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 In general, feature generation is a problem-dependent task. 

However, there are a few general directions common in a 

number of applications. We focus on three such alternatives.

 LDA

 PCA

 ICA
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Linear Discriminant Analysis (LDA)

 Optimized features based on Scatter matrices 
(Fisher’s linear discrimination). 

• The goal: Given an original set of m measurements

, compute , by the linear transformation, A,

so that the J3 scattering matrix criterion involving Sw, Sb is
maximized. AT is an matrix.
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• The basic steps in the proof:

– J3 = trace(Sw
-1 Sm)

– Syw = ATSxwA, Syb = ATSxbA,

– J3(A) = trace{(ATSxwA)-1 (ATSxbA)}

– Compute A so that J3(A) is maximum.

• The solution:

– Let B be the matrix that diagonalizes simultaneously

matrices Syw, Syb , i.e:

BTSywB = I , BTSybB = D

where B, is a ℓ ℓ matrix and D, a ℓ ℓ diagonal matrix.
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– Let C = AB an m ℓ matrix. If A maximizes J3(A) then

The above is an eigenvalue-eigenvector problem. For an 

M-class problem,             is of rank M 1.

 If ℓ = M  1, choose C to consist of the M  1 

eigenvectors, corresponding to the non-zero eigenvalues.

The above guarantees maximum J3 value.

In this case: J3,x = J3,y .

 For a two-class problem, this results to the well known 

Fisher’s linear discriminant

For Gaussian classes, this is the optimal Bayesian 

classifier, with a difference of a threshold value .
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 If ℓ < M  1, choose the ℓ eigenvectors corresponding to 

the ℓ largest eigenvectors.

 In this case, J3,y < J3,x , that is there is loss of information.

– Geometric interpretation. The vector      is the projection

of      onto the subspace spanned by the eigenvectors

of           .
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Principal Components Analysis (PCA)

(The Karhunen – Loève transform):

 The goal: Given an original set of m measurements

compute

for an orthogonal A, so that the elements of      are optimally 

mutually uncorrelated.

That is

 Sketch of the proof:
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• If A is chosen so that its columns     are the orthogonal 

eigenvectors of Rx, then

where Λ is diagonal with elements the respective 

eigenvalues λi .

• Observe that this is a sufficient condition but not 

necessary. It imposes a specific orthogonal structure on A.

 Properties of the solution

• Mean Square Error approximation.

Due to the orthogonality of A:
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 Define

 The Karhunen-Loève transform minimizes the 

square error:

 The error is:

It can be also shown that this is the minimum mean 

square error compared to any other representation of x

by an ℓ-dimensional vector.
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 In other words,    is the projection of     into the 

subspace spanned by the principal ℓ eigenvectors. 

However, for Pattern Recognition this is not the 

always the best solution.
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• Total variance: It is easily seen that

Thus Karhunen-Loève transform makes the total 

variance maximum.

• Assuming     to be a zero mean multivariate Gaussian,

then the K-L transform maximizes the entropy:

of the resulting process.
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 Subspace Classification. Following the idea of projecting in a 

subspace, the subspace classification classifies an unknown     to 

the class whose subspace is closer to .

The following steps are in order:

• For each class, estimate the autocorrelation matrix Ri, and 

compute the m largest eigenvalues. Form Ai, by using 

respective eigenvectors as columns.

• Classify    to the class ωi, for which the norm of the subspace 

projection is maximum

According to Pythagoras theorem, this corresponds to the 

subspace to which     is closer.
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 Independent Component Analysis (ICA)

In contrast to PCA, where the goal was to produce uncorrelated

features, the goal in ICA is to produce statistically independent

features. This is a much stronger requirement, involving higher to 

second order statistics. In this way, one may overcome the 

problems of PCA, as exposed before.

The goal: Given , compute

so that the components of     are statistically independent. 
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In order the problem to have a solution, the following 

assumptions must be valid:

• Assume that     is indeed generated by a linear combination

of independent components

Φ is known as the mixing matrix and 

W as the demixing matrix.

• Φ must be invertible or of full column rank.

• Identifiability condition: All independent components, y(i),

must be non-Gaussian. Thus, in contrast to PCA that can 

always be performed, ICA is meaningful for non-Gaussian

variables. 

• Under the above assumptions, y(i)’s can be uniquely 

estimated, within a scalar factor.
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Common’s method: Given   , and under the previously 
stated assumptions, the following steps are adopted:

• Step 1: Perform PCA on :

• Step 2: Compute a unitary matrix,   , so that the fourth order 
cross-cummulants of the transform vector

are zero. This is equivalent to searching for an     that makes 
the squares of the auto-cummulants maximum,

where, is the 4th order auto-cumulant.
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• Step 3:

A hierarchy of components: which ℓ to use? 

In PCA one chooses the principal ones. 

In ICA one can choose the ones with the least resemblance 

to the Gaussian pdf. 
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Example:
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The principal component is     , thus according to PCA one chooses as y the 
projection of     into      . According to ICA, one chooses as y the projection 
on     . This is the least Gaussian. Indeed:

4(y1) =  -1.7

4(y2) =   0.1

Observe that across      , the statistics is bimodal. That is, no resemblance to 
Gaussian.
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Suppose a satellite takes a picture,

and wants to send it to earth. 

The picture may contain 1000 by 1000 “pixels” 

(little squares each with a definite color.)

We can code the colors,

in a range between black and white,

and send back 1,000,000 numbers

An Application of the SVD in Image Processing



It is better to find the essential information in the 1000 by 1000 

matrix, and send only that.

Suppose we know the SVD.

The key is in the singular values.

Typically, some are significant and others are extremely small.

If we keep 60 and throw away 940, then we send only the

corresponding 60 columns of U, and V.

The other 940 columns are multiplied by small singular values

that are being ignored. In fact, we can do the matrix

multiplication as columns times rows:

If only 60 terms are kept, we send 60  2000 numbers instead of a million.

An Application of the SVD in Image Processing



The SVD of a 32-times-32 digital image A is computed:

An Application of the SVD in Image Processing



An Application of the SVD in Image Processing





Theorem: The nonzero singular values of A are the square roots of the nonzero eigenvalues of A*A or AA*. 

(These matrices have the same nonzero eigenvalues)





















Trefethen (Textbook author):

 The SVD was discovered independently by 

Beltrami(1873) and Jordan(1874) and again by 

Sylvester(1889).

 The SVD did not become widely known in applied 

mathematics until the late 1960s, when Golub and 

others showed that it could be computed effectively.

Cleve Moler (invented MATLAB, co-founded MathWorks):

Gene Golub has done more than anyone to make the singular value decomposition one 

of the most powerful and widely used tools in modern matrix computation.

In later years he drove a car with the license plate:
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