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Signal & Weight Vector Spaces







/ Notation \

Vectors in R". Generalized Vectors.
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/ Vector Space \

1. An operation called vector addition 1s defined such that if
xe X and ye X then xt+ye X.

2. xty=y+x

3. (xty)tz=x+(y+2)

4. There is a unique vector e X, called the zero vector, such
that x+ (=x for all xe X.

5. For each vector there is a unique vector in X, to be called
(-x), such that x+(-x)=10.
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1. An operation called vector addition 1s defined such that if
xe X and ye X then xtye X.

Xty=ytx

3. (xty)tz=x+(y+2)

4. There is a unique vector e X, called the zero vector, such
that x+ 0=x for all xe X.

5. For each vector there is a unique vector in X, to be called
(-x), such that x+(-x)=10.
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9.

Vector Space (Cont.)

An operation, called multiplication, is defined such that
for all scalars a € F, and all vectors xe X, a xe X.

For any xe X', 1x=x (for scalar 1).

For any two scalars a e F'and b € F, and any xe X,
a(bx)=(ab)x.
(a+b)x=ax+bx.

10. a(xty)=ax+ay

-\
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10. a(xty)=ax+tay

An operation, called multiplication, is defined such that
for all scalars a € F', and all vectors xe X, a xe X.

For any xe X', 1x=x (for scalar 1).

For any two scalars a e Fand b € F), and any xe X,
a(bx)=(ab)x.
(a+b)x=ax+bx.



/ Examples (Decision Boundaries) \

Is the p,, p; plane a vector space?

Is the line p, +2p,-2=0 a vector
space?

T 2 W
P
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/ Other Vector Spaces \

Polynomials of degree 2 or less.

X =2+t+4s

y = 1+5¢

Continuous functions in the interval [0,1].

A SO

AN
"
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Polynomials of degree 2 or less.

X =2+t+47

y = 1+5¢
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Continuous functions in the interval [0,1].
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/ Linear Independence \

If
a\ X | +asXo+-+a x, =0

implies that each

is a set of linearly independent vectors.
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If
a\ X1+ ayX,+-+ax, =10

implies that each

is a set of linearly independent vectors.
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/ Example (Banana and Apple) \

Let

a\prtapr = 0

—a1+a2 0
a) tap -
—ay +(-ay) L

This can only be true if

=

a1=a2=0

Therefore the vectors are independent.
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-1 1
P, =11 P, = | 1
—1 —1

Let

a\p1ta,pr = 0

—a1+a2 0
a1+a2 0
—ay +(—ay) 0

This can only be true 1f

al=a2=0

Therefore the vectors are independent.
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x, =1+t+1
X, =2+2t+1
x; =1+¢

ax, +a,x, ta;x; =0






/ Spanning a Space \

A subset spans a space if every vector in the
space can be written as a linear combination of
the vectors in the subspace.

X =x Uy +xUy+---+tx, Uy
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/ Basis Vectors \

« A set of basis vectors for the space Xis a set
of vectors which spans X and 1s linearly
independent.

« The dimension of a vector space, Dim(X), 1s
equal to the number of vectors in the basis
set.

« Let Xbe a finite dimensional vector space,
then every basis set of X has the same
number of elements.
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A set of basis vectors for the space X'is a set of vectors which spans
X and is linearly independent.
Ll slaslo s ulass = X (sLad uay
The dimension of a vector space, Dim(X), is equal to the number of
vectors in the basis set.
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Let X be a finite dimensional vector space, then every basis set of X
has the same number of elements.



/ Example \

Polynomials of degree 2 or less.

Basis A:

u1:l Uzzf U3:t

Basis B:

Uy = 1—t  Up=1+1 Uy=1+1+7

(Any three linearly independent vectors
in the space will work.)

How can you represent the vector x = 1+2¢ using both basis sets?

\ .
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Polynomials of degree 2 or less.

Basis A:

2
u1=1—t U2:l+f U3=1+t+f

(Any three linearly independent vectors
in the space will work.)
(ol J 528 o8 Liad ol Ho (o J8ia Hlays 4w 5a)

How can you represent the vector x = 1+2¢ using both basis sets?






/ Inner Product / Norm \

A scalar function of vectors x and y can be defined as
an inner product, (x,y), provided the following are
satisfied (for real inner products):

()= ().

* (xaytby,) =a(x,y) +b(x.y,) .

* (x,x) =0, where equality holds iff x= 0.

A scalar function of a vector x is called a norm, ||x||,
provided the following are satisfied:

« |Ix=0.

. |M|=0iffx=0.

* |la x| = |a| ||x]| for scalar a .

Nl IV
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INNER PRODUCT

A scalar function of vectors x and y can be defined as
an inner product, (x,y), provided the following are
satisfied (for real inner products):

¢ () = (049).

* (xaytby,) =a(x,y;) + b(x.y,) .

* (x,x) =0, where equality holds iff x= 0.
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A scalar function of a vector x is called a norm, ||x||,
provided the following are satisfied:

* |[x][=0.

« |[x|=0iffx=20.

* ||a x|| = |a| ||x]| for scalar a .

A=+ A




/ Example \

Standard Euclidean Inner Product

T
X'y =Xy txyyttx,y,

Standard Euclidean Norm

Il = (. 0™

Ix|| = (xX)2= (x> + x> +...+ x ) 1”2

Angle
cos(6) = (x,»)/(|1x[ 111
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Standard Euclidean Inner Product
T
XY= Xy txy,ttxy,

Standard Euclidean Norm

Il = (s 0"

Ix|| = (xX)2=(x2+ x>+ .. +x2) 12

Angle

cos(0) = (x. /(1| [11))

Clogy sl b o

(x.3) = [ x(O)y()dr






/ Orthogonality \

Two vectors x,y € X are orthogonal if (x,y) =0 .

|

Example

Any vector in the p,,p, plane is
W orthogonal to the weight vector.
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Two vectors x,y € X are orthogonal if (x,y) =0 .
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Example

WL p,p,

Any vector in the p,,p; plane is

p -

W orthogonal to the weight vector.
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/ Gram-Schmidt Orthogonalization \

{ Independent Vectors I Orthogonal Vectors }

Y1 Y25 Yn Vi, Vo o, Vy,

Step 1: Set first orthogonal vector to first independent vector.
Vi=nW
Step 2: Subtract the portion of y, that is in the direction of v,.
Vo = Y2—aVy
Where a is chosen so that v, is orthogonal to v;:
(V,V2) = (Vi.V2—aVy) = (V,V2) —a(V,Vy) = 0

a = (VlayZ)
(Vlnvl)
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ORTHOGONALIZATION

Independent Vectors I Orthogonal Vectors

Y1,y,2>--- 7y;1 Vl,V2,... ,Vn

35S o welatie slala s 5 shde gane 4 Ol 550 1 JBiue (slajlas 5l de sana 5o
S Wl g3 1 (sl slasi olen oS

Prepared by Kazim Fouladi | Fall2017 |2nd Edition

-
’M’?b/



Ya LG gl SLOAS
Cadil—al ) (5 jluaaladio

Y5
GRAM-SCHMIDT ORTHOGONALIZATION

Independent Vectors I Orthogonal Vectors

Y1,y,2,--- ayn Vl,V2,... ,Vn

Step 1: Set first orthogonal vector to first independent vector.

VI = Y1 eedase o1 s Sl ool b ssbuss 1 s aslaio e
Step 2: Subtract the portion of y, that is in the direction of v,.
Vy = Ya—aVi  peiSie g 0TI sl Vi sl 53 € 35 3 o
Where a is chosen so that v, is orthogonal to v;:
(Vi,Va) = (Viya—aVy) = (Vi) —a(V,Vy) = 0

4= (V1,)2)
(V1,Vy)

:Jﬁ VZ‘)..IJJAL Vldddﬂw%&_\“s‘ﬁﬁha
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/ Gram-Schmidt (Cont.) \

Projection of y, on v;:

(Vlnyz) v,
(Vlsvl)

Step k: Subtract the portion of y, that is in the direction of all
previous v;.

k—1
_ (Viayk)

Vie = Vi~ Vi
f21 (Visvi)
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Projection of y, on v;,: sdie sl V) 555 Yy SSS!
2 1
Vi,
(V1.Y2) v,
(Vi,Vy)

Step k: Subtract the portion of y, that is in the direction of all
previous v;.

k-1
_ (bek)
Vi=Vi— ), ——Vi
fgl (Vi! Vi)
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Step 1. vV, =Yy, = H

Y

Y v
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/ Example (Cont.) \

Step 2.
_ _‘@ |1 _[1 1][;]1 1] los| _ [
R [2] i I]H u [2] [0.5] [1.5]
A
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/ Vector Expansion \

If a vector space X has a basis set {v, v,, ..., v, },
then any xe X has a unique vector expansion:

n
X = D x,Vi=x Vi +x,Vy+ - +x,V,
i=1

If the basis vectors are orthogonal, and we
take the inner product of v, and x:

n n
(VjsX) - (Vjaz vai) - ZXE(VJ‘,VI') - XJ(Vjsvj)
i=1 i=1

Therefore the coefficients of the expansion can be computed:

X. = V%)
’ (V,,V))
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If a vector space X has a basis set {v,, v,, ..., V, |,
then any xe X has a unique vector expansion:

n
X = ) xVi=x Vitx,Vyttx,V,
i=1

If the basis vectors are orthogonal, and we
take the inner product of v; and x:

n n
(VipX) = (Vi 2 X, V) = Dx(ViV) = x,(ViV) 0% )= (0,v) =001,
i=1 i=1

Therefore the coefficients of the expansion can be computed:

X, = WiX)

Vsl b o s
J
(Vv



/ Column of Numbers \

The vector expansion provides a meaning for
writing a vector as a column of numbers.

n
X = D x;Vi=xVi+x,Va+ - +x,V,
i=1

To interpret x, we need to know what basis was used
for the expansion.
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The vector expansion provides a meaning for
writing a vector as a column of numbers.

n
X = Y x,Vi=x Vi+x,Vat+x,V,
i=1

To interpret x, we need to know what basis was used
for the expansion.
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Reciprocal Basis Vectors

Definition of reciprocal basis vectors, r;:

(r,v; =0 i#]
=1 i=j

where the basis vectors are {v, v,, ..., v, }, and
the reciprocal basis vectors are {r;, ,, ..., I,}.

For vectors in R" we can use the following inner product:
T
(I“;,Vj) = I, Vj

Therefore, the equations for the reciprocal basis vectors become:
R'B=1 —> R’ =-B'

B = [V1 v, ... Vn] R = [rl r ... rn]
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Definition of reciprocal basis vectors, r:
(ria VJ) =0 l;&.}
where the basis vectors are {v,, v, ..., v }, and

the reciprocal basis vectors are {r, r,, ..., I, }. Jsme ot stasiss

For vectors in R" we can use the following inner product:
T
(rf,V_j) = VJ‘

Therefore, the equations for the reciprocal basis vectors become:

R'B=1 —> R’ =B" o Ty slons (55 9

B = |:v1 v, vn] R = [rl r, ... rn]



/ Vector Expansion \

X =x,Vitx,Vot-+tx V,

Take the inner product of the first reciprocal basis vector
with the vector to be expanded:

(I,X) = x (I, V) +x,(r, Vo) + - +x,(I,V,)

By definition of the reciprocal basis vectors:
(r,Va) = (Vi) = - =(I,Vy) =0
(rypvy =1

Therefore, the first coefficient in the expansion is:

X = (rle)

In general, we then have (even for nonorthogonal basis vectors):

X; = (I;.X)

\ .
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X =x,Vitx,Vot-+tx V,

Take the inner product of the first reciprocal basis vector
with the vector to be expanded:

(I,X) = x (I, V) +x,(r, Vo) + - +x,(I,V,)

By definition of the reciprocal basis vectors:
(r,Va) = (Vi) = - =(I,Vy) =0
(rypvy =1

Therefore, the first coefficient in the expansion is:

X = (rle)

In general, we then have (even for nonorthogonal basis vectors):
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/ Example \
Basis Vectors:

o [ S

Vector to Expand:
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/ Example (Cont.) \

Reciprocal Basis Vectors:

-1
RE_12] _]o 1 — r, - | 05
10 0.5 -0.5 1 0.5

Expansion Coefficients:

_1]_2
| 2

v T s 711
Xy = IpX = [0.5 —0.3] [ 2] =-15

Matrix Form:

X’ = RTXS _ Bflxs _ 0 1] _
0.5 -0.5]| 2 —1.
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Reciprocal Basis Vectors:

T
10 0.5 -0.5

Expansion Coefficients:
v T s _ 11 _
2
v T s -1
for - bod[] s

Matrix Form:

_ RTx.s' _ B—lxs _ 0 1111 _
0.5 -0.5]] 2 —1.

BiSE

:
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Example (Cont.)

X = (—1)51+252 = 2 Vl- 1.5 V2

x' = 2
~1.5

The interpretation of the column of numbers
depends on the basis set used for the expansion.

\
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VECTOR EXPANSION
X = (—I)SI ‘*'252 = 2 V] - 1.5 V2
A

toly suads
§ | v 2
— X = =
x'=B7'x’ [ 2} * [—1.5]

The interpretation of the column of numbers
depends on the basis set used for the expansion.
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1t ia clear from Chapters 3 and 4 that it i very useful to think of the inputs
and outputs of o neural network, and the rows of a weight matrix, as vee-
torz. In this chapter wa want ta examins theas vector spaces in detail and
ta reviow thoss properties of vector spaces that are mast helpful when an-

apply these definitions to specific neural notwork problems. The contepts
thiat are discussnd In this chapter and in Chapter 8 will be used extensively
throughout the remaining chapters of this book. They are eritical to our un-
deratanding of why neural networks work.

&1

Martin T. Hagan, Howard B. Demuth, Mark H. Beale, Orlando De Jesus,
Neural Network Design,

2nd Edition, Martin Hagan, 2014.

Chapter 5

Online version can be downloaded from: http://hagan.okstate.edu/nnd.html
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