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3

 The goals:

 Select the “optimum” number l of features

 Select the “best” l features

 Large l has a three-fold disadvantage:

 High computational demands

 Low generalization performance

 Poor error estimates
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 Given N

• l must be large enough to learn

– what makes classes different

– what makes patterns in the same class similar

• l must be small enough not to learn what makes patterns of the

same class different.

• In practice, has been reported to be a sensible choice 

for a number of cases.

 Once l has been decided, choose the l most informative features

• Best:  Large between class distance, 

Small within class variance

3/Νl 
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FEATURE SELECTION

 The basic philosophy

 Discard individual features with poor information content

 The remaining information rich features are examined jointly as 

vectors
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 Feature Selection Based on Statistical Hypothesis Testing

 The Goal:  For each individual feature, find whether the values, 

which the feature takes for the different classes, differ 

significantly.

That is, answer

The values of the feature differ significantly

The values of the feature do not differ significantly

If they do not differ significantly,

reject feature from subsequent stages.

 Hypothesis Testing Basics

1
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Hypothesis Testing: The steps:

• N measurements                                are known

• Define a function of them

test statistic

so that is easily parameterized in terms of θ.

• Let D be an interval, where q has a high probability to lie under

H0, i.e., pq(q|θ0)

• Let D  be the complement of D

D Acceptance Interval

D Critical Interval

• If q, resulting from                           lies in D ,

we accept H0, otherwise we reject it.
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 Probability of an error

• ρ is preselected and it is known as the significance level.

 )( 0HDqpq
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 Application: The known variance case:

 Let x be a random variable and the experimental samples,

, are assumed mutually independent. Also let

 Compute the sample mean

 This is also a random variable with mean value

That is, it is an Unbiased Estimator

Nxi ,...,2,1

22 ])[(

][







xE

xE





N

i

ix
N

x
1

1





N

i

i
xE

N
xE

1

][
1

][ 

FEATURE SELECTION   � Feature Selection Based on Statistical Hypothesis Testing



12

 The variance

Due to independence

That is, it is Asymptotically Efficient

 Hypothesis test

 Test Statistic: Define the variable
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 Central limit theorem under H0

 Thus, under H0
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 The decision steps

• Compute q from xi, i = 1, 2, …, N

• Choose significance level ρ

• Compute from N(0,1) tables D = [-xρ , xρ]

 An example: A random variable x has variance 

σ 2 = (0.23)2.  Ν = 16 measurements are obtained giving

. The significance level is ρ = 0.05.  

Test the hypothesis
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 Since σ2 is known, is N(0,1).  

From tables, we obtain the values with acceptance 
intervals [-xρ , xρ] for normal N(0,1)

 Thus

ˆ
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  95.0463.1ˆ237.1Prob

or

95.0113.0ˆ113.0Prob

or

95.0967.1
4/23.0

ˆ
967.1Prob
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1-ρ 0.8 0.85 0.9 0.95 0.98 0.99 0.998 0.999

xρ 1.28 1.44 1.64 1.96 2.32 2.57 3.09 3.29
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 Since lies within the above acceptance interval,
we accept H0, i.e.,

The interval [1.237, 1.463] is also known as confidence 
interval at the 1 - ρ = 0.95 level.

We say that:  There is no evidence at the 5% level that the 
mean value is not equal to 

4.1ˆ 

4.1ˆ 

̂
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 The Unknown Variance Case

 Estimate the variance.  The estimate

is unbiased, i.e.,

 Define the test statistic
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 This is no longer Gaussian.  If x is Gaussian, then

q follows a t-distribution, with N-1 degrees of freedom

 An example:

.025.0 level cesignifican at the

4.1ˆ  :

hypothesis Test the  .)23.0(ˆ and 35.1

 ts,measuremen from obtained ,16 Gaussian, is 
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 Table of acceptance intervals for t -distribution



accepted is 4.1ˆ Thus,

493.1ˆ207.1

975.049.2
4/ˆ

ˆ
49.2 Prob
















 x

Degrees of 

Freedom 1-ρ 0.9 0.95 0.975 0.99

12 1.78 2.18 2.56 3.05

13 1.77 2.16 2.53 3.01

14 1.76 2.15 2.51 2.98

15 1.75 2.13 2.49 2.95

16 1.75 2.12 2.47 2.92

17 1.74 2.11 2.46 2.90

18 1.73 2.10 2.44 2.88
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 Application in Feature Selection

 The goal here is to test against zero the difference μ1 μ2 of 

the respective means in 

ω1, ω2 of a single feature.

 Let xi i = 1, …, N , the values of a feature in ω1

 Let yi i = 1, …, N , the values of the same feature in ω2

 Assume in both classes

(unknown or not)

 The test becomes
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 Define

z = x - y

 Obviously

E[z]=μ1 μ2

 Define the average

 Known Variance Case:  Define

• This is N(0,1) and one follows the procedure as before.
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 Unknown Variance Case:

Define the test statistic

• q is t-distribution with 2N  2 degrees of freedom,

• Then apply appropriate tables as before.
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 Example: The values of a feature in two classes are:

ω1: 3.5, 3.7, 3.9, 4.1, 3.4, 3.5, 4.1, 3.8, 3.6, 3.7

ω2: 3.2, 3.6, 3.1, 3.4, 3.0, 3.4, 2.8, 3.1, 3.3, 3.6

Test if the mean values in the two classes differ 

significantly, at the significance level ρ = 0.05
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 We have

For N  = 10

 From the table of the t-distribution with 2N  2 = 18 degrees of 

freedom and ρ = 0.05, we obtain D = [2.10,2.10] and since 

q = 4.25 is outside D, H1 is accepted and the feature is selected.
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 Class Separability Measures

The emphasis so far was on individually considered features. However,

such an approach cannot take into account existing correlations among 

the features. That is, two features may be rich in information, but if 

they are highly correlated we need not consider both of them. To this 

end, in order to search for possible correlations, we consider features 

jointly as elements of vectors. To this end:

 Discard poor in information features, by means of a statistical test.

 Choose the maximum number, �, of features to be used. 

This is dictated by the specific problem.
(e.g., the number, N, of available training patterns and the type of the 

classifier to be adopted)
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 Combine remaining features to search for the “best” combination. 

To this end:

• Use different feature combinations to form the feature vector. 

Train the classifier, and choose the combination resulting in the 

best classifier performance.

A major disadvantage of this approach is the high complexity. 

Also, local minima, may give misleading results.

• Adopt a class separability measure and choose the best feature 

combination against this cost.
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 Class separability measures: Let     be the current feature 

combination vector.

• Divergence. To see the rationale behind this cost, consider the 

two-class case. Obviously, if on the average the

value of is close to zero, then should be a

poor feature combination. Define:

d12 is known as the divergence and 

can be used as a class separability measure.
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– For the multi-class case, define dij for every pair of classes 

i , j ; and the average divergence is defined as

– Some properties:

– Large values of d are indicative of good feature combination.
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 Scatter Matrices. These are used as a measure of the way data are 

scattered in the respective feature space.

• Within-class scatter matrix

where

and

ni the number of training samples in i.

Trace {Sw} is a measure of the average variance of the features.
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• Between-class scatter matrix

Trace {Sb} is a measure of the average distance of the mean of 

each class from the respective global one.

• Mixture scatter matrix

It turns out that:

Sm = Sw + Sb
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 Measures based on Scatter Matrices.

•

•

•

• Other criteria are also possible, by using various combinations of

Sm , Sb , Sw .

The above J1, J2, J3 criteria take high values for the cases where:

• Data are clustered together within each class.

• The means of the various classes are far.
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• Fisher’s discriminant ratio. In one dimension and for two

equiprobable classes the determinants become:

and

known as Fischer’s ratio.
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 Ways to combine features:

Trying to form all possible combinations of � features from an original 

set of m selected features is a computationally hard task. 

Thus, a number of suboptimal searching techniques have been derived.

 Sequential forward selection

 Sequential backward selection

 Floating Search Methods

FEATURE SELECTION   � Feature Subset Selection
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 Sequential forward selection. 

Let x1, x2, x3, x4 the available features (m = 4). 

The procedure consists of the following steps:

• Adopt a class separability criterion (could also be the error 

rate of the respective classifier). Compute its value for ALL

features considered jointly [x1, x2, x3, x4]
T.

• Eliminate one feature and for each of the possible resulting 

combinations, that is [x1, x2, x3]
T, [x1, x2, x4]

T, [x1, x3, x4]
T, 

[x2, x3, x4]
T, compute the class reparability criterion value C. 

Select the best combination, say [x1, x2, x3]
T.
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• From the above selected feature vector eliminate one feature and 

for each of the resulting combinations,             ,             ,

compute and select the best combination.

The above selection procedure shows how one can start from m
features and end up with the “best” � ones. Obviously, the choice is 

suboptimal. The number of required calculations is:

In contrast, a full search requires:

operations.
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 Sequential backward selection. 

Here the reverse procedure is followed.

• Compute C for each feature. Select the “best” one, say x1

• For all possible 2D combinations of x1, i.e., [x1, x2], [x1, x3], 

[x1, x4] compute C and choose the best, say [x1, x3].

• For all possible 3D combinations of [x1, x3], e.g., [x1, x3, x2],

etc., compute C and choose the best one.

The above procedure is repeated till the “best” vector with

features has been formed. This is also a suboptimal technique, 

requiring:

operations.

�
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 Floating Search Methods

The above two procedures suffer from the nesting effect. 

Once a bad choice has been done, there is no way to reconsider it in 

the following steps.

In the floating search methods one is given the opportunity in 

reconsidering a previously discarded feature or to discard a feature 

that was previously chosen.

The method is still suboptimal, however it leads to improved

performance, at the expense of complexity.
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 Remarks:

• Besides suboptimal techniques, some optimal searching 

techniques can also be used, provided that the optimizing cost 

has certain properties, e.g., monotonic.

• Instead of using a class separability measure (filter techniques) 

or using directly the classifier (wrapper techniques), one can 

modify the cost function of the classifier appropriately, so that to 

perform feature selection and classifier design in a single step 

(embedded) method.

• For the choice of the separability measure a multiplicity of costs 

have been proposed, including information theoretic costs.
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 Hints from Generalization Theory.

Generalization theory aims at providing general bounds that relate the 

error performance of a classifier with the number of training points, N,

on one hand, and some classifier dependent parameters, on the other. Up 

to now, the classifier dependent parameters that we considered were the 

number of its free parameters and the dimensionality,   , of the subspace, 

in which the classifier operates. (   also affects the number of free 

parameters).

 Definitions

• Let the classifier be a binary one, i.e.,

• Let F be the set of all functions f that can be realized by the 

adopted classifier (e.g., changing the synapses of a given neural 

network different functions are implemented).

�

�

 : 0,1f �
�

FEATURE SELECTION   � Hints from Generalization Theory



44

• The shatter coefficient S(F,N) of the class F is defined as: 

the maximum number of dichotomies of N points that can be 

formed by the functions in F.

The maximum possible number of dichotomies is 2N. 

However, NOT ALL dichotomies can be realized by the set of 

functions in F.

• The Vapnik-Chernovenkis (VC) dimension of a class F is the 

largest integer k for which S(F,k) = 2k. If S(F,N)=2N,

we say that the VC dimension is infinite. 

– That is, VC is the integer for which the class of functions F

can achieve all possible dichotomies, 2k.

– It is easily seen that the VC dimension of the single 

perceptron class, operating in the ℓ-dimensional space, is 

ℓ+1.

,N
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– It can be shown that

Vc : the VC dimension of the class.

That is, the shatter coefficient is either 2N (the maximum 

possible number of dichotomies) or it is upper bounded, as 

suggested by the above inequality.

In words, for finite Vc and large enough N, the shatter 

coefficient is bounded by a polynomial growth.

º Note that in order to have a polynomial growth of the shatter

coefficient, N must be larger than the Vc dimension.

– The Vc dimension can be considered as an intrinsic capacity

of the classifier, and, as we will soon see, only if the number 

of training vectors exceeds this number sufficiently, we can 

expect good generalization performance.

( , ) 1c
V

S F N N 
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• The      dimension may or may not be related to the dimension    

and the number of free parameters.

– Perceptron:

– Multilayer perceptron with hard limiting activation function

where      is the total number of hidden layer nodes,     the 

total number of nodes, and      the total number of weights.

– Let          be a training data sample and assume that
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Let also a hyperplane such that

and

(i.e., the constraints we met in the SVM formulation). Then 

That is, by controlling the constant c, the      of the linear 

classifier can be less than   . In other words,     can be 

controlled independently of the dimension. 

Thus, by minimizing       in the SVM, one attempts to keep        

as small as possible. Moreover, one can achieve finite

dimension, even for infinite dimensional spaces. This is an 

explanation of the potential for good generalization 

performance of the SVM’s, as this is readily deduced from 

the following bounds.
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 Generalization Performance

• Let            be the error rate of classifier f, based on the N training 

points, also known as empirical error.

• Let             be the true error probability of f (also known as 

generalization error), when f is confronted with data outside the 

finite training set.

• Let      be the minimum error probability that can be attained 

over ALL functions in the set F.
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• Let      be the function resulting by minimizing the empirical 

(over the finite training set) error function.

• It can be shown that:

–

–

– Taking into account that for finite dimension, the growth 

of                 is only polynomial, the above bounds tell us that 

for a large N :

º is close to , with high probability.

º is close to , with high probability.
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Where,               constants.  In words, for                  

the performance of the classifier is guaranteed, with 

high probability, to be close to the optimal classifier in 

the class F.              is known as the sample complexity.

• Some more useful bounds

– The minimum number of points,           , that guarantees, 

with high probability, a good generalization error 

performance is given by

That is, for any
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– With a probability of at least           the following bound 

holds:

where

Remark: Observe that all the bounds given so far are:

• Dimension free

• Distribution free
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 Model Complexity vs. Performance

This issue has already been touched in the form of overfitting in neural 

networks modeling and in the form of bias-variance dilemma. A 

different perspective of the issue is dealt below.

Structural Risk Minimization (SRM)

• Let be he Bayesian error probability for a given task.

• Let         be the true (generalization) error of an optimally 

design classifier   , from class    , given a finite training set.

is the minimum error attainable in 

– If the class     is small, then the first term is expected to be 

small and the second term is expected to be large. The 

opposite is true when the class     is large
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• Let be a sequence of nested classes:

with increasing, yet finite dimensions.

Also, let

For each N and class of functions F(i), i = 1, 2, …, compute the 

optimum f*
N,i, with respect to the empirical error. Then from all 

these classifiers choose the one than minimizes, over all i, the 

upper bound in:

That is,
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• Then, as

– The term

in the minimized bound is  a complexity penalty term. If the 

classifier model is simple the penalty term is small but the 

empirical error term                  will be large. 

The opposite is true for complex models.

• The SRM criterion aims at achieving the best trade-off between 

performance and complexity.
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Bayesian Information Criterion (BIC)

Let    the size of the training set,     the vector of the unknown 

parameters of the classifier,      the dimensionality of      , 

and     runs over all possible models.

• The BIC criterion chooses the model by minimizing:

– is the log-likelihood computed at the ML estimate      , 
and it is the performance index.

– is the model complexity term.

• Akaike Information Criterion:
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