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* Bayes Probability Chain Rule

D(X)5 Xy 5eees X)) = DX, | Xy g eees X)) PAXy | Xy s X)) e P(Xy | X)) - P(X)

» Assume now that the conditional dependence for each x;is
limited to a subset of the features appearing in each of the
product terms. That is:

p(xlaxza'"»xé) — p(xl) 'Hp(xi | Ar)

where

A,C{ Xis X xl}
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» For example, if £= 6, then we could assume:
P(xg | X55e.0%) = P(Xg | X5, X,)
Then:

A :{x59x4}g{x5>"->x1}

» The above is a generalization of the Naive-Bayes.
For the Naive-Bayes the assumption is:

A=, fori=1,2,..., ¢
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» A graphical way to portray conditional dependencies is

given below

Lo

LA

> For this case:

(X, Xy ,5e0X0) = P(Xg | X5, %) - p(xs | ) (o | x,) - p(x;,)- p(x,)

» According to this figure we
have that:

X, 1s conditionally dependent on
Xy, Xs.

X5 ON Xy

X4 ON Xq, X,

X; 0N X,

Xy, X, are conditionally
independent on other variables.
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BAYESIAN NETWORKS
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Bayesian Networks

“* Bayesian Networks

» Definition: A Bayesian Network is a directed acyclic
graph (DAG) where the nodes correspond to random
variables. Each node is associated with a set of conditional
probabilities (densities), p(x;|A;), where x; 1s the variable
associated with the node and A, 1s the set of its parents in
the graph.

» A Bayesian Network is specified by:
» The marginal probabilities of its root nodes.

* The conditional probabilities of the non-root nodes, given
their parents, for ALL possible combinations.
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» The figure below is an example of a Bayesian Network corresponding to a
paradigm from the medical applications field.

P(S)
True | False
040 | 0.60
P(H|S) g é‘\l P(C[S)
S | True | False - § | True | False
True | 040 | 0.60 ' True | 0.20 | 0.80
False| 0.15 | 0.85 | Fake| 0.11 | 0.89
i H1 )
N
P(HI|H) P(C1|C)
H | True @ False ) C | True | False
True | 0.95 | 0.05 'I/HZ\' True | 0.99 | 0.0
False| 0.01 | 0.99 2/ False| 0.10 | 0.90
P(H2[H) P(C2/C)
H | True | False C | True | False
True | 0.98 | 0.02 True | 0.98 | 0.02
False| 0.05 | 0.95 False | 0.05 | 0.95

» This Bayesian network models
conditional dependencies for an
example concerning
smokers (),
tendencies to develop cancer (C)
and heart disease (H),
together with variables
corresponding to heart (H,, H,)
and cancer (C,, C,) medical
tests.
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» Once a DAG has been constructed, the joint probability
can be obtained by multiplying the marginal (root nodes)
and the conditional (non-root nodes) probabilities.

» Training: Once a topology is given, probabilities are
estimated via the training data set. There are also methods
that learn the topology.

» Probability Inference: This is the most common task that
Bayesian networks help us to solve efficiently. Given the
values of some of the variables in the graph, known as
evidence, the goal 1s to compute the conditional
probabilities for some of the other variables, given the
evidence.
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“» Example: Consider the Bayesian network of the figure:

P(x1)=060 P(y1|z1)=040 P(1|y1)=025 P(wl|z1)=0.45
Py1|20)=030 P(z1|y0)=0.60  P(wl|20)=0.30
° - o -0
P(x0)=040 P(0|21)=0.60 P(z0|y1)=0.75  Pw0|z1)=0.55
P@0|20)=0.70  P(z0|y0)=040  P(uw0|20)=0.70
P(y1)=0.36 P(21)=0.47 P(w1)=0.37
P(10)=0.64 P(z0)=0.53 Pw0)=0.63

a) If x 1s measured to be x =1 (x,),
compute P(w = 0lx = 1) [P(w,|x,)]-

b) If w 1s measured to be w =1 (w,),
compute P(x = 0jw = 1) [ P(x,|lw,)]-



CLASSIFIERS BASED ON BAYES DECISION THEORY P> Bayesian Networks

» For a), a set of calculations are required that propagate
from node x to node w. It turns out that P(w,|x,) = 0.63.

» For b), the propagation is reversed in direction. It turns out
that P(x,/w,) =0.4.

» In general, the required inference information is computed
via a combined process of “message passing”
among the nodes of the DAG.

s Complexity:
» For singly connected graphs, message passing algorithms
amount to a complexity linear in the number of nodes.

14
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Pattern Recognition B

Classifiers Based on
Bayes Decision Theory

2.1 INTRODUCTION

This is the first chapter, out of three, dealing with the design of the classifier in a
pattern recognition system. The approach to be followed builds upon probabilistic
arguments stemming from the statistical nature of the generated features. As has
already been pointed out in the introductory chapter, this is due to the statistical
variation of the patterns as well as to the noise in the measuring sensors. Adopting
this reasoning as our kickoff point, we will design classifiers that classify an unknown
pattern in the most probable of the classes. Thus, our task now becomes that of
defining what “most probable” means.

Given a classification task of M classes,w, w3, ..., ayy,and an unknown pattern,
which is represented by a feature vector x, we form the M conditional probabilities
Plwg|x),f=1,2,...,M. Sometimes, these are also referred to as a posteriori
probabilities. In words, each of them represents the probability that the unknown
pattern belongs to the respective class w;, given that the corresponding feature
vector takes the value x. Who could then argue that these conditional probabilities
are not sensible choices to quantify the term maost probable? Indeed, the classifiers
to be considered in this chapter compute either the maximum of these M values
s Theodoridis or, equivalently, the maximum of an appropriately defined function of them. ‘The
unknown pattern is then assigned to the class corresponding to this maximum.

The first task we are faced with is the computation of the conditional proba-
bilities. The Bayes rule will once more prove its usefulness! A major effort in this
chapter will be devoted to techniques for estimating probability density functions
(pdf), based on the available experimental evidence, that is, the feature vectors
corresponding to the patterns of the training set.

itroumbas

S. Theodoridis, K. Koutroumbas,
Pattern Recognition,
Fourth Edition, Academic Press, 2009.

2.2 BAYES DECISION THEORY

We will initially focus on the two-class case. Let wy, w> be the two classes in which
our patterns belong. In the sequel. we assume that the @ priori probabilities 13

Chapter 2
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Pattern
Classification

R.O. Duda, P.E. Hart, and D.G. Stork,
Pattern Classification,
Second Edition, John Wiley & Sons, Inc., 2001.
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BAYESIAN DECISION THEORY

2.1 INTRODUCTION

STATE OF
NATURE

PRIOKR

Bayesian decision theory is a fundamental statistical approach (o the problem of
pattern classification. This approach is based on quantifying the tradeoffs between
various classification decisions using probability and the costs that accompany such
decisions. It makes the assumption that the decision problem is pesed in probabilistic
terms, and that all of the relevant probability values are known. In this chapter we
develop the fundamentals of this theory and we show how it can be viewed as being

simply a ization of procedures; in subsequent chapters we will
consider the problems that arise when the p ilistic structure is not
known.

While we will give a quite general, abstract development of Bayesian decision
theory in Section 2.2, we begin our discussion with a specific example. Let us re-
consider the hypothetical problem posed in Chapter | of designing a classifier to
separate two kinds of fish: sea bass and salmon, Suppose that an observer watching.
fish arrive along the conveyor belt finds it hard to predict what type will emerge next
and that the sequence of types of fish appears to be random. In decision-theoretic
terminology we would say that as each fish emerges nature is in one or the other of
the two possible states: Either the fish is a sea bass or the fish is a salmon. We let @
denote the state of nature, with w = wy for sea bass and w = w; for salmon. Because
the state of nature is so unpredictable, we consider w to be a variable that must be
described probabilistically.

If the catch produced as much sea bass as salmon, we would say that the nexi fish
is equally likely to be sea bass or salmon. More generally, we assume that there is
some a priori probability (or simply prior) P(w,) that the next fish is sea bass, and
some prior probability P{w;) that it is salmon. If we assume there are no other types
of fish relevant here, then P(w;) and P{wn) sum to one. These prior probabilities
reflect our prior knowledge of how likely we are to get a sea bass or salmon before
the fish actually appears. It might, for instance, depend upon the time of year or the
choice of fishing area.

Suppose for a moment that we were forced to make a decision about the type of
fish that will appear next without being allowed to see it. For the moment, we shall
assume that any incorrect classification entails the same cost or consequence, and
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