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Foreword

One of the most important things an architect can do is reflection. That is, examine
systems, organizations, people and ask “What alternatives were considered and why
was that particular decision made?” Thinking about the response gives an architect
insight into the motivations and decision processes that others have used and this, in
turn, should help the architect make better decisions in the future. A pre-requisite for
doing this type of reflection is that the decisions and alternatives are made explicit.
One venue that gives an architect an opportunity to do this type of reflection is dur-
ing an architectural evaluation. Another venue is from a book such as this. This book
lays out the design process used in building a collection of multi-agent systems.

In addition to providing a case study of a design process and the rationale for
the design decisions, the topic of the book also is of great interest. Systems of
the future will increasingly have the characteristics of the autonomous systems
described here: they are simultaneously becoming more interconnected and more
autonomous. Think of your smart phone that is mostly connected but can oper-
ate many functions while it is disconnected. These systems of the future will also
increasingly operate without central control. Again, the telephone system and how
cellular communication is managed provides a good example of this phenomenon.

Problems of connectivity raise issues of a node discovering that it is discon-
nected, other nodes discovering that a particular node is disconnected, how the
node operates while it is disconnected, and reconnecting the node. The case study
provides solutions to this problem in the context of autonomous vehicles within a
limited geographic area. The essence of the solution provided—define the concept
of a neighborhood for a node and treat neighboring nodes in a different fashion from
other nodes—seems like it is more general than the particular application in the case
study but that is still to be determined.

Communication and protocols seem to be basic to providing solutions to rel-
atively autonomous nodes, and the structure of the middleware for such systems
is of interest independently from the particular application area. The middleware
needs to provide not only communication structure and neighborhood definition but
also security and authentication services. The case study describes a middleware
structure, and a portion of the reflection process of the architect is to ask not only
about the rationale for the specific decisions made but also how well these deci-
sions will generalize to other situations that the architect can envision. Designing
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systems is one aspect of the work of an architect but as stated in the introduction
“Developing multi-agent systems software is 95% software engineering and 5%
multi-agent systems theory.” All of the portions of the software engineering life
cycle must operate efficiently in order for systems to be effectively constructed.
This means that the important requirements must be identified, a design generated,
the design documented and evaluated, and the system constructed from the design.
Each of these topics is treated in the book.

• The important requirements are typically the quality attribute requirements. Elic-
iting these requirements requires a different mindset from the normal require-
ments process whether through a formal process, through user stories, or through
some other technique. Quality attribute requirements tend to be the requirements
that are taken for granted by the user until they have not been met.

• Documentation is important for helping the designer think through difficult
design issues and for communicating the design to others. From the perspective
of a reflecting architect, the documentation provided in this book provides some
understanding of the division of functionality and design rationale.

• Evaluation of a design is an important step for verifying nothing has been missed
by the architect. An evaluation is an application of the multiple eyes principle—
get an outside, knowledgeable perspective to look at the design. As was pointed
out, this process takes time. Partially this is because it takes time to educate the
outside eyes and partially because evaluation requirements look at the design
with a variety of different concerns. In the ATAM process, these concerns are
expressed as scenarios but, in general, looking at a complicated design in suffi-
cient detail to determine potential problems will take time. This time could be
done as one activity when the outside eyes have to travel, as in the ATAM, or the
time could be spread over a collection of shorter activities when the outside eyes
are generally available.

In summary, this book is interesting both for its expressed topic—the design of
multi-agent systems—and as a case study where a reader can read, and reflect on,
the rationale for the approach taken in building such a system.

Pittsburgh, Pennsylvania, USA Len Bass
October 23, 2009
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Chapter 1
Introduction

A well-known claim for multi-agent systems is that they are especially suited to
develop software systems that are decentralized, can deal flexibly with dynamic
conditions, and are open to system components that come and go. While we endorse
this claim, developing real-world multi-agent systems taught us that achieving these
goals is a complex engineering problem. Our experience with real-world multi-agent
systems development can be captured succinctly in the following statement:

Developing multi-agent systems software is 95% software engineering and 5% multi-agent
systems theory.

In this book, we present architecture-based design of multi-agent systems, an
architecture-centric approach for developing real-world multi-agent systems. The
approach integrates multi-agent system concepts with state-of-the-art principles
and methods from mainstream software architecture and middleware. The practical
applicability of the approach is demonstrated for an industry-strength application in
the domain of automated transportation systems.

The objective of the book is twofold. On the one hand, we provide a guide to
software engineers for the architectural design of real-world multi-agent systems.
On the other hand, we give a detailed description of how we have used this guide
for developing a complex multi-agent system in an industrial setting.

We start by introducing two fields of software engineering that are central in
architecture-based design of multi-agent systems: software architecture and mid-
dleware. Next, we explain how and why our perspective on engineering multi-agent
systems differs from existing agent-oriented methodologies. Then, we introduce
the automated transportation system where we use a case study to demonstrate the
applicability of architecture-based design of multi-agent systems. The introduction
concludes with an overview of the book.

1.1 Software Architecture and Middleware

Two fields of software engineering are central in this book: software architecture and
middleware. In this section, we introduce both fields and illustrate their importance
with respect to the design of real-world multi-agent systems.

D. Weyns, Architecture-Based Design of Multi-Agent Systems,
DOI 10.1007/978-3-642-01064-4_1, C© Springer-Verlag Berlin Heidelberg 2010
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1.1.1 Software Architecture

Since the mid-1990s, software architecture has been the subject of increasing inter-
est in software engineering research and practice. Software architecture is a corner
stone for ensuring that systems achieve their quality and functional goals and ulti-
mately serve an organization’s business and mission goals. Software architecture
provides the required level of abstraction and generality to deal with the increasing
challenges of adaptation required in distributed software applications [91]. Bass,
Clements, and Kazman define software architecture as “the structure or structures
of the system, which comprise software elements, the externally visible properties of
those elements, and the relationships among them” [21]. Software elements provide
the functionality of the system, while the required quality attributes (performance,
adaptability, usability, modifiability, etc.) are primarily achieved through the struc-
tures of the software architecture. Software architecture constitutes a model for how
a system is structured and works. This model is transferable to other systems with
similar requirements and can promote large-scale reuse of design. Besides technical
value, software architecture is also considered as a key vehicle for communica-
tion among stakeholders. Software architecture provides a basis for creating mutual
understanding and consensus about the software system [46].

During architectural design, architects apply proven architectural approaches to
transfer the system requirements into appropriate software structures. Architectural
patterns offer well-established solutions to architectural problems. An architec-
tural pattern expresses a fundamental structural organization schema for a soft-
ware system which exhibits known quality attributes. For example, layers is a
well-known pattern that structures a software system into an appropriate number
of layers and places them on top of each other. The services of each layer imple-
ment a strategy for combining the services of the layer below in a meaningful
way. Layers enhance maintainability, extensibility, and reusability of the system.
However, applying the layer pattern can be expensive on system resources affecting
performance.

A multi-agent system is in essence a system that is structured as a set of
autonomous agents that are able to flexibly adapt their behavior to changing operat-
ing conditions. Durfee and Lesser define a multi-agent system as “a loosely coupled
network of problem solvers (agents) that interact to solve problems that are beyond
the individual capabilities or knowledge of each problem solver ” [52]. Characteris-
tics of multi-agent systems are as follows: (1) each agent has incomplete information
or capabilities for solving the problem and, thus, has a limited viewpoint; (2) there
is no system global control; (3) data is distributed; and (4) computation is asyn-
chronous. Multi-agent systems are characterized by specific intra-agent and inter-
agent structures. At the level of individual agents, many different architectures have
been developed, ranging from simple reactive agents to complex reasoning agents.
At the system level, the multi-agent system can be structured as an organization of
selfish agents that play different roles in the organization pursuing their own inter-
ests. Other multi-agent systems consist of cooperative agents that aim to achieve a
common goal. Agents can interact in different ways: via a high-level communication
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language and specific interaction protocols or via manipulating marks in a shared
coordination medium. Since specific multi-agent system structures imbue the soft-
ware systems with certain qualities, while making certain tradeoffs, a primary focus
of multi-agent system engineering is on the software architecture of the system.
Multi-agent systems are known for quality attributes such as adaptability, openness,
robustness, and scalability, making multi-agent systems particularly interesting to
deal with the demanding challenges of complex distributed software applications.

In Chap. 3, we explain how design expertise in multi-agent systems can be cap-
tured as architectural patterns. We present a number of architectural patterns for a
family of multi-agent systems. These patterns embody a set of architectural best
practices derived from the experiences with developing various multi-agent sys-
tem applications. In Chap. 4, we explain how architectural patterns play a key role
in transferring stakeholder requirements into appropriate software structures. The
primary structures of a multi-agent system are critical for the achievement of the
system’s quality attributes. Chapter 7 elaborates on the evaluation of multi-agent
system architectures. Architectural evaluation allows determining the tradeoffs and
risks of architectural decisions with respect to satisfying important quality attribute
requirements.

1.1.2 Middleware

Middleware is the software layer that lies between the operating system and the
application components. Middleware provides high-level abstractions to support the
coordination of distributed software components. With networks becoming increas-
ingly pervasive, middleware appears as a major building block for the development
of complex distributed software systems [77]. Since multi-agent systems are par-
ticularly useful for problem domains characterized by highly dynamic operating
conditions and inherent distribution of resources, it is clear that any multi-agent
system application should deal with the distribution concern.

Domain-specific middleware for multi-agent systems typically consider agent
communication as the prior means for agent coordination. A communication infras-
tructure usually provides a management system that enables agents to register and
locate one another and a message transport system. Coordination infrastructures
offer an alternative for direct message exchange allowing agents to interact indi-
rectly via a shared medium. Two different examples of coordination infrastruc-
tures are an electronic institution that acts as a governor for interaction and digital
pheromones that agents use to mark dynamic paths to areas of interest similar as
social ants. Since interactions necessary for coordination often take place in a con-
current and distributed environment that is unreliable, middleware is a crucial aspect
in software development of multi-agent systems. Concerns such as security, persis-
tency, and transactional behavior are typically supported by domain-independent
middleware services. Since these concerns often crosscut the system, vertical inte-
gration with domain-specific middleware is an important aspect of the design of any
real-world multi-agent system.
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In Chap. 5, we elaborate on the role of middleware for supporting the devel-
opment of distributed multi-agent systems. We take a closer look at the multiple
layers of middleware in distributed software systems in general, and we zoom in
on middleware for multi-agent systems. We explain in detail the middleware used
in the case study, called ObjectPlaces. ObjectPlaces proposes two new program-
ming abstractions, view and coordination role, to support the development of mobile
multi-agent system applications.

The first abstraction, a view, is an automatically up-to-date collection of data
objects that are copies or representations of data objects available on a set of nodes
in the network. The middleware automates gathering the data objects from a set
of nodes and maintains the view in the face of dynamically changing availability
of the data objects. The second abstraction, a coordination role, encapsulates the
behavior of a component of the application engaging in a protocol. The middleware
automates the setup and maintenance of an interaction session between a number of
participating components in the mobile network, in the face of a frequently changing
number of participants.

The ObjectPlaces middleware encapsulates the tedious management tasks asso-
ciated with distribution in mobile multi-agent systems. The middleware has sig-
nificantly reduced the complexity of tackling distributed coordination problems in
the case study. In Chaps. 5 and 6 we show how the middleware has simplified the
development of the application components in the automated transportation system
for collision avoidance and task assignment, respectively.

1.2 Agent-Oriented Methodologies

Since the early 1990s the idea that multi-agent systems are a radically new way of
engineering software has dominated research and practice in agent-oriented soft-
ware engineering. Wooldridge et al. [177] state that

There is a fundamental mismatch between the concepts used by object-oriented developers
and other mainstream software engineering paradigms, and the agent-oriented view. [...]
Existing software development techniques are unsuitable to realize the potential of agents
as a software engineering paradigm.

Zambonelli and Omicini [182] state that

Agent-based computing can be considered as a new general-purpose paradigm for software
development, which tends to radically influence the way a software system is conceived and
developed.

This vision has led to the development of numerous multi-agent system method-
ologies. Some of the methodologies focus on particular phases of the software devel-
opment process, e.g., Gaia [177, 181]. Others cover the full software development
life cycle, e.g., Tropos [64]. Some of the proposed methodologies adopt mechanisms
and practices from mainstream software engineering. Prometheus [119] is inspired
by object-oriented mechanisms. MaSE [174] uses practices of the Unified Process.
Adelfe [25] uses constructs of the Unified Modeling Language. However, nearly all
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methodologies take an independent position, barely embedded in mainstream soft-
ware engineering practice. Studying literature reveals that very limited results have
been obtained in the application of these methodologies to real-world problems.
A notable exception is the DACS methodology (Designing Agent-based Control
Systems), introduced by Bussmann et al. [38], that was applied in the design of a
multi-agent system for manufacturing control at DaimlerChrysler.

Our perspective on engineering multi-agent systems starts from the viewpoint
that multi-agent system engineering fits well within mainstream software engineer-
ing. This vision is based on the observation that multi-agent systems are essentially
a way to structure a software system, making software architecture of paramount
importance in engineering multi-agent systems.

By putting software architecture and middleware at the heart of the engineer-
ing process, architecture-based design of multi-agent systems places multi-agent
systems in a larger context of software engineering. This perspective provides at
the same time insights and opportunities for both multi-agent system and main-
stream software engineers and researchers. Considering multi-agent systems from a
software architecture perspective does not delude existing results of agent-oriented
software engineering. On the contrary, agent-oriented software engineering has
developed a wide body of valuable concepts and techniques for engineering agent
behavior, adaptation, advanced interactions, organizations, learning, etc. This
domain-specific know-how is required to support architects and developers of multi-
agent systems. The architecture-based approach for developing multi-agent systems
presented in this book integrates such domain-specific concepts and techniques with
mainstream software engineering methods and practices.

1.3 Case Study

Throughout this book, we use an automated transportation system as a case study.
The description of the architectural design and development of this application
demonstrate the practical applicability of architecture-based design of multi-agent
systems. The case study was developed between 2004 and 2007 by a team of engi-
neers and developers of Egemin, a leading company that provides full life cycle sup-
port for automated transportation systems [53], and researchers of DistriNet Labs.
This section introduces the application and motivates the use of a multi-agent system
architecture.

An automated transportation system consists of a number of automatic guided
vehicles (AGVs) that need to work together to transport loads in an industrial envi-
ronment. Transports are generated by client systems, typically an enterprise resource
planning (ERP) system. The main functionalities that an AGV transportation sys-
tem has to fulfill are assigning incoming transport tasks to an appropriate AGV,
routing the AGVs through the warehouse efficiently while avoiding collisions and
deadlocks, and recharging the AGVs’ batteries.

An AGV transportation system has to deal with dynamic and changing operating
conditions. The stream of transports that enter the system is typically irregular and
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unpredictable, AGVs can leave and re-enter the system for maintenance, production
machines may have variable waiting times, etc. All kinds of disturbances can occur,
supply of goods can be delayed, certain areas in the warehouse may temporarily be
closed for maintenance services, loads can block paths, AGVs can fail, etc. Despite
these challenging operating conditions, the system is expected to operate efficiently
and robustly.

Traditionally, the AGV systems deployed by Egemin are directly controlled by a
central server. The server plans the schedule for the system as a whole, dispatches
commands to the AGVs, and continually polls their status. This results in reliable
and predicable solutions. The central point of control also enables easier diagnosis
of errors. However, a shift in user requirements challenges the centralized archi-
tecture. Customers increasingly request for self-managing systems, i.e., systems
that are able to adapt their behavior with changing circumstances autonomously.
Self-management with respect to system dynamics translates to two specific quality
requirements: flexibility and openness. Flexibility refers to the system’s ability to
deal with dynamic operating conditions. Openness refers to the system’s ability to
deal with AGVs leaving and entering the system.

To deal with these new quality requirements, a radically new architecture was
conceived based on situated multi-agent systems. Applying a situated multi-agent
system opens perspectives to improve flexibility and openness of the system: the
AGVs can adapt themselves to the current situation in their vicinity, order assign-
ment is dynamic, the system can deal autonomously with AGVs leaving and re-
entering the system, etc. However, introducing a decentralized architecture may
have a number of implications, in particular decentralized decision making may
have an impact on the overall efficiency of the system such as throughput and band-
width usage. These are critical issues that have to be considered during the design
and development of the multi-agent system.

The software system was implemented on a prototype setup with real AGVs and
tested in larger, industrially used simulations. The design and implementation of the
AGV control system needed 8+ man-years of effort. The delivered code base for
the control software consists of about 100K lines of C# code. This system inter-
faces with a lower level AGV steering system that for its real-time properties is
written in C.

1.4 Overview of the Book

In Chap. 2, we give a general overview of architecture-based design of multi-agent
systems. We situate architectural design in a software development life cycle, and
we zoom in on the different steps in the approach. These steps include require-
ments elicitation, architectural design, architecture documentation, and architecture
evaluation. For each step, we give some background and we introduce the different
techniques and methods that are used. The chapter concludes with a brief expla-
nation of how software architecture serves as a basis for downstream design and
implementation of the system.
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Chapter 3 shows how architectural patterns provide the means to capture exper-
tise with multi-agent system design. We introduce a set of architectural patterns for
situated multi-agent systems, the family of multi-agent systems we have applied in
the case study. The set of architectural patterns provides an asset base that architects
can use in the design of a family of multi-agent systems.

In Chap. 4, we elaborate on architectural design of multi-agent systems and the
documentation of software architecture. In architecture-based design of multi-agent
systems, we use attribute-driven design (ADD) [173] as a design method. ADD is
concerned with the high-level decomposition of a software system which is critical
for satisfying the system’s quality requirements. ADD yields a set of architectural
views. To document the views we use the Views and Beyond [45] method. We apply
the methods to the design and documentation of the case study. The case study
makes clear how the various patterns for situated multi-agent systems were applied
during architectural design.

In Chap. 5, we zoom in on middleware for distributed multi-agent systems.
Middleware supports application developers with the design and implementation of
coordination solutions in a distributed setting. We explain in detail a concrete mid-
dleware that was developed for the case study and we illustrate how this middleware
supported a complex coordination problem in a mobile setting.

One particularly complex coordination problem in distributed multi-agent sys-
tems is task assignment. Chapter 6 is dedicated to this problem. We zoom in on
two approaches for adaptive task assignment that are characteristic for two clas-
sical families of coordination mechanisms for task assignment: a protocol-based
approach and a field-based approach. We explain the design and validation of both
approaches in the case study, and we make a tradeoff analysis.

Chapter 7 elaborates on the evaluation of a multi-agent system architecture. In
architecture-based design of multi-agent systems, we use the Architecture Tradeoff
Analysis Method (ATAM) [46]1 for the evaluation of software architecture. ATAM
is a structured method to examine whether a software architecture is suitable for
the system for which it was designed. ATAM uncovers architectural tradeoffs and
risks in the design. We explain in detail the ATAM evaluation for the case study
and reflect on the experiences with using ATAM for the evaluation of a multi-agent
system architecture.

In Chap. 8, we discuss related approaches that explicitly connect software archi-
tecture with multi-agent systems. We also examine related work on middleware for
mobile systems. Additionally, we give a brief overview of related work on the con-
trol of AGV transportation systems.

In Chap. 9, we reflect on architecture-based design of multi-agent systems and
its application to the case study, and we report lessons learned from applying the
approach in practice. We conclude with an outline of challenges for future research
on engineering multi-agent system derived from our experiences.

1 Architecture Tradeoff Analysis Method R© and ATAM R© are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.



Chapter 2
Overview of Architecture-Based Design
of Multi-Agent Systems

Architecture-based design of multi-agent systems puts software architecture at the
center of the software development activities. In this chapter, we give an overview
of the approach. We start by situating architecture-based design in a software devel-
opment life cycle and we give an overview of the methods used in the different
steps of architecture-based design of multi-agent systems. Next, we zoom in on
the different steps in the approach, including requirements elicitation, architectural
design, architecture documentation, and evaluation. For each step, we give the nec-
essary background and we introduce the different techniques and methods that are
used. We conclude with a brief explanation of how software architecture serves as a
blueprint for system development and a summary.

2.1 General Overview of the Approach

To understand the approach of architecture-based design of multi-agent systems, we
first situate architectural design in a software development life cycle. Then, we give
an overview of the techniques and methods that are used in the different steps of
architecture-based design of multi-agent systems.

2.1.1 Architectural Design in the Development Life Cycle

We use the evolutionary delivering life cycle [108, 21], see Fig. 2.1. This life cycle
model puts architectural design in the middle of the development activities. The
main idea of the model is to support incremental software development and to
incorporate early feedback from the stakeholders. The life cycle consists of two
main phases: developing the core system and delivering the final software product.
Our focus is on architectural design and its connecting activities.

In the first phase the core system is developed. This phase includes four activities:
defining a domain model, performing a system requirements analysis, designing
the software architecture, and developing the core system. Defining the domain
model is documenting a vocabulary of the key concepts and their relationships

D. Weyns, Architecture-Based Design of Multi-Agent Systems,
DOI 10.1007/978-3-642-01064-4_2, C© Springer-Verlag Berlin Heidelberg 2010
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Fig. 2.1 Architectural design in the software development life cycle

of the domain of the system being developed. Requirements analysis includes the
formulation of functional requirements of the system as well as eliciting and pri-
oritizing of the quality attributes requirements. Designing the software architecture
includes the design and documentation of the software architecture and an evalua-
tion of the architecture. The development of the core system includes downstream
design, implementation, and testing. The software engineering process is an iterative
process, the core system is developed incrementally, passing multiple times through
the different stages of the development process. Figure 2.2 shows how architectural
design iterates with requirements analysis on the one hand and with the development
of the core system on the other hand. The output of the first phase is a domain model,
a list of system requirements, a software architecture, and an implementation of the
core of the software system.

In the second phase, subsequent versions of the system are developed until the
final software product can be delivered. In principle there is no feedback loop from
the second to the first phase, although in practice specific architectural refinements
may be necessary.
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Fig. 2.2 On the left hand side: The steps of architecture-based design of multi-agent systems in the
life cycle. On the right hand side: The mapping of techniques and methods on each of the steps.
Shaded boxes represent the main activities of interest in the approach

The focus of architecture-based design of multi-agent systems is on the first
phase in the life cycle.

2.1.2 Steps of Architecture-Based Design of Multi-Agent Systems

Now, we give a bird’s-eye view on the activities of architecture-based design of
multi-agent systems and we map the techniques and methods we use on the different
steps of the approach.

Several of the methods we use in architecture-based design of multi-agent sys-
tems are developed at the Software Engineering Institute [3] of Carnegie Mellon
University, including the quality attribute workshop, attribute-driven design, and
the Architecture Tradeoff Analysis Method. These methods have proven their value
in mainstream software engineering practice. In architecture-based design of multi-
agent systems, the methods are scoped toward the domain of multi-agent systems.
This scoping is reflected in each step in the approach:

• Requirements Engineering. The elicitation and specification of quality attribute
requirements focuses on attributes which are particularly relevant for the domain
of multi-agent systems. Examples are adaptability, openness, and scalability. The
decision to apply a multi-agent system architecture should be based on a good
understanding of the relative importance between the regular quality attribute
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requirements and the quality attributes that can be achieved by a multi-agent
system architecture.

• Designing Software Architecture. During architectural design, patterns specific
to the domain of multi-agent systems are employed to achieve the stakeholders’
quality requirements. Typically, these patterns have to be combined with other
common architectural patterns. Support for coordination in a distributed multi-
agent system requires a suitable middleware. Middleware requirements may
depend on specific properties of multi-agent systems such as decentralization
of control and specific characteristics of the application domain such as mobility.
Middleware can have a severe impact on quality attributes such as efficiency and
resource usage.

• Documenting Software Architecture. The documentation of a multi-agent sys-
tem architecture includes views and models that are typical for the domain of
multi-agent systems. Examples are models for describing protocols in high-level
agent communication languages, models to describe the roles and dynamics of
agent organizations, etc. The description of such models may require dedicated
modeling languages.

• Evaluation of Software Architecture. The evaluation of multi-agent system archi-
tectures includes the evaluation of architecture approaches specific to the domain
of multi-agent systems, in particular decentralization of control. Architecture
evaluation allows to pinpoint not only the advantages of a multi-agent system
architecture, but also the tradeoffs and risks implied by the decentralized archi-
tecture.

In the remainder of this chapter, we zoom in on the different steps of the
approach. In Sect. 2.2, we discuss requirements eliciting, the preparatory step to
start architectural design. Next, we discuss architectural design in Sect. 2.3. In this
step, the various system requirements are achieved by selecting suitable architec-
tural patterns and assigning responsibilities to the various architectural elements.
We briefly discuss middleware support for multi-agent systems in Sect. 2.4. Then,
we explain how a software architecture is documented in Sect. 2.5, and we zoom in
on the evaluation of software architecture in Sect. 2.6. Finally, in Sect. 2.7 we briefly
explain how software architecture serves as a blueprint for downstream design and
implementation of the system. For each step, we give the necessary background and
we introduce the different techniques and methods that are used.

2.2 Functional and Quality Attribute Requirements

Architectural design can start when the most important system requirements are
known. This set of requirements is usually called the architectural drivers and
includes functional and quality requirements.

Functionality is the ability of the system to perform the tasks for which it is
intended. To perform a task, software elements have to be assigned correct respon-
sibilities for coordinating with other elements to offer the required functionality.
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Functional requirements of a system are typically expressed as use cases, see,
e.g., [96]. A use case lists the steps necessary to accomplish a functional goal
for an actor that uses the system. We also use scenarios that describe interactions
among parts in the system—rather than interactions that are initiated by an external
actor. Consider as an example a use case that describes the requirement of collision
avoidance of AGVs on crossroads:

The goal of the use case is to prevent AGVs from colliding at crossroads. When two or
more AGVs approach a crossroad simultaneously, the control system should allow only one
vehicle at a time to pass the crossroad.

Functionality does not depend on the structure of the system. In principle, if func-
tionality were the only requirement, the system could exist as a single monolithic
module with no internal structure at all [21].

Quality is the degree to which a system meets the nonfunctional requirements in
the context of the required functionality. Quality attributes are nonfunctional proper-
ties of a software system such as performance, usability, and modifiability. Achiev-
ing quality attributes must be considered throughout the development process of a
software system. However, the software architecture is critical to the realization of
most quality attributes; it provides the basis for achieving quality. For the expression
of quality requirements we use quality attribute scenarios [20]. A quality attribute
scenario consists of three parts:

1. Stimulus: an internally or externally generated condition that affects (a part of)
the system and that needs to be considered when it arrives at the system; e.g., a
user invokes a function, a component fails, a maintainer makes a change.

2. Environment: the conditions under which the stimulus occurs; e.g., at runtime
with system in normal operation, at design time.

3. Response: the activity that is undertaken—through the architecture—when the
stimulus arrives. The response should be measurable so that the requirement can
be tested; e.g., the system switches to save mode, the error is displayed within
5 s, the change requires a person-month of work.

Here is an example of a quality attribute scenario:

An AGV gets broken and blocks a path under normal system operation. Other AGVs have
to record this, choose an alternative route—if available—and continue their work.

The stimulus in this example is “An AGV gets broken and blocks a path,” the envi-
ronment is “normal system operation,” and the response is “other AGVs have to
record this, choose an alternative route—if available—and continue their work.”

Quality attribute scenarios provide a means to transform vaguely formulated
qualities such as “the system shall be modifiable” or “the system shall exhibit
acceptable flexibility” into concrete expressions. Scenarios are useful in understand-
ing a system’s qualities; formulating scenarios help stakeholders to express their
preferences about the system in a clear way. Scenarios help the architect to make
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directed decisions and are a primary vehicle for analysis and evaluation of the soft-
ware architecture.

Ideally, the quality attribute scenarios of the system are collected and prioritized
before the start of architectural design. In architecture-based design of multi-agent
systems, we use a quality attribute workshop (QAW) [19] to elicit and priori-
tize quality attributes. A QAW is a facilitated method that engages stakeholders
to discover the driving quality attributes of a software-intensive system. During
a QAW, quality attribute scenarios are generated, prioritized, and refined. Utility
trees [46] are one way to prioritize quality attribute scenarios. A utility tree pro-
vides a mechanism for the architect and the other stakeholders involved in a system
to define and prioritize the relevant quality requirements precisely. We elaborate
on utility trees in Sect. 2.6 when we discuss the evaluation of software architec-
ture. The results of a QAW include a list of architectural drivers, a prioritized
list of raw scenarios, and the refined scenarios. The architect can use this infor-
mation to design the architecture. In addition, after the architecture is created,
the scenarios can be used as part of a software architecture evaluation. In prac-
tice, often a number of iterations will be necessary to gather and order system’s
requirements.

A rigorous specification of quality attribute scenarios is key for delineating a
convincing motivation for applying a multi-agent system architecture. Pinpointing
the quality attributes that are typically associated with multi-agent systems and iden-
tifying conflicts with other quality attributes will help to clarify the added value and
tradeoffs of adopting a multi-agent system.

We elaborate on requirements elicitation when we discuss architectural design in
Chap. 4 and architecture evaluation in Chap. 7.

2.3 Architectural Design

Designing a software architecture is about moving from system requirements to
architectural decisions. Besides thorough knowledge and experiences from archi-
tects, this crucial engineering step requires a well-founded design method. In
architecture-based design of multi-agent systems, we use the attribute-driven design
(ADD) [21, 173] method. ADD deals with high-level design of the architecture and
as such can be viewed as an extension of most other development processes, such as
the Rational Unified Process [93]. ADD is an iterative decomposition method that
is based on understanding how to achieve quality goals through proven architectural
approaches, in particular architectural patterns.

2.3.1 Architectural Patterns

Central in ADD is the achievement of a system’s quality attributes based on design
decisions. Such decisions are called tactics. A tactic is a widely used architectural
approach that has proven to be useful to achieve a particular quality [21, 143].
For example, “rollback” is a tactic to recover from a failure aiming to increase
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availability, or “concurrency” is a tactic to manage resource access aiming to
improve performance. Actually, to realize one or more tactics an architect typically
chooses an appropriate architectural pattern [148].1 Bass and colleagues define an
architectural pattern as “a description of architectural elements and relation types
together with a set of constraints on how they may be used” [21]. An architec-
tural pattern is a recurring architectural approach that exhibits particular quality
attributes. A pattern documents not only how a solution solves a problem but also
why it is solved, i.e., the rationale behind this particular solution [16]. Examples of
common architectural patterns are layers, pipe-and-filter, and blackboard.

Architectural patterns also provide the means to document and mature knowledge
and practices with multi-agent systems. In the course of designing and building
multi-agent systems, architectural patterns can be derived that provide generic solu-
tion schemes for recurring design problems. As an illustration, we briefly explain
the subsumption architecture developed by Brooks [34].

The subsumption architecture describes an architectural pattern for the decision
making of a single robot. The architecture is organized as a series of parallel work-
ing layers, each layer is responsible for a specific behavior of the agent. The pri-
ority of layers (behaviors) increases from bottom to top. Higher layers are able to
inhibit lower layers, giving priority to more important behavior. Figure 2.3 shows an

Fig. 2.3 Subsumption architecture for a simple robot

1 Both architectural style and architectural pattern refer to recurring solutions that solve problems
at the architectural design and are often used as alternatives in literature. Yet, an architectural style
is looked upon in terms of components, connectors, and issues related to control and data flow.
Avgeriou and colleagues argue for more attention to clarify this issue [16].
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example of a subsumption architecture for a simple robot that has to collect packets
and deliver them at a destination. On its way, the robot must avoid obstacles in the
environment. A layer in the architecture directly connects perception to action by
means of a finite state machine augmented with timing elements. Each layer collects
its own sensor data that is written in registers. The arrival of specific data, or the
expiration of a timer, can trigger a change of state in the interior finite state machine
and possibly produce output commands to actuators. Inhibition mechanisms resolve
conflicts between actuator commands from different layers. The subsumption archi-
tecture pattern allows the design of very efficient agents. However, subsumption
architectures are very hard to build for complex agents that have to operate in com-
plex environments. Nevertheless, the pattern has successfully been used in many
practical robots.

It is important to notice that the design of a complex multi-agent systems typi-
cally requires a combination of agent-based patterns and other common architectural
patterns. We illustrate the combined use of architectural patterns for the design of
the case study in Chap. 4.

2.3.2 ADD Process

ADD takes as input the functional requirements, prioritized quality attribute scenar-
ios, and design constraints. Examples of design constraints are the use of a partic-
ular framework, the integration with legacy systems, etc. The output of ADD is a
software architecture for the system under development, documented using several
views. We elaborate on architectural documentation below. ADD consists of the
following steps:

1. The architect selects an architectural element for refinement. Usually, the archi-
tect starts from the system as a whole and then iteratively refines the architectural
elements.

2. The architect determines the architectural drivers, i.e., a set of architecturally
significant requirements that apply to the element being designed consisting of
functional goals and quality attribute scenarios that have to be realized.

3. The architect selects an appropriate architectural pattern that satisfies the archi-
tectural drivers.

4. The architect applies the selected pattern to decompose the selected architectural
element, allocates functionality to the sub-elements, and defines the interfaces of
the sub-elements.

5. The architect refines the use cases, quality requirements, and constraints and
allocates them to the newly created design elements.

6. The architect repeats steps 1–5 until the architectural elements are sufficiently
fine-grained, and downstream design and implementation can start. At that point,
the architectural drivers are satisfied and the software architecture becomes a
prescriptive plan for construction of the system that enables effective satisfaction
of the system’s functional and quality requirements.
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Besides the documentation of the architectural structures, it is important that the
architect documents all relevant information that relates to the design decisions,
including a design rationale for selected architectural patterns, how quality attributes
have been satisfied, rejected alternatives, and a motivation why the alternative was
rejected. The knowledge captured in this additional information allows stakeholders
to understand the rationale for the design decisions and is a basis for architectural
evaluation.

We elaborate on patterns in Chap. 3 when we describe how architectural patterns
provide the means to capture well-proven domain expertise in multi-agent system
engineering. ADD is discussed in detail in Chap. 4 when we zoom in on architectural
design of multi-agent systems.

2.4 Middleware Support for Multi-Agent Systems

Popular frameworks such as Jade [23], and Jack [174] have a relative narrow view
on middleware support for agent-based systems and basically provide infrastructure
for communication or a broker infrastructure. Common middleware services such as
security, persistency, and transactions are often considered minimally in multi-agent
system development. Examples for platforms that provide some support for inte-
gration with common middleware services are Retsina [156] developed at Carnegie
Mellon University that includes basic services for security, performance monitoring,
logging, and failure monitoring, and the more recently developed Living Systems
of Whitestein Technologies [171] that is integrated with JEE and provides sup-
port for data management with transactions, persistency, client access through Web
services, etc.

Middleware support for multi-agent systems beyond communication services for
message exchange, such as electronic institutions [54] and infrastructure for stig-
mergic interaction [35, 106], tends to be less mature. These middleware platforms
have mainly been used in experimental settings and research labs. As a result, multi-
agent system engineers in practice have to develop middleware that fits the needs of
their particular domain. In Chap. 5, we elaborate on middleware support for multi-
agent systems and we discuss in detail the middleware that was developed for the
case study.

2.5 Documenting Software Architecture

To be effective, a software architecture must be well-organized and unambiguously
communicated to the group of stakeholders. Therefore, good documentation of the
software architecture is of utmost importance. The documentation must be not only
general enough to be quickly understandable but also concrete enough to guide
developers to construct the system. Clements et al. [45] gives three fundamental
uses of architecture documentation:
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1. Communication among stakeholders. The software architecture represents a
common abstraction that serves as a primary vehicle for communication among
stakeholders. Software architecture forms a basis for project organization; it
imposes constraints on the design and implementation of the system; it is a
starting point for maintenance activities; etc.

2. Software architecture serves as a basis for system analysis. The architecture must
contain the necessary information to evaluate the various attributes; we elaborate
on architecture evaluation in Sect. 2.6.

3. Architecture serves as a means for training. Software architecture is a useful
instrument to introduce new people to the system, such as new team members,
external analysts.

2.5.1 Architectural Views

It is generally accepted that a software architecture should be described by several
views that emphasize different aspects of the architecture. Building upon the work
of Parnas [122] and Perry and Wolf [127], Kruchten introduced four main views
of software architecture [92]. Each view emphasizes specific architectural aspects
that are useful to different stakeholders. The logical view gives a description of the
services the system should offer to the end users; the process view captures the
concurrency and synchronization aspects of the design; the physical view describes
the mapping of the software onto the hardware and reflects its distribution aspects;
and the development view describes the organization of the software and associates
the software modules to development teams. A final additional view shows how
the elements of the four views work together. Some other relevant work on views
include [152, 143].

In architecture-based design of multi-agent systems, we follow the approach of
“Views and Beyond” introduced by Clements and colleagues [45]. This approach
is compatible with the ISO/IEC 42010 standard on systems and software engi-
neering, recommended practice for architectural description of software-intensive
systems [76]. In Views and Beyond, a view type defines the element types and
relationship types used to describe the architecture of a software system from a par-
ticular perspective. Each view type constrains the set of elements and the relations
that exist in its views. Three view types are distinguished:

1. The module view type: views in the module view type document a system’s
principal units of implementation.

2. The component-and-connector view type: views in the component-and-connec-
tor view type document a system’s units of execution.

3. The allocation view type: views in the allocation view type document the
relationships between a system’s software and its development and execution
environment.
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An architectural style is a specialization of a view type and reflects a recurring
architectural approach that exhibits specific quality attributes, independent of any
particular system. For example, “layered style” is a specialization of the module
view type. The layered style describes the system, or a part of the system, as a set of
layers. Each layer is allowed to use the services of the layer below. “Communicat-
ing processes style” is an example of the component-and-connector view type. The
communicating processes style describes concurrent units such as processes and
threads and the connection between the units such as synchronization and control.
A view is an instance of an architectural style that is bound to specific elements and
relations in a particular system.

The documentation of a software architecture consists of the relevant views com-
pleted with additional information that applies to different views. What views should
be documented depends on the goals of the documentation. A software architec-
ture intended for initial project planning likely contains another set of architectural
views as an architecture that specifies the implementation units for development
teams. Different views highlight different system elements and their relationships
and expose different quality attributes. Therefore, the views that expose the most
important quality attribute requirements of the stakeholders should be part of the
architecture documentation. Additional information of the software architecture
documentation may include background information, a view template, a mapping
between views that explains the relations between different views, a glossary, etc.

Architecture documentation with Views and Beyond is discussed in detail in
Chap. 4 when we zoom in on documenting software architectures of multi-agent
systems.

2.5.2 Architectural Description Languages

Architectural description languages (ADLs) [109] are languages that provide fea-
tures for modeling software architectures. Most ADLs support the specification of
components, connectors, and interfaces. First-generation ADLs such as Rapide [100]
and Wright [8] were developed for specific domains. More recently, a number
of modular ADLs have been developed such as Acme [61], xADL 2.0 [49], and
π-ADL [118]. These languages emphasize reuse and support the development
of domain-specific ADLs. Some authors prefer the Unified Modeling Language
(UML) [4] as ADL. Unfortunately, UML does not offer first-class support for many
architectural concepts such as connectors, layers, views, and view relations.

Documenting typical multi-agent system concerns such as interaction proto-
cols, roles, and organizations sometimes requires dedicated notations, probably
dedicated views. Various notations are described in literature. Examples are [180]
which adopts the pi-calculus and object-oriented Petri nets as a formal basis to
model agent architectures and [56] which provides a specification in the Z lan-
guage of a core model of structural and behavioral elements of BDI agents that
can be used to describe the architecture of such agents. Two popular modeling lan-
guages for multi-agent systems are Agent UML [22] (AUML) and Agent Modeling
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Language [44] (AML). AUML is an extension of the Unified Modeling language
(UML) that includes support for modeling protocols for multi-agent interaction,
agent roles, extended UML message semantics. AML is a visual modeling lan-
guage for specifying, modeling, and documenting multi-agent systems developed
by Whitestein Technologies. AML is based on the UML 2.0 Superstructure, aug-
menting it with several new modeling concepts appropriate for capturing the typical
features of multi-agent systems. Although both AUML and AML provide dedicated
notations for describing multi-agent systems, they suffer from the same problems as
UML, i.e., lacking first-class support for various common architectural elements.

Since no ADL provides the facilities to completely document the various view
types we use to document software architectures, we employ a hybrid description
language that uses UML constructs where possible. Each diagram is provided with
a key that explains the meaning of the symbols used.

2.6 Evaluating Software Architecture

A software architecture is the foundation of a software system; it represents a sys-
tem’s earliest set of design decisions [21]. These early decisions are the most diffi-
cult to get correct, the hardest to change later, and they have the most far-reaching
effects. Software architecture not only structures the system’s software, but also
structures the project in terms of team structure and work schedules. Due to its large
impact on the development of the system, it is important to evaluate the architecture
as early as possible. Modifications in initial stages of the design are cheap and easy
to carry out. Deferring evaluation might require expensive changes or even result in
a system of inferior quality.

Architectural evaluation is examining a software architecture to determine
whether it satisfies system requirements, in particular the quality attribute require-
ments [46, 7, 115]. Such evaluation focuses on the most important attributes, i.e.,
the attributes that are most important for the system’s stakeholders and those that
have the largest impact on the software architecture. Architectural evaluation typi-
cally takes place when the architecture has been specified, before implementation.
Experiences with a prototype implementation are invaluable for the evaluation of
a software architecture. Early evaluation allows to add missing pieces, to correct
inferior decisions, or to detail vaguely specified parts of the architecture, before the
cost of such corrections would be too high.

In architecture-based design of multi-agent systems, we use the Architecture
Tradeoff Analysis Method (ATAM) [46]. ATAM is one of the most mature
approaches for software architecture evaluation currently available. ATAM is a
social process aiming to achieve agreement among stakeholders. The goal of ATAM
is to determine the tradeoffs and risks with respect to satisfying important quality
attribute requirements. ATAM is an evaluation method that uses (1) stakeholders
to determine important quality attribute requirements; (2) the architect to focus on
important portions of the architecture; and (3) architectural approaches to determine
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potential problems. There are two groups of people involved in ATAM: the evalu-
ation team and the stakeholders. The evaluation team conducts the evaluation and
performs the analysis. The stakeholders are the people that have a particular interest
in the software architecture under evaluation, such as the project manager, the archi-
tect, developers, customers, (representatives of) end users. An ATAM evaluation
produces the following results:

• A prioritized list of quality attribute requirements in the form of a quality attribute
utility tree.

• A mapping of architectural approaches to quality attributes. The analysis of
the architecture exposes how the architecture achieves—or fails to achieve—the
important quality attribute requirements.

• Risks and non-risks. Risks are potentially problematic architectural decisions,
non-risks are good architectural decisions.

• Sensitivity points and tradeoff points. A sensitivity point is an architectural deci-
sion that is critical for achieving a particular quality attribute. A tradeoff point
is an architectural decision that affects more than one attribute, it is a sensitivity
point for more than one attribute.

A crucial document in the ATAM is the quality attribute utility tree, utility tree
for short. This document is a prioritized list of quality attribute goals, formu-
lated as scenarios. A utility tree expresses what the most important quality goals
of the system are. An excerpt of the utility tree of the case study is shown in
Fig. 2.4.

The root node of the tree is utility, expressing the overall quality of the system.
High-level quality attributes form the second level of the tree. Each quality attribute

Fig. 2.4 Sample utility tree
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is further refined in the third level. Finally, the leaf nodes of the tree are the quality
attribute scenarios. Each scenario is assigned a ranking that expresses its priority
relatively to the other scenarios, H stands for High, M for Medium, and L for Low.
Prioritizing takes place in two dimensions. The first mark of each tuple refers to the
importance of the scenario to the success of the system and the second mark refers
to the difficulty to achieve the scenario. For example, the scenario “If an operator
disables a node, AGVs choose an alternative route (if it exists)” has priorities (M,L),
meaning that this scenario is of medium importance to the success of the system
and relatively easy to achieve. The utility tree expresses what the most important
qualities of the system are and as such it serves as a guidance for the evaluators to
look for architectural approaches that satisfy the important scenarios of the system.
It is clear that scenarios with priorities (H,H) and (H,M) are the prime candidates
for analysis during the ATAM.

The evaluation of a software architecture with ATAM consists of three phases:

1. Presentations. The first phase consists of three steps: the evaluation leader starts
by giving an overview of the evaluation method; next the project manager
describes the business goals of the project; finally the architect gives an overview
of the software architecture.

2. Investigation and analysis. The second phase also consists of three steps. First
the architect identifies the architectural approaches applied in the software archi-
tecture. Next the quality attribute utility tree is generated. The system’s quality
attributes are elicited from the stakeholders and specified as scenarios. The list
of scenarios is then prioritized. Finally, the architectural approaches that address
the high-priority scenarios are analyzed, resulting in a list of risks, non-risks,

Fig. 2.5 Conceptual flow of the ATAM
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sensitivity points, and tradeoff points. The analysis may uncover additional archi-
tectural approaches.

3. Reporting the results. In the final phase, the information collected during the
ATAM is presented to the assembled stakeholders.

The flow of the ATAM is summarized in Fig. 2.5. The flow illustrates how the ATAM
exposes architectural risks that may impact the software architecture and possibly
the achievement of the organization’s business goals.

The disciplined evaluation of the software architecture of a multi-agent system
is invaluable in practice. It allows to clarify the qualities offered by a multi-agent
system architecture. However, it also allows to pinpoint the tradeoffs with respect
to other qualities and possible risks implied by adopting a multi-agent system
architecture.

Architecture evaluation with ATAM is discussed in detail in Chap. 7 when we
zoom in on the evaluation of software architectures of multi-agent systems.

2.7 From Software Architecture to Downstream Design
and Implementation

A software architecture serves as a blueprint for system development. It defines
constraints on downstream design and implementation; it describes how the imple-
mentation must be divided into elements and how these elements must interact with
one another to fulfill the system goals. On the other hand, a software architecture
does not define an implementation, many fine-grained design decisions can be left
open by the architects and must be resolved by designers and developers. Examples
are internal data structures of modules, specific protocols and algorithms, the use of
specific object-oriented design patterns, detailed exception handling, etc.

Downstream design deals with the realization of the architectural elements (mod-
ules, components, connectors, interfaces, etc.) which are determined by the architec-
ture. In agent-oriented software engineering, downstream design typically focuses
on developing the internal capabilities of the agents, i.e., reasoning constituents,
internal events, plans, and detailed data structures. Furthermore, during downstream
design concrete support for agent interaction has to be developed, including a
communication language and supporting services. Often, common object-oriented
modeling techniques are used such as class diagrams, interaction diagrams, and
statecharts. A number of agent programming languages have been developed for
programming agent systems. Some languages are based on a declarative style of
programming, some are based on imperative style programming, and others com-
bine these programming styles. For example, 2APL [50] provides programming
constructs to create individual agents and specify the agents’ access relations to the
external environment which are assumed to be implemented as Java objects. 2APL
has been used to implement different auction types and negotiation mechanisms.
Existing agent programming languages [59, 129, 172, 29] are primarily designed
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to implement agents in terms of BDI concepts (Belief, Desire, Intention). Lit-
tle experiences are reported that use these languages for programming real-world
applications.

By dictating how the system is divided into prescribed elements and their
interactions, software architecture provides a separation of concerns. This allows
management decisions to assign tasks to development teams. Each team has to con-
form to the specification of their individual elements allowing teams to work largely
independent and interact in disciplined ways. Software architecture is a vehicle for
controlled interaction among teams. It is generally acknowledged that the software
architecture and the structure of the developing organization are interrelated. As a
consequence, changing the software architecture typically requires corresponding
changes in the way people are structured in teams for developing, testing, and main-
taining the software. Facilitating the adoption of a multi-agent system architecture
and investigating a suitable adoption strategy are crucial aspects of fielding a multi-
agent system.

2.8 Summary

In this chapter, we gave an overview of architecture-based design of multi-agent
systems. We have put architecture-based design in a software development life cycle
and showed how the different methods used in the approach map on the steps of the
life cycle. Then, we explained the different steps of the approach in more detail.

Quality attribute scenarios provide the means to express stakeholders’ prefer-
ences about the system in a measurable manner. A utility tree provides a mechanism
to define and prioritize the relevant quality requirements precisely. Quality attribute
scenarios and a utility tree are the primary vehicles for the design and evaluation of
the software architecture. A QAW is a facilitated method that engages stakehold-
ers to discover and prioritize the driving quality attributes of a software-intensive
system. Pinpointing the quality attributes associated with multi-agent systems and
identifying possible conflicts with other quality attributes allow to clarify the added
value and tradeoffs of adopting a multi-agent system.

Architectural design requires a well-founded design method. In architecture-
based design of multi-agent systems, we use ADD as systematic method to design
a software architecture. ADD is an iterative decomposition method that is based on
understanding how to achieve quality goals through proven architectural approaches.
Tactics and architectural patterns are widely used architectural approaches that have
proven to be useful to achieve particular quality attributes. The design of a multi-
agent system typically requires a combination of patterns for multi-agent systems
and other common architectural patterns.

Well-organized architecture documentation is crucial to communicate a system’s
software architecture to the varied group of stakeholders. In Views and Beyond, soft-
ware architectures are documented by means of different views that emphasize dif-
ferent aspects of the architecture. Architectural description languages provide fea-
tures for modeling software architectures. Documenting multi-agent system-specific
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concerns such as interaction protocols, roles, and organizations may require dedi-
cated notations or even specific views.

Due to its large impact on the development of the system, a software architecture
should be evaluated as early as possible. In architecture-based design of multi-agent
systems, we use ATAM to evaluate the software architecture of agent-based systems.
During ATAM, the stakeholders determine the tradeoffs and risks with respect to
satisfying important quality attribute requirements of the software architecture. A
disciplined evaluation of software architecture allows to pinpoint the advantages as
well as the tradeoffs implied by adopting a multi-agent system architecture.

By constraining downstream design and implementation, software architecture
provides the foundation for allocating work to development teams and ultimately
achieving the system goals. Downstream design and implementation concerns the
realization of the architectural elements which are determined by the architecture.
Particular aspects of downstream design of multi-agent systems include the realiza-
tion of the internal architecture of agents and the mechanisms of interaction.



Chapter 3
Capturing Expertise in Multi-Agent System
Engineering with Architectural Patterns

An architectural pattern is a key concept in architectural design. It specifies a generic
solution scheme for a recurring design problem. A solution scheme describes a set
of components, their responsibilities and relationships, and the way in which they
collaborate. Architectural patterns exhibit various properties: patterns address differ-
ent quality requirements, they help to document the architectural design decisions,
and facilitate communication between stakeholders through a common vocabulary.
A coherent set of related architectural patterns that describe good design practices
within a particular domain makes up a pattern language [37]. Making explicit the
relationships among the patterns gives the architect guidance about how to combine
the patterns to construct a software architecture for a concrete system.

In this chapter, we show how architectural patterns provide the means to capture
well-proven domain expertise in multi-agent system engineering. In particular, we
describe a pattern language for the domain of situated multi-agent systems. Situated
multi-agent systems are one family of multi-agent systems. The focus of situated
agency is on direct coupling of perception to action, modularization of behavior,
and dynamic interaction with the environment. This contrasts with deliberative
approaches of multi-agent systems that emphasize knowledge representation and
rational choice [134, 176]. The patterns for situated multi-agent systems distill and
provide a means to reuse the design knowledge derived from extensive experiences
with developing various multi-agent systems. The pattern language consists of five
patterns: situated agent, virtual environment, selective perception, roles and situated
commitments, and protocol-based communication. In Chap. 4, we explain how we
have used the architectural patterns for situated multi-agent systems during archi-
tectural design in the case study.

We start this chapter by introducing situated multi-agent systems providing some
background of the pattern language for them. Next, we explain the characteristics
and requirements of the target domain of the pattern language. Then, we present the
pattern language. We give a general overview of the patterns and their relationships,
and we zoom in on the individual patterns. We conclude with a summary of the
chapter.

D. Weyns, Architecture-Based Design of Multi-Agent Systems,
DOI 10.1007/978-3-642-01064-4_3, C© Springer-Verlag Berlin Heidelberg 2010
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3.1 Situated Multi-Agent Systems

To provide the necessary background on the pattern language for situated multi-
agent systems, we give a brief sketch of the history of situated agency. We start with
the early single-agent systems. Then, we explain stigmergic multi-agent systems
and situated multi-agent systems.

3.1.1 Single-Agent Systems

In the mid-1980s, researchers were faced with the problem of how to build autono-
mous robots that are able to generate robust behavior in the face of uncertain
sensors and an unpredicted environment [33]. Attempts to build such robots with
traditional techniques from artificial intelligence showed deficiencies such as brit-
tleness, inflexibility, and no real-time reaction [102, 131]. This brought a number of
researchers to the conclusion that reasoning on symbolic internal models, and plan-
ning the sequence of actions to achieve the goals, is unfeasible for agents with many,
often conflicting goals that have to operate in complex, dynamic environments. This
conclusion led to the development of a radically new approach to build autonomous
agents. A key characteristic of this approach, described by Brooks [33], is situated-
ness, i.e., the robots are situated in the world, they do not deal with abstract descrip-
tions but are directly coupled with the dynamic environment which influences the
behavior of the system.

The archetype architecture of reactive agents is the subsumption architecture [32].
We explained the subsumption architecture in Sect. 2.3.1. Other representative
examples of approaches for reactive agents are Pengi [5] and Situated
Automata [141]. In Pengi, a penguin’s situated actions are coded in the form of sim-
ple rules. To formulate these rules, Pengi does not associate symbols with individual
objects in the world, but uses expressions that describe causal relationships between
the agent and the entities in the world. An example of a situated action is “if there
is an ice-cube-besides-me then push ice-cube-besides-me.” In Situated Automata,
an agent program is generated from a declarative specification [80]. This pro-
gram achieves real-time performance; it acts reactively without doing any symbol
manipulation.

In [102], Maes points out that for complex agents in complex environments,
reactive architectures are very hard to build. The designer must anticipate what
the best action is to take in all occurring situations. For complex systems much
of the necessary information will only be available at runtime. Goals may vary over
time and new goals may come into play. Different approaches that support runtime
decision making have been developed, usually referred to as behavior-based or sit-
uated agents. Pioneering examples are Maes’ Agent Network Architecture [102],
Motor Schemas [11], and Free-Flow Architectures [140, 158]. We illustrate action
selection with a free-flow architecture below.

From the early start of situated agent systems, there has been an ongoing discus-
sion about the exploitation of internal world models in agent architectures. Brooks
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argued against the need for any kind of world model or cognitive level at all [32]. In
[154], Steels states that “autonomous agents without internal models will always be
severely limited.” Arkin [12] agrees and states that “despite the assumptions of early
work in reactive control, representational knowledge is important for robot naviga-
tion,” and he demonstrates how a priori and dynamically acquired world knowl-
edge can be exploited to increase flexibility and efficiency of reactive navigation.
In [104], Malcolm and Smithers introduced hybrid architectures. A hybrid archi-
tecture combines a behavior-based subsystem with a deliberative subsystem. The
deliberative subsystem permits representational knowledge to be used for planning
purposes in advance of execution, while the behavior-based subsystem maintains the
responsiveness, robustness, and flexibility of purely reactive systems. Today, hybrid
architectures are common in the domain of robotics [13].

As an illustration of a single-agent architecture, we briefly explain action selec-
tion with a free-flow tree. We use the tree for a simple robot agent, shown in Fig. 3.1.

In short, a free-flow tree is composed of activity nodes (in short nodes) which
receive information from internal and external stimuli in the form of activity. The
nodes feed their activity down through the hierarchy until the activity arrives at
the action nodes (i.e., the leaf nodes of the tree) where a winner-takes-all process
decides which action is selected.

Fig. 3.1 Free-flow tree for a simple robot agent
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Let us see how this works concretely. The robot we consider lives in a grid world
where it has to collect loads and bring them to a destination. The robot is supplied
with a battery that provides energy to work. The left part of the tree in Fig. 3.1 repre-
sents the functionality for the agent to search, collect, and deliver loads. On the right,
functionality to maintain the battery is depicted. The System Node feeds its activity
to the Work node and the Maintain node. The Work node combines the received
activity with the activity from the energy-level stimulus. The “+” symbol indicates
that the received activity is summed up. The negative activity of the energy-level
stimulus indicates that little energy remains for the agent. As such the resulting
activity in the Work node is just below zero. The Maintain node on the other hand
combines the activity of the System Node with the positive activity of the energy
need stimulus, resulting in a strong positive activity. This activity is passed to the To
Station and the Charging nodes. The To Station node combines the received activity
with the activity level of the not at station stimulus (the “�” symbol indicates they
are multiplied). In a similar way the Charging node combines the received activity
with the activity level of the at station stimulus. This latter is a binary stimulus,
i.e., when the agent is at the charge station its value is positive (true), otherwise it
is negative (false). The To Station node feeds its positive activity toward the action
nodes it is connected with. Each moving direction receives an amount of activity
proportional to the value of the distance stimulus for that particular direction: dis-
tance is a multi-directional stimulus, i.e., a compound stimulus with a value for the
stimulus for each moving direction. The values of the distance stimulus are based
on the distance to the nearest charge station for each moving direction. In a similar
way, the Charging node and the child nodes of the Work node (Explore, Collect, and
Deliver) feed their activity further downward in the tree to the action nodes. Action
nodes that receive activity from different nodes combine that activity according to a
specific function (fm and fc) to calculate the final activity level.

When all action nodes have collected their activity, the node with the highest
activity level is selected for execution. In the example, the To Station node is clearly
dominant over the other nodes connected to actions nodes. Currently the northeast,
east, southwest, and northwest directions are blocked (see the free stimulus), leaving
the agent four possibilities to move toward the charge station: via north, southeast,
south, or west. The values of the gradient field guide the agent to move northward
see Fig. 3.1.

As this example illustrates, initial research on situated agent systems was focused
on architectures of single agents. Architectures differ in the way they solve the prob-
lem of action selection. Architectures do not support social interaction. In Chap. 4,
we explain how we have extended free-flow trees with support for social interaction
in the case study.

3.1.2 Multi-Agent Systems

From the late 1980s, researchers of situated agents have been investigating sys-
tems in which multiple agents work together to realize the system’s goals. In these
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systems, infrastructure for indirect coordination has a central role. The coordination
infrastructure enables agents to share information and coordinate their behavior.

In [123], Parunak describes how principles of different natural agent systems
(ants, wasps, wolves, etc.) can be applied to build artificial agent systems. The
underlying principle is called stigmergy, a concept introduced by Grassé [65]: one
individual modifies the environment and others respond to the modification, and
modify it in turn. A classic example of stigmergic coordination in agent systems
is a digital pheromone infrastructure [35, 27]. A digital pheromone is a dynamic
structure that is situated in a virtual environment. The pheromone aggregates with
additional pheromone that is dropped, diffuses in space, and evaporates over time.
Agents can use pheromones to dynamically form paths to locations of interest.
Another well-established approach of stigmergic coordination is computational
fields [106]. In this approach, the movements of agents are driven by abstract force
fields that are spread in a virtual environment. Agents coordinate their behavior by
following the shape of the fields. Dynamics in the external world and movements of
the agents induce changes in the surface of the fields, realizing a feedback cycle that
influences the agents’ behavior.

Although stigmergic agent systems have proven their value in practice, a number
of comments are in order: (1) stigmergic agents are considered as “simple” entities.
However, there is little or no attention for the architecture of agents; (2) stigmergic
agents are not able to set up explicit collaborations to exploit contextual opportuni-
ties; (3) infrastructures for stigmergic coordination provide reusable solutions that
can be applied over many applications. Yet, choosing for a particular infrastructure
compels an engineer to a specific form of coordination which may restrict flexibility.

Motivated by these considerations, researchers have extended the vision of stig-
mergic agents and developed architectures for a family of agent systems that is
commonly referred to as situated multi-agent systems. We briefly discuss two rep-
resentative approaches.

In [58], Ferber and Müller propose a model for situated multi-agent systems that
builds upon earlier work of Genesereth and Nilson [63]. Ferber and Müller distin-
guish between tropistic and hysteric agents. Tropistic agents are essentially reactive
agents without memory, whereas hysteric agents may have complex behaviors that
use past experiences for decision making. Central in the approach is a model for
action. This model distinguishes between influences and reactions to influences.
Influences are produced by agents and are attempts to modify the course of events in
the world. Reactions, which result in state changes, are produced by the environment
by combining influences of all agents, given the state of the environment and the
laws of the world. In [57], Ferber uses the BRIC formalism (Block-like Representa-
tion of Interactive Components) to model situated multi-agent systems based on the
model for situated multi-agent systems. In BRIC, a multi-agent system is modeled
as a set of interconnected components that can exchange messages via links. BRIC
components encapsulate their own behavior and can be composed hierarchically.

Multilayered multi-agent situated system [18] (MMASS) defines agent types and
an explicit model of the environment. The definition of an agent type comprises
agent state, perceptual capabilities, and a behavior specification. Agent behavior
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can be specified with a behavior specification language [17] that defines a number
of basic primitives, such as transport (defines a movement of the agent) and trigger
(specifies state change when a particular condition is sensed in the environment). In
MMASS, the environment is explicitly modeled as a multilayered structure, where
each layer is represented as a connected graph of sites (a site is a node of the graph
in a layer of the environment). Layers may represent abstractions of a physical envi-
ronment, but can also represent logical aspects, e.g., the organizational structure of
a company. Between the layers specific connections (interfaces) can be defined that
are used to specify that information generated in one layer may propagate into other
layers. In MMASS, agents can (1) interact through a reaction with agents in adjacent
sites (a reaction is a synchronous change of state of the involved agents), (2) emit
fields that are diffused in the environment, (3) perceive other agents, (4) update
their state, and (5) move to adjacent sites. MMASS has been applied in various
application areas, examples are an adaptive web application [28] and a distributed
collaboration system [99].

3.2 Target Domain of the Pattern Language for Situated
Multi-Agent Systems

The brief historical overview shows that situated agent systems have been studied
and built for over two decades. The pattern language for situated multi-agent sys-
tems builds upon this foundation and integrates our experiences with the design of
practical situated multi-agent systems.

The objective of the pattern language is to document well-proven design exper-
tise and reuse this knowledge to support architectural design of situated multi-agent
systems. The pattern language for situated multi-agent systems embodies the exper-
tise we gained with the architectural design of various practical applications. We
extensively used the Packet-World, a simple robotic application, as a study case
for investigation and experimentation [165, 166, 168]. We derived expertise from
the design and development of a peer-to-peer file sharing system [147, 170]. This
application applies a pheromone-based approach for the coordination of agents that
move around in a dynamic network searching for files. In [164] we have applied
a field-based approach for adaptive task assignment in a mobile environment, and
in [153, 169] we have applied situated multi-agent systems in several experimental
robotic applications. Finally, [66, 67] use situated agents in an intelligent trans-
portation system for monitoring traffic jams. In the course of building the various
applications, we derived common functions and structures that provided architec-
tural building blocks for the patterns of the pattern language.

The key characteristics and requirements shared by the family of software sys-
tems supported by the pattern language for situated multi-agent systems are

• Important stakeholder requirements are flexibility (adapt to variable operating
conditions) and openness (cope with parts that come and go during execution).
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These quality requirements may conflict with other important stakeholder require-
ments.

• The software systems operate under highly dynamic and changing operating con-
ditions, such as dynamically changing workloads and variations in availability of
resources and services. An important requirement of the software systems is to
manage the dynamic and changing operating conditions autonomously.

• Global control is hard to achieve. Activity in the systems is inherently localized,
i.e., global access to resources is difficult to achieve or even infeasible. The soft-
ware systems are required to deal with the inherent locality of activity.

Typical example domains are mobile and ad hoc networks, automated transporta-
tion systems, and robotics.

3.3 Overview of the Pattern Language

Figure 3.2 shows a general overview of the pattern language for situated multi-agent
systems with the most important relationships between the proposed patterns.

The basic patterns of the pattern language are situated agent and virtual envi-
ronment. A situated agent is an autonomous problem-solving entity in the system.
An agent encapsulates its state and controls its behavior. The responsibility of an
agent is to achieve its design objectives, i.e., to realize the application-specific goals
it is assigned. Agents are able to adapt their behavior according to the changing
circumstances in the environment. A situated agent is a cooperative entity. The
overall application goals result from interaction among agents, rather than from
sophisticated capabilities of individual agents. Agents are situated in a virtual envi-
ronment. The virtual environment maintains a virtualization of the relevant parts
of the world and serves as a coordination medium for the agents, i.e., the vir-
tual environment mediates both the interactions among agents and the access to
resources.

Selective Perception enables a situated agent to sense its neighborhood and
update its knowledge about the world. Protocol-Based Communication enables sit-
uated agents to exchange messages according to prescribed communication proto-
cols, i.e., well-defined sequences of messages. Roles and Situated Commitments are
social attitudes of situated agents. A role represents a coherent part of functionality
of a situated agent in the context of an organization. A situated commitment defines
a relationship between roles, providing the means to establish collaborations among
situated agents. A situated commitment affects the behavior of the agents involved
in the commitment in favor of the roles the agents play in the commitment.

Some of the patterns in the pattern language are optional. For example, for the
design of agents that do not communicate by exchanging messages, the Protocol-
Based Communication pattern can be omitted. We elaborate on a number of options
in the pattern language when we present the various patterns.
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Fig. 3.2 Map of the pattern language

3.4 Pattern Template

Before we explain the patterns in detail, we first describe the organization that the
documentation of each pattern obeys. A pattern of the pattern language consists of
the following parts:

1. The name of the pattern.
2. A primary presentation that shows the elements and their relationships in the

pattern. We use component and connector models to describe the patterns’ units
of execution.

3. A description of the architectural elements with their specific properties.
4. Interface descriptions that specify how the elements are used with one another.
5. An architecture rationale that explains the motivation for the design of the

pattern.

The pattern template we use is inspired by the approach for documenting archi-
tectural styles presented in [45].
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Appendix A gives a rigorous specification of the elements and how they are used
with one another for the two basic patterns: virtual environment and situated agent.

3.5 Virtual Environment

3.5.1 Primary Presentation

The primary presentation of the virtual environment pattern is shown in Fig. 3.3. Vir-
tual environment comprises a single data repository: State and five components—
Synchronization, Dynamics, Perception Service, Action Service, and Communica-
tion Service.

3.5.2 Architectural Elements

The State repository has a central role in the virtual environment. The repository
contains data that is shared between the components of the virtual environment.
Data stored in the state repository typically includes an abstract representation of
external resources and additional state related to the virtual environment. Examples
of state related to external resources are a representation of the local topology of
a network and data derived from a set of sensors. Examples of additional state are
the representation of digital pheromones that are deployed on top of a network and
virtual marks situated on the map of the physical environment. The state repository
may also include agent-specific data, such as the agents’ identities, the positions of
the agents, and tags used for coordination purposes.

Synchronization is responsible for synchronizing state of the virtual environment
with state of particular external resources as well as state of the virtual environments
on neighboring nodes. An example of the former is the topology of a dynamic net-
work in which changes are reflected in a network abstraction maintained in the state
of the virtual environment. An example of the latter is the maintenance of a list of
available resources that are shared among neighboring nodes. The synchronization
component may pre-process the collected information before it updates the state of
the virtual environment. A typical way to collect data in a distributed setting is by
using a suitable middleware. In Chap. 5 we discuss a middleware that we used in the
case study. This middleware supports the management of data collection in a mobile
setting.

Dynamics is responsible for maintaining processes in the virtual environment
that happen independent of agents and external resources. The dynamics compo-
nent directly accesses the state of the virtual environment and maintains the state
according to its application-specific definition. A typical example is the mainte-
nance process of digital pheromones. State changes resulting from updates by the
dynamics component may trigger the synchronization component to update the state
of the virtual environment on other nodes.
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Fig. 3.3 Primary presentation of the virtual environment pattern

The Perception service provides the functionality to agents for sensing their
neighborhood, resulting in a representation. A representation is a data structure that
represents the sensed elements in a form that can be interpreted by an agent. The
perception service supports selective perception. Selective perception enables an
agent to direct its perception at the relevant aspects according to its current task.
This facilitates better situation awareness and helps to keep processing of perceived
data under control. To direct its perception an agent selects a set of foci. Each focus
of the set of selected foci is characterized by a particular perceptibility, but may have
other characteristics too, such as an operating range and a resolution. Examples
for a robot agent are a focus to observe nearby robots and a focus to locate the
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charging stations within a certain distance. Focus selection enables an agent to
direct its perception for specific types of information. When an agent invokes a
sense request, the perception service collects the required information from the state
repository of the virtual environment or from external resources (via the Observe
interface). A request from the state repository may trigger the synchronization com-
ponent to update the state of the virtual environment with the state of the virtual
environment on neighboring nodes. The perception service can provide additional
functions to pre-process raw data retrieved from external resources, such as sorting
and integrating sensor data.

Action service is responsible for dealing with agents’ actions. Actions can be
divided into two classes: actions that attempt to modify state of the virtual environ-
ment and actions that attempt to modify the state of external resources. An example
of the former is an agent that drops a digital pheromone in a pheromone infras-
tructure that is maintained by the state repository of the virtual environment. An
example of the latter is an agent that writes data in an external database. An action
that modifies the state of the virtual environment may trigger the synchronization
component to update the state of the virtual environment with the state of the virtual
environment on other nodes. The action service can provide additional functions to
translate actions related to external resources to low-level operations.

The Communication service is responsible for managing the communicative
interactions among agents. It is responsible for collecting messages, it provides the
necessary infrastructure to buffer messages, and it delivers messages to the appro-
priate agents. An agent communication message typically consists of a header with
the message performative (inform, request, propose, etc.), followed by the subject
of this performative, i.e., the content of the message that is described in a content
language that is based on a shared ontology. Such message descriptions enable a
designer to express the communicative interactions between agents independent of
the applied communication technology. However, to actually transmit the messages,
the communication service makes use of a distributed communication system pro-
vided by an underlying middleware or communication framework. The commu-
nication service translates message descriptions used by agents to communication
primitives of the supporting communication system and vice versa. Depending on
the application requirements, the communication service may provide specific com-
munication services to enable the exchange of messages in a distributed setting,
such as white and yellow page services.

3.5.3 Interface Descriptions

The interface descriptions specify how the components of the virtual environment
are used with one another.

The state repository exposes two interfaces. The provided interface Update
enables attached components to read state of the repository. The Read-Write
interface enables the attached components to access and modify the virtual
environment’s state.
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The Sense interface of the virtual environment provides an operation that
enables agents to perform a perception request based on a set of foci. Perception
requests are delegated to the perception service. To collect data, the perception ser-
vice requires the Read-Write interface that is provided by the state repository. To
observe external resources, the perception service delegates requests to the abstract
Observe interface that is provided by the underlying infrastructure. The concrete
operations provided by the Observe interface are application specific.

To synchronize the state of the virtual environment with external resources,
the synchronization component depends on the Synchronize interface that is
provided by underlying infrastructure. The concrete operations provided by the
Synchronize interface are application specific. To update the state of the virtual
environment, the Synchronization component requires the Update interface that is
provided by the state repository.

To maintain dynamics in the virtual environment that happen independent of
agents or external resources, the dynamics component requires the Update inter-
face that is provided by the state repository.

The Send-Receive interface of the virtual environment provides operations
to an agent for exchanging messages with other agents. The virtual environment
delegates communication requests to the communication service. The communica-
tion service requires the Read-Write interface of the state repository to collect
data for converting and sending the messages to the addressees. The communica-
tion service delegates the transmission of messages to the Transmit-Deliver
interface that is provided by the underlying infrastructure. The concrete opera-
tions provided by the Transmit-Deliver interface are application specific. The
Transmit-Deliver interface passes incoming messages to the communication
service which delivers the messages to the addressees via the Send-Receive
interface.

The Act interface of the virtual environment provides operations for agents to
invoke actions. The Act interface delegates actions to the action service. Actions
that attempt to modify the state of external resources are delegated by the action
service to the abstract Operate interface that is provided by the underlying infras-
tructure. The concrete operations provided by the Operate interface are applica-
tion specific.

3.5.4 Design Rationale

The two primary concerns that underlie the design of the virtual environment pattern
are use of a shared data style to decouple the various components and decomposition
of functionality driven by the principle of separation of concerns.

The shared data style results in low coupling among the components, improving
modifiability (changes in one element do not affect other elements or the changes
have only a local effect), and reuse (elements are not dependent on too many other
elements). Low-coupled elements usually have clear and separate responsibilities,
which makes the elements better to understand in isolation. Decoupled elements do
not require detailed knowledge about the internal structures and operations of the
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other elements. Due to the concurrent access of the state repository, the shared data
style requires special efforts to synchronize data access.

Action service, perception service, and communication service provide oper-
ations corresponding to the various ways situated agents can access the virtual
environment. The services use data local to the virtual environment and access
external resources via the underlying infrastructure. Synchronization is responsible
for synchronizing the state of the virtual environment with external resources and
dynamics is responsible for activities private to the virtual environment. By sep-
arating the various concerns, the decomposition of the virtual environment yields
a flexible modularization that can be tailored to a broad family of application
domains. For instance, for applications in which agents interact via marks in the
virtual environment but do not communicate via message exchange, the commu-
nication service can be omitted. For applications in which there are no dynamic
processes, the dynamics component can be omitted. Minimizing the overlap of
functionality among modules helps the architect to focus on one particular aspect
of the functionality of the virtual environment. It supports reuse, and it further
helps to accommodate change and to update one component without affecting the
others.

3.6 Situated Agent

3.6.1 Primary Presentation

The primary presentation of the situated agent pattern is shown in Fig. 3.4. Situated
agent comprises a single data repository: Current Knowledge and three components:
Perception, Decision Making, and Communication.

3.6.2 Architectural Elements

The Current Knowledge repository contains state that is shared among the data
accessors: Perception, Decision Making, and Communication. We distinguish bet-
ween shared state and internal state. Both kinds of state can be further divided into
static state and dynamic state.

• Shared state refers to state that is shared with other agents. Static shared state
refers to the agent’s state of the system that does not change over time. A typ-
ical example is a map of the environment. Dynamic state relates to state about
the agent’s current context; it dynamically changes over time. Examples are
locally perceived objects in the environment and data about a temporal agreement
for collaboration that is exchanged via messages.

• Internal state refers to the agent’s state that is not shared with other agents. Inter-
nal state can be static or it can dynamically change over time. Examples of inter-
nal static state are the various parameters of a behavior-based action selection
mechanism. An example of internal state that dynamically changes is state that
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Fig. 3.4 Primary presentation of the situated agent pattern

represents the success rate of recently selected behaviors. An agent can use such
state to adapt its behavior over time, see, e.g., [168].

Perception is responsible for collecting runtime information from the virtual
environment. The perception component supports selective perception, enabling an
agent to direct its perception to its current tasks. Perception requests are triggered
by the communication component or the decision making component. A perception
request includes a set of selected foci and a set of selected filters. The perception
component uses the foci to sense the virtual environment for specific types of infor-
mation. Sensing results in a representation of the sensed environment. A representa-
tion is a data structure that represents elements in the virtual environment or exter-
nal resources. The perception component interprets the representation resulting in a
percept. A percept consists of data elements that can be used to update the agent’s
current knowledge. The selected set of filters reduces the percept according to the
criteria specified by the filters before it updates the current knowledge. We elaborate
on perception when we discuss the selective perception pattern.

The Decision making component encapsulates a behavior-based action selection
mechanism. Decision making is responsible for realizing the agent’s tasks by invok-
ing actions in the virtual environment. To enable situated agents to set up collabo-
rations, behavior-based action selection mechanisms are extended with the notions
of role and situated commitment. We elaborate on behavior-based action selection
when we discuss the roles and situated commitments pattern.
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Communication is responsible for communicative interactions with other agents.
Message exchange enables agents to share information directly and set up collab-
orations. The communication module processes incoming messages and produces
outgoing messages according to well-defined communication protocols. A commu-
nication protocol specifies a set of possible sequences of messages. The information
exchanged via a message is encoded according to a shared communication lan-
guage. The communication language defines the format of the messages, i.e., the
subsequent fields the message is composed of. Communicative interactions among
agents are based on an ontology that defines a shared vocabulary of words that
agents use in messages. The ontology enables agents to refer unambiguously to con-
cepts and relationships between concepts in the domain when exchanging messages.
We elaborate on communication when we explain the protocol-based communica-
tion pattern.

3.6.3 Interface Descriptions

The interface descriptions specify how the components of a situated agent are used
with one another.

The current knowledge repository exposes two interfaces. The provided inter-
face Update enables the perception component to update the agent’s knowledge
according to the information derived from sensing the virtual environment. The
Read-Write interface enables the communication and decision making compo-
nents to access and modify the agent’s current knowledge.

The provided Request interface of the perception component enables deci-
sion making and communication to sense the virtual environment according to their
current activities. Therefore, decision making and communication pass on a set of
selected foci and a set of selected filters to the perception module.

The perception component’s requiredSense interface is delegated to the agent’s
required Sense interface. Similarly, the Send-Receive interface of the commu-
nication component and the Act interface of the decision making component are
delegated to the required interfaces of agent with the same name. The ports decouple
the internals of the agent subsystem from external elements.

3.6.4 Design Rationale

In a situated multi-agent system, control is divided among the agents. Situated
agents manage the dynamic and changing operating conditions locally and autono-
mously. Both are important properties of the target applications of the pattern
language. However, decentralized control and locality imply a number of tradeoffs
and limitations;

• Decentralized control in distributed systems typically requires more communica-
tion. The performance of the system may be affected by the communication links
between agents.
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• There is a tradeoff between the performance of the system and its flexibility to
handle disturbances. A system that is designed to cope with many disturbances
generally needs redundancy, usually to the detriment of performance.

• Agents’ decision making is based on local information only, which may lead to
suboptimal system behavior.

These tradeoffs and limitations should be kept in mind throughout the design and
development of a situated multi-agent system. Special attention should be payed to
communication which could impose a major bottleneck.

The collaboration among the components of a situated agent contributes to the
adaptability of the system.

Perception on Command. Selective perception enables an agent to focus its atten-
tion to the relevant aspects in the environment according to its current tasks. When
selecting actions and communicating messages with other agents, decision making
and communication typically request perceptions to update the agent’s knowledge
about the environment. By selecting an appropriate set of foci and filters, the agent
directs its attention to the current aspects of its interest and adapts it attention when
the operating conditions change.

Coordination Between Decision Making and Communication. The overall behav-
ior of the agent is the result of the coordination of two modules: decision making
and communication. Decision making is responsible for selecting suitable actions.
Communication is responsible for the communicative interactions with other agents.
However, the two components coordinate to complete the agent’s tasks more effi-
ciently. For example, agents can send each other messages with requests for infor-
mation that enable them to act more purposefully. Decision making and communi-
cation also coordinate during the progress of a collaboration. Collaborations are typ-
ically established via message exchange. Once a collaboration is achieved, the com-
munication module activates a situated commitment. This commitment will affect
the agent’s decision making toward actions in the agent’s role in the collaboration.
This continues until the commitment is deactivated and the collaboration ends. We
elaborate on situated commitments below.

Ensuring that both decision making and communication behave in a coordinated
way requires a careful design. On the other hand, the separation of functionality
for coordination (via communication) from the functionality to perform actions to
complete tasks has several advantages, as listed above (clear design, improved mod-
ifiability, and reusability). Two particular advantages of separating communication
from performing actions are as follows: (1) it allows both functions to act in parallel
and (2) it allows both functions to act at a different pace. In many applications, send-
ing messages and executing actions happen at different tempo. A typical example
domain is robotics, but it applies to any application in which the time required for
performing actions in the environment differs significantly from the time to com-
municate messages. Separation of communication from performing actions enables
agents to reconsider the coordination of their behavior while they perform actions,
improving adaptability and efficiency.
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3.7 Selective Perception

3.7.1 Primary Presentation

The primary presentation of the selective perception pattern is shown in Fig. 3.5.
Selective perception comprises one data repository: Descriptions and three compo-
nents: Sensing, Interpreting, and Filtering.

Fig. 3.5 Primary presentation of the selective perception pattern

3.7.2 Architectural Elements

To explain the collaborations between the various elements, we follow the logical
thread of successive activities that take place from the moment an agent takes the
initiative to sense the virtual environment until the percept is available to update the
agent’s current knowledge.

Sensing takes a set of foci to produce a perception request that is passed to the
virtual environment. As a result, the virtual environment produces a representation.
We have explained the concepts of a focus and a representation in the discussion of
the virtual environment pattern.

The Descriptions repository contains a set of descriptions to interpret the given
representation. A description provides a template that specifies a particular pattern
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of a representation. Consider for example a representation that represents a number
of objects in a certain area. When the interpreting component interprets this rep-
resentation it may use one description to interpret the distinguished objects and
another description to interpret the group of objects as a cluster.

The Interpreting component uses the descriptions to extract a percept from the
representation. A percept consists of data elements that describe elements sensed in
the virtual environment or external resources in a form that can be used to update
the current knowledge of the agent. Each match between the description template
and the examined representation yields data of a percept.

The Filtering component filters a percept using set of selected filters. Filters allow
the agent to select only those data elements of a percept that match specific selec-
tion criteria. Each filter imposes conditions on a percept that determine whether
the data elements of the percept can pass the filter or not. For example, a robot
agent that has selected a focus to perceive objects in its environment and that is
only interested in the location of a particular type of objects can select a filter that
selects the data elements with the locations of that type of objects—at least, if such
data element was part of the original percept, otherwise the resulting percept will be
empty. The filtering component uses the filtered percept to update the agent’s current
knowledge.

3.7.3 Interface Descriptions

The provided Request interface of the perception component allows clients (i.e.,
the communication component and the decision making component) to request per-
cepts with a given set of selected foci and selected filters. The Request interface
delegates the set of selected foci of a perception request to the ApplySensing
interface of the sensing component. Sensing uses the Sense interface provided by
the virtual environment to invoke the perception request. Sensing passes the result-
ing representation to the interpreting component using the Interpret interface.
The descriptions repository exposes the ReadDescriptions interface. Inter-
preting requires this interface to interpret representations. The resulting percept is
passed to the filtering component using the Filter interface. Filtering uses the set
of selected filters provided by the Request interface to filter the percept. Filtering
uses the Update interface provided by the current knowledge repository to update
the agent’s knowledge with the filtered percept.

3.7.4 Design Rationale

The integrated set of components of perception provides the functionality for selec-
tive perception of a situated agent. The overall functionality results from the collab-
oration of the various components. In this collaboration, each component provides
a clear-cut functionality, while the coupling between the components is kept low.
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Foci, descriptions, and filters are considered as first-class elements in the pattern.
This helps to improve modifiability and reusability. The interpreting component can
be omitted in case the internal state of the agent and the observable state of the
virtual environment are represented by the same data types.

3.8 Roles and Situated Commitments

3.8.1 Primary Presentation

The primary presentation of the roles and situated commitments pattern is shown in
Fig. 3.6.

KEY UML

Fig. 3.6 Primary presentation of the roles and situated commitment pattern

3.8.2 Architectural Elements

To select actions, a situated agent employs a behavior-based action selection
mechanism. The main advantages of behavior-based action selection mechanisms
are efficiency and flexibility to deal with dynamism in the environment. In general,
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a behavior-based action selection mechanism consists of a set of behavior modules.
Each behavior module is a relatively simple computation module that tightly couples
sensing to action. An arbitration scheme controls which behavior-producing module
has control and selects the next action of the agent.

As we explained in Sect. 3.1.1, behavior-based action selection mechanisms are
developed from the viewpoint of individual agents. Yet, in a situated multi-agent
system it is often desirable to endow agents with abilities for explicit social interac-
tion. Explicit social interaction enables agents to exchange information directly with
one another and set up collaborations. The roles and situated commitments pattern
provide the means for situated agents to set up collaborations.

Role. Behavior modules that represent a coherent part of an agent’s functionality
in the context of an organization are denoted as a role. We consider an organization
as a group of agents that can play one or more roles and that work together. Roles are
the building blocks for social organization of a multi-agent system. This perspective
on roles is similar to other approaches in agent research provided that collaborations
between situated agents are bounded to the locality in which the agents are situated,
see, e.g., [83, 39, 114, 107].

A role has a well-known name that is shared among agents in the system. stimuli
are internal data or externally perceived information that affects the selection of
actions of a role. Based on the actual stimuli, select determines the relative prefer-
ences for each of the possible actions that can be selected by the role. An arbitration
schema uses the relative preferences for all actions of all the roles to determine
which role has control and which action is selected for execution. We explain a
concrete example below.

Situated Commitment. Collaborations are explicitly communicated cooperations
reflected in mutual commitments [125]. The notion of a commitment has been
studied extensively from the perspective of cognitive agents, see, e.g., [47, 94, 51].
Contrary to the traditional approaches on commitment which are essentially based
on the mutually dependent mental states of the involved agents and a goal-oriented
plan, a situated commitment is defined in terms of the roles of the involved agents
and the local context they are placed in. Agreeing on a situated commitment incites
a situated agent to give preference to the actions in the role of the commitment.
This perspective is related to the sociological viewpoint on commitment proposed
in [150]; however, that research focuses on cognitive agents in information-rich
environments.

Agents agree on mutual situated commitments in a collaboration via direct com-
munication (see Sect. 3.9). Once the agents have agreed on a collaboration, the
mutual situated commitments will affect the selection of actions in favor of the
agents’ roles in the collaboration. It is important to notice that an agent can also
commit to itself. For example, if a robot runs out of energy, the robot agent can
commit to itself to resolve this urgent problem. Once committed, the agent will
select actions in the role to recharge its battery. The commitment ends when the
battery is recharged.

As for roles, situated commitments have a well-known name. Explicitly naming
roles and commitments enables agents to set up collaborations, reflected in mutual
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commitments. The relation-set contains the identities of the related agents in the
situated commitment. The context describes contextual properties of the situated
commitment such as descriptions of objects in the local environment. Activation-con
and deactivation-con are the activation and deactivation conditions that determine
the status of the situated commitment. When the activation condition becomes true,
the situated commitment is activated. The behavior of the agent will then be biased
according to the specification of the role-map. The role-map specifies the relative
weight of the preferences of the actions of different roles. In its simplest form, the
role-map narrows the agent’s action selection to actions in one particular role. An
advanced example is a role-map that biases action selection toward the actions of
one role relative to the preferences of the actions of a number of other roles of the
agent. As soon as the deactivation condition becomes true, the situated commitment
is deactivated and will no longer affect the behavior of the agent.

3.8.3 Design Rationale

Behavior-based action selection enables agents to behave according to the situation
in the environment and flexibly adapt their behavior with changing circumstances.
The notions of a role and situated commitment enable agents to set up collabora-
tions. Whereas traditional approaches of commitment impose agents to communi-
cate explicitly when the conditions for a committed cooperation no longer hold, for a
situated commitment it is typically the local context in which the involved agents are
placed that regulates the duration of the commitment. For example, when two robot
agents form a chain to transport loads, the collaboration ends when no more loads
are left to pass on or when one of the agents leaves its post for maintenance. This
approach fits the general principle of situatedness in situated multi-agent systems
and improves flexibility and openness. An agent adapts its behavior when the con-
ditions in the environment change or when agents enter or leave its scope of interac-
tion. In the next section, we illustrate how a free-flow tree, a concrete behavior-based
action selection mechanism, is extended with roles and situated commitments.

3.8.4 Free-Flow Trees Extended with Roles
and Situated Commitments

In Sect. 3.1.1, we explained action selection with a free-flow tree for a single robot
agent. Now, we show how the roles and situated commitment pattern is used to
extend free-flow trees with support for roles and situated commitments enabling
explicit collaborations among multiple agents. To illustrate the explanation, we use
a simple grid world in which robot agents are situated. The task of the agents is to
transport loads from one location to another. To improve efficiency, robot agents can
form a chain and pass loads to one another. Figure 3.7 shows a simplified free-flow
tree of a robot agent.
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Fig. 3.7 Free-flow tree for a robot agent with roles and situated commitments (system node, com-
bination functions, and stimuli of nodes are omitted)

A role corresponds to a subtree in the hierarchy. In the example, the roles are
demarcated by dashed lines. A role is named as the root node of the subtree that
represents the role. Roles that are not further divided into sub-roles are called basic
roles. A robot agent has three main roles: Individual, Chain, and Maintain. In the
role Individual, the agent performs work, independent of the other robot agents.
The agent searches for loads and brings them to the destination. The Chain role is
composed of two sub-roles: Head and Tail denoting the two roles of agents in a
collaboration to pass loads along a chain.1 Finally in the Maintain role, the agent
recharges its battery. All roles of the agent are constantly active and contribute to the
final decision making by feeding particular sets of actions with activity. However,
the contribution of each role depends on the activity it has accumulated from the
stimuli of its nodes.

A situated commitment is represented by a connector between roles in the tree.
The connector Charging in Fig. 3.7 denotes the situated commitment of an agent
to itself to recharge its battery. Charging connects the top nodes of the source roles
Individual and Chain with the goal role Maintain. The connectors HeadOfChain and
TailOfChain denote the mutual situated commitments of two agents that collaborate

1 To allow agents to set up a chain of more than two agents, an additional role Link would be
necessary.
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Fig. 3.8 Situated commitment Charging with its goal role Maintain

to pass loads in a chain. These situated commitments connect the single root node
of Individual with the route nodes of Head and Tail, respectively.

Figure 3.8 shows the situated commitment Charging together with its goal role
Maintain in detail. Besides a name, each situated commitment is characterized by an
activation condition, a deactivation condition, and a three-tuple 〈context, relation-
set, addition-function〉. Activation and deactivation conditions are boolean expres-
sions based on the agent’s internal state. The activation condition for Charging in
Fig. 3.8 is energy level < to charge, i.e., as soon as the energy level of the agent
crosses the threshold to charge, the activation condition becomes true and the situ-
ated commitment is activated.

The relation set contains the identities of the agents involved in the situated com-
mitment. The context describes contextual properties of the situated commitment
such as properties of elements in the environment (e.g., the distance to particular
objects in the environment). Since Charging is a commitment of the agent relative
to itself, the relation set is {self }. The context of Charging is {ID}, the identifier of
the charge station. For example, for an agent that commits to be HeadOfChain in a
collaboration (see Fig. 3.7), the relation set is the agent that is TailOfChain, and the
context contains the type of loads that are passed between the collaborating agents.
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Finally, the addition function determines, when the commitment is activated, how
the activities of the source roles are combined into a resulting activity that is injected
in the goal role. When the Charging commitment is activated it injects an additional
amount of activity in the Maintain role, determined by the addition function fa. A
possible definition for fa is as follows:

ACharging = A+
Individual + A+

Chain

with A+
Node = ANode iff ANode > 0, and 0 otherwise

The Maintain role combines the additional activity of the Charging commitment
with the regular activity accumulated from its stimuli. The deactivation condition of
Charging is energy level = charged, i.e., as soon as the accumulated energy level
reaches the charged level the commitment is deactivated. Then Charging no longer
influences the activity level of its goal role.

In general, an agent can be involved in different situated commitments at the
same time. The route node of one role may receive activity from different situ-
ated commitments and may pass activity to different other situated commitments.
Activity received through different situated commitments is combined with the reg-
ular activity received from stimuli into one result.

3.9 Protocol-Based Communication

3.9.1 Primary Presentation

The primary presentation of the protocol-based communication pattern is shown in
Fig. 3.9. Protocol-based communication comprises three data repositories: Inbox,
Outbox, and Conversations and five components: Message Receiving, Message
Sending, Message Decoding, Message Encoding, and Communicating.

3.9.2 Architectural Elements

The Conversations repository maintains a set of conversations. A conversation
is an ongoing communicative interaction following a well-defined communica-
tion protocol. A communication protocol consists of a series of protocol steps. Each
protocol step is characterized by a condition–effect pair. The condition determines
whether the step is applicable. Conditions take into account the agent’s current
knowledge and data from ongoing communicative interactions. The effect is the
actual result of executing the protocol step (see below). A conversation is initiated by
the initial message of a communication protocol. At each stage in the conversation
there is a limited set of possible messages that can be exchanged. Terminal states
determine when the conversation comes to an end.
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KEY

Fig. 3.9 Primary presentation of the protocol-based communication pattern

The Communicating component provides a dual functionality: (1) it interprets
decoded messages and reacts appropriately; (2) it initiates and continues a conver-
sation when the necessary conditions hold. During the execution of a protocol step,
communicating may initiate a perception request. The execution of a protocol step
will produce the data to encode a new message and update the corresponding con-
versation. Furthermore, the agent’s current knowledge may be modified, possibly
affecting the agent’s selection of actions. A typical example is the activation and
deactivation of a situated commitment.

Outbox and Inbox are message buffers. They buffer outgoing and incoming mes-
sages, respectively.

Message Sending selects a pending message from the outbox buffer and passes it
to the communication service of the virtual environment. Message Receiving accepts
messages from the communication service.
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Message Encoding encodes a newly composed message. Message encoding is
based on the communication language that is shared among the agents in the system.
A communication language defines the format of the messages, i.e., the subsequent
fields the message is composed of. The message content is based on an ontology
that defines a shared vocabulary of words that agents use to represent domain con-
cepts and relationships between the concepts. Message Decoding selects a received
message from the inbox buffer and decodes the message according to the given
communication language and ontology.

3.9.3 Interface Descriptions

The interface descriptions specify how the components of communication are used
with one another.

The conversations repository exposes the Update interface that enables the
communicating component to access and modify the agent’s ongoing conversations.
The communicating component delegates read or write requests for the agent’s
current knowledge to the Read-Write interface of the communication compo-
nent. Perception requests are delegated to the required Request interface of the
communication component that depends on the provided interface of the perception
component with the same name.

To encode new messages the communication component depends on the message
encoding component that provides the EncodedMessage interface. Message
encoding puts newly encoded messages in the outbox via the Add-Out interface.
Message sending picks messages from the outbox via the Remove-Out interface
and delegates the delivering of the messages to the communication component that
depends on the Send-Receive interface of the virtual environment to deliver the
messages.

Communication delegates received messages to the message receiving compo-
nent via the Receive interface. Message receiving puts the messages in the agent’s
inbox via the Add-In interface. The Remove-In interface provided by the inbox
allows the message decoding component to decode incoming messages. The date
of decoded messages is passed to the communication component via the Decoded
Message interface.

3.9.4 Design Rationale

Direct communication allows situated agents to exchange information and set up
collaborations. Coordination through message exchange is complementary to indi-
rect coordination via marks in the virtual environment such as pheromone-based
coordination. The various components in the communication component are
assigned clear-cut responsibilities and coupling among components is kept low.
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The selection of messages from the inbox buffer and outbox buffer can be defined
according to the application requirements at hand. A simple policy is first-in-first-
out. An advanced policy can take into account runtime information such as the
content of the messages and the agents involved in the interaction.

Communication defined in terms of protocols puts the focus of communication
on the relationship between messages. In each step of a communicative interaction,
conditions determine the agent’s behavior in the conversation. Conditions depend
not only on the status of the ongoing conversations and the content of received mes-
sages but also on the actual conditions in the environment reflected in the agent’s
current knowledge, in particular the status of the agent’s commitments. This con-
tributes to the flexibility of the agent’s behavior.

3.10 Summary

In this chapter, we have shown how proven domain expertise with multi-agent sys-
tem engineering can be captured by means of a pattern language. The presented
pattern language builds upon the foundation of two decades of research and exper-
tise with engineering situated multi-agent systems and integrates our experiences
with the design of practical situated multi-agent systems. The target domain of the
pattern language is applications that are subject to highly dynamic and changing
operating conditions making flexibility and openness primary requirements, and in
which global control is hard to achieve demanding for decentralized control.

The pattern language ties five different patterns together. Situated agent and vir-
tual environment are the central patterns of the pattern language. Selective percep-
tion, roles and situated commitments, and protocol-based communication zoom in
on the three main concerns of a situated agent. For each pattern, we have provided a
primary presentation that shows the constituent architectural elements of the pattern,
a catalog that explains the responsibilities of the element, an interface description
that specifies how the elements are used with one another, and a design rationale that
explains the underlying design choices and the quality attributes associated with the
pattern.

The pattern language provides an asset base architects can draw from during
architecture-based design of situated multi-agent systems. In the next chapter, we
show how we have used the pattern language during the design of a decentralized
control architecture for an automated transportation system.



Chapter 4
Architectural Design of Multi-Agent Systems

Architectural design concerns the primary structures of a software system. Central
in architecture design of a multi-agent system is the achievement of the system’s
quality attributes based on design decisions. To make design decisions, architects
use established practices such as architectural patterns. To be effective, a software
architecture must be properly documented. Architectural views provide a proven
approach to document the structures of a complex software system. Documenting
specific concerns of multi-agent systems such as roles, organizations, and interac-
tion protocols may require dedicated notations.

In architecture-based design of multi-agent systems, we use a design method
that is based on attribute-driven design (ADD) [173]. ADD is concerned with the
high-level decomposition of a software system which is critical for satisfying the
system’s quality requirements. The output of ADD is the first levels of a module
decomposition view and other views as appropriate. To document the views, we
follow a method based on Views and Beyond [45]. The architecture description typ-
ically includes a module view that documents the system’s principal units of imple-
mentation, a component-and-connector view that documents the system’s units of
execution, and the deployment view that documents the relationships between the
system’s software and its environment.

We start this chapter with a general introduction of designing of a multi-agent
system architecture with ADD and documenting its views with Views and Beyond.
Then, we explain the design of the case study and we present the main views of the
architecture documentation. We only refer briefly to middleware support for distri-
bution and a number of related coordination concerns including task assignment and
collision avoidance. These concerns are discussed in detail in the following chapters.
The chapter concludes with a summary.

4.1 Designing and Documenting Multi-Agent
System Architectures

A multi-agent system is a system that is structured as a set of autonomous agents that
are able to flexibly adapt their behavior to changing operating conditions. Individual
agents have only limited knowledge and control over the system as a whole. To
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achieve the overall system functionalities and qualities, agents interact and coor-
dinate their behavior. Architectural design of a multi-agent system concerns the
concrete specification of the top-level structures of the system in order to achieve the
stakeholders’ requirements. Structures include the primary structures of individual
agents and the structures of organizations of agents.

ADD follows a recursive process that decomposes system elements by applying
architectural approaches that satisfy its driving quality attribute requirements. A
pattern language provides a powerful vehicle for constructing software architectures
of multi-agent systems.

4.1.1 Designing and Documenting Architecture in the Development
Life Cycle

Figure 4.1 shows the part of the software development life cycle where architecture
design and documentation fit in.

Architectural design with ADD can start when the main architectural drivers
are known which include functional and quality requirements. If a utility tree is
available with a ranked set of quality attribute scenarios, the scenarios which are
very important to the stakeholders and which have potentially a high impact on the
architecture are candidate architecture drivers. In each step of ADD, an architec-
tural element is refined based on an architectural approach that realizes a set of
requirements.

The architecture documentation is mostly produced in an iterative fashion, inter-
twined with the design of the system. Initially, documentation typically consists of
a set of cartoon-like diagrams. In later phases of the design process, the description

Fig. 4.1 Architecture design
and documentation in the
software development life
cycle. Shaded boxes represent
the activities of interest in
this chapter
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can be refined and rigorously documented. Views and Beyond offers templates to
document the relevant views and additional documentation that applies to
all views.

Architecture design ends when the software architect reaches a level of confi-
dence that the foundation for the realization of the system requirements, in particular
the quality requirements, is established.

4.1.2 Inputs and Outputs of ADD

The required inputs of architectural design with ADD are

• Functional requirements specify what functions a system must provide to meet
the stakeholder requirements. An example of a functional requirement in the case
study is that the battery of an AGV must be recharged when the energy is below
a certain level.

• Design constraints are restrictions on the design that must be incorporated into
the design of the system. For example, an 11 Mbps wireless LAN is available for
communication.

• A set of prioritized quality attribute requirements that precisely specify the
degrees to which a system must exhibit various quality properties. An example is
the utility tree shown in Fig. 7.4.

The output of architectural design with ADD is a description of the software
architecture of the system using various types of architectural views, including

• A set of module views that show the principle units of implementation, their
responsibilities, and relationships.

• A set of component-and-connector views that shows the interactions among run-
time elements and the properties of these interactions.

• A set of deployment views that show how the application software is allocated to
computer hardware.

4.1.3 Overview of the ADD Activities

Figure 4.2 shows an overview of the activities of ADD [173].
At each stage of the decomposition, an architectural approach is chosen that

satisfies a set of architectural drivers that are associated with the element that
is decomposed. Next, functionality is allocated to the sub-elements. Finally, the
decomposition is verified and the responsibilities with respect to requirements and
constraints are assigned to the sub-elements. Using a pattern language to guide the
design will affect the different selection criteria, including the selection of elements,
drivers, and approaches to satisfy the drivers. The case study that follows illustrates
the application of ADD with a pattern language for a concrete multi-agent system.
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Fig. 4.2 Overview of the
ADD activities

4.2 Case Study

The case study gives an extensive overview of the design and documentation of
the software architecture for an AGV transportation system. We start this section
with introducing the domain of automated transportation systems, we explain the
business case, and we discuss the main functional requirements and quality require-
ments. In the following two sections, we give an overview of the architectural design
of the agent-based system based on ADD and a detailed description of the multi-
agent system architecture-based Views and Beyond.

4.2.1 The Domain of Automated Transportation Systems

Automatic guided vehicles (AGVs) are fully automated, custom-made vehicles
that are able to transport loads in a logistic or production environment. An auto-
mated transportation system with AGVs can be used for distributing manufactured
products to storage locations or as an inter-process system between various produc-
tion machines. Figure 4.3 shows an AGV at work in a cheese factory.1

1 http://www.egemin.com
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Fig. 4.3 An AGV at work
in a cheese factory

Transports are generated by an enterprise resource planning (ERP) system and
possibly operators and executed by AGVs. A transport includes picking up a load at
a pick location, moving it to a drop location, and drop it there. An AGV is equipped
with a steering system that provides the low-level control software connected to
sensors and actuators to manipulate loads and move safely through the warehouse
environment. While moving, the vehicles follow specific paths in the warehouse by
means of a navigation system which uses stationary beacons in the work area such
as laser reflectors on walls or magnet strips in the floor. Different navigation systems
may be used in different sections of the warehouse (Fig. 4.4). While executing trans-
ports, AGVs may interact with machines. For example, an AGV may fetch a load
from a rack or deliver a load onto a conveyor. To enable the AGVs to communicate
with other systems, the warehouse provides a wireless LAN (local area network). In
addition, stationary systems may use a wired LAN. AGVs are equipped with a bat-
tery as energy source that can be recharged at one of the available charging stations.
When an AGV is idle, it can park at a free park location. Figure 4.5 summarizes the
main concepts in the domain of AGV transportation systems.

Fig. 4.4 Rotating laser
scanner for navigation on top
of the AGV. An obstacle
detector in the front
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Fig. 4.5 Domain model with the main concepts of an AGV transportation system

4.2.2 Business Case

Egemin is an automation company that focuses on three areas: material handling,
industrial automation, and consulting. In the material handling domain, the product
flagship is the AGV transportation system. AGVs are controlled by traffic control
software. The traffic control software is responsible for transport management and
traffic control. Transport management is concerned with which loads have to be
transported and where the loads have to be transported to. Traffic control is the pro-
cess of routing AGVs efficiently while avoiding collisions and deadlocks between
vehicles. Transport management should be organized in such a way that the work-
load is divided over the resources in an optimal way and that the capacity of the
overall system (expressed in loads per hour) is at a maximum.

The current release of the traffic control software is conceived as a central-
ized architecture running on one server and scales up vertically by putting more
resources onto the server (processing power, memory, etc.). The fact of having a
single central server introduces a single point of failure. With the current release
of the traffic control software, a customer project can be implemented efficiently,
but the configuration of the rules the system has to comply to can be labor inten-
sive, especially if the system has to be able to change its behavior according to
changes in the environment. Thus, the flexibility of the system depends on the
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complexity of the rules configured and the experience of the engineer configuring
those rules.

The objective of introducing a decentralized architecture is to scale up hori-
zontally (by introducing more processors in a networked environment). Such an
architecture aims at improved adaptability in response to the various dynamics in
the warehouse environment and has no single point of failure. Instead of having
one computer system that is in charge of numerous complex tasks, such as task
assignment, routing, collision avoidance, and deadlock avoidance, in the new archi-
tecture the AGVs are provided with a considerable amount of autonomy. This opens
perspectives to improve flexibility and openness of the system: the AGVs can adapt
themselves to the current situation in their vicinity, task assignment is dynamic, and
the system can deal autonomously with AGVs leaving and re-entering the system.
The proposed architecture also strives to reduce the configuration effort. Hence a
decentralized architecture based on agent technology becomes a logical next step.
The resulting architecture should meet these business requirements and should also
be efficient, robust, and easily deployable and maintainable.

4.2.3 System Requirements

We give an overview of the functionalities of the system and we discuss the main
quality requirements. We also outline a number of important characteristics of
industrial AGV transportation systems that have to be taken into account during
architectural design. System requirements are kept fairly general, independent of
any particular AGV system. In Chap. 7, we zoom in on specific functional require-
ments and quality attribute scenarios for a concrete AGV transportation application.

4.2.3.1 Main Functional Requirements

The main functionality the AGV transportation system has to perform is handling
transports, i.e., moving loads from one place to another. A transport is composed of
multiple jobs: a job is a basic task that can be assigned to an AGV. For example,
picking up a load is a pick job, dropping it is a drop job, and moving over a specific
distance is a move job. A transport typically starts with a pick job, followed by a
series of move jobs, and ends with a drop job.

There should be enough AGVs available to execute the transports that enter the
system, i.e., the AGVs should be able to handle the load of the system. In order to
execute transports, the main functionalities the system has to perform are

1. Transport assignment: transports are generated by client systems and have to be
assigned to AGVs that can execute them.

2. Routing: AGVs must route efficiently through the layout of the warehouse when
executing their transports.

3. Gathering traffic information: although the layout of the system is static, the
best route for the AGVs in general is dynamic and depends on the actual traffic
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conditions and forecasts in the system. Taking into account traffic dynamics
enables the system to route AGVs efficiently through the warehouse.

4. Collision avoidance: obviously, AGVs must not collide. AGVs cannot cross the
same intersection at the same moment; however, safety measures are also neces-
sary when AGVs pass each other on closely located paths.

5. Deadlock avoidance: since AGVs are relatively constrained in their movements
(they cannot divert from their path), the system must ensure that AGVs do not
find themselves in a deadlock situation.

To perform transport tasks, AGVs have to maintain their battery. AGVs can
charge their battery at the available charging stations. Depending on the application
characteristics, a vehicle recharges when its available energy is below a certain level
or the vehicle follows a predefined battery charge plan or the vehicle can perform
opportunity charging, i.e., the vehicle charges when it has no work to do. Finally,
when an AGV is idle it can park at one of the available free park locations.

4.2.3.2 Main Quality Requirements

Stakeholders of an AGV transportation system have various quality requirements.
Performance is a major quality requirement, customers expect that transports are
handled efficiently by the transportation system. Configurability is important, it
allows installations to be easily tailored to client-specific demands. Obviously, an
automated system is expected to be robust, intervention of service operators is time
consuming and costly.

Besides these “traditional” qualities, evolution of the market puts forward new
quality requirements. Customers request for self-managing systems, i.e., systems
that are able to adapt their behavior with changing circumstances autonomously.
Self-management with respect to system dynamics translates to two specific quality
goals: flexibility and openness.

Flexibility refers to the system’s ability to deal with dynamic operating conditions
autonomously. In the traditional centralized approach, the assignment of transports,
the routing of AGVs, and the control of traffic are planned by the central server.
The centralized planning algorithms applied by Egemin are based on predefined
schedules. Schedules are rules associated with AGVs and particular locations in the
layout, e.g., “if an AGV has dropped a load on location x, then that AGV has to
move to node y to wait for a transport assignment.” This approach lacks flexibility.
A plan can only be changed under exceptional conditions. For example, when an
AGV becomes defective on the way to a load, the transport can be re-assigned to
another AGV. A flexible control system allows an AGV that is assigned a trans-
port and moves toward the load to switch tasks along the way if a more interesting
transport pops up. Flexibility also enables AGVs to anticipate possible difficulties.
For example, when the amount of traffic is high in a certain area, AGVs should
avoid that area; or when the energy level of an AGV decreases, the AGV should
anticipate this and prefer a zone near to a charge station. Another desired property
is that the system can handle particular situations autonomously, e.g., when a truck
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with loads arrives, the system should adapt its behavior taking into account this
new task.

Openness of an AGV transportation system refers to the system’s ability to deal
autonomously with AGVs leaving and (re-)entering the system. Examples are an
AGV that temporarily leaves the system for maintenance, and an AGV that re-enters
the system after its battery is recharged. In some cases, customers expect to be able
to intervene manually during execution of the system, e.g., to force an AGV to
perform a particular job.

In summary, flexibility and openness are high-ranking quality requirements for
today’s AGV transportation systems. One possibility to tackle these new quality
requirements would be to adapt the central planning approach aiming to improve the
flexibility and openness of the system. By applying a situated multi-agent system,
we investigated the feasibility of a radically new decentralized architecture to cope
with the new quality requirements.

4.2.3.3 Specific System Characteristics

In addition to the functional requirements and quality requirements, a number of
specific problem characteristics must be considered during architectural design:

• AGVs have to move toward loads before they can actually execute the transports.
Moving toward a load may imply a considerable effort.

• AGVs are very constrained in their movements; they are confined to follow the
paths of a predefined layout.

• The speed of AGVs is orders of magnitude lower than the speed of communica-
tion and the execution of the control software.

• A wireless LAN provides quasi-continual communication access to the dis-
tributed software system.

The architect has to take into account these problem characteristics when select-
ing suitable architectural approaches for the software architecture.

4.3 General Overview of the Design

In this section we give a general overview of the design of the multi-agent system
for decentralized control of AGVs. We start with discussing a number of chal-
lenges we faced when applying multi-agent systems in practice. Next, we zoom
in on the interaction of the system with its environment. Then, we briefly dis-
cuss the design process and we explain the rationale for the agent-based solution.
Finally, we give a high-level overview of the architectural design of the multi-agent
system.
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4.3.1 Challenges at the Outset

From our experience, applying multi-agent systems in practice is a complex prob-
lem. During the design and development of the multi-agent system for AGV control,
several difficulties were encountered. We explain the main challenges in turn.

Lack of Requirements Documentation. The general motivation to apply a situ-
ated multi-agent system for controlling AGVs was new quality requirements, in
particular flexibility and openness. However, for a complex system such as the AGV
transportation system, the stakeholders have various, often conflicting requirements.
Unfortunately at the start of the project neither functional requirements nor quality
requirements of the existing system were clearly documented. Information of the
system was basically limited to user manuals. The absence of requirements docu-
ments resulted in contradictory opinions. This was further reinforced by the fact that
some stakeholders had big, sometimes unrealistic expectations about agent technol-
ogy, while others were more skeptic and showed some resistance to change.

Lack of Architectural Documentation. At the outset of the project, facing the
complexity of AGV transportation system was overwhelming. A full-working AGV
transportation system requires support for a variety of interdependent functional-
ities, including routing, collision avoidance, deadlock avoidance, interfacing with
clients, task assignment, battery charging, and calibration of the vehicles. Complex-
ity is further increased by the fact that different variants of functionalities are needed
for different types of installations. Such complexity can only be managed through
abstraction. Software architecture is centered on the idea of reducing complexity
through abstraction and separation of concerns. Unfortunately the software archi-
tecture of the existing system was not documented. It turned out a difficult, time-
consuming exercise to reconstruct the basic structures of the software architecture
of the existing system. However, the reconstruction was crucial, not only to gain
insight into how the system works but also to extract reusable parts of the existing
code base.

Integrating a Multi-agent System with its Software Environment. In an indus-
trial setting, systems are not built in isolation. When introducing a multi-agent
system, it must be integrated with its environment (common frameworks, legacy
systems, etc.). In Egemin, .NET is the standard environment and the company uses
an in-house-developed component framework that provides common middleware
services. Examples of legacy systems with which the multi-agent system needed to
be integrated are the ERP system that generates the transport tasks and the steering
system that provides the low-level control software of the AGVs. Dealing with these
constraints raised severe challenges during the design and implementation of the
multi-agent system.

Complementary Expertise. A particular challenge we faced with introducing
multi-agent systems in practice came from the fact that two partners in the project
had complementary expertise: an industrial partner with domain expertise and the
academic partner with expertise in multi-agent systems. From the outset of the
project, it was clear that the success of the project would depend on the mutual
sharing of expertise and close, active cooperation between the two partners.
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4.3.2 The System and Its Environment

We now zoom in on the interaction of the AGV transportation system with its envi-
ronment. First, we discuss how the system interacts with external entities. Second,
we explain how the agent-based control software is conceived as a layer on top of
a common middleware platform for logistic systems that provides basic support for
services such as persistency, security, and logging.

4.3.2.1 System Context Diagram

Figure 4.6 shows the context diagram of the AGV transportation system that
describes how the system interacts with external entities. Transports are requested
by client systems, i.e., an ERP system and possibly an operator. The AGV trans-
portation system commands AGV machines to execute the transports, it monitors
the status of the AGV machines, and it informs the clients about the progress of
the transports. The transportation system can interact with external machines and
command these machines to perform actions, e.g., opening a door or enabling a
local conveyor element. Besides functionality to handle transports, the AGV trans-
portation system provides a public interface to a monitor for observing the status
of the logistic system. The monitor is an external software system that provides
a graphical user interface allowing a user to follow the activity in the transporta-
tion system. Figure 4.7 shows a snapshot of the monitor. The monitor provides a
real-time overview of the system. It visualizes a map of the warehouse layout with
the moving AGVs. The monitor shows the pending, assigned, busy, and finished
transports in the system, and it allows a user to inspect the status of transports
and AGVs.

Fig. 4.6 Context diagram
of the AGV transportation
system
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Fig. 4.7 Snapshot of the monitor. The left hand side shows a part of the warehouse layout with
two AGVs. The right hand side shows a window that allows a user to add tasks manually

4.3.2.2 AGV Application and Supporting Middleware Services

Figure 4.8 shows a general overview of the software of the AGV transportation
system. The software consists of three layers. Each layer provides a public interface
with a cohesive set of services that other software can utilize without knowing how
those services are implemented. The layers are allowed to interact with each other
according to a strict ordering relation. In particular, a layer A is allowed to use2 any
of the public facilities of the virtual machine provided by the nearest lower layer B.
Layers contribute to the modifiability and portability of a software system.

The AGV application layer is the application-specific software that accepts trans-
port requests and instructs AGVs to handle the transports. In the traditional systems
deployed by Egemin, the AGV application software consists of a central server that
instructs AGVs to perform the transport requests. In the decentralized architecture,
the AGV application software is structured as a situated multi-agent system that
handles the transport requests of the clients.

The AGV application layer makes use of E’pia.3 E’pia is a component frame-
work developed by Egemin that provides common middleware services for logistic
systems. E’pia provides general support for system configuration, communication,
persistency, security, logging, visualization, and diagnosis. E’pia also handles the
interfacing with the steering system of the AGVs. It translates high-level actuator

2 The uses relation is defined by Parnas [121] as a unit of software A is said to use unit B if A’s
correctness depends upon a correct implementation of B being present.
3 E’pia R© is an acronym for Egemin Platform for Integrated Automation.
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Fig. 4.8 Software layers
of the AGV transportation
system

KEY

commands to a low-level digital format of the actuator control software, and in
the opposite direction, it parses the digital information derived from the sensors to
provide a high-level representation of the actual status of the AGV.

The E’pia layer makes use of the Microsoft .NET framework [138]. The .NET
framework provides a large body of pre-coded solutions to common program
requirements, including support for user interfacing, database connectivity, network
communication, and threading. .NET includes the Common Language Runtime
environment (CLR) that serves as an application virtual machine shielding pro-
grammers from underlying platform details. The CLR also provides services such
as security mechanisms, memory management, and exception handling.

The focus of the AGV transportation system described in this book is on the AGV
application layer, i.e., on the decentralized control software composed of a situated
multi-agent system.

4.3.3 Design Process

For the architectural design, we used ADD. Roughly spoken, the design process
consisted of the following steps.

We started by using the basic patterns of the pattern language for situated multi-
agent systems, situated agent and virtual environment, to map the basic system func-
tionalities onto the basic components of the situated multi-agent system. The system
comprises two types of situated agents, AGV agents and transport agents, that rep-
resent autonomous entities in the application. The virtual environment provides the
means for agents to access resources, to exchange information, and to coordinate
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their behavior. The virtual environment is supported by the ObjectPlaces middle-
ware that provides basic support for distribution and mobility. Simultaneously with
the basic decomposition, we defined components for the interaction with external
entities. In particular, we defined high-level components and interaction protocols
to interact with client systems, the low-level AGV control software, and the monitor
that allows remote inspection of the system.

Then, we have iteratively decomposed the agents and the virtual environment
components. In each decomposition step, we selected an architectural element of
the software architecture and we determined the target functional requirements and
quality attribute requirements for that element. The order in which we have refined
the architectural elements was essentially based on the incremental development
of the application. We started with the functionality for one AGV to drive, then
followed collision avoidance, next order assignment, deadlock avoidance, etc. For
each decomposition, we have selected a suitable architectural pattern to refine the
architectural element. When applicable, we have used a pattern of the pattern lan-
guage for situated multi-agent systems, including selective perception, protocol-
based communication, and roles and situated commitments. For some of the pat-
terns of the pattern language, we used variants. For example, by using the same
data representation in the virtual environment and the situated agents we could
apply a number of simplifications for selective perception. For the design of the
AGV agent, initially we used a free-flow tree with roles and situated commitments.
With increasing complexity, we have redesigned the decision making component.
We kept a free-flow tree for high-level decision making and added components to
deal with specific aspects of decision making, such as task assignment and collision
avoidance. For several specific functionalities, suitable architectural solutions had to
be defined. For example, to support task assignment, routing, collision avoidance,
and deadlock avoidance, we have developed appropriate coordination mechanisms.
Therefore, we took inspiration from several well-known mechanisms for indirect
coordination such as stigmergy and fields. In some cases, we have developed alter-
native solutions and performed a tradeoff analysis.

Architectural design ended when a suitable level of detail was reached to allow
the developers to build the software. To validate the agent-based AGV transportation
system, we used a setup with real AGVs, and tested in larger, industrially used
simulations.

4.3.4 Design Rationale

The two main principles underlying the agent-based design of the AGV transporta-
tion system software architecture are control is decentralized and the architecture is
structured as a situated multi-agent system.

First, control in the system is decentralized, i.e., no single central server con-
trols (a large part of) the system. Decentralizing control implies local decision mak-
ing. Local decision making supports self-management, i.e., entities can act locally
and adapt their behavior to dynamics and disturbances in their local context. An
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advantage of decentralized control is increased reliability: there is no single point of
failure. Furthermore, a decentralized architecture is more economical with respect to
required processing power. Ideally, any central controlling processing unit is elim-
inated and all processing is moved to the nodes themselves. Since AGVs need to
have processing units anyway, they are put to more use.

There are, however, some limitations and tradeoffs of decentralization [117].
First, the performance of the system may be affected by the communication links
between nodes. Since more communication is typically needed, the communication
infrastructure is more heavily loaded. Second, while the decentralized approach is
designed to cope with disturbances, there is, in general, a tradeoff between its perfor-
mance and the reactivity of the system to disturbances. A system that is designed to
cope with many disturbances generally needs redundancy, usually to the detriment
of performance and vice versa. Third, myopic decision may occur due to the lack of
global information. While a central server has (more or less) a complete overview
of the system, in a decentralized system such an overview does not exist. By using
local information only, certain decisions for the system as a whole may be difficult
to make or the decisions may lead to suboptimal solutions.

Architectural decisions are a tradeoff between trying to keep communication low,
while being able to get the right information to the right place in a timely fashion.
Since communication is the bottleneck, as a guideline communication it is kept local
as much as possible.

As a second principle, the architecture is structured as a situated multi-agent sys-
tem. The rationale behind this choice is the importance of the flexibility and open-
ness requirements. Situated agents are autonomous entities that encapsulate their
own state and behavior. A situated agent uses a behavior-based decision mechanism
which guarantees responsiveness, robustness, and flexibility. Since each AGV, as
an autonomous entity, acts locally, it can better exploit opportunities and adapt its
behavior under changing circumstances. Situated agents work together to handle the
stream of transportation tasks that enter the system. The agents can flexibly adapt
their collaborations when the conditions in their vicinity change. Task assignment
can be adapted when a new transport enters the system or when a more suitable
AGV becomes available to perform the task. Situated agents commit to one another
in a collaboration. However, the commitments are context dependable and as such
alterable when circumstances ask for it.

4.3.5 High-Level Design

Now, we give an overview of the high-level design of the situated multi-agent sys-
tem. We introduce the two types of agents that are used in the AGV transportation
system, and we explain the structure of the virtual environment and show how agents
use the virtual environment to coordinate their behavior. Then, we explain the basic
programming abstractions of ObjectPlaces, views and roles, in some more detail
and illustrate how they have supported the design of the situated multi-agent system.
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Finally, we give a brief description of the AGV steering system that was fully reused
in the decentralized control architecture.

4.3.5.1 AGV Agents and Transport Agents

We have introduced two types of agents: AGV agents and transport agents. The
choice to let each AGV be controlled by an AGV agent is obvious. Transports have
to be handled in negotiation with different AGVs, therefore we have introduced
transport agents. An AGV agent is responsible to control its associated AGV. A
transport agent represents a transport in the system and is responsible to ensure that
the transport request is handled. Both types of agents share a common architectural
structure that corresponds to the situated agent pattern of the pattern language for
situated multi-agent systems. Yet, the two agent types have different internal struc-
tures that provide the agents with different capabilities.

AGV Agent. Each AGV in the system is controlled by an AGV agent that resides
on a computer system located at the vehicle. The AGV agent is responsible for
obtaining and handling transports and ensuring that the AGV gets maintenance on
time. As such, an AGV becomes an autonomous entity that can take advantage
of opportunities that occur in its vicinity and that can enter and leave the system
without interrupting the rest of the system.

Transport Agent. Each transport in the system is represented by a transport agent.
A transport agent is responsible for assigning the transport to an AGV and reporting
the status and completion of the transport to the client that has requested the trans-
port. Transport agents are autonomous entities that interact with AGV agents to find
suitable AGVs to execute the transports. Transport agents reside at a transport base,
i.e., a dedicated computer located in the warehouse.

Situated agents provide a means to cope with the quality attributes flexibility
and openness. Particular motivations are (1) situated agents act locally; this enables
agents to exploit opportunities and adjust their behavior with changing circum-
stances in the system and its environment—this is an important property for flex-
ibility; (2) situated agents are autonomous entities that interact with one another
in their vicinity; agents can enter and exit each other’s area of interaction at any
time—this is an important property for openness.

4.3.5.2 Local Virtual Environments

To realize the system requirements, AGV agents and transport agents have to coor-
dinate. Agents have to coordinate for routing, for transport assignment, for collision
avoidance, etc. One approach is to provide an infrastructure for communication
that enables the agents to exchange messages to coordinate their behavior. Such
approach, however, would put the full complexity of coordination in the agents
resulting in complex architectures of the agents, in particular for the AGV agents.
We have chosen for a solution based on the virtual environment pattern. The vir-
tual environment pattern enables indirect coordination among the agents provid-
ing a separation of concerns that helps to manage complexity. Besides, the virtual
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Fig. 4.9 High-level model of an AGV transportation system

environment serves as a suitable abstraction that shields the agents from low-level
issues, such as the transmission of messages and the physical control of AGVs.
Figure 4.9 shows a high-level model of an AGV transportation system.

Since AGV agents and transport agents are deployed on different nodes, the
AGV and the transport base maintain a local virtual environment. The states of the
local virtual environments are synchronized opportunistically, as the need arises. We
explain state synchronization of local environments below when we elaborate on the
ObjectPlaces middleware. The local virtual environments deployed on the nodes in
the system are tailored to the type of agents deployed on the nodes. For example,
the AGV local virtual environment deployed on the AGVs provides a high-level
interface that enables the AGV agent to read out the status of the AGV and send
commands to the vehicle. Obviously, this functionality is not available on the TB
local virtual environment that is deployed on the transport base.

Coordination Through the Local Virtual Environment. The local virtual environ-
ment offers high-level primitives to agents to perform actions, perceive their neigh-
borhood, and communicate with other agents. We illustrate with examples how the
agents exploit the local virtual environments to assign tasks and to avoid collisions.

Transport Assignment. We have developed two approaches for adaptive transport
assignment and used it in the AGV transportation system. FiTA (field-based trans-
port assignment) is a field-based approach in which agents emit fields in the local
virtual environment that guide idle AGV agents to loads. DynCNET is a protocol-
based approach that extends standard contract net (CNET [151]). In DynCNET, the
agents use explicit negotiation to assign transports. Here we illustrate FiTA in which
agents coordinate through the local virtual environment. The basic idea of FiTA is
to let each idle agent follow the gradient of a field that guides it toward a task that
has to be executed. In FiTA, two types of fields are used: transport fields which are
emitted by transports and AGV fields emitted by AGVs. Transport fields attract idle
AGVs. However, to avoid multiple AGVs driving toward the same transport, AGVs
emit repulsive fields. AGV agents combine perceived fields and follow the gradient
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of the combined fields that guides them toward pick locations of transports. Fields
have a certain range and contain information about the source agent. The fields of the
AGV agents have a fixed range and contain the identity of the AGV and its current
location. The range of transport fields is variable and depends on the priority of the
tasks. The spreading of the fields is a responsibility of the local virtual environments.
With FiTA, the agents continuously reconsider the situation and task assignment is
delayed until the execution of the task starts which benefits the flexibility of the
system. When a task or AGV enters or leaves the system the perceived fields of
local agents will be adapted supporting openness of the system.

Collision Avoidance. AGV agents avoid collisions by coordinating with other
agents through the local virtual environment. AGV agents mark the path they are
going to drive in their local virtual environment using hulls. The hull of an AGV
is the physical area the AGV occupies. A series of hulls describe the physical area
an AGV occupies along a certain path. If the area is not marked by other hulls
(the AGV’s own hulls do not intersect with others), the AGV can move along and
actually drive over the reserved path. In case of a conflict, the involved local virtual
environments use the priorities of the transported loads and the vehicles to determine
which AGV can move on. AGV agents monitor the local virtual environment and
only instruct the AGV to move on when they are allowed. Afterward, the AGV
agents remove the markings in the local virtual environment.

These examples show that the local virtual environment serves as a flexible coor-
dination medium: agents coordinate by putting marks in the local virtual environ-
ment and observing marks from other agents. We discuss collision avoidance and
field-based task assignment in detail in Chaps. 5 and 6, respectively.

4.3.5.3 ObjectPlaces: Middleware for Mobile Applications

The mobility of the AGVs imposes highly dynamic operating conditions and inher-
ent distribution of resources. A typical approach in mainstream software engineering
is to support distribution with a suitable middleware. We have developed a middle-
ware for mobile applications called ObjectPlaces. Mobile applications such as an
AGV transportation system are characterized by (1) their need to take into account
their physical environment (usually called context) explicitly and (2) their need to
deal with dynamics and unexpected events originating from their context. Object-
Places proposes two new programming abstractions, views and coordination roles,
to support mobile application development with respect to those two needs.

Views. The first abstraction, a view, is an up-to-date collection of data gathered
from nodes in the network. The data is gathered from a number of data containers,
called objectplaces, in which application components can share application-specific
data objects to be viewed. An application component can specify which data to
gather from objectplaces on which nodes use a constraint on properties of the nodes
and a constraint on properties of the data objects. Based on these constraints, the
middleware gathers the data objects in the view from remote objectplaces and keeps
the data objects up-to-date with respect to changes in the properties of the nodes and
changes in the remote objectplaces. The middleware encapsulates a view manage-
ment service that builds and maintains views for the application.
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The goal of views is to automate gathering application-specific information from
application components on other nodes and to allow an application component
to be aware of changes in this information. Using views, application components
can coordinate by sharing information in objectplaces for others to view and by
changing their behavior in response to information gathered from other application
components.

In the AGV application, views are used for the synchronization of state of the
local virtual environments on neighboring nodes. This synchronization is important
for various coordination purposes. For example, a view is used to collect the candi-
date AGVs that are within a range of interest for a transport agent. Another example
is the use of a view that maintains the AGVs in collision range of a particular AGV.
The middleware builds and maintains the views according to the constraint defined
for the view. For example, when an AGV approaches from a certain distance, it
comes in collision range with an AGV. The middleware then includes that AGV
in the view. Similarly, when an AGV leaves the collision range, that AGV will be
removed from the view. As such, the application components have an up-to-date
view of the AGVs in collision range that they can use to coordinate the vehicles
avoiding collisions.

Coordination Roles. The second abstraction, a coordination role, encapsulates
the behavior of an application component engaging in a protocol. A protocol is
executed by two or more application components, each playing a particular coor-
dination role. We call a particular exchange of messages by a particular group of
application components using a protocol an interaction session. Such an interaction
session needs to be started between a number of different roles, played by applica-
tion components on distinct nodes. The middleware supports the setup and mainte-
nance of such an interaction session, by managing the activation and deactivation of
roles.

An application component that needs to start an interaction session, does so
by indicating which coordination role it wants to play in the interaction session
and by specifying with which other coordination roles on which other nodes it
needs to interact. The nodes on which these coordination roles should be acti-
vated are specified declaratively by a constraint on properties of the nodes. The
middleware activates the coordination roles on all nodes whose properties satisfy
the constraints and that have an application component that can play the coor-
dination role. The roles execute the protocol on behalf of the application com-
ponents. The middleware encapsulates a coordination role activation service that
monitors for changes in the network that cause a change in the composition of
the group of interacting coordination roles, notifies the interacting roles if such a
change occurs, and generally manages the activation and deactivation of coordi-
nation roles. The management of the interaction partners is thus handled by the
middleware.

The goal of coordination roles is to support protocol-based coordination in
mobile networks, by automating the setup of an interaction session between a group
of roles, and maintaining the group of roles in the face of dynamics in the network.

For example, to avoid collisions at an intersection, AGVs need to execute a nego-
tiation protocol with the group of all vehicles at the intersection, to determine which
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one can cross first. This group is dynamic, since AGVs arrive at and leave from the
intersection continuously. The middleware automates the process of discovering the
group of AGVs that are at the intersection, and maintaining the group of interacting
vehicles as they arrive and leave.

Node Constraint. The declarative specification of a group of nodes to interact
with, called the node constraint, is the key underlying idea of both abstractions. A
node constraint specifies a group of nodes in the network by dictating a constraint on
the node’s properties relative to the node that starts the group. For example, an AGV
can find a group containing all AGVs within 20 m or a group of AGVs within 30 m
that are idle. Enabling the selection of interaction partners based on their properties
has two main advantages. First, it allows more uncoupled interactions that can be
tied easily to context properties such as location and status of the nodes. Second,
the node constraint allows the encapsulation of the management of the interaction
partners in the middleware. Since the interaction partners are frequently changing
due to the mobility and overall dynamics in the network, this relieves the application
developer of a tedious job.

4.3.5.4 Low-Level Control of AGVs with E’nsor

AGVs are equipped with a steering system that is called E’nsor.4 We fully reused
the steering system in the project. E’nsor provides an interface to command the
AGV machine and to monitor its state. E’nsor is equipped with a map of the factory
floor. This map divides the physical layout of the warehouse into logical elements:
segments and nodes. Each segment and node is identified by a unique identifier.
A segment typically corresponds to a physical part of a path of 3–5 m. E’nsor is
able to steer the AGV per segment of the warehouse layout, and the AGV can
stop on every node, e.g., to change direction. E’nsor understands basic actions
such as Move(segment) that instructs E’nsor to drive the AGV over the given
segment, Pick(segment) and Drop(segment) that instructs E’nsor to drive
the AGV over the given segment and to pick/drop the load at the end of it, and
Charge(segment) that instructs E’nsor to drive the AGV over a given seg-
ment to a battery charge station and start charging batteries there.5 The physical
execution of these actions, such as staying on track on a segment, turning, and
the manipulation of loads, is handled by E’nsor. Reading out specific sensor data
such as the current position and the battery level is also provided by E’nsor. The
local virtual environment uses E’nsor to regularly poll the vehicle’s current sta-
tus and adjust its own state appropriately. For example, if the AGV’s position has
changed, the representation of the AGV position in the local virtual environment is
updated.

4 E’nsor R© is an acronym for Egemin Navigation System On Robot.
5 Actually, the instructions provided by the E’nsor interface are coded in a low-level digital format.
The translation of actions to E’nsor instructions is handled by the local virtual environment.



4.4 Architecture Documentation 75

4.4 Architecture Documentation

In this section, given an overview of the software architecture documentation of
the AGV transportation system. The documentation follows the Views and Beyond
approach. We start with a brief introduction in which we explain the different types
of views of the documentation. Next, we zoom in on the different views of the
software architecture.

4.4.1 Introduction to the Architecture Documentation

We start by introducing the types of views that comprise the software architecture
documentation of the AGV transportation system. We briefly introduce the views
and explain the mapping between the views. Then, we explain how each view is
conceived as number of related view packages and we describe the template we use
to document a view package.

4.4.1.1 Views and Mapping Between the Views

The software architecture of the AGV transportation system consists of three view
types that highlight different system elements and different relationships and expose
different quality requirements of the system. The allocation view type documents
the relationships between the system’s software and its execution environment.
For this view type, the documentation provides the deployment view that shows
how software elements are allocated to hardware. The module view type docu-
ments the system’s principal units of implementation. For this view type, the doc-
umentation provides the uses view that defines depends-on relationships between
modules. Finally, for the component-and-connector view type that documents the
system’s units of execution, the documentation provides the collaborating com-
ponents view that shows how components collaborate to achieve required system
functionalities.

Views describe a system or parts of it from a particular perspective. Although
views focus on different aspects of the system, various elements and structures that
appear in different views are related to one another. The mapping between views
shows what pair wise view combinations have a mapping. Figure 4.10 summarizes
the main mappings between the views of the AGV transportation system.

The annotation of the arrows give a general explanation of the relationships
between the corresponding views.

4.4.1.2 View Package Template

Each view of the software architecture documentation is presented as a number of
related view packages. A view package is a small relatively self-contained bundle
of information of the system or a part of the system. The documentation of a view
packet is organized in four parts as follows:
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Fig. 4.10 Mapping between views

1. The primary presentation shows a graphical representation of the elements and
their relationships in the view packet. A key explains the meaning of each
symbol.

2. The element catalog describes the elements in the view packet and their prop-
erties. The element catalog also details the relations between elements and their
properties.

3. Optionally, the element catalog specifies additional properties of elements and
their relationships, such a detailed description of a particular element or a speci-
fication of the behavior of particular elements.

4. The architecture rationale explains the motivation for the design choices that
were made. Rejected alternatives may be provided with a motivation why they
were not chosen.

4.4.2 Deployment View

The deployment view is a style of the allocation view type that shows how the
system software is allocated to hardware units. The elements of the deployment view
are software elements and environmental elements. Software elements are usually
components of the component-and-connector views. Environmental elements are
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computing hardware, including processors, data stores, network infrastructure. The
relation between the elements is allocated to showing on which hardware units the
software is deployed. Software elements are allocated to hardware units that execute
code, store, or transmit data.

The deployment view can be used for performance analysis. Processor units have
provided properties (CPU properties, memory, etc.) that need to be matched with the
required properties of the allocated software elements. The communication among
deployable units on different processing elements is an important focus of perfor-
mance analysis. Important properties of communication channels are bandwidth and
reliability. Bandwidth expresses the network capacity to transfer data among pro-
cessing nodes, directly affecting the performance of a software system. Reliability is
related to the system’s behavior in the face of failing processing elements and com-
munication channels. The deployment view shows dependencies among architec-
tural elements and how a system is able to degrade gracefully in the face of a failure.

The software architecture of the AGV transportation system provides one view
packet of the deployment view that describes how the system software is allocated
to computer hardware.

4.4.2.1 Primary Presentation

Figure 4.11 shows the primary presentation of the deployment view. The application
software consists of two types of subsystems with different responsibilities in the
transportation system: transport base system and AGV control system.

4.4.2.2 Elements and Their Properties

The transport base system provides the software to manage transports in the AGV
transportation system. The transport base system handles the communication with
the ERP system. It receives transport requests and assigns the transports to suitable
AGVs, and it reports the status and completion of the transports to the ERP system.
The transport base system executes on a transport base, i.e., a stationary computer.
The transport base system provides a public interface that allows an external monitor
system to observe the status of the AGV transportation system.

The AGV control system provides the control software to command an AGV
machine to handle transports and to perform maintenance activities. Each AGV
control system is deployed on a computer that is installed on a mobile AGV. AGV
control systems provide a public interface that allows a monitor to observe the status
of the AGVs, and let an operator take over the control of the vehicle when necessary.

Communication Network. All the subsystems can communicate via a wireless
network. The ERP system and machine software interacts with the AGV transporta-
tion system via the wired network. To debug and monitor the system, AGVs and the
transport base can be accessed remotely via an external monitor system.

The properties of the environmental elements, in particular the characteristics
of the communication channels, are important for the performance of the system.
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Fig. 4.11 Deployment view of the AGV transportation system

We discuss a performance analysis of a concrete AGV transportation system in
Chap. 7.

4.4.2.3 Rationale

The top-level decomposition separates functionality for transport assignment (ensur-
ing that the work is done) from functionality for executing transports (doing the
work). The main motivations for the decomposition are the quality requirements
flexibility and openness. By providing each AGV vehicle with an AGV control sys-
tem, AGVs become autonomous entities that can take advantage of opportunities
that occur in their vicinity and that can enter/leave the system without interrupt-
ing the rest of the system. Endowing AGVs with autonomy is a key property for
adaptability of the system.

The separation of functionality for transport assignment and executing transports
also supports incremental development. In the initial stage of the project, we devel-
oped a basic version of the AGV control system that provided support for perform-
ing transports and avoiding collisions. For test purposes, we manually assigned
transports to AGVs. In the next phase, when we extended the functionalities of
AGVs and integrated automated transport assignment, the top-level decomposition
served as a means to assign the work to development teams.
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4.4.3 Module Uses View

The module view type shows how a system is decomposed into manageable soft-
ware units. The elements of the module view type are modules. A module is an
implementation unit of software that provides a coherent unit of functionality. The
basic criteria for module decomposition are the achievement of quality attributes.
For example, changeable parts of a system are encapsulated in separate modules,
supporting modifiability.

The module uses view is a style of the module view type. The relationship
between modules in the module uses view is uses. A module uses another module
if the correctness of the first module depends on the correct implementation of the
second module. The module uses view documents how functionality is mapped to
an implementation. It shows which implementation units use other units to achieve
their functionalities. As such, the module uses view supports incremental develop-
ment and is useful for debugging and testing of the system.

The software architecture of the AGV transportation system provides two view
packets of the module uses view. We start with describing the primary decomposi-
tion of the AGV control system. Then, we show the decomposition of the transport
base system.

4.4.3.1 AGV Control System

Figure 4.12 shows the primary presentation of the module uses view packet of the
AGV control system.

Fig. 4.12 Module uses view
of the AGV control system
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The basic structure of the AGV control system corresponds to the primary
decomposition of a situated multi-agent system as explained in Chap. 3. The AGV
agent is a situated agent that exploits the AGV local virtual environment to coordi-
nate its behavior with other agents. The AGV local virtual environment is supported
by the ObjectPlaces middleware that provides common services to deal with distri-
bution and mobility.

Elements and Their Properties

AGV Agent. An AGV agent is responsible for controlling an AGV vehicle. The main
responsibilities of the AGV agent are (1) obtaining transport tasks; (2) handling jobs
and reporting the completion of jobs; (3) avoiding collisions; (4) avoiding deadlock;
(5) maintaining the AGV machine (charging battery, calibrating, etc.); and (6) park-
ing when the AGV is idle.

AGV Local Virtual Environment. The AGV local virtual environment offers a
medium that the AGV agent can use to exchange information and coordinate its
behavior with other agents. The AGV local virtual environment also shields the
AGV agent from low-level issues, such as the communication of messages to remote
agents and the physical control of the AGV.

Particular responsibilities of the AGV local virtual environment are (1) repre-
senting and maintaining relevant state of the physical environment and the AGV
vehicle; (2) representing additional state for coordination purposes; (3) enabling
the manipulation of state; (4) synchronization of state with neighboring local vir-
tual environments; (5) providing support to signal state changes; (6) translating
the actions of the AGV agent to actuator commands of the AGV vehicle; and (7)
translating and dispatching messages from and to other agents.

ObjectPlaces Middleware. The ObjectPlaces middleware enables communica-
tion with software systems on other nodes. ObjectPlaces provides support for views
and coordination roles in mobile networks. A view is a collection of data collected
from neighboring nodes. Application components can specify which data to gather
using a constraint on properties of the nodes and the collected data. A coordi-
nation role encapsulates the behavior of an application component in a protocol-
based interaction. ObjectPlaces automates the setup and maintenance of interaction
sessions between a group of application components participating in the protocol.
Views and interaction sessions are maintained by ObjectPlaces in the face of dynam-
ics of the network.

The AGV local environment uses the middleware services (1) to exchange mes-
sages with agents on other nodes and (2) to synchronize its state with the state of
local virtual environments on neighboring nodes.

Design Rationale

The decomposition of the AGV control system separates responsibilities. The AGV
agent is a self-managing entity that is able to flexibly adjust its behavior with
changing circumstances in the system and its environment. The AGV local virtual



4.4 Architecture Documentation 81

environment provides an abstraction that allows the AGV agent to interact and coor-
dinate its behavior with other agents in a way that is not possible in the physical
environment. The ObjectPlaces middleware provides basis services for inter-node
coordination, hiding the tedious management tasks of distribution in mobile sys-
tems. Separation of responsibilities helps to manage complexity. An alternative for
indirect coordination through the local virtual environment is an approach where the
functionality to control an AGV vehicle is assigned to an AGV agent only and where
AGV agents coordinate through message exchange via a communication service.
Such a design, however, would put the main part of the complexity of coordination
in the AGV agent, resulting in a more complex architecture.

An instance of the local virtual environment module is deployed on each node
in the AGV system. As such the local virtual environment has to maintain its state
with the state of other local virtual environments. By defining appropriate views,
ObjectPlaces maintains the sets of nodes of interest for the application logic. For
example, to avoid collisions, a view is defined that keeps track of all the vehicles
within collision range; we discuss collision avoidance in detail in Chap. 5. Whenever
a vehicle enters or leaves this range, the ObjectPlaces middleware will notify the
AGV local virtual environment about the change. By taking the burden of mobility,
ObjectPlaces relieves the application developer from a tedious task.

4.4.3.2 Transport Base System

Figure 4.13 shows the primary presentation of the module uses view package of the
transport base system.

Fig. 4.13 Module uses view
of the transport base system



82 4 Architectural Design of Multi-Agent Systems

The transport base system has a similar structure as the AGV control system and
corresponds to the primary decomposition of a situated multi-agent system. The
transport base manager accommodates the integration of the multi-agent system
with clients.

Elements and Their Properties

The transport base manager has a dual responsibility. First, it is responsible for
the communication with client systems, it accepts transport requests and reports the
status of transports to clients. Second, it is responsible for creating transport agents,
i.e., for each new transport request, the transport base manager creates a new trans-
port agent. Each transport has a priority that depends on the kind of transport. The
priority of a transport typically increases with the pending time since its creation.

A transport agent represents a transport in the system and is responsible for (1)
assigning the transport to an AGV; (2) maintaining the state of the transport; and
(3) reporting state changes of the transport to clients via the transport base manager.
Physically, a transport agent is deployed on the transport base. Logically, however,
the transport agent is located in the TB local virtual environment at the location
of the load of the transport. For example, in Chap. 6, we will discuss a field-based
approach for transport assignment in which a transport agent emits a field in the TB
local virtual environment from the location of the load of the transport to attract idle
AGVs.

The TB local virtual environment enables transport agents to coordinate with
AGV agents to find suitable AGVs to execute the transports. Each transport agent
has a limited view in the TB local virtual environment, i.e., each transport agent can
only interact with the AGV agents within a particular range from its position. Yet,
the range of interaction may dynamically change. In Chap. 6, we explain how the
range of interaction of a transport agent dynamically extends when the agent does
not find a suitable AGV to execute the transport. Limiting the scope of interaction
is important to keep the processing of data under control.

Contrary to the AGV agents, the transport agents in the system share one local
virtual environment. Still, the state of the TB local virtual environment has to be
synchronized with the state of AGV local virtual environments in the system, e.g.,
to maintain the positions of the AGVs in the TB local virtual environment and the
locations of new transports in the AGV local virtual environments. Since transport
agents can access the TB local virtual environment concurrently, support for con-
current access is needed.

Particular responsibilities of the TB local virtual environment are (1) representing
relevant state of the physical environment; (2) representing additional state for coor-
dination purposes; (3) synchronization of state with AGV local virtual environments
(in particular, maintaining the position of the AGVs in the system); (4) providing
support to signal state changes; (5) providing support for concurrent access; and
(6) translating and dispatching messages from and to AGV agents. Obviously, the
responsibilities of the AGV local virtual environments that are related to the AGV
vehicle (representing state of the AGV, translating actuator commands, etc.) are not
applicable for the TB local virtual environment.
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ObjectPlaces. The responsibilities of the ObjectPlaces middleware are similar as
for the AGV control system, see Sect. 4.4.3.1.

Design Rationale

The transport base is in charge of handling the transports requested by the clients of
the AGV transportation system. The transport base manager serves as an interme-
diary between the clients and the system. Apart from the transport base manager,
the software architecture of the transport base is similar to the architecture of the
AGV control system. Transport agents are situated in the TB local virtual environ-
ment that enables the agents to find suitable AGVs to perform the transport tasks.
The ObjectPlaces middleware enables communication with the software systems on
other nodes. The motivations for the decomposition of the transport base system are
the same as for the AGV control system, see Sect. 4.4.3.1.

4.4.4 Collaborating Components View

A collaborating components view is a style of the component-and-connector view
type. The collaborating components view shows a system as a set of interacting
runtime components that use a set of shared data repositories to realize the required
system functionalities. We have introduced the collaborating components view to
explain how collaborating components realize various functionalities in the multi-
agent system. The elements of the collaborating components view are components,
data repositories, component–repository connectors, and component–component
connectors:

• Components are runtime entities that achieve a part of the system functionality.
Components are instances of modules described in the module view.

• Data repositories enable multiple components to share data.
• Component–repository connectors connect components with data repositories.

These connectors determine which components are able to read and write data in
the various data repositories of the system.

• Component–component connectors enable components to request each other to
perform a particular functionality. Collaborating components require functional-
ity from one another and provide functionality to one another.

The collaborating components view is an excellent vehicle to study the runtime
behavior of a situated multi-agent system. The view shows the data flows between
runtime components and the interaction with data stores, and it specifies the func-
tionalities of the various components in terms of incoming and outgoing data flows.

The software architecture documentation provides two view packets of the col-
laborating components view. We start with the view packet that describes the col-
laborating components of AGV agent. Then follows the view packet that describes
the collaborating components of AGV local virtual environment.
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4.4.4.1 AGV Agent

This view packet zooms in on the software architecture of agents. We focus on
the AGV agent. Figure 4.14 shows the primary presentation of the collaborating
components view of the AGV agent. The structure of the AGV agent corresponds
to the Situated Agent pattern, see Sect. 3.6.

Elements and Their Properties

The current knowledge repository contains state that the agent uses for decision
making and communication. Current knowledge consists of static state and dynamic
state. An example of static state is the value of LockAheadDistance. This parame-
ter determines the length of the path AGVs have to reserve to drive smoothly and
safely; we elaborate on path locking in Chap. 5. Examples of dynamic state are state
collected from the observation of the AGV local virtual environment such as the

Fig. 4.14 Collaborating components view of the AGV agent
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positions of neighboring AGVs, state related to ongoing collaborations with other
agents, and runtime state related to the agent itself such as the battery status of the
AGV. The current knowledge repository provides support for synchronized access.
It offers a shared interface to the communication and decision making components
that can concurrently read and write. The perception component is connected to a
separate interface to update the agent’s dynamic state according to the representa-
tions derived from observing the AGV local virtual environment.

Perception enables the AGV agent to sense the AGV local virtual environment
according to the perception requests of communication and decision making and
to update the agent’s current knowledge accordingly. Requests are invoked by the
decision making component and the communication component. Figure 4.15 shows
the decomposition of the perception component. The structure of the perception
component corresponds to the pattern of “Selective Perception,” see Chap. 3. Sens-
ing uses the set of selected foci to gather a representation of the AGV local virtual
environment. The resulting percept is then filtered according to the set of selected
filters of the perception request.

The communication component handles the communicative interactions of the
AGV agent with other agents in the system. The main functionality of communi-
cation in the AGV transportation is handling messages to assign transports. Fig-
ure 4.16 shows the decomposition of the communication component. The commu-
nicating component is structured according to the “Protocol-Based Communica-
tion” pattern, see Chap. 3. Receiving accepts and buffers messages from the AGV
local virtual environment. Decoding decodes the messages using the communica-
tion language, resulting in decoded message data. Communicating is the heart of
the communication component. Communicating processes incoming decoded mes-
sage data and produces outgoing encoded message data according to well-defined

Fig. 4.15 Decomposition of
the perception component of
the AGV agent
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Fig. 4.16 Decomposition
of the communication
component of the AGV agent

communication protocols. During the processing of a protocol step, the communi-
cating component may invoke a perception request and read or write the agent’s
current knowledge. Encoding encodes newly composed message data. Sending col-
lects the messages and passes the message to the communication service of the
AGV local virtual environment. We zoom in on a concrete communication protocol
for transport assignment in Chap. 6.

The decision making component handles the actions of the AGV agent. Due to
the complexity of decision making of the AGV agent, we have modeled the decision
making component as a hybrid architecture that combines a blackboard pattern with
sequential processing. This architecture combines complex interpretation of data
with decision making at subsequent levels of abstraction. The current knowledge
repository serves as blackboard. Figure 4.17 shows the decomposition of the deci-
sion making component.

At the top level the action controller selects a high-level operator. Operator selec-
tion is designed as a free-flow tree extended with roles and situated commitments.
The architecture of the tree has a structure similar to the one we discussed for the
Roles & Situated Commitments pattern in Sect. 3.8.4. The main roles of the AGV
agent are role_working, role_charging, and role_parking. The main
commitments are SC_WORKING and SC_CHARGING. Figure 4.18 shows a runtime
snapshot of the free-flow tree of the AGV agent. In the depicted situation, the AGV
agent has selected the PICK operator.
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Fig. 4.17 Detailed structure
of the decision making
component of the AGV agent

Fig. 4.18 Runtime snapshot of the free-flow tree of an AGV agent. The part of the tree that deals
with battery charging is omitted
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Next, the selected abstract operator is refined into a concrete operator. For
example, when the pick operator was selected, the operator refinement component
decides where the load has to be picked (pick(segment x)), or when a move
action was selected, the component decides what segment is chosen to move on
(pick(segment y)).

Finally, collision avoidance and deadlock avoidance are taken into account.
Therefore, the trajectory associated with the selected operator is locked. As soon
as the trajectory is locked, the selected action is invoked in the AGV local virtual
environment. We discuss collision avoidance in depth in Chap. 5. If during the sub-
sequent phases of decision making the selected operator cannot be executed, feed-
back is sent to the action controller that will inform the appropriate component to
revise its decision. For example, if the operator refinement component has selected
an operator move(segment x) and the collision avoidance module detects that
there is a long waiting time for this segment, it informs the action controller that
in turn may instruct the operator refinement component to consider an alternative
route.

Design Rationale

AGV agent inherits the quality properties of the various patterns of the pattern lan-
guage for situated multi-agent systems that were used to design the agent archi-
tecture. The current knowledge repository enables the data accessors to share state
and to communicate indirectly. Communication and decision making act in parallel,
each component in its own pace, supporting flexibility. Communication in the AGV
application happens at a much higher pace than action selection. This difference
in execution speed is exploited to continuously reconsider transport assignment in
the period between an AGV starts moving toward a load and the moment when the
AGV picks the load. A detailed discussion follows in Chap. 6.

Since the representation of the internal state of AGV agents and the observable
state of the AGV local virtual environment are similar (for example, the status of
the battery and the positions of AGVs), we were able to use the same data types
to represent both types of state. As such, in comparison with the Selective Percep-
tion pattern, no descriptions were needed to interpret representations resulting from
sensing the AGV local virtual environment. This resulted in a simple design of the
perception component.

For an efficient design of the communication module, we have defined a domain-
specific communication language and an ontology that is tailored to the needs of the
AGV transportation system. We elaborate on communication in Chap. 6 when we
discuss a protocol-based approach for task assignment.

In the initial phase of the project, we used a free-flow tree only for decision mak-
ing. However, with the integration of collision avoidance and deadlock avoidance, it
became clear that the complexity of the tree was no longer manageable. Therefore
we decided to apply an architecture that allows incremental decision making. At the
top level, a free-flow tree is still used to select an operator at a high level of abstrac-
tion; this preserves the advantage of adaptive action selection with a free-flow tree.
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At the following levels, the selected operator is further refined taking into account
collision avoidance and deadlock avoidance. Each component in the chain is able
to send feedback to the action controller to revise the decision. This feedback loop
further helps to improve flexible decision making.

4.4.4.2 AGV Local Virtual Environment

This view packet zooms in on the software architecture of the local virtual envi-
ronment. We focus on the AGV local virtual environment. Figure 4.19 shows the
collaborating components view of the AGV local virtual environment. The AGV
local virtual environment is structured according to the “Virtual Environment” pat-
tern, see Chap. 3.

Fig. 4.19 Collaborating components view of the AGV local virtual environment
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Elements and Their Properties

State. Since an instance of the AGV local virtual environment is deployed on each
AGV in the system, each AGV local virtual environment is responsible for keeping
its state synchronized with other local virtual environments. The state of the AGV
local virtual environment is divided into three categories:

1. Static state: this is the state that does not change over time. Examples are the
layout of the factory floor, which is needed for the AGV agent to navigate, and
(AGVid,IPnumber) tuples used for communication. Static state must never
be exchanged between local virtual environments since it is common knowledge
and never changes.

2. Observable state: this is the state that can be changed in one local virtual envi-
ronment, while other local virtual environments can only observe the state. An
AGV obtains this kind of state from its sensors directly. An example is an AGV’s
position. Local virtual environments are able to observe another AGV’s position,
but only the AGV local virtual environment on the AGV itself is able to read it
from its sensor and change the representation of the position in the local virtual
environment. No conflict arises between two local virtual environments concern-
ing the update of observable state.

3. Shared state: this is the state that can be modified in two local virtual environ-
ments concurrently. An example is a hull map with marks that indicate where
AGVs intend to drive—we explain the use of hull maps in detail when we discuss
collision avoidance in Chap. 5. When the local virtual environments on different
machines synchronize, the local virtual environments must generate a consistent
and up-to-date state in both local virtual environments.

Perception manager handles perception in the AGV local virtual environment.
The perception manager’s task is straightforward: when the agent requests a percept,
for example, the current positions of neighboring AGVs, the perception manager
queries the necessary information from the state repository of the AGV local virtual
environment and returns the percept to the agent.

Action manager handles the actions of the AGV agent. The AGV agent can per-
form two kinds of actions. One kind is commands to the AGV, for example, moving
over a segment and picking up a load. These actions are handled fairly easily by
translating them and passing them to the AGV steering system that connects with
the vehicle’s sensors and actuators. A second kind of actions attempt to manipulate
the state of the AGV local virtual environment. Putting marks in the AGV local
virtual environment is an example. An action that changes the state of the AGV
local virtual environment may in turn trigger state changes of other local virtual
environments (see Synchronization below).

Communication manager is responsible for exchanging messages with agents on
other nodes. A typical example is an AGV agent that communicates with a trans-
port agent to assign a transport. Another example is an AGV agent that requests
the AGV agent of a waiting AGV to move out of the way. The communication
manager translates the high-level messages to low-level communication instructions
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that can be sent through the network and vise versa (resolving agent names to IP
numbers, etc.).

Dynamics is responsible for maintaining dynamism in the AGV local virtual
environment that happens independently from actions of agents or dynamics in the
underlying environment. We give an example of such dynamism when we discuss
the spreading of fields for field-based transport assignment in Chap. 6.

Synchronization has a dual responsibility. It periodically polls the status of the
vehicle and updates the state of the AGV local virtual environment accordingly. An
example is the maintenance of the actual position of the AGV. Furthermore, syn-
chronization is responsible for synchronizing state with local virtual environments
on other nodes. We explain the update process for collision avoidance in detail in
Chap. 5.

Design Rationale

The AGV local environment component inherits the quality properties of the Local
Virtual Environment pattern of the pattern language for situated multi-agent sys-
tems. Different functionalities provided by the local virtual environment are assigned
to different components. This helps architects and developers to focus on specific
aspects of the functionality of the local virtual environment. It also helps to accom-
modate change and to update one component without affecting the others.

A well-considered assignment of responsibilities among the main building blocks
of the AGV control system, AGV agent, AGV local virtual environment, and Object-
Places, is crucial for managing complexity. For example, to avoid collisions, the
AGV agent projects a hull in the AGV local virtual environment indicating its
intended movement. The AGV local virtual environments of neighboring nodes
resolve conflicts in case of a possible collision using a mutual exclusion proto-
col. The management of interaction partners that enter/leave the area and thus
have to be included/excluded from the protocol is handled by the ObjectPlaces
middleware.

Since an AGV agent continuously needs up-to-date data about the system (loca-
tions of the loads, status of hulls, etc.), we decided to keep the relevant state in the
AGV local virtual environment synchronized with the actual state of the system.
The synchronization component periodically polls the ObjectPlaces middleware to
update the status of the system. As such, the state repository maintains an accu-
rate representation of the state of the system to the AGV agent. As a result, the
perception manager interacts only with the state repository, resulting in a simple
design for perception management. In contrast, the representation generator in Vir-
tual Environment pattern can also collect runtime data from the environment and
integrate this data with local state of the AGV local virtual environment to produce
a representation.

Changes in the system (e.g., AGVs that enter/leave the system) are reflected in
the state of the local virtual environments, releasing agents from the burden of such
dynamics. As such, the AGV local virtual environment, supported by the Object-
Places middleware, supports openness.
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4.5 Summary

In this chapter, we discussed the design and documentation of multi-agent system
architectures and we showed their use for a concrete multi-agent system.

In architecture-based design of multi-agent systems, we use ADD as a systematic
method to design an agent-based system. ADD involves a recursive process in which
system elements are decomposed by applying architectural approaches that satisfy
its driving quality attribute requirements. The output of ADD is a set of views that
describe the primary structures of a multi-agent system architecture. To document
the views of an architecture, we use the Views and Beyond method. In Views and
Beyond documenting a software architecture consists of two complementary activ-
ities: (1) documenting the relevant views and (2) documenting the information that
applies to multiple views.

In the case study, we extensively discussed the architectural design and documen-
tation of an AGV transportation system. We discussed the design process based on
ADD and explained how we have used the pattern language for situated multi-agent
systems to shape the software architecture of the AGV application. We motivated the
main architectural decisions, including the use of AGV agents and transport agents,
the use of local virtual environments that provide as a flexible coordination medium
for the agents, and the supporting ObjectPlaces middleware that encapsulates the
tedious management of distribution and mobility.

After the general overview of the design, we presented the various views of the
software architecture documentation. The deployment view documents the alloca-
tion of the two subsystems, AGV control system and transport base system, to hard-
ware. The module uses view specifies the responsibilities of the main modules of the
subsystems and shows their dependencies. Finally, the collaborating components
view provided insight into the internal structure and behavior of the AGV agent and
AGV control system.



Chapter 5
Middleware for Distributed Multi-Agent
Systems

One of the major challenges in the software development of a distributed
multi-agent system is the coordination necessary to align the behavior of the agents.
Since coordination determines whether agents cooperate effectively, it has a direct
impact on the satisfaction of a distributed application’s functional requirements.
Furthermore, since coordination is realized primarily by communication, coordi-
nation has a large impact on quality attributes such as efficiency and resource
usage.

Decentralization of control implies a style of coordination in which the agents
cooperate as peers with respect to each other, and no agent has global control over
the system or global knowledge about the system. As a result, complex interactions
are necessary to achieve consensus since there is no single agent that can make a
centralized decision. In the case of mobile applications, agents have to take into
account the distribution of the nodes in physical space and other properties of the
environment, which add extra complexity to the realization of coordination. Since
development of distributed multi-agent systems is difficult, usually middleware is
used to support the application developer.

We start this chapter with introducing middleware support for distributed sys-
tems and multi-agent systems in particular. Then, we explain in detail a concrete
middleware that was developed for the case study and we illustrate how this mid-
dleware supported a complex coordination problem in a mobile setting. The chapter
concludes with a summary.

5.1 Middleware Support for Distributed, Decentralized
Coordination

We give an overview of the role of middleware for supporting the development
of distributed systems. First, we zoom in on the multiple layers of middleware in
distributed software systems in general. Then, we take a closer look on middleware
for multi-agent systems.
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5.1.1 Middleware in Distributed Software Systems

Over the last decade, the development of software systems increasingly emphasizes
the reuse of software components. There is an ongoing trend away from program-
ming applications from scratch to integrating them by configuring and customiz-
ing reusable components and frameworks [145]. Requirements for greater reuse
in developing distributed software systems motivate the use of middleware-based
architectures. Middleware is software that resides between the application and the
underlying operating systems, network, and hardware. Middleware shields software
developers from low-level tedious and error-prone platform details. It provides soft-
ware developers with a consistent set of higher level abstractions and services closer
to the application requirements. Figure 5.1 shows the multiple layers of middleware
in distributed software systems [145].

Host Infrastructure Middleware encapsulates communication with the operating
system. Widely used examples are the Java Virtual Machine and the .NET plat-
form. Distributed Middleware defines higher level distributed programming mod-
els with reusable APIs and components that help programming distributed appli-
cations. Examples are Java Remote Method Invocation, Common Object Request
Broker Architecture (CORBA), and SOAP that provide a simple XML-based proto-
col allowing applications to exchange structured information on the Web. Common
Middleware Services define higher level domain-independent services that support

Fig. 5.1 Middleware layers
with surrounding
context [145]
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programming of application logic such as transactional behavior, security, and
database access. An example technology is Enterprise Java Beans that enables soft-
ware developers to link predefined services (“beans”) without having to write much
code from scratch. Finally, Domain-Specific Middleware Services are tailored to the
requirements of a particular interest group. Examples are middleware services for
telecom, electronic commerce, and grid computing. Today, domain-specific middle-
ware services tend to be less mature partly due to the lack of common middleware
standards which are needed to provide a stable basis to create domain-specific ser-
vices [145].

As distributed software applications have to deal with increasing dynamics and
heterogeneity, software must be dynamically composed and adapted at runtime. A
major trend in middleware is to combine domain-specific middleware functionality
with specific component frameworks (e.g., JEE, .NET, etc.). This approach enables
the construction of applications from independently developed third-party compo-
nents and integrate built-in services covering nonfunctional requirements of a dis-
tributed application such as persistency and security. A typical example is service-
oriented architectures [9] where the major part of application development boils
down to assembling domain-specific services that comply with a set of declaratively
specified policies. The complexity of flexible composition and runtime adaptation
of services in the face of the crosscutting nature of functionality is the subject of
active research [26, 95].

5.1.2 Middleware in Multi-Agent Systems

We now look at how typical middleware support for multi-agent systems maps on
the different middleware layers:

• Distributed and host infrastructure middleware. Multi-agent system engineers
generally consider distributed middleware services (RMI, CORBA, SOAP, etc.)
as a basic platform to build multi-agent systems. The services provided by the
bottom layer are not the main focus of research on agent environments but are
typically considered as given infrastructure.

• Common middleware services. In multi-agent system development, common
middleware services such as security, persistency, transactions are often con-
sidered minimally. For lab prototypes, there is a tendency not to consider these
domain-independent services. Since the number of deployed multi-agent systems
is rather limited, there is little experience with integrating common middleware
services in multi-agent systems. Some platforms provide basic support for par-
ticular common middleware services such as Retsina [156] (security, monitoring,
and logging) and Living Systems of Whitestein Technologies [171] (among oth-
ers, transactions, persistency, and Web service access).

• Domain-specific middleware services. Support for agent interaction such as com-
munication services for message exchange and infrastructures for coordination
are part of the domain-specific middleware services layer. These infrastructures
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are built on top of the distributed middleware platform and comprise program-
ming abstractions and services that can be reused across multi-agent system
applications [62]. Almost all agent platforms offer some form of domain-specific
middleware service. The types of support are very different and include support
for distributed message communication such as Jade [23], electronic institu-
tions [54], artifacts [137], pheromone infrastructure [35], and infrastructures
based on tuplespaces [113, 106]. Some examples of more specific approaches
are delegate multi-agent systems [72], tag-based interaction [128], and commu-
nication filters [144].

Domain-specific middleware can help multi-agent application developers by sim-
plifying and accelerating common development tasks [146]. Middleware simplifies
application development by offering programming abstractions that hide lower level
details from the application developer. It accelerates application development by
encapsulating generic, reusable functionalities to support the programming abstrac-
tions. In particular, middleware encapsulates the tedious management tasks associ-
ated with distribution. As such, middleware offers conceptual and technical tools
to support the application developer in dealing with the distributed aspect of the
multi-agent system.

5.2 Case Study

The case study gives an extensive description of a domain-specific middleware for
multi-agent systems and its application to the AGV transportation system. This
middleware, called ObjectPlaces, supports the development of distributed, decen-
tralized applications that are deployed in a mobile network. We start this section by
characterizing the target systems of the middleware and derive requirements for the
coordination middleware. Then, we introduce the basic building blocks of the mid-
dleware: objectplaces, views, and coordination roles. In the two following sections,
we give a description of the software architecture of the middleware and explain
how we have applied ObjectPlaces to solve the coordination problem of collision
avoidance in the AGV transportation system.

5.2.1 Scope of the Middleware and Requirements

The ObjectPlaces middleware targets mobile applications with the following three
characteristics:

1. Context Awareness. The applications have a strong connection with their context
and actively need to take their context into account when coordinating. Typically,
coordination solutions are expressed in terms of the current context properties of
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application components,1 in particular with respect to a components’ interaction
partners. For example, to execute a transport from a particular location, an AGV
is selected among the AGVs within a range of 30 m.

2. Dynamics. The applications are subject to unexpected dynamics originating from
the environment. These dynamics may be the result of the mobility of the nodes
or of other changes in the application’s context. As a result of dynamics, and
the need for application components to be aware of changes in their context,
application components need to be aware of the changes in interaction partners.
For example, AGVs may move in and out of collision range of a particular inter-
section.

3. Decentralization. The applications we consider consist of distinct application
components that cooperate as peers to reach the overall goal of the application.
No single component has global control over or knowledge about the system.
Decentralization of control typically increases both the importance and the com-
plexity of coordination in the application.

These characteristics and the associated problems motivate the following require-
ments for middleware for mobile applications:

1. Discovery of Interaction Partners by Properties. Interaction partners should be
discovered based on their properties, such as location of a node, status of the
node. The identification of interaction partners should be expressed by using a
declarative constraint on node properties.

2. Management of Changes in Interaction Partners. The supporting abstractions
should allow the middleware to encapsulate the management of the group of
components with which a particular component interacts, thereby removing this
burden from the application developer.

3. Decentralized Architecture of the Middleware. The middleware should not intro-
duce a centralized element in its architecture, as this would make the middleware
unusable for decentralized applications.

In addition, the middleware should be efficient, i.e., it should consume a rea-
sonable amount of bandwidth. We do not consider the middleware’s overhead in
computing space and time: bandwidth is the scarcest resource.

5.2.2 Objectplaces

Objectplaces are essentially containers of data objects. Objectplaces are not meant
to be used by themselves, but the two main abstractions, views and coordination
roles (explained in the following sections), are both used in conjunction with object-
places. Hence, it is important to gain a basic understanding of objectplaces before
explaining views and coordination roles.

1 We use the term application component in its general meaning, i.e., a modular and independently
describable entity that is part of an application. An AGV local virtual environment is an example
of an application component.
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5.2.2.1 Conceptual Model

An objectplace is a collection of objects that can be safely manipulated by concur-
rent processes using operations such as put and read and is as such a variant of a
tuplespace [42]. The main motivation for developing a specific tuplespace variant
is the need for asynchronous operations. Typical tuplespace operations are syn-
chronous, i.e., a read operation reads a tuple from a tuplespace and blocks until the
tuple is available. Due to the dynamic conditions in a mobile network, an asyn-
chronous interface is needed. Objectplace operations return control to the caller
immediately, and results are returned when they are available via a callback. This
allows an event-driven style of interaction with the objectplace, which in the case of
synchronous operations should be handled using polling.

Objectplaces can be created by application components. Each node maintains its
own set of objectplaces, each of which can be given a name unique on the node. An
objectplace can be accessed by other application components using its name. This
is summarized in Fig. 5.2.

An objectplace by itself is not accessible from nodes other than the node on
which it is created. Instead, views and coordination roles are used as a structured
way to access and manipulate objectplaces on remote nodes.

Fig. 5.2 Conceptual model
of objectplaces

5.2.2.2 Basic Operations

The three basic operations of an objectplace are put, take, and watch. These
three operations add objects to, remove objects from, and observe objects in the
objectplace, respectively. All three operations are asynchronous: an application
component that executes an operation does not wait for the result, but gives a call-
back as a parameter. When the objectplace has processed the operation, it returns the
result of the operation to the callback. Multiple results may be returned over time.
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An objectplace is thread-safe: multiple concurrent application components can use
the same objectplace safely.

In more detail, the three basic operations on an objectplace are represented as the
following methods:

• put(Collection, Callback) adds the given collection of objects to the
objectplace. When finished, the value true is returned to the callback if all objects
were successfully added and false otherwise.

• take(ObjectTemplate, Callback) removes the objects matching with
the template from the objectplace and returns the matching objects to the call-
back.

• watch(ObjectTemplate, EventTemplate, Lease, Callback)
observes the content of the objectplace and returns copies of objects matching
the object template to the callback according to the given event template.

An object template is a function that takes a set of objects and returns a boolean
value. An object for which the object template returns true is said to match with the
object template. For the watch operation, application components can select which
events are returned using an event template. An event template is a function from
the set of possible events to a boolean value. Supported events are isPresent,
isPut, isTaken. The watch returns all events for which the event template given
by the caller returns true, i.e., a sequence of 〈event, collection〉 pairs are returned
to the callback, where event is one of the supported events and collection is a col-
lection of objects. A Lease serves to unregister watch operations. An application
component uses the lease to discard the watch for which the lease was given as
argument.

In addition to the basic operations, an objectplace offers one extra operation,
executeAtomically, to allow the execution of a series of basic operations
atomically. For a discussion of this composed operation we refer to [146].

5.2.3 Views

In this section, we describe views, the first abstraction supported by the ObjectPlaces
middleware. Views enable coordination of application components based on infor-
mation exchange. Application components declaratively specify in which informa-
tion they are interested. The middleware builds a view by collecting the required
information from objectplaces on remote nodes and maintains the information as
nodes move in or out of the view and as the information on remote nodes is changed
by other application components.

5.2.3.1 Conceptual Model

A view is a collection of objects that are copies of objects in objectplaces on con-
nected nodes in the network. The middleware builds and maintains a view based
on a declarative specification given by an application component. The specification
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Fig. 5.3 Conceptual model of views

determines the objectplaces that are to be included in the view and the objects that
are gathered from those objectplaces. Figure 5.3 shows the concepts and their rela-
tions in a conceptual model.

The model shows that application components can use any number of object-
places to share objects in, and each application component can have any number
of different views to observe objects with. The objects in a view are gathered from
objectplaces from one or more nodes. These objectplaces or nodes contribute to the
view.

The applications are decentralized, i.e., they consist of a set of application com-
ponents that cooperate as peers. Therefore, the middleware is built as a set of decen-
tralized, cooperating middleware components. Each node hosts one middleware
component, which is responsible for providing the necessary services to the applica-
tion components on that node and coordinating with other middleware components
in order to guarantee the middleware’s functionality.

Views and objectplaces contribute to the realization of the requirements for mid-
dleware for mobile applications (see Sect. 5.2.1) as follows:

• Allowing Context Awareness. A view is built by the middleware based on an
application-specific constraint on the nodes and objects that should be gathered
in the view. A view is thus a representation of the information in the network that
is of interest to an application component. Views allow application components
to select the information they currently need declaratively.

• Dealing with Dynamics. By allowing the application to specify the information
it wants to gather by means of a constraint on node properties, the view can be



5.2 Case Study 101

maintained by the middleware. The application does not need to be concerned
with managing changes in interaction partners, as views are kept up-to-date by
the middleware.

5.2.3.2 View Management

The main access point of the middleware to start and stop a view is the View
Manager. To request the construction of a view, an application component uses
the startView operation that is provided by the view manager. The operation
requires three parameters:

1. A node constraint, which determines from which nodes in the network the
objects in the view are gathered.

2. An objectplace name, which determines from which objectplace the objects in
the view are gathered.

3. An object template, which determines which objects are gathered from the
objectplaces on the nodes determined by the previous two constraints.

The node constraint determines which nodes are to contribute to the view based
on node properties. Node properties are application-specific properties of a network
node, e.g., a node’s position. More precisely, a node constraint is a function that
takes as arguments the current values of the properties of the viewing node and the
current values of the properties of a candidate viewed node, and it returns true if
the candidate viewed node should contribute to the view, and false otherwise. The
two arguments enable the expression of constraints relative to the viewing node. For
example, a view on all nodes within a certain distance from the viewing node needs
a node constraint that is a function of both the viewing node’s position and the other
node’s position.

Given the parameters of a view request, the middleware searches the network
for nodes satisfying the node constraint. On these nodes, the objectplace whose
name is the same as the given objectplace name is found. If the objectplace exists,
the objectplace contributes to the view. If the objectplace does not exist, the node
does not contribute any objects to the view. This mechanism implies that the object-
place’s names are known to all application components building a view and that
objectplaces are present during the lifetime of the application.

If an objectplace is found on the node, a watch operation is executed on the
objectplace by the middleware component on the viewed node. The watch opera-
tion’s event template matches with all events. The results of all these watch opera-
tions are events indicating the presence, arrival, or removal of objects in an object-
place. The middleware component on the viewed node sends the events to the
middleware component on the viewing node.2 In this way, the middleware

2 The viewing node is the node on which an application node has requested that a view be built.
The viewed nodes are the nodes that contribute to the view built on the viewing node.
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component on the viewing node can keep the view up-to-date with respect to
changes in the content of the viewed objectplaces.

Changes in the viewed nodes are handled by the middleware by managing the
watch registrations on the objectplaces in the view. Only objects from objectplaces
on nodes that satisfy the node constraint remain in the view. When a node moves out
of the view, the watch operation on the objectplace of that node is unregistered, and
the viewing node is notified that the node moves out of the view. All of the objects
that were sent from that node are removed from the view. When a node moves into
the view, a watch on its objectplace is registered and the viewing node is notified of
the arrival of the new node in the view. Results from the watch operation are sent
and the view is updated.

In order to allow the middleware to build and maintain views based on node
properties, an application or the middleware on each node maintains node properties
for that node in the middleware. Node properties are name–value pairs and may
be the result of a sensor readout on the node, e.g., position or another observable
property of the node. The middleware imposes no constraint on the form of the
values, so they can range from an integer to a complex XML description.

A view is actively maintained by the middleware until it is stopped by the appli-
cation component. The view manager provides the stopView operation to stop a
view.

5.2.3.3 Quality of Views

Two important quality attributes that an application developer needs to know about
view building and maintenance are as follows:

• Reliability. A perfectly correct view at all times is impossible: at least a trans-
mission delay needs to be taken into account to send the necessary update infor-
mation to the viewing node. Reliability determines how well the view reflects the
actual contents of the objectplaces contributing to the view.

• Efficiency. There is overhead associated with building a view, both computation
and communication overhead. Resources used by the middleware cannot be used
by the application. Efficiency determines how much overhead the middleware
uses to offer its services.

Improvement of reliability is usually at the expense of efficiency: a more timely
view needs more updates and more communication.

There is much variation in the quality of mobile networks. At one end of the
scale, unpredictable and unreliable mobile ad hoc networks are connected without
any network infrastructure besides each node’s own network card. On the other end
of the scale, wireless LAN networks are supported by access points to relay and
amplify communication signals and achieve higher levels of reliability.

An in-depth discussion of implementation strategies for view building and main-
tenance is out of the scope of this book. Schelfthout [146] discusses two different
implementation strategies for different deployment environments. The first imple-
mentation strategy describes a protocol for reliable and higher bandwidth wireless
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LANs. The second implementation strategy describes a protocol to form views in
unreliable mobile ad hoc networks. For each of the implementations, quantitative
statements are discussed for two quality attributes: reliability and efficiency.

5.2.4 Coordination Roles

We now describe coordination roles, the second abstraction supported by the
ObjectPlaces middleware. Coordination roles support the application developer
with the design and implementation of dynamic protocols in mobile networks. A
coordination role is an abstraction representing the behavior of a component in a
protocol. Coordination roles allow the middleware to take over the management
aspects of executing a protocol, i.e., the initial discovery of interaction partners in
the network and the detection of changes in interaction partners during execution
of the protocol. Such management is a main problem of coordination in mobile
networks.

5.2.4.1 Conceptual Model

The concepts related to coordination roles and their relations are presented in
Fig. 5.4.

A coordination role is an abstraction that encapsulates the behavior of one appli-
cation component engaging in a protocol. A coordination role instance is a runtime
instance of a coordination role. One coordination role can have many coordination
role instances at the same time. When a coordination role instance is executing a
protocol on behalf of an application component, the component plays the coordina-
tion role.

An interaction session is the exchange of a series of messages in a protocol by
a group of coordination role instances played by distinct application components.
An interaction session is always started by one application component that starts to
coordination play a role by instantiating the coordination role. A coordination role
instance that starts an interaction session is called an initiator. Coordination roles
played by components in the interaction session that participate in an interaction
session started by an initiator are called participants.

5.2.4.2 Interaction Setup and Maintenance

For the middleware a coordination role is a black box, a unit of behavior that is
played by an application component when it is involved in an interaction session.
The middleware supports the setup of interaction sessions and the maintenance of
the group of coordination role instances in the interaction session as node properties
change.

The main access point of the middleware to start and stop interaction sessions
is the Role Activator. To start an interaction session, an application component can
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Fig. 5.4 Conceptual model of roles

use the startInteraction operation that is provided by the role activator. This
operation requires three parameters:

1. An initiator role, which is instantiated by the application component.
2. A node constraint, which specifies the group of nodes on which participants have

to be instantiated.
3. The name of a participant role, which will be instantiated on the nodes that satisfy

the node constraint.

The node constraint allows constraints based on the individual properties of each
participant node and constraints based on relations between properties of initiator
node and participant nodes.3 The former enables the specification of a constraint that
compares an arbitrary combination of node property values from a single participant
node with a constant value, e.g., to select participant nodes based on their status. The

3 The initiator node is the node on which an application node starts an interaction session using
an initiator role. The participant nodes are the nodes on which a participant role is activated that
participates in the interaction session.
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latter enables typical constraints based on differences between properties of nodes,
e.g., to select nodes based on distance between initiator and participant nodes.

For all nodes that satisfy the node constraint, the participant role with the given
name is instantiated, but only if there are application components on that node that
are capable of playing the participant role. To that end, an application component
should register the names of the participant roles that it is capable of playing on
the node on which the application component is deployed. Whenever a coordination
role enters the interaction session, initiator and participants are notified. When a
participant enters the interaction session, an asynchronous communication channel
is opened between initiator and participant, so that the protocol can be executed.

When a coordination role is instantiated (initiator or participant), the middleware
generates a unique identifier that can be used to refer to that role. The initiator and
the participants use the receive operation to receive messages from a coordina-
tion role in the interaction session. To send a message to a participant an initiator
uses the sendToParticipant operation. The middleware uses the role identi-
fier of the participant to deliver the message. To send a message to all participants,
the initiator uses the sendToParticipants operation. Participants can send a
message to the initiator using sendToInitiator.

To support this continuous change in interaction partners, the middleware con-
tinuously monitors the node properties and maintains the instantiation of participant
roles on the appropriate nodes. Two events can occur in a group of role instances
engaged in an ongoing interaction session. First, the properties of a node that is not
in the group change, and as a result its node properties satisfy the node constraint.
A new participant role is instantiated on the node, and the initiator of the interaction
session is notified. The initiator can then take the necessary actions to incorporate
the new participant in the interaction session. Second, the properties of a node that
is in the group change, and as a result its node properties no longer satisfy the node
constraint. The initiator of the interaction session is notified that a participant will
be removed. The participant on the node to be removed is notified, so it can clean
up. Then, the participant is removed from the interaction session by the middle-
ware. Evidently, only protocols which are able to deal with addition or removal of
interaction partners are supported.

In order to allow the middleware to set up a group of coordination role instances
based on node properties, the application or middleware on each node maintains
node properties for that node in the middleware. Similar to views, node properties
are name–value pairs and typically the result of a sensor readout on the node.

The maintenance process continues until the interaction session is closed by the
initiator. The role activator provides the stopInteraction operation to close
the interaction session.

5.2.4.3 Group Membership Guarantees

Regarding the setup and maintenance of interaction sessions, the arrival and removal
of a participant in a group are notified to the initiator with a best-effort guarantee.
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The update frequency of the node properties and the delay imposed by the underly-
ing communication medium determine the granularity of group updates.

The application can control the update frequency of node properties, taking into
account that more updates are likely to cause more overhead. Since the middleware
guarantees group updates with the same frequency (i.e., the middleware handles
every update to node properties), the application can choose the update frequency
such that application requirements are met.

For example, if on every node, the node’s position is updated every second, node
constraints based on position are updated about every second as well (taking into
account jitter on communication delay). In case of mobile nodes, based on the max-
imum speed, an upper bound can be calculated on the distance a node can travel
between two updates. This upper bound can be used to calculate the bounds of the
area in which a node is located; this in turn may be important at the application
level, e.g., for collision avoidance.

In case a node failure occurs for some reason (hardware or software fault, battery
down, etc.), a node is no longer able to communicate. Such failures are in gen-
eral difficult to handle. In mobile networks with a reliable infrastructure, i.e., with
access points, it can be assumed that communication is reliable. A failure detector
can then be put in place in order to detect if a particular node cannot be reached
anymore. Such a failure can then be relayed to initiators that are in an interaction
session with the failed node, as a specific failure event. In this case, the initia-
tor can thus distinguish between a node simply moving out of range and a node
that fails. Typically, a failing node requires special measures in a protocol than
nodes that move out of range. For example, a protocol that needs to avoid colli-
sions between moving vehicles needs to know whether a vehicle has moved out of
collision range or has failed and is still standing approximately at its last known
location.

5.3 Middleware Architecture

In this section, we give an overview of the software architecture of the ObjectPlaces
middleware. We present the high-level module decomposition of the middleware.
Next, we explain group formation, the basis module of the middleware. Then we
zoom in on view management and role activation.

5.3.1 High-Level Module Decomposition

Figure 5.5 shows the high-level module uses view of the ObjectPlaces middleware
situated in its context.
We summarize the responsibilities of the different modules in turn.

Group formation is the backbone of the ObjectPlaces middleware, providing sup-
port for (1) the discovery of groups of nodes that satisfy a node constraint and (2)
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Fig. 5.5 High-level module
uses view of the middleware

the maintenance of this group in the face of changes in the properties of the nodes
in the network.

Group formation modules on the various nodes use their local set of node proper-
ties to determine how the group is formed based on a node constraint. For example,
if a group needs to be formed using a distance constraint, the set of node properties
on each node contains the node’s current position. Node properties are maintained
in an objectplace.

The group formation module supports star-formed group formations, where a
single leader node forms a group with multiple members. The leader can commu-
nicate with all the members of the group, and the members can communicate with
the leader. Consequently, the leader is notified of changes in membership of the
group, and the members are notified when they join or leave the group. Any num-
ber of groups can be formed, and a node may participate in any number of groups
simultaneously, both as a leader and as a member.

Star-formed group formation supports both view construction and coordination
role activation. For view construction, a view is requested on one node and gathers
data is gathered from a number of other nodes in the network. For coordination
role activation, an initiator coordination role is activated on one node and interacts
with participant coordination roles on other nodes in the network. In both cases, a
group is started on one specific node at the initiative of the application, and there
are multiple other nodes in the network that need to be part of the group. In neither
of the two cases participants need to communicate among each other.

View management provides the service for building views. To build a view, an
application component specifies a node constraint and an object template to deter-
mine which objects are gathered for the view. The view manager uses the group
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formation to form and maintain the group. The view manager on the leader node
is responsible (1) to send the necessary information to the view managers on the
member nodes and (2) to build and maintain a view for the application component
based on the data received from the members. The view manager makes the view
available for application components in an objectplace. The view managers on the
member nodes are responsible (1) to collect matching objects for the view and (2)
to notify the view manager on the leader node whenever the situation with respect
to the view on the member node changes.

Role activation provides the service for a protocol-based interaction. To start an
interaction session, the application component supplies an initiator coordination role
that the application component will play in the interaction, a node constraint, and
the name of the participant coordination role to be activated. Role activation uses the
group formation to find the nodes belonging to the group and keep informed about
changes to membership. The role activation module on the node that started the
session is responsible (1) to contact the member nodes to activate the desired partic-
ipant coordination roles and (2) to inform the initiator role when a participant leaves
or a new participant enters the interaction session. The role activation modules on
the member nodes are responsible (1) to activate the participant coordination role if
available and (2) to notify the initiator node when a participant leaves the interaction
session or a new participant enters the interaction session.

Design Rationale

The main functional requirements of the ObjectPlaces middleware are the manage-
ment of views and the management of coordination roles of interaction sessions.
With respect to view management, the middleware must be able to build and main-
tain views in the face of network dynamics based on a node constraint and additional
data such as an object template. With respect to management of coordination roles of
interaction sessions, the middleware must be able to activate and deactivate coordi-
nation roles on the appropriate nodes in the network based on a node constraint and
the name of the coordination role that should be activated. These two requirements
show that the problem common to both is the resolution of a node constraint to a
group of nodes whose properties satisfy the node constraint. This functionality is
provided by group formation which is responsible for forming and maintaining a
group of interacting nodes. Each of the basic functionalities is encapsulated in a
module providing separation of concerns.

Besides functional attributes, the quality of group formation is the major influ-
encing factor on the overall quality of view management and role activation.
Important qualities of group formation are reliability and performance. Reliability
is a measure of the guarantees that can be accomplished with group formation. Reli-
ability measures how up-to-date the group is and how fast the group is changed in
response to changes in the network and node properties. Performance measures the
overhead associated with group formation, in particular communication overhead.
The main influencing factors on the quality of group formation are the characteris-
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tics of the network. Chapter 7 zooms in on the efficiency and bandwidth usage of
the middleware for the AGV transportation system.

5.3.2 Group Formation

The group formation module is the backbone of the middleware, providing

1. The discovery of a group of nodes in the network that satisfy a node constraint.
2. The maintenance of this group in the face of changes in the properties of the

nodes in the network.

As explained above, the group formation module supports star-formed group for-
mation, see Fig. 5.6.

A single leader node (the viewing node or the initiator node) forms a group
with many members (the viewed nodes or the participant nodes). The leader can
communicate with all the members of the group, and the members can communicate
with the leader. Consequently, the leader is notified of changes in membership of the
group, and the members are notified when they join or leave the group.

To explain the working of group formation (and view management and role acti-
vation in the following sections) we use a communicating processes diagram. Com-
municating processes show a system, or a part of a system, as a set of concurrently
executing units and their interactions. The elements of the communicating processes
diagram are concurrent units, repositories, and connectors. Concurrent units are an
abstraction for more concrete software elements such as task, process, and thread.

Fig. 5.6 Schematic
representation of a group.
The leader communicates
with the members. On the
right-hand side: the leader
receives a notification of a
node that left the group
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Repositories are abstractions of more concrete elements such as a buffer. Connectors
enable data exchange between concurrent units and control of concurrent units such
as start, stop, synchronization.

Figure 5.7 shows the group formation processes in connection with view man-
agement and role activation.

We explain the subsequent steps in setting up a group. The number of each step
corresponds to the numbers in Fig. 5.7:

1. An application component starts a view or starts an interaction session by send-
ing a request to the View Manager or the Role Activator, respectively.

2. The View Manager and Role Activator process delegate group formation to
the Group Formation process (specific actions related to view setup and role
activation are explained in detail below). At this point, the node becomes the
leader of a new group.

3. The Group Formation process communicates with other nodes using the Message
Handler, to determine which nodes are to become a member of the group. The
Group Formation process keeps monitoring the group for changes in member-
ship.

Fig. 5.7 Communicating processes focusing on group formation
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4. The Group Formation process notifies the View Manager or Role Activator of
the group members and afterward of any changes in group members.

A Property Maintainer process keeps the Node Properties repository up-to-date,
e.g., by reading out sensor values. Only property values of the node itself need
to be maintained. The Group Formation processes on the various nodes use their
Node Properties repository to determine which nodes satisfy a node constraint. The
Node Properties repository contains the updated values of all node properties used
by the application. For example, if a group needs to be formed using a distance
constraint, the Node Properties repository on each node contains the node’s current
position.

5.3.3 View Management

To build a view, an application component specifies a node constraint, an objectplace
name, and an object template. A first step in the construction of a view consists of
the resolution of the node constraint to the group of nodes that satisfy the constraint.

Fig. 5.8 Communicating processes focusing on view management
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This task is handled by the Group Formation process. Then, the members of the
group are contacted to gather the objects that each of the members contributes to the
view.

Figure 5.8 shows the main processes involved in view management. Elements
that are not directly relevant for view management, such as the maintenance of node
properties, are omitted.

We explain the steps that occur when constructing a view:

1. The View Manager receives a request to build a view from an application com-
ponent. The request contains the node constraint, objectplace name, and object
template.

2. The View Manager passes on the node constraint to the Group Formation pro-
cess.

3. The Group Formation process forms the group and keeps the View Manager up-
to-date with respect to membership (the node on which the view is built becomes
the leader of the group).

4. Using the group member information, the View Manager on the leader node
sends the objectplace name and object template to the View Managers on mem-
ber nodes.

Fig. 5.9 Communicating processes focusing on role activation
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5. The member View Managers that are contacted by the leader perform a watch
operation on the objectplace with the given objectplace name (shown as Object-
places Repository), if it exists. If not, no objects from the member node con-
tribute to the view. The events resulting from the watch operation are sent to the
leader View Manager.

6. The leader View Manager builds and maintains a view in the Views repository,
based on the events received from the members.

7. The application component that requested the view can now observe it in the
Views Repository.

Views are maintained continuously. If the View Manager is notified of a change
in membership by the Group Formation service, the View Manager updates the view
accordingly. Similarly, if View Managers on a member node receive events from a
watch, the events are sent to the leader View Manager.

5.3.4 Role Activation

To start an interaction session, an application component supplies an initiator role
that the application component will play in the interaction, a node constraint, and the
name of the participant role to be activated. A first step in role activation consists of
group formation, after which the members of the group are contacted to activate the
appropriate role. If the role is activated, a communication channel is set up between
initiator and participant roles.

Figure 5.9 shows the main processes involved in role activation.
We explain the main steps that occur during role activation.

1. An application component sends a request to start an interaction session to the
Role Activator, specifying an initiator role, a node constraint, and the name of a
participant role.

2. The Role Activator gives the node constraint to the Group Formation service.
3. The Group Formation service finds the nodes belonging to the group and keeps

the Role Activator up-to-date with respect to membership. The node on which
the interaction session is started becomes the leader of the group.

4. The Role Activator on the leader node contacts the Role Activator processes on
the member nodes to activate the desired participant role.

5. The member Role Activators activate the participant role, if the role is deployed
on the node. The member Role Activator confirms activation of the role to the
leader Role Activator.

6. For each participant that is activated, the Role Activator notifies the initiator
of the newly activated participant. A handler to the participant that allows the
initiator to communicate with the participant is given.

7. The protocol between initiator and participants commences.

The Objectplaces Repository contains the objectplaces that coordination roles
and application components on the same node use to coordinate. Application
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components observe the results or influence the course of the interaction protocol
using these objectplaces, and coordination roles use the information in the object-
places to determine the responses they send.

5.4 Collision Avoidance in the AGV Transportation System

We now demonstrate how views and coordination roles have supported the design
and development of the multi-agent system for the AGV application. In this section,
we focus on the coordination problem of collision avoidance. We assume that other
functionalities such as task assignment, routing, deadlock avoidance, and battery
recharging are available. A detailed discussion of task assignment supported with
views follows in the next chapter. A solution for deadlock avoidance supported with
coordination roles is presented in [146].

5.4.1 Collision Avoidance

Collision avoidance for AGVs is a coordination problem that resembles a mutual
exclusion problem. Mutual exclusion algorithms are used in concurrent and dis-
tributed programs to ensure that several processes do not concurrently use un-
shareable resources. The un-shareable resources are called critical sections. For
AGV collision avoidance, critical sections are physical areas on the factory floor that
cannot be driven over by several AGVs at the same time. The important difference
with classical mutual exclusion problems and collision avoidance is that areas are
continuous, so the critical sections are continuous and determined dynamically at
run time. In traditional mutual exclusion problems, critical sections are determined
at design time and are discrete, i.e., there is a fixed and known number of critical
sections that need to be guarded.

While the problem of collision avoidance can be made discrete, for exam-
ple, by using segments as critical sections (of which there are a known, discrete
number on the layout), this solution is not satisfactory, since it does not account
for the case where two AGVs need to cross each other on closely located seg-
ments. In particular, there may be different types of AGVs working together on
the same floor, so two small AGVs may be able to cross at the same time, while
two broad AGVs cannot. If maximal flexibility is desired, the best option is then
to allow AGVs to describe exactly which area they intend to cross and reserve
that area for the AGV, instead of relying on imprecise, worst case discrete critical
sections.

As a result, well-known distributed mutual exclusion protocols [136, 155, 101]
are not directly usable for AGV collision avoidance. However, the similarities
between both problems are still greater than the differences. Consequently, the pro-
tocol presented below is a variant on a classical mutual exclusion protocol described
by [136].
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Research in AGV control systems has tackled the collision avoidance prob-
lem [135, 111]. In all approaches, however, collision avoidance is handled together
with routing and deadlock avoidance, i.e., an integrated approach to move AGVs
from an arbitrary starting point to an arbitrary end point, taking into account the
routes and destination of all other AGVs on the floor. Because all this information
is needed, the approaches are all implemented in a centralized way, i.e., one server
calculates all routes for each AGV. Since we study a decentralized architecture, these
approaches do not fit our problem.

We have developed a decentralized approach for AGV collision avoidance. The
underlying protocol allows decentralized mutual exclusion for continuous critical
sections and can be applied to other similar mutual exclusion problems that require
fine-grained critical sections.

5.4.2 Collision Avoidance Protocol

To explain the decentralized approach for AGV collision avoidance, we first focus
on how the AGV agents avoid collisions without being aware of the underlying
collision avoidance protocol. Then, we explain the work behind the scene, i.e., the
decentralized mutual exclusion protocol executed by the local virtual environments
supported by the ObjectPlaces middleware.

5.4.2.1 AGV Agent Exploits the Local Virtual Environment

In order to drive collision free, an AGV agent exploits the local virtual environment,
taking the following actions:

1. The AGV agent determines the trajectory it intends to follow over the layout. The
trajectory is determined by Lock Ahead Distance parameter that ensures that the
AGV moves smoothly and stops safely.

2. The AGV agent calculates exactly which area it is going to occupy on the floor
if it drives over its intended trajectory. This area is determined by an AGV’s hull
projection, see Fig. 5.10. A hull is the physical area an AGV occupies on the
floor. A hull projection is the union of a set of hulls, projected along the AGV’s
intended path in small increments. The hull projection determines accurately the
space an AGV will occupy if it would drive over the path; so, if a number of hull
projections of a set of AGVs overlap, the AGVs are on collision course.

3. To avoid collisions, an AGV agent tries to reserve the area represented by the hull
projection for exclusive use. Therefore the agent marks the path it intends to drive
in the local virtual environment4 with a requested hull projection. This projection
contains the agent’s identity and a priority that depends on the transport the AGV
is handling.

4 For convenience, we use “local virtual environment” to refer AGV local virtual environment in
the remainder of this chapter.
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Fig. 5.10 A top-down view of a factory floor with two AGVs which are projecting a hull

4. The agent perceives the local virtual environment to observe the result of its
action.

5. The agent examines the perceived result. There are two possibilities:

a. The requested hull projection is marked as a locked hull projection: it is safe
to drive.

b. The hull is not marked as locked: this means that the agent’s hull projection
conflicted with that of another AGV agent. The agent may not pass; at this
point the agent may decide to wait and look again at a later time or remove its
requested hull projection and take another path altogether.

Since the AGV steering system, E’nsor, must be instructed to drive segment per
segment (i.e., the level of granularity is one segment), an AGV’s requested hull
projection spans at least one segment. When an AGV is driving, the AGV agent
releases the parts of its locked hull projection behind it, so that other AGVs may
pass. Note that AGVs cannot completely clear their locked hull projections, since
an AGV at least needs to keep a lock on the area it is currently standing.

5.4.2.2 Decentralized Mutual Exclusion Protocol

We now shift our focus to the AGV’s local virtual environment which must resolve
conflicts with the local virtual environments of other AGVs that intend to move
and make sure that the requested hull projection becomes locked eventually. To
this end, the local virtual environment of the AGV agent that requests a new hull
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projection executes a mutual exclusion protocol with local virtual environments of
nearby AGVs.

In order to guarantee safety and save bandwidth, the subset of local virtual envi-
ronments with which a requesting local virtual environment interacts must include
the local virtual environments of all AGVs with which the AGV of the requesting
local virtual environment might collide. Figure 5.11 illustrates how safe subset of
AGV local virtual environments is determined.

A requesting local virtual environment interacts with other local virtual envi-
ronments whose hull projection circle overlaps with the hull projection circle of
requesting local virtual environment. The hull projection circle is defined by a center
point, which is the position of the AGV itself, and a radius, which is equal to the dis-
tance between the AGV and the furthest point on its hull projection. So, overlapping
circles indicate to a first approximation that two AGVs are within collision range.
This approximation has the benefit that it narrows down the possible candidates for
interaction significantly, while each AGV only needs limited knowledge about other
AGVs to determine interaction partners (i.e., position and hull radius).

Due to the mobility of the AGVs, a new AGV entering collision range should
be taken into account when executing the collision avoidance protocol, and an
AGV leaving collision range can be disregarded. Using the middleware support, the
collision avoidance protocol is modeled by two roles: a Requester and a Voter role.
To lock a new hull projection, the local virtual environment activates a Requester
role, asking the activation of Voter roles with a node constraint that selects all AGVs
within collision range:

cnode(Vinit,Vpart) = dist(Vinit.pos,Vpart.pos) ≤ Vinit.rhull + Vpart.rhull

Fig. 5.11 Illustration of the hull projection circle
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V . pos denotes the current (x,y) position, rhull the current hull radius. From this
constraint, it is clear that the middleware needs the AGV’s positions and current hull
radii to determine where voters should be activated, so the application updates this
information in the node properties repository. On each AGV, the AGV’s position and
hull radius are updated every second. The middleware takes care of disseminating
positions and hull radii to other AGVs. So, a small amount of data is sent to all
AGVs, in order to allow the AGVs to execute the collision avoidance protocol in
smaller groups. To instantiate the necessary Voter roles, the middleware finds all the
AGVs in the system whose properties satisfy the node constraint. The Requester role
is notified of these Voter role instances, after which the collision avoidance protocol
can be executed.

Once the group is settled, to lock a requested hull projection, the local virtual
environment executes the following mutual exclusion protocol with the local virtual
environments in collision range:

1. The requester sends a Request(HullProjection)message to voters.
2. The voters check whether the requester’s hull projection overlaps with their hull

projection. There are three possibilities for each of the requested voters:

a. No hull projections overlap. The voter sends an allow message to the
requester.

b. The requester’s hull projection overlaps with the voter’s hull projection, and
the voter’s hull projection is already locked. The voter defers to send an
allow message until the lock on the overlapping area is released.

c. The requester’s hull projection overlaps with the voter’s hull projection, and
the voter’s hull projection is not locked. Since each of the requested hull pro-
jections contains a priority, the voter can check which hull projection has
precedence. If the requester’s hull projection has a higher priority than that of
the voter, the voter replies allow; otherwise the voter defers until the lock
on the overlapping area is released.

3. The requester waits for all votes to come in. If all voters have voted allow,
the requested hull projection can be locked and the state of the local virtual
environment is updated.

When a new AGV enters collision range while a collision avoidance interaction
session is in progress, this is detected by the middleware and a Voter role is instan-
tiated on that AGV. The Requester is notified, and in response sends a request to
the new Voter, and also waits for the allow message from that AGV. When an AGV
moves out of collision range, the Requester is notified, and so the Requester no
longer waits for that Voter.

Intuitively, the protocol is safe, i.e., collision-free movement is guaranteed,
because for each two AGVs with overlapping requested hull projections, exactly
one request is allowed. However, a closer examination reveals that two problems
must be solved to guarantee safety of the protocol:
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1. Group formation may be out of date. The middleware sends update messages
to inform AGVs of new positions and hull radius. However, this information is
updated once per second, and there is a transmission delay. The information an
AGV has about other AGVs thus may not reflect the current situation. As a result,
an AGV may not send a request to another AGV that is within collision range
and erroneously assume that it is safe to lock a hull projection.
This problem is solved as follows. Given the update interval of 1s for position
and hull radius, and a maximum message delay tdelay, every Requester must wait
a minimal safe time of 1 s plus tdelay before closing a session and locking a hull.
This delay ensures that the middleware has had time to exchange the requesting
AGV’s new position and hull radius with other AGVs, so that each AGV’s infor-
mation is up-to-date with respect to the requesting AGV. In practice, since tdelay
is much smaller than 1 s, the safe time is set conservatively to 2 s.

2. Due to communication delays, group formation may be temporarily inconsistent.
In particular, when two local virtual environments start an interaction session to
execute the collision avoidance protocol an error may occur when a voter on an
AGV that is also requesting sends an allow message to an AGV that is not in the
AGVs group, Fig. 5.12 shows a scenario.

To enforce consistency, we add the condition that a voter role may only allow a
request if the requesting AGV is also in the collision avoidance group as seen by the
AGV on which the voter is deployed.

Appendix C describes the collision avoidance protocol in detail and provides a
proof of safety.

5.4.3 Software Architecture: Communicating Processes
for Collision Avoidance

We now illustrate how collision avoidance is dealt with in the software architecture
of the AGV transportation system. Figure 5.13 shows the communicating processes
diagram for collision avoidance.

The diagram presents the basic components of the AGV control system (AGV
Agent, AGV Local Virtual Environment, and Middleware) and overlays them with
the main processes and repositories involved in collision avoidance; compare the
module decomposition view of the AGV transport system in Fig. 4.12, the
collaborating components of the AGV agent in Fig. 4.14, and the collaborating
components view of the local virtual environment in Fig. 4.19. We explain the sub-
sequent interactions between the main processes involved in locking a requested
hull projection for collision avoidance. The number of each step corresponds to the
numbers in Fig. 5.13:

1. The Collision Avoidance process of the AGV agent, which is part of the deci-
sion making component, requests the Action Manager process a hull projection.
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Fig. 5.12 A possible collision if group formation is inconsistent. Part (a) shows the initial situation:
two AGVs driving toward each other, each with a locked hull projection. The circles show the
AGV’s hull radius. AGV B has a pending requested hull projection but has not requested an allow
from AGV A since AGV A is not within collision range. Part (b) shows what can happen if AGV
A also requests a new hull projection that overlaps with AGV B’s requested hull projection. AGV
A sends a request to AGV B, which, if AGV A’s priority is higher than AGV B’s, is allowed by
AGV B. AGV A’s request message, however, has arrived faster than the update message indicating
AGV A’s new hull radius to AGV B. At this point AGV B can decide to lock its own requested
hull projection, since it is not aware that it should send a request to AGV A. Likewise, AGV A has
received an allow vote from AGV B, so it too can lock its requested hull projection. Collision is
then imminent

2. Action Manager instantiates the Requester role and the corresponding Requester
process. The requester role adds the requested hull to the Collision Avoidance
Objectplace.

3. Action Manager requests Role Activator to start the collision avoidance proto-
col to lock the requested hull projection.

4. Role Activator uses Group Formation to start the group.
5. Group formation communicates with the Group Formation processes on the

other AGVs to determine which AGVs are to become a member of the group.
6. Group Formation notifies the Role Activator of the group members, and after-

ward in case a member leaves the group or a new member joins the group.
7. Role Activator contacts the Role Activators on the member nodes, i.e., the

AGVs that are in collision range, to activate the Voter role.
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8. The Role Activators on the member nodes inform Role Activator that the Voter
role is activated.

9. Role Activator in turn notifies Requester.
10. When all the Voter roles are activated, Requester starts the collision avoidance

protocol sending requests to the Voters with the requested hull projection.
11. Each Voter sends an allow message when the requested hull projection does not

overlap with their hull projection.
12. As soon as the Requester has received an allow message from all the voters, it

locks the hull in the Collision Avoidance Objectplace repository.

Subsequently, the Hull Maintainer process, which is part of the synchronization
module of the AGV local virtual environment (see Fig. 4.19), observes the hull
change and updates the hull representation in the State repository of the AGV local
virtual environment. Finally, the Collision Avoidance process uses the Perception
process to sense the status of the hull projection. The Collision Avoidance process
notices that the hull is locked and the AGV can move on.

Fig. 5.13 Communicating
processes for collision
avoidance
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5.5 Summary

In this chapter, we discussed the crucial role of middleware support for multi-agent
systems. We gave an overview of the role of middleware for supporting the develop-
ment of distributed systems, and we discussed the multiple layers of middleware in
distributed software systems in general. Then we discussed how typical middleware
for multi-agent systems maps on the different middleware layers. We explained that
the focus of middleware support for multi-agent systems is on the domain-specific
middleware layer. Such domain-specific middleware simplifies application develop-
ment by offering programming abstractions that hide lower level details from the
application developer, and it accelerates application development by encapsulating
generic, reusable functionalities to support the programming abstractions.

The case study presented ObjectPlaces, a middleware for mobile systems. Object-
Places targets applications that are characterized by context awareness, dynamic
operating conditions, and decentralization of control. These characteristics closely
connect with many applications targeted by multi-agent systems.

We presented the two programming abstractions offered by the middleware:
views and coordination roles. A view is a representation of data objects shared by
application components in objectplaces on other nodes in the network. A coordina-
tion role is an abstraction that encapsulates the behavior of an application com-
ponent in a protocol. We discussed the software architecture of the middleware
and motivated the rationale for the architectural design. We used communicating
processes diagrams to precisely describe the internals of group formation, view
management, and role activation.

Finally, we explained how we have applied ObjectPlaces in the AGV transporta-
tion system. Our particular focus in this chapter was on collision avoidance. To
avoid collisions, an AGV agent coordinates with other AGV agents by projecting a
requested hull in the local virtual environments that demarcates the area the AGV
intends to drive. The local virtual environments of the AGVs in collision range
resolve conflicts by executing a mutual exclusion protocol. Dealing with dynamics
and context awareness is a difficult problem in the AGV application. By applying
coordination roles, we showed that the application developer can abstract from low-
level details; the tedious but important tasks, such as finding the AGVs in collision
range handling, dealing with AGVs that leave, and new AGVs that enter collision
range, are handled by the middleware. The middleware support has shown to be
invaluable in the design and development of this real-world multi-agent system.



Chapter 6
Task Assignment

Task assignment in multi-agent systems is a complex coordination problem, in par-
ticular in systems that are subject to dynamic and changing operating conditions.
To enable agents to deal with dynamism and change, adaptive task assignment
approaches are needed. In this chapter, we study two approaches for adaptive
task assignment that are characteristic for two classical families of coordination
mechanisms for task assignment. In particular, we study and compare a field-based
approach for task assignment (FiTA) with a protocol-based approach (DynCNET).
In FiTA, tasks emit computational fields in a virtual environment that attract idle
agents. Agents follow the gradient of the combined field that guides them toward
tasks. DynCNET is an extension of the well-known contract net protocol
CNET [151], with “Dyn” referring to support for dynamic task assignment. Both
FiTA and DynCNET enable task assignment in the system based on local inter-
action among agents and allow for adaptation of task assignment during delayed
commencement. Yet, the approaches differ in the manner agents realize task assign-
ment. In FiTA, agents use simple rules that guide them toward tasks, providing an
emergent solution for task assignment. Contrarily, in DynCNET agents use explicit
selection mechanisms and can negotiate about task assignment. Our focus is on
systems with homogeneous tasks that can be executed by individual agents. We do
not consider complex tasks, for instance composite tasks that have to be divided
among agents, or a combination of related tasks that have to be executed by a single
agent. This perspective allows us to focus on the basic challenges of task assignment
in systems that are subject to dynamic and changing operating conditions.

We use the AGV transportation system as a concrete case to illustrate and vali-
date the two approaches for adaptive task assignment. After a brief description of
the traditional approach for task assignment used by Egemin, we introduce the two
approaches for adaptive task assignment. Then, we evaluate the approaches based
on test results obtained from a simulated industrial AGV transportation system.
The evaluation compares (1) the performance of both approaches (throughput and
bandwidth usage); (2) a number of important quality attributes, including flexibility
(adapt to dynamics that happen during task assignment), openness (take into account
agents that enter/leave the system in the process of task assignment), and robustness
to message loss (degrade gracefully with increasing loss of messages); and (3) the
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complexity and support to engineer the approaches. The chapter concludes with a
summary.

6.1 Schedule-Based Task Assignment

Traditional AGV systems deployed by Egemin use so-called schedule-based task
assignment. A schedule defines a number of rules that are associated with a particu-
lar location and is only valid for that location. The rules define what an AGV has to
do when it visits the schedule’s associated location. The AGV transportation system
determines when the schedule is triggered depending on the current situation of the
system such as the current position and status of the vehicles, loads. Schedule-based
task assignment has two important advantages: (1) the behavior of the system is
deterministic and (2) task assignment can precisely be tailored to the requirements
of the application at hand. Unfortunately, the approach has also disadvantages. First,
the approach is complex and labor intensive. Layout engineers have to define all
the rules manually. Second, the assignment of transports1 is statically defined. The
approach lacks flexibility. To improve flexibility, dynamic scheduling is introduced.
Dynamic scheduling allows reassignment of jobs when an AGV is able to perform
more opportune work. Yet, the approach remains limited since it only allows an
AGV to perform a new pick job in very specific circumstances, for example, when
an AGV drives to a park location or when it performs an opportunity charge action.

Since the execution of a transport requires a preceding effort of an AGV before
the transport can actually be executed, we call this characteristic delayed com-
mencement, deferring final task assignment until an AGV that picks a load will ben-
efit the flexibility of the system. The decentralized architecture aims to provide an
approach for task assignment that enables AGVs to flexibly switch task assignment
when opportunities occur while the AGVs drive toward loads. In the remainder of
this chapter, we present FiTA and DynCNET, the two approaches for adaptive task
assignment that we developed for the AGV transportation system, and we make a
tradeoff analysis. The evaluation is performed on a layout of a real AGV system
that is implemented by Egemin and we use standard transport profiles. In the tests,
we make abstraction of a number of concerns, such as charging of the batteries of
AGVs, calibration of the vehicles, and persistency of data to recover from failures. It
is common practice when testing specific properties of AGV transportation systems
to focus on the concern under test [70].

6.2 FiTA: Field-Based Task Assignment

The basic idea of field-based task assignment is to let each idle agent follow the
gradient of a field that guides it toward a task that has to be executed. The agents
continuously reconsider the situation and task assignment is delayed until the execu-

1 In the context of the AGV application, a transport and a task are synonyms.
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KEY

Fig. 6.1 Example scenario to illustrate FiTA

tion of the task starts, which benefits the flexibility of the system. To explain FiTA,
we use the scenario shown in Fig. 6.1.

Both AGV agents and transport agents emit fields in the local virtual environ-
ment. Transport fields attract idle AGVs. However, to avoid multiple AGVs driving
toward the same transport, AGVs emit repulsive fields. AGV agents combine per-
ceived fields and follow the gradient of the combined fields that guide them toward
pick locations of transports. Fields have a certain range and contain information
about the source agent. The fields of the AGV agents have a fixed range and contain
the identity of the AGV and its current location. The range of transport fields is vari-
able and depends on the priority of the tasks. Transport fields contain the identity of
the transport, the location of the load, and the actual priority of the transport. Fields
are refreshed at regular times, according to a predefined refresh rate. The spreading
of the fields is a responsibility of the local virtual environments.

6.2.1 Coordination Fields

When an idle AGV agent perceives fields, it stores the data contained in these fields
in a field cache. The field cache consists of a number of cache entries. Each cache
entry contains the most recent data contained in a field and a freshness. The fresh-
ness is a measure of how up-to-date the cached data is. For example, in Fig. 6.1
the field cache of AGV A will consist of three entries, one for transport u, one for
transport w, and one for AGV B.
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To decide in which direction to drive, an AGV agent calculates a coordination
field. A coordination field is a combination of the perceived fields stored in the
field cache. The lower the freshness of a cache entry, the lower the influence of
the associated field on the coordination field. The coordination field is constructed
from the next node on the AGV’s path. An AGV agent follows the gradient of the
coordination field downhill. The coordination field is computed as follows:

Fcalc = min|j ∈ out_nodes

(
δ

nT∑
i=1

Fi,j(1 + φi) + (1 − δ)
nA∑

k=1

Fk,j(1 + φk)

)

The formula calculates the minimum of a set of combined fields from a particular
node on the warehouse layout. For each possible direction the AGV can move from
this node, the formula computes the sum of the fields (the first term sums the trans-
port fields sensed by the AGV and the second term sums the sensed AGV fields) and
then selects the minimum. The formula allows to determine the influence of various
parameters such as the freshness of the fields and the balance between attracting
and repelling fields. Concretely, Fcalc is the selected coordination field from the
next node on the AGV’s path. out_nodes is the set of outgoing nodes from the next
node. nT is the current number of entries of transport fields in the field cache and
nA the number of entries of AGV fields. δ is a weight coefficient that determines
the contribution of transport fields relative to AGV fields. Fi,j is the field strength
of transport i of the field cache on the next node via node j. φi is the freshness
coefficient of the sensed field of transport i. Fk,j is the field strength of AGV k of
the field cache on the next node via node j, and φk is the freshness coefficient of the
sensed field of AGV k.

Fi,j is computed as follows:

Fi,j = Router(li,j)

pi

Router(li,j) calculates the shortest path distance from li, the location of transport i,
to the next node on the AGV’s path via node j. pi is the actual priority of transport i.

Fk,j is computed as follows:

Fk,j = Router(lk,j)

Router(lk,j) determines the shortest path distance from lk, the location of AGV k, to
the next node of the AGV via node j.

As an illustration, in the left part of Fig. 6.2, AGV A calculates the coordination
field on the node in front. Although transport w is closer, the coordination field will
guide AGV A toward transport u. This is the result of the repulsive effect of AGV B.
It would have been ineffective for AGV A to drive toward transport w, since AGV
B is closer and is maneuvering toward this transport.
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Fig. 6.2 Two successive scenarios in which AGV A follows the gradient of the combined fields.
For clarity, we have not drawn the fields. The key is the same as in Fig. 6.1

6.2.2 Adaptive Task Assignment

Final task assignment in FiTA is delayed until an AGV actually reaches a pick loca-
tion and picks up the load. This allows agents to adapt the assignment of tasks, while
the AGVs drive toward loads. By delaying task assignment, FiTA can cope with
changing circumstances. An example is shown in the right part of Fig. 6.2 where
a new transport suddenly pops up. While AGV A is driving toward transport u, a
new transport p appears close to AGV A. Since no transport has been assigned to
AGV A yet, it can drive toward transport p.

6.2.3 Software Architecture

Figure 6.3 shows a collaborating components view with the main components of the
AGV agent, the AGV local virtual environment, and ObjectPlaces in FiTA. Trans-
port agents have a similar but more simple decision making component as AGV
agents since these agents only have to deal with emitting fields.

First, we discuss the various components of the AGV agent that deal with field
calculation. Then, we zoom in on the components of the local virtual environment
that deal with field management.

Field Cache. This repository stores the information of fields of other AGV agents
and transport agents in cache entries.

Router. The router uses a map of the warehouse layout with nodes and segments
to calculate paths and distances from one node to another. For testing, we have used
a static router that uses the A* algorithm [68]. However, the approach is compatible
with a dynamic router that would take into account dynamic runtime information
such as traffic distribution.

Field Calculator. The field calculator computes the coordination field from the
last selected target node by combining the perceived fields from the field cache. The
higher the freshness of a cache entry, the more the influence the field associated
with the cache entry will have on the construction of the coordination field. Thus,
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Fig. 6.3 Software components of AGV agent, local virtual environment, and ObjectPlaces
involved in FiTA. The elements in the shaded area of the local virtual environment and the mid-
dleware deal with field management and the elements of the AGV agent deal with field calculation
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although still used, less importance is given to outdated information. The field cal-
culator makes use of the router to calculate the values of the coordination field in
different directions. The AGV follows the gradient of the coordination field downhill
as driving direction.

Field Update. The field update component requests perception updates (via the
Perception component) to update the field cache of the AGV agent. Field update
requests are periodically invoked by the action selection component.

Action Selection. The action selection component continuously reconsiders the
dynamic conditions in the environment and selects appropriate actions to perform
the agent’s tasks. We illustrate action selection of the AGV agent with a number of
example rules:2

{Action selection rules of AGV agent}
R1: (ready-to-pick) -> {action = pick}
R2: (reserved-path < LookAheadDistance)

-> { compute coordination-field;
action = reserve-node }

R3: (ready-to-move) -> {action = move}

Rule R1 states that the AGV agent selects a pick action when the AGV is ready to
pick a load. Rule R2 states that the AGV agent reserves a next node on its way to a
load if the current length of its reserved path is less than the predefined path length
LookAheadDistance. Locking the path in advance according to the LockAheadDis-
tance parameter ensures that the AGV moves smoothly and stops safely. The third
rule states that the AGV agent selects a move action if it is ready to move on.

Action selection passes the selected action to the Collision & Deadlock Avoid-
ance component. If applicable, this component locks the required path to execute
the selected action. As soon as the path is locked, the action is invoked in the AGV
local virtual environment. When the AGV has picked up a load, it will inform the
transport agent and execute the transport. The following two high-level descriptions
summarize the behavior of the agents during task assignment:

{Action selection AGV agent}
while idle
do repeat with constant frequency {
1. Sense fields and update the field-cache
2. Select action
3. Perform action in AGV local virtual environment

}

{Action selection transport agent}

2 The format of the rules is defined as
(condition) → {optional computation; selected action}
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while not assigned
do repeat with constant frequency {
1. Calculate priority
2. Update status in the TB local virtual environment

}

Now, we zoom in on the components of the AGV local virtual environment and the
ObjectPlaces middleware related to field management.

Local State. This repository of the AGV local virtual environment stores the val-
ues of fields of AGVs and transports (among other states).

Field Maintenance. The AGV local virtual environment is responsible for spread-
ing the fields. Field maintenance encapsulates a dynamic process that maintains the
local fields. It takes into account the status of the local agent such as the position
of an AGV and the priorities of transports and the information about AGVs and
transports received from other local virtual environments.

Fields Objectplace. In this repository, field maintenance maintains the field of the
AGV. At the transport base, the TB local virtual environment maintains the status
of the fields of the transport agents in the fields objectplace based on their priority.
Fields are removed when the corresponding load is picked.

Views. In this repository, the view manager builds up the view with relevant
fields for the local agent. The view manager gathers the fields of neighboring AGVs
and transports via the message handler. The view manager maintains the group of
involved nodes based on the watch events it receives from the other nodes. The fields
in the view repository are monitored by field maintenance that use them to maintain
the local state of the AGV local virtual environment.

6.2.4 Dealing with Local Minima

A well-known problem with field-based approaches is the problem of local min-
ima [90]. We explain how FiTA deals with two common causes of local minima: the
topology of the layout and the neutralization of fields.

Since AGV vehicles are confined to follow predefined paths in the environment,
the problems with local minima caused by the topology of the layout could be
avoided relatively easily. Consider the situation on the left in Fig. 6.4 with AGV A
and two transports u and v. If the values of the fields would be based on Euclidean
distance, AGV A would drive toward transport u; however, it would be trapped in a
local minimum at node 1. By making the strength of the field on a particular position
proportional to the shortest path distance between this position and the source of the
field, local minima are avoided. When applied to the example in Fig. 6.4, since the
shortest path distance from AGV A to transport v is much smaller as to transport
u, the attracting field of transport v will be much smaller than that of transport u.
As such, AGV A will turn right at node 1 (gradient downhill) and drive toward
transport v.
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Fig. 6.4 Left: Dealing with local minima in FiTA. The attracting fields of transports u and v are
proportional to the shortest path distance between AGV A and the transports. As such, AGV A will
be guided toward transport v. Right: AGV A selects randomly between tasks v and w in node 2

A local minimum can also arise when the attracting fields and the repelling
fields sensed by an AGV neutralize each other. Consider the situation on the left in
Fig. 6.4. When AGV A computes its coordination field from node 2, the attracting
fields of transport v and w may be equal and smaller than the field of transport u. In
such a case, the AGV will select randomly one of the minimum fields to follow its
route.

6.3 DynCNET Protocol

DynCNET is an extension of the well-known CNET protocol with “Dyn” referring
to support for dynamic task assignment. DynCNET enables the agents to regularly
reconsider the situation in the environment and adapt the assignment of tasks when
circumstances change. The DynCNET protocol describes the behavior of AGV
agents and transport agents to realize adaptive task assignment. This behavior is
encapsulated by the agents’ communication module.

DynCNET is an m × n protocol. An initiator that offers a task can interact with
m participants, i.e., the candidate agents that can execute the task. On the other
hand, each participant can interact with n initiators that offer tasks. As an exam-
ple, consider the scenario shown in Fig. 6.6. In the AGV transportation system, an
initiator corresponds with a transport agent that represents a task in the system and
the participant corresponds with an AGV agent that can execute tasks. We denote
the area where an initiator (or participant) searches for participants (or initiators)
the area of interest of the initiator (or participant). The dotted circles in Fig. 6.6
show the current areas of interest of AGV A (top) and task x (bottom). For task x,
there are currently two candidate AGVs to execute the task: F and G (AGV E is
delivering a load). For AGV A on the other hand, there are three possible tasks to
execute: u, v, and w. Because of the dynamics in the system, the set of candidate
tasks (initiators) and agents that can execute a task (participants) can change over
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time. For example, in the right part of Fig. 6.7, AGV E has just dropped its load and
becomes a candidate to execute task x.

6.3.1 Adaptive Task Assignment

Figure 6.5 shows an AUML interaction diagram [75] with the default message
sequence of DynCNET. The default protocol consists of four steps: (1) the ini-
tiator sends a call for proposals; (2) the participants respond with proposals; (3)
the initiator notifies the provisional winner; and finally (4) the selected participant
informs the initiator that the task is started. These four steps are basically the same
as in the standard CNET protocol. The flexibility of DynCNET is based on the
provisional agreement between initiator and participant and the possible revision of
the assignment of the task between the third and the fourth steps of the protocol.

To explain how agents can switch tasks when the conditions in the environ-
ment change, we use the UML state chart diagrams of Figs. 6.8 and 6.9. These
state diagrams show the behavior of the participant and the initiator, respectively.
When a task enters the system and it is ready to be executed (task-ready),
the corresponding initiator enters the Active state in which it remains until the
task is completed (task–completed) (see Fig. 6.9). As soon as a participant is
ready–to–work it enters the Working state in which it remains until the task is
executed (ready) (see Fig. 6.8). To explain the adaptability of DynCNET, we first
look at the protocol from the perspective of the participant, then we look from the
point of view of the initiator.

Fig. 6.5 High-level diagram
of the DynCNET protocol.
Shaded zones in the
activation boxes represent
periods in the protocol when
agents can switch the
provisional agreement
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Fig. 6.6 Scenario to illustrate
DynCNET. The dotted circle
at the top left demarcates the
current area of interest of
AGV A. The circle at the
bottom demarcates the
current area of interest of
task x

Switching Initiators. Consider the situation in Fig. 6.6 where we assume that
AGV A has a provisional agreement to execute transport w. While AGV A drives
toward the pick location of transport w, a new transport p enters the system, see the
left part of Fig. 6.7. This new transport is an opportunity for AGV A to switch
transport. DynCNET enables participants to switch initiators and exploit such
opportunities. We use Fig. 6.8 for the explanation. When a participant is ready
to execute a task, it enters the Voting state. As long as the participant has not
received a provisional accept, it answers cfp’s with proposals. When the partic-
ipant receives a provisional–acceptmessage (step 3 in Fig. 6.5), it enters the

Fig. 6.7 Left: Task p provides an opportunity for AGV A to switch tasks. Right: AGV E becomes
available for task x. The key is the same as in Fig. 6.1.
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Fig. 6.8 DynCNET protocol for a participant. In the shaded state, the agent can switch the provi-
sional agreement. The format of a state transition is event [guard] / actions

Intentional state. As soon as the participant starts the task (task–started),
it sends a bound message to the initiator to inform the latter that the execution of
the task is started. The participant is then committed to execute the task.3 However,
if a new opportunity occurs before the task is started, i.e., the participant receives
a provisional–accept which is a better offer, the participant changes to the
Switch Initiator state. The participant then retracts from the earlier provi-
sional task assignment (send(retract)) and switches to the more suitable task
(SwitchTask()) entering again the Intentional state.

Switching Participants. Consider the situation in Fig. 6.6 where we assume that
transport x has a provisional agreement with AGV G and transport t with AGV
F. While AGV G drives toward the pick location of transport x, AGV E drops
the load it is carrying and becomes available, see the right part of Fig. 6.7. This
new AGV is an opportunity for transport x to switch AGVs. DynCNET enables
initiators to switch participants and exploit such opportunities. We use Fig. 6.8 for
the explanation. As long as the initiator has not selected a participant to execute
the task (! haveWinner), it sends periodically (Timer()) cfp’s to the par-

3 The initiator’s state changes from Assigned to Executing when it receives the bound mes-
sage from the participant (see Fig. 6.9).
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Fig. 6.9 DynCNET protocol for an initiator. In the shaded state, the agent can switch the provi-
sional agreement. The format of a state transition is event [guard] / actions

ticipants in scope. Based on the received proposals from the participants, it
selects a winner, sends a provisional–accept message (step 3 in Fig. 6.5),
and enters the Assigned state. As soon as the initiator receives a bound message
from the selected participant, it enters the state Executing in which the task is
effectively started. However, if a new opportunity occurs before the task is started,
i.e., the initiator receives a proposal from a participant which is better than
the current provisionally accepted proposal, the initiator changes to the Switch
Participant state. In this state the initiator sends an abortmessage to the pro-
visionally assigned participant and subsequently sends a provisional–accept
message to switch to the more suitable participant (newWinner).

6.3.2 Monitoring the Area of Interest

Participants use the function TaskInOutScope() to determine whether new
tasks enter and leave their area of interest (see Fig. 6.8). Figure 6.10 shows a
communicating components view of the elements involved in determining changes
in the area of interest of an AGV agent.

To activate the TaskInOutScope() function, the communication component
sends a monitoring request to the perception component. Perception registers for
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Fig. 6.10 The components
involved in determining
changes in the area of interest
of an AGV agent

monitoring the AGV agent’s area of interest with the perception manager. The
perception manager requests the local state repository to monitor agents that enter
and leave the specified area. The request is registered by the synchronization com-
ponent which specifies a corresponding view and requests the view manager of
ObjectPlaces to start building the view. The ObjectPlaces middleware constructs
and maintains the view in the transport objectplace. Synchronization monitors the
view objectplace and updates the state of the AGV local virtual environment when
a change occurs. Changes are observed by the perception manager which noti-
fies the perception component. Perception updates the agent’s current knowledge
which triggers the communication component when a task agent enters or leaves
the agent’s area of interest. As soon as the AGV agent picks a load, the perception
component is informed and the monitoring process terminates. Similarly, the func-
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tion ParticipantInOutScope() notifies the initiator when participants enter
and leave its area of interest (see Fig. 6.9).

6.3.3 Convergence

A potential risk of DynCNET is that the assignment of tasks oscillates between
participants and no tasks are executed. To ensure progress, both temporal and spatial
windows are used in the protocol. Temporal windows are the time period used by
the initiators between sending call for proposals in the awarding and the assigned
state and the time period used by the participants between sending proposals in the
voting and intentional state. Spatial windows are the size of the areas of interest for
initiators and participants. We discuss temporal and spatial windows for a concrete
AGV transportation system in Sect. 6.4. The tests show that the protocol converges
for the selected time periods. However, additional research is required to formally
prove convergence of the DynCNET protocol. A possible starting point to produce
such a proof is described in [6]. In that paper, the authors formally prove the termi-
nation of an adapted CNET protocol.

6.3.4 Synchronization Issues

To avoid overloaded diagrams, we made abstraction of two synchronization prob-
lems in the description of the DynCNET protocol in Figs. 6.8 and 6.9. The first
synchronization problem is related to a participant that has started executing a task,
while an initiator has sent an abort message to that participant. The second syn-
chronization problem is related to participants that leave the scope of interest of
initiators. Appendix A.3 explains how these problems are solved.

6.4 Evaluation

To evaluate DynCNET and FiTA, we have applied both approaches in a simulated
industrial AGV transportation system. After introducing the test setting, we present
the main results of the tests, and we reflect on the test results.

6.4.1 Test Setting

All tests are performed on the map of an industrial AGV transportation system that
is implemented by Egemin at EuroBaltic, a fishing processing center in Rugen,
Germany, see Fig. 6.11. The size of the physical layout is 134 × 134 m. The map
has 56 pick and 50 drop locations. We used a standard transport profile that Egemin
uses for testing purposes. This profile generates 140 transports with a random pick
location and a random drop location per hour real time. Each transport is assigned
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Fig. 6.11 Test map of the AGV transportation system that is implemented by Egemin at
EuroBaltic. The snapshot is taken from a test with FiTA. The part at the bottom left zooms in
on a small part of the map

a random priority that increases over time. In the simulation, we used 14 AGVs just
as in the real setup. The average speed of driving AGVs is 0.7 m/s, while pick and
drop actions take an average amount of time of 5 s. Every simulation was run for
200,000 timesteps, corresponding to approximately 4 h real time, i.e., one timestep
represents 15 ms in real time. All displayed test results are average values over 30
simulation runs.

In the tests, we use standard CNET as a reference protocol. In CNET, an initiator
calls for proposals and participants offer proposals to perform the task. When the
initiator has received the proposals from all participants, it evaluates the proposals
and assigns the task to the participant with the best offer. In the tests, a transport that
enters the system is assigned as soon as possible to the most suitable AGV, i.e., an
idle AGV for which the cost to reach the pick location is minimal. When transports
cannot be assigned immediately, they enter a waiting status. All waiting transports
are ordered by priority, and this priority determines the order in which transports
are assigned. CNET is a static approach for task assignment which is comparable to
schedule-based task assignment as traditionally used by Egemin.

Preceding to the tests, we determined the most suitable set of parameter values
for the three task assignment approaches. Because of the constrained nature of the



6.4 Evaluation 139

problem, in particular the restrictions imposed by the layout, for most parameters we
could select a value within a range of possible values without significantly affecting
the performance of the protocol.

6.4.2 Test Results

We focus on the evaluation of two important properties of the task assignment
approaches: performance and robustness to message loss. Performance evaluation
consists of two parts: communication load and completion of tasks over time. Com-
munication load (number of messages sent per transport) is a crucial factor in multi-
agent systems since decentralization of control requires more communication and
thus additional bandwidth. Evaluation of the completion of tasks over time is impor-
tant to demonstrate the flexibility of the task assignment approaches. To evaluate the
completion of tasks over time, we measured reaction time (average waiting time per
transport as a function of simulated timesteps) and throughput (number of finished
transports as a function of simulated timesteps). Besides the test with a standard
test profile, we have performed a stress test in which AGVs have to handle as
quickly as possible a fixed number of transports from a limited number of locations.
Robustness to message loss is another important criterion in decentralized systems,
in particular in mobile systems that communicate via a wireless network. DynCNET
is not robust to message loss since the protocol prescribes a particular sequence
of message exchange. When a message gets lost, this sequence is disrupted and
the interaction is blocked.4 Given the multiple simultaneous interactions and the
ongoing dynamics in the system, extending DynCNET with support for handling
message loss is a non-trivial design task. Timeouts and confirmation messages are
candidate tactics to develop such support, but they will introduce various design
tradeoffs and have a significant impact on the protocol. Therefore, we have only
tested robustness to message loss of FiTA. To evaluate the robustness to message
loss, we have measured the reaction time and throughput for different degrees of
message loss.

Since tasks are generated randomly and priorities are assigned randomly, we have
verified the statistical significance for the main test results by calculating 95% con-
fidence intervals. The confidence intervals are denoted with error bars in the figures.
The relative small intervals indicate that the test results are sufficiently reliable.

6.4.2.1 Communication Load

To compare the communication load, we have measured the average number of
messages sent per finished transport. Figure 6.12 shows the results of the test.

4 In fact, some of the messages may get lost without blocking the interaction. For example, the
protocol will not fail when a call for proposals message gets lost.
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Fig. 6.12 Amount of
messages being sent per
finished transport
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The number of messages of DynCNET and FiTA is approximately the same,
while the communication load of CNET is about half of the load of the dynamic
mechanisms. However, an important difference exists between the type of messages
sent. Figure 6.13 summarizes the number of unicast and broadcast messages sent by
the three mechanisms. For CNET, more than 90% of the communication is unicast
messages. For DynCNET the balance unicast–broadcast messages is about 75–25%,
yet for FiTA this balance is about 25–75%. This difference is an important factor for
selecting appropriate communication infrastructure for a particular task assignment
mechanism and vice versa.

6.4.2.2 Average Waiting Time

Figure 6.14 shows the test results for average waiting time for transports.
Average waiting time is expressed as the number of timesteps a transport has to

wait before an AGV picks up the load. After a transition period of approximately
20,000 timesteps corresponding to approximately 20 min in real time, DynCNET
and FiTA outperform CNET. The difference increases when time elapses. FiTA is
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Fig. 6.13 Left: number of unicast messages. Right: number of broadcast messages
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Fig. 6.14 Average waiting
time per finished transport
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slightly better than DynCNET over the full test range. A possible explanation is
that idle AGVs in FiTA immediately start moving when they sense a field of a task,
while in DynCNET AGVs only start moving after they are provisionally committed
to execute a task.

In addition to the average waiting time for transports over time, we have mea-
sured the average waiting time per location. Figure 6.15 shows the results for the
two dynamic task assignment approaches and CNET. CNET achieves a more equal
distribution as the two adaptive task assignment approaches. In particular, the wait-
ing times for pick locations 1–3 are significantly higher for FiTA and DynCNET.
This drawback can be explained as follows: because these pick locations are far
away from the main traffic in the warehouse, the chance an AGV will be close to the
pick location is significantly lower. For FiTA, this decreases the chance for immedi-
ately attracting an idle AGV when a new transport pops up at the remote locations.
Since the priority of a transport on the remote location gradually increases when
the load is not picked, the field grows and eventually will attract an idle AGV. A

Fig. 6.15 Average waiting
time per pick location
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possible remedy to this problem is to increase the strength of fields of transports on
isolated locations right from the moment the transport is created. For DynCNET, the
situation is similar. The number of AGV agents in the area of interest of a transport
agent located at a remote location will be lower and this will increase the waiting
time for the transport. Increasing the area of interest of transport agents on isolated
locations from the moment the transports enter the system is a possible solution to
improve the distribution of waiting time over the transports.

6.4.2.3 Number of Finished Transports

Figure 6.16 shows the number of transports finished by each of the protocols dur-
ing the test run. The results confirm the measures of the average waiting time per
finished transport. DynCNET handles more transports than CNET, but less than
FiTA. After 4 h in real time, on average, CNET has handled 380 transports, DynC-
NET 467 transports, and FiTA 515 transports. For the 467 executed transports of
DynCNET, we measured an average of 414 switches of task assignments, 94.7%
performed by transport agents and 5.3% by AGV agents.

Stress Test. In addition to the standard transport test profile, we have performed
a stress test in which 45 transports are created at a limited number of locations in
the beginning of the test. These transports have to be dropped at a particular set of
destinations. The test simulates, for example, the arrival of a truck with loads that
have to be distributed in a warehouse. The task of the AGVs is to bring the loads
as quickly as possible to the right destinations. The transport test profiles for the
three mechanisms were identical. Figure 6.17 shows the test results. The slopes of
the curves of FiTA and DynCNET are similar but much steeper than the curve of
CNET. The results demonstrate that CNET requires about 2.5 times more time to
complete the 45 transports than the adaptive approaches.

Fig. 6.16 Number of finished
transports over time
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Fig. 6.17 Number of finished
transports in the stress test
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6.4.2.4 Robustness to Message Loss

As explained above, DynCNET is not robust to message loss and extending the
protocol is a complex design task. Therefore, we have only tested robustness to
message loss of FiTA. To demonstrate the robustness, we have measured the reaction
time and throughput for different degrees of message loss. Figure 6.18 shows the
average waiting time per finished transport for different percentages of message
loss.

Figure 6.19 shows the corresponding number of finished transports over time.
The test results show a graceful degradation of the performance of FiTA with
increasing message loss. The average waiting time of transports systematically
increases and the number of finished transports over time decreases with higher
message loss rates. In practical AGV transportation systems, message loss is typi-
cally 1–2% with a maximum of 5%. The test results show that the impact of message
loss of 2% is fairly limited. Even with 20% message loss, FiTA performs still better

Fig. 6.18 Average waiting
time for different degrees of
message loss
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Fig. 6.19 Number of finished
transports for different
degrees of message loss
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as CNET without message loss (compare the number of finished transports over
time in Figs. 6.19 and 6.16).

6.4.3 Tradeoff Analysis

We now reflect on the test results and make a tradeoff analysis of the approaches
for task assignment. First we zoom in on a number of important quality properties.
Then we compare a number of engineering aspects.

6.4.3.1 Quality Attributes

DynCNET and FiTA have similar performance characteristics. Both outperform
CNET on all performance measures; the cost is a doubling of required bandwidth.
Since DynCNET explicitly defines the mechanism for agents to switch tasks, we
expected that—when fine-tuned well—DynCNET would be able to outperform
FiTA. However, the experiments show that this is not the case; at best DynCNET
is able to equal the performance of FiTA. Figure 6.20 compares several additional
quality attributes of the three task assignment approaches.

Flexibility. Flexibility refers to the agents’ ability to adapt their behavior to
dynamics that happen in the process of task assignment. Both DynCNET and FiTA
support flexible assigning of tasks with delayed commencement, i.e., tasks that
require a preceding effort before they can be executed. In FiTA, the choices of
the participant agents are implicitly determined by the combination of the sensed
fields. DynCNET provides explicit points of choice for initiators and participants.
The points of choice are abstractly defined in the protocol and need to be instantiated
according to the requirements of an application at hand. In the AGV application,
agents use the priorities of tasks and the distance between AGVs and loads to switch
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Fig. 6.20 Summary of quality attributes of the three approaches

tasks. More advanced approaches can be considered, e.g., participants may (to some
extent) favor tasks that are located near other tasks, increasing the chance to find a
closely located task when the original assignment of tasks for some reason switches.

Openness. With openness, we refer to the agents’ self-managing abilities to
take into account other agents that enter and leave the system in the process of
task assignment. Both DynCNET and FiTA support openness during delayed com-
mencement, i.e., both mechanisms allow initiators to take into account new par-
ticipants that become available and participants can participate in the assignment
of new tasks that become available. Whereas FiTA inherently supports openness
(the combination of fields adapts when fields disappear or new fields appear), the
DynCNET protocol includes explicit functions (ParticipantInOutScope, InitiatorI-
nOutScope) that notify initiators and participants when other agents enter or leave
their current area of interest. Neither flexibility nor openness is supported by CNET.

Robustness. Robustness to message loss is the ability of a task assignment
approach to withstand message loss (i.e., graceful degrade). In FiTA, the freshness
of the perceived fields is taken into account to determine the attraction and repulsion
of fields. When an agent misses an update of a field due to the loss of a message, the
previous value of the field is used. Yet, to determine the combined field that guides
the agent, less importance is given to older field values. As such, FiTA is (to some
degree) robust to message loss. DynCNET (as CNET) on the other hand fails when
a message gets lost and the prescribed sequence of messages is disrupted. As such,
DynCNET requires additional support for robustness to message loss. Exception
handling in protocol design is a non-trivial problem [105] and may significantly
affect the properties of the protocol.
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6.4.3.2 Engineering Aspects

Figure 6.21 compares a number of engineering aspects of the three task assignment
approaches.

Engineering Mechanisms. No common engineering approaches are currently
available for designing and developing FiTA. On the other hand, DynCNET allows
to specify the behavior of the agents by means of common engineering diagrams
such as interaction diagrams and state charts. We used UniMod [159] to design the
DynCNET protocol as a state machine. UniMod enables to draw the state machine
and export the diagram to an XML file. This XML file was used to interpret the state
machine in the agent program.

Parameter Tuning. Parameter tuning is typically associated with stigmergy-based
solutions such as FiTA. However, parameter tuning of DynCNET requires similar
efforts as in FiTA. Examples are the range of interest of both types of agents, the
growth rate to extend this range when no suitable candidates are found, the pace
to send cfp and proposals. Our experiences indicate that a flexible agent-interaction
protocol that deals with dynamics and change in the system also requires consider-
able efforts to tune parameters.

Type of Communication. A significant difference exists in the ratio of unicast–
broadcast messages that are used in the three task assignment mechanisms. This
difference is important for selecting appropriate communication infrastructure for
a specific task assignment mechanism and vice versa. Note that an underlying net-
work layer protocol such as TCP/IP is not a sufficient guarantee for robustness in
DynCNET and FiTA since the interactions in both approaches involve broadcast
communication.

Fig. 6.21 Summary of engineering aspects of the three approaches
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6.5 Summary

In this chapter, we elaborated on the complex design problem of task assign-
ment in multi-agent systems. We presented DynCNET and FiTA as two alternative
approaches for adaptive task assignment in decentralized systems and applied them
in an AGV transportation system. In FiTA, AGV agents follow fields in the AGV
local virtual environment guiding them toward transports. DynCNET is an extension
of the CNET protocol that allows agents to reconsider provisionally agreed assign-
ments of transports when circumstances in the environment change. Both FiTA and
DynCNET allow agents to adapt task assignment from the moment the transport
enters the system until its execution is started. We have applied DynCNET and
FiTA in a simulation industrial AGV transportation system that was implemented
by Egemin. Our experiences yield the following conclusions:

• DynCNET and FiTA have similar performance characteristics and outperform
CNET. Contrary to our expectations, DynCNET was not able to outperform
FiTA.

• Whereas FiTA is inherently robust to message loss, DynCNET is not and requires
substantial additional support to deal with message loss.

• Parameter tuning for DynCNET has similar complexity as for FiTA.
• DynCNET explicitly defines the task assignment process among the agents, while

in FiTA task assignment is implicitly enclosed in the fields.

The tradeoff between support for robustness and engineering comfort—in par-
ticular the fact that DynCNET allows engineers to reason on the assignment of
tasks—is an important criterion for selecting a task assignment approach in practice.
We elaborate practical aspects of selecting an approach for task assignment in AGV
transportation systems in Chap. 9.



Chapter 7
Evaluation of Multi-Agent System Architectures

Making the right architectural choices is crucial for successful development of a
multi-agent system. Architectural evaluation allows examining a software architec-
ture to determine whether it satisfies the important stakeholder requirements. Early
evaluation of the software architecture enables adaptation of the architecture before
the costs of correcting it become too high. The evaluation of a software architecture
should involve an evaluation team and the stakeholders who have an interest in the
architecture and the system that will be built from it.

In architecture-based design of multi-agent systems, we use the Architecture
Tradeoff Analysis Method (ATAM) [46] for the evaluation of software architecture.
ATAM is a structured method to examine whether a software architecture is suitable
for the system for which it was designed. A suitable architecture is one that meets the
stakeholder requirements, in particular the quality requirements. The main outputs
of an architecture evaluation with ATAM are a prioritized set of quality attribute
requirements, an analysis of architectural solutions to the main quality attributes,
and a list of architectural tradeoffs and risks.

We start this chapter with a general introduction of the evaluation of a multi-agent
system architecture with ATAM. Then, we explain in detail the ATAM evaluation for
the case study. We conclude with a reflection on the experiences with using ATAM
for the evaluation of a multi-agent system and a summary.

7.1 Evaluating Multi-Agent System Architectures with ATAM

Multi-agent systems are known for addressing quality attributes such as adaptability,
robustness, openness, and scalability. However, for complex systems, stakeholders
have various often conflicting requirements. For example, adaptability and perfor-
mance may be major requirements for customers, configurability is important for
deployment engineers, while reuse may be a prime concern of the project leader.
The general goal of ATAM is to determine the tradeoffs and risks with respect to
satisfying important quality attribute requirements. To evaluate a software archi-
tecture, ATAM focuses on important quality attribute scenarios identified by the
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stakeholders. ATAM relies on both the architect and the architectural documentation
(1) to identify architectural approaches and (2) to assess the way these approaches
affect the quality attributes. The disciplined evaluation of the software architecture
of a multi-agent system is invaluable to pinpoint the tradeoffs and risks implied by
a multi-agent system architecture.

7.1.1 Architecture Evaluation in the Development Life Cycle

Figure 7.1 shows the part of the software development life cycle where architecture
evaluation fits in.

Software architecture evaluation is typically done at an early stage of the design.
Ideally, an ATAM starts when concrete descriptions of the quality attribute require-
ments and the software architecture are available, including a clear explanation of
the main architectural design decisions. In practice, the descriptions are often vague
and the ATAM serves as a means to refine and precise them.

One way to prepare an ATAM is by organizing a Quality Attribute Workshop
(QAW) [19]. A QAW is a facilitated method that engages stakeholders to discover
the driving quality attributes of a software-intensive system. During the QAW, a
utility tree is constructed that helps to concretize and prioritize quality attributes.
We give an example of a concrete utility tree for the case study in Sect. 7.2.3.

Fig. 7.1 Architecture evaluation in the software development life cycle. Shaded boxes represent
the activities of interest in this chapter
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7.1.2 Objectives of a Multi-Agent System Architecture Evaluation

Concrete objectives of a multi-agent system architecture evaluation with ATAM are

• To bring together the group of stakeholders interested in the multi-agent system
architecture.

• To clarify the quality requirements. In particular, to clearly specify the architec-
tural drivers that underlie the choice for a multi-agent system architecture, and
the other important quality requirements of the system.

• To determine the relative importance of the quality requirements.
• To analyze how the multi-agent system architecture contributes to the realization

of the main quality requirements.
• To detect possible risks in the software architecture. Risks are architecturally

important decisions that have not been made or decisions that are not fully under-
stood. An example of the former is the choice of a particular middleware for a
multi-agent system architecture. An example of the latter is the lack of under-
standing of the communication overhead implied by a particular coordination
mechanism.

• To analyze sensitivity points and tradeoff points in the architecture. A sensitivity
point is an architectural decision that is critical for achieving a particular quality
attribute. A tradeoff point is an architectural decision that affects more than one
attribute; it is a sensitivity point for more than one attribute. An example of a
sensitivity point is the choice for a particular type of agent organization to guar-
antee the required throughput of the system. An example of a tradeoff is when
system performance improves with an increasing size of agent organizations, but
robustness reduces.

• To evaluate the feasibility of building a concrete system based on the multi-agent
system architecture.

• To finalize the architecture documentation.

It is important to notice that it is not the goal of an ATAM to precisely predict
quality attribute behavior. Such prediction would require detailed information which
is typically not available at an early stage of design. It is neither the goal to determine
how problematic design decisions have to be tackled. The goal is to mitigate risks
by bringing together the stakeholders to precisely determine the quality attribute
requirements and analyze how the architectural decisions affect the achievement of
these requirements.

7.1.3 Overview of the ATAM Activities

Figure 7.2 shows an overview of the activities of an ATAM.
The ATAM focuses on the identification of business drivers that determine the

quality attribute requirements. The realization of the quality attribute requirements
is based on the selection of architectural approaches, i.e., architectural tactics and
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Fig. 7.2 Overview of the ATAM activities

patterns. During ATAM, the architectural decisions are analyzed to evaluate the
strengths and weaknesses of the architecture.

7.2 Case Study

We explain the evaluation of a multi-agent system architecture for the AGV trans-
portation system. In particular, we apply ATAM for one concrete application: an
AGV transportation system for a tea processing warehouse.
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We start this section with a brief introduction of the application, and we explain
the business goals. Next, we give a general overview of the evaluation process. We
zoom in on the QAW that was organized to elicit an utility tree. Then, we discuss
the analysis of architectural approaches for two concrete quality attribute scenarios.
We conclude with a brief discussion of follow-up activities of the ATAM.

7.2.1 AGV Transportation System for a Tea Processing Warehouse

In the tea warehouse application, bins with tea are stored in a warehouse and AGVs
have to bring the full and empty bins to different tea-processing machines, such as
machines for grinding, parching, and drying, and storage locations. The warehouse
measures 75 × 55 m with a layout of approximately 6,000 nodes. The installation
provides 12 AGVs that use navigation with magnet strips in the floor. There are
30 startup points for AGVs, i.e., points where AGVs can enter the system in a
controlled way. AGVs use opportunity charging and a 11 Mbps wireless Ethernet is
available for communication. Transports are generated by a warehouse management
system. The average load is 140 transports/h, i.e., approximately 12 transports/AGV.
Processing machines can be in two modes: low-capacity mode when machines ask
for bins and high-capacity mode when bins are pushed to machines. Particular
opportunities for optimization are double play (a double play is a combined transport
consisting of a drop action in a predefined double play area by a specific vehicle and
a pick action of a waiting load in the same area by the same vehicle), late decision
for storage orders, and opportunity charging.

Important business goals for the tea warehouse transportation system are

• Flexibility with respect to storage capacity, throughput, and order profiles.
• Extendibility of the layout, production lines, and the number of vehicles.
• Reliability, i.e., 99.99% up-time, downtime may never cause production halt, and

full tracing of quantities.
• Integration with ICT environment, wireless communication, security policy, and

remote connectivity.

The installation is subject to a number of technical constraints, including back-
ward compatibility with E’pia, the component framework developed by Egemin that
provides basic middleware services for persistency, security, logging, etc., and com-
patibility with E’nsor, the low-level control software deployed on AGVs. Finally,
the load of the wireless network is restricted to 60% of its full capacity.

7.2.2 Evaluation Process

The multi-agent system architecture was evaluated in a stage where the software
architecture started to take shape. A prototype has been built and was tested. The
main driver was to evaluate the software architecture before investing a major effort
in the implementation.
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Fig. 7.3 Stakeholders involved in the ATAM of the AGV transportation system for the tea ware-
house application, with their roles and main interests

The architecture evaluation was conducted by a team of three evaluators and nine
stakeholders. Figure 7.3 shows an overview of the involved stakeholders with their
main interests.

In preparation to the ATAM, three stakeholders together with one of the ATAM
evaluators held a 4-day Quality Attribute Workshop. During the QAW a utility tree
for the tea warehouse transportation system was developed. We discuss the QAW in
the next section.

The ATAM itself took 1 day and followed the standard ATAM phases as described
in Fig. 7.2. A key activity of the ATAM was the discussion on the mapping between
the main quality attribute scenarios and the architectural approaches to achieve
the quality attributes. This mapping illustrated the suitability of the architectural
decisions as well as their weaknesses in the architecture and its documentation.
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We discuss the mapping between two quality attribute scenarios and architectural
approaches in Sect. 7.2.4.

7.2.3 Quality Attribute Workshop

To clarify system requirements before the software architecture was evaluated, a
QAW was organized. The main activities of the workshop were

1. Identification of architectural drivers. The participants agreed upon the important
quality attributes of the tea warehouse application and defined for each attribute a
number of specific refinements in the context of the application. For example, for
the quality attribute openness, two refinements were defined: “controlled adding
and removing of an AGV” and “manual manipulation of an AGV.”

2. Scenario brainstorming. Starting from the specification of the architectural
drivers, the stakeholders generated concrete scenarios. Scenario generation is a
key step in the QAW method. It is important to create well-formed scenarios that
include a clear stimulus (i.e., the condition that affects the system), a response
measure (i.e., the activity that results from the stimulus with a concrete mea-
sure by which the system’s response will be evaluated), and a description of the
environment in which the scenario takes place (i.e., the condition under which
the stimulus occurred). An example of a scenario for openness is “If an operator
removes or adds an AGV from the system in a controlled way, the rest of the
system continues working.” The role of the facilitator is crucial in this activity,
she/he should require well-formed scenarios, ensure that scenarios are defined
for all the refined architectural drivers that were identified, and propose to merge
similar scenarios.

3. Scenario prioritization. Each scenario is assigned a ranking that expresses its
priority relatively to the other scenarios. Scenarios are ranked according to the
importance of the scenario to the success of the system and the difficulty to
achieve the scenario.

The list of architectural drivers and the prioritized list of scenarios are key doc-
uments for the ATAM. The prioritized quality scenarios were structured in a utility
tree. A utility tree groups the quality requirements in a tree structure in which high-
level quality attributes are stepwise refined to concrete quality attribute scenarios.
Concretely, a utility tree characterizes the driving attribute-specific requirements
in a four-level tree structure where each level provides more specific information
about important quality goals with leaves specifying measurable quality attribute
scenarios.

Figure 7.4 shows an excerpt of the utility tree of the AGV transportation system.
During the QAW, 11 different qualities and 34 concrete quality attribute scenarios
were specified for the tea warehouse transportation system.

Each scenario is assigned a ranking that expresses its priority relative to the other
scenarios. Prioritizing takes place in two dimensions. The first mark (high, medium,
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Fig. 7.4 Excerpt of the utility tree for the tea warehouse transportation system

or low) of each tuple refers to the importance of the scenario to the success of the
system; the second to the difficulty to achieve the scenario.

At the ATAM workshop, minor changes were applied to the utility tree based on
the discussion with the extended group of stakeholders.

7.2.4 Analysis of Architectural Approaches

During the ATAM workshop, the architectural approaches that address the high-
priority quality attribute scenarios were identified and analyzed. A number of archi-
tectural risks (i.e., problematic architectural decisions), sensitivity points (i.e., archi-
tectural decision that involve architectural elements that are critical for achieving
the quality attributes), and tradeoff points (i.e., architectural decisions that affect
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more than one attribute) of the software architecture were identified. The group
of stakeholders discussed two particular quality attribute scenarios: one scenario
concerning flexibility (transport assignment) and another scenario concerning per-
formance (bandwidth usage). We give an overview of the results of the analysis of
the two scenarios.

7.2.4.1 Architectural Analysis of Flexibility

Figure 7.5 shows an overview of the analysis of architectural decisions for the
main quality attribute scenario of flexibility. The table shows the main architectural
decisions (AD) that achieve the quality attribute scenario and specifies sensitivity
points, tradeoffs, and risks associated with the architectural decisions. We give a
brief explanation of the various architectural decisions:

AD 1. An agent is associated with each AGV and each transport in the system.
To assign transports, multiple AGV agents negotiate with multiple transport
agents. Agents continuously reconsider the changing situation, until a load
is picked. The continuous reconsideration of transport assignments improves
the flexibility of the system. However, it also implies a significant increase
of communication. This was registered as tradeoff T1.

AD 2. For their decision making, agents take into account only local information
in the environment. The most suitable range varies per type of information
and may even vary over time for one particular type of information, e.g.,
candidate transports, vehicles to avoid collisions. The determination of this
range for various functionalities is a sensitivity point. This sensitivity point
was denoted as S1.

AD 3. The dynamic contract net protocol (DynCNET) for transport assignment
is documented at a high level of abstraction. At the time of the ATAM,
several important decisions were not taken yet. For example, how fast the
agents need to reconsider the situation in the environment was an important
choice that had not been made. Moreover, the difficulty of parameter tun-
ing to ensure convergence and optimal behavior was unclear. This lack of
clearness was registered as risk R1.

The architectural diagram show a high-level overview of the interactions between
a transport agent and an AGV agent in the DynCNET protocol. The transport agent
sends a call-for-proposals to m AGV agents and the AGV agent reacts with sending
a proposal to k transport agents. Both agents select interaction partners based on the
distance between the actual position of the AGV and the pick location of the load.
When the transport agent has received all the proposals, it sends a provisional-accept
message to the AGV agent with the best proposal. The agents then have a provisional
agreement to execute the transport. While the AGV drives toward the load, the trans-
port agent keeps sending call for proposals and the AGV agent reacts with proposals.
Due to the mobility of the AGVs, the number of interaction partners may change
(k’ and m’, respectively). In case the AGV agent receives a better offer it retracts
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Fig. 7.5 Analysis of architectural approaches with respect to flexibility
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from the provisional agreement and switches transports. In case the transport agent
finds a better candidate AGV, it aborts the provisional agreement and switches
AGVs. The negotiation ends when the AGV with the provisional agreement picks
the load and sends a bound message to the transport agent. We discuss task assign-
ment with DynCNET in detail in Chap. 6.

7.2.4.2 Architectural Analysis of Bandwidth Usage

Figure 7.6 shows an overview of the analysis of architectural decisions for the main
quality attribute scenario of bandwidth usage.

We give a brief explanation of the various architectural decisions:

AD 1. The AGV transportation system software is built on top of the .NET
framework. This choice was not only a business constraint but also an evident
choice since the E’pia library that is used for logging, persistence, security,
etc., also uses .NET. The overhead induced by the choice for the point-to-
point communication approach of .NET remoting was registered as a sensi-
tivity point S2.

AD 2. Each AGV vehicle is controlled by an agent that is physically deployed
on the machine. This decentralized approach induces a risk with respect to
the required bandwidth for inter-agent communication. This was recorded
as risk R2. An AGV agent can flexibly adapt its behavior to dynamics in
the environment. AGVs controlled by autonomous agents can enter/leave the
system without interrupting the rest of the system. However, flexibility and
openness come with a communication cost. This tradeoff was noted as T2.

AD 3. The dynamic contract net protocol for transport assignment enables flex-
ible assignment of transports among AGVs. Yet, the continuous reconsidera-
tion of transport assignment implies a communication cost. This tradeoff was
denoted as T3.

AD 4. AGV agents use a two-phase deadlock prevention mechanism. AGV
agents first apply static rules to avoid deadlock, e.g., agents lock unidirec-
tional paths over their full length. These rules, however, do not exclude possi-
ble deadlock situations completely. If an agent detects a deadlock, it contacts
the other involved agents to resolve the problem. Yet, the implications of the
deadlock mechanism on the communication overhead are at the time of the
ATAM not fully understood. This lack of insight was denoted as risk R3.

AD 5. The ObjectPlaces middleware uses unicast communication. However,
some messages have to be transmitted to several agents, causing overhead.
Support for multicast is possible, yet, this implies that the basic support of
.NET remoting would no longer be usable. This potential problem was reg-
istered as sensitivity point S3 (see also S2).

The architectural diagram shows how multicast communication between agents
is converted in point-to-point transmission. The scenario shows how the message of
Agent 1 to Agent 2 and Agent 4 is converted in two separate messages.



160 7 Evaluation of Multi-Agent System Architectures

Fig. 7.6 Analysis of architectural approaches with respect to bandwidth usage
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Testing Communication Load. One important outcome of the ATAM evaluation
was an improved insight into the tradeoff between flexibility and communication
load. To further investigate this tradeoff, we conducted a number of tests after the
ATAM workshop. Besides the simulation tests of the two approaches for transport
assignment (see Chap. 6), we tested the efficiency of the middleware in the AGV
application by measuring bandwidth usage of a system in a real factory layout.

Figure 7.7 shows the results of four consecutive test runs. We measured the
amount of data sent on the network by each AGV and averaged this per minute to
obtain the bandwidth usage relative to the bandwidth of a 11 Mbps IEEE 802.11 net-
work. The first test (time 10–30 min) has three AGVs, of which two were artificially
put in deadlock (a situation which is avoided in normal operation), because then the
collision avoidance protocol is continually restarted and never succeeds. This is a
peak load of the system. The second test (40–60 min) has three AGVs driving around
freely. The third test (130–150 min) has five AGVs driving around freely. The fourth
test (160–180 min) has five AGVs, all artificially put in deadlock. During the time
in between test runs, AGVs were repositioned manually. On average, the bandwidth
usage doubles when going from three to five AGVs. This is because the AGVs need
to interact relatively more to avoid collisions. Based on these test results, Egemin
experts consider the bandwidth usage acceptable for an extrapolation to 12 AGVs,
taking into account that the maximal bandwidth usage should be less than 60% of
the available 11 Mbps, and given that bandwidth optimizations were not applied yet.

Fig. 7.7 Bandwidth usage in
a test setting
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7.3 Reflection on ATAM for Evaluating a Multi-Agent
System Architecture

The ATAM workshop was a milestone in the design and development of the multi-
agent system architecture for the AGV transportation system. For the first time,
the assembled group of stakeholders discussed the software architecture in depth.
Important results of the ATAM are
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• Alignment of the business objectives with the architectural design. The business
context provides the driving requirements for the system and the constraints
within which the system has to be developed. On the other hand, a good under-
standing of the technical aspects allows the project decision makers to align
their decisions with technical opportunities and constraints. Alignment of the
business objectives with the architectural design is particularly important in the
context of fielding a new architectural approach such as multi-agent system
architecture.

• A list of prioritized quality attribute requirements, specified as scenarios which
the stakeholders agreed on. Scenarios enforce stakeholders to precisely describe
what the imported concerns of the system are. Bringing the stakeholders together
and allowing them to express their concerns contribute to a better understand-
ing of the required qualities and the tradeoff between different quality attributes.
Prioritizing the scenarios helps to establish a collective vision on the relative
importance of the different stakeholder concerns.

• Architectural evaluation is an incentive to provide a well-documented software
architecture. A good architectural description that includes a rationale for the
main architectural decisions is important for the evaluation of the architecture.
However, afterward, the project will benefit from the architectural description as
it serves as a key document for project organization and system development.

• Identification of risks, sensitivity points, and tradeoffs. The architecture evalua-
tion provided insight into the strengths and weaknesses of the multi-agent sys-
tem architecture. One interesting outcome of the ATAM was the clarification
of the tradeoff between flexibility and communication load in the multi-agent
system architecture. Although the architects were aware of this tradeoff, during
the ATAM several architectural decisions were identified as risky and required
further investigation. Field tests after the ATAM proved that the communication
cost remains under control.

• A better insight into the impact on the software implied by the decentralization
of control. Moving from a centralized architecture to a decentralized multi-agent
system architecture implies a radical redesign which has a deep impact on the
software.

• A better understanding of the importance of software architecture in the soft-
ware engineering process. At the outset of the project, Egemin software archi-
tecture was not considered as an explicit part of the system’s development pro-
cess. The ATAM considerably contributed to improved architectural practice in
Egemin.

A number of critical reflections about the ATAM were made as well:

• Performing a thorough and complete architectural evaluation during a 1-day
ATAM is challenging. Clements et al. [46] suggest a three-day agenda for ATAM
in which additional emphasis is given to scenario elicitation and prioritization
and analysis of architectural approaches. Obviously, such an approach implies a
proportional investment of the stakeholders.

• A QAW is an intense and demanding activity. Coming up with a comprehensive
quality attribute tree is time consuming and at times tedious. The process can be
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structured by letting each stakeholder prepare two or three scenarios in advance.
These scenarios can serve as a good starting point and improve the efficiency for
building up the utility tree. Involvement of an experienced facilitator who can
guide scenario elicitation and building a utility tree is invaluable.

• The multi-agent system architecture for the AGV transportation system was
developed with several automation projects in mind. However, the evaluation
of the architecture was performed in the scope of a single automation project.
Basically, ATAM is devised to evaluate a software architecture in a single project.
The difference in scope sometimes complicated the evaluation since some archi-
tectural decisions were motivated by the product line nature of the software archi-
tecture.

• In preparation of the ATAM, the need for good tool support to document archi-
tectures became manifest. Without a proper tool, drawing architectural diagrams
and building up the architectural documentation incur much overhead. Especially
changing the documentation and keeping everything up-to-date (e.g., cross ref-
erences and relations between different parts of the documentation) is tough and
time consuming. Good tool support to document software architecture would be
helpful.

7.4 ATAM Follow-Up and Demonstrator

The ATAM workshop initiated a number of follow-up activities. Several tests were
conducted to investigate the main risks that were identified during the workshop. An
extra analysis of risks and tradeoffs of the software architecture was performed with
a reduced number of stakeholders. Finally, the architects finished the architectural
documentation, and the evaluators presented the main workshop results. The report
is available for download [30].

As a proof of concept, a demonstrator was developed for the decentralized AGV
transportation system. The demonstrator with two AGVs is developed in .Net and
supports the basic functionality for executing transport orders. The core of the action
selection module of the AGVs is set up as a free-flow tree. A monitor enables remote
access of the AGVs and generates a fusion view that represents the status of the
local virtual environments of both AGVs. Figure 7.8 shows a snapshot of the AGVs
in action with the fusion view.

Demonstration movies of the prototype implementation are available at the
project Website [2].

7.5 Summary

Evaluation of the software architecture is an important activity in architectural-based
design of multi-agent systems. It allows assessing the qualities of the multi-agent
system without the need for a complete implementation. Architecture evaluation
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Fig. 7.8 Demonstrator with AGVs in action

brings the stakeholders together to discuss the software architecture of a system
in which they have a common interest. It compels the stakeholders to define and
prioritize the quality requirements of the system precisely. Architecture evaluation
makes explicit causal connections between design decisions made by the architect
and the qualities and properties in the software system. It allows determining the
risks and tradeoffs with respect to satisfying important quality attributes of a multi-
agent system, such as the tradeoff between adaptability and communication load.
Architecture evaluation reveals the weak and strong points of the architecture, pro-
viding valuable feedback to the architects. This helps to avoid problems later in the
development process when changes in the structure of the software are much harder
to achieve or become too expensive.

In this chapter, we gave an overview of architecture evaluation of multi-agent
systems and we showed the evaluation of a concrete multi-agent system architecture
with ATAM. We explained the role of a QAW to identify the architectural drivers of
the system and specify quality attributes that are ranked in a utility tree as concrete
scenarios. We discussed the main activities of the ATAM workshop and zoomed
in on the analysis of the architectural approaches for two important quality attribute
scenarios. We pointed to a number of experiences with applying ATAM to the multi-
agent system architecture. Finally, we discussed the main results of the architecture
evaluation and referred to the implementation of a demonstration system that was
developed.



Chapter 8
Related Approaches

Architecture-based design of multi-agent systems takes an architecture-centric per-
spective on the engineering of agent-based systems. The approach integrates multi-
agent system concepts with state-of-the-art principles and methods of conventional
software engineering. Although architectural design is considered as an explicit
phase in several agent-oriented methodologies, none of them puts software archi-
tecture in the center of the engineering activities. This does not alter the fact that
multi-agent system researchers have developed a body of knowledge on architec-
tures for agent-based systems.

In this chapter, we discuss related approaches that explicitly consider the con-
nection between software architecture and multi-agent systems. The discussion is
divided into two main parts. We start by discussing related work on architectural
approaches and multi-agent systems. Then, we explain related work on middle-
ware support for distributed, decentralized applications. We focus on approaches
that support the development of systems that are deployed in a mobile network.
Additionally, we give a brief overview of related work on the case study that we
used throughout this book: automated transportation systems.

It is important to notice that the overview is not intended to be complete; our goal
is to give a representative overview of related research.

8.1 Architectural Approaches and Multi-Agent Systems

We start with discussing related work on architectural styles and multi-agent sys-
tems. Then, we explain related work on reference models and architectures for
multi-agent systems.

8.1.1 Architectural Styles

In this section, we discuss related work on quality attributes and architectural styles
for multi-agent systems.

Architectural Properties of Multi-agent Systems. In [149], Shehory presents an
initial study on the role of multi-agent systems in software engineering, and in
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particular their merit as a software architecture style. The author observes that the
largest part of research in the design of multi-agent systems addresses the following
question: Given a computational problem, can one build a multi-agent system to
solve it? However, a more fundamental question is left unanswered: Given a com-
putational problem, is a multi-agent system an appropriate solution? An answer
to this question should precede the previous one, lest multi-agent systems may be
developed where much simpler, more efficient solutions apply.

The author presents an initial set of architectural properties that can support
designers to assess the suitability of a multi-agent system as a solution to a given
problem. The properties provide a means to characterize multi-agent systems as
a software architecture style. Properties include the agent internal architecture,
the multi-agent system organization, the communication infrastructure, and other
infrastructure services such as a location service, security, and support for mobility.
Starting from this perspective, the author evaluates a number of multi-agent sys-
tem frameworks and applications and compares them with respect to performance,
flexibility, openness, and robustness.

Although the discussed properties are not unique to multi-agent systems, the
author states that the combination of the properties results in systems that are suit-
able for solving a particular family of problem domains. Characteristics of these
domains are distribution of information, location, and control; the environment is
open and dynamically changing; and uncertainty is present. At the same time, the
author points out that if only a few of these domain characteristics are present, it
may be advisable to consider other architectures as solutions instead of a multi-agent
system.

Almost a decade later, the majority of researchers in agent-oriented software
engineering still pass over the analysis whether a multi-agent system is an appro-
priate solution for a given problem. We share the position of Shehory. In particular,
(1) a designer should consider a multi-agent system as one of the possible archi-
tectural solutions to a problem at hand and (2) the choice should be driven by the
characteristics of the problem domain and the quality goals of the system.

Organizational Perspective on Multi-agent Architectures. As part of the Tropos
methodology [64], a set of architectural styles was proposed which adopt con-
cepts from organization management theory [89, 43]. The styles are modeled using
the i� framework [179] which offers modeling concepts such as actor, goal, and actor
dependency. Styles are evaluated with respect to various software quality attributes.

Proposed styles are joint venture, hierarchical contracting, bidding, and some
others. As an example, the joint venture style models an agreement between a num-
ber of primary partner actors who benefit from sharing experience and knowledge.
Each partner actor is autonomous and interacts directly with other partner actors to
exchange services, data, and knowledge. However, the strategic operations of the
joint venture are delegated to a joint management actor that coordinates tasks and
manages the sharing of knowledge and resources. Secondary partner actors supply
services or support tasks for the organization core.

Different kinds of dependencies exist between actors, such as goal dependencies,
task dependencies, and resource dependencies. An example of a task dependency in
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a joint venture is a coordination task between the joint management actor and a prin-
cipal partner. A particular kind of dependency is the so-called softgoal that is used to
specify quality attributes. Softgoal dependencies are similar to goal dependencies,
but their fulfillment cannot be defined precisely [43]. Kolp and colleagues [89] state
that softgoals do not have a formal definition and are amenable to a more qualitative
kind of analysis. Examples of softgoals in the joint venture style are “knowledge
sharing” among principal partner actors and “added value” between the joint man-
agement actor and a principal partner actor. According to [43], a joint venture is
particularly useful when adaptability, availability, and aggregability are important
quality requirements. A joint venture is partially useful for systems that require
predictability, security, cooperativity, and modularity. The style is less useful when
competitivity is an important quality goal.

A softgoal dependency in Tropos has no clear definition; it lacks a criterion
to verify whether the goal is satisfied or not. On the contrary, in architecture-
based design of multi-agent systems, we use quality attribute scenarios to pre-
cisely specify quality goals. A scenario includes a criterion to measure whether
the scenario is satisfied. In [88], Klein and colleagues describe “general scenar-
ios” that allow a precise articulation of quality attributes independent of a particular
domain. This allows to specify scenarios for architectural styles. Another difference
relates to the way tradeoffs among quality requirements are handled. Whereas a
utility tree allows prioritization of quality requirements to determine the drivers
for architectural design, Tropos does not consider a systematic prioritization of
quality goals such as a utility tree. In Tropos, a designer visualizes the design
process and simultaneously attempts to satisfy the collection of softgoals for a
system.

The assessment of architectural styles in Tropos is based on a set of quality
attributes. Some of these attributes, such as availability and reliability, have been
studied for years and have generally accepted definitions. Other attributes, such as
cooperativity, competitivity, and aggregability, do not. Naming such attributes by
themselves is not a sufficient basis on which to judge the suitability of an architec-
tural style. The pattern language for situated multi-agent systems rigorously spec-
ifies the various architectural patterns and explains the rationale for the design of
each pattern.

Architectural Evaluation of Agent-Based Systems. In [175], Woods and Barbacci
study the evaluation of quality attributes of architectures of agent-based systems in
the context of ATAM. The authors put forward an initial list of four relevant quality
attributes for agent-based systems. The first attribute is performance predictability.
Due to the autonomy of agents, it is difficult to predict the overall behavior of the
system. The second attribute is security. Verifying authenticity for data access is
an important concern of many agent-based systems. The third quality attribute is
adaptability to changes in the environment. Agents are usually required to adapt to
changes in their environment, including agents that leave the system and new agents
that enter the system. The fourth attribute considered is availability. Availability of
functionality is related to the presence of agents and other services in the system
and their mutual dependencies.
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To discuss quality attributes in agent-based systems, the authors propose a clas-
sification of agent-based systems. The classification abstracts from particular agent
architectures, but focuses on the coordination among agents. The classification is
inspired by previous work of Hayden and colleagues [69]. Example classes are
matchmaker and broker that act as mediators between agents that provide services
and agents that request for services. For each class, the authors define a set of qual-
ity attribute scenarios. Scenarios are formulated in a template form that consists of
three parts: “may affect” describes the quality attributes that may be affected by the
scenario; “implications” describes the risks or potential problems illuminated by
the scenario; and “possible solutions” proposes ways to cope with possible risks. As
an example, one of the scenarios of matchmaker is “provider fails after advertising
service.” This scenario may affect performance and reliability of the consumer of
the service. A possible implication might be that the consumer blocks while it is
waiting for the service, holding up the system. One possible solution is to let the
consumer time out and notify the matchmaker.

The approach of Woods and Barbacci requires a decomposition of the agent-
based system into primitive fragments that fit the generic-defined agent types
(matchmaker, broker, etc.). Scenarios can then be specified based on the interaction
between the identified fragments. However, the presented scenarios are generic and
lack specificity. When applied to a real system such as the AGV application, sce-
narios should be further refined according to the domain-specific requirements and
constraints. In addition, the scenarios only support the evaluation of communica-
tive interactions between the agents. For some domains this may cover a significant
part of the system. However, for other domains such as the AGV application, direct
communication takes up only a small part of the system.

8.1.2 Reference Models and Architectures for Multi-Agent Systems

In this section, we discuss a number of representative reference models and archi-
tectures for multi-agent systems.

PROSA: Reference Architecture for Manufacturing Systems. In [178], Wyns and
colleagues define a reference architecture as a set of coherent engineering and
design principles used in a specific domain. PROSA (Product–Resource–Order–
Staff Architecture) defines a reference architecture for a family of coordination
and control applications, with manufacturing systems as the main domain. These
systems are characterized by frequent changes and disturbances. PROSA aims to
provide the required flexibility to cope with these dynamics.

The PROSA reference architecture [36, 160] is built around three types of basic
agents: resource agent, product agent, and order agent. A resource agent contains a
production resource of the manufacturing system and an information processing
part that controls the resource. A product agent holds the know-how to make a
product with sufficient quality; it contains up-to-date information on the product
life cycle. Finally, an order agent represents a task in the manufacturing system; it is
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responsible for performing the assigned work correctly and on time. The agents
exchange knowledge about the system, including process knowledge (i.e., how to
perform a certain process on a certain resource), production knowledge (i.e., how to
produce a certain product using certain resources), and process execution knowledge
(i.e., information and methods regarding the progress of executing processes on
resources). Staff agents are supplementary agents that can assist the basic agents in
performing their work. Staff agents allow to incorporate centralized services (e.g., a
planner or a scheduler). However, staff agents only give advice to basic agents; they
do not introduce rigidity in the system.

The PROSA reference architecture uses object-oriented concepts to model the
agents and their relationships. Aggregation is used to represent a cluster of agents
that in turn can represent an agent at a higher level of abstraction. Specialization is
used to differentiate between the different kinds of resource agents, order agents,
and product agents specific for the manufacturing system at hand.

The specification of the PROSA reference architecture is descriptive. PROSA
specifies the responsibilities of the various agent types in the system and their rela-
tionships, but abstracts from the internals of the agents. As a result, the reference
architecture is easy to understand. The lack of a rigorous specification allows for
different interpretations. An example is the use of object-oriented concepts to spec-
ify relationships between agents. Although intuitive, in essence it is unclear what
the precise semantics is for notions such as “aggregation” and “specialization” for
agents. What are the constraints imposed by such a hierarchy with respect to the
behavior of agents as autonomous and adaptive entities?

An interesting extension of PROSA in which a virtual environment is exploited to
obtain BDI (Believe, Desire, Intention [134]) functionality for the various PROSA
agents is proposed in [73]. The approach avoids the complexity of BDI-based mod-
els and the accompanying computational load. In particular, the approach introduces
the concept of “delegate multi-agent system.” A delegate multi-agent system con-
sists of light-weight agents which can be issued by the different PROSA agents.
These ant-like agents explore a virtual environment that represents the underlying
physical environment. The ants bring relevant information back to their responsible
agent and put the intentions of the responsible agent as information in the virtual
environment. This allows delegate multi-agent systems of different agents to coor-
dinate by aligning or adapting the information in the virtual environment according
to their own tasks. A similar idea was proposed by Bruecker in [35] and has recently
further been elaborated by Parunak and Brueckner, see [124]. The use of the virtual
environment in the work of [73] is closely connected to the virtual environment
pattern of the pattern language for situated multi-agent systems. Verstraete and col-
leagues [161] propose a first step toward the integration of the BDI functionality
provided by a delegate multi-agent system with the architecture of the cognitive
agent that issues the delegate multi-agent system in the virtual environment.

Aspect-Oriented Agent Architecture. In [60], Garcia and colleagues observe that
several agent concerns such as autonomy, learning, and mobility crosscut each other
and the basic functionality of the agent. The authors state that existing approaches
that apply well-known patterns to structure agent architectures—an example is the
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layered architecture of Kendall [84]—fail to cleanly separate the various concerns.
This results in architectures that are difficult to understand, reuse, and maintain.
To cope with the problem of crosscutting concerns, the authors propose an aspect-
oriented approach to structure agent architectures.

The authors make a distinction between basic concerns of agent architectures and
additional concerns that are optional. Basic concerns are features that are incorpo-
rated by all agent architectures and include knowledge, interaction, adaptation, and
autonomy. Examples of additional concerns are mobility, learning, and collabora-
tion. An aspect-oriented agent architecture consists of a “kernel” that encapsulates
the core functionality of the agent (essentially the agent’s internal state) and a set
of aspects [86]. Each aspect modularizes a particular concern of the agent (basic
and additional concerns). The architectural elements of the aspect-oriented agent
architecture provide two types of interfaces: regular and crosscutting interfaces.
A crosscutting interface specifies when and how an architectural aspect affects
other architectural elements. The authors claim that the proposed approach pro-
vides a clean separation between the agent’s basic functionality and the crosscutting
agent properties. The resulting architecture is easier to understand and maintain and
improves reuse.

The aspect-oriented agent architecture applies a different kind of modularization
as described in the pattern language for situated multi-agent systems. Whereas a
situated agent in the pattern language is decomposed in functional building blocks,
Garcia and colleagues take another perspective on the decomposition of agents. The
main motivation for the aspect-oriented agent architecture is to separate different
concerns of agents aiming to improve understandability and maintenance. Yet it
is unclear whether the interaction of the different concerns in the kernel (feature
interaction [41]) will not lead to similar problems that the approach initially aimed
to resolve. Still, crosscutting concerns in multi-agent systems are hardly explored
and provide an interesting venue for future research.

Architectural Blueprint for Autonomic Computing. Autonomic computing is an
initiative started by IBM in 2001. Its ultimate aim is to create self-managing com-
puter systems to overcome their growing complexity [85]. IBM has developed an
architectural blueprint for autonomic computing [1]. This architectural blueprint
specifies the fundamental concepts and the architectural building blocks used to
construct autonomic systems.

The blueprint architecture organizes an autonomic computing system into five
layers. The lowest layer contains the system components that are managed by
the autonomic system. System components can be any type of resource, a server,
a database, a network, etc. The next layer incorporates manageability endpoints
(touchpoints) that provide standard interfaces for managing the resources. Layer
three constitutes of autonomic managers that provide the core functionality for
self-management. An autonomic manager is an agent-like component that manages
other software or hardware components using a control loop. The control loop of the
autonomic manager includes functions to monitor, analyze, plan, and execute. Layer
four contains autonomic managers that compose other autonomic managers. These
compositions enable system-wide autonomic capabilities. The top layer provides a
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common system management interface that enables a system administrator to enter
high-level policies to specify the autonomic behavior of the system. The layers can
obtain and share knowledge via knowledge sources, such as a registry, a dictionary,
and a database.

We now briefly discuss the architecture of an autonomic manager, the most elab-
orated part in the specification of the architectural blueprint. An autonomic man-
ager automates some management function according to the behavior defined by a
management interface. Self-managing capabilities are accomplished by taking an
appropriate action based on one or more situations that the autonomic manager
senses in the environment. Four architectural elements provide this control loop:
(1) the monitor function provides the mechanisms that collect, aggregate, and filter
data collected from a managed resource; (2) the analyze function provides the mech-
anisms that correlate and model observed situations; (3) the plan function provides
the mechanisms that construct the actions needed to achieve the objectives of the
manager; and (4) the execute function provides the mechanisms that control the
execution of a plan with considerations for dynamic updates. These four parts work
together to provide the management functions of the autonomic manager.

Although presented as architecture, in our opinion, the blueprint describes a
reference model. The discussion mainly focuses on functionality and relationships
between functional entities. The functionality for self-management must be com-
pletely provided by the autonomic managers. Obviously, this results in complex
internal structures and causes high computational loads.

The virtual environment pattern in the pattern language for situated multi-agent
systems provides an interesting opportunity to manage complexity. The virtual envi-
ronment could enable the coordination among autonomic managers and provide
supporting services.

A Reference Model for Multi-agent Systems. In [110], Modi and colleagues
present a reference model for agent-based systems. The aim of the model is fourfold:
(1) to establish a taxonomy of concepts and definitions needed to compare agent-
based systems; (2) to identify functional elements that are common in agent-based
systems; (3) to capture data flow dependencies among the functional elements; and
(4) to specify assumptions and requirements regarding the dependencies among the
elements.

The model is derived from the results of a thorough study of existing agent-based
systems, including Cougaar [71], Jade [23], and Retsina [156]. The authors used
reverse engineering techniques to perform an analysis of the software systems. Static
analysis was used to study the source code of the software and dynamic analysis to
inspect the system during execution. Key functions identified are directory services,
messaging, mobility, inter-operability services, etc.

Starting from this data an initial reference model was derived for agent-based
systems. The authors describe the reference model by means of a layered view
and a functional view. The layered view is comprised of agents and their sup-
porting framework and infrastructure which provide services and operating con-
text to the agents. The model defines framework, platform, and host layers, which
mediate between agents and the external environment. The functional view presents
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a set of functional concepts of agent-based systems. Example functionalities are
administration (instantiate agents, allocate resources to agents, terminate agents),
security (prevent execution of undesirable actions by entities from within or outside
the agent system), conflict management (facilitate and enable the management of
interdependencies between agents’ activities), and messaging (enable information
exchange between agents).

The reference model is an interesting effort toward maturing the domain. In
particular, the reference model aims to be generic but does not make any recom-
mendation about how to best engineer an agent-based system. Putting the focus on
abstractions helps to resolve confusion in the domain and facilitates acquisition of
agent technology in practice.

Yet since the authors have investigated only systems in which agents communi-
cate through message exchange, the resulting reference model is biased toward this
kind of agent systems. The concept of virtual environment as a means for informa-
tion sharing and indirect coordination of agents is not supported. On the other hand,
it is questionable whether developing one common reference model for the broad
family of agent-based systems is desirable.

8.2 Middleware for Mobile Systems

In this section, we focus on middleware approaches that support the development
of distributed, decentralized applications that are deployed in a mobile network. We
focus on work related to views and coordination roles.

8.2.1 Work Related to Views

Tuplespaces Approaches. The first incarnation of a tuplespaces-based system is
Linda [42]. Linda provides a shared collection of data tuples called the tuplespace,
and a small set of tuple manipulation operations on the collection. Rowstron [142]
augments the basic Linda model with asynchronous operations, as this scales better
for distributed computing. A significant generalization of tuplespaces was the pro-
grammable tuplespace [116]. Programmable tuplespaces allow their behavior and
operations to be programmed, by the specification of reactions. Basically, reactions
are programs that are internally executed by the tuplespace. Reactions change the
content of the tuplespace or the result of an operation in response to the execution
of an operation. Examples of programmable tuplespaces are TuCSoN [116] and
MARS [40]. Programmable tuplespaces allow the addition of any operation to a
tuplespace, and in this way allow the encapsulation of the coordination rules in
the tuplespace. Custom operations can be offered to the application on a higher
abstraction level, and better tailored to the application’s needs, than was previously
possible.

Many-to-Many Invocation (M2MI) [81] is a middleware for distributed collab-
orative applications in mobile ad hoc networks that provide an object-oriented
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abstraction of broadcast messaging. Application components using the middleware
can call a method on an “omnihandle” object, which calls the method on all the
objects on connected nodes that implement the same interface as the omnihandle.
The M2MI middleware relies on the unreliable broadcast mechanism in mobile ad
hoc networks; it does not attempt to improve reliability, since any application in a
mobile ad hoc network has to deal with joining and leaving nodes anyway.

M2MI’s communication mechanism is less specific than that supported by views
in ObjectPlaces. M2MI distinguishes receivers by the interface they implement and
calls the method on objects deployed on all nodes within communication range.
Views can distinguish nodes further based on the node constraint. Furthermore,
objectplaces and views enforce uncoupling in time, while in M2MI the commu-
nicating components are tightly coupled in time: an object not in the network at the
time an omnihandle call is executed is not able to receive it.

EgoSpaces [78] is an extension of LIME [112]. EgoSpaces and LIME are coor-
dination middlewares for mobile ad hoc networks based on a tuplespaces approach,
but augmented with support for mobility. Both in LIME and in EgoSpaces, each
application component has a personal tuplespace that moves as the component
moves. In LIME, operations to put, take, and read tuples from a component’s
tuplespace are automatically executed on tuplespaces of application components
on the same and on connected nodes. So, all application components on connected
nodes form an opportunistically shared tuplespace and use it to coordinate.

EgoSpaces offers similar functionality as LIME, but application components
can select in a fine-grained way on which tuplespaces and on which nodes the
tuplespace operations are executed, by defining an abstraction that is also called
a view. A view is set up by EgoSpaces using a declarative specification of which
nodes and tuplespaces are to be included when executing the operation. This spec-
ification is roughly similar in expressivity as the specification for views defined
in ObjectPlaces. Besides reading and taking tuples from tuplespaces in the view,
application components can also register so-called reactions on a view, which allow
an application component to be notified, e.g., when a tuple enters or leaves the view.

The main differences between EgoSpaces’ views and ObjectPlaces’ views are

1. Views in ObjectPlaces are purely observational, i.e., a view is a local collection
of copies of objects contained in objectplaces selected by the view specification.
At the cost of some overhead, EgoSpaces also allows application components to
remove tuples from tuplespaces in an EgoSpaces’ view.

2. In EgoSpaces, a view always has the interface of a tuplespace, i.e., it supports
operations to remove and read tuples by template matching. In ObjectPlaces, the
representation of the view can be tailored to an application component’s wishes:
it can be a sorted collection, an accumulation to a value, or something else. As
such ObjectPlaces’ views can be seen as a realization of the idea of context-
sensitive data structures presented in [126]. Context-sensitive data structures are
basically abstract data structures, but whose content is defined by data available
on connected nodes in the network.

The second point is a clear advantage for the application developer, as the views
that he or she can work with can be tailored much better to how they are used, instead
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of being fixed to a rigid tuplespace-like interface. Also, view representations can be
reused across applications, which potentially allows the construction of a library of
reusable view representations.

As for the first point, in ObjectPlaces, views are kept purely observational enti-
ties, supporting coordination by information exchange only. In our experience,
more complex coordination, which necessitates the manipulation of objectplaces
on other nodes, requires full-fledged and application-specific protocols to be exe-
cuted between participating nodes. Coordination roles support such protocol-based
coordination.

TOTA (Tuples On The Air) [106] is a middleware that provides applications with
the abstraction of a self-maintaining distributed tuple. Each node in the network
hosts a tuplespace. A distributed tuple is propagated to nearby nodes and can be
changed with each propagation according to an application-specific rule (e.g., count-
ing the number of hops from the root). This tuple is then maintained by the middle-
ware as the network changes.

TOTA is mainly used to support coordination by so-called gradient fields. A
distributed tuple can be seen as a virtual field (compare to a magnetic or electric
field) that has either an attractive or a repulsive influence on other entities. By a
careful choice of the gradient fields that each entity emits, and its influence on
other entities, gradient fields can be used for coordination that involves the coor-
dinated motion of various kinds of objects in a metric space. In a software system,
gradient fields are virtual and the strength, origin, and other properties of emit-
ted fields must be transmitted over the network; TOTA’s distributed tuples offer
direct support for transmitting and maintaining gradient fields in mobile ad hoc
networks.

A distributed tuple in TOTA can be seen as the inverse of a view in Object-
Places: instead of gathering objects from neighboring nodes, a distributed tuple
spreads objects (or tuples) to neighboring nodes. An important difference is that
a view is specific for every observer, while a distributed tuple is the same for all
observers. In other words, while in TOTA the “sender” of a message (the com-
ponent that adds a distributed tuple) determines both who it reaches and what the
content is, using views the “receiver” of a message (the component that builds a
view) can determine both content and representation. Views and distributed tuples
thus represent two sides of information exchange; distributed tuples are better
suited for information dissemination, while views are better suited for information
gathering. In terms of support for the application developer, both approaches are
complementary.

8.2.2 Work Related to Coordination Roles

Source-Initiated Context Construction in Mobile Ad Hoc Networks (SICC). In [79],
the authors integrate the EgoSpaces middleware [78] with support of context aware-
ness. The authors propose communication constructs and a protocol necessary to
support context-aware interactions among mobile nodes. In SICC, a reference host
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(i.e., the host building the context) specifies the context over which it would like to
operate but does not need to know the identities of the hosts in the context. Context
information is defined as an abstraction of network properties. Specifying a context
includes the definition of constraints that include a distance definition and a max-
imum allowable distance that may be based on a simple hop counter or may take
into account the dynamic properties of the network such as latency. The middleware
guarantees the application that a message sent to its context is received only by
hosts belonging to the context and that all hosts belonging to the context receive the
message. Furthermore, the infrastructure maintains the context based on the context
definition.

SICC is mainly concerned with setting up and maintaining a group of nodes that
comply to a context definition (i.e., a constraint) similar to group formation and
views in ObjectPlaces. The middleware supports send–reply interactions among the
reference node and the nodes in the context. However, protocol-based interaction
with coordination roles as first-class entities as provided in ObjectPlaces is not sup-
ported in SICC.

Coordination Language Facility (CLF). CLF [10] offers support for the devel-
opment of distributed object-oriented applications. It considers objects as resource
managers and defines a set of performatives, i.e., primitive actions to manipulate
an object’s resources. Coordination between objects is expressed by scripts, which
manipulate the resources by invoking the performatives (such as Inquiry, Confirm)
on the different objects. Scripts are executed by coordinators that are responsible
for guaranteeing the overall coherent behavior of the objects they coordinate. A
standard two-phase commit protocol is used to guarantee consistency among the
objects a coordinator controls.

CLF is not targeted toward mobile applications. However, CLF is mentioned
because it allows a kind of protocol-based coordination, by allowing coordinators
to execute long-lived negotiations with coordinated objects using the performatives.
CLF does protocol-based coordination using generic protocol steps (i.e., two-phase
commit) and a standard set of messages to manipulate resources (i.e., the performa-
tives). Objectplaces are similar to the resources in CLF, since an objectplace also
provides a generic interface to a number of resources. However, ObjectPlaces does
not provide a standard set of protocol steps that allow the developer to deal with
mobility easier.

CoorSet. [82] presents the coordination model CoorSet, not specifically targeted
toward mobile applications, that is based on so-called associative broadcast. Com-
ponents using associative broadcast include a “target set specification” with each
message that they send. The target set of receivers is determined for each message as
the set of receivers whose local state satisfies the target set specification. The sender
does not know the membership of this set. The state of a component is specified as a
so-called profile, which specifies the visible current state of the component. Profiles
are implemented as sets of attribute–value pairs. The target set for a message is
determined by a predicate called a selector, which is evaluated against the profile
of each component. The message is received only by those components for whose
profiles the selector evaluates to true. This allows targeting of messages to subsets of
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components that have a desired state, without the sender knowing the membership
of that set.

A node constraint in ObjectPlaces is similar to CoorSet’s selector, and the node
properties repository is similar to CoorSet’s profiles. CoorSet allows a component
to reach another component based on the component’s properties, while in Object-
Places a component can reach another component by a constraint on node properties
and the name of a coordination role.

The main difference is that in CoorSet, each message is sent with its own selector,
so no relation is maintained explicitly between the different messages in a protocol.
If interaction partners change, this is not monitored and signaled by CoorSet, but
must be handled by the application developer. In short, CoorSet does not set up and
maintain interaction sessions, but concentrates on the uncoupled sending and receiv-
ing of individual messages; as such, it has many similarities with publish/subscribe
systems.

Group Communication Systems. Groups of interacting coordination roles in
ObjectPlaces can be compared to groups in group communication systems (GCS).
Originally, GCS have been studied in fixed distributed systems and later in mobile ad
hoc networks [139, 98]. The goal of GCS is to set up a group of application compo-
nents in a distributed system, such that each member has a consistent (i.e., identical)
view on the group’s members and such that each member can communicate with all
group members.

A GCS group is set up based on a commonly known group identifier. Application
components join the group by sending a join message to the group identifier and can
leave from the group in the same way. In contrast, a group of interacting coordina-
tion roles in ObjectPlaces are set up based on a node constraint, and coordination
roles or application components do not have to join a group explicitly to take part
in an interaction session. The latter is a more declarative and flexible way of setting
up a group of interacting components. It allows the definition of a group in terms of
any property of the members, instead of only on the basis of identity.

In ObjectPlaces, a group of coordination roles in an interaction session is a more
fine-grained concept than a group in GCS: the latter is long-lived, i.e., each member
is likely to initiate many interaction sessions during the lifetime of the group, while
groups of interacting coordination roles are short-lived, i.e., for the duration of one
interaction session. In other words, in one GCS group many interaction sessions are
in progress concurrently.

As a result, GCS groups do not separate interaction sessions. ObjectPlaces instan-
tiates a new coordination role for each interaction session in which an application
component takes part. This enables the middleware to encapsulate tedious tasks with
regard to session management, such as routing incoming messages to the appropri-
ate coordination role for each interaction session. So, the application developer can
for the most part make abstraction of the fact that different interaction sessions are
executing concurrently.

Another difference is that in a group of interacting coordination roles, the role
that has a complete view on the group’s members is the initiator, whereas in GCS
groups all members have a complete view of the group. For a group of coordination
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roles, this is reasonable since an interaction session is always started by one com-
ponent concerning one particular “subject” that concerns the initiating component
(e.g., the assignment of a particular task).

8.3 Scheduling and Routing of AGV Transportation Systems

The control of AGVs is subject of active research since the mid-1980s. Most of the
research has been conducted in the domain of AI and robotics. Recently, a number
of researchers have applied multi-agent systems, yet most of this work is applied in
small-scale projects.

8.3.1 AI and Robotics Approaches

The problems of routing and scheduling of AGVs are different from conventional
path finding and scheduling problems. Scheduling and routing of AGVs are a time-
critical problem, while a graph problem usually is not. Besides, the physical dimen-
sions of the AGVs and the layout of the map must be taken into account.

Roughly spoken, three kinds of methods are applied to solve the routing and
scheduling problem. Static methods use a shortest path algorithm to calculate routes
for AGVs, see, e.g., [48]. In case there exists an overlap between paths of AGVs,
only one AGV is allowed to proceed. The other AGVs have to wait until the first
AGV has reached its destination. Such algorithms are simple, but not efficient.
Time-window-based methods maintain for each node in the layout a list of time
windows reserved by scheduled AGVs. An algorithm routes vehicles through the
layout taking into account the reservation times of nodes, see, e.g., [87]. Dynamic
methods apply incremental routing. An example algorithm is given in [157]. This
algorithm selects the next node for the AGV to visit (toward its destination) based
on the status of the neighboring nodes (reserved or not) and the shortest travel time.
This is repeated until the vehicle reaches its destination. Measurements show that
the algorithm is significantly faster than non-dynamic algorithms, yet the calculated
routes are less efficient.

A number of researchers have investigated learning techniques to improve
scheduling and routing of AGVs, see, e.g., [130, 103]. This latter work applies
reinforcement learning techniques and demonstrates that the approach outperforms
simple heuristics such as first-come-first-served and nearest-station-first.

Contrary to the decentralized approach we have described in this book, tradi-
tional scheduling and routing algorithms usually run on a central traffic control
system from where commands are dispatched to the vehicles [133]. Moreover, most
approaches are intended to find an optimal schedule for a particular setting. Such
approaches are very efficient when the tasks are known in advance as, for example,
the loading and unloading of a ship in a container terminal. In our work, schedul-
ing and routing are going concerns, with AGVs operating in a highly dynamic
environment.
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8.3.2 Multi-Agent System Approaches

Pallottino and colleagues [120] present a decentralized approach for collision-free
movements of vehicles. In this approach, agents use cognitive planning to steer
the AGVs through the warehouse layout. Berman and colleagues [24] discuss a
behavior-based approach for decentralized control of automatic guided vehicles. In
this work, conflict resolution with respect to collision and deadlock avoidance is
managed by the agents based on local information. In [97], Lindijer applies another
agent-based approach to determine conflict-free routes for AGVs. The author moti-
vates his approach by considering quality requirements, including safety, flexibility,
and scalability. Central to the approach is the concept of semaphore that is used as a
traffic control component that guards shared infrastructure resources in the system
such as an intersection. The system is validated with simplified scale models of real
AGVs.

Arora and colleagues have published a number of papers that describe the control
of AGV systems with an agent-based decentralized architecture [14, 15]. Vehicles
select their own routes and resolve the conflicts that arise during their motion. Con-
trol laws are applied to find safe conditions for AGVs to move.

Breton and colleagues [31] discuss a variation on the field-based approach where
agents construct a field in their direct neighborhood to achieve routing and dead-
lock avoidance in a simplified AGV system. Hoshino and colleagues [74] study a
transportation system in which cranes unload a container ship and pass the loads to
AGVs that bring them to a storage depot. Each AGV and crane is represented in the
system by an agent. The authors investigate various mechanisms for AGV agents
to select a suitable crane agent. The selection mechanisms are based on the actual
and local situation of AGVs and cranes; examples are selection based on distance,
time, and area (quay, transportation, and storage). The selection mechanisms are
combined with random container storage and planned storage. Simulations allow to
determine the optimal combination of cranes and AGVs for a particular throughput.
The approach uses an off-line simulation to find an optimal solution in advance.
Such approach is restricted to domains where no disturbances are expected.

In [55], the authors present another agent-based approach for AGV control. In
this work, four types of agents are considered: cell agent, scheduling agent, material
manager agent, and traffic controller agent. The communication among the agents is
done through a relational database that serves as a blackboard system. Agents write
the information and their requests into the database and this data is available for
other agents to work on them and respond. The database is also used to maintain an
audit trail on how orders are executed on the shop floor. In this approach, resource
agents control the behavior of the system; however, control is not decentralized
among the AGVs.

In [163], Wallace studies an approach for AGV navigation in warehouse envi-
ronments. The layout of the transportation system consists of a graph of segments
connected by nodes. To move through the environment, an AGV has to allocate the
subsequent nodes and segments of the route it follows. Nodes critical for collision
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avoidance and deadlock avoidance are called safe nodes. The proposed approach
associates an agent with every segment, node, and AGV in the system. When an
AGV agent requires a route, it negotiates with the first segment agent on its route to
allocate the segment. This process repeats until the AGV agent reaches a safe node.
If a conflict exists on this node the AGV agents have to resolve the problem. The
losing agent may then reconsider its route. In such case, various heuristics are possi-
ble to select an alternative route (e.g., random, nearest save node, nearest mission).
The approach was tested in a simulation using an industrial layout with up to eight
AGVs. The results show that reconsidering alternative routes significantly improves
the performance of the system, up to 30%. The AGV agents in this approach plan the
path they intend to follow in advance. In the approach described in this book, AGV
agents act locally and only plan a distance in advance necessary to drive safe and
smoothly. This allows AGV agents to better deal with unexpected circumstances in
the environment. Since in [163] the AGV agents can lock arbitrary routes through
the whole layout, additional infrastructure is necessary to manage path locking. In
the approach presented in this book, AGV agents resolve conflicts locally without
the need for additional infrastructure.

Vrba and colleagues [162] present a method for collision avoidance of AGVs
based on principles of multi-agent systems. A scenario is discussed in which AGVs
move in a 2D area with predefined paths. Each AGV is provided with an AGV
agent. To avoid collisions, the first AGV agent that approaches a junction point
declares itself as a master, while informing the second AGV that it became a slave.
Additionally, the master AGV includes an estimation of the time period needed to
go through the junction point. Then, the master AGV goes through the junction as
the first one and, after the estimated period passes, the slave AGV moves through
as the second one. In case both AGVs reach the junction point at the same time and
thus both declare themselves as masters, the AGV agent with the lower priority of
carried work piece or, if priorities are same, the one whose name is second according
to alphabetical ordering freely gives up and becomes a slave. The approach was
simulated with the Manufacturing Agent Simulation Tool (MAST) developed at
Rockwell Automation Research Center in Prague and was tested in a setup with two
to four small experimental robots at the Gerstner Laboratory of the Czech Technical
University.

Contrary to the AGV transportation system presented in this book, the discussed
agent-based approaches are only validated in simulations or experimental setups
with a number of simplifying assumptions. Applying decentralized control in a
real industrial setting involves numerous complicating factors that deeply affect
the scheduling and routing of AGVs. Most of the related work focuses on isolated
concerns in AGV control. For a practical application, however, different concerns
have to be integrated, which is not a trivial problem.

One lesson we learned from our experience is that communication is a major
bottleneck in a decentralized AGV control system. Most related work only considers
simple layouts with a small number of AGVs and abstracts from communication
costs.
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An important difference between the AGV transportation system presented in
this book and the discussed approaches is that we have applied an architecture-
centric design for the AGV application. Scheduling and routing are integrated in
the software architecture with other concerns such as collision avoidance and task
assignment. Most related work does not consider software architecture explicitly.
As a consequence, little attention is payed to the tradeoffs between quality goals.
The tradeoffs between quality goals were crucial aspects in the design of the AGV
transportation system.



Chapter 9
Conclusions

We started this book with the brave statement: “Developing multi-agent systems
software is 95% software engineering and 5% multi-agent systems theory.” This
chapter concludes the book by reviewing how architecture-based design of multi-
agent systems underpins this statement. We start with a reflection on architecture-
based design of multi-agent systems and its application to the AGV transportation
system. Next, we report lessons learned from applying the approach in practice.
From our experience, we propose opportunities to improve multi-agent system engi-
neering practice and we give a number of suggestions for future research.

9.1 Reflection on Architecture-Based Design
of Multi-Agent Systems

Mainstream software engineering recognizes software architecture and middleware
as key areas for dealing with the increasing challenges in complex software appli-
cations. Software architecture focuses on high-level structuring of the functionality
of a system in order to meet its quality requirements. Middleware provides a set of
higher level programming abstractions and services to support the development of
complex software systems. Architecture-based design of multi-agent systems is an
approach for engineering complex multi-agent systems which endorses the crucial
role of software architecture and middleware. The approach is embedded in state-
of-the-art software engineering practice.

9.1.1 It Works!

In this book, we provided a thorough explanation of the different stages of architec-
ture-based design of multi-agent systems. We demonstrated how we have applied
the various mechanisms and methods in practice, providing an end-to-end descrip-
tion of the architectural design and development of an industry-strength multi-agent
system.

Quality attribute scenarios provide the means to precisely specify stakeholder
requirements. We explained how we use quality attribute scenarios to specify the
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stakeholder requirements and the QAW and utility trees to elicit and prioritize the
scenarios. Two particular quality attributes that motivated the use of a multi-agent
system architecture in the AGV transportation system are flexibility and openness.
Although these quality attributes were the main architectural drivers, other com-
peting quality requirements had to be considered as well. Prioritizing the quality
attributes with a utility tree allowed us to clarify the relative importance of the main
quality attributes.

Architectural patterns capture reusable architectural knowledge. We explained
how architectural patterns provide the means to capture well-proven domain exper-
tise in multi-agent system engineering. We illustrated how we have documented
our expertise with the design and development of a particular family of multi-agent
systems in a pattern language. This pattern language serves as a reusable asset for
architectural design of new multi-agent systems with similar characteristics and
requirements.

Middleware provides higher level programming abstractions to support the coor-
dination in complex software systems. In multi-agent systems, coordination requires
complex interactions to achieve consensus since there is no single agent that can
make a centralized decision. Middleware support relieves the application developer
from tedious management tasks associated with distribution and mobility. To illus-
trate the crucial role of middleware support in the case study, we presented Object-
Places, a middleware for mobile decentralized systems. We demonstrated how it
contributed to the complex coordination problems of task assignment and collision
avoidance of AGVs.

Architecture design of a multi-agent system is critical to the achievement of
the system’s quality attributes based on design decisions. We explained how we
use ADD as a structured method for designing the software architecture of multi-
agent systems, and Views and Beyond to document the architecture description. The
architecture description of a distributed multi-agent system should at least include
a module view that documents the system’s principal units of implementation, a
component-and-connector view that documents the system’s units of execution, and
the deployment view that documents the relationships between the system’s soft-
ware and its environment. We gave an extensive description of how we have used
ADD and Views and Beyond successfully for the design and documentation of the
agent-based architecture for the AGV transportation system.

ATAM allows the evaluation of a software architecture to identify possible risks
early in the development cycle. We explained how we use ATAM to evaluate the
software architecture of multi-agent systems. We elaborated on the ATAM for the
AGV transportation system. The architecture evaluation resulted in a better align-
ment of the business objectives with the technical context of the system and better
understanding of the relationship between quality requirements and architectural
design. The ATAM also improved the stakeholders’ insight into the impact on the
software implied by the decentralized control architecture.

Software architecture provides a blueprint for downstream design and implemen-
tation. The modules defined in the module views define the implementation units
and their dependencies. The component-and-connector view specifies the system’s
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units of execution. The implementation of the AGV system conforms to the archi-
tecture specification. Extensive tests have justified that the multi-agent system archi-
tecture and its implementation realize the preconceived objectives.

9.1.2 Reflection on the Project with Egemin

Egemin clients increasingly request for more flexible AGV transportation systems
that adapt to dynamics in the environment autonomously. The new quality require-
ments challenge the centralized architecture the company has been using for years.
Driven by the need for a long-term solution, Egemin consulted DistriNet Labs. From
their expertise, DistriNet researchers proposed a radical new design of the system
based on a multi-agent system architecture. Spring 2004, the partners started an
R&D project with the objective to create a convincing case to prove the value of
the agent-based approach for real-world applications. The core of the project team
consisted of two full-time researchers serving as architects, and from Egemin’s side,
a half-time experienced developer and a newly recruited developer.

Soon after the project started, the team members became aware of the over-
whelming complexity of the application. A clear specification of requirements and
architecture of the existing system was lacking. The urgent need for domain exper-
tise urged the experienced developer to become a full-time member of the core team.
After a sluggish process, the basic structure of the existing software was disentan-
gled. It became clear that testability, configurability, and backward compatibility
were implicit drivers of the design. A number of reusable blocks of functionality
were identified that could be reused in the decentralized architecture.

Before starting the new design, the partners discussed and recorded the main
requirements. To manage complexity, the team decided to follow a step-by-step
approach. We started with the functionality for one AGV to drive, then followed
collision avoidance, then order assignment, etc. Using ADD, the architects decom-
posed the different parts of the system as required for each step. Where possible,
reusable functional parts of the existing design were integrated. The team was well
motivated and the architects had their work cut out with feeding the developers with
architectural descriptions to continue their work.

Early 2005, the first prototype was implemented. The enthusiasm of the stake-
holders during a successful demonstration stimulated the team. In the next phase,
additional functionality was added to the prototype. Mid-2005, the architects pro-
posed the stakeholders to organize an ATAM workshop, preceded by a QAW. This
turned out to be a crucial step in the project. The key stakeholders with an interest
in the multi-agent system came together and discussed the system. The possibilities
as well as impact of the new design became more clear, to the engineers as well as
to the management.

In the following months, the team extended the system with the additional func-
tions. In this phase, extensive tests were performed with industrial simulations.
Spring 2006 the design was completed and all the basic functions were integrated
in the prototype. During a demonstration session with the main stakeholders, the
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team presented the system and demonstrated that the multi-agent system realized
the promised objectives.

Two years later, at the time of this writing, the multi-agent system architecture
has not been used in a client project. This raises two obvious question: (1) Was the
project a success or a failure? and (2) Why was the multi-agent system architecture
not used?

Success or Failure? Using an economic standard, one can argue that the project
has not delivered a product that was sold and thus failed. Using a research stan-
dard, the project has achieved its objective: a demonstrated system was built that
satisfies the project goals. But the most important reason why the project was a
success is of a pedagogic nature. The project was an extremely valuable experience
for both partners. DistriNet researchers validated their research on multi-agent sys-
tems in practice and learned that a real-world context and its constrains are crucial
aspects of a multi-agent system design. The experience taught the researchers the
key role of software architecture and middleware in software engineering of real-
world multi-agent systems. Egemin’s management gained a better understanding
of the connection between business objectives and technical context (in particular
requirements and architecture), and its value for the long-term planning of their
business. Managers and engineers gained a better insight into the tight link between
the high-level structure of the systems they build and the organization of teams that
design and develop these systems. Egmin engineers learned the value of disciplined
engineering practice. In particular, the engineers learned that clearly documented
requirements and explicitly documented architecture are invaluable for stakeholder
interaction and establishing a common understanding and vision on the systems they
build. The fact that one of the researchers involved in the project became a software
architect in Egemin after finishing his PhD is probably the best illustration of the
success of the project.

Why Is the Multi-agent System Architecture Not Used Yet? The crucial issue why
the multi-agent system architecture has not been adopted yet is the impact of the
new architecture on the developing organization. Moving from a traditional client–
server architecture to a decentralized multi-agent system architecture is a big step
with far-reaching effects for Egemin. Engineers have to make a transition in vision
on how the software is conceived. This implies the need to acquire knowledge and
transferring this knowledge into practice. A radical change of the software disrupts
backward compatibility, which is a crucial issue in long-lived systems such as those
developed by Egemin. But the most important factor that hampered the adoption
of the multi-agent system architecture has to do with the interrelationship between
software architecture and the structure of the developing organization. A dramatic
change in the software architecture typically requires corresponding changes in the
way people are structured in teams for developing, testing, and maintaining the
software. The cost for restructuring the organization to adopt a multi-agent system
architecture was considered too high. To illustrate this with one example: in the cen-
tralized architecture transport assignment to AVGs is based on application-specific
rules that are associated with particular locations in the environment. A team of
specialized layout engineers is responsible for defining these rules. However, in the
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decentralized architecture, transport assignment to AGVs is based on a dynamic
protocol between AGV agents and transport agents. This protocol must be tuned per
project which requires completely different skills and a different team structure.

9.2 Lessons Learned and Challenges

To conclude, we report some lessons we learned from applying a architecture-based
design of multi-agent system in a complex real-world application. From our experi-
ence, we propose opportunities to improve multi-agent system engineering practice
and we give suggestions for future research.

9.2.1 Dealing with Quality Attributes

Quality requirements are the main drivers to structure a software system. Multi-
agent systems are known for addressing quality attributes such as adaptability,
robustness, openness, and scalability. A primary concern in the decision to apply a
multi-agent system architecture should thus be based on a good understanding of (1)
the main quality attributes required by the stakeholders and (2) the quality attributes
that can be realized by a multi-agent system architecture. However, for complex
systems, stakeholders have various often conflicting requirements. For example,
performance is a major requirement for customers, configurability is important for
deployment engineers, while reuse is a prime concern of the project leader. There-
fore, it is crucial to clarify the main system requirements (and quality attributes in
particular) before starting architectural design.

Multi-agent system engineering can benefit from dealing with quality attributes
in a disciplined way. Opportunities to improve engineering of multi-agent systems
include (1) rigorously specifying quality attributes from real-world stakeholders;
(2) delineating a convincing motivation for applying a multi-agent system archi-
tecture by pinpointing real-world quality attributes and quality attribute scenarios;
and (3) identifying conflicts between quality attributes that are typically associated
with multi-agent systems and other quality attributes. Clarifying the added value
of adopting a multi-agent system on the one hand and determining the tradeoffs
implied by the approach on the other hand will allow architects to make well-
considered decisions and prevent industrial partners from overestimating or under-
estimating agent technology.

9.2.2 Designing a Multi-Agent System Architecture

Creating a software architecture includes architectural design, documentation, and
evaluation. Architectural design is about moving from system requirements to archi-
tectural decisions. Such decisions are based on proven practices. Patterns are an
established approach to document design knowledge. Research on architectural
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patterns for multi-agent systems is crucial to capture expertise with the design of
multi-agent systems. Architectural patterns provide the means to document and
mature knowledge and practices with multi-agent systems in a form that has proven
its value in mainstream software engineering. Documenting patterns for multi-agent
systems and pinpointing the quality attributes they embody will promote multi-agent
system expertise. It will allow software architects to make a well-considered choice
and use multi-agent system patterns when the system’s desired qualities match qual-
ity attributes provided by the patterns.

To be effective, a software architecture must be well-organized and unambigu-
ously communicated to the varied group of stakeholders. It is generally acknowl-
edged that a software architecture should be described by several views that
emphasize different aspects of a software architecture [76]. Architectural views
provide a proven vocabulary to document the structures of a complex software
system. Multi-agent systems are complex software systems. Documenting typical
multi-agent system concerns, such as interaction protocols, roles, and organizations,
requires dedicated notations, probably dedicated views. Integrating the documenta-
tion of multi-agent system concerns in the vocabulary of architectural views will
improve the accessibility of multi-agent system architecture documentation and its
use in practice.

Architectural evaluation is examining a software architecture to determine
whether it satisfies system requirements, in particular the quality attributes. The dis-
ciplined evaluation of the software architecture of a multi-agent system is hard but
invaluable to demonstrate the advantages of adopting a multi-agent system. Archi-
tecture evaluation allows not only to pinpoint the qualities and tradeoffs implied by a
multi-agent system architecture but also to reveal potential risks. An important chal-
lenge for the evaluation of multi-agent system architectures is a better understanding
of the tradeoffs between the driving quality attributes of multi-agent systems and
other qualities.

9.2.3 Integrating a Multi-Agent System with Its Software
Environment

In an industrial setting, systems are rarely built in isolation. When introducing a
multi-agent system, mostly it must be embedded and integrated with an existing
software environment such as legacy systems, frameworks. In multi-agent system
engineering, “agentification” is often considered as a general solution for integrat-
ing legacy code. However, the integration of concerns such as security, persistency,
and transactional behavior often crosscut (parts of) the system. Wrapping falls short
when integrating existing infrastructure that supports such concerns. Such concerns
are typically provided as reusable middleware services. A few agent-based plat-
forms, such as Retsina [156] and Living Systems of Whitestein Technologies [171],
integrate particular common middleware services. However, in general, integration
of multi-agent systems with common middleware services remains a significant
research challenge.
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Since integration of multi-agent systems with its software environment is part of
any real-world system, such integration is a prerequisite for adopting a multi-agent
system in practice. Given the importance of autonomy and encapsulation of agents’
behavior, research is needed to study the integration of crosscutting concerns in
multi-agent systems. Software architecture can play a key role to reason about and
accommodate the integration of the multi-agent system with its environment.

9.2.4 Impact of Adopting a Multi-Agent System

From our experience, a crucial issue with respect to adoption of multi-agent system
is the impact of the architecture on the developing organization, as explained in
Sect. 9.1.2. Our experience indicates that moving from a traditional client–server
architecture to a decentralized multi-agent system architecture is a big step with
far-reaching effects for a company, not only for the software but also, in particular,
for the structure of the organization. One approach to manage a transition to an
agent-based approach in a controlled way is to gradually shift responsibilities from
the central server to the autonomous subsystems.

Software architecture is the indispensable vehicle that provides the required level
of abstraction for the integration of multi-agent systems. Studying which organiza-
tion structures impede or facilitate the adoption of a multi-agent system architecture
and investigating suitable adoption strategies is a significant research challenge that
is crucial for the adoption of multi-agent systems.



Appendix A
π-ADL Specification of the Architectural
Patterns

Appendix A gives a rigorous description of the two basic patterns of the pattern
language for situated multi-agent systems that we introduced in Chap. 3. We use
π-ADL [118], a formally founded architectural description language, to describe
the patterns. The patterns are described and typechecked using the π-ADL.NET
compiler [132].

We start with a brief explanation of the language constructs that we use for the
description. Then we present the architectural description of the two patterns: Vir-
tual Environment and Situated Agent.

A.1 Language Constructs

We limit the explanation to the subset of language constructs that we use to describe
the patterns:

abstraction the basic architectural element that we use in the description. Abstrac-
tions are units of execution, a.k.a. components.

Connection a communication channel that allows the passage of values of a spec-
ified type from one component to another. Values are sent and received
through connections via the out and in prefixes, respectively. Value passing
via connections happens synchronously.

compose defines the composition of a component. A compose block comprises
sub-blocks that are separated by the and keyword. All the sub-blocks in a
compose block execute in parallel.

choose defines a block of behavior of a component. A choose block comprises
sub-blocks that are separated by the or keyword. Only one sub-block in a
choose block executes. If all the sub-blocks are blocking on an input, the
first one to resume execution will continue while the others will terminate.

replicate defines an infinite loop.
renames unifies two connections, i.e., renames establishes a link between two con-

nections enabling communication between the corresponding components.
Integer and String regular basic types used in π-ADL.
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view defines a collection of named elements, possibly of different types.
sequence defines an indexed collection of elements of the same type.

any defines an unspecified data type that represents any basic data type or arbitrary
combination of data types.

unobservable defines non-observable behavior that is internal to a component.

A.2 Virtual Environment Pattern

value Virtual-Environment is abstraction ()
{

//type definitions
type Focus is view[

focus-name : String,
focus-params : sequence[String]

];
type Foci is sequense[Focus];
type SenseRequest is view[

agent-id : String,
foci : Foci

];
type Representation is any;
type Action is view[

agent-id : String,
action-name : String,
action-params : sequence[String]

];
type Message is view[

ID : Integer,
sender : String,
receiver : String,
performative : String,
content : String

];
type StateItem is view[

name : String,
val : any

];
type StateItems is sequense[KnowledgeItem];
type Operation is any;
type Observation is any;
type SynchronizationMessage is any;
type Transmission is any;

//external interfaces
Sense-Request : Connection[SenseRequest];
Sense-Result : Connection[Representation];
Act : Connection[Action];
Send-Receive : Connection[Message];
Operate : Connection[Operation];
Synchronize : Connection[SynchronizationMessage];
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Observe : Connection[Observation];
Transmit-Deliver : Connection[Transmission];

//exchanged data
sense-request : SenseRequest;
sense-result : Representation;
action : Action;
message-in : Message;
message-out : Message;
state-item : StateItem;
operation : Operation;
sync-request : SynchronizationMessage;
sync-update : SynchronizationMessage;
observation-request : Observation;
observation-result : Observation;
transmit-msg : Transmission;
deliver-msg : Transmission;

//connections among the components
C-Read-Write : Connection[StateItems];

//component composition
compose
{

via CommunicationService send Void where {
Send-Receive renames Send-Receive,
C-Read-Write renames Read-Write,
Transmit-Deliver renames Transmit-Deliver

};
and

via ActionService send Void where {
Act renames Act,
C-Read-Write renames Read-Write,
Operate renames Operate

};
and

via PerceptionService send Void where {
Sense-Request renames Sense-Request,
Sense-Result renames Sense-Result,
C-Read-Write renames Read-Write,
Observe renames Observe

};
and

via State send Void where {
C-Read-Write renames Read-Write

};
and

via Dynamics send Void where {
C-Read-Write renames Read-Write

};
and

via Synchronization send Void where {
C-Read-Write renames Read-Write,
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Synchronize renames Synchronize
};

}
}

value CommunicationService is abstraction ()
{

Send-Receive : Connection[Message];
Transmit-Deliver : Connection[Transmission];
Read-Write : Connection[StateItems];

message-in : Message;
message-out : Message;
state-items : StateItems;
deliver-in : Transmission;
transmit-out : Transmission;

choose
{

//send message
via Send-Receive receive message-out;
unobservable;
via Transmit-Deliver send transmit-out;

or
//deliver message
via Transmit-Deliver receive deliver-in;
unobservable;
via Send-Receive send message-in;

}
}

value ActionService is abstraction ()
{

Act : Connection[Action];
Operate : Connection[Operations];
Read-Write : Connection[StateItems];

action : Action;
state-items : StateItems;
operation : Operation;

via Act receive action;
choose
{

//state update
unobservable;

or
//operation
unobservable;
via Operate send operation;

}
}
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value PerceptionService is abstraction ()
{

Sense-Request : Connection[SenseRequest];
Sense-Result : Connection[Representation];
Observe : Connection[Observation];
Read-Write : Connection[StateItems];

sense-request : SenseRequest;
sense-result : Representation;
state-items : StateItems;
observation-request : Observation;
observation-result : Observation;

via Sense-Request receive sense-request;
choose
{

//read state repository
unobservable;
via Sense-Result send sense-result;

or
//observation
unobservable;
via Observe send observation-request;
unobservable;
via Observe receive observation-result;
unobservable;
via Sense-Result send sense-result;

}
}

value State is abstraction ()
{

Read-Write : Connection[StateItems];

read-request : StateItems;
read-item : StateItems;
write-item : StateItems;

replicate
{

choose
{

//read item
via Read-Write receive read-request;
unobservable;
via Read-Write send read-item;

or
//write item
via Read-Write receive write-item;
unobservable;

}
}

}
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value Dynamics is abstraction ()
{

Read-Write : Connection[StateItems];

read-request : StateItems;
read-item : StateItems;
write-item : StateItems;

replicate
{

via Read-Write send read-request;
unobservable;
via Read-Write receive read-item;
unobservable;
via Read-Write send write-item;

}
}

value Synchronization is abstraction ()
{

Read-Write : Connection[StateItems];
Synchronize : Connection[SynchronizationMessage];

read-request : StateItems;
read-item : StateItems;
write-item : StateItems;
sync-request : SynchronizationMessage;
sync-update : SynchronizationMessage;

replicate
{

choose
{

//send synchronization request
unobservable;
via Synchronize send sync-request;

or
via Synchronize receive sync-update;
unobservable;

}
}

}

A.3 Situated Agent Pattern

value SituatedAgent is abstraction ()
{

//type definitions
type Focus is view[

focus-name : String,
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focus-params : sequence[String]
];
type Foci is sequence[Focus];
type Filter is view[

filter-name : String,
val-min : any,
val-max : any

];
type Filters is sequence[Filter];
type PerceptionRequest is view[

agent-id : String,
foci : Foci,
filters : Filters

];
type SenseRequest is view[

agent-id : String,
foci : Foci

];
type Representation is any;
type Action is view[

agent-id : String,
action-name : String,
action-params : sequence[String]

];
type Message is view[

ID : Integer,
sender : String,
receiver : String,
performative : String,
content : String

];
type KnowledgeItem is view[

name : String,
val : any

];
type KnowlegdeItems is sequence[KnowledgeItem];
type Operation is any;
type Observation is any;
type SynchronizationMessage is any;
type Transmission is any;

//external interfaces
Sense-Request : Connection[SenseRequest];
Sense-Result : Connection[Representation];
Act : Connection[Action];
Send-Receive : Connection[Message]];

//exchanged data
sense-request : SenseRequest;
sense-result : Representation;
action : Action
message-in : Message;
message-out : Message;
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knowledge-item : KnowledgeItem;

//connections among the components
C-Request : Connection[PerceptionRequest];
C-Read-Write : Connection[KnowledgeItem];
C-Update : Connection[KnowledgeItems];

//component composition
compose
{

via Perception send Void where {
C-Request renames Request,
C-Read-Write renames Read-Write,
C-Update renames Update,
Sense-Request renames Sense-Request,
Sense-Result renames Sense-Result};

and
via CurrentKnowledge send Void where {

C-Read-Write renames Read-Write,
C-Update renames Update};

and
via DecisionMaking send Void where {

C-Request renames Request,
C-Read-Write renames Read-Write,
Act renames Act};

and
via Communication send Void where {

C-Request renames Request,
C-Read-Write renames Read-Write,
Send-Receive renames Send-Receive};

}
}

value Perception is abstraction ()
{

Request : Connection[PerceptionRequest];
Sense-Request : Connection[SenseRequest];
Sense-Result : Connection[Representation];

Read-Write : Connection[KnowledgeItem];
Update : Connection[sequence[KnowledgeItems];

perception-request : PerceptionRequest;

sense-request : SenseRequest;
representation : any;
knowledge-items : KnowledgeItems;

choose
{

//perception request
via Request receive perception-request;
unobservable;
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via Sense-Request send sense-request;
or

//knowledge update
via Sense-Result receive representation;
unobservable;
via Update send knowledge-items;

}
}

value CurrentKnowledge is abstraction ()
{

Read-Write : Connection[KnowledgeItem];
Update : Connection[KnowledgeItems];

read-request : KnowledgeItem;
read-item : KnowlegeItem;
write-item : KnowlegeItem;
update-items : KnowledgeItems;

replicate
{

choose
{

//read item
via Read-Write receive read-request;
unobservable;
via Read-Write send read-item;

or
//write item
via Read-Write receive write-item;
unobservable;

or
//update items
via Update receive update-items;
unobservable;

}
}

}

value DecisionMaking is abstraction ()
{

Request : Connection[PerceptionRequest];
Read-Write : Connection[KnowlegeItem];
Act : Connection[Action];

perception-request : PerceptionRequest;
knowledge-item : KnowledgeItem;
action : Action;

replicate
{

unobservable;
via Act send action;
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}
}

value Communication is abstraction ()
{

Request : Connection[PerceptionRequest];
Read-Write : Connection[KnowledgeItem];
Send-Receive : Connection[Message];

perception-request : PerceptionRequest;
knowledge-item : KnowledgeItem;
message-in : Message;
message-out : Message;

perception-request : PerceptionRequest;
knowledge-item : KnowledgeItem;
action : Action;

replicate
{

choose
{

unobservable;
via Send-Receive receive message-in;
unobservable;

or
unobservable;
via Send-Receive send message-out;
unobservable;

}
}

}
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Synchronization in the DynCNET Protocol

In the description of the DynCNET protocol in Chap. 6 we made abstraction of two
synchronization problems. The first problem is related to network delays that may
disturb the synchronization of abort and bound messages. The second problem is
related to the mobility of a participant with a provisionally accepted task that leaves
the scope of the initiator of that task. Appendix B explains how these problems are
solved.

B.1 Synchronization of Abort and Bound Messages

When an initiator receives a better proposal from a participant, the initiator assigns
the task to this participant. To cancel the previous provisional accept, the initiator
first sends an abort message to the currently assigned participant. However, due
to network delays in the distributed environment it is possible that the currently
assigned participant has already started executing the task while the initiator has not
received the bound message. Figure B.1 illustrates the problem. Figures B.2 and B.3
show how this synchronization problem is solved.

When a better proposal arrives at the initiator, the initiator makes the transition
from the Assigned state to Aborting state (see Fig. B.2). In this state the initia-
tor sends an abort message to the currently assigned participant and subsequently
enters the WaitingToAbort state where it waits for the answer of the aborted
participant. In case the participant has not started the execution of the task yet
(the participant is in the Intentional state, see Fig. B.3), the participant sends
an accept-abort message to the initiator and the participant changes back to
the Voting state. When the initiator receives the accept-abort message, a
provisional-accept message is sent to the new winner. In case the partici-
pant has started the task (it is in the Execute state), it sends a refuse-abort
message to the initiator. When the initiator receives this message, it enters the
Executing state.
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Fig. B.1 Message synchronization problem

Fig. B.2 DynCNET protocol for an initiator extended with support for synchronization of abort
and bound messages. The format of a state transition is event [guard] / actions
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Fig. B.3 DynCNET protocol for a participant extended with support for synchronization of abort
and bound messages. The format of a state transition is event [guard] / actions

B.2 Synchronization of Scope Dynamics

The second synchronization problem occurs when a participant with a provisionally
accepted task leaves the scope of the initiator of that task. In the AGV transportation
system, such a situation may occur when an AGV has to make a detour to reach the
location of a load it is assigned to pick up. Figure B.4 shows how this problem is
solved.

The synchronization problem can only occur in a few situations:

1. When an initiator is in the Assigned state, the participant with the provision-
ally accepted task can leave the scope of the initiator of that task. In this case the
initiator changes its state to Awarding and starts looking for another partici-
pant.

2. A more complicated situation occurs when the initiator receives a better proposal
from a participant and this participant goes out of scope. Now there are two
cases:

a. No abort message has been sent to the originally assigned participant. In this
case, the initiator switches from the Aborting state to the Assigned state.

b. An abort message has been sent to the original assigned participant and the
initiator is in the Waiting state. In this case the initiator changes state to
the WinnerOutOfScope state. Subsequently, when an accept-abort
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Fig. B.4 DynCNET protocol for an initiator extended with support for synchronization of abort
and bound messages and scope dynamics. The format of a state transition is event [guard] / actions

message arrives the initiator changes to the Awarding state because the
task is no longer assigned to a participant. In case a refuse-abort mes-
sage arrives, the initiator changes to the Executing state since the initially
assigned participant has already started the task.



Appendix C
Collision Avoidance Protocol

This appendix describes the collision avoidance protocol for AGVs introduced in
Chap. 5 in detail. Specifically, the safety of the protocol is proved.

C.1 Overview

The complete protocol is shown in Fig. C.1. Each interaction session in the protocol
is executed between a requester process and a number of voter processes, one on
each AGV. The requester process is part of the AGV local virtual environment on
the AGV that initiates the protocol; the voter processes are part of the AGV local
virtual environments on the AGV that are in collision range of the requesting AGV.
For each AGV, we use r to store the current requested hull projection and g to store
the current locked hull projection.1 The number of AGVs is equal to N, each AGV
has a unique id i, 0 ≤ i < N, which is stored in a constant id.

When a new request is made (by the AGV agent that determines the AGV’s
route), the requester sends request messages to all AGVs that contain the requested
hull projection r. The requester now waits until all other AGVs have sent an allow
message. If so, the requester adds the requested hull projection to the already locked
hull projection g and clears the requested hull projection.

The voter process reacts on incoming requests by either sending an allow mes-
sage or deferring the allow message until later. The latter is done by adding the
request to the set deferred_requests.

The conditions under which to defer or send an allow message determine the
correctness of the protocol. First, we derive an invariant of the system state which
allows us to prove that a protocol that maintains the invariant is safe. Then, we prove
that the protocol in Fig. C.1 maintains the derived invariant.

1 r is for red and g for green.
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C.2 Invariant

The invariant is derived by using the model array variables2 senti[] and reci[], stored
on AGV i, 0 ≤ i < N. Both arrays’ elements are initially false, and as can be
seen in Fig. C.1, senti[j] contains true when AGV i has sent an allow message in
response to AGV j’s last request, and reci[j] contains true when AGV i has received
an allow message from AGV j as response to its last request. AGV i’s requested
and locked hull projections are noted as ri and gi, respectively. We also use a pred-
icate overlap(h1,h2), which evaluates to true if hulls h1 and h2 overlap and to false
otherwise.

To guarantee safety, the following invariant on the system’s state must obviously
hold:

∀i,j:0 ≤ i,j < N ∧ i 
= j:¬overlap(gi,gj) (C.1)

The simplest system that satisfies this invariant is one that never grants any requests;
however, it is necessary to guarantee progress, i.e., grant as many requests as possi-
ble with regard to safety.

To allow AGVs to make requests, the invariant is strengthened as follows:

∀i,j:0 ≤ i,j < N ∧ i 
= j:¬overlap(gi,gj) (C.2)

∧ overlap(ri,rj) ⇒ ¬(reci[j] ∧ senti[j]) (C.3)

∧ overlap(ri,gj) ⇒ ¬reci[j] (C.4)

Equation C.3 guarantees that if two requested hull projections overlap, then only
one of the two is allowed: either AGV i receives an allow or sends an allow, but
never both. Equation C.4 guarantees that if a requested hull projection overlaps with
an already locked hull projection, the request cannot be allowed. Transforming the
implications in the invariant (by application of (A ⇒ B) ≡ (¬A ∨ B)) and using De
Morgan’s law (¬(A ∨ B) ≡ (¬A ∧ ¬B)) yields the more symmetrical form:

∀i,j:0 ≤ i,j < N ∧ i 
= j:¬overlap(gi,gj) (C.5)

∧ ¬(overlap(ri,rj) ∧ reci[j] ∧ senti[j]) (C.6)

∧ ¬(overlap(ri,gj) ∧ reci[j]) (C.7)

When a requester i has received allow messages from all N − 1 other AGVs for
its request ri, the following holds:

∀j:j 
= i:reci[j] = true (C.8)

2 Model array variables are variables that are not used in the execution of the program itself, but in
its specification (i.e., invariants, proof, etc.).
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Equation C.8 and the invariant yield, because (A ∧ true) ≡ A:

∀i,j:0 ≤ i,j < N ∧ i 
= j:¬overlap(gi,gj) (C.9)

∧ ¬(overlap(ri,rj) ∧ senti[j]) (C.10)

∧ ¬overlap(ri,gj) (C.11)

This shows for AGV i with requested hull projection ri that the requested hull
projection ri does not overlap with any locked hull projection (Eq. C.11), and that
for each other requested hull projection either ri does not overlap with the other
requested hull projection or AGV i has not sent an allow message to an AGV j with
an overlapping requested hull projection (Eq. C.10). The latter means that AGV j
will not lock its requested hull projections, since it is still waiting for AGV i’s allow.

As a result, it is safe to lock ri. If ri is added to gi, and ri is cleared, the invariant
is maintained since AGV i will still not send an allow to AGV j with overlapping
request rj in the future (Eq. C.7).

A protocol that maintains the given invariant thus grants requests safely. Now,
we prove that the protocol shown in Fig. C.1 maintains this invariant.

C.3 Maintaining the Invariant

The initialization of the system sets all elements of all sent and rec arrays to false.
Each AGV starts with an empty requested hull projection and a locked hull pro-
jection containing just the area on which the AGV is standing: these locked hull
projections cannot overlap since then the AGVs would already be in collision. The
initialization thus satisfies the invariant trivially.

Critical to the task of maintaining the invariant is the condition that determines
when a voter can send an allow message. From Eq. C.7, it is clear that an AGV can-
not allow a request that overlaps with its own locked hull projection. From Eq. C.6
it is clear that, if a request overlaps with a voter AGV’s own request the voter may
send an allow as long as the other AGV has not sent or will not send an allow as
well.

To achieve the latter, following [136], requests are totally ordered in a first-in
first-out (FIFO) queue. To this end, each request is numbered with a sequence num-
ber seq. A so-called trichotomous relation < is then defined on all requests by the
lexicographical order of the tuples formed by the sequence number in the request
and the unique AGV id of the requester, i.e.,

(seq1,id1) < (seq2,id2) ≡ seq1 < seq2 ∨ (seq1 = seg2 ∧ id1 < id2)

In a trichotomous relation, for all elements a and b exactly one of a < b, b < a, and
a = b is true. Since we know that all AGV ids are distinct, for two different AGVs
i and j, either (seqi,i) < (seqj,j) or (seqj,j) < (seqi,i) is true. Using this property, we
can maintain Eq. C.6 as follows.
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Require: Initialisation:
for all j do

sent[j]: = false
rec[j]: = false

seq: = 0
max_seq: = 0
g = area of AGV
r = φ

Ensure: Requester:
Require: r = R

seq: = max_seq + 1
sendAll(〈REQ,r,id,seq〉)
n: = 0
for all j do

rec[j]: = false
while n 
= N − 1 do

if receive(〈ALLOW,ido〉) then
rec[ido]: = true
n: = n + 1

{∀j:j 
= id:rec[j] = true}
g: = g ∪ r
r: = φ

Ensure: Voter:
Require: receive request 〈REQ,ro,ido,seqo〉

max_seq: = max(max_seq,seq)
{call procedure reply to determine whether to allow or to defer}
reply(〈REQ,ro,ido,seqo〉)

Require: g or r changes:
for all req in deferred_requests do

reply(req)

Require: call to reply(〈REQ,ro,ido,seqo〉)
if ¬overlap(ro,g) ∧ (¬overlap(r,ro) ∨ (seqo,ido) < (seq,id)) then

send(ido,〈ALLOW〉)
sent[ido]: = true

else
add(〈REQ,ro,ido,seqo〉) to deferred_requests
sent[ido]: = false

Fig. C.1 Collision avoidance protocol. Comments are given between curly brackets

If a request overlaps with an AGV’s own requested hull projection, the voter
AGV only sends an allow message if the request is lower in the queue, i.e., if the
request’s order is lower than that of the voter AGV’s own requested hull projection.

In more detail, in the requester process, if a new request is made, rec[] must be
re-initialized to false since it is unknown whether the new r overlaps with any other
locked or request hulls. When an allow message is received from an AGV j, rec[j]
is set to true. This change, by itself, is not always safe, see Eq. C.6: it must be
guaranteed that either the request hull does not overlap with rj or that sent[j] is and
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remains false. To this end, the new request is given a sequence number that is higher
than any of the sequence numbers received so far by the AGV; this is necessary since
for all requests with lower sequence numbers, sent[j] may be true. To determine
the highest sequence number, each AGV maintains the highest sequence number
received so far in max_seq.

Together with the conditions to send or defer an allow message in the voter pro-
cess, this strategy ensures Eq. C.6, because for each two AGVs with overlapping
requested hull projections, owing to the asymmetry of relation on requests, exactly
one request is lower than the other, so exactly one request is allowed by one of
the two AGVs. The other request is deferred until the requested hull projection no
longer overlaps.

All the above guarantees safety, i.e., collision-free movement is guaranteed.





Glossary

AGV transportation system An automated transportation system consisting of a
number of automatic guided vehicles (AGVs) that need to work together to execute
transportation tasks in an industrial environment.

Architectural Description Language A language that provides features for
describing software architectures in terms of its architectural elements and the rela-
tionships among them.

Architectural pattern A description of architectural elements and relation types
together with a set of constraints on how they may be used [21]. An architectural pat-
tern is a recurring architectural approach that exhibits particular quality attributes.

Architectural view A representation of a whole software system from the perspec-
tive of a related set of concerns [76]. Each view emphasizes specific architectural
aspects that are useful to one or more stakeholders.

Architecture Tradeoff Analysis Method (ATAM) An architecture evaluation
method to assess the consequences of architectural decisions in light of qual-
ity attribute requirements [46]. ATAM is developed by the Software Engineering
Institute.

Architecture-based design of multi-agent systems An architecture-centric
approach for developing real-world multi-agent systems.

Attribute-driven design (ADD) An iterative decomposition method for designing
a software system. ADD is based on understanding how to achieve quality goals
through proven architectural approaches [173]. ADD is developed by the Software
Engineering Institute.

Common middleware services Domain-independent middleware services that
support the programming of application logic such as transactional behavior, secu-
rity, and database access.

Domain-specific middleware services Middleware services that are tailored to the
requirements of a particular interest group. Examples are middleware services for
telecom, electronic commerce, and grid computing.
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Dynamic contract net protocol A protocol for dynamic task assignment that
extends Contract NET [151]. DynCNET allows adaptation of task assignment in the
phase between when a task is provisionally assigned and the start of the execution
of the task.

Field-based task assignment A field-based approach for adaptive task assignment
in which mobile agents follow the gradient of computational fields emitted by tasks
in a virtual environment. The fields that guide the agents to the tasks adapt dynami-
cally with changing conditions in the environment.

Free-flow tree A decision making architecture for situated agents. A free-flow tree
is composed of a hierarchy of nodes with leaf nodes representing actions. To select
an action, activity is injected at the top node of the tree. While the activity flows
along the nodes additional activity may be injected per node based on particular
stimuli sensed by the agent. When the activity arrives at the leaf nodes a winner-
takes-all process decides which action is selected.

Middleware The software layer that lies between the operating system and the
application components. Middleware provides high-level abstractions to support the
coordination of distributed software components.

ObjectPlaces A middleware that supports the development of mobile multi-agent
system applications based on two programming abstractions: views and coordina-
tion roles.

Pattern language A coherent set of related architectural patterns that describe
good design practices within a particular domain.

Quality attribute workshop (QAW) A facilitated method that engages stakehold-
ers to discover the driving quality attributes of a software-intensive system [19]. The
QAW is developed at the Software Engineering Institute.

Quality attribute A property of a software system by which its quality will be
judged by one or more stakeholders. Quality is the degree to which a system meets
requirements such as performance, modifiability, and adaptability in the context of
the required functionality.

Situated commitment A social attitude of a situated agent that defines a relation-
ship between roles and the context of the agents playing these roles. A role repre-
sents a coherent part of functionality of a situated agent in a collaboration. Situated
commitments provide the means to establish collaborations among situated agents.

Selective perception Perception of the relevant aspects of an environment accord-
ing to an agent’s current task. Selective perception facilitates better situation aware-
ness and helps to keep processing of perceived data under control.

Situated agent A situated agent is an autonomous entity that has an explicit posi-
tion in an environment. A situated agent uses a computationally efficient action
selection mechanism to respond rapidly to dynamic and changing circumstances.
Situated agents are collaborative systems in which agents work together locally
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to solve a complex overall problem. Situated agents typically coordinate indirectly
through a shared coordination medium.

Software architecture The structure or structures of the system, which comprise
software elements, the externally visible properties of those elements, and the rela-
tionships among them [21] and with the environment [76].

Stakeholder Any individual, team, or organization (or classes thereof) with inter-
ests in or concerns relative to a system [76].

Tactic A widely used architectural design decision that has proven to be useful to
achieve a particular quality attribute.

Utility tree A hierarchy for specifying and prioritizing quality attribute-specific
requirements. Nodes in a utility tree represent important quality goals and leaves
represent scenarios.

Views and Beyond An approach for documenting a software architecture. In Views
and Beyond, documenting a software architecture is a matter of documenting the
relevant views, and then adding information that applies to more than one view [45].
Views and Beyond is developed at the Software Engineering Institute.

Virtual environment A software entity that maintains a virtualization of the rel-
evant parts of the environment and serves as a coordination medium for agents,
mediating both the interactions among agents and the access to resources.
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