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 Bayes Probability Chain Rule

Assume now that the conditional dependence for each xi is 

limited to a subset of the features appearing in each of the 

product terms. That is:

where

BAYESIAN NETWORKS
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For example, if ℓ = 6, then we could assume:

Then:

The above is a generalization of the Naïve-Bayes. 

For the Naïve-Bayes the assumption is:

Ai = ∅, for i = 1, 2, …, ℓ

),|(),...,|( 456156 xxxpxxxp 
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A graphical way to portray conditional dependencies is 
given below 

According to this figure we 
have that:

• x6 is conditionally dependent on 
x4, x5.

• x5 on x4

• x4 on x1, x2

• x3 on x2

• x1, x2 are conditionally 
independent on other variables.

For this case:

)()()|()|(),|(),...,,( 122345456621 xpxpxxpxxpxxxpxxxp 
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 Bayesian Networks

Definition: A Bayesian Network is a directed acyclic

graph (DAG) where the nodes correspond to random 

variables. Each node is associated with a set of conditional 

probabilities (densities), p(xi|Ai), where xi is the variable 

associated with the node and Ai is the set of its parents in 

the graph.

A Bayesian Network is specified by:

• The marginal probabilities of its root nodes.

• The conditional probabilities of the non-root nodes, given 

their parents, for ALL possible combinations.
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 The figure below is an example of a Bayesian Network corresponding to a 
paradigm from the medical applications field.

 This Bayesian network models 
conditional dependencies for an 
example concerning 
smokers (S), 
tendencies to develop cancer (C) 
and heart disease (H), 
together with variables 
corresponding to heart (H1, H2) 
and cancer (C1, C2) medical 
tests.
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Once a DAG has been constructed, the joint probability 
can be obtained by multiplying the marginal (root nodes) 
and the conditional (non-root nodes) probabilities.

Training: Once a topology is given, probabilities are 
estimated via the training data set. There are also methods 
that learn the topology.

Probability Inference: This is the most common task that 
Bayesian networks help us to solve efficiently. Given the 
values of some of the variables in the graph, known as 
evidence, the goal is to compute the conditional 
probabilities for some of the other variables, given the 
evidence.
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 Example:  Consider the Bayesian network of the figure:

a) If x is measured to be x = 1 (x1),
compute P(w = 0|x = 1) [P(w0|x1)].

b) If w is measured to be w = 1 (w1),
compute P(x = 0|w = 1) [ P(x0|w1)].

13
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For a), a set of calculations are required that propagate

from node x to node w. It turns out that P(w0|x1) = 0.63.

For b), the propagation is reversed in direction. It turns out 

that P(x0|w1) = 0.4.

 In general, the required inference information is computed 

via a combined process of “message passing”

among the nodes of the DAG.

Complexity:

For singly connected graphs, message passing algorithms 

amount to a complexity linear in the number of nodes.

14
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Pattern Recognition, 

Fourth Edition, Academic Press, 2009.

Chapter 2
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Chapter 2 (2.11)


