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(a) We have yx(i) = 9r(i) + €x(i), where g is actual output, y is target
output, and e is absolute error. Therefore,
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where, E’Z((Z)) is relative error, thus, J is a function of the relative error, not
the absolute one.

(b) If yx = gk, we have ¢, = 0, and
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Since yr, =0 or 1,0 < g <1, and e (i) = y(i) — 9r(4),
o if y, =0, then J = 0;
° 1fyk:1:>0§ek§1:>ykln(1+ek/3)k)>O:>J>O

Therefore,
min.J =0



(2)

(backpropagation with cross-entropy)

The cross entropy is

Thus we can evaluate 6, (i) as

Lo 0E() D ()
=50 T e [‘ 2 U (ot

]

This derivative will select the k = jth element out of the sum and gives

510 = i) v (ln (’; (()>>) —

If the activation function f(-) is the sigmoid function Equation 99 then its derivative is given

in Equation 100 where we have f'(vf) = —af(v))(1 — f(v})) and the above becomes

5H) = ayy ()1 — FD) = ay; (0)(1 — 3,(0))

When our activation function f(z) is the sigmoid function defined by

1
f(l’) = 1+ eax’ (99)
we find its derivative given by
/ N\ —ax o l+e -1
Flo) = e = @) = af) [T
= af(z)(1—f(z)). (100)

With all of these pieces we are ready to specify the backpropagation algorithm.



3)
(backpropagation with softmax)

The softmax activation function has its output ¢ given by
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Note that this expression depends on ij in both the numerator and the denominator. Using

the result from the previous exercise we find
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To evaluate this we first consider the first term or afgjﬁi) where we find
9y; 0 exp(vy)
v (i) duf (i) \ Do exp(vf)
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While for the second term we get (note that j # k)
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Thus we find
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Since yx(7) and yx (i) are probabilities of class membership we have

kr,
D i) =1,
k=1
and thus ZZL:l;k# yr(i) = 1 —y;(i). Using this we find for 67 (7) that

7 (1) = =y, (8) + v ()75 + §;(1 — ;) = G5 — y;(0)

the expression we were to show.



(4)

(the maximum number of polyhedral regions)

l
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where M is the maximum number of polyhedral regions possible for a neural network with
one hidden layer containing k neurons and an input feature dimension of /. Assuming that

[ > k then
S (L) (k)=

m m=0
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where we have used the fact that ( r]:z ) = 0 to drop all terms in the sum when m =

k+1,k+2,---,1if there are any. That the sum of the binomial coefficients sums to 2*
follows from expanding (1 + 1)* using the binomial theorem.

(5)

(an iteration dependent learning parameter 1)

. 1
A Taylor expansion of F=a or
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Thus when ¢ < ¢y the fraction ﬁ ~ 1 to leading order and thus p =~ py. On the other
to
hand when t > t; we have that 1 + % ~ % and the fraction above is given by
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Thus in this stage of the iterations p(t) decreases inversely in proportion to ¢.



(6)
(when N = 2(/ + 1) the number of dichotomies is 2V71)

:2§(N;1),

where N is the number of points embedded in a space of dimension [ and O(N,!) is the
number of groupings that can be formed by hyperplanes in R’ to separate the points into
two classes. If N = 2({ + 1) then
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We have

Given the identity

by taking i =n+1,n,n—1,---,1 we get the following equivalences
2n+1 B 2n+1
0 N 2n + 1
2n+1 B 2n+1
1 N 2n
2n+1 B 2n+1
2 N 2n —1
2n+1 B 2n+1
n—1 a n+2
2n+1 B 2n+1
n a n+1

Now write O(2(1 + 1),1) as

or two sums of the same thing. Next note that using the above identities we can write the
second sum as

l
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Thus using this expression we have that
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Since 20 +1 = N — 1 we have that O(2(l +1),1) = 2V~ as we were to show.



(7)
(the kernel trick)

From the given mapping ¢(z) we have that
viy = oz) é(x;)
1
= — + cos(x;) cos(x;) + cos(2x;) cos(2x;) + - - - + cos(kx;) cos(kx;)

2
+ sin(x;) sin(x;) + sin(2z;) sin(2z;) + - - - + sin(kz;) sin(kz;) .

Since cos(a) cos(5) +sin(a) sin(F) = cos(a— ) we can match cosigns with sines in the above
expression and simplify a bit to get

1
yly; = 5 + cos(z; — ;) + cos(2(x; — x;)) + - - - + cos(k(z; — z;)) .

To evaluate this sum we note that by writing the cosigns above in terms of their exponential
representation and using the geometric series we can show that

sin ((n+ ) o)

1 4 2 cos(ar) + 2 cos(2ar) + 2 cos(3a) + - - - + 2 cos(na) = n (2)
sin (%
2

Thus using this we can show that y!y; is given by

as we were to show.





