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Practical Training Issues
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/ Network Training Steps

Collect/Preprocess | Select Network - Select Training
Data Type/Architecture Algorithm
Initialize Weight
Analyze Network HHa IZ(G& N
fi -
Performance Train Network
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Before beginning the neural network training process,
you should first determine if a neural network is needed to solve your
problem, or if some simpler linear technique might be adequate.

For example, there is no need to use a neural network for a fitting problem, if standard
linear regression will produce a satisfactory result.
The neural network techniques provide additional power, but at the expense of more
challenging training requirements.

When linear methods will work, they are the first choice.
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Selection of Data

Data must adequately cover the relevant regions of the
input space (to avoid extrapolation).

Divide the data into training, validation and testing subsets
(70%, 15%, 15%).

Each of the subsets must cover the same parts of the input
space.

The amount of data required depends on the complexity of
the function being approximated (or the complexity of the
decision boundary).

Post-training analysis may be needed to determine the
adequacy of the data.
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Data must adequately cover the relevant
regions of the input space (to avoid
extrapolation).

Divide the data into training, validation and
testing subsets (70%, 15%, 15%).

Each of the subsets must cover the same
parts of the input space.

The amount of data required depends on the
complexity of the function being
approximated (or the complexity of the
decision boundary).

Post-training analysis may be needed to
determine the adequacy of the data.
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Data Preprocessing

*Normalize inputs/targets to the range [-1,1].

i n

_pl’l’ll

min X

p’ =2pp-p""yY @™ )1

*Normalize inputs/targets to zero mean and unity variance.
mean., std

p' = @-p" ") p

*Nonlinear transformations.
p'=1/p p' = exp(p)

*Feature extraction (dimensionality reduction).

*Principal components
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Coding Targets (Pattern Classification)

There are three common ways to code targets. Assume that
we have N classes.

1) You can have a scalar target that takes on N possible
values (e.g., 1, 2, ..., N)

2) You can code the target in binary code. This requires P
output neurons, where 27 is greater than or equal to V.

3) You can have N neurons in the output layer. The targets
will be vectors whose elements are all equal to zero, except
for the neuron that corresponds to the correct class.

Method 3) generally produces the best results.
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Importance of Transfer Function

When coding the targets, we need to consider the output
layer transfer function.

For pattern recognition problems, we would typically use
log-sigmoid or tangent-sigmoid.

If we use the tangent-sigmoid in the last layer, which is
more common, then we might consider assigning target
values to -1 or 1.

This tends to cause training difficulties (saturation of the
sigmoid function).

It 1s better to assign target values at the point where the
second derivative of the sigmoid function is maximum.
This occurs when the net input is -1 and 1, which
corresponds to output values of -0.76 and +0.76.
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When coding the targets, we need to consider
the output layer transfer function.

For pattern recognition problems, we would
typically use log-sigmoid or tangent-sigmoid.

If we use the tangent-sigmoid in the last layer,
which is more common, then we might
consider assigning target values to —1 or +1.

This tends to cause training difficulties
(saturation of the sigmoid function).

It is better to assign target values at the point
where the second derivative of the sigmoid
function is maximum. This occurs when the
net input is -1 and 1, which corresponds to
output values of —0.76 and +0.76.
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Softmax Transfer Function

 If the network outputs should correspond to probabilities
of belonging to a certain class, the softmax transfer
function can be used.

eXp (n,)
S

S exp(n)

j=1
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If the network outputs should correspond to probabilities of belonging
to a certain class, the softmax transfer function can be used.
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/ Missing Data

» Replace the missing values in the input vector with the
average value for that element of the input. Add an
additional variable to the input vector as a flag to indicate
missing data.

« For missing elements of the target vectors, do not include
them 1n the calculation of squared error.
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vector with the average value for that
element of the input.

Add an additional variable to the input
vector as a flag to indicate missing data.

For missing elements of the target
vectors, do not include them in the
calculation of squared error.



Problem Types

Fitting (nonlinear regression). Map between a set of inputs and a
corresponding set of targets. (e.g., estimate home prices from tax rate,
pupil/teacher ratio, etc.; estimate emission levels from fuel
consumption and speed; predict body fat level from body
measurements.)

Pattern recognition (classification). Classify inputs into a set of target
categories. (e.g., recognize the vineyard from a chemical analysis of
the wine; classify a tumor as benign or malignant, from uniformity of
cell size, clump thickness and mitosis.)

Clustering (segmentation) Group data by similarity. (e.g., group
customers according to buying patterns, group genes with related
expression patterns.)

Prediction (time series analysis, system identification, filtering or
dynamic modeling). Predict the future value of some time series. (e.g.,
predict the future value of some stock; predict the future value of the
concentration of some chemical; predict outages on the electric grid.)
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Fitting (nonlinear regression, function approximation).
Map between a set of inputs

and a corresponding set of targets.

(e.g., estimate home prices from tax rate, pupil/teacher ratio, etc.;
estimate emission levels from fuel consumption and speed;
predict body fat level from body measurements.)

Pattern recognition (classification).

Classify inputs into a set of target categories.
(e.g., classify a tumor as benign or malignant, from uniformity of cell
size, clump thickness and mitosis.)

Clustering (segmentation)

Group data by similarity.

(e.g., group customers according to buying patterns, data mining,
group genes with related expression patterns.)

Prediction (time series analysis, system identification,
filtering or dynamic modeling).

Predict the future value of some time series.
(e.g., predict the future value of some stock; predict the future value of
the concentration of some chemical; predict outages on the electric grid.)



/ Choice of Network Architecture

Fitting
— Multilayer networks with sigmoid hidden layers and linear output
layers.

— Radial basis networks
Pattern Recognition

— Multilayer networks with sigmoid hidden layers and sigmoid
output layers.

— Radial basis networks.

Clustering

— Self-organizing feature map

Prediction

— Focused time-delay neural network
— NARX network

\
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Fitting (Nonlinear Regression)
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Fattern recognition (Classification)
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Clustering (Segmentation)

Prediction

Multilayer networks with sigmoid hidden
layers and linear output layers.

Radial basis networks

Multilayer networks with sigmoid hidden
layers and sigmoid output layers.

Radial basis networks

Self-organizing feature map

Focused time-delay neural network
NARX network

(Nonlinear AutoRegressive model with eXogenous input)
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Architecture Specifics

« Number of layers/neurons
— For multilayer network, start with two layers. Increase number of layers
if result is not satisfactory.

— Use a reasonably large number of neurons in the hidden layer (20).
Use early stopping or Bayesian regularization to prevent overfitting.

— Number of neurons in output layer = number of targets. You can use
multiple networks instead of multiple outputs.

* Input selection

— Sensitivity analysis (see later slide)

— Bayesian regularization with separate o for each column of the input
weight matrix.
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{ Weight Initialization

For Multilayer Networks

* Random weights. Uniformly distributed between -0.5 and
0.5, if the inputs are normalized to fall between -1 and 1.

* Random direction for weights, with magnitude set to

|- w|=07(s)"

and biases randomly distributed between

“[iwl - and |iwl
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For Multilayer Networks

* Random weights. Uniformly distributed between -0.5 and
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[ Weight Initialization

* For Competitive Networks
* Small random numbers
« Randomly selected input vectors
* Principal components of the input vectors
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For Competitive Networks

 Small random numbers
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Choice of Training Algorithm

* For medium sized networks (several hundred weights)
used for fitting or prediction problems, use the Levenberg-
Marquardt algorithm (trainlm).

» For large networks (thousands of weights) used for fitting
or prediction problems, or networks used for pattern
recognition problems, conjugate gradient algorithms, such
as the scaled conjugate gradient algorithm (trainscg) are
generally faster.

« Of the sequential algorithms, the extended Kalman filter
algorithm are generally fastest.
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hundred weights) used for fitting or
prediction problems, use the Levenberg-
Marquardt algorithm (trainlm).

For large networks (thousands of
weights) used for fitting or prediction
problems, or networks used for pattern
recognition problems, conjugate gradient
algorithms, such as the scaled conjugate
gradient algorithm (trainscg) are
generally faster.

Of the sequential algorithms, the
extended Kalman filter algorithm are
generally fastest.



/ Stopping Criteria

* Norm of the gradient (of the mean squared error) less than
a pre-specified amount (for example, 10-6).

 Early stopping because the validation error increases.
* Maximum number of iterations reached.

« Mean square error drops below a specified threshold (not
generally a useful method).

* Mean square error curve (on a log-log scale) becomes flat
for some time (user stop).
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Norm of the gradient (of the mean
squared error) less than a pre-specified
amount (for example, 10°).

Early stopping because the validation
ITor increases.

Maximum number of iterations reached.

Mean square error drops below a
specified threshold (not generally a
useful method).

Mean square error curve (on a log-log
scale) becomes flat for some time (user

stop).
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/ Competitive Network Stopping Criteria

« Stop when a specified number of iterations has been
reached.

» Learning rate and neighborhood size (SOM) are decreased
during training, so that they reach their smallest values
when the maximum number of iterations have been
reached.

 Post-training analysis is used to determine if retraining is
required.

\
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Mean Square Error

Minkowski error

Cross-Entropy
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/ Choice of Performance Function
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Committees of Networks

Restart training at 5 to 10 different initial conditions to be
sure to reach a global minimum.

You can also train several different networks with different
initial conditions and different divisions of the data into
training and validation sets. This produces a committee of
networks.

Take the average of the committee outputs to produce a
more accurate fit than any of the individual networks.

For pattern recognition problems, you can take a vote of
the committee of networks to produce a more accurate
classification.
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/ Post-Training Analysis

Fitting

Pattern Recognition

Clustering
 Prediction
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Fitting

Regression Analysis (Outputs vs Targets)
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Sample Regression Plot
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Error Histogram
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Pattern Recognition

Confusion Matrix

/
1 47 1 97.9%
22.0% 0.5% 2.1%
E-j 5 4 162 97.6%
:é’“ 1.9% 75.7% 2.4%
3
92.2% 99.4% 97.7%
7.8% 0.6% 2.3%
False Negatives 1 2
(Type I EI‘I‘OI’) Target Class

False Positives
(Type I Error)
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Classification

Confusion Matrix
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Pattern Recognition

Receiver Operating Characteristic (ROC) Curve
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{ Clustering (SOM)

* Quantization Error. The average distance between each
input vector and the closest prototype vector.

» Topographic Error. The proportion of all input vectors for
which the closest prototype vector and the next closest
prototype vector are not neighbors in the feature map

topology.
 Distortion
Prototype closest to the input vector.

0o S
Eg= > > hicqliw_pqlz Cq = argmmj{",—w—pql}
g=1i=1
2
h,; = neighborhood functi N e A
i ghborhood function hi = exp S
2d
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Distortion Measure
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Quantization Error. The average distance
between each input vector and the closest
prototype vector.

Topographic Error. The proportion of all input
vectors for which the closest prototype vector
and the next closest prototype vector are not
neighbors in the feature map topology.

Distortion Measure

Prototype closest to the input vector.
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Prediction

Autocorrelation Function of Prediction Errors.
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Autocorrelation Function of Prediction Errors.
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Prediction
Cross-correlation Between Prediction Errors and Input.
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Prediction

Cross-correlation Between Prediction Errors and Input.
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. . 1)
/ Overfitting and Extrapolation

If, after a network has been trained, the test set
performance 1s not adequate, then there are usually
four possible causes:

» the network has reached a local minimum,

* the network does not have enough neurons to fit the data,
 the network is overfitting, or

* the network is extrapolating.
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If, after a network has been trained, the test
set performance is not adequate, then there
are usually four possible causes:

o the network has reached a local
minimum,

o the network does not have enough
neurons to fit the data,

o the network is overfitting, or

o the network is extrapolating.



Diagnosing Problems

The local minimum problem can almost always be
overcome by retraining the network with five to ten
random sets of initial weights.

If the validation error is much larger than the training error,
then overfitting has probably occurred.

If the validation, training and test errors are all similar in
size, but the errors are too large, then the network is not
powerful enough to fit the data. Add neurons.

If the validation and training errors are similar in size, but
the test errors are significantly larger, then the network
may be extrapolating.

If training, validation and test errors are similar, and the
errors are small enough, then we can put the multilayer
network to use.
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The local minimum problem can almost
always be overcome by retraining the network
with five to ten random sets of initial weights.

If the validation error is much larger than the
training error, then overfitting has probably
occurred.

If the validation, training and test errors are all
similar in size, but the errors are too large,
then the network is not powerful enough to fit
the data. Add neurons.

If the validation and training errors are similar
in size, but the test errors are significantly
larger, then the network may be extrapolating.

If training, validation and test errors are
similar, and the errors are small enough, then
we can put the multilayer network to use.



Novelty Detection

« To detect extrapolation, train a companion competitive
network to cluster the input vectors of the training set.

* When an input is applied to the multilayer network, the
same input is applied to the companion competitive
network.

* When the distance of the input vector to the nearest
prototype vector of the competitive network 1s larger than
the distance from the prototype to the most distant member
of its cluster of inputs in the training set, we can suspect
extrapolation.
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o To detect extrapolation, train a

companion competitive network to
cluster the input vectors of the training
set.

When an input is applied to the
multilayer network, the same input is
applied to the companion competitive
network.

When the distance of the input vector to
the nearest prototype vector of the
competitive network is larger than the
distance from the prototype to the most
distant member of its cluster of inputs in
the training set, we can suspect
extrapolation.
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Sensitivity Analysis

Check for important inputs.
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Check for important inputs.
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