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Example of fictitious play.

The matrix 1s shown above and the values at successive times,

each on a different row, are shown on the table above.

The first row corresponds to time 0.

Note that only i is using fictitious play, j plays the values as in the s; column.
i’s first two actions are stochastically chosen.
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b | 1,1 0,0 a c 3 2.9 ! 2.9
b d 3 3.5 3 3.5

Example of fictitious play.
A game matrix with an infinite cycle.
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Evolutionary Stable Strategy (ESS)

A stable steady state is one
that, after suffering from a
small perturbation, is pushed
back to the same steady state
by the system’s dynamics.
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Simplex Plot:

Visualization of the evolution of
populations in replicator dynamics

of the above game (with 3 actions):
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* The US-L* algorithm infers a DFA that is consistent with the sample of the
opponent’s behavior

* The US-L* algorithm extends the model according to the three guiding
principles:
* Consistency: The new model must be consistent with the give sample
* Compactness: A smaller model is better
* Stability: Should be similar to the previous model as much as possible
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CHAPTER 7

Learning

In this chapter we briefly address the issue of learning, in particular reinforcement learning
which allows agents to learn from delayed rewards. We outline existing techniques for single-
agent systems, and show how they can be extended in the multiagent case.

i | REINFORCEMENT LEARNING

Reinforcement learning is a generic name given to a family of techniques in which an agent
tries to learn a task by directly interacting with the environment. The method has its roots in the
study of animal behavior under the influence of external stimuli (Th ey ). In the last
two decades, reinforcement learning has been extensively studied in artificial intelligence, where
the emphasis is on how agents can improve their performance in a given task by perception
and trial-and-error. The field of single-agent reinforcement learning is mature, with well-
understood theoretical results and many practical techniques (Hertsck Isitsiklis,

to, 1 ).

On the other hand, multiagent reinforcement learning, where several agents are simul-
taneously learning by interacting with the environment and with each other, is still an active
area of research, with a mix of positive and negative results. The main difficulty in extending
reinforcement learning to multiagent systems is that the dynamics of concurrently learning
systems can be very complicated, which calls for different approaches to modeling and analysis
than those used in single-agent systems.

In this chapter we will outline the theory and some standard algorithms for single-
agent reinforcement learning, and then briefly discuss their multiagent extensions. We must
unavoidably be laconic as the literature on the topic has grown large; the reader is referred to

the book of Gree (2

7} for a more detailed treatment.
7.2 MARKOV DECISION PROCESSES
In Chapter 2 we described a generic utility-based framework that allows an agent to behave

optimally under eonditions of uncertainty. In this section we describe a framework that allows
an agent to Jearn optimal policies in a variety of tasks.
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Chapter 5

Learning in Multiagent Systems

Machine learning alporithms have achieved impressive results. We can write software
that processes larger amounts of data than any buman can and which can learn
to find patterns that escape even the best experts in the fleld. As such, it is only
reasonable that at some point we will want to add leaming agents to our multinpent
systemn. There are several scenarics in which one might want to add these learming
agents.

Many multiagent systems have as their goal the exploration or monitoring of 2
given space, where each agent has only alocal view of its own area. In these scenarios
we can envision that each agent learns a map of its world and the apents further
share their maps in order to aggregate a global view of the field and cooperatively
decide which aress need further exploration. This is a form of cooperative learning.

Another seenario is in competitive environments each selflsh agent tries to maxi-
mize its own utility by learning the other agents” behaviors and weaknessos. In thess
environments we are interested in the dynamics of the system and in determining
if the agents will reach a stable equoilibrium. At their simplest these sconarios are
repeated pames with learning agents.

To summarize, agents might learn beeanse they don't know everything about
their environment or because they don't know how the other apents behave, Fur-
thermore, the leaming can happen in a cooperative environment where we also want
the agents to share their learned knowledge, or in a competitive environment where
we want them to best each other. We present analysis and algorithms for learning
agents in these various environment.

5.1 The Machine Learning Problem

Before delving into multiapent leaming we fist present 3 high level view of what
we mean by machine learning. The word “learning™ a5 used casually can have
many different meanings, from remembering to deduction, bt machine learning
researchers have a very specifle definition of the machine learning problem.

The goal of machine leaming research is the development of algorithms that
incrense the ability of an agent to match a sst of inputs to their corresponding
oatputs (Mitchedl, 1997). That is, we assume the existence of a large set of examples
E. Each example e € E is a pair € = {a, b} where o € A represents the input the
agent receives and b B is the outpat the agent should produce when receiving this
input. The agent must find o fonetion § which maps 4 — B for a5 many examples
of A as possible. For example, A could be a set of photo portraits, B could be the
set {male, fomale}, and each element e tells the program if a particular photo is
of 1 man or of a woman. The machine leaming alporithm would have to learn to
differentiate betwesn o photo of 2 man and that of 2 woman.

In a comtrolled test the set E is usually first divided imo o training set which
is used for training the agent, and a testing set which &5 used for testing the per-
formance of the agent. However, in some scenarios it is impossible to first train
the agent and then test it. In these cases the training and testing examples are
interleaved. The apent’s performance is assessed on an ongoeing manner.

Fipure 5.1 shows a graphical representation of the machine leaming problem. The

59
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Learning in Multiagent Systems

Sandip Sen and Gerhard Weiss

6.1

Introduction

and intelligence are intimately related to each other. It is usually

stem capable of learning deserves to be called intelligent: and conw

em being considered as intelligent is, among other things, usually expected to

be able to learn. Learning always has to do with the self improvement of future

behavior

1 on past experience. More precisely, according to the standard
artificial intelligence (Al) point of view learning can be informally defined as follows:
The aequisition of new knowledge and motor and cognitive skills and
the incorporation of the aequired bnowledge and skills in future system
activities, provided that this aeguisition and incorporation is conduwcted

by the systean itself and leads to an improvement i its performance,

This definition also serves as a basis for this chapter. Machine learning (ML), as

one of the core fields of AL is concerned with the computational aspects of learning
in natural as well as technical systems. It is beyond the scope and intention of

this chapter to offer an introduction to the broad and well developed field of ML.
Instead, it introduces the reader into learning in multingent systems and, with that,
ubfield of both ML and distributed AL {DAL).

that it can be understood without requiring familiarity with ML,

into @ The chapter is written such

The intersection of DAL and ML constitutes a young but important area of

ion. The DAL and the ML communities Ay ignored this

and appli

for a long time (there are exceptions on both sides, but they just prove the

rule). On the one hand, \\Urk in DAL was mainly converned with multingent systems

structural o ion and functional behavior typically were determined

in detail and therefore were more or less fixed. On the other hand, work in ML
primarily dealt with learning as a centralized and isolated process that oceurs in

intelligen doalone systems. In the past this mutual ignorance of DAL and ML

rning in multingent systems receives broad

and steadily increasing attention. This is also reflected by the growing number of

publications in this a 43, 45, G4, 66, 68] for collections of papers

related to learning in multi; There are two major reasons for this

attention, both showing the importance UF bringing DAL and ML together:




