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FEATURE SELECTION

¢ The goals:
» Select the “optimum’ number / of features
» Select the “best” [ features

¢ Large [ has a three-fold disadvantage:
» High computational demands
» Low generalization performance
» Poor error estimates



FEATURE SELECTION

» Given N

e [ must be large enough to learn

— what makes classes different

— what makes patterns in the same class similar

* [ must be small enough not to learn what makes patterns of the

same class different.

* In practice,

[I<N/3

has been reported to be a sensible choice

for a number of cases.

» Once [ has been decided, choose the / most informative features

e Best:

Large between class distance,
Small within class variance
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FEATURE SELECTION

¢ The basic philosophy
» Discard individual features with poor information content

» The remaining information rich features are examined jointly as
vectors






FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

¢ Feature Sclection Based on Statistical Hypothesis Testing

» The Goal: For each individual feature, find whether the values,
which the feature takes for the different classes, differ
significantly.

That is, answer

H,: The values of the feature differ significantly
H . The values of the feature do not differ significantly

If they do not differ significantly,
reject feature from subsequent stages.

“* Hypothesis Testing Basics



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

» Hypothesis Testing: The steps:

e N measurements X,i=12,...,N are known

» Define a function of them

q=J (XX Xy): test statistic

sothat | P,(4:0)| s easily parameterized in terms of 6.

* Let Dbe an interval, where g has a high probability to lie under
H09 i'e'a pq(Q| 00)

e Let D be the complement of D
D Acceptance Interval
D Critical Interval

 If g, resulting from X, X;,..., Xy, liesin D,
we accept /), otherwise we reject it. 9



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

» Probability of an error

p,(qe D|H,)=p

p(q|H,)

I-p

V-

> q

» pis preselected and it is known as the significance level.

10



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

“ Application: The known variance case:

» Let x be a random variable and the experimental samples,

x;, =1,2,..., N, are assumed mutually independent. Also let
Elx]=u
E[(x—p)*]=
» Compute the sample mean
- 1 i .
» This 1s also a random variable with mean value
E[x] = Z E[x,]

That 1s, it 1s an Unbiased Estimator

11



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

: 2
» The variance O

E[(f—mZ]:E[(Nin,- )]

:#ZE[(XZ. —ﬂ)z]‘i'%zzE[(x, _;u)(xj — )]

Due to independence
1
0 =—0’
* N

That is, it is Asymptotically Efficient

» Hypothesis test
H, : Elx]|# i
H,: E[x]z i

» Test Statistic: Define the variable |g

O'/W .




FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

» Central limit theorem under #,

pf(x_) = \/EO'

» Thus, under H,

1 2
p,(q)= o eXr)[—%

JN exp(—N(x_ _f‘)zj

20
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FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing
» The decision steps
* Compute g fromx,i=1,2,...,N
 Choose significance level p

» Compute from N(0,1) tables D= [-x,, x ]
f/"\i i
/ f/ \ if ge D acceptH,
i‘% if geD reject H,
_,,rﬂ’l/]/lmn ;h

» An example: A random variable x has variance
o?= (0.23)2. N= 16 measurements are obtained giving
x =1.35. The significance level is p= 0.05.

H,:u= 1.4

U=
Test the hypothesis { .
H tu#u

14



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

— A

X
» Since o2 is known, 9 =
o/4

£ is N(0.1).

From tables, we obtain the values with acceptance
intervals [-x ,, x )| for normal N(0,1)

0.8 0.85 | 09 [095

0.98

0.99

0.998

0.999

1.28 | 1.44 | 1.64 | 1.96

2.32

2.57

3.09

3.29

» Thus

Probl—1.967 <~ * <1967\ =0.95
0.23/4

or

Probf{—0.113 < x— /2 < 0.113 = 0.95

or

Prob{1.237 < 1 <1.463}=0.95

15



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

» Since [ = 1.4 lies within the above acceptance interval,
we accept H,, 1.e.,

u=p=14

The interval [1.237, 1.463] is also known as confidence
interval at the 1 - p=0.95 level.

We say that: There is no evidence at the 5% level that the
mean value is not equal to &

16



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

** The Unknown Variance Case

> Estimate the variance. The estimate

) 1 > N2
O =—— X, —X
N_£;<, )

1s unbiased, 1.e.,
E[6°]=0"

> Define the test statistic
_ x—u

1= 6/IN

17



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

» This is no longer Gaussian. If x is Gaussian, then
q follows a t-distribution, with N-1 degrees of freedom

q= Ryl
6 /N
» An example:

x 1s Gaussian, N =16, obtained from measurements,

x=1.35and 62 = (0.23)°. Test the hypothesis
H,: u=4=14
at the significance level p = 0.025.

18



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

» Table of acceptance intervals for ¢-distribution

Degrees of
Freedom l-p wemm—) (.9 0.95 0.975 0.99
12 1.78 2.18 2.56 3.05
13 1.77 2.16 2.53 3.01
14 1.76 2.15 2.51 2.98
15 1.75 2.13 2.49 2.95
16 1.75 2.12 2.47 2.92
17 1.74 2.11 2.46 2.90
18 1.73 2.10 244 2.88

>  Prob {— 249 <X 2.49} =0.975

oy

c/4

1.207 <1 <1.493
Thus, i =1.41s accepted



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

¢ Application in Feature Selection

» The goal here is to test against zero the difference g, — g, of
the respective means in
®,, @, of a single feature.

» Letx; i=1, ..., N, the values of a feature in o,
» Lety, i=1, ..., N, the values of the same feature in o,

» Assume in both classes o7 = o7 = o>
(unknown or not)

» The test becomes Hyo A==t =0
H,: Au#0

20



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing
» Define
Z=x-Y

» Obviously
Elz]=m— 1

» Define the average
— ] & - —
z=— X —y)=x-—
N;(l y)=x-y

(x=1)— (& - i)

» Known Variance Case: Define ¢ =

2
07
N

 This is N(0,1) and one follows the procedure as before.

21



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

» Unknown Variance Case: - B
Define the test statistic q= (x—y) -~ 1)

A
'Y
S = (Z(x - x)’ +Z<y -y

2N -2

e gis t-distribution with 2NV —2 degrees of freedom,

» Then apply appropriate tables as before.

22



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

» Example: The values of a feature in two classes are:
o: 3.5,3.7,39,4.1,3.4,3.5,4.1,3.8,3.6,3.7
@, 3.2,3.6,3.1,34,3.0,3.4,2.8,3.1,3.3,3.6

Test 1f the mean values in the two classes differ
significantly, at the significance level p= 0.05

23



FEATURE SELECTION P> Feature Selection Based on Statistical Hypothesis Testing

» We have
w, : x= 3.73, 67 =0.0601
@, y 3.25, 65 =0.0672
ForNZIO
(0' +0')
(x—y)—O
q= >
S
10
q=4.25

» From the table of the ¢-distribution with 2N —2 = 18 degrees of
freedom and p= 0.05, we obtain D=[-2.10,2.10] and since
g=4.25 1s outside D, H, is accepted and the feature is selected.

24






FEATURE SELECTION P Class Separability Measures

¢ Class Separability Measures

The emphasis so far was on individually considered features. However,
such an approach cannot take into account existing correlations among
the features. That is, two features may be rich in information, but if
they are highly correlated we need not consider both of them. To this
end, in order to search for possible correlations, we consider features
jointly as elements of vectors. To this end:

» Discard poor in information features, by means of a statistical test.

» Choose the maximum number, ¢, of features to be used.

This is dictated by the specific problem.
(e.g., the number, N, of available training patterns and the type of the
classifier to be adopted)

26



FEATURE SELECTION P> Class Separability Measures

» Combine remaining features to search for the “best” combination.
To this end:

» Use different feature combinations to form the feature vector.
Train the classifier, and choose the combination resulting in the
best classifier performance.

A major disadvantage of this approach is the high complexity.
Also, local minima, may give misleading results.

* Adopt a class separability measure and choose the best feature
combination against this cost.

27



FEATURE SELECTION P> Class Separability Measures

» Class separability measures: Let X be the current feature
combination vector.
* Divergence. To see the rationale behind this cost, consider the
two-class case. Obviously, if on the average the
p(x| o)

p(x|o,)
poor feature combination. Define:

value of In—=—= is close to zero, then x should be a

Dy = [ plx| ) in 2E2) g
el p(§|(02)
dlz =D, + D,

D, = J.p(ﬁ |®,)In plx| (DZ)dE
° p(x|w)

d,, 1s known as the divergence and

can be used as a class separability measure.
28



FEATURE SELECTION P> Class Separability Measures

— For the multi-class case, define d; for every pair of classes
@;, @, ; and the average divergence is defined as

d= i iP(a)l.)P(a)j)dy

— Some properties:

d; 20

d; =0,if i = j

ij Ji

— Large values of dare indicative of good feature combination.

29



FEATURE SELECTION P> Class Separability Measures

» Scatter Matrices. These are used as a measure of the way data are
scattered in the respective feature space.

* Within-class scatter matrix

.
5.-$rs
where -
5= (x-a)(x-ae)
and .
P =Po) ="

n; the number of training samples in ..

Trace {S,} 1s a measure of the average variance of the features.
30



FEATURE SELECTION P> Class Separability Measures

* Between-class scatter matrix

Trace {S,} 1s a measure of the average distance of the mean of
each class from the respective global one.

e Mixture scatter matrix

It turns out that:

31



FEATURE SELECTION P Class Separability Measures

> Measures based on Scatter Matrices.

_ trace{S,, |
' trace{S,)

© o, = IS0 _ s,7's,,

S,

- J,= trace{Sw_lSm}

 Other criteria are also possible, by using various combinations of
S, Sy, S, -

The above J,, J, J criteria take high values for the cases where:
 Data are clustered together within each class.

 The means of the various classes are far.
32



FEATURE SELECTION P Class Separability Measures
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FIGURE 5.5

Classes with (a) small within-class variance and small between-class distances, (b) large within-
class variance and small between-class distances, and (c) small within-class variance and large
between-class distances.
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FEATURE SELECTION P Class Separability Measures
e Fisher’s discriminant ratio. In one dimension and for two
equiprobable classes the determinants become:
2 2
S| o7 +0;

‘Sb o< (/Ul — MU, )2

and

S (-,

S,  o'+o;

known as Fischer’s ratio.

34






FEATURE SELECTION P Feature Subset Selection

¢ Ways to combine features:

Trying to form all possible combinations of / features from an original

set of m selected features is a computationally hard task.
Thus, a number of suboptimal searching techniques have been derived.

» Sequential forward selection
» Sequential backward selection
» Floating Search Methods

36



FEATURE SELECTION P> Feature Subset Selection

» Sequential forward selection.

Let x,, x,, x5, x, the available features (m = 4).
The procedure consists of the following steps:

« Adopt a class separability criterion (could also be the error
rate of the respective classifier). Compute its value for ALL
features considered jointly [x,, x,, x5, x4] 7.

* Eliminate one feature and for each of the possible resulting
combinations, that is [x,, x,, x;]7, [x{, X5, X,]7, [x}, X3, x4]7,
[x,, X3, x,]7, compute the class reparability criterion value C.
Select the best combination, say [x,, x,, x;]%.

37



FEATURE SELECTION P> Feature Subset Selection

* From the above selected feature vector eliminaTte one feTature an%l
for each of the resulting combinations, [x, x,] ,[x 2 X3 ] L, x]
compute C and select the best combination.

The above selection procedure shows how one can start from m
features and end up with the “best” / ones. Obviously, the choice is

suboptimal. The number of required calculations is:
((0—=1)
2

In contrast, a full search requires:

m) m!
0 ) 0 m=10)!

Im—

operations.

38



FEATURE SELECTION P> Feature Subset Selection

» Sequential backward selection.
Here the reverse procedure is followed.

* Compute C for each feature. Select the “best” one, say x;

* For all possible 2D combinations of x,, i.e., [x, x,], [x;, X3],
[x,, x,] compute C'and choose the best, say [x,, x;].

« For all possible 3D combinations of [x,, x;], e.g., [x,, X3, X,],
etc., compute C and choose the best one.

The above procedure is repeated till the “best” vector with ¢
features has been formed. This is also a suboptimal technique,
requiring;:

1+l((m+1)m—f(e+1))
operations. 2

39



FEATURE SELECTION P Feature Subset Selection

» Floating Search Methods

The above two procedures suffer from the nesting effect.
Once a bad choice has been done, there is no way to reconsider it in
the following steps.

In the floating search methods one is given the opportunity in
reconsidering a previously discarded feature or to discard a feature
that was previously chosen.

The method is still suboptimal, however it leads to improved
performance, at the expense of complexity.

40



FEATURE SELECTION P> Feature Subset Selection

 Besides suboptimal techniques, some optimal searching
techniques can also be used, provided that the optimizing cost
has certain properties, e.g., monotonic.

* Instead of using a class separability measure (filter techniques)
or using directly the classifier (wrapper techniques), one can
modify the cost function of the classifier appropriately, so that to
perform feature selection and classifier design in a single step

(embedded) method.

 For the choice of the separability measure a multiplicity of costs
have been proposed, including information theoretic costs.

41
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¢ Hints from Generalization Theory.

Generalization theory aims at providing general bounds that relate the
error performance of a classifier with the number of training points, A,
on one hand, and some classifier dependent parameters, on the other. Up
to now, the classifier dependent parameters that we considered were the
number of its free parameters and the dimensionality, ¢, of the subspace,
in which the classifier operates. (¢ also affects the number of free
parameters).

» Definitions
* Let the classifier be a binary one, i.c.,
fR = {0,1}
 Let F be the set of all functions fthat can be realized by the

adopted classifier (e.g., changing the synapses of a given neural

network different functions are implemented).
43



FEATURE SELECTION P Hints from Generalization Theory

» The shatter coefficient S(EN) of the class F'is defined as:

the maximum number of dichotomies of N points that can be
formed by the functions in F.

The maximum possible number of dichotomies is 2.
However, NOT ALL dichotomies can be realized by the set of
functions in F.

* The Vapnik-Chernovenkis (VC) dimension of a class F'is the
largest integer k for which S(Ek) = 2K If S(EN)=2V, VN,

we say that the VC dimension is infinite.

— That is, VC is the integer for which the class of functions F
can achieve all possible dichotomies, 2%,

— It is easily seen that the VC dimension of the single
perceptron class, operating in the {-dimensional space, is

L+1.
44



FEATURE SELECTION P Hints from Generalization Theory

— It can be shown that
S(F,N)<N" +1
V.. the VC dimension of the class.
That is, the shatter coefficient is either 2V (the maximum

possible number of dichotomies) or it is upper bounded, as
suggested by the above inequality.

In words, for finite V. and large enough A, the shatter
coefficient is bounded by a polynomial growth.
® Note that in order to have a polynomial growth of the shatter
coefficient, Nmust be larger than the V, dimension.

— The V_dimension can be considered as an intrinsic capacity
of the classifier, and, as we will soon see, only if the number
of training vectors exceeds this number sufficiently, we can
expect good generalization performance.

45



FEATURE SELECTION P> Hints from Generalization Theory

« The V. dimension may or may not be related to the dimension ¢
and the number of free parameters.

— Perceptron: V, =/(+1
— Multilayer perceptron with hard limiting activation function

h
Zk”

¢<V <2k, log,(ek,)

where k,f is the total number of hidden layer nodes, &, the
total number of nodes, and k& the total number of weights.

— Let {x,} be a training data sample and assume that

H&'HS’”J:L 2,...N

46



FEATURE SELECTION P> Hints from Generalization Theory

Let also a hyperplane such that
ol <
and
y ' x, +b)21
(i.e., the constraints we met in the SVM formulation). Then

V. < (rzc, 14 )
That is, by controlling the constant c, the V, of the linear
classifier can be less than /. In other words, V, can be
controlled independently of the dimension.

Thus, by minimizing Hszin the SVM, one attempts to keep V',
as small as possible. Moreover, one can achieve finite V,
dimension, even for infinite dimensional spaces. This is an
explanation of the potential for good generalization
performance of the SVM’s, as this is readily deduced from

the following bounds.
47



FEATURE SELECTION P Hints from Generalization Theory

> Generalization Performance

 Let P"(f) be the error rate of classifier f, based on the N training
points, also known as empirical error.

« Let P, (f) be the true error probability of f (also known as
generalization error), when f is confronted with data outside the
finite training set.

* Let P, be the minimum error probability that can be attained
over ALL functions in the set F.

48



FEATURE SELECTION P> Hints from Generalization Theory

e Let /" be the function resulting by minimizing the empirical
(over the finite training set) error function.

* [t can be shown that:

- prob{n;gg(efv (1)-B()> & <35, N) exp(— ]ZZ j

— prob{Pe(f*)—Pe >8}SSS(F,N)exp(—]1vT€82j

— Taking into account that for finite ¥, dimension, the growth
of S(F,N) is only polynomial, the above bounds tell us that
for a large NV:

° PY(f) iscloseto P, (f) , with high probability.
° P(f") iscloseto P, ,with high probability.

49



FEATURE SELECTION P> Hints from Generalization Theory

 Some more useful bounds

— The minimum number of points, N(¢, o), that guarantees,
with high probability, a good generalization error
performance is given by

N(e, p)< max{kljc lnk Iz/c : k lnﬁ}
£ e & p

N> Nl(e, p)

That 1s, for any

prob{P. (/) P, >¢e}< p

Where, k,, k,, k, constants. In words, for N > N(e, p)
the performance of the classifier is guaranteed, with
high probability, to be close to the optimal classifier in
the class 7. N(g,p) is known as the sample complexity.

50



FEATURE SELECTION P> Hints from Generalization Theory

— With a probability of at least 1— 0 the following bound

holds:
v Ye
P(f)<P, (f)+q>£Nj
where
V. [ln(%/N + 1] — ln(ij]
{0
N N

: Observe that all the bounds given so far are:
e Dimension free

e Distribution free

51



FEATURE SELECTION P> Hints from Generalization Theory

¢ Model Complexity vs. Performance

This issue has already been touched in the form of overfitting in neural
networks modeling and in the form of bias-variance dilemma. A
different perspective of the issue is dealt below.

» Structural Risk Minimization (SRM)

* Let P, be he Bayesian error probability for a given task.

 Let P(f") be the true (generalization) error of an optimally
design classifier f, from class F, given a finite training set.

P(f)-F=(P(f)-P)+ (P -P,)
P, 1s the minimum error attainable in F

— If the class F is small, then the first term is expected to be
small and the second term is expected to be large. The
opposite is true when the class F' is large

52



FEATURE SELECTION P> Hints from Generalization Theory

e Let F', F®, ... bea sequence of nested classes:

FVcF®?c..
with increasing, yet finite V. dimensions.

V oo SV

c,F(1

lim inf P(f)=PF,

i—o0 feF(’)

F(z) — e

Also, let

For each Nand class of functions F¥, i =1, 2, ..., compute the
optimum f~ v.» With respect to the empirical error. Then from all
these classifiers choose the one than minimizes, over all i, the
upper bound in:

* N * V F@
P(fy)SE (fy)+P —
That 1s, N

v

c,F(i)

N

fy =argmin| PY(fy )+ @

53
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 Then,as N —

P.(fy)—> Py

— The t
e term . Vo
N

in the minimized bound is a complexity penalty term. If the
classifier model is simple the penalty term is small but the
empirical error term P ( f;l) will be large.

The opposite is true for complex models.

* The SRM criterion aims at achieving the best trade-off between
performance and complexity.

54
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» Bayesian Information Criterion (BIC)

Let N the size of the training set, 6,,the vector of the unknown
parameters of the classifier, K,, the dimensionality of 8,, ,
and m runs over all possible models.

* The BIC criterion chooses the model by minimizing:
BIC=-2L(0, )+K,InN

— L(ém) is the log-likelihood computed at the ML estimate &,
and it 1s the performance index.

— K _In N is the model complexity term.

» Akaike Information Criterion:
AIC=-2L(0, }+ 2K,

56
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Feature Selection

5.1 INTRODUCTION

In all previous chapters, we considered the features that should be available prior
to the design of the sifiec The goal of this chapter is to study methodologies
related to the selection of these variables. As we pointed out very early in the
book, a major problem associated with pattern recognition is the so-called curse
of dimensionality (Section 2.5.6). The number of features at the disposal of the
designer of a classification system is usually very large. As we will see in Chapter 7,
this number can easily reach the order of a few dozens or even hundreds

‘There is more than one reason to reduce the number of features to a sufficient
minimum. Computational complexity is the obvious one. A related reason is that,
although two features may carry good classification information when treated sepa-
rately, there is little gain if they are combined into a feature vector because of a high
mutual correlation. Thus, complexity increases without much gain. Another major
reason is that imposed by the required generalization properties of the classifier, as
discussed in Section 4.9 of Chapter 4. As we will state more formally at the end of
this chapter, the higher the ratio of the number of training patterns N to the number
TI'I enl ll.l [‘1l.1 is of free classifier parameters, the better the generalization properties of the resulting
classifier.
antinos utroumbas A large number of features are directly translated into a large number of
classifier parameters (e.g., synaptic weights in a neural network, weights in a linear
classifier). Thus, for a finite and usually limited number N of training patterns, keep-
ing the number of features as small as possible is in line with our desire to design
classifiers with good generalization capabilities. Furthermore, the ratio N// enters

S . Theodoridis, K. KOutI‘OumbaS, the scene from another nearby corner. One important step in the design of a classi-

fication system is the performance evaluation stage. in which the classification error

2nd Edition

g probability of the designed classifier is estimated. We not only need to design a clas-
Pattern Recognltlon’ sification system, but we must also assess its performance. As is pointed out in Chap-
FOurth Edltlon, Academlc Press’ 2009 ter lU.Ehe.«._a_:slﬁcaunn error estimate improves ﬂS‘IhiS 1_1|10 becomes higher. In
[Fine 83] it is pointed out that in some cases ratios as high as 10 to 20 were

considered necessary 261
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