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Linear Transformations
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Hopfield Network Questions

Initial
Condition Recurrent Layer
) r N
p \_’ W \ l—’
Sx 1 M n(r+1) a(r+1) a(r)
e j® Sx1 >7£ Sx1 D 5Sx1
19 b
S 5x1 S
\—/ . J

a(0)=p a(t+1)=satlins(Wa(r)+b)

» The network output is repeatedly multiplied by the weight matrix
W.

» What is the effect of this repeated operation?

» Will the output converge, go to infinity, oscillate?

* In this chapter we want to investigate matrix multiplication, which
represents a general linear transformation.

N .
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/ Linear Transformations \

A transformation consists of three parts:

1. A set of elements X = {x}, called the domain,

2. A set of elements Y = {y.}, called the range, and
3. A rule relating each x.e X to an element y.e Y.

A transformation 1s linear if:

1. For all x, x,e X, A(x,+x,) = A(x,) + A(x,),
2. Forall xeX,ae R , Alax)=aA(x).
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A transformation consists of three parts:

1. A set of elements X = {x}, called the domain,
2. A set of elements Y = {y,}, called the range, and
3. A rule relating each x,e X to an element y.c Y.

A transformation is linear if:
1. For all x,, x,e X, A(x,+x,) = A(x,) + A(x,),
2. Forall xeX,aec R, A(ax)=aA(x).



Example - Rotation

Is rotation linear?

A

Alax)
X = aA(x) |

A(x)

ax

\
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Matrix Representation - (1)

Any linear transformation between two finite-dimensional
vector spaces can be represented by matrix multiplication.

Let {v,, v, ..., v} be a basis for X, and let {u,, u,, ..., u_} be
a basis for Y.

n m
X = Y x5V Y= 2y
i=1 i=1

Let A X—Y
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MATRIX REPRESENTATION
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Let {v,, v, ..., v} be a basis for X, and let {u,, u,, ..., u_} be
a basis for Y.

m

n
X = invi Yy = ZJ’fui

i=1 i=1

Let A X—Y
Ax)=y

A(z ijj] = Zyl.uj

J = i=1

Prepared by Kazim Fouladi | Fall2017 | 2nd Edition

<
’M’?b/



{ -\
Matrix Representation - (2)

Since A is a linear operator,

2 AW = Yoy

Jj=1 i=1

Since the u, are a basis for Y,

m (The coefficients a; will make
Aw,) = X representati
(V) 2 a;;U, up the matrix representation of
i=1 the transformation.)
n m m

2% 2 i = 3 vl

i=1 i=1 i=1
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Since A is a linear operator,

Since the u, are a basis for ¥,

m (The coefficients a; will make
Ay =Y a;;U; up the matrix representation of
i=1 the transformation.)
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i=1 j=1 i=1

Because the u, are independent,

=1
- This 1s equivalent to

matrix multiplication.

ay ayp .-

a a
21 %22
Zal_] ] = Vi I::> . .

_aml A2 -

/
Matrix Representation - (3)

\

b
Y2
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m n m
Z u; Z a;;X; = ZJ’;UI
i=1 j=1 i=1
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Because the u; are independent,

n
z aijxj - yi

j=

—>

This 1s equivalent to
matrix multiplication.

ay ayp -

dyy dpyp -+

_aml A -




/ Summary \

A linear transformation can be represented by matrix
multiplication.

* To find the matrix which represents the transformation we
must transform each basis vector for the domain and then
expand the result in terms of the basis vectors of the range.

AWy = 2 au,

i=1

Each of these equations gives us
one column of the matrix.
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/ Example - (1) \

Stand a deck of playing cards on edge so that you are looking
at the deck sideways. Draw a vector x on the edge of the deck.
Now “skew” the deck by an angle 6, as shown below, and note
the new vector y = A(x). What is the matrix of this transforma-

tion in terms of the standard basis set?
s}
x y=A®

X y=AKX
/ L
Si

N %
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SKEW

Stand a deck of playing cards on edge so that you are looking
at the deck sideways. Draw a vector x on the edge of the deck.
Now “skew” the deck by an angle 6, as shown below, and note
the new vector y = A(x). What is the matrix of this transforma-
tion in terms of the standard basis set?
Sz %
x y=A®

X A y=A(x)
/ e
Sl
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/ Example - (2) \

To find the matrix we need to transform each of the basis vectors.

A(VJ) = 2 aiju,-
i=1

We will use the standard basis vectors for both
the domain and the range.

2
i=1
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SKEW

To find the matrix we need to transform each of the basis vectors.

A(VJ) = 2 aiju,-

i=1

We will use the standard basis vectors for both
the domain and the range.

2
i=1
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/ Example - (3) \

We begin with s;:

If we draw a line on the bottom card and then skew the
deck, the line will not change.

A

Acs)

-
Sl

2
A(s)) = 18,408, = zansi = ap Sy tay S
i=1

This gives us the first column of the matrix.

N .
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We begin with s;:

If we draw a line on the bottom card and then skew the
deck, the line will not change.

A

Acs)

ot
Sl

2
A(s)) = 18,408, = zansi = ap Sy tay S
i=1

This gives us the first column of the matrix.



/ Example - (4) \

Next, we skew s,:

% tan(0) A(s,)
S

0

2
A(sy) = tan(0)s; + 1853 = Y a;,8; = a;,51 +ay,$,
i=1

This gives us the second column of the matrix.
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Next, we skew s,:

% tan(0) A(s,)

S

2
A(sy) = tan(0)s; + 1853 = Y a;,8; = a;,51 +ay,$,
i=1

This gives us the second column of the matrix.
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Example - (5)

The matrix of the transformation is:

\
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The matrix of the transformation is:






/ Change of Basis \

Consider the linear transformation A:X—Y. Let {v,, v,, ..., v. } be
a basis for X, and let {u,, u,, ..., u_} be a basis for Y.

n m
X = inVi y: Zyjui

i=1 i=1

Ax)y=y
The matrix representation is:
dip 9 - AN B
dpy Aoy == dpu(X2] — |72
_aml Ly amn_ _xIL ;yrg

" me P
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CHANGE OF BASIS

Consider the linear transformation A:X—Y. Let {v,, v,, ..., v} be
a basis for X, and let {u,, u,, ..., u} be a basis for Y.

n
X = inVl- y: Zyjui

i=1 i=1

Ax) =y

The matrix representation is:

é ayp dpp - Al n V1
: Ay Aoy -+ Ayl Xo] _ V2
% Dl Dm2 o D) [ Al
X

§ AXx =y

P



/ New Basis Sets

basis for X, and let {w, w,, ..., w, } be a basis for Y.

The new matrix representation is:

1 ] | 1 ]

A Ay - Al |* 1

1 ' | 1 !

Agp Aoy -+ Aol X2 = | V2

1 1 1 1 '

_aml ) "'amn_ _xn_ _ym_
Alxl :yf

Now let’s consider different basis sets. Let { ¢, ¢, ...,

\

t}bea
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NEW BASIS SETS

Now let’s consider different basis sets. Let {¢,, ¢,, ..., t.} be a
basis for X, and let {w,, w,, ..., w_} be a basis for Y.

n m
X = Zx',-ff Yy = Zy'fo

i=1 i=1

The new matrix representation is:

i - a1 -
2 ' ' 1 ' '
2 B I AR S V1 1A Y1
S a' a' a' X' '
5 21 @22 o dop| 2] = |2
2

3 ' 1 1 ' !
E _aml L VI amn_ _xn_ _ynl
g

g A'x' = V'

& y

J—



/ How are A and A' related? \

Expand ¢, in terms of the original basis vectors for X.

¥

fA.
_ — |2
t; = Etﬁ.vj t; = 1.~

4

| mi

Expand w;, in terms of the original basis vectors for Y.

m
sz EWJIUJ Ww; =
j=1
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NEW BASIS SETS

Expand ¢, in terms of the original basis vectors for X.

Wii
m
Wa .
— — 21
W, ZWJIUJ w; :
j=1 ‘
.Wmi.
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/ How are A and A' related? \

B[ - [tl t2 . tn] X = x'ltl +.)(7'2‘:2Jr er'ntn = BrX'

[B;IABt]X' =y

) A = [BWIABJI
A'x' =y
Similarity
Transform
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NEW BASIS SETS

Joliie gk Hlass
Bf = [tl t2 P tl’l] X = x'ltl +X'2t2+ L er'ntn — BIX'

Bw = [w1 Wy ... Wn;l y = B,y

Wi S O s 5o

Ax=y [ > ABx =B,y

[B.'AB,Ix'

Alxl —

Similarity
Transform

calod Jas

'~
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Example - (1)

\

Take the skewing problem described previously, and find the
new matrix representation using the basis set {s,, s, }.

= 0.551 +5)

=St s)

]
1 1

(Same basis for
domain and range.)

/411
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NEW BASIS SETS

Take the skewing problem described previously, and find the
new matrix representation using the basis set {s,, s,}.

SZ-A- tl tl :0.551+Sz

-t [y = -85

tz_[—f > B~ [et] - [05 1] BW_Bt_loiS_J

1] (Same basis for
domain and range.)



/ Example - (2) \

A = [B;ulABr] _ [2/3 2/3] [1 tan0:| [051]
—2/3 1/3]10 1 1 1

A = (2/3)tan6+1 (2/3)tan0
(—2/3)tan® (—2/3)tanb + 1

For 6 = 45°;

Al - [5/3 2/3] A - [1 1]
2/3 1/3 01
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(Y 51Y) Jte
NEW BASIS SETS

A = [B;ulABr] _ [2/3 2/3] [1 tan0:| [051]
—2/3 1/3]10 1 1 1

A = (2/3)tan6+1 (2/3)tan0
(—2/3)tan® (-2/3)tan® +

For 6 = 45°;
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Al - [5/3 2/3] A - [1 1]
2/3 1/3 01



/ Example - (3) \

Try a test vector: X = [Oj X' = [(1)]
- [1 1] H ) H A [5/3 2/3] H ) [5/3]
o1L1 1 273 173110  |-2/3
A
(B 1 L=X y=A(X)
sk
= -
Sl

Check using reciprocal basis vectors:

-1
v - Bly - [0.5 1] [1.5] _ [2/3 2/3] [1.5] _ [5/3]
11 1 273173 L1 2/3
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NEW BASIS SETS
Try a test vector: X = [Of] X = [(IJ
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o P[] e we- [ 2] [
01L1 1 -2/3 1/3]10 -2/3

A
tz 1 tIZX .y=A(X)
SA
o ——
Sl

Check using reciprocal basis vectors:

v = Bly - [0.5 1]_1 [1.5] _ [2/3 2/3] [1.5] _ [5/3]
11 | 273173 L1 —2/3






{ 1\
Eigenvalues and Eigenvectors

Let A:X—X be a linear transformation. Those vectors

ze X, which are not equal to zero, and those scalars
A which satisfy

A(z)=Az

are called eigenvectors and eigenvalues, respectively.

Sz %
X y=Am Can you find an eigenvector

/ for this transformation?
-
Sl

N .
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EIGENVALUES AND EIGENVECTORS
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Let A:X—X be a linear transformation. Those vectors
ze X, which are not equal to zero, and those scalars
A which satisfy

Az)=ANz

are called eigenvectors and eigenvalues, respectively.

z A
]
x y=Awx Can you find an eigenvector

/ for this transformation?
ot
Sl
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Computing the Eigenvalues

Az = Az

[A-M]z =0 wp |lA-21] =0

Skewing example (45°):
|:1—7L I ]
0 1-A
[l—?L 1:|z_|:O] [0 l]z [0 1] Z9 I:Ol R s _|:1]
0 1-A 0 ool ' loo - 0 21 L,

For this transformation there 1s only one eigenvector.

=0 (a-n’=0
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COMPUTING THE EIGENVALUES

Az = Az
[A-AMz=0 mp |(A-A1]]=0

Skewing example (45°):

A_ll 1] [l_x 1]
01 0 1-A
N I & A RO
0 1-4 0 00 0o [z, 0 0

For this transformation there 1s only one eigenvector.

=0 (a-n'=0
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/ Diagonalization \

Perform a change of basis (similarity transformation) using
the eigenvectors as the basis vectors. If the eigenvalues are
distinct, the new matrix will be diagonal.

B - [ ] {z1, 25, ...,2,} Eigenvectors
I VAR /) z,

A, .0, Eigenvalues

A 0 .o 0]
[BflAB] _ .0 ?Lz :()
_0 0 ... 7L’1
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DIAGONALIZATION

Perform a change of basis (similarity transformation) using
the eigenvectors as the basis vectors. If the eigenvalues are
distinct, the new matrix will be diagonal.

(8l o) pans o ol 1 4y il el sla o s Ol sieds 0315 sLasle 3l suliial b

B - ] {z1,2,, ...z} Eigenvectors
|z, 2z, ... 2,

A Ay ...uA) Eigenvalues
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/ Example \
b

=0 A 2h=)(A-2) =0 M [17& I ]Z—H

v [l fIE e a [

e [l e ]

Diagonal Form:  A' = [B'AB] = [1/2 —1/2] [1 1][1 1] _ [0 0]
172 120 bt lo2

N .
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=0 A2 =(M)A-2) =0

ll-x 1]
11

o LB
11 1|z Lo

o [P e
1 -1 1 -1z, o

Diagonal Form: A' = [B'AB] = [1/2 -1/

1/2 1/2

Al

1

1]_
11

:

]
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This chapter will continue the work of Chapter & in laying out the mathe.
matieal foundstions for wl mukym of neural mwwh In Chnpuf & we
reviewed vector spaes; in we

tions as they apply to neural networks.

As we hinve seen in previous chapters, the multiplication of an lnput vector
by o welght mateix is ove of the key operations that i perfornsed by meural
networks. This operation Is oo example of a linear transformation. We
want o lavestigate peosral linear transformations and determine thelr
fundamental charactoristics. The concepts covered in this chapler, such as
wigeavalues, sigenvectors nndt‘!unsw(hllu will be exitical to our under-
standing of such key noural
cluding the Widrow-Hoff rule and 'bulpmpnﬂlmﬂl:ml Hopfisld network
cOnvErgence.
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Martin T. Hagan, Howard B. Demuth, Mark H. Beale, Orlando De Jesus,
Neural Network Design,

2nd Edition, Martin Hagan, 2014.
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