
(1)

(a) We have yk(i) = ŷk(i) + ǫk(i), where ŷ is actual output, y is target
output, and ǫ is absolute error. Therefore,

J = −
N
∑

i=1

kL
∑

k=1

yk(i) ln
ŷk(i)

yk(i)

=

N
∑

i=1

kL
∑

k=1

yk(i) ln
yk(i)

ŷk(i)

=

N
∑

i=1

kL
∑

k=1

yk(i) ln
ŷk(i) + ǫk(i)

ŷk(i)

=
N
∑

i=1

kL
∑

k=1

yk(i) ln

(

1 +
ǫk(i)

ŷk(i)

)

where, ǫk(i)
ŷk(i)

is relative error, thus, J is a function of the relative error, not
the absolute one.

(b) If yk = ŷk, we have ǫk = 0, and

J = −
N
∑

i=1

kL
∑

k=1

yk(i) ln(1) = 0.

Since yk = 0 or 1 , 0 ≤ ŷk ≤ 1, and ǫk(i) = yk(i)− ŷk(i),

• if yk = 0, then J = 0;

• if yk = 1 ⇒ 0 ≤ ǫk ≤ 1 ⇒ yk ln(1 + ǫk/ŷk) > 0 ⇒ J > 0

Therefore,
min J = 0
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(2)
(backpropagation with cross-entropy) 

The cross entropy is

J = −
N
∑

i=1

kL
∑

k=1

yk(i) ln

(

ŷk(i)

yk(i)

)

.

Thus we see that E(i) in this case is given by

E(i) = −
kL
∑

k=1

yk(i) ln

(

ŷk(i)

yk(i)

)

.

Thus we can evaluate δLj (i) as

δLj (i) ≡
∂E(i)
∂vLj (i)

=
∂

∂vLj (i)

[

−
kL
∑

k=1

yk(i) ln

(

f(vLk )

yk(i)

)

]

.

This derivative will select the k = jth element out of the sum and gives

δLj (i) = −yj(i)
∂

∂vLj (i)

(

ln

(

f(vLj )

yk(i)

))

= −yj(i)
f ′(vLj )

f(vLj )
.

If the activation function f(·) is the sigmoid function Equation 99 then its derivative is given
in Equation 100 where we have f ′(vLj ) = −af(vLj )(1− f(vLj )) and the above becomes

δLj (i) = ayj(i)(1− f(yLj )) = ayj(i)(1− ŷj(i)) .

When our activation function f(x) is the sigmoid function defined by

f(x) =
1

1 + e−ax
, (99)

we find its derivative given by

f ′(x) =
( a)

(1

−
+ e

−
−ax)2

e−ax = f(x)(a)
e−ax

1 + e−ax
= af(x)

[

1 + e−ax

ax

− 1

1 + e−

]

(100)= af(x)(1− f(x)) .

With all of these pieces we are ready to specify the backpropagation algorithm.



(3)
(backpropagation with softmax)

The softmax activation function has its output ŷk given by

ŷk ≡
exp(vLk )

∑

k′ exp(v
L
k′)

.

Note that this expression depends on vj
L in both the numerator and the denominator. Using

the result from the previous exercise we find

δLj (i) ≡ ∂E
L

(i)

∂vj (i)

=
∂

∂vLj (i)

(

−
k
∑

L

k=1

yk(i) ln

(

ŷk
yk(i)

)

)

= − ∂

∂vLj (i)

(

yj(i) ln

(

ŷj
yj(i)

))

− ∂

∂vLj (i)

(

k
∑

L

k=1;k 6=j

yk(i) ln

(

ŷk
yk(i)

)

)

= −yj
ŷ

(

j

i) ∂ŷ

∂vLj (
j

i)
−

k
∑

L

k=1;k 6=j

yk(i)

ŷk

∂ŷk
∂vLj (i)

.

To evaluate this we first consider the first term or
∂ŷj

∂vLj (i)
where we find

∂ŷj
∂vLj (i)

=
∂

∂vLj (i)

(

exp(vLj )
∑

k′ exp(v
L
k′)

)

=
exp(vLj )

∑

k′ exp(v
L
k′)

− exp(vLj ) exp(v
L
j )

(
∑

k′ exp(v
L
k′))

2 = ŷj − ŷj
2 .

While for the second term we get (note that j 6= k)

∂ŷk
∂vLj (i)

=
∂

∂vLj

exp(vLk )
∑

k′ exp(v
L
k′)

( )

= −exp(vLk ) exp(v
L
j )

(
∑

k′ exp(v
L
k′))

2 = −ŷkŷj .

Thus we find

δLj = −yj
ŷ

(

j

i)
(ŷj − ŷj

2)−
k
∑

L

k=1;k 6=j

yk(i)

ŷk
(−ŷkŷj)

= −yj(i)(1− ŷj) + ŷj

k
∑

L

yk(i) .
k=1;k 6=j

Since ŷk(i) and yk(i) are probabilities of class membership we have

k
∑

L

k=1

yk(i) = 1 ,

and thus
∑kL

k=1;k 6=j yk(i) = 1− yj(i). Using this we find for δj
L(i) that

δLj (i) = −yj(i) + yj(i)ŷj + ŷj(1− yj) = ŷj − yj(i) ,

the expression we were to show.



(4)
(the maximum number of polyhedral regions)

M =
l
∑

m=0

(

k
m

)

with

(

k
m

)

= 0 if m > k .

where M is the maximum number of polyhedral regions possible for a neural network with
one hidden layer containing k neurons and an input feature dimension of l. Assuming that
l ≥ k then

M =

l
∑

m=0

(

k
m

)

=

k
∑

m=0

(

k
m

)

= 2k ,

where we have used the fact that

(

k
m

)

= 0 to drop all terms in the sum when m =

k + 1, k + 2, · · · , l if there are any. That the sum of the binomial coefficients sums to 2k

follows from expanding (1 + 1)k using the binomial theorem.

(5)
(an iteration dependent learning parameter µ)

A Taylor expansion of 1
1+ t

t0

or

1

1 + t
t0

≈ 1−
t

t

0
+

t2

t20
+ · · · .

Thus when t ≪ t0 the fraction 1
1+

t
t

0

≈ 1 to leading order and thus µ ≈ µ0. On the other

hand when t ≫ t0 we have that 1 +
t
t
0
≈ t

t0
and the fraction above is given by

1

1 + t
t0

1
t
t0

t0≈ =
t
.

Thus in this stage of the iterations µ(t) decreases inversely in proportion to t.



(6)
(when N = 2(l + 1) the number of dichotomies is 2N−1)

We have

O(N, l) = 2

l
∑

i=0

(

N − 1
i

)

,

where N is the number of points embedded in a space of dimension l and O(N, l) is the
number of groupings that can be formed by hyperplanes in R

l to separate the points into
two classes. If N = 2(l + 1) then

O(2(l + 1), l) = 2
l
∑

i=0

(

2l + 1
i

)

.

Given the identity
(

2n + 1
n− i+ 1

)

=

(

2n + 1
n+ i

)

,

by taking i = n+ 1, n, n− 1, · · · , 1 we get the following equivalences

2n+ 1
0

=
2n+ 1
2n+ 1

( ) ( )

(

2n+ 1
1

)

=

(

2n+ 1
2n

)

(

2n+ 1
2

)

=

(

2n+ 1
2n− 1

)

...
(

2n+ 1
n− 1

)

=

(

2n+ 1
n+ 2

)

(

2n+ 1
n

)

=

(

2n+ 1
n+ 1

)

Now write O(2(l + 1), l) as

l
∑

i=0

(

2l + 1
i

)

+
l
∑

i=0

(

2l + 1
i

)

,

or two sums of the same thing. Next note that using the above identities we can write the
second sum as

i=0

2l + 1
i

=
2l + 1

0
+

2l + 1
1

+ · · ·+ 2l + 1
l − 1

+
2l + 1

l

l
∑

( ) ( ) ( ) ( ) ( )

=

(

2l + 1
2l + 1

)

+

(

2l + 1
2l

)

+ · · ·+
(

2l + 1
l + 2

)

+

(

2l + 1
l + 1

)

=
2l
∑

+1

i=l+1

(

2l + 1
i

)

.

Thus using this expression we have that

O(2(l + 1), l) =

l
∑

i=0

(

2l + 1
i

)

+

2l
∑

+1

i=l+1

(

2l + 1
i

)

=

2l
∑

+1

i=0

(

2l + 1
i

)

= 22l+1 .

Since 2l + 1 = N − 1 we have that O(2(l + 1), l) = 2N−1 as we were to show.



Since cos(α) cos(β)+sin(α) sin(β) = cos(α−β) we can match cosigns with sines in the above
expression and simplify a bit to get

yTi yj =
1

2
+ cos(xi − xj) + cos(2(xi − xj)) + · · ·+ cos(k(xi − xj)) .

To evaluate this sum we note that by writing the cosigns above in terms of their exponential
representation and using the geometric series we can show that

1 + 2 cos(α) + 2 cos(2α) + 2 cos(3α) + · · ·+ 2 cos(nα) =
sin
((

n + 1
2

)

α
)

sin
(

x
2

) .

Thus using this we can show that yTi yj is given by

1

2

sin
((

k + 1
2

)

(xi − xj)
)

sin
(

x
2

) ,

as we were to show.

(7)
(the kernel trick) 

From the given mapping φ(x) we have that

yi
Tyj = φ(xi)

Tφ(xj)

1

2
= + cos(xi) cos(xj) + cos(2xi) cos(2xj) + · · ·+ cos(kxi) cos(kxj)

+ sin(xi) sin(xj) + sin(2xi) sin(2xj) + · · ·+ sin(kxi) sin(kxj) .




