

L=K
Pairwise
L=K(K-1)/2

+1 -1 -1 -1

W = -1 +1 -1 -1
-1 -1 +1 -1
1 -1 -1 +1]
+1 +1[ +1/ 0 O O]
-1

W - O, 0 | +1 +1 O
O -1 0 -1 0 +1
0 0 -1 0 -1 -1
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ERROR-CORRECTING OUTPUT CODES

Full code

L=200-1 —1 -1 -1 -1 -1 -1 -1]
-1 -1 -1 +1 +1 +1 +1
-1 +1 +1 -1 -1 +1 +1

+1 -1 +1 -1 +1 -1 +1

With reasonable L, find W such that

| Fall2018 | 2nd Edition

Voting scheme
L
yi=2wd,
j=1

Subproblems may be more difficult than one-per-K
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the Hamming distance between rows and columns are maximized.
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Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round3) | (4) [ ()] & [ 10 @ 5 [(4)| 6 | 3 @:
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ADABOOST ALGORITHM

D= initial dataset with equal weights
FORi=1to kDO

Learn new classifier C;.

Compute o, (classifier’s importance);

Update example weights;

Create new training set D, , (using weighted sampling)
END FOR

Construct Ensemble which uses C; weighted by o, (i = 1, k)
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ADABOOST ALGORITHM

Base classifiers: C,, C,, ..., C;

Error rate (weights add up to 1):

@
R ) ®
Si—ﬁzwj Cx)#y;)
5 J=1 4
: £
z * Importance of a classifier:
1 (1-¢,
o, =—In l
2 €

4
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ADABOOST ALGORITHM

. : . : 0. .
Weight update: (4D) Wi(J) e oif Cj ( xi) =y,
w, =t

= Z, |e” ifCi(x)#y,

J

/ where Z is the normalization factor
/
Gl (8 s 0l @) e 53 OO ol

5 (9Sie Sose LentiSuinail cuaal b ceulite Gl i)

. i3S w5 960+ 51 YL llad 753 Slee slasss 3 S 58 S
S s DS casae sl s Jlgs g Sa S e 1/M G ag s
é (ol 83l de same S (515 J 500k uidins cuaal @) (guisdisks
T
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L y j=1
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ADABOOST ALGORITHM
Initial weights for each data point Data points
A for training
~ ~ /
0.1 0.1 0.1
Original
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|
[}
B2
Boosting 0.3037 0.0009 : 0.0422
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- [}
B3
o 0.0276 0.1819 0.0038 |
2 Boosting :
z Round3 _+++ ++++ + ++, > o =23.8744
- ]
g [}
a Overall + + + == == = ++

P



Yy

La0u3iS galsdials (usS 3

ASM Q&JJ—\‘JT{&:&\)&‘ :«&...C\_u\g..n) JJSLSJ)

ADABOOST ALGORITHM
Training:
. ) ‘]\r F) . P . ) o AT
For all {z*.7'};L, € X, initialize p{ = 1/N
For all base-learners 7=1,....L
Randomly draw &; from & with probabilities 'p;.
Train d; using X}
For each (z* r?), calculate y; —dj(z?")
Calculate error rate: ¢; — th; S1(yh # )
If €, > 1/2, then L «— j —1; stop
s Bj — €/(1—€j)
g, For each (z*,7'), decrease probabilities if correct
2 If y; = 7" piyy — Bip; Else pjyy —pj
% Normalize probabilities:
- Zj = Pouyi Py — P /Z;
3 Testing:
5 Given z, calculate d;(z).j=1,...,L
z Calculate class outputs, i =1, ..., K:
5 L 1 :
8 Yi = ijl (log E) dji(x)
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¢ The Boosting Approach

» The origins: Is it possible a weak learning algorithm (one that
performs slightly better than a random guessing) to be boosted into
a strong algorithm? (Villiant 1984).

» The procedure to achieve it:

» Adopt a weak classifier known as the base classifier.

« Employing the base classifier, design a series of classifiers, in a
hierarchical fashion, each time employing a different weighting
of the training samples. Emphasis in the weighting is given on
the hardest samples, i.e., the ones that keep “failing”.

« Combine the hierarchically designed classifiers by a weighted

average procedure. “
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» The AdaBoost Algorithm.

Construct an optimally designed classifier of the form:

f(x) =sign{F(x)}
F(x)= Z a,9(x; 8, )

where:

where w(x 1% )denotes the base classifier
that returns a blnary class label:

(P(EQ Y, )E {_ 1, 1}

¢} is a parameter vector.

35
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* The essence of the method.
Design the series of classifiers:

o(x:9,), p(x;8,), ... p(x;8,)

The parameter vectors
9,.,k=12 .. K

are optimally computed so as:
— To minimize the error rate on the training set.

— Each time, the training samples are re-weighted so that the weight
of each sample depends on its history. Hard samples that “insist”
on failing to be predicted correctly, by the previously designed
classifiers, are more heavily weighted.

36
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 Updating the weights for each sample x;,i=1, 2, .., N

D wy' exp(— yiam(”(li;ﬁm ))
i Z

— Z,1s a normalizing factor common for all samples.

1-P,
=—In
2 P

m

where P, < 0.5 (by assumption) 1s the error rate of the
optimal classifier ¢(x;,) at stage m. Thus a,> 0.

— The term: eXP(— yiamqﬂ(zi;ﬁm ))
takes a large value if y.¢(x.;89 )<0 (wrong classification)
and a small value in the case of correct classification

yolx;:8,)> 0}

— The update equation is of a multiplicative nature. That is,
successive large values of weights (hard samples) result in
larger weight for the next iteration

37
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The AdaBoost Algorithm
m Initialize: w§’ = & i=1,2...,N

m Initialize: m = 1

m Repeat
e Compute optimum @,, in ¢(-; 8,,,) by minimizing P,,,; (4.135)

e Compute the optimum P,,;(4.135)

p— » ]
l ]?"

= 1
L] Qf,” e E lll 10,"

o Zyy = 0.0

e Fori=1toN

5wk ly oo () A —
©w; = w; t‘Xp( Vic (X, am))

- - +1
© Ly =42Zyt "'f-'m ;
e End{For}

e Fori=1toN

(m+1) _ _ (m+1),-
i = wy /Zm

e End {For}

O u

e K =m
e m=m+1

m Until a termination criterion is met.

mf()= sign(zlf:] apd(-,0p))

38
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» Remarks:

» Boosting Approach PP The Boosting Approach

* Training error rate tends to zero after a few iterations. The test

error levels to some value.

» AdaBoost is greedy in reducing the margin that samples leave
from the decision surface.

0.45

Number of base classifiers
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Pattern Recognition

2nd Edition

antinos

S. Theodoridis, K. Koutroumbas,
Pattern Recognition,
Fourth Edition, Academic Press, 2009.
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Nonlinear Classifiers

4.1 INTRODUCTION

In the previous chapter we dealt with the design of linear classifiers described by
linear discriminant functions (hyperplanes) g{x). In the simple two-class case, we
saw that the perceptron algorithm computes the weights of the linear function gix),
provided that the classes are linearly separable. For nonlinearly separable classes,
linear classifiers were optimally designed, for example, by minimizing the squared
error. In this chapter we will deal with problems that are not linearly separable
and for which the design of a linear classifier, even in an optimal way, does not lead
to satisfactory performance. The design of nonlinear classifiers emerges now as an
inescapable necessity.

4.2 THE XOR PROBLEM

To seek nonlinearly separable problems one does not need to go into complicated
situations. The wellknown Exdusive OR (XOE) Boolean function is a typical exam-
ple of such a problem. Boolean functions can be interpreted as classification tasks
Indeed, depending on the values of the input binary data x = [xy. %2, ..., 2], the
output is either 0 or 1, and x is classified into one of the two classes A(1) or B(0)
The corresponding truth table for the XOR operation is shown inTable 4.1.

Figure 4.1 shows the position of the classes in space. It is apparent from this
figure that no single straight line exists that separates the two classes. In contrast,
the other two Boolean functions, AND and OR, are linearly separable. The corres-
ponding truth tables for the AND and OR operations are given in Table 4.2 and the
respective class positions in the two-dimensional space are shown in Figure 4.2a
and 4.2b. Figure 4.3 shows a perceptron, introduced in the previous chapter, with
synaptic weights computed so as to realize an OR gate (verify).

Our major concern now is first to tackle the XOR problem and then to extend
the procedure to more general cases of nonlinearly separable classes. Our kickoff
point will be peometry.
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R.O. Duda, P.E. Hart, and D.G. Stork,
Pattern Classification,
Second Edition, John Wiley & Sons, Inc., 2001.
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ALGORITHM-INDEPENDENT
MACHINE LEARNING

9.1 INTRODUCTION

Tn the previous chapters we have seen many leaming algorithms and techniques for
pattern ition. Wh ing such arange of i has won-
dered at one time or another which one is “best.” Of course, some algorithms may
be preferred because of their lower computational complexity; others may be pre-
ferred because they take into account some prior knowledge of the form of the data
(e.g., discrete, continuous, unordered list, string, ...). Nevertheless, there are clas-
sification problems for which such issues are of little or no concern, or we wish
to compare algorithms that are equivalent in regard to them. In these cases we are
left with the question, Are there any reasons to favor onc algorithm over another?
For instance, given two classifiers that perform equally well on the training set, it
is frequently asserted that the simpler classifier can be expected to perform berer
OCCAM'S KAZOR — on & test set. But is this version of Occam s razor really so evidem? Likewise, we
frequently prefer or impose smoothness on a classifier’s decision funetions. Do sim-
pler or “smoother™ classifiers generalize better, and, if so, why? In this chapter we
ddress these and related i ing the i i ical un-
derpinnings of statistical pattern classification. Now that the reader has intuition and
experience with individval algorithms, these issues in the theory of learning may be
better understood.

In some fields there are strict conservation laws and constraint laws—such as.
the conservation of energy, charge, and momentum in physics, as well as the second
law of thermodynamics, which states that the entropy of an isolated system can never
decrease. These hold regardless of the number and configuration of the forces at play.
Given the usefulness of such laws, we naturally ask, Are there analogous results in
pattern recognition, ones that do not depend upon the particular choice of classifier
or leaming method? Are there any fundamental resuhs that hold regardless of the
cleverness of the designer, the number and distribution of the patterns, and the nature
of the classification task?

Of course it is very valuable to know that there exists a constraint on classifier
accuracy, the Bayes error rate, and it is sometimes useful to compare performance
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15.1

Combining Multiple Learners

We discussed many different learning algorithms in the previous
chapters. Though these are generally successful, no one single al-
gorithm is always the most accurate. Now, we are going to discuss
models composed of multiple learners that complement each other
50 that by combining them, we attain higher accuracy.

Rationale

IN ANY APPLICATION, we can use one of several learning algorithms,
and with certain algorithms, there are hyperparameters that affect the
final learner. For example, in a classification setting, we can use a para-
metric classifier or a multilayer perceptron, and for example, with a mul-
tilayer perceptron, we should also decide on the number of hidden units.
The No Free Lunch Theorem states that there is no single learning algo-
rithm that in any domain always induces the most accurate learner. The
usual approach is to try many and cheose the one that performs the best
on a separate validation set, as we discussed in chapter 14.

Each learning algorithm dictates a certain model that comes with a set
of assumptions. This inductive bias leads to error if the assumptions do
not hold for the data. Learning is an ill-posed problem and with finite
data, each algorithm converges to a different solution and fails under dif-
ferent circumstances. The performance of a learner may be fine-tuned to
get the highest possible accuracy on a validation set, but this fine-tuning
is a complex task and still there are instances on which even the best
learner is not accurate enough. The idea is that there may be another
learner that is accurate on these. By suitably combining multiple learners
then, accuracy can be improved. Recently with computation and mem-
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chapter appendices. Some of the proofs and derivations were dropped altogether, for
example, the theory behind the magic of AdaBoost. Plenty of literature sources can
be consulted for the proofs and derivations left out.

The differences between the two editions reflect the fact that the classifier ensemble
research has made a giant leap; some methods and technigues discussed in the first
edition did not withstand the test of time, others were replaced with modern versions.
The dramatic expansion of some sub-areas forced me, unfortunately. to drop topics
such as cluster ensembles and stay away from topics such as classifier ensembles for:
adaptive (on-line) learning, learning in the presence of concept drift, semi-supervised
learning, active learning, handing imbalanced classes and missing values. Each of
these sub-areas will likely see a bespoke monograph in a not so distant future. I look
forward to that.




