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OPTIMAL FEATURE GENERATION

* In general, feature generation is a problem-dependent task.
However, there are a few general directions common in a
number of applications. We focus on three such alternatives.

» LDA
» PCA
> ICA






OPTIMAL FEATURE GENERATION P Linear Discriminant Analysis (LDA)

¢ Linear Discriminant Analysis (LDA)

» Optimized features based on Scatter matrices
(Fisher’s linear discrimination).

* The goal: Given an original set of m measurements
x€ R” compute y€ R’, by the linear transformation, A,

y=A"x

so that the J; scattering matrix criterion involving S, S, is
maximized. AT is an /X m matrix.



OPTIMAL FEATURE GENERATION P Linear Discriminant Analysis (LDA)

 The basic steps in the proof:
— J, =trace(S, ' S,)
o SyW - ATSXWA’ Syb - ATSXbA7
— J(A) = trace {(A”S,, A)1 (A7S,,A)}
— Compute A so that £(A) is maximum.

* The solution:

— Let B be the matrix that diagonalizes simultaneously

matrices S, Sy, 1.€:

B'S,,B=1,B'S,B=D
where B, 1s a £ X{ matrix and D, a £ X{ diagonal matrix.



OPTIMAL FEATURE GENERATION P Linear Discriminant Analysis (LDA)

— Let C= AB an m x{ matrix. If A maximizes J(A) then
(S..8,,)C=CD

The above 1s an eigenvalue-eigenvector problem. For an
M-class problem, S ;;be is of rank M—1.

» If {=M -1, choose C to consist of the M —1
eigenvectors, corresponding to the non-zero eigenvalues.
T
y=Cx
The above guarantees maximum J; value.
In this case: 4 , =/ .
= For a two-class problem, this results to the well known
Fisher’s linear discriminant

y=(4-#,)S " x

For Gaussian classes, this is the optimal Bayesian
classifier, with a difference of a threshold value .



OPTIMAL FEATURE GENERATION P Linear Discriminant Analysis (LDA)

= [f £/< M -1, choose the £ eigenvectors corresponding to
the ¢ largest eigenvectors.

" In this case, J; < J;, , that is there is loss of information.

— Geometric interpretation. The vector y 1s the projection
of X onto the subspace spanned by the eigenvectors
of 'S

xw™~ xb






OPTIMAL FEATURE GENERATION P Principal Components Analysis (PCA)

¢ Principal Components Analysis (PCA)
(The Karhunen — Lo¢ve transform):
» The goal: Given an original set of m measurements x € R"
compute y€ R’

for an orthogonal A, so that the elements of y are optimally
mutually uncorrelated.

That is
E[y@y()]=0,i#j
» Sketch of the proof:
T T T T
R, :E[XX ]zE[A XX A]zA R A.
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OPTIMAL FEATURE GENERATION P Principal Components Analysis (PCA)

* If A is chosen so that its columns g, are the orthogonal
eigenvectors of R, then

R = A'R A=A
where A is diagonal with elements the respective
eigenvalues A, .

» Observe that this is a sufficient condition but not
necessary. It imposes a specific orthogonal structure on A.

» Properties of the solution

* Mean Square Error approximation.
Due to the orthogonality of A:

x=Y y(ia, y(i)=a, x
i=0
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OPTIMAL FEATURE GENERATION P Principal Components Analysis (PCA)

— Define

— The Karhunen-Loéve transform minimizes the

squarc error:
2

Emz—i 2]=E 2 y(@a,

— The error 1s:

::i/li

It can be also shown that this is the minimum mean
square error compared to any other representation of x
by an /-dimensional vector.

2

Ellx- £
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OPTIMAL FEATURE GENERATION P Principal Components Analysis (PCA)

— In other words, X is the projection of X into the
subspace spanned by the principal £ eigenvectors.
However, for Pattern Recognition this is not the
always the best solution.



OPTIMAL FEATURE GENERATION P Principal Components Analysis (PCA)

 Total variance: It is easily seen that

y(z) [ (Z)}

Thus Karhunen-Loéve transform makes the total
variance maximum.

« Assuming ) to be a zero mean multivariate Gaussian,

then the K-L transform maximizes the entropy:
H, = —E[lnPX(X)].

of the resulting y process.
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OPTIMAL FEATURE GENERATION P Principal Components Analysis (PCA)

» Subspace Classification. Following the idea of projecting in a
subspace, the subspace classification classifies an unknown x to
the class whose subspace is closer to x.

The following steps are in order:

 For each class, estimate the autocorrelation matrix R;, and
compute the m largest eigenvalues. Form A;, by using
respective eigenvectors as columns.

* Classify x to the class @, for which the norm of the subspace
projection 1s maximum

A7 vie s

According to Pythagoras theorem, this corresponds to the

subspace to which x is closer.
15






OPTIMAL FEATURE GENERATION P Independent Component Analysis (ICA)

¢ Independent Component Analysis (ICA)

In contrast to PCA, where the goal was to produce uncorrelated
features, the goal in ICA 1s to produce statistically independent
features. This is a much stronger requirement, involving higher to
second order statistics. In this way, one may overcome the
problems of PCA, as exposed before.

> The goal: Given x, compute y€ R’

y=Wx

so that the components_of y are statistically independent.
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OPTIMAL FEATURE GENERATION P Independent Component Analysis (ICA)

In order the problem to have a solution, the following
assumptions must be valid:

» Assume that x is indeed generated by a linear combination

of independent components
x=Py

@ is known as the mixing matrix and
W as the demixing matrix.

* @ must be invertible or of full column rank.

* Identifiability condition: All independent components, y(i),
must be non-Gaussian. Thus, in contrast to PCA that can
always be performed, ICA is meaningful for non-Gaussian

variables.

» Under the above assumptions, y(i)’s can be uniquely
estimated, within a scalar factor.
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OPTIMAL FEATURE GENERATION P Independent Component Analysis (ICA)

» Common’s method: Given x, and under the previously
stated assumptions, the following steps are adopted:

 Step 1: Perform PCA on x:
y=A"x

« Step 2: Compute a unitary matrix, A, so that the fourth order
cross-cummulants of the transform vector

y= IZIT)’} unitary: A"A=AA" =1

are zero. This is equivalent to searching for an A that makes
the squares of the auto-cummulants maximum,

maxT(A) A (z)

where, &, (+) is the 4™ order auto-cumulant.
19



OPTIMAL FEATURE GENERATION P Independent Component Analysis (ICA)

Cummulants:

kK1(y(@®) = E[y(HD] =0
K20y () = E[y@Dy( ]
k3O YR = E[y@OyCHyR)]
and the fourth-order cumulants are given by
ki (Y@OY PRy () = E[y@Oy( PyRy ] — E[ y@Oy( DIE[ YRy (1]
— E[y@yRIE[ y( y(]
— E[y@yMIE[y(yR)]
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OPTIMAL FEATURE GENERATION P Independent Component Analysis (ICA)

e Step3: W = (A}l)l

» A hierarchy of components: which £ to use?
In PCA one chooses the principal ones.

In ICA one can choose the ones with the least resemblance
to the Gaussian pdf.

21



OPTIMAL FEATURE GENERATION P Independent Component Analysis (ICA)

®F

» Example:

10}

-10F B T KL TSP PPTTSRPPE YT SPRPPPRTE P PP RRTORE S PRRPPP 4

The principal component is &, thus according to PCA one chooses as y the
projection of x into &, . According to ICA, one chooses as y the projection
on ¢,. This is the least Gaussian. Indeed:

K, = -1.7

K ()= 0.1

Observe that across &, , the statistics is bimodal. That 1s, no resemblance to
Gaussian.
22






Singular Value Decomposition

4 A 1S mxn N
A = (orthogonal) (diagonal) (orthogonal)
A=UxXV"

\_ Y,
/_x x x x x| [ | _0'1 | \
X X X X X R i i

X X X x X o,

X X X x x|= U yr

X X X X X

X X X X X i 1
Q x x x x| | 1L | J

T _ T T T
[ A=U3V" = A=cuyv, +o,u,v, +---+ouyv. J




An Application of the SVD in Image Processing

Suppose a satellite takes a picture,

and wants to send it to earth.

The picture may contain 1000 by 1000 “pixels”
(little squares each with a definite color.)

We can code the colors,

in a range between black and white,

and send back 1,000,000 numbers




An Application of the SVD in Image Processing

It is better to find the essential information in the 1000 by 1000
matrix, and send only that.

Suppose we know the SVD.
The key is in the singular values.

Typically, some are significant and others are extremely small.

If we keep 60 and throw away 940, then we send only the
corresponding 60 columns of U, and V.

The other 940 columns are multiplied by small singular values

that are being ignored. In fact, we can do the matrix
multiplication as columns times rows:

_ T T T
A=ocuy, +o,u,v, +---+o,uy

rr-r

If only 60 terms are kept, we send 60 X 2000 numbers instead of a million.



An Application of the SVD in Image Processing

The SVD of a 32-times-32 digital image A is computed:

T
o,\uv

T
o,u,v,

T
O cUcVe




An Application of the SVD in Image Processing

E— T T ) T

S 5§ 5

A, A

[
| _--
-]

4




How to compute SVD (by hand)

(Eiqenvalue Decomposition

If Ais real n-by-n matrix, then

N\

é) X =diag(A,,2,, ﬂ,)J

S=[S,,S,,---, S, ] eigenvectors

0'0=1

[IfA is symmetric A _ Q Z QT




How to compute SVD (by hand)

( )

A=UzV"

—> AA" =(UZVHVE'U")
A" =vE'u’
\_ \ /

J

| 4
\ [AAT:UZZTUT AA" is symmetric J

[A AZ(Vi UHUEVr )] \ﬁa(/l)\/m}

T it T
{A A=z { o(4) =AU 4) ]

A" A is symmetric J

Theorem: The nonzero singular values of A are the square roots of the nonzero eigenvalues of A*A or AA*.
(These matrices have the same nonzero eigenvalues)



How to compute SVD (by hand)

A=USVT |=—> A" =UsV"VE'U") —> 44" =USS'U”

o (A) = A(A" A)

AT =vz'U"
—> A A=0ZUHUZV") —> A"A=VZ"SV" o (A) =+/A(44")
ﬁxamgle: 11 ) -2 2 \
A=l1 11— weusa { } —>  daV-an=| 2_/1’=0
0 O ‘1’
1 1 L1l L1 o, = A,=4
u1=—1Av1=W15A|:} < Vlzﬁlavz | _q 60_2:0 @12_0
/715 220 vz 0
u, = 71? u,,u, orthonormal basis forNull(AAT) AATz{Z 2 0 = WLz u; =0
0 Range(A) Rank(A) 000 0 1
11 [ L oofR o], By
BT
_ |l | 2 |2
1 1= 5l 5 o0 O TOE
0 0| [[0/ 0 1[0 o¥2 |2




How to compute SVD (Algorithm)

T T

OV Vv
Mo oMo®
RV Vv

Matrix

TR T S S

Househojggr
transformations

Diagonal
- /

(/

X X

\\_ Bidiagonal /

~

>>[U,S,V] = svd(A)




Singular Value Decomposition

3 R

HoH = o= K =R
Il
L&
~
N

T 1
= ®2 R X = = =

2 oH ®H B ®H R =
®oM H X oM ® X
LSS T T S S TR < S

If Ais asquare matrix then “AH . )
c0,z20,2-20,20 o Y
~

If Aisa sql:are matrix then HAHi =512 +0'22 +---+O'f
L co,z20,2--20,20 y
/Examgle: )

[ % 1127 _ r [6 -81[3 o][8 617
A= e )=vm=[s Tello 1][s 2]

. =3 4], =10 y




Singular Value Decomposition

S T 1 )

a4

P
% R % % % % ox
TV VI
N oR oM N % %W
% R % % % %N
I
c

If Ais asquare symmetric matrix then the singular values of A are
the absolute values of the eigenvalues of A.

A=02 0" =Q[xsign() 0"

If Ais asquare matrix then

det(4)|=T1o,




SVD Eigenvalue Decomposition

A=UZV" A=8S% S
Uses two different Uses just one
bases U, V (eigenvectors)

Generally is not

Uses orthonormal bases
orthogonal

Not all matrices

(even square)
(only diagonalizable)

All matrices

(even rectangular)



Reduced SVD

Reduced SVD




Singular Value Decomposition

Example : Luke Olson\.illinois

svd_test.m
iguana.jpg

1= clear;
2
zl|l= I = im2double (imread('iguana.jpg')):
4
<= [U,5,V]=svd(I):
[
7 - J = zeros(size(I)):
8
2= figure(2):;clf:;
0 = imshow (I)
11
12 - figure(l):;clf;
13 - for j=1l:nnz(5)
14 - Itmp = 5(3,3)*U(:,3)*V(:,3).":
1l = J=J + Itmp;
16
17 |— figure(l):
18 - imshow (J)
19 — title(['using vector k = ' num2str(j) ', and \zigma = ' num2str(S(j,J))1):
20 — pause;
nil|= end
22




Singular Value Decomposition

ﬁeoﬂ (Singular Value Decomposition) SVD

If Ais real m-by-n matrix, then there exist orthogonal matrices

U=[u,u,, -,u,le R™" V=[v,v,,---,v,]Je R™"

A — UZVT Z:diag(O'I,"',O'p)

\where 0,20,2-20,20 p =min (m,n) /
{M ]

such that




Singular Value Decomposition

T
ﬁirst approximation to A is 4, =ouw, \

second approximation to A is A, = 51“1V1T +o-2u2v2T

_ T
Aﬂ =0o,UV, +quzv2 +- +Gﬂuﬂvﬂ

. T
\ A=ocuy +0,u,v, +--+ Grurvr/

4 )

Theroem: For any x with 0 < 1 < r, thematrix 4, also satisfies

HA AH g}f HA BH \/O'ﬂ+1+ +0o’

\ rank(B)<,u /




Singular Value Decomposition

4, B Womas, Axss

Trefethen (Textbook author): o
0 The SVD was discovered independently by B f“'?,?':“.‘i’:‘.&','f? i
Beltrami(1873) and Jordan(1874) and again by bt ety e ek ity s b e s et e

a.p el i

Sylvester(1889). h e e
O The SVD did not become widely known in applied - _
mathematics until the late 1960s, when Golub and o o et T e e o et o+ P

others showed that it could be computed effectively. il e

Cleve Moler (invented MATLAB, co-founded MathWorks):
Gene Golub has done more than anyone to make the singular value decomposition one
of the most powerful and widely used tools in modern matrix computation.

ERE rD?NiﬁMJ

PROF SVD

In later years he drove a car with the license plate:
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Chapter 6

P

Feature Generation |:
Data Transformation and
Dimensionality Reduction

6.1 INTRODUCTION

Feature generation is of paramount importance in any pattern recognition task.
Given a set of measurements, the goal is to discover compact and informative repre-
sentations of the obtained data. A similar process is also taking place in the human
perception apparatus. Our mental representation of the world is based on a rela-
tively small number of perceptually relevant features. These are generated after
processing a large amount of sensory data, such as the intensity and the color of the
pixels of the images sensed by our eyes,and the power spectra of the sound signals
sensed by our ears

The basic approach followed in this chapter is to transform a given set of measure-
ments to a new set of features. If the transform is suitably chosen, transform dom-
ain features can exhibit high information packing properties compared with the
original input samples. This means that most of the classification-related informa-
tion is “squeezed” in a relatively small number of features, leading to a reduction
of the necessary feature space dimension. Sometimes we refer to such processing
tasks as dimensionaffty reduction techniques.

The basic reasoning behind transform-based features is that an appropriately
chosen transform can exploit and remove information redundancies, which usu-
ally exist in the set of samples obtained by the measuring devices. Let us take
for example an image resulting from a measuring device, for example, X-rays or a
camera. The pixels (i.e., the input samples) at the various positions in the image
have a large degree of correlation, due to the internal morphological consistencies
of real-world images that distinguish them from noise. Thus, if one uses the pixels
as features, there will be a large degree of redundant information. Alternatively, if
one obtains the Fourier transform, for example, of a typical realworld image, it turns
out that most of the energy lies in the low-frequency components, due to the high
correlation between the pixels’ gray levels. Hence, using the Fourier coefficients as
features seems a reasonable choice, because the low-energy, high-frequency coef-
ficients can be neglected, with little loss of information. In this chapter we will
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