
An Introduction to 

Svste 

M I C H A E L  

gent 

W O O L D R I D G E  



An Introduction to 
Multiagent Systems 





An Introduction to 
Multiagent Systems 

Michael Wooldridge 
Department o f  Computer Science, 

University of Liverpool, Uk' 

@3 
JOHN WILEY & SONS, LTD 



C'op\'r~ghr 2002 John \\'111>), R Sons Ltd 
Hal'flns I.;~ne. Chichester, 
Krs t  Sussex POI0  I lJD,  England 
,%a t~om/  01243 779777 
Irit~rnational (+U) 1213 779777 

(, ma11 (for orders and custclmer sen ice  enquiries): cs-hooks~~~~wilcy.co.uk 

\ ' I S I I  our Home Page on http://u~~~w.wilcyeurope.com or ht tp: / / \v\~~~.n, i ley.r .om 

,111 [tights Kcserved. N o  part of t h s  publication may be reproduced, stored in a retrieval 
s).stem, or transmitted, in any lbrm or by any means, electronic, mechanical, photocopying, 
rt~cording, scanning or othtirwise, except under the terms of the Copyright, Designs and 
I1atrnts 4cl 1988 or under the terms of a l i c r n c ~  issued by the Copyright Licensing .Agency 
I.td, 90 I ottcnharn Court Iioad, 1-ondon, UK W l P  OLP, without the permission in u ~ i t i n g  of 
thr  1'~tblisht.r with th r  rvcrption of any material suppl~ed  specifically for the purpose of 
Ix8ing entcrcd and executed on a computer system for exclustve m e  by the purchaser of' 
I he publication. 

Neither the author nor john Wiley & Sons, Ltd accept any responsibility or liability for loss 
or damage occasioned t o  any person or property through using the material. instructions, 
methods or idpas contained herein, or acting or refraining from acting as a result of such 
ust5. The author and publisher eupressly disclaim all implied warranties, including mrr -  
chantab~lit).  or fitness for an), particular purpose. There will be no duty on the author o r  
publisher to correct an). errors or defects in the software. 

Ilesignations used b). companies to distinguish their products are often claimed as trade- 
marks. In all instances where John Wilcy & Sons. Ltd is aware of a claim, the product names 
appear in cap~ta l  or all capital letters. Readers, however, should contact [he appropriate 
compames for more cornpkte information regarding trademarks and registration 

l i b r a r y  o f  Congress Cataloging-in-Publication Data 

Wooldridgc, h1ichar.l , I . ,  I9F(i- 
!In ~ n t r o d u c t ~ o n  to multiiigent systcms / bfichael Wooldridgc. 

p .  cm. 
lncludcs bibliographical rc.fercnces and  index. 
ISBN 0-37 1 -3!)61) 1 -X 
I .  Intclligc!nt agents (C'c~mputer software) I .  'Title. 

British Library Cclti?loguiny in Publication Dati~ 

A cataloku,rue record for this book is available from the Br~tish Library 

ISBN 0 t7 1 49691 N 

Typeset in 9.5/12.5pt 1.ucida Bright by 'GI' Productions Ltd, London. 
I'rintcd and hound in Grcat Hritain by Riddles Ltd, Guildford and Ungs Lynn. 
This book is printed on acitf-free paper responsibly manufactured from sustainable 
I'o~.cstr) i r t  nhich at least t u o  treys dre planted for each one used lor paper productiort. 



To my family: 

Jean, John, Andrew, 

Christopher, and of course Janine. 





Contents 

Preface 

1 Introduction 
1.1 The Vision Thng 
1.2 Some Views of the Field 
1.3 Objections to Multiagent Systems 

2 Intelligent Agents 
Environments 
Intelligent Agents 
Agents and Objects 
Agents and Expert Systems 
Agents as Intentional Systems 
Abstract Archtectures for Intelligent Agents 
How to Tell an Agent What to Do 
Synthesizing Agents 

3 Deductive Reasoning Agents 
3.1 Agents as Theorem Provers 
3.2 Agent-Oriented Programming 
3.3 Concurrent MetateM 

4 Practical Reasoning Agents 
4.1 Practical Reasoning Equals Deliberation Plus Means-Ends Reasoning 
4 . 2  Means-Ends Reasoning 
4.3 Implementing a Practical Reasoning Agent 
4.4 HOMER: an Agent That Plans 
4.5  The Procedural Reasoning Sys tem 

5 Reactive and Hybrid Agents 
5.1 Brooks and the Subsumption Archtecture 
5.2  The Limitations of Reactive Agents 
5.3 Hybrid Agents 

5 .3 .1  TouringMachines 
5.3.2 InteRRaP 

6 Multiagent Interactions 
6.1 Utilities and Preferences 



viii Contents 

6.2 Multiagent Encounters 
6.3 Dominant Strategies and Nash Equilibria 
6.4 Competitive and Zero-Sum Interactions 
6.5 The Prisoner's Dilemma 
6.6 Other Symmetric 2 x 2 Interactions 
6.7 Dependence Relations in Multiagent Systems 

7 Reaching Agreements 
7.1 Mechanism Design 
7.2 Auctions 
7.3 Negotiation 

7.3.1 Task-oriented domains 
7.3.2 Worth-oriented domains 

7.4 Argumentation 

8 Communication 
8.1 Speech Acts 

8.1.1 Austin 
8.1.2 Searle 
8.1.3 The plan-based theory of speech acts 
8.1.4 Speech acts as rational action 

8.2 Agent Communication Languages 
8.2.1 KIF 
8.2.2 KQML 
8.2.3 The FIPA agent communication languages 

8.3 Ontologies for Agent Communication 
8.4 Coordination Languages 

9 Working Together 
9.1 Cooperative Distributed Problem Solving 
9.2 Task Sharing and Result Sharing 

9.2.1 Task sharing in the Contract Net 
9.3 Result Sharing 
9.4 Combining Task and Result Sharing 
9.5 Handling Inconsistency 
9.6 Coordination 

9.6.1 Coordination through partial global planning 
9.6.2 Coordination through joint intentions 
9.6.3 Coordination by mutual modelling 
9.6.4 Coordination by norms and social laws 

9.7 Mu1 tiagent Planning and Synchronization 

10 Methodologies 
10.1 When is an Agent-Based Solution Appropriate? 
10.2 Agent-Oriented Analysis and Design Techniques 
10.3 Pitfalls of Agent Development 
10.4 Mobile Agents 

1 1 Applications 
1 1.1 Agents for Workflow and Business Process Management 
11.2 Agents for Distributed Sensing 
11.3 Agents for Information Retrieval and Management 
11.4 Agents for Electronic Commerce 



Contents ix 

11.5 Agents for Human-Computer Interfaces 
11.6 Agents for Virtual Environments 
11.7 Agents for Social Simulation 
11.8 Agents for X 

12 Logics for Multiagent Systems 
1 2.1 Why Modal Logic? 
12.2 Possible-Worlds Semantics for Modal Logics 
12.3 Normal Modal Logics 
12.4 Epistemic Logic for Multiagent Systems 
12.5 Pro-attitudes: Goals and Desires 
12.6 Common and Distributed knowledge 
12.7 Integrated Theories of Agency 
12.8 Formal Methods in Agent-Oriented Software Engineering 

12.8.1 Formal methods in specification 
12.8.2 Formal methods in implementation 
12.8.3 Verification 

Appendix A. A History Lesson 

Afterword 

References 

Index 





Preface 

Multiagent systems are systems composed of multiple interacting computing ele- 
ments, known as agents. Agents are computer systems with two important capa- 
bilities. First, they are at least to some extent capable of autonomous action - of 
deciding for themselves what they need to do in order to satisfy their design objec- 
tives. Second, they are capable of interacting with other agents - not simply by 
exchanging data, but by engaging in analogues of the kind of social activity that 
we all engage in every day of our lives: cooperation, coordination, negotiation, 
and the like. 

Multiagent systems are a relatively nen7 sub-field of computer science - they 
have only been studied since about 1980, and the field has only gained widespread 
recognition since about the mid-1990s. However, since then international interest 
in the field has grown enormously. This rapid growth has been spurred at least in 
part by the belief that agents are an appropriate software paradigm through which 
to exploit the possibilities presented by massive open distributed systems - such 
as the Internet. Although they will certainly have a pivotal role to play in exploiting 
the potential of the Internet, there is a lot more to multiagent systems than this. 
Multiagent systems seem to be a natural metaphor for understanding and building 
a wide range of what we might crudely call artificial sociul systems. The ideas of 
multiagent systems are not tied to a single application domain, but, like objects 
before them, seem to find currency in a host of different application domains. 

My intention in writing this book is simple. I aim to introduce the main issues in 
the theory and practice of multiagent systems in a way that will be accessible to 
anyone with a basic background in computer science/IT. The book is deliberately 
intended to sit on the fence between science and engineering. Thus, as well as 
discussing the principles and issues in the theory of multiagent systems (i.e. the 
science of multiagent systems), I very much hope that I manage to communicate 
something of how to build such systems (i.e. multiagent systems engineering). 

The multiagent systems field can be understood as consisting of tn7o closely 
interwoven strands of work. The first is concerned with individual agents, while 
the second is concerned with collections of these agents. The structure of the book 
reflects this division. The first part of the book - Chapter 1 - sets the scene by 
discussing where the multiagent system field emerged from, and presenting some 
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visions of where i t  is going. The second part - Chapters 2-5 inclusive - are con- 
cerned with individual agents. Following an introduction to the concept of agents, 
their environments, and the various ways in which we might tell agents what to 
do, I describe and contrast the main techniques that have been proposed in the 
literature for building agents. Thus I discuss agents that decide what to do via 
logical deduction, agents in which decision making resembles the process of prac- 
tical reasoning in humans, agents that do not explicitly reason at all, and, finally, 
agents that make decisions by combining deductive and other decision-making 
mechanisms. In the third part of the book - Chapters 6-10 inclusive - I focus on 
collections of agents. Following a discussion on the various ways in which multi- 
agent encounters and interactions can be classified, I discuss the ways in which 
self-interested agents can reach agreements, communicate with one another, and 
work together. I also discuss some of the main approaches proposed for designing 
multiagent systems. The fourth and final part of the book presents two advanced 
supplemental chapters, on applications of agent systems, and formal methods 
for reasoning about agent systems, respectively. 

I have assumed that the main audience for the book will be undergraduate 
students of computer science/IT - the book should be suitable for such students 
in their second or third year of study. However, I also hope that the book will be 
accessible to computing/IT professionals, who wish to know more about some of 
the ideas driving one of the major areas of research and development activity in 
computing today. 

Prerequisites: what you need to know before you staH 
The book assumes a knowledge of computer science that would be gained in the 
first year or two of a computing or information technology degree course. In order 
of decreasing importance, the specific skills required in order to understand and 
make the most of the book are 

an understanding of the principles of programming in high level languages 
such as C or Java, the ability to make sense of pseudo-code descriptions of 
algorithms, and a nodding acquaintance with some of the issues in concur- 
rent and distributed systems (e.g. threads in Java); 

familiarity with the basic concepts and issues of artificial intelligence (such 
as the role of search and knowledge representation); 

familiarit), with basic set and logic notation (e.g. an understanding of what 
is meant b), such symbols as E, L, n, u, A,  v, 1, V ,  3, k, F). 

However, in order to gain some value from the book, all that is really required is 
an appreciation of what computing is about. There is not much by way of abstract 
mathematics in the book, and wherever there is a quantity n of mathematics, I 
ha1.e tried to compensate by including at least 2n intuition to accompany and 
explain it. 
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Teaching with this book 
I have written this book primarily with its use as a course text in mind. The book is 
specificallj- intended for middle to advanced undergraduates, or beginning grad- 
uates of computing/IT. The students at my University for M-hom this book is 
intended are either in the third j7ear of an undergraduate computing degree, or 
else in the second semester of a three semester 'conversion' MSc course (i.e. an 
MSc course designed to equip graduates n-ith non-computing degrees \.vith basic 
computing skills). 

The book contains somen~hat more material than is likely to be taught in most 
one-semester undergraduate courses, but strong students should certainly be able 
to read and make sense of most of the material in a single semester. The 'core' of 
the book is Chapters 1-9 and 11 inclusi~~e. This is the material that I would regard 
as being the 'core curriculum' of the multiagent systems field. This material is 
divided into four main parts: 

an introduction (Chapter I), which sets the scene for the remainder of the 
book; 

an introduction to intelligent agents (Chapters 2-5 inclusive); 

an introduction to multiagent systems (Chapters 6-9 inc l~s i \~e ) ;  

a discussion of applications of multiagent systems (Chapter 11). 

Although individual teachers may n-ish to spend larger or smaller amounts of 
time covering the different parts of the book, I would nevertheless expect most 
courses to at least touch on the material in all these chapters. 

I have included three jokers in the pack. 

Chapter 10 (Methodologies) introduces techniques for the analysis and 
design of multiagent systems, some of the pitfalls associated n-ith designing 
and deploying multiagent systems, and a discussion of mobile agents tech- 
no10g)~. Most of this material is, more than any other material in the book, 
not jret really at a stage where I believe it can form part of an undergraduate 
degree (at least in my opinion!). I would not therefore expect this material to 
be taught on most undergraduate courses; it is included because (i) I suspect 
it will be important in the near future; (ii) I n-anted to provide pointers for 
those interested in finding out more; and most importantlj; (iii) I think its 
interesting, and it is my book. 

Chapter 12 (Logics for Multiagent Systen~s) focuses on logics for multiagcnt 
systems. Logics of agency form a significant part of the research literature on 
multiagent systems, but in mj, experience, many students view this material 
as being hard - perhaps because it seems so abstract. However, 1 strongly 
felt that omitting this material entirelj, would be doing the field a dissenicr,  
and again, I find it interesting. Hence Chapter 1 2. Students n i th  courses on 
logic or semantics under their belt should find this chapter a breeze. 
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Appendix A (A History Lesson) gives a (rather subjective!) history of the 
agents field. Nobody has yet attempted to do this, and so it seems to me 
to be a useful thing to do. Originally, this section was included in Chapter 1, 
but several reviewers of the draft manuscript felt that perhaps it included 
too much material to be really useful in an introductory chapter. 

Lecture slides and other associated teaching material, as well as extensive Web 
links for this book are available at 

I welcome additional teaching materials (e.g. tutorial/discussion questions, exam 
papers and so on), which I will make available on an 'open source' basis - please 
email to 

Chapter structure 
Every chapter of the book ends with three sections, which 1 hope will be of wider 
interest. 

A 'class reading' suggestion, which lists one or two key articles from the 
research literature that may be suitable for class reading in seminar-based 
courses. 

A 'notes and further reading' section, which provides additional technical 
comments on the chapter and extensive pointers into the literature for 
advanced reading. This section is aimed at those who wish to gain a deeper, 
research-level understanding of the material. 

An 'exercises' section, which might form the basis of homework to be set for 
students. Exercises are graded on a scale of one to four, with one being tlie 
easiest (a few minutes work), and four being the hardest (research projects). 
Exercises of difficulty three might be undertaken as projects over some 
nJeeks or months; exercises of level one or two should be feasible within 
a few hours at most, and might be undertaken as part of weekly homework 
or tutorials. Some exercises are suggested for class discussion. 

What I left out and why 
Part of tlie joy in working in the multiagent systems field is that it takes inspiration 
from, and in turn contributes to, a very wide range of other disciplines. The field 
is in part Artificial Intelligence (AI), part economics, part software engineering, 
part social sciences, and so on. But this poses a real problem for anyone writing a 
book on thc subject, namely, what to put in and what to leave out. While there is a 
large research literature on agents, there are not too many models to look at with 
respect to textbooks on the subject, and so I have had to make some hard choices 
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here. When deciding what to put in/leave out, I have been guided to a great extent 
by what the 'mainstream' multiagent systems literature regards as important, as 
evidenced by the volume of published papers on the subject. The second consid- 
eration was what might reasonably be (i) taught and (ii) understood in the context 
of a typical one-semester university course. This largely excluded most abstract 
theoretical material, which will probably make most students happy - if not their 
teachers. 

I deliberately chose to omit some material as follows. 

Learning. My view is that learning is an important agent capability, but is not cen- 
tral to agency. After some agonizing, I therefore decided not to cover learning. 
There are plenty of references to learning algorithms and techniques: see, for 
example, Kaelbling (1993), WeiB (1993, 1997), Wei& and Sen (1996) and Stone 
(2000). 

Artificial life. Some sections of this book (in Chapter 5 particularly) are closely 
related to work carried out in the artificial life, or 'alife' community. However, 
the work of the alife community is carried out largely independently of that in 
the 'mainstream' multiagent systems community. By and large, the two commu- 
nities do not interact with one another. For these reasons, I have chosen not to 
focus on alife in this book. (Of course, this should not be interpreted as in any 
way impugning the work of the alife community: it just is not what this book is 
about.) There are many easily available references to alife on the Web. A useful 
starting point is Langton (1989); another good reference is Mitchell (1996). 

Mobility. There is something of a schism in the agents community between those 
that do mobility and those who do not - I mostly belong to the second group. 
Like learning, I believe mobility is an important agent capability, which is par- 
ticularly valuable for some applications. But, like learning, I do not view it to be 
central to the multiagent systems curriculum. In fact, I do touch on mobilit)~, in 
Chapter 10 - but only relatively briefly: the interested reader will find plenty of 
references in this chapter. 

Markov decision problems. Markov decision problems (MDPs), together with 
their close relatives partially observable MDPs, are now the subject of much 
attention in the A1 community, as they seem to provide a promising approach 
to the problem of making decisions under uncertainty. As we will see in much 
of the remainder of this book, this is a fundamental problem in the agent agent 
community also. To give a detailed introduction to MDPs, however, would be 
out of the question in a textbook on agents. See Blythe (1999) for pointers into 
the literature, and Kaelbling eta!. (1998) for a detailed technical overview of the 
area and issues; Russell and Norvig (1 995, pp. 398-522) give an o~wviecv in the 
context of an A1 textbook. 

In my opinion, the most important thing for students to understand are (i) the 
'big picture' of multiagent systems (why it is important, where it came from, M-hat 
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the issues are, and where it is going), and (ii) what the key tools, techniques, and 
principles are. Students who understand these two things should be well equipped 
to make sense of the deeper research literature if they choose to. 

Omissions and errors 
In writing this book, I tried to set out the main threads of work that make up the 
multiagent systems field, and to critically assess their relative merits. In doing 
so, I ha\ve tried to be as open-minded and even-handed as time and space permit. 
However, I will no doubt have unconsciously made my own foolish and igno- 
rant prejudices visible, by way of omissions, oversights, and the like. If you find 
yourself speechless with rage at something I have omitted - or included, for that 
matter - then all I can suggest is that you accept my apology, and take solace from 
the fact that someone else is almost certainly more annoyed with the book than 
jlou are. 

Little did I imagine as 1 looked upon the results of my labours where 
these sheets of paper might finally take me. Publication is a powerful 
thing. It can bring a man all manner of unlooked-for events, making 
friends and enemies of perfect strangers, and much more besides. 

Matthew Kneale (English Passengers) 

Comments and corrections - and suggestions for a possible second edition - are 
 elco come, and should be sent to the email address given above. 

Web references 
It would be very hard to write a book about Web-related issues without giving 
UKLs as references. In many cases, the best possible reference to a subject is 
a Web site, and given the speed with which the computing field evolves, many 
important topics are only documented in the 'conventional' literature very late 
in the day. But citing Web pages as authorities can create big problems for the 
reader. Companies go bust, sites go dead, people move, research projects finish, 
and when these things happen, Web references become useless. For these reasons, 
I have therefore attempted to keep Web references to a minimum. I have preferred 
to cite the 'conventional' (i.e. printed), literature over Web pages when given a 
choice. In addition, I have tried to cite only Web pages that are likely to be stable 
and supported for the foreseeable future. The date associated with a Web page is 
the date at which I checked the reference was working. Many useful Web links are 
available from the book's Web page, listed earlier. 

Acknowledgments 
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particular, Les Gasser and Victor Lesser were extremely helpful in sorting out my 
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crosschecking the bibliography for me. I hate books with sloppy or incomplete 
references, and so Marie's help was particularly appreciated. We both made exten- 
sive use of the CITESEER autonomous citation system from NEC (see NEC, 2001 ), 
which, as well as helping to provide the definitive reference for man)! obscure 
articles, also helped to obtain the actual text in many instances. Despite all this 
help, many typos and more serious errors will surely remain, and these are of' 
course mj7 responsibilit);. 
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Budapest ( I  99Ci), Brighton (1 9%), and Berlin (2000), and AGENTS in Minneapolis 
(1998), Seattle (1999), Barcelona (2000), and Montreal (2001), as well as students in 
courses on agents that I have taught at Lausannc (1  999), Barcelona (2000), Helsinki 
(1999 and 2001), and Liverpool (2001). Boi Faltings in Lausanne, lilises Cortes 
and Carles Sierra in Barcelona, and Heimo Lammanen and Kimmo Raatikainen in 
Helsinki were all helpful and generous hosts during mj7 visits to their respecti\.c 
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Introduction 

The history of computing to date has been marked by five important, and contin- 
uing, trends: 

ubiquity; 

interconnection; 

intelligence; 

delegation; and 

human-orientation. 

By ubiquity, I simply mean that the continual reduction in cost of computing 
capability has made it possible to introduce processing power into places and 
devices that would hitherto have been uneconomic, and perhaps even unimagin- 
able. This trend will inevitably continue, making processing capability, and hence 
intelligence of a sort, ubiquitous. 

While the earliest computer systems were isolated entities, communicating only 
with their human operators, computer systems today are usually interconnected. 
They are networked into large distributed systems. The Internet is the obvious 
example; it is becoming increasingly rare to find computers in use in commercial 
or academic settings that do not have the capability to access the Internet. Until 
a comparatively short time ago, distributed and concurrent systems were seen by 
many as strange and difficult beasts, best avoided. The very visible and very rapid 
growth of the Internet has (I hope) dispelled this belief forever. Today, and for the 
future, distributed and concurrent systems are essentially the norm in commercial 
and industrial computing, leading some researchers and practitioners to revisit 
the very foundations of computer science, seeking theoretical models that better 
reflect the reality of computing as primarily a process of interaction. 
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The third trend is toward ever more intelligent systems. By ths ,  I mean that the 
complexity of tasks that we are capable of automating and delegating to comput- 
ers has also grown steadily. We are gaining a progressively better understanding 
of how to engineer computer systems to deal with tasks that would have been 
unthinkable only a short time ago. 

The next trend is toward ever increasing delegation. For example, we routinely 
delegate to computer systems such safety critical tasks as piloting aircraft. Indeed, 
in fly-by-wire aircraft, the judgement of a computer program is frequently trusted 
over that of experienced pilots. Delegation implies that we give control to com- 
puter systems. 

The fifth and final trend is the steady move away from machine-oriented views 
of programming toward concepts and metaphors that more closely reflect the 
way in whch we ourselves understand the world. This trend is evident in every 
way that we interact with computers. For example, in the earliest days of com- 
puters, a user interacted with computer by setting switches on the panel of the 
machine. The internal operation of the device was in no way hidden from the 
user - in order to use it successfully, one had to fully understand the internal 
structure and operation of the device. Such primitive - and unproductive - inter- 
faces gave way to command line interfaces, where one could interact with the 
device in terms of an ongoing dialogue, in which the user issued instructions 
that were then executed. Such interfaces dominated until the 1980s, when they 
gave way to graphical user interfaces, and the direct manipulation paradigm in 
which a user controls the device by directly manipulating graphical icons cor- 
responding to objects such as files and programs. Similarly, in the earliest days 
of computing, programmers had no choice but to program their computers in 
terms of raw machine code, which implied a detailed understanding of the internal 
structure and operation of their machines. Subsequent programming paradigms 
have progressed away from such low-level views: witness the development of 
assembler languages, through procedural abstraction, to abstract data types, and 
most recently, objects. Each of these developments have allowed programmers 
to conceptualize and implement software in terms of hgher-level - more human- 
oriented - abstractions. 

These trends present major challenges for software developers. With respect 
to ubiquity and interconnection, we do not yet know what techniques might be 
used to develop systems to exploit ubiquitous processor power. Current software 
development models have proved woefully inadequate even when dealing with 
relatively small numbers of processors. What t echques  might be needed to deal 
with systems composed of 10l0 processors? The term global computing has been 
coined to describe such unimaginably large systems. 

The trends to increasing delegation and intelligence imply the need to build 
computer systems that can act effectively on our behalf. T h s  in turn implies two 
capabilities. The first is the ability of systems to operate independently, without 
our direct intervention. The second is the need for computer systems to be able 
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to act in such a way as to represent our best interests while interacting with other 
humans or systems. 

The trend toward interconnection and distribution has, in mainstream com- 
puter science, long been recognized as a key challenge, and much of the intellec- 
tual energy of the field throughout the last three decades has been directed toward 
developing software tools and mechanisms that allow us to build distributed sys- 
tems with greater ease and reliability. However, when coupled with the need for 
systems that can represent our best interests, distribution poses other funda- 
mental problems. When a computer system acting on our behalf must interact 
with another computer system that represents the interests of another, it may 
well be that (indeed, it is likely), that these interests are not the same. It becomes 
necessary to endow such systems with the ability to cooperate and reach agree- 
ments with other systems, in much the same way that we cooperate and reach 
agreements with others in everyday life. This type of capability was not studied 
in computer science until very recently. 

Together, these trends have led to the emergence of a new field in computer 
science: multiagent systems. The idea of a multiagent system is very simple. An 
agent is a computer system that is capable of independent action on behalf of its 
user or owner. In other words, an agent can figure out for itself what it needs to 
do in order to satisfy its design objectives, rather than having to be told explicitly 
what to do at any given moment. A multiagent system is one that consists of 
a number of agents, which interact with one another, typically by exchanging 
messages through some computer network infrastructure. In the most general 
case, the agents in a multiagent system will be representing or acting on behalf of 
users or owners with very different goals and motivations. In order to successfully 
interact, these agents will thus require the ability to cooperate, coordinate, and 
negotiate with each other, in much the same way that we cooperate, coordinate, 
and negotiate with other people in our everyday lives. 

This book is about multiagent systems. It addresses itself to the two key prob- 
lems hinted at above. 

How do we build agents that are capable of independent, autonomous action 
in order to successfully carry out the tasks that we delegate to them? 

How do we build agents that are capable of interacting (cooperating, coordi- 
nating, negotiating) with other agents in order to successfully carry out the 
tasks that we delegate to them, particularly when the other agents cannot 
be assumed to share the same interests/goals? 

The first problem is that of agent design, and the second problem is that of society 
design. The two problems are not orthogonal - for example, in order to build a 
society of agents that work together effectively, it may help if we give members 
of the society models of the other agents in it. The distinction between the two 
issues is often referred to as the micro/macro distinction. In the remainder of this 
book, I address both of these issues in detail. 
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Researchers in multiagent systems may be predominantly concerned with engi- 
neering systems, but t h s  is by no means their only concern. As with its stable 
mate AI, the issues addressed by the multiagent systems field have profound 
implications for our understanding of ourselves. A1 has been largely focused on 
the issues of intelligence in individuals. But surely a large part of what makes us 
unique as a species is our social ability. Not only can we communicate with one 
another in high-level languages, we can cooperate, coordinate, and negotiate with 
one another. Whle many other species have social ability of a lund - ants and 
other social insects being perhaps the best-known examples - no other species 
even begins to approach us in the sophistication of our social ability. In multiagent 
systems, we address ourselves to such questions as follow. 

How can cooperation emerge in societies of self-interested agents? 

What sorts of common languages can agents use to communicate their 
beliefs and aspirations, both to people and to other agents? 

How can self-interested agents recognize when their beliefs, goals, or actions 
conflict, and how can they reach agreements with one another on matters 
of self-interest, without resorting to conflict? 

How can autonomous agents coordinate their activities so as to coopera- 
tively achieve goals? 

While these questions are all addressed in part by other disciplines (notably eco- 
nomics and the social sciences), what makes the multiagent systems field unique 
and distinct is that it emphasizes that the agents in question are computational, 
information processing entities. 

The remainder of this chapter 
The purpose of t h s  first chapter is to orient you for the remainder of the book. 
The chapter is structured as follows. 

I begin, in the following section, with some scenarios. The aim of these sce- 
narios is to give you some feel for the long-term visions that are driving 
activity in the agents area. 

As with multiagent systems themselves, not everyone involved in the agent 
community shares a common purpose. I therefore summarize the different 
ways that people thmk about the 'multiagent systems project'. 

I then present and discuss some common objections to the multiagent sys- 
tems field. 

The Vision Thing 
It is very often hard to understand what people are doing until you understand 
what their motivation is. The aim of t h s  section is therefore to provide some 
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motivation for what the agents community does. This motivation comes in the 
style of long-term future visions - ideas about how thngs might be. A word of 
caution: these visions are exactly that, visions. None is likely to be realized in the 
immediate future. But for each of the visions, work is underway in developing the 
lunds of technologies that might be required to realize them. 

Due to an unexpected system failure, a space probe approachng Sat- 
urn loses contact with its Earth-based ground crew and becomes disori- 
ented. Rather than simply disappearing into the void, the probe recog- 
nizes that there has been a key system failure, diagnoses and isolates 
the fault, and correctly re-orients itself in order to make contact with 
its ground crew. 

They key issue here is the ability of the space probe to act autonomously. First 
the probe needs to recognize that a fault has occurred, and must then figure out 
what needs to be done and how to do it. Finally, the probe must actually do the 
actions it has chosen, and must presumably monitor what happens in order to 
ensure that all goes well. If more thngs go wrong, the probe will be required to 
recognize t h s  and respond appropriately. Notice that this is the lund of behaviour 
that we (humans) find easy: we do it every day, when we miss a flight or have a flat 
tyre whle driving to work. But, as we shall see, it is very hard to design computer 
programs that exhlbit t h s  lund of behaviour. 

NASA's Deep Space 1 (DS1) mission is an example of a system that is close to 
t h s  lund of scenario. Launched from Cape Canaveral on 24 October 1998, DS1 
was the first space probe to have an autonomous, agent-based control system 
(Muscettola er al., 1998). Before DS1, space missions required a ground crew of 
up to 300 staff to continually monitor progress. This ground crew made all neces- 
sary control decisions on behalf of the probe, and painstalungly transmitted these 
decisions to the probe for subsequent execution. Given the length of typical plan- 
etary exploration missions, such a procedure was expensive and, if the decisions 
were ever required quickly, it was simply not practical. The autonomous control 
system in DS1 was capable of malung many important decisions itself. This made 
the mission more robust, particularly against sudden unexpected problems, and 
also had the very desirable side effect of reducing overall mission costs. 

The next scenario is not quite down-to-earth, but is at least closer to home. 

A key air-traffic control system at the main airport of Ruritania sud- 
denly fails, leaving flight s in the vicinity of the airport with no air-traffic 
control support. Fortunately, autonomous air-traffic control systems 
in nearby airports recognize the failure of their peer, and cooperate 
to track and deal with all affected flights. The potentially disastrous 
situation passes without incident. 

There are several key issues in t h s  scenario. The first is the ability of systems to 
take the initiative when circumstances dictate. The second is the ability of agents 
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to cooperate to solve problems that are beyond the capabilities of any individ- 
ual agents. The lund of cooperation required by t h s  scenario was studied exten- 
sively in the Distributed Vehicle Monitoring Testbed (DVMT) project undertaken 
between 1981 and 1991 (see, for example, Durfee, 1988). The DVMT simulates 
a network of vehicle monitoring agents, where each agent is a problem solver 
that analyses sensed data in order to identify, locate, and track vehicles moving 
through space. Each agent is typically associated with a sensor, whch has only a 
partial view of the entire space. The agents must therefore cooperate in order to 
track the progress of vehicles through the entire sensed space. Air-traffic control 
systems have been a standard application of agent research since the work of 
Cammarata and colleagues in the early 1980s (Cammarata et al., 1983); a recent 
multiagent air-traffic control application is the OASIS system implemented for use 
at Sydney airport in Australia (Ljunberg and Lucas, 1992). 

Well, most of us are neither involved in designing the control systems for NASA 
space probes, nor are we involved in the design of safety critical systems such as 
air-traffic controllers. So let us now consider a vision that is closer to most of our 
everyday lives. 

After the wettest and coldest UK winter on record, you are in des- 
perate need of a last minute holiday somewhere warm and dry. After 
specifymg your requirements to your personal digital assistant (PDA), 
it converses with a number of different Web sites, whch sell services 
such as flights, hotel rooms, and h r e  cars. After hard negotiation on 
your behalf with a range of sites, your PDA presents you with a package 
holiday. 

This example is perhaps the closest of all four scenarios to actually being realized. 
There are many Web sites that will allow you to search for last minute holidays, 
but at the time of writing, to the best of my knowledge, none of them engages 
in active real-time negotiation in order to assemble a package specifically for you 
from a range of service providers. There are many basic research problems that 
need to be solved in order to make such a scenario work; such as the examples 
that follow. 

How do you state your preferences to your agent? 

How can your agent compare different deals from different vendors? 

What algorithms can your agent use to negotiate with other agents (so as to 
ensure you are not 'ripped off')? 

The ability to negotiate in the style implied by this scenario is potentially very 
valuable indeed. Every year, for example, the European Commission puts out thou- 
sands of contracts to public tender. The bureaucracy associated with managing 
this process has an enormous cost. The ability to automate the tendering and 
negotiation process would save enormous sums of money (taxpayers' money!). 
Similar situations arise in government organizations the world over - a good 
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example is the US military. So the ability to automate the process of software 
agents reaching mutually acceptable agreements on matters of common interest 
is not just an abstract concern - it may affect our lives (the amount of tax we pay) 
in a significant way. 

1.2 Some Views of the Field 
The multiagent systems field is highly interdisciplinary: it takes inspiration from 
such diverse areas as economics, phlosophy, logic, ecology, and the social sci- 
ences. It should come as no surprise that there are therefore many different views 
about what the 'multiagent systems project' is all about. In t h s  section, I will sum- 
marize some of the main views. 

Agents as a paradigm for software engineering 

Software engineers have derived a progressively better understanding of the char- 
acteristics of complexity in software. It is now widely recognized that interaction 
is probably the most important single characteristic of complex software. Soft- 
ware architectures that contain many dynamically interacting components, each 
with their own thread of control and engaging in complex, coordinated proto- 
cols, are typically orders of magnitude more complex to engineer correctly and 
efficiently than those that simply compute a function of some input through a 
single thread of control. Unfortunately, it turns out that many (if not most) real- 
world applications have precisely these characteristics. As a consequence, a major 
research topic in computer science over at least the past two decades has been 
the development of tools and techniques to model, understand, and implement 
systems in which interaction is the norm. Indeed, many researchers now believe 
that in the future, computation itself will be understood chiefly as a process of 
interaction. Just as we can understand many systems as being composed of essen- 
tially passive objects, whch have a state and upon which we can perform opera- 
tions, so we can understand many others as being made up of interacting, semi- 
autonomous agents. Ths  recognition has led to the growth of interest in agents 
as a new paradigm for software engineering. 

As I noted at the start of this chapter, the trend in computing has been - and 
will continue to be - toward ever more ubiquitous, interconnected computer sys- 
tems. The development of software paradigms that are capable of exploiting the 
potential of such systems is perhaps the greatest challenge in computing at the 
start of the 21st century. Agents seem a strong candidate for such a paradigm. 

Agents as a tool for understanding human societies 

In Isaac Asimov's popular Foundation science fiction trilogy, a character called 
Hari Seldon is credited with inventing a discipline that Asimov refers to as 'psy- 
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chohistory'. The idea is that psychohstory is a combination of psychology, h s -  
tory, and economics, which allows Seldon to predict the behaviour of human soci- 
eties hundreds of years into the future. In particular, psychohstory enables Sel- 
don to predict the imminent collapse of society. Psychohistory is an interesting 
plot device, but it is firmly in the realms of science fiction. There are far too many 
variables and unknown quantities in human societies to do anything except pre- 
dict very broad trends a short term into the future, and even then the process is 
notoriously prone to embarrassing errors. Ths  situation is not likely to change 
in the foreseeable future. However, multiagent systems do provide an interesting 
and novel new tool for simulating societies, which may help shed some light on 
various kinds of social processes. A nice example of t h s  work is the EOS project 
(Doran and Palmer, 1995). The aim of the EOS project was to use the tools of 
multiagent systems research to gain an insight into how and why social complex- 
ity emerged in a Palaeolithc culture in southern France at the time of the last 
ice age. The goal of the project was not to directly simulate these ancient soci- 
eties, but to try to understand some of the factors involved in the emergence of 
social complexity in such societies. (The EOS project is described in more detail 
in Chapter 12.) 

1.3 Objections to Multiagent Systems 

No doubt some readers are already sceptical about multiagent systems, as indeed 
are some in the international computer science research community. In this sec- 
tion, therefore, I have attempted to anticipate and respond to the most commonly 
voiced objections to multiagent systems. 

Is it not a11 just distri'buted/concuwent systems? 

The concurrent systems community have for several decades been investigat- 
ing the properties of systems that contain multiple interacting components, and 
have been developing theories, programming languages, and tools for explaining, 
modelling, and developing such systems (Ben-Ari, 1990; Holzmann, 1991; Magee 
and Kramer, 1999). Multiagent systems are - by definition - a subclass of con- 
current systems, and there are some in the distributed systems community who 
question whether multiagent systems are sufficiently different to 'standard' dis- 
tributed/concurrent systems to merit separate study. My view on t h s  is as follows. 
First, it is important to understand that when designing or implementing a multi- 
agent system, it is essential to draw on the wisdom of those with experience in 
distributed/concurrent systems. Failure to do so invariably leads to exactly the 
lund of problems that this community has been worlung for so long to overcome. 
Thus it is important to worry about such issues as mutual exclusion over shared 
re sources, deadlock, and livelock when implementing a multiagent system. 
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In multiagent systems, however, there are two important twists to the concur- 
rent systems story. 

First, because agents are assumed to be autonomous - capable of making 
independent decisions about what to do in order to satisfy their design 
objectives - it is generally assumed that the synchronization and coordi- 
nation structures in a multiagent system are not hardwired in at design 
time, as they typically are in standard concurrent/distributed systems. 
We therefore need mechanisms that will allow agents to synchronize and 
coordinate their activities at run time. 

Second, the encounters that occur among computing elements in a multi- 
agent system are economic encounters, in the sense that they are encounters 
between self-interested entities. In a classic distributed/concurrent system, 
all the computing elements are implicitly assumed to share a common goal 
(of malung the overall system function correctly). In multiagent systems, it is 
assumed instead that agents are primarily concerned with their own welfare 
(although of course they will be acting on behalf of some user/owner). 

For these reasons, the issues studied in the multiagent systems community have 
a rather different flavour to those studied in the distributed/concurrent systems 
community. We are concerned with issues such as how agents can reach agree- 
ment through negotiation on matters of common interest, and how agents can 
dynamically coordinate their activities with agents whose goals and motives are 
unknown. (It is worth pointing out, however, that I see these issues as a natural 
next step for distributed/concurrent systems research.) 

Is it not all just artificial intelligence (AI)? 
The multiagent systems field has enjoyed an intimate relationship with the arti- 
ficial intelligence (AI) field over the years. Indeed, until relatively recently it was 
common to refer to multiagent systems as a subfield of AI; although multiagent 
systems researchers would indignantly - and perhaps accurately - respond that AI 
is more properly understood as a subfield of multiagent systems. More recently, 
it has become increasingly common practice to define the endeavour of AI itself 
as one of constructing an intelligent agent (see, for example, the enormously suc- 
cessful introductory textbook on AI by Stuart Russell and Peter Norvig (Russell 
and Norvig, 1995)). There are several important points to be made here: 

First, A1 has largely (and, perhaps, mistakenly) been concerned with the corn- 
ponents of intelligence: the ability to learn, plan, understand images, and so 
on. In contrast the agent field is concerned with entities that integrate these 
components, in order to provide a machine that is capable of malung inde- 
pendent decisions. It may naively appear that in order to build an agent, 
we need to solve all the problems of A1 itself: in order to build an agent, 
we need to solve the planning problem, the learning problem, and so on 
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(because our agent will surely need to learn, plan, and so on). This is not the 
case. As Oren Etzioni succinctly put it: 'Intelligent agents are ninety-nine per- 
cent computer science and one percent AI' (Etzioni, 1996). When we build 
an agent to carry out a task in some environment, we will very likely draw 
upon A1 techniques of some sort - but most of what we do will be standard 
computer science and software engineering. For the vast majority of appli- 
cations, it is not necessary that an agent has all the capabilities studied in 
A1 - for some applications, capabilities such as learning may even be unde- 
sirable. In short, whle we may draw upon A1 techniques to build agents, we 
do not need to solve all the problems of A1 to build an agent. 

Secondly, classical A1 has largely ignored the social aspects of agency. I hope 
you will agree that part of what makes us unique as a species on Earth is not 
simply our undoubted ability to learn and solve problems, but our ability to 
communicate, cooperate, and reach agreements with our peers. These lunds 
of social ability - whch we use every day of our lives - are surely just as 
important to intelligent behaviour as are components of intelligence such 
as planning and learning, and yet they were not studied in A1 until about 
1980. 

Is it not all just economics/game theory? 
Game theory is a mathematical theory that studies interactions among self- 
interested agents (Binmore, 1992). It is interesting to note that von Neumann, 
one of the founders of computer science, was also one of the founders of game 
theory (Neumann and Morgenstern, 1944); Alan Turing, arguably the other great 
figure in the foundations of computing, was also interested in the formal study 
of games, and it may be that it was this interest that ultimately led him to write 
his classic paper Computing Machinery and Intelligence, whch may be seen as the 
foundation of A1 as a discipline (Turing, 1963). However, since these beginnings, 
game theory and computer science went their separate ways for some time. Game 
theory was largely - though by no means solely - the preserve of economists, who 
were interested in using it to study and understand interactions among economic 
entities in the real world. 

Recently, the tools and techmques of game theory have found many applica- 
tions in computational multiagent systems research, particularly when applied 
to problems such as negotiation (see Rosenschein and Zlotkm (1994), Sandholm 
(1999) and Chapters 6 and 7). Indeed, at the time of writing, game theory seems 
to be the predominant theoretical tool in use for the analysis of multiagent sys- 
tems. An obvious question is therefore whether multiagent systems are properly 
viewed as a subfield of economics/game theory. There are two points here. i 

i 
First, many of the solution concepts developed in game theory (such as Nash I ! 
equilibrium, discussed in Chapter 6), were developed without a view to com- I i 
putation. They tend to be descriptive concepts, telling us the properties of L 
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an appropriate, optimal solution without telling us how to compute a solu- 
tion. Moreover, it turns out that the problem of computing a solution is 
often computationally very hard (e.g. NP-complete or worse). Multiagent sys- 
tems research highlights these problems, and allows us to bring the tools 
of computer science (e.g. computational complexity theory (Garey and John- 
son, 1979; Papadimitriou, 1994)) to bear on them. 

Secondly, some researchers question the assumptions that game theory 
makes in order to reach its conclusions. In particular, debate has arisen in 
the multiagent systems community with respect to whether or not the notion 
of a rational agent, as modelled in game theory, is valid and/or useful for 
understanding human or artificial agent societies. 

(Please note that all this should not be construed as a criticism of game theory, 
whch is without doubt a valuable and important tool in multiagent systems, likely 
to become much more widespread in use over the coming years.) 

Is it not aII just social science? 

The social sciences are primarily concerned with understanding the behaviour of 
human societies. Some social scientists are interested in (computational) multi- 
agent systems because they provide an experimental tool with which to model 
human societies. In addition, an obvious approach to the design of multiagent 
systems - which are artificial societies - is to look at how a particular function 
works in human societies, and try to build the multiagent system in the same way. 
(An analogy may be drawn here with the methodology of AI, where it is quite com- 
mon to study how humans achieve a particular kind of intelligent capability, and 
then to attempt to model this in a computer program.) Is the multiagent systems 
field therefore simply a subset of the social sciences? 

Although we can usefully draw insights and analogies from human societies, it 
does not follow that we can build artificial societies in exactly the same way. It 
is notoriously hard to precisely model the behaviour of human societies, simply 
because they are dependent on so many different parameters. Moreover, although 
it is perfectly legitimate to design a multiagent system by drawing upon and mak- 
ing use of analogies and metaphors from human societies, it does not follow that 
this is going to be the best way to design a multiagent system: there are other 
tools that we can use equally well (such as game theory - see above). 

It seems to me that multiagent systems and the social sciences have a lot to say 
to each other. Multiagent systems provide a powerful and novel tool for modelling 
and understanding societies, while the social sciences represent a rich repository 
of concepts for understanding and building multiagent systems - but they are 
quite distinct disciplines. 
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Notes and Further Reading 
There are now many introductions to intelligent agents and multiagent systems. 
Ferber (1999) is an undergraduate textbook, although it was written in the early 
1990s, and so (for example) does not mention any issues associated with the 
Web. A first-rate collection of articles introducing agent and multiagent systems 
is WeiB (1999). Many of these articles address issues in much more depth than is 
possible in t h s  book. I would certainly recommend t h s  volume for anyone with 
a serious interest in agents, and it would make an excellent companion to the 
present volume for more detailed reading. 

Three collections of research articles provide a comprehensive introduction 
to the field of autonomous rational agents and multiagent systems: Bond and 
Gasser's 1988 collection, Readings in Distributed Artificial Intelligence, introduces 
almost all the basic problems in the multiagent systems field, and although some 
of the papers it contains are now rather dated, it remains essential reading (Bond 
and Gasser, 1988); Huhns and Singh's more recent collection sets itself the ambi- 
tious goal of providing a survey of the whole of the agent field, and succeeds 
in this respect very well (Huhns and Singh, 1998). Finally, Bradshaw (1997) is a 
collection of papers on software agents. 

For a general introduction to the theory and practice of intelligent agents, see 
Wooldridge and Jennings (1995), whch focuses primarily on the theory of agents, 
but also contains an extensive review of agent archtectures and programming 
languages. A short but thorough roadmap of agent technology was published as 
Jennings et al. (1998). 

Class reading: introduction to Bond and Gasser (1988). T h s  article is probably 
the best survey of the problems and issues associated with multiagent systems 
research yet published. Most of the issues it addresses are fundamentally still 
open, and it therefore makes a useful preliminary to the current volume. It may 
be worth revisiting when the course is complete. 
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Exercises 
(1 ) [Class discussion.] 

Moore's law - a well-known dictum in computing - tells us that the number of tran- 
sistors that it is possible to place on an integrated circuit doubles every 18 months. This 
suggests that world's net processing capability is currently growing at an exponential rate. 
Within a few decades, it seems likely that computers will outnumber humans by several 
orders of magnitude - for every person on the planet there will be tens, hundreds, perhaps 
thousands or millions of processors, linked together by some far distant descendant of 
today's Internet. (This is not fanciful thinking: just extrapolate from the record of the past 
five decades.) 

In light of this, discuss the following. 

What such systems might offer - what possibilities are there? 

What are the challenges to make this vision happen? 





Intelligent 
Agents 

The aim of this chapter is to give you an understanding of what agents are, and 
some of the issues associated with building them. In later chapters, we will see 
specific approaches to building agents. 

An obvious way to open this chapter would be by presenting a definition of the 
term agent. After all, t h s  is a book about multiagent systems - surely we must all 
agree on what an agent is? Sadly, there is no universally accepted definition of the 
term agent, and indeed there is much ongoing debate and controversy on this very 
subject. Essentially, while there is a general consensus that autonomy is central 
to the notion of agency, there is little agreement beyond this. Part of the difficulty 
is that various attributes associated with agency are of differing importance for 
different domains. Thus, for some applications, the ability of agents to learn from 
their experiences is of paramount importance; for other applications, learning is 
not only unimportant, it is undesirable1. 

Nevertheless, some sort of definition is important - otherwise, there is a danger 
that the term will lose all meaning. The definition presented here is adapted from 
Wooldridge and Jennings (1 99 5 ) .  

An agent is a computer system that is situated in some environment, 
and that is capable of autonomous action in this environment in order 
to meet its design objectives. 

l~ i chae l  Georgeff, the main architect of the PRS agent system discussed in later chapters, gives 
the example of an air-traffic control system he developed; the clients of the system would have been 
horrified at the prospect of such a system modifying its behaviour at run time.. . 
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Figure 2.1 An agent in its environment. The agent takes sensory input from the environ- 
ment, and produces as output actions that affect it. The interaction is usualIy an ongoing, 
non-terminating one. 

Figure 2.1 gives an abstract view of an agent. In this diagram, we can see the 
action output generated by the agent in order to affect its environment. In most 
domains of reasonable complexity, an agent will not have complete control over 
its environment. It will have at best partial control, in that it can influence it. From 
the point of view of the agent, this means that the same action performed twice in 
apparently identical circumstances might appear to have entirely different effects, 
and in particular, it may fail to have the desired effect. Thus agents in all but the 
most trivial of environments must be prepared for the possibility of failure. We 
can sum this situation up formally by saying that environments are in general 
assumed to be nondeterministic. 

Normally, an agent will have a repertoire of actions available to it. This set of 
possible actions represents the agents efectoric capability: its ability to modify 
its environments. Note that not all actions can be performed in all situations. For 
example, an action 'lift table' is only applicable in situations where the weight 
of the table is sufficiently small that the agent can lift it. Similarly, the action 
'purchase a Ferrari' will fail if insufficient funds are available to do so. Actions 
therefore have preconditions associated with them, which define the possible sit- 
uations in which they can be applied. 

The key problem facing an agent is that of deciding which of its actions it 
should perform in order to best satisfy its design objectives. Agent architectures, 
of which we shall see many examples later in thls book, are really software 
architectures for decision-malung systems that are embedded in an environment. 
At this point, it is worth pausing to consider some examples of agents (though 
not, as yet, intelligent agents). 

Control systems 
First, any control system can be viewed as an agent. A simple (and overused) 
example of such a system is a thermostat. Thermostats have a sensor for detect- 
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ing room temperature. This sensor is directly embedded within the environment 
(i.e. the room), and it produces as output one of two signals: one that indicates 
that the temperature is too low, another which indicates that the temperature is 
OK. The actions available to the thermostat are 'heating on' or 'heating off'. The 
action 'heating on' will generally have the effect of raising the room temperature, 
but this cannot be a guaranteed effect - if the door to the room is open, for exam- 
ple, switching on the heater may have no effect. The (extremely simple) decision- 
mahng component of the thermostat implements (usually in electro-mechanical 
hardware) the following rules: 

too cold - heating on, 

temperature OK - heating off. 

More complex environment control systems, of course, have considerably richer 
decision structures. Examples include autonomous space probes, fly-by-wire air- 
craft, nuclear reactor control systems, and so on. 

Software demons 

Second, most software demons (such as background processes in the Unix operat- 
ing system), which monitor a software environment and perform actions to modify 
it, can be viewed as agents. An example is the X Windows program xbi  ff. This 
utility continually monitors a user's incoming email, and indicates via a GUI icon 
whether or not they have unread messages. Whereas our thermostat agent in the 
previous example inhabited a physical environment - the physical world - the 
x  b i  f f program inhabits a software environment. It obtains information about 
ths  environment by carrying out software functions (by executing system pro- 
grams such as 1 s, for example), and the actions it performs are software actions 
(changing an icon on the screen, or executing a program). The decision-making 
component is just as simple as our thermostat example. 

To summarize, agents are simply computer systems that are capable of 
autonomous action in some environment in order to meet their design objectives. 
An agent will typically sense its environment (by physical sensors in the case of 
agents situated in part of the real world, or by software sensors in the case of soft- 
ware agents), and will have available a repertoire of actions that can be executed 
to modify the environment, which may appear to respond non-deterministically 
to the execution of these actions. 

Environments 

Russell and Norvig suggest the following classification of environment properties 
(Russell and Norvig, 1995, p. 46). 
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Accessible versus inaccessible. An accessible environment is one in which the 
agent can obtain complete, accurate, up-to-date information about the environ- 
ment's state. Most real-world environments (including, for example, the every- 
day physical world and the Internet) are not accessible in this sense. 

Deterministic versus non-deterministic. A deterministic environment is one in 
which any action has a single guaranteed effect - there is no uncertainty about 
the state that will result from performing an action. 

Static versus dynamic. A static environment is one that can be assumed to 
remain unchanged except by the performance of actions by the agent. In con- 
trast, a dynamic environment is one that has other processes operating on it, 
and which hence changes in ways beyond the agent's control. The physical world 
is a highly dynamic environment, as is the Internet. 

Discrete versus continuous. An environment is discrete if there are a fixed, finite 
number of actions and percepts in it. 

We begin our discussion with accessibility. First, note that in extreme cases, the 
laws of physics prevent many environments from being completely accessible. 
For example, it may be that as I write, the surface temperature at the North Pole 
of Mars is -100 "C, but the laws of physics will prevent me from knowing this 
fact for some time. This information is thus inaccessible to me. More mundanely, 
in almost any realistic environment uncertainty is inherently present. 

The more accessible an environment is, the simpler it is to build agents that 
operate effectively within it. The reason for this should be self-evident. Ultimately, 
a 'good' agent is one that makes the 'right' decisions. The quality of decisions 
that an agent can make is clearly dependent on the quality of the information 
available to it. If little, or inaccurate information is available, then the agent's 
decision is uninformed, and is hence likely to be poor. As more complete and 
accurate information becomes available, the potential to make a good decision 
increases. 

The next source of complexity we consider is determinism. An environment is 
deterministic if the outcome of any action performed is uniquely defined, and 
non-deterministic otherwise. Non-determinism can seem an unusual property to 
attribute to environments. For example, we usually imagine that software envi- 
ronments, governed as they are by precise rules, are paradigms of determinism. 
Non-determinism captures several important aspects of such environments as 
follows. 

Non-determinism captures the fact that agents have a limited 'sphere of 
influence' - they have at best partial control over their environment. 

Similarly, actions are typically performed by agents in order to bring about 
some desired state of affairs. Non-determinism captures the fact that actions 
can mil to have the desired result. 
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Clearly, deterministic environments are preferable from the point of view of the 
agent designer to non-deterministic environments. If there is never any uncer- 
tainty about the outcome of some particular action, then an agent need never 
stop to determine whether or not a particular action had a particular outcome, 
and thus whether or not it needs to reconsider its course of action. In particular, 
in a deterministic environment, an agent designer can assume that the actions 
performed by an agent will always succeed: they will never fail to bring about 
their intended effect. 

Unfortunately, as Russell and Norvig (1995) point out, if an environment is 
sufficiently complex, then the fact that it is actually deterministic is not much 
help. To all intents and purposes, it may as well be non-deterministic. In practice, 
almost all realistic environments must be regarded as non-deterministic from an 
agent's perspective. 

Non-determinism is closely related to dynamism. Early artificial intelligence 
research on action selection focused on planning algorithms - algorithms that, 
given a description of the initial state of the environment, the actions available to 
an agent and their effects, and a goal state, will generate a plan (i.e. a sequence 
of actions) such that when executed from the initial environment state, the plan 
will guarantee the achievement of the goal (Allen et a/., 1990). However, such 
planning algorithms implicitly assumed that the environment in which the plan 
was being executed was static - that it did not change except through the perfor- 
mance of actions by the agent. Clearly, many environments (including software 
environments such as computer operating systems, as well as physical environ- 
ments such as the real world), do not enjoy this property - they are dynamic, with 
many processes operating concurrently to modify the environment in ways that 
an agent has no control over. 

From an agent's point of view, dynamic environments have at least two impor- 
tant properties. The first is that if an agent performs no external action between 
times to and t l ,  then it cannot assume that the environment at tl will be the same 
as it was at time to. This means that in order for the agent to select an appropriate 
action to perform, it must perform information gathering actions to determine the 
state of the environment (Moore, 1990). In a static environment, there is no need 
for such actions. The second property is that other processes in the environment 
can 'interfere' with the actions it attempts to perform. The idea is essentially the 
concept of interference in concurrent systems theory (Ben-Ari, 1990). Thus if an 
agent checks that the environment has some property q, and then starts execut- 
ing some action a on the basis of this information, it cannot in general guarantee 
that the environment will continue to have property q, while it is executing a. 

These properties suggest that static environments will be inherently simpler to 
design agents for than dynamic ones. First, in a static environment, an agent need 
only ever perform information gathering actions once. Assuming the information 
it gathers correctly describes the environment, and that it correctly understands 
the effects of its actions, then it can accurately predict the effects of its actions 
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on the environment, and hence how the state of the environment will evolve. 
(This is in fact how most artificial intelligence planning algorithms work (Lifschitz, 
1986).) Second, in a static environment, an agent never needs to worry about 
synchronizing or coordinating its actions with those of other processes in the 
environment (Bond and Gasser, 1988). 

The final distinction made in Russell and Norvig (1995) is between discrete and 
continuous environments. A discrete environment is one that can be guaranteed 
to only ever be in a finite number of discrete states; a continuous one may be 
in uncountably many states. Thus the game of chess is a discrete environment - 
there are only a finite (albeit very large) number of states of a chess game. Russell 
and Norvig (1 995) give taxi driving as an example of a continuous environment. 

Discrete environments are simpler to design agents for than continuous ones, 
for several reasons. Most obviously, digital computers are themselves discrete- 
state systems, and although they can simulate continuous systems to any desired 
degree of accuracy, there is inevitably a mismatch between the two types of sys- 
tems. Some information must be lost in the mapping from continuous environ- 
ment to discrete representation of that environment. Thus the information a 
discrete-state agent uses in order to select an action in a continuous environ- 
ment will be made on the basis of information that is inherently approximate. 
Finally, with finite discrete state environments, it is in principle possible to enu- 
merate all possible states of the environment and the optimal action to perform 
in each of these states. Such a lookup table approach to agent design is rarely 
possible in practice, but it is at least in principle possible for finite, discrete state 
environments. 

In summary, the most complex general class of environments are those that 
are inaccessible, non-deterministic, dynamic, and continuous. Environments that 
have these properties are often referred to as open (Hewitt, 1986). 

Environmental properties have a role in determining the complexity of the agent 
design process, but they are by no means the only factors that play a part. The sec- 
ond important property that plays a part is the nature of the interaction between 
agent and environment. 

Originally, software engineering concerned itself with what are known as 'func- 
tional' systems. A functional system is one that simply takes some input, performs 
some computation over this input, and eventually produces some output. Such 
systems may formally be viewed as functions f : I - 0 from a set I of inputs 
to a set 0 of outputs. The classic example of such a system is a compiler, which 
can be viewed as a mapping from a set I of legal source programs to a set 0 of 
corresponding object or machine code programs. 

One of the key attributes of such functional systems is that they terminate. 
This means that, formally, their properties can be understood in terms of pre- 
conditions and postconditions (Hoare, 1969). The idea is that a precondition cp 
represents what must be true of the program's environment in order for that pro- 
gram to operate correctly. A postcondition rl/ represents what will be true of the 
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program's environment after the program terminates, assuming that the precon- 
dition was satisfied when execution of the program commenced. A program is 
said to be completely correct with respect to precondition cp and postcondition 
rl/ if it is guaranteed to terminate when it is executed from a state where the pre- 
condition is satisfied, and, upon termination, its postcondition is guaranteed to 
be satisfied. Crucially, it is assumed that the agent's environment, as character- 
ized by its precondition cp, is only modified through the actions of the program 
itself. As we noted above, this assumption does not hold for many environments. 

Although the internal complexity of a functional system may be great (e.g. in the 
case of a compiler for a complex programming language such as Ada), functional 
programs are, in general, comparatively simple to correctly and efficiently engi- 
neer. For example, functional systems lend themselves to design methods based 
on 'divide and conquer'. Top-down stepwise refinement (Jones, 1990) is an exam- 
ple of such a method. Semi-automatic refinement techniques are also available, 
which allow a designer to refine a high-level (formal) specification of a functional 
system down to an implementation (Morgan, 1994). 

Unfortunately, many computer systems that we desire to build are not func- 
tional in this sense. Rather than simply computing a function of some input and 
then terminating, many computer systems are reactive, in the following sense: 

Reactive systems are systems that cannot adequately be described 
by the relational or functional view. The relational view regards pro- 
grams as functions. . .from an initial state to a terminal state. Typically, 
the main role of reactive systems is to maintain an interaction with 
their environment, and therefore must be described (and specified) in 
terms of their on-going behaviour.. .[Elvery concurrent system.. .must 
be studied by behavioural means. This is because each individual mod- 
ule in a concurrent system is a reactive subsystem, interacting with its 
own environment which consists of the other modules. 

(Pnueli, 1986) 

There are at least three current usages of the term reactive system in computer 
science. The first, oldest, usage is that by Pnueli and followers (see, for exampIe, 
Pnueli (1986), and the description above). Second, researchers in A1 planning take 
a reactive system to be one that is capable of responding rapidly to changes in its 
environment - here the word 'reactive' is taken to be synonymous with 'respon- 
sive' (see, for example, Kaelbling, 1986). More recently, the term has been used to 
denote systems which respond directly to the world, rather than reason explicitly 
about it (see, for example, Connah and Wavish, 1990). 

Reactive systems are harder to engineer than functional ones. Perhaps the 
most important reason for this is that an agent engaging in a (conceptually) 
non-terminating relationship with its environment must continually make locul 
decisions that have global consequences. Consider a simple printer controller 
agent. The agent continually receives requests to have access to the printer, and 
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is allowed to grant access to any agent that requests it, with the proviso that it 
is only allowed to grant access to one agent at a time. At some time, the agent 
reasons that it will give control of the printer to process pl ,  rather than pz, but 
that it will grant p2 access at some later time point. This seems like a reasonable 
decision, when considered in isolation. But if the agent always reasons like this, 
it will never grant p2 access. This issue is known as fairness (Francez, 1986). In 
other words, a decision that seems entirely reasonable in a local context can have 
undesirable effects when considered in the context of the system's entire hstory. 
This is a simple example of a complex problem. In general, the decisions made 
by an agent have long-term effects, and it is often difficult to understand such 
long-term effects. 

One possible solution is to have the agent explicitly reason about and predict 
the behaviour of the system, and thus any temporally distant effects, at run-time. 
But it turns out that such prediction is extremely hard. 

Russell and Subramanian (1995) discuss the essentially identical concept of 
episodic environments. In an episodic environment, the performance of an agent 
is dependent on a number of discrete episodes, with no link between the perfor- 
mance of the agent in different episodes. An example of an episodic environment 
would be a mail sorting system (Russell and Subramanian, 1995). As with reactive 
systems, episodic interactions are simpler from the agent developer's perspective 
because the agent can decide what action to perform based only on the current 
episode - it does not need to reason about the interactions between this and future 
episodes. 

Another aspect of the interaction between agent and environment is the con- 
cept of real time. Put at its most abstract, a real-time interaction is simply one 
in which time plays a part in the evaluation of an agent's performance (Russell 
and Subramanian, 1995, p. 585). It is possible to identify several different types 
of real-time interactions: 

those in which a decision must be made about what action to perform within 
some specified time bound; 

those in which the agent must bring about some state of affairs as quickly 
as possible; 

those in which an agent is required to repeat some task, with the objective 
being to repeat the task as often as possible. 

If time is not an issue, then an agent can deliberate for as long as required in order 
to select the 'best' course of action in any given scenario. Selecting the best course 
of action implies search over the space of all possible courses of action, in order 
to find the 'best'. Selecting the best action in this way will take time exponential in 
the number of actions available to the agent2. It goes without saying that for any 

'1f the agent has n actions available to it, then it has n! courses of action available to it (assuming 
no duplicate actions). 
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realistic environment, such deliberation is not viable. Thus any realistic system 
must be regarded as real-time in some sense. 

Some environments are real-time in a much stronger sense than this. For exam- 
ple, the PRS, one of the best-known agent systems, had fault diagnosis on NASA's 
Space Shuttle as its initial application domain (Georgeff and Lansky, 1987). In 
order to be of any use, decisions in such a system must be made in milliseconds. 

2.2 Intelligent Agents 
We are not used to thnlung of thermostats or Unix demons as agents, and cer- 
tainly not as intelligent agents. So, when do we consider an agent to be intelligent? 
The question, like the question 'what is intelligence?' itself, is not an easy one to 
answer. One way of answering the question is to list the knds of capabilities that 
we might expect an intelligent agent to have. The following list was suggested in 
Wooldridge and Jennings (1 99 5). 

Reactivity. Intelligent agents are able to perceive their environment, and respond 
in a timely fashion to changes that occur in it in order to satisfy their design 
objectives. 

Proactiveness. Intelligent agents are able to exhibit goal-directed behaviour by 
taking the initiative in order to satisfy their design objectives. 

Social ability. Intelligent agents are capable of interacting with other agents (and 
possibly humans) in order to satisfy their design objectives. 

These properties are more demanding than they might at first appear. To see 
why, let us consider them in turn. First, consider proactiveness: goal-directed 
behaviour. It is not hard to build a system that exhibits goal-directed behaviour - 
we do it every time we write a procedure in Pascal, a function in C, or a method in 
Java. When we write such a procedure, we describe it in terms of the assumptions 
on which it relies (formally, its precondition) and the effect it has if the assump- 
tions are valid (its postcondition). The effects of the procedure are its goal: what 
the author of the software intends the procedure to achieve. If the precondition 
holds when the procedure is invoked, then we expect that the procedure will exe- 
cute correctly: that it will terminate, and that upon termination, the postcondition 
will be true, i.e. the goal will be achieved. This is goal-directed behaviour: the pro- 
cedure is simply a plan or recipe for achieving the goal. This programming model 
is fine for many environments. For example, it works well when we consider func- 
tional systems, as discussed above. 

But for non-functional systems, t h s  simple model of goal-directed program- 
ming is not acceptable, as it makes some important limiting assumptions. In par- 
ticular, it assumes that the environment does not change while the procedure is 
executing. If the environment does change, and, in particular, if the assumptions 
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(precondition) underlying the procedure become false while the procedure is exe- 
cuting, then the behaviour of the procedure may not be defined - often, it will 
simply crash. Also, it is assumed that the goal, that is, the reason for executing 
the procedure, remains valid at least until the procedure terminates. If the goal 
does not remain valid, then there is simply no reason to continue executing the 
procedure. 

In many environments, neither of these assumptions are valid. In particular, 
in domains that are too complex for an agent to observe completely, that are 
multiagent (i.e. they are populated with more than one agent that can change the 
environment), or where there is uncertainty in the environment, these assump- 
tions are not reasonable. In such environments, blindly executing a procedure 
without regard to whether the assumptions underpinning the procedure are valid 
is a poor strategy. In such dynamic environments, an agent must be reactive, in 
just the way that we described above. That is, it must be responsive to events that 
occur in its environment, where these events affect either the agent's goals or the 
assumptions which underpin the procedures that the agent is executing in order 
to achieve its goals. 

As we have seen, building purely goal-directed systems is not hard. As we shall 
see later, building purely reactive systems - ones that continually respond to their 
environment - is also not difficult. However, what turns out to be hard is building 
a system that achieves an effective balance between goal-directed and reactive 
behaviour. We want agents that will attempt to achieve their goals systematically, 
perhaps by making use of complex procedure-like patterns of action. But we do 
not want our agents to continue blindly executing these procedures in an attempt 
to achieve a goal either when it is clear that the procedure will not work, or when 
the goal is for some reason no longer valid. In such circumstances, we want our 
agent to be able to react to the new situation, in time for the reaction to be of 
some use. However, we do not want our agent to be continually reacting, and 
hence never focusing on a goal long enough to actually achieve it. 

On reflection, it should come as little surprise that achieving a good balance 
between goal-directed and reactive behaviour is hard. After all, it is comparatively 
rare to find humans that do this very well. This problem - of effectively integrating 
goal-directed and reactive behaviour - is one of the key problems facing the agent 
designer. As we shall see, a great many proposals have been made for how to 
build agents that can do this - but the problem is essentially still open. 

Finally, let us say something about social ability, the final component of flexible 
autonomous action as defined here. In one sense, social ability is trivial: every 
day, millions of computers across the world routinely exchange information with 
both humans and other computers. But the ability to exchange bit streams is 
not really social ability. Consider that in the human world, comparatively few of 
our meaningful goals can be achieved without the cooperation of other people, 
who cannot be assumed to share our goals - in other words, they are themselves 
autonomous, with their own agenda to pursue. To achieve our goals in such sit- 
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uations, we must negotiate and cooperate with others. We may be required to 
understand and reason about the goals of others, and to perform actions (such 
as paying them money) that we would not otherwise choose to perform, in order 
to get them to cooperate with us, and achieve our goals. This type of social ability 
is much more complex, and much less well understood, than simply the ability to 
exchange binary information. Social ability in general (and topics such as nego- 
tiation and cooperation in particular) are dealt with elsewhere in this book, and 
will not therefore be considered here. In this chapter, we will be concerned with 
the decision malung of individual intelligent agents in environments which may 
be dynamic, unpredictable, and uncertain, but do not contain other agents. 

Agents and Objects 
Programmers familiar with object-oriented languages such as Java, C++, or 
Smalltalk sometimes fail to see anything novel in the idea of agents. When one 
stops to consider the relative properties of agents and objects, this is perhaps not 
surprising. 

There is a tendency.. .to think of objects as 'actors' and endow them 
with human-like intentions and abilities. It's tempting to thnk  about 
objects 'deciding' what to do about a situation, [and] 'asking' other 
objects for information. . . . Objects are not passive containers for state 
and behaviour, but are said to be the agents of a program's activity. 

(NeXT Computer Inc., 1993, p. 7) 

Objects are defined as computational entities that encapsulate some state, are 
able to perform actions, or methods on this state, and communicate by message 
passing. While there are obvious similarities, there are also significant differences 
between agents and objects. The first is in the degree to which agents and objects 
are autonomous. Recall that the defining characteristic of object-oriented pro- 
gramming is the principle of encapsulation - the idea that objects can have con- 
trol over their own internal state. In programming languages like Java, we can 
declare instance variables (and methods) to be p r i v a t e ,  meaning they are only 
accessible from withn the object. (We can of course also declare them pub l  i c, 
meaning that they can be accessed from anywhere, and indeed we must do this 
for methods so that they can be used by other objects. But the use of publ  i c 
instance variables is usually considered poor programming style.) In t h s  way, an 
object can be thought of as exhibiting autonomy over its state: it has control over 
it. But an object does not exhibit control over its behaviour. That is, if a method rn 
is made available for other objects to invoke, then they can do so whenever they 
wish - once an object has made a method publ  i c, then it subsequently has no 
control over whether or not that method is executed. Of course, an object must 
make methods available to other objects, or else we would be unable to build a 
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system out of them. This is not normally an issue, because if we build a system, 
then we design the objects that go in it, and they can thus be assumed to share a 
'common goal'. But in many types of multiagent system (in particular, those that 
contain agents built by different organizations or individuals), no such common 
goal can be assumed. It cannot be taken for granted that an agent i will execute 
an action (method) a just because another agent j wants it to - a may not be in 
the best interests of i. We thus do not think of agents as invoking methods upon 
one another, but rather as requesting actions to be performed. If j requests i to 
perform a, then i may perform the action or it may not. The locus of control with 
respect to the decision about whether to execute an action is thus different in 
agent and object systems. In the object-oriented case, the decision lies with the 
object that invokes the method. In the agent case, the decision lies with the agent 
that receives the request. This distinction between objects and agents has been 
nicely summarized in the following slogan. 

Objects do it for free; agents do it because they want to. 

Of course, there is nothing to stop us implementing agents using object-oriented 
techniques. For example, we can build some kind of decision making about 
whether to execute a method into the method itself, and in this way achieve a 
stronger lund of autonomy for our objects. The point is that autonomy of this 
lund is not a component of the basic object-oriented model. 

The second important distinction between object and agent systems is with 
respect to the notion of flexible (reactive, proactive, social) autonomous be- 
haviour. The standard object model has nothing whatsoever to say about how to 
build systems that integrate these types of behaviour. Again, one could object that 
we can build object-oriented programs that do integrate these types of behaviour. 
But this argument misses the point, which is that the standard object-oriented 
programming model has nothing to do with these types of behaviour. 

The third important distinction between the standard object model and our 
view of agent systems is that agents are each considered to have their own thread 
of control - in the standard object model, there is a single thread of control in 
the system. Of course, a lot of work has recently been devoted to concurrency in 
object-oriented programming. For example, the Java language provides built-in 
constructs for multi-threaded programming. There are also many programming 
languages available (most of them admittedly prototypes) that were specifically 
designed to allow concurrent object-based programming. But such languages do 
not capture the idea of agents as autonomous entities. Perhaps the closest that 
the object-oriented community comes is in the idea of active objects. 

An active object is one that encompasses its own thread of control.. .. 
Active objects are generally autonomous, meaning that they can exlubit 
some behaviour without being operated upon by another object. Pas- 
sive objects, on the other hand, can only undergo a state change when 
explicitly acted upon. 
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(Booch, 1994, p. 91) 

Thus active objects are essentially agents that do not necessarily have the ability 
to e h b i t  flexible autonomous behaviour. 

To summarize, the traditional view of an object and our view of an agent have 
at least three distinctions: 

agents embody a stronger notion of autonomy than objects, and, in partic- 
ular, they decide for themselves whether or not to perform an action on 
request from another agent; 

agents are capable of flexible (reactive, proactive, social) behaviour, and the 
standard object model has nothing to say about such types of behaviour; 
and 

a multiagent system is inherently multi-threaded, in that each agent is 
assumed to have at least one thread of control. 

Agents and Expert Systems 

Expert systems were the most important A1 technology of the 1980s (Hayes-Roth 
et al., 1983). An expert system is one that is capable of solving problems or giving 
advice in some knowledge-rich domain (Jackson, 1986). A classic example of an 
expert system is MYCIN, which was intended to assist physicians in the treatment 
of blood infections in humans. MYCIN worked by a process of interacting with a 
user in order to present the system with a number of (symbolically represented) 
facts, which the system then used to derive some conclusion. MYCIN acted very 
much as a consultant: it did not operate directly on humans, or indeed any other 
environment. Thus perhaps the most important distinction between agents and 
expert systems is that expert systems like MYCIN are inherently disembodied. By 
ths,  I mean that they do not interact directly with any environment: they get their 
information not via sensors, but through a user acting as middle man. In the same 
way, they do not act on any environment, but rather give feedback or advice to a 
third party. In addition, expert systems are not generally capable of cooperating 
with other agents. 

In summary, the main differences between agents and expert systems are as 
follows: 

'classic' expert systems are disembodied - they are not coupled to any envi- 
ronment in which they act, but rather act through a user as a 'middleman'; 

expert systems are not generally capable of reactive, proactive behaviour; 
and 

expert systems are not generally equipped with social ability, in the sense 
of cooperation, coordination, and negotiation. 
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Despite these differences, some expert systems (particularly those that perform 
real-time control tasks) look very much like agents. A good example is the 
ARCHON system, discussed in Chapter 9 (Jennings et al., 1996a). 

2.5 Agents as Intentional Systems 
One common approach adopted when discussing agent systems is the intentional 
stance. With t h s  approach, we 'endow' agents with mental states: beliefs, desires, 
wishes, hope, and so on. The rationale for this approach is as follows. When 
explaining human activity, it is often useful to make statements such as the fol- 
lowing. 

Janine took her umbrella because she believed it was going to rain. 
Michael worked hard because he wanted to finish his book. 

These statements make use of a folk psychology, by which human behaviour is 
predicted and explained through the attribution of attitudes, such as believing and 
wanting (as in the above examples), hoping, fearing, and so on (see, for example, 
Stich (1983, p. 1) for a discussion of folk psychology). This folk psychology is well 
established: most people reading the above statements would say they found their 
meaning entirely clear, and would not give them a second glance. 

The attitudes employed in such folk psychological descriptions are called the 
intentional notions3. The philosopher Daniel Dennett has coined the term inten- 
tional system to describe entities 'whose behaviour can be predicted by the method 
of attributing belief, desires and rational acumen' (Dennett, 1978, 1987, p. 49). 
Dennett identifies different 'levels' of intentional system as follows. 

A first-order intentional system has beliefs and desires (etc.) but no 
beliefs and desires about beliefs and desires. . . . A second-order inten- 
tional system is more sophisticated; it has beliefs and desires (and no 
doubt other intentional states) about beliefs and desires (and other 
intentional states) - both those of others and its own. 

(Dennett, 1987, p. 243) 

One can carry on this hierarchy of intentionality as far as required. 
Now we have been using phrases like belief, desire, intention to talk about 

computer programs. An obvious question is whether it is legitimate or useful 
to attribute beliefs, desires, and so on to artificial agents. Is this not just anthro- 
pomorphism? McCarthy, among others, has argued that there are occasions when 
the intentional stance is appropriate as follows. 

'~nfortunately, the word 'intention' is used in several different ways in logic and the philosophy 
of mind. First, there is the BDI-like usage, as in 'I intended to kill him'. Second, an intentional notion 
is one of the attitudes, as above. Finally, in logic, the word intension (with an 's') means the internal 
content of a concept, as opposed to its extension. In what follows, the intcnded meaning should 
always be clear from context. 
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To ascribe beliefs, fi-ee will, intentions, consciousness, abilities, or wants 
to a machine is legitimate when such an ascription expresses the 
same information about the machine that it expresses about a per- 
son. It is useful when the ascription helps us understand the struc- 
ture of the machine, its past or future behaviour, or how to repair 
or improve it. It is perhaps never logically required even for humans, 
but expressing reasonably briefly what is actually known about the 
state of the machine in a particular situation may require mental qual- 
ities or qualities isomorphic to them. Theories of belief, knowledge 
and wanting can be constructed for machines in a simpler setting than 
for humans, and later applied to humans. Ascription of mental quali- 
ties is most straightforward for machines of known structure such as 
thermostats and computer operating systems, but is most useful when 
applied to entities whose structure is incompletely known. 

(McCarthy, 1978) (The underlining is from Shoham (1990).) 

What objects can be described by the intentional stance? As it turns out, almost 
any automaton can. For example, consider a light switch as follows. 

It is perfectly coherent to treat a light switch as a (very cooperative) 
agent with the capability of transmitting current at will, who invariably 
transmits current when it believes that we want it transmitted and not 
otherwise; flicking the switch is simply our way of communicating our 
desires. 

(Shoham, 1990, p. 6) 

And yet most adults in the modern world would find such a description absurd - 
perhaps even infantile. Why is this? The answer seems to be that while the inten- 
tional stance description is perfectly consistent with the observed behaviour of a 
light switch, and is internally consistent, 

. . .it does not buy us anything, since we essentially understand the 
mechanism sufficiently to have a simpler, mechanistic description of 
its behaviour. 

(Shoham, 1990, p. 6) 

Put crudely, the more we know about a system, the less we need to rely on ani- 
mistic, intentional explanations of its behaviour - Shoham observes that the move 
from an intentional stance to a technical description of behaviour correlates well 
with Piaget's model of child devclopmcnt, and with thc scientific dcvclopment 
of humanlund generally (Shoham, 1990). Children will use animistic explanations 
of objects - such as light switches - until they grasp the more abstract techni- 
cal concepts involved. Similarly, the evolution of science has been marked by a 
gradual move from theological/animistic explanations to mathematical ones. My 



30 Intelligent Agents 

own experiences of teachng computer programming suggest that, when faced 
with completely unknown phenomena, it is not only children who adopt animistic 
explanations. It is often easier to teach some computer concepts by using expla- 
nations such as 'the computer does not know.. .', than to try to teach abstract 
principles first. 

An obvious question is then, if we have alternative, perhaps less contentious 
ways of explaining systems: why should we bother with the intentional stance? 
Consider the alternatives available to us. One possibility is to characterize the 
behaviour of a complex system by using the physical stance (Dennett, 1996, p. 36). 
The idea of the physical stance is to start with the original configuration of a 
system, and then use the laws of physics to predict how this system will behave. 

When I predict that a stone released from my hand will fall to the 
ground, I am using the physical stance. I don't attribute beliefs and 
desires to the stone; I attribute mass, or weight, to the stone, and rely 
on the law of gravity to yleld my prediction. 

(Dennett, 1996, p. 37) 

Another alternative is the design stance. With the design stance, we use knowledge 
of what purpose a system is supposed to fulfil in order to predict how it behaves. 
Dennett gives the example of an alarm clock (see pp. 37-39 of Dennett, 1996). 
When someone presents us with an alarm clock, we do not need to make use of 
physical laws in order to understand its behaviour. We can simply make use of 
the fact that all alarm clocks are designed to wake people up if we set them with 
a time. No understanding of the clock's mechanism is required to justify such an 
understanding - we know that all alarm clocks have this behaviour. 

However, with very complex systems, even if a complete, accurate picture of the 
system's architecture and working is available, a physical or design stance expla- 
nation of its behaviour may not be practicable. Consider a computer. Although we 
might have a complete technical description of a computer available, it is hardly 
practicable to appeal to such a description when explaining why a menu appears 
when we click a mouse on an icon. In such situations, it may be more appropriate 
to adopt an intentional stance description, if that description is consistent, and 
simpler than the alternatives. 

Note that the intentional stance is, in computer science terms, nothing more 
than an abstraction tool. It is a convenient shorthand for talking about complex 
systems, which allows us to succinctly predict and explain their behaviour without 
having to understand how they actually work. Now, much of computer science is 
concerned with looking for good abstraction mechanisms, since these allow sys- 
tem developers to manage complexity with greater ease. The history of program- 
ming languages illustrates a steady move away from low-level machine-oriented 
views of programming towards abstractions that are closer to human experience. 
Procedural abstraction, abstract data types, and, most recently, objects are exam- 
ples of this progression. So, why not use the intentional stance as an abstraction 
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tool in computing - to explain, understand, and, crucially, program complex com- 
puter sys tems? 

For many researchers this idea of programming computer systems in terms of 
mentalistic notions such as belief, desire, and intention is a key component of 
agent-based systems. 

Abstract Architectures for Intelligent Agents 
We can easily formalize the abstract view of agents presented so far. First, let us 
assume that the environment may be in any of a finite set E of discrete, instanta- 
neous states: 

E = {e ,ef , . .  . } .  

Notice that whether or not the environment 'really is' discrete in this way is not too 
important for our purposes: it is a (fairly standard) modelling assumption, which 
we can justify by pointing out that any continuous environment can be modelled 
by a discrete environment to any desired degree of accuracy. 

Agents are assumed to have a repertoire of possible actions available to them, 
whch transform the state of the environment. Let 

Ac = {a, a', . . . } 

be the (finite) set of actions. 
The basic model of agents interacting with their environments is as follows. The 

environment starts in some state, and the agent begins by choosing an action to 
perform on that state. As a result of t h s  action, the environment can respond with 
a number of possible states. However, only one state will actually result - though 
of course, the agent does not know in advance which it will be. On the basis of 
ths  second state, the agent again chooses an action to perform. The environment 
responds with one of a set of possible states, the agent then chooses another 
action, and so on. 

A run, r, of an agent in an environment is thus a sequence of interleaved envi- 
ronment states and actions: 

N o  a I a 2  I all-l r : e o  --el  - e2 -- e3 - . . -  ---eu. 

Let 

R be the set of all such possible finite sequences (over E and Ac); 

RAC be the subset of these that end with an action; and 

aE be the subset of these that end with an environment state. 

We will use v ,  r f ,  . . . to stand for members of R. 
In order to represent the effect that an agent's actions have on an environment, 

we introduce a state transformer function (cf. Fagin et al., 1995, p. 154): 
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Thus a state transformer function maps a run (assumed to end with the action of 
an agent) to a set of possible environment states - those that could result from 
performing the action. 

There are two important points to note about this definition. First, environ- 
ments are assumed to be history dependent. In other words, the next state of 
an environment is not solely determined by the action performed by the agent 
and the current state of the environment. The actions made earlier by the agent 
also play a part in determining the current state. Second, note that this definition 
allows for non-de terminism in the environment. There is thus unccrtuinty about 
the result of performing an action in some state. 

If T ( Y )  = 0 (where Y is assumed to end with an action), then there are no 
possible successor states to r. In t h s  case, we say that the system has ended its 
run. We will also assume that all runs eventually terminate. 

Formally, we say an environment Env is a triple Env = (E, eo, T ) ,  where E is a 
set of environment states, eo E E is an initial state, and T is a state transformer 
function. 

We now need to introduce a model of the agents that inhabit systems. We model 
agents as functions which map runs (assumed to end with an environment state) 
to actions (cf. Russell and Subramanian, 1995, pp. 580, 581): 

Thus an agent makes a decision about what action to perform based on the history 
of the system that it has witnessed to date. 

Notice that whle environments are implicitly non-deterministic, agents are 
assumed to be deterministic. Let ACj be the set of all agents. 

We say a system is a pair containing an agent and an environment. Any system 
will have associated with it a set of possible runs; we denote the set of runs of 
agent A g  in environment Env by 'R(Ag, Env).  For simplicity, we will assume that 
R(Acq, Env) contains only terminated runs, i.e. runs r such that r has no possible 
successor states: T ( Y )  = 0. (We will thus not consider infinite runs for now.) 

Formally, a sequence 
(eo ,~o ,Ql , a l , e2 , . . . )  

represents a run of an agent Ag in environment Env = (E, eo, T )  if 

(1) eo is the initial state of Env; 

(3) for u > 0, 

where 
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Two agents Agl and Ag2 are said to be behaviourally equivalent with respect 
to environment E nv if and only if R(Agl ,  Env) = R(Ag2, Env ), and simply 
behaviourally equivalent if and only if they are behaviourally equivalent with 
respect to all environments. 

Notice that so far, I have said nothing at all about how agents are actually imple- 
mented; we will return to this issue later. 

Purely reactive agents 
Certain types of agents decide what to do without reference to their history. They 
base their decision making entirely on the present, with no reference at all to the 
past. We will call such agents purely reactive, since they simply respond directly 
to their environment. (Sometimes they are called tropistic agents (Genesereth and 
Nilsson, 1987): tropism is the tendency of plants or animals to react to certain 
s timulae.) 

Formally, the behaviour of a purely reactive agent can be represented by a func- 
tion 

A g :  E - Ac. 

It should be easy to see that for every purely reactive agent, there is an equivalent 
'standard' agent, as discussed above; the reverse, however, is not generally the 
case. 

Our thermostat agent is an example of a purely reactive agent. Assume, without 
loss of generality, that the thermostat's environment can be in one of two states - 
either too cold, or temperature OK. Then the thermostat is simply defined as 
follows: r 

heater off if e = temperature OK, 
&(el = 

heater on otherwise. 

Perception 
Viewing agents at this abstract level makes for a pleasantly simple analysis. How- 
ever, it does not help us to construct them. For this reason, we will now begin 
to refine our abstract model of agents, by breaking it down into sub-systems in 
exactly the way that one does in standard software engineering. As we refine our 
view of agents, we find ourselves making design choices that mostly relate to the 
subsystems that go to make up an agent - what data and control structures will be 
present. An agent urchitecture is essentially a map of the internals of an agent - its 
data structures, the operations that may be performed on these data structures, 
and the control flow between these data structures. Later in this book, we will dis- 
cuss a number of different types of agent architecture, with very different views 
on the data structures and algorithms that will be present within an agent. In the 
remainder of this section, however, we will survey some fairly high-level design 
decisions. The first of these is the separation of an agent's decision function into 
perception and action subsystems: see Figure 2.2. 
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Figure 2.2 Perception and action subsystems. 

The idea is that the function see captures the agent's ability to observe its envi- 
ronment, whereas the a c t i o n  function represents the agent's decision-making 
process. The see function might be implemented in hardware in the case of an 
agent situated in the physical world: for example, it might be a video camera or 
an infrared sensor on a mobile robot. For a software agent, the sensors might 
be system commands that obtain information about the software environment, 
such as 1 s, f i n g e r ,  or suchlike. The output of the see function is a percept - a 
perceptual input. Let Per  be a (non-empty) set of percepts. Then see is a function 

see : E - Per  

which maps environment states to percepts, and a c t i o n  is a function 

a c t i o n  : Per* - Ac 

whch maps sequences of percepts to actions. An agent Ag is now considered to 
be a pair Ag = ( see ,  a c t  ion) ,  consisting of a see function and an a c t  ion  function. 

These simple definitions allow us to explore some interesting properties of 
agents and perception. Suppose that we have two environment states, el E E and 
e2 E E, such that el + e2, but seere l )  = s e e ( e 2 ) .  Then two different environ- 
ment states are mapped to the same percept, and hence the agent would receive 
the same perceptual information from different environment states. As far as 
the agent is concerned, therefore, el and e2 are indistinguishable. To make t h s  
example concrete, let us return to the thermostat example. Let x represent the 
statement 

'the room temperature is OK' 

and let y represent the statement 

'John Major is Prime Minister'. 
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If these are the only two facts about our environment that we are concerned 
with, then the set E of environment states contains exactly four elements: 

Thus in state el ,  the room temperature is not OK, and John Major is not Prime 
Minister; in state e2, the room temperature is not OK, and John Major is Prime 
Minister. Now, our thermostat is sensitive only to temperatures in the room. This 
room temperature is not causally related to whether or not John Major is Prime 
Minister. Thus the states where John Major is and is not Prime Minister are literally 
indistinguishable to the thermostat. Formally, the see function for the thermostat 
would have two percepts in its range, pl  and p;l, indicating that the temperature 
is too cold or OK, respectively. The see function for the thermostat would behave 
as follows: 

see(e) = 

Given two environment states e E E and e' E El let us write e - e' if 
seere) = see(el) .  It is not hard to see that '-' is an equivalence relation over 
environment states, which partitions E into mutually indistinguishable sets of 
states. Intuitively, the coarser these equivalence classes are, the less effective is 
the agent's perception. If I - I = I E 1 (i.e. the number of distinct percepts is equal to 
the number of different environment states), then the agent can distinguish every 
state - the agent has perfect perception in the environment; it is omniscient. At the 
other extreme, if 1 - 1  = 1, then the agent's perceptual ability is non-existent - it 
cannot distinguish between any different states. In this case, as far as the agent 
is concerned, all environment states are identical. 

Agents with state 

We have so far modelled an agent's decision function as from sequences of envi- 
ronment states or percepts to actions. T h s  allows us to represent agents whose 
decision malung is influenced by history. However, this is a somewhat unintuitive 
representation, and we shall now replace it by an equivalent, but somewhat more 
natural, scheme. The idea is that we now consider agents that maintain state - see 
Figure 2.3. 

These agents have some internal data structure, which is typically used to 
record information about the environment state and history. Let 1 be the set of all 
internal states of the agent. An agent's decision-making process is then based, at 
least in part, on this information. The perception function see for a state-based 
agent is unchanged, mapping environment states to percepts as before: 

see : E - Per .  
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Figure 2.3 Agents that maintain state. 

The action-selection function ac t ion  is defined as a mapping 

a c t i o n  : 1 - Ac 

from internal states to actions. An additional function n e x t  is introduced, which 
maps an internal state and percept to an internal state: 

nex t  : I x P e r  - I. 
The behaviour of a state-based agent can be summarized in the following way. The 
agent starts in some initial internal state io. It then observes its environment state 
e, and generates a percept see(e). The internal state of the agent is then updated 
via the next  function, becoming set to next ( io , see(e) ) .  The action selected by 
the agent is then ac t ion(nex t ( in ,  see(e))) .  This action is then performed, and 
the agent enters another cycle, perceiving the world via see, updating its state via 
nex t ,  and choosing an action to perform via ac t ion .  

It is worth observing that state-based agents as defined here are in fact no 
more powerful than the standard agents we introduced earlier. In fact, they are 
identical in their expressive power - every state-based agent can be transformed 
into a standard agent that is behaviourally equivalent. 

How to Tell an Agent What to Do 
We do not (usually) build agents for no reason. We build them in order to carry 
out tasks for US. In order to get the agent to do the task, we must somehow 
communicate the desired task to the agent. This implies that the task to be carried 
out must be specified by us in some way. An obvious question is how to specify 
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these tasks: how to tell the agent what to do. One way to specify the task would 
be simply to write a program for the agent to execute. The obvious advantage of 
this approach is that we are left in no uncertainty about what the agent will do; it 
will do exactly what we told it to, and no more. But the very obvious disadvantage 
is that we have to t h n k  about exactly how the task will be carried out ourselves - 
if unforeseen circumstances arise, the agent executing the task will be unable 
to respond accordingly. So, more usually, we want to tell our agent what to do 
without telling it how to do it. One way of doing t h s  is to define tasks indirectly, 
via some lund of performance measure. There are several ways in which such a 
performance measure can be defined. The first is to associate utilities with states 
of the environment. 

Utiliw functions 
A utility is a numeric value representing how 'good' the state is: the higher the 
utility, the better. The task of the agent is then to bring about states that maximize 
utility - we do not specify to the agent how this is to be done. In this approach, a 
task specification would simply be a function 

which associates a real value with every environment state. Given such a perfor- 
mance measure, we can then define the overall utility of an agent in some partic- 
ular environment in several different ways. One (pessimistic) way is to define the 
utility of the agent as the utility of the worst state that might be encountered by 
the agent; another might be to define the overall utility as the average utility of all 
states encountered. There is no right or wrong way: the measure depends upon 
the lund of task you want your agent to carry out. 

The main disadvantage of this approach is that it assigns utilities to local states; 
it is &fficult to specify a long-term view when assigning utilities to individual 
states. To get around this problem, we can specify a task as a function which 
assigns a utility not to individual states, but to runs themselves: 

If we are concerned with agents that must operate independently over long peri- 
ods of time, then t h s  approach appears more appropriate to our purposes. One 
well-known example of the use of such a utility function is in the Tileworld 
(Pollack, 1990). The Tileworld was proposed primarily as an experimental envi- 
ronment for evaluating agent architectures. It is a simulated two-dimensional grid 
environment on whch  there are agents, tiles, obstacles, and holes. An agent can 
move in four directions, up, down, left, or right, and if it is located next to a tile, it 
can push it. An obstacle is a group of immovable grid cells: agents are not allowed 
to travel freely through obstacles. Holes have to be filled up with tiles by the agent. 
An agent scores points by filling holes with tiles, with the aim being to fill as many 
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Figure 2.4 Three scenarios in the Tileworld are (a) the agent detects a hole ahead, and 
begins to push a tile towards it; (b) the hole disappears before the agent can get to it - 
the agent should recognize this change in the environment, and modify its behaviour 
appropriately; and (c) the agent was pushing a tile north, when a hole appeared to its 
right; it would do better to push the tile to the right, than to continue to head north. 

holes as possible. The Tileworld is an example of a dynamic environment: starting 
in some randomly generated world state, based on parameters set by the experi- 
menter, it changes over time in discrete steps, with the random appearance and 
disappearance of holes. The experimenter can set a number of Tileworld parame- 
ters, including the frequency of appearance and disappearance of tiles, obstacles, 
and holes; and the choice between hard bounds (instantaneous) or soft bounds 
(slow decrease in value) for the disappearance of holes. In the Tileworld, holes 
appear randomly and exist for as long as their life expectancy, unless they dis- 
appear because of the agent's actions. The interval between the appearance of 
successive holes is called the hole gestation time. The performance of an agent in 
the Tileworld is measured by running the Tileworld testbed for a predetermined 
number of time steps, and measuring the number of holes that the agent succeeds 
in filling. The performance of an agent on some particular run is then defined as 

number of holes filled in r 
U ( Y )  2 

number of holes that appeared in r ' 

T h s  gives a normalized performance measure in the range 0 (the agent did not 
succeed in filling even one hole) to 1 (the agent succeeded in filling every hole that 
appeared). Experimental error is eliminated by running the agent in the environ- 
ment a number of times, and computing the average of the performance. 

Despite its simplicity, the Tileworld allows us to examine several important 
capabilities of agents. Perhaps the most important of these is the ability of an 
agent to react to changes in the environment, and to exploit opportunities when 
they arise. For example, suppose an agent is pushng a tile to a hole (Figure 2.4(a)), 
when t h s  hole disappears (Figure 2.4(b)). At t h s  point, pursuing the original objec- 
tive is pointless, and the agent would do best if it noticed this change, and as a 
consequence 'rethought' its original objective. To illustrate what I mean by rec- 
ognizing opportunities, suppose that in the same situation, a hole appears to the 
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right of the agent (Figure 2.4(c)). The agent is more likely to be able to fill this hole 
than its originally planned one, for the simple reason that it only has to push the 

I 

tile one step, rather than four. All other things being equal, the chances of the 
hole on the right still being there when the agent arrives are four times greater. 

I Assuming that the utility function u has some upper bound to the utilities it 
assigns (i.e. that there exists a k E R such that for all r E R, we have u ( r )  < k), 
then we can talk about optimal agents: the optimal agent is the one that maximizes 
expected utility. 

Let us write P ( r  I Ag, Env ) to denote the probability that run r occurs when 
agent A g  is placed in environment Env. Clearly, 

Then the optimal agent Agopt in an environment Env is defined as the one that 
maximizes expected utility: 

Ago,[ = arg max 2 u ( r ) P ( r  I Ag,Env).  
Y E K ( & , E ~ V )  

Thls idea is essentially identical to the notion of maximizing expected utility in 
decision theory (see Russell and Norvig, 1995, p. 472). 

Notice that whle (2.1) tells us the properties of the desired agent Ago,,, it sadly 
does not give us any clues about how to implement t h s  agent. Worse still, some 
agents cannot be implemented on some actual machines. To see this, simply note 
that agents as we have considered them so far are just abstract mathematical 
functions Ag : ?tE - Ac. These definitions take no account of (for example) 
the amount of memory required to implement the function, or how complex the 
computation of this function is. It is quite easy to define functions that cannot 
actually be computed by any real computer, and so it is just as easy to define 
agent functions that cannot ever actually be implemented on a real computer. 

Russell and Subramanian (1995) introduced the notion of bounded optimal 
agents in an attempt to try to address this issue. The idea is as follows. Suppose 
m is a particular computer - for the sake of argument, say it is the Dell Latitude 
L400 I am currently typing on: a laptop with 128 MB of RAM, 6 GB of disk space, 
and a 500 MHz Pentium I11 processor. There are only a certain set of programs that 
can run on this machine. For example, any program requiring more than 1 28 MB 
RAM clearly cannot run on it. In just the same way, only a certain subset of the 
set of all agents AG can be implemented on this machine. Again, any agent Ag 
that required more than 128 MB RAM would not run. Let us write AG, to denote 
the subset of ACj that can be implemented on m: 

ACj, = (Ag  I Ag E ACj and Ag can be implemented on m}. 

Now, assume we have machne (i.e. computer) m, and we wish to place this 
machne in environment Env;  the task we wish nz to carry out is defined by utility 
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function u : R - R. Then we can replace Equation (2.1) with the following, which 
more precisely defines the properties of the desired agent Agopi: 

The subtle change in (2.2) is that we are no longer looking for our agent from the 
set of all possible agents AG, but from the set AG, of agents that can actually 
be implemented on the machne that we have for the task. 

Utility-based approaches to specifying tasks for agents have several disadvan- 
tages. The most important of these is that it is very often difficult to derive an 
appropriate utility function; the Tileworld is a useful environment in which to 
experiment with agents, but it represents a gross simplification of real-world sce- 
narios. The second is that usually we find it more convenient to talk about tasks 
in terms of 'goals to be achieved' rather than utilities. This leads us to what I call 
predicate task specifications. 

Predicate task specifications 
Put simply, a predicate task specification is one where the utility function acts 
as a predicate over runs. Formally, we will say a utility function u : R -- R is a 
predicate if the range of u is the set {0,1) ,  that is, if u guarantees to assign a 
run either 1 ('true') or 0 ('false'). A run r E R will be considered to satisfy the 
specification u if u ( v )  = 1, and fails to satisfy the specification otherwise. 

We will use Y to denote a predicate specification, and write Y ( r )  to indicate that 
run Y E R which satisfies Y. In other words, Y ( Y )  is true if and only if u ( r )  = 1. 
For the moment, we will leave aside the questions of what form a predicate task 
specification might take. 

Task environments 
A task environment is defined to be a pair (Env,  Y) ,  where Env  is anenvironment, 
and 

Y : R -- {O, 1) 

is a predicate over runs. Let I T  be the set of all task environments. A task envi- 
ronment thus specifies: 

the properties of the system the agent will inhabit (i.e. the environment Env);  
and also 

the criteria by whch  an agent will be judged to have either failed or suc- 
ceeded in its task (i.e. the specification Y). 

Given a task environment (Env, Y), we write Rlu(Ag, E n v )  to denote the set of 
all runs of the agent Ag in the environment Env that satisfy Y. Formally, 

Rlv(Ag, E n v )  = {r I r E R(Ag,  E n v )  and Y ( r ) ) .  
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We then say that an agent Ag succeeds in task environment (Env,  Y) if 

In other words, A g  succeeds in (Env,  Y) if every run of A g  in Env satisfies 
specification Y, i.e. if 

Notice that t h s  is in one sense a pessimistic definition of success, as an agent 
is only deemed to succeed if every possible run of the agent in the environment 
satisfies the specification. An alternative, optimistic definition of success is that 
the agent succeeds if at Ieast one run of the agent satisfies Y: 

3 r  E R(Ag, Env)  such that Y ( r ) .  

If required, we could easily modify the definition of success by extending the 
state transformer function T to include a probability distribution over possible 
outcomes, and hence induce a probability distribution over runs. We can then 
define the success of an agent as the probability that the specification Y is satisfied 
by the agent. As before, let P ( Y  / A g ,  Env)  denote the probability that run r 
occurs if agent A g  is placed in environment Env.  Then the probability P ( Y  1 
Ag, Env) that Y is satisfied by Ag in Env would simply be 

The notion of a predicate task specification may seem a rather abstract way of 
describing tasks for an agent to carry out. In fact, it is a generalization of certain 
very common forms of tasks. Perhaps the two most common types of tasks that 
we encounter are achievement tasks and maintenance tasks. 

(I) Achievement tasks. Those of the form 'achieve state of affairs cp'. 

(2) Maintenance tasks. Those of the form 'maintain state of affairs q'. 

Intuitively, an achevement task is specified by a number of goal states; the agent 
is required to bring about one of these goal states (we do not care whch one - all 
are considered equally good). Achievement tasks are probably the most commonly 
studied form of task in AI. Many well-known A1 problems (e.g. the Blocks World) 
are achievement tasks. A task specified by a predicate Y is an achevement task if 
we can identify some subset Cj of environment states E such that Y (r) is true just 
in case one or more of Cj occur in r; an agent is successful if it is guaranteed to 
bring about one of the states Cj, that is, if every run of the agent in the environment 
results in one of the states Cj. 

Formally, the task environment (Env,  Y)  specifies an achevement task if and 
only if there is some set Cj c E such that for all r E R(Ag,  Env) ,  the predicate 
Y ( r )  is true if and only if there exists some e E Cj such that e E r. We refer to 
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the set G of an achievement task environment as the goal states of the task; we 
use (Env,  G) to denote an achievement task environment with goal states C j  and 
environment Env. 

A useful way to t h n k  about achievement tasks is as the agent playing a game 
against the environment. In the terminology of game theory (Binmore, l992), t h s  
is exactly what is meant by a 'game against nature'. The environment and agent 
both begin in some state; the agent takes a turn by executing an action, and 
the environment responds with some state; the agent then takes another turn, 
and so on. The agent 'wins' if it can force the environment into one of the goal 
states Cj.  

Just as many tasks can be characterized as problems where an agent is required 
to bring about some state of affairs, so many others can be classified as problems 
where the agent is required to avoid some state of affairs. As an extreme example, 
consider a nuclear reactor agent, the purpose of which is to ensure that the reactor 
never enters a 'meltdown' state. Somewhat more mundanely, we can imagine a 
software agent, one of the tasks of which is to ensure that a particular file is 
never simultaneously open for both reading and writing. We refer to such task 
environments as maintenance task environments. 

A task environment with specification Y is said to be a maintenance task envi- 
ronment if we can identify some subset 3 of environment states, such that Y (r ) 
is false if any member of 3 occurs in r, and true otherwise. Formally, (Env,  Y) 
is a maintenance task environment if there is some 23 c E such that Y ( r )  if 
and only if for all e E 23, we have e q! r for all r E R ( A g ,  Env ). We refer to 
3 as the failure set. As with achevement task environments, we write (Env, 3 )  
to denote a maintenance task environment with environment Env and failure 
set 23. 

It is again useful to think of maintenance tasks as games. T h s  time, the agent 
wins if it manages to avoid all the states in 23. The environment, in the role of 
opponent, is attempting to force the agent into 3 ;  the agent is successful if it has 
a winning strategy for avoiding 3. 

More complex tasks might be specified by combinations of achevement and 
maintenance tasks. A simple combination might be 'acheve any one of states 

whle avoiding all states 23'. More complex combinations are of course also 
possible. 

Synthesizing Agents 

Knowing that there exists an agent whch will succeed in a given task environment 
is helpful, but it would be more helpful if, knowing this, we also had such an agent 
to hand. How do we obtain such an agent? The obvious answer is to 'manually' 
implement the agent from the specification. However, there are at least two other 
possibilities (see Wooldridge (1997) for a discussion): 
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(1) we can try to develop an algorithm that will automatically synthesize such 
agents for us from task environment specifications; or 

(2) we can try to develop an algorithm that will directly execute agent specifica- 
tions in order to produce the appropriate behaviour. 

In this section, I briefly consider these possibilities, focusing primarily on agent 
synthesis. 

Agent synthesis is, in effect, automatic programming: the goal is to have a pro- 
gram that will take as input a task environment, and from this task environment 
automatically generate an agent that succeeds in this environment. Formally, an 
agent synthesis algorithm syn can be understood as a function 

s y n :  7 ' F +  ( A G u  {L}) .  

Note that the function s y n  can output an agent, or else output I - think of L as 
being like nu1 1 in Java. Now, we will say a synthesis algorithm is 

sound if, whenever it returns an agent, this agent succeeds in the task environ- 
ment that is passed as input; and 

complete if it is guaranteed to return an agent whenever there exists an agent 
that will succeed in the task environment given as input. 

Thus a sound and complete synthesis algorithm will only output I given input 
(Env,  Y)  when no agent exists that will succeed in (Env,  Y) .  

Formally, a synthesis algorithm s y n  is sound if it satisfies the following condi- 
tion: 

s y n ( ( E n v ,  Y ) )  = A g  implies R(Ag,Env)  = Ry(Ag,Env).  

Similarly, s y n  is complete if it satisfies the following condition: 

3Ag E AG s.t. R(Ag, Env)  = Ry(Ag,Env) implies s y n ( ( E n v ,  Y ) )  z I. 

Intuitively, soundness ensures that a synthesis algorithm always delivers agents 
that do their job correctly, but may not always deliver agents, even where such 
agents are in principle possible. Completeness ensures that an agent will always 
be delivered where such an agent is possible, but does not guarantee that these 
agents will do their job correctly. Ideally, we seek synthesis algorithms that are 
both sound and complete. Of the two conditions, soundness is probably the more 
important: there is not much point in complete synthesis algorithms that deliver 
'buggy' agents. 

Notes and Further Reading 
A view of artificial intelligence as the process of agent design is presented in 
Russell and Norvig (1995), and, in particular, Chapter 2 of Russell and Norvig 
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(1995) presents much useful material. The definition of agents presented here is 
based on Wooldridge and Jennings (1995), which also contains an extensive review 
of agent architectures and programming languages. The question of 'what is an 
agent' is one that continues to generate some debate; a collection of answers may 
be found in Muller et ul. (1997). The relationship between agents and objects has 
not been widely discussed in the literature, but see Gasser and Briot (1992). Other 
interesting and readable introductions to the idea of intelligent agents include 
Kaelbling (1986) and Etzioni (1 993). 

The abstract model of agents presented here is based on that given in Gene- 
sereth and Nilsson (1987, Chapter 13), and also makes use of some ideas from 
Russell and Wefald (1991) and Russell and Subramanian (1995). The properties of 
perception as discussed in this section lead to knowledge theory, a formal analy- 
sis of the information implicit within the state of computer processes, which has 
had a profound effect in theoretical computer science: this issue is discussed in 
Chapter 12. 

The relationship between artificially intelligent agents and software complexity 
has been discussed by several researchers: Simon (1981) was probably the first. 
More recently, Booch (1994) gives a good discussion of software complexity and 
the role that object-oriented development has to play in overcoming it. Russell 
and Norvig (1 995) introduced the five-point classification of environments that we 
reviewed here, and distinguished between the 'easy' and 'hard' cases. Kaelbling 
(1986) touches on many of the issues discussed here, and Jennings (1999) also 
discusses the issues associated with complexity and agents. 

The relationship between agent and environment, and, in particular, the prob- 
lem of understanding how a given agent will perform in a given environment, 
has been studied empirically by several researchers. Pollack and Ringuette (1990) 
introduced the Tileworld, an environment for experimentally evaluating agents 
that allowed a user to experiment with various environmental parameters (such 
as the rate at which the environment changes - its dynamism). Building on this 
work, Kinny and Georgeff (1991) investigated how a specific class of agents, based 
on the belief-desire-intention model (Wooldridge, 2000b), could be tailored to per- 
form well in environments with differing degrees of change and complexity. An 
attempt to prove some results corresponding to Kinny and Georgeff (1991) was 
Wooldridge and Parsons (1999); an experimental investigation of some of these 
relationships, building on Kinny and Georgeff (1991), was Schut and Wooldridge 
(2000). An informal discussion on the relationshp between agent and environ- 
ment is Muller (1 999). 

In artificial intelligence, the planning problem is most closely related to 
achievement-based task environments (Allen et al., 1990). STRIPS was the archety- 
pal planning system (Fikes and Nilsson, 1971). The STRIPS system is capable of 
taking a description of the initial environment state eo, a specification of the goal 
to be acheved, Egood, and the actions Ac  available to an agent, and generates a 
sequence of actions n. E Ac* such that when executed from eo, KT will achieve 
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one of the states Egood. The initial state, goal state, and actions were characterized 
in STRIPS using a subset of first-order logic. Bylander showed that the (proposi- 
tional) STRIPS decision problem (given eo, Ac,  and Egood specified in propositional 
logic, does there exist a n. E Ac* such that 71- achieves Egood?) is PSPACE-complete 
(Bylander, 1994). 

More recently, there has been renewed interest by the artificial intelligence plan- 
ning community in decision theoretic approaches to planning (Blythe, 1999). One 
popular approach involves representing agents and their environments as 'par- 
tially observable Markov decision processes' (POMDPs) (Kaelbling et ul., 1998). Put 
simply, the goal of solving a POMDP is to determine an optimal policy for acting in 
an environment in which there is uncertainty about the environment state (cf. our 
visibility function), and whch is non-de terministic. Work on POMDP approaches 
to agent design are at an early stage, but show promise for the future. 

The discussion on task specifications is adapted from Wooldridge (2000a) and 
Wooldridge and Dunne (2000). 

Class reading: Franklin and Graesser (1997). T h s  paper informally discusses 
various different notions of agency. The focus of the discussion might be on a 
comparison with the discussion in this chapter. 
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Exercises 
(1) [Level 1 .] 

Give other examples of agents (not necessarily intelligent) that you know of. For each, 
define as precisely as possible the following. 

(1) The environment that the agent occupies (physical, software, etc.), the states that 
this environment can be in, and whether the environment is: accessible or inaccessi- 
ble; deterministic or non-deterministic; episodic or non-episodic; static or dynamic; 
discrete or continuous. 

(2) The action repertoire available to the agent, and any preconditions associated with 
these actions. 

(3)  The goal, or design objectives of the agent - what it is intended to achieve. 

( 2) [Level 1 .] 

Prove the following. 

(1) For every purely reactive agent, there is a behaviourally equivalent standard agent. 

(2) There exist standard agents that have no behaviourally equivalent purely reactive 
agent. 

(3) [Level 1 .] 

Show that state-based agents are equivalent in expressive power to standard agents, 
i.e. that for every state-based agent there is a behaviourally equivalent standard agent 
and vice versa. 

(4) [Level 1.1 

There were two ways of specifying tasks by utility functions, by associating utilities 
with either states (u : E - R) or with runs (u : R - R). The second type of utility function 
is strictly more expressive than the first. Give an example of a utility function over runs 
that cannot be defined simply by associating utilities with states. 

(5)  [Level 4.1 

Read about traditional control theory, and compare the problems and techniques of 
control theory with what we are trying to accomplish in building intelligent agents. How 
are the techniques and problems of traditional control theory similar to those of intelligent 
agent work, and how do they differ? 

(6) [Class discussion.] 
Discuss the various different ways in which a task might be specified. 



Deductive 
Reasoning 

Agents 

The 'traditional' approach to building artificially intelligent systems, known as 
symbolic Al, suggests that intelligent behaviour can be generated in a system by 
giving that system a symbolic representation of its environment and its desired 
behaviour, and syntactically manipulating this representation. In this chapter, we 
focus on the apotheosis of this tradition, in which these symbolic representa- 
tions are logical formulae, and the syntactic manipulation corresponds to logical 
deduction, or theorem-proving. 

I will begin by giving an example to informally introduce the ideas behind deduc- 
tive reasoning agents. Suppose we have some robotic agent, the purpose of which 
is to navigate around an office building piclung up trash. There are many possible 
ways of implementing the control system for such a robot - we shall see several 
in the chapters that follow - but one way is to give it a description, or represen- 
tation of the environment in which it is to operate. Figure 3.1 illustrates the idea 
(adapted from Konolige (1986, p. 15)).  

RALPH is an autonomous robot agent that operates in a real-world 
environment of corridors and big blocks. Sensory input is from a video 
camera; a subsystem labelled 'interp' in Figure 3.1 translates the video 
feed into an internal representation format, based on first-order logic. 
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Interp 

Pixel stuff 

Knowledge basel 
beliefs: 

Dist(me, d I )  = 3ft 
Door(d 1 )  

Action 
Brake! 

DOOR TO ROOM 3.07 

Figure 3.1 A robotic agent that contains a symbolic description of its environment. 

The agent's information about the world is contained in a data struc- 
ture which for historical reasons is labelled as a 'knowledge base' in 
Figure 3.1. 

In order to build RALPH, it seems we must solve Mo key problems. 

(1) The transduction problem. The problem of translating the real world into an 
accurate, adequate symbolic description of the world, in time for that descrip- 
tion to be useful. 

(2) The representation/reasoning probIem. The problem of representing infor- 
mation symbolically, and getting agents to manipulate/reason with it, in time 
for the results to be useful. 

The former problem has led to work on vision, speech understanding, learning, 
etc. The latter has led to work on knowledge representation, automated reasoning, 
automated planning, etc. Despite the immense volume of work that the problems 
have generated, many people would argue that neither problem is anywhere near 
solved. Even seemingly trivial problems, such as common sense reasoning, have 
turned out to be extremely difficult. 
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Despite these problems, the idea of agents as theorem provers is seductive. 
Suppose we have some theory of agency - some theory that explains how an intel- 
ligent agent should behave so as to optimize some performance measure (see 
Chapter 2). This theory might explain, for example, how an agent generates goals 
so as to satisfy its design objective, how it interleaves goal-directed and reac- 
tive behaviour in order to achieve these goals, and so on. Then this theory cp 
can be considered as a specification for how an agent should behave. The tradi- 
tional approach to implementing a system that will satisfy this specification would 
involve refining the specification through a series of progressively more concrete 
stages, until finally an implementation was reached. In the view of agents as the- 
orem provers, however, no such refinement takes place. Instead, g? is viewed as 
an executable specification: it is directly executed in order to produce the agent's 
behaviour, 

Agents as Theorem Provers 
To see how such an idea might work, we shall develop a simple model of logic- 
based agents, which we shall call deliberate agents (Genesereth and Nilsson, 1987, 
Chapter 13). In such agents, the internal state is assumed to be a database of 
formulae of classical first-order predicate logic. For example, the agent's database 
might contain formulae such as 

It is not difficult to see how formulae such as these can be used to represent the 
properties of some environment. The database is the information that the agent 
has about its environment. An agent's database plays a somewhat analogous role 
to that of belief in humans. Thus a person might have a belief that valve 22  1 is 
open - the agent might have the predicate O p e n ( v a l v e 2 2 1 )  in its database. Of 
course, just like humans, agents can be wrong. Thus I might believe that valve 221 
is open when it is in fact closed; the fact that an agent has O p e n ( v a l v e 2 2 1 )  in its 
database does not mean that valve 221 (or indeed any valve) is open. The agent's 
sensors may be faulty, its reasoning may be faulty, the information may be out 
of date, or the interpretation of the formula O p e n ( v a l v e 2 2 1 )  intended by the 
agent's designer may be something entirely different. 

Let L be the set of sentences of classical first-order logic, and let D = , p ( L )  be 
the set of L databases, i.e. the set of sets of L-formulae. The internal state of an 
agent is then an element of D. We write A, A1,.  . . for members of D. An agent's 
decision-malung process is modelled through a set of deduction rules, p .  These 
are simply rules of inference for the logic. We write A I-, g? if the formula cp 
can be proved from the database A using only the deduction rules p. An agent's 
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Func t i  on : A c t i o n  Sel e c t i o n  as Theorem Prov i  ng 
1. f u n c t i o n  a c t i o n ( A  : D )  r e t u r n s  an a c t i o n  A c  
2.  beg in  
3 .  f o r  each oc E A C  do 
4 .  i f  A F, Do(oc) t hen  
5 .  r e t u r n  oc 
6. e n d - i f  
7 .  end- fo r  
8 .  f o r  each o c ~  A c  do 
9 .  i f  A #, -Do(oc) t hen  
10. r e t u r n  oc 
11. end- i  f 
12. end- fo r  
13. r e t u r n  n u l l  
14. end func t i on  a c t i o n  

Figure 3.2 Action selection as theorem-proving. 

perception function see  remains unchanged: 

see  : S - P e r .  

Similarly, our n e x t  function has the form 

n e x t  : D x P e r  - D.  

It thus maps a database and a percept to a new database. However, an agent's 
action selection function, which has the signature 

a c t i o n  : D - A c ,  

is defined in terms of its deduction rules. The pseudo-code definition of this func- 
tion is given in Figure 3.2. 

The idea is that the agent programmer will encode the deduction rules p and 
database A in such a way that if a formula D o ( @ )  can be derived, where oc 
is a term that denotes an action, then oc is the best action to perform. Thus, 
in the first part of the function (lines (3)-(7)), the agent takes each of its pos- 
sible actions oc in turn, and attempts to prove the formula Do(oc) from its 
database (passed as a parameter to the function) using its deduction rules p. 
If the agent succeeds in proving Do(oc) ,  then oc is returned as the action to be 
performed. 

What happens if the agent fails to prove Do(oc),  for all actions a E Ac? In t h s  
case, it attempts to find an action that is consistent with the rules and database, 
i.e. one that is not explicitly forbidden. In lines (8)-(12), therefore, the agent 
attempts to find an action a E A c  such that 1Do(oc )  cannot be derived from 
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dirt dirt 

Figure 3.3 Vacuum world. 

its database using its deduction rules. If it can find such an action, then t h s  is 
returned as the action to be performed. If, however, the agent fails to find an 
action that is at least consistent, then it returns a special action nul l  (or noop), 
indicating that no action has been selected. 

In this way, the agent's behaviour is determined by the agent's deduction rules 
(its 'program') and its current database (representing the information the agent 
has about its environment). 

To illustrate these ideas, let us consider a small example (based on the vacuum 
cleaning world example of Russell and Norvig (1995, p. 51)). The idea is that we 
have a small robotic agent that will clean up a house. The robot is equipped with a 
sensor that will tell it whether it is over any dirt, and a vacuum cleaner that can be 
used to suck up dirt. In addition, the robot always has a definite orientation (one of 
nor th ,  rou t  h, east ,  or west). In addition to being able to suck up dirt, the agent 
can move forward one 'step' or turn right 90". The agent moves around a room, 
which is divided grid-like into a number of equally sized squares (conveniently 
corresponding to the unit of movement of the agent). We will assume that our 
agent does nothing but clean - it never leaves the room, and further, we will 
assume in the interests of simplicity that the room is a 3 x 3 grid, and the agent 
always starts in grid square (0,O) facing north. 

To summarize, our agent can receive a percept d i r t  (signifying that there is dirt 
beneath it), or nu l l  (indicating no special information). It can perform any one of 
three possible actions: f o r w a r d ,  suck,  or t u r n .  The goal is to traverse the room 
continually searching for and removing dirt. See Figure 3.3 for an illustration of 
the vacuum world. 
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First, note that we make use of three simple domain predicates in this exercise: 

In(x, y)  agent is at (x, y) ,  

D i r t ( x ,  y)  therc is dirt at (x, y),  

Fac ing  ( d )  the agent is facing direction d.  

Now we specify our nex t  function. This function must look at the perceptual 
information obtained from the environment (either d i r t  or null) ,  and generate a 
new database whichincludes this information. But, in addition, it must remove old 
or irrelevant information, and also, it must try to figure out the new location and 
orientation of the agent. We will therefore specify the nex t  function in several 
parts. First, let us write old(A) to denote the set of 'old' information in a database, 
which we want the update function nex t  to remove: 

old(A) = {P( t l , .  . ., t,) I P E { In ,Di r t ,Fac ing}  and P ( t l , .  .. , t,) E A). 

Next, we require a function new, which gives the set of new predicates to add to 
the database. This function has the signature 

The definition of t h s  function is not difficult, but it is rather lengthy, and so we 
will leave it as an exercise. (It must generate the predicates I n ( .  . .), describing the 
new position of the agent, Fac ing( .  . .) describing the orientation of the agent, 
and D i r t ( .  . .) if dirt has been detected at the new position.) Given the new and 
old functions, the nex t  function is defined as follows: 

nex t  (A,  p )  = ( A  \ old(A)) u new (A, p). 

Now we can move on to the rules that govern our agent's behaviour. The deduction 
rules have the form 

cp(-. .) - W ( .  * .), 

where cp and q are predicates over some arbitrary list of constants and variables. 
The idea being that if cp matches against the agent's database, then (CI can be 
concluded, with any variables in q instantiated. 

The first rule deals with the basic cleaning action of the agent: this rule will take 
priority over all other possible behaviours of the agent (such as navigation): 

Hence, if the agent is at location (x, y )  and it perceives dirt, then the prescribed 
action will be to suck up dirt. Otherwise, the basic action of the agent will be to 
traverse the world. Takmg advantage of the simplicity of our environment, we will 
hardwire the basic navigation algorithm, so that the robot will always move from 
(0,O) to ( 0 , l )  to (0,Z) and then to (1,2),  ( 1,1)  and so on. Once the agent reaches 
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( 2 , 2 ) ,  it must head back to (0,O). The rules dealing with the traversal up to (0,2)  
are very simple: 

In(0,O) A F a c i n g ( n o r t h )  A lD i r t (0 ,O)  - Do(f o r w a r d ) ,  (3.5) 
I n ( 0 , l )  A F a c i n g ( n o r t h )  A l D i r t ( 0 , l )  - DO(  f o r w a r d ) ,  (3.6) 
In(O,2) A F a c i n g ( n o r t h )  A  dirt (O,2) - D o ( t u r n ) ,  (3 . 7 )  

In(O,2) A Fac ing(eas t )  - Do( f o r w a r d ) .  (3.8) 

Notice that in each rule, we must explicitly check whether the antecedent of rule 
(3.4) fires. T h s  is to ensure that we only ever prescribe one action via the Do(. . .) 
predmte. Similar rules can easily be generated that will get the agent to ( 2 , 2  ), 
and once at (2 ,2)  back to (0,O). It is not difficult to see that these rules, together 
with the n e x t  function, will generate the required behaviour of our agent. 

At this point, it is worth stepping back and examining the pragmatics of the 
logrc-based approach to building agents. Probably the most important point to 
make is that a literal, naive attempt to build agents in this way would be more 
or less entirely impractical. To see why, suppose we have designed out agent's 
rule set p such that for any database A, if we can prove Do(@),  then a is an 
optimal action - that is, a is the best action that could be performed when the 
environment is as described in A. Then imagine we start running our agent. At 
time 11, the agent has generated some database A l ,  and begins to apply its rules 
p in order to find which action to perform. Some time later, at time t2,  it manages 
to establish A1 F, D o ( a )  for some a E Ac, and so a is the optimal action that 
the agent could perform at time t l .  But if the environment has changed between 
tl and t2, then there is no guarantee that a will still be optimal. It could be far 
from optimal, particularly i f  much time has elapsed between t l  and t 2 .  If t 2  - tl 
is infinitesimal - that is, if decision making is effectively instantaneous - then we 
could safely disregard this problem. But in fact, we know that reasoning of the 
kind that our logic-based agents use will be anythng but instantaneous. (If our 
agent uses classical first-order predicate logic to represent the environment, and 
its rules are sound and complete, then there is no guarantee that the decision- 
making procedure will even terminate.) An agent is said to enjoy the property of 
calculative rationality if and only if its decision-mahng apparatus will suggest 
an action that was optimal when the decision-making process began. Calculative 
rationality is clearly not acceptable in environments that change faster than the 
agent can make decisions - we shall return to this point later. 

One might argue that this problem is an artefact of the pure logic-based 
approach adopted here. There is an element of truth in ths .  By moving away from 
strictly logical representation languages and complete sets of deduction rules, one 
can build agents that enjoy respectable performance. But one also loses what is 
arguably the greatest advantage that the logical approach brings: a simple, elegant 
logical semantics. 

There are several other problems associated with the logical approach to agency. 
First, the see function of an agent (its perception component) maps its environ- 
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ment to a percept. In the case of a logic-based agent, t h s  percept is likely to be 
symbolic - typically, a set of formulae in the agent's representation language. But 
for many environments, it is not obvious how the mapping from environment 
to symbolic percept might be realized. For example, the problem of transform- 
ing an image to a set of declarative statements representing that image has been 
the object of study in A1 for decades, and is still essentially open. Another prob- 
lem is that actually representing properties of dynamic, real-world environments 
is extremely hard. As an example, representing and reasoning about temporal 
information - how a situation changes over time - turns out to be extraordinar- 
ily difficult. Finally, as the simple vacuum-world example illustrates, representing 
even rather simple procedural knowledge (i.e. knowledge about 'what to do') in 
traditional logic can be rather unintuitive and cumbersome. 

To summarize, in logic-based approaches to building agents, decision making 
is viewed as deduction. An agent's 'program' - that is, its decision-malung strat- 
egy - is encoded as a logical theory, and the process of selecting an action reduces 
to a problem of proof. Logic-based approaches are elegant, and have a clean (log- 
ical) semantics - wherein lies much of their long-lived appeal. But logic-based 
approaches have many disadvantages. In particular, the inherent computational 
complexity of theorem-proving makes it questionable whether agents as theorem 
provers can operate effectively in time-constrained environments. Decision mak- 
ing in such agents is predicated on the assumption of calculative rationality - the 
assumption that the world will not change in any significant way whle  the agent 
is deciding what to do, and that an action which is rational when decision making 
begins will be rational when it concludes. The problems associated with repre- 
senting and reasoning about complex, dynamic, possibly physical environments 
are also essentially unsolved. 

Agent-Oriented Programming 
Yoav Shoham has proposed a 'new programming paradigm, based on a societal 
view of computation' whch he calls agent-oriented programming. The key idea 
which informs AOP is that of directly programming agents in terms of mentalistic 
notions (such as belief, desire, and intention) that agent theorists have developed 
to represent the properties of agents. The motivation behnd  the proposal is that 
humans use such concepts as an abstraction mechanism for representing the 
properties of complex systems. In the same way that we use these mentalistic 
notions to describe and explain the behaviour of humans, so it might be useful to 
use them to program machines. The idea of programming computer systems in 
terms of mental states was articulated in Shoham (1993). 

The first implementation of the agent-oriented programming paradigm was the 
AGENT0 programming language. In this language, an agent is specified in terms 
of a set of capabilities (things the agent can do), a set of initial beliefs, a set of 
initial commitments, and a set of commitment rules. The key component, whch 
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determines how the agent acts, is the commitment rule set. Each commitment 
rule contains a message condition, a mental condition, and an action. In order to 
determine whether such a rule fires, the message condition is matched against 
the messages the agent has received; the mental condition is matched against the 
beliefs of the agent. If the rule fires, then the agent becomes committed to the 
action. 

Actions in Agent0 may be private, corresponding to an internally executed sub- 
routine, or communicative, i.e. sending messages. Messages are constrained to be 
one of three types: 'requests' or 'unrequests' to perform or refrain from actions, 
and 'inform' messages, whlch pass on information (in Chapter 8, we will see that 
this style of communication is very common in multiagent systems). Request and 
unrequest messages typically result in the agent's commitments being modified; 
inform messages result in a change to the agent's beliefs. 

Here is an example of an Agent0 commitment rule: 

COMMIT( 
( agent, REQUEST, DO(time, ac t i on )  
) ,  ; ; ; msg c o n d i t i o n  
( B,  

[now, F r i end  agent] AND 
CAN(se1 f , a c t i  on) AND 
NOT [ti me, CMT(se1 f , anyac t i  on)] 

) ,  ; ; ;  mental c o n d i t i o n  
s e l f ,  
DO(time, ac t i on )  ) 

This rule may be paraphrased as follows: 

i f  I receive a message from agen t  which requests me to do ac t ion  at 
t i m e ,  and I believe that 

agen t  is currently a friend; 

I can do the action; 

at t i m e ,  1 am not committed to doing any other action, 

then commit to doing ac t ion  at t ime .  

The operation of an agent can be described by the following loop (see Figure 3.4). 

(1) Read all current messages, updating beliefs - and hence commitments - 
where necessary. 

(2)  Execute all commitments for the current cycle where the capability condition 
of the associated action is satisfied. 
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Figure 3.4 The flow of control in AgentO. 

It should be clear how more complex agent behaviours can be designed and 
built in AgentO. However, it is important to note that thls language is essentially a 
prototype, not intended for building anything like large-scale production systems. 
But it does at least give a feel for how such systems might be built. 

3.3 Concurrent MetateM 
The Concurrent MetateM language developed by Michael Fisher is based on the 
direct execution of logical formulae. In this sense, it comes very close to the 'ideal' 
of the agents as deductive theorem provers (Fisher, 1994). A Concurrent MetateM 
system contains a number of concurrently executing agents, each of which is able 
to communicate with its peers via asynchronous broadcast message passing. Each 
agent is programmed by giving it a temporal logic specification of the behaviour 
that it is intended the agent should exhibit. An agent's specification is executed 
directly to generate its behaviour. Execution of the agent program corresponds 
to iteratively building a logical model for the temporal agent specification. It is 
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possible to prove that the procedure used to execute an agent specification is 
correct, in that if it is possible to satisfy the specification, then the agent will do 
so (Barringer et al., 1989). 

Agents in Concurrent MetateM are concurrently executing entities, able to com- 
municate with each other through broadcast message passing. Each Concurrent 
MetateM agent has two main components: 

an interface, which defines how the agent may interact with its environment 
(i.e. other agents); and 

a computational engine, whch defines how the agent will act - in Concurrent 
MetateM, the approach used is based on the MetateM paradigm of executable 
temporal logic (Barringer et al., 1989). 

An agent interface consists of three components: 

a unique agent identifier (or just agent id), whch names the agent; 

a set of symbols defining whch messages will be accepted by the agent - 
these are termed environment propositions; and 

a set of symbols defining messages that the agent may send - these are 
termed component propositions. 

For example, the interface definition of a 'stack' agent might be 

s tack(pop,  p u s h )  [popped,  f ull].  

Here, s tack  is the agent id that names the agent, {pop,  p u s h )  is the set of envi- 
ronment propositions, and {popped,  f ul l )  is the set of component propositions. 
The intuition is that, whenever a message headed by the symbol pop is broadcast, 
the stack agent will accept the message; we describe what this means below. If 
a message is broadcast that is not declared in the s tack  agent's interface, then 
stack ignores it. Similarly, the only messages that can be sent by the s tack  agent 
are headed by the symbols popped and fu l l .  

The computational engine of each agent in Concurrent MetateM is based on the 
MetateM paradigm of executable temporal logics (Barringer et al., 1989). The idea 
is to directly execute an agent specification, where this specification is given as a 
set of program rules, whch are temporal logic formulae of the form: 

antecedent about past consequent about present and future. 

The antecedent is a temporal logic formula referring to the past, whereas the 
consequent is a temporal logic formula referring to the present and future. The 
intuitive interpretation of such a rule is 'on the basis of the past, construct the 
future', which gives rise to the name of the paradigm: declarative past and imper- 
ative future (Gabbay, 1989). The rules that define an agent's behaviour can be 
animated by directly executing the temporal specification under a suitable oper- 
ational model (Fisher, 1995). 
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Table 3.1 Temporal connectives for Concurrent MetateM rules. 

Operator Meaning 

cp is true 'tomorrow' 
g, was true 'yesterday' 
at some time in the future, cp 
always in the future, g, 
at some time in the past, p 
always in the past, g, 
g, will be true until r ~ /  
g, has been true since ry 
g, is true unless c~ 
g, is true zince cV 

To make the discussion more concrete, we introduce a propositional temporal 
logic, called Propositional MetateM Logic (PML), i'n which the temporal rules that 
are used to specify an agent's behaviour will be given. (A complete definition of 
PML is given in Barringer et al. (1989).) PML is essentially classical propositional 
logic augmented by a set of modal connectives for referring to the temporal order- 
ing of events. 

The meaning of the temporal connectives is quite straightforward: see Table 3.1 
for a summary. Let p and ly be formulae of PML, then: Ocp is satisfied at the 
current moment in time (i.e. now) if p is satisfied at the next moment in time; 
Op is satisfied now if p is satisfied either now or at some future moment in time; 
047 is satisfied now if p is satisfied now and at all future moments; p U ly is 
satisfied now if ly is satisfied at some future moment, and p is satisfied until 
then - ?/V is a binary connective similar to U ,  allowing for the possibility that 
the second argument might never be satisfied. 

The past-time connectives have similar meanings: 0 p and 0 p are satisfied 
now if cp was satisfied at the previous moment in time - the difference between 
them is that, since the model of time underlying the logic is bounded in the past, 
the beginning of time is treated as a special case in that, when interpreted at the 
beginning of time, 0 p cannot be satisfied, whereas p will always be satisfied, 
regardless of p; Q p is satisfied now if p was satisfied at some previous moment 
in time; .p is satisfied now if p was satisfied at all previous moments in time; 
p S cy is satisfied now if ly was satisfied at some previous moment in time, and 
p has been satisfied since then - 2 is similar, but allows for the possibility that 
the second argument was never satisfied; finally, a nullary temporal operator can 
be defined, whch is satisfied only at the beginning of time - t h s  useful operator 
is called 'start'. 

To illustrate the use of these temporal connectives, consider the following 
examples: 

0 i m p o r t a n t ( a g e n t s )  
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means 'it is now, and will always be true that agents are important'. 

0 i m p o r t a n t  ( Jan ine )  

means 'sometime in the future, Janine will be important'. 

means 'we are not friends until you apologize'. And, finally, 

means 'tomorrow (in the next state), you apologize'. 
The actual execution of an agent in Concurrent MetateM is, superficially at least, 

very simple to understand. Each agent obeys a cycle of trying to match the past- 
time antecedents of its rules against a history, and executing the consequents 
of those rules that 'fire'. More precisely, the computational engine for an agent 
continually executes the following cycle. 

(1) Update the history of the agent by receiving messages (i.e. environment 
propositions) from other agents and adding them to its history. 

(2 )  Check whch rules fire, by comparing past-time antecedents of each rule 
against the current history to see whch are satisfied. 

(3)  Jointly execute the fired rules together with any commitments carried over 
from previous cycles. 

T h s  involves first collecting together consequents of newly fired rules with 
old commitments - these become the current constraints. Now attempt to 
create the next state whle  satisfying these constraints. As the current con- 
straints are represented by a disjunctive formula, the agent will have to 
choose between a number of execution possibilities. 

Note that it may not be possible to satisfy all the relevant commitments on 
the current cycle, in which case unsatisfied commitments are carried over 
to the next cycle. 

Clearly, step (3) is the heart of the execution process. Making the wrong choice at 
t h s  step may mean that the agent specification cannot subsequently be satisfied. 

When a proposition in an agent becomes true, it is compared against that agent's 
interface (see above); if it is one of the agent's component propositions, then that 
proposition is broadcast as a message to all other agents. On receipt of a message, 
each agent attempts to match the proposition against the environment proposi- 
tions in their interface. If there is a match, then they add the proposition to their 
history. 
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rp (ask1 ,  ask2) [g ive l ,g ive2]  : 
O a s k l  3 Ggivel;  
O a s k 2  =. Ggive2; 

start 3 U l ( g i v e 1  A give2) .  

r c l ( g i v e 1 )  [ a s k l ]  : 
start =. ask l ;  

O a s k l  =. a s k l .  

rc2(askl1give2)[ask2]  : 
0 (ask l  A l a s k 2 )  ask2. 

- - - -- 

Figure 3.5 A simple Concurrent MetateM system. 

Time Agent 

r P  r c l  r c 2  

0 . ask1 
1. ask1 ask1 ask2 
2. a s k l , a s k 2 , g i v e l  a s k l  
3. ask l 'g ive2  a s k l ' g i v e l  ask2 
4. a s k l , a s k 2 , g i v e l  ask1 give2 
5. . . .  . . .  ... 

Figure 3.6 An example run of Concurrent MetateM. 

Figure 3.5 shows a simple system containing three agents: r p ,  r c l ,  and rc2.  
The agent r p  is a 'resource producer': it can 'give' to only one agent at a time, 
and will commit to eventually g i v e  to any agent that asks. Agent r p  will only 
accept messages a s k l  and ask2, and can only send g i v e l  and give2 messages. 
The interface of agent r c l  states that it will only accept g i v e l  messages, and can 
only send a s k l  messages. The rules for agent r c  1 ensure that an as k l  message 
is sent on every cycle - t h s  is because start is satisfied at the beginning of time, 
thus firing the first rule, so O a s k l  will be satisfied on the next cycle, thus fir- 
ing the second rule, and so on. Thus r c l  asks for the resource on every cycle, 
using an a s k l  message. The interface for agent r c2  states that it will accept 
both a s k l  and give2 messages, and can send as k2 messages. The single rule 
for agent r c 2  ensures that an ask2 message is sent on every cycle where, on its 
previous cycle, it did not send an ask2 message, but received an a s k l  message 
(from agent r c l ) .  Figure 3.6 shows a fragment of an example run of the system 
in Figure 3.5. 
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Notes and Further Reading 

My presentation of logic based agents draws heavily on the discussion of deliber- 
ate agents presented in Genesereth and Nilsson (1987, Chapter 13), which repre- 
sents the logic-centric view of A1 and agents very well. The discussion is also partly 
based on Konolige (1986). A number of more-or-less 'pure' logical approaches 
to agent programming have been developed. Well-known examples include the 
ConGolog system of Lesperance and colleagues (Lesperance et al., 1996) (wbch is 
based on the situation calculus (McCarthy and Hayes, 1969)). Note that these archi- 
tectures (and the discussion above) assume that if one adopts a logical approach 
to agent building, then t b s  means agents are essentially theorem provers, employ- 
ing explicit symbolic reasoning (theorem-proving) in order to make decisions. But 
just because we find logic a useful tool for conceptualizing or specifying agents, 
this does not mean that we must view decision making as logical manipulation. 
An alternative is to compile the logical specification of an agent into a form more 
amenable to efficient decision making. The difference is rather like the distinc- 
tion between interpreted and compiled programming languages. The best-known 
example of this work is the situated automata paradigm of Rosenschein and Kael- 
bling (1996). A review of the role of logic in intelligent agents may be found 
in Wooldridge (1997). Finally, for a detailed discussion of calculative rational- 
ity and the way that it has affected thinking in A1 (see Russell and Subramanian, 
1995). 

The main references to Agent0 are Shoham (1990, 1993). Shoham's AOP pro- 
posal has been enormously influential in the multiagent systems community. 
In addition to the reasons set out in the main text, there are other reasons for 
believing that an intentional stance will be useful for understanding and reason- 
ing about computer programs (Huhns and Singh, 1998). First, and perhaps most 
importantly, the ability of heterogeneous, self-interested agents to communicate 
seems to imply the ability to talk about the beliefs, aspirations, and intentions 
of individual agents. For example, in order to coordinate their activities, agents 
must have information about the intentions of others (Jennings, 1993a). This idea 
is closely related to Newell's knowledge level (Newell, 1982). Later in this book, we 
will see how mental states such as beliefs, desires, and the like are used to give 
a semantics to speech acts (Searle, 1969; Cohen and Levesque, 1990a). Second, 
mentalistic models are a good candidate for representing information about end 
users. For example, imagine a tutoring system that works with students to teach 
them Java programming. One way to build such a system is to give it a model of the 
user. Beliefs, desires, intentions, and the like seem appropriate for the make-up 
of such models. 

Michael Fisher's Concurrent MetateM language is described in Fisher (1 994); the 
execution algorithm that underpins it is described in Barringer et a[. (1989). Since 
Shoham's proposal, a number of languages have been proposed wbch claim to 
be agent oriented. Examples include Becky Thomas's Planning Communicating 
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Agents (PLACA) language (Thomas, 1993; Thomas, 1995), MAIL (Haugeneder et 
a/., 1994), and the AgentSpeak(L) language (Rao, 1996a). 

Class reading: Shoham (1993). This is the article that introduced agent-oriented 
programming and, throughout the late 1990s, was one of the most cited articles in 
the agent community. The main point about the article, as far as I am concerned, is 
that it explicitly articulates the idea of programming systems in terms of 'mental 
states'. AgentO, the actual language described in the article, is not a language that 
you would be likely to use for developing 'real' systems. A useful discussion might 
be had on (i) whether 'mental states' are really useful in programming systems; 
(ii) how one might go about proving or disproving the hypothesis that mental 
states are useful in programming systems, and (iii) how AgentO-like features might 
be incorporated in a language such as Java. 



Concurrent MetateM 

S n o w W h i t e ( a s k ) [ g i v e ]  : 
O a s k ( x )  

g i v e ( x )  A g i v e ( ? )  

eager  ( g i v e )  [ a s k ]  : 
start 

O g i v e ( e a g e r )  

g r e e d y  ( g i v e )  [ a s k ]  : 
start 

c o u r t e o u s ( g i v e )  [ a s k ]  : 
( ( - a s k ( c o u r t e o u s )  S g i v e ( e a g e r ) ) ~  
( ~ a s k ( c o u r t e o u s )  S g i v e ( g r e e d y ) ) )  

s h y ( g i v e ) [ a s k ]  : 
start 

O a s k ( x )  
O g i v e ( s h y )  

Ogiv e  ( x )  
( x  = Y )  

Figure 3.7 Snow White in Concurrent MetateM. 

Exercises 
(1) [Level 2.1 (The following few questions refer to the vacuum-world example.) 

Give the full definition (using pseudo-code if desired) of the n e w  function, which 
defines the predicates to add to the agent's database. 

( 2 )  [Level 2.1 

Complete the vacuum-world example, by filling in the missing rules. How intuitive do 
you think the solution is? How elegant is it? How compact is it? 

(3 )  [Level 2.1 
'l'ry using your favourite (imperative) programming language to code a solution to 

the basic vacuum-world example. How do you think it compares with the logical solu- 
tion? What does this tell you about trying to encode essentially procedural knowledge 
(i.e. knowledge about what action to perform) as purely logical rules? 

(4) [Level 2.1 

If you are familiar with Prolog, try encoding the vacuum-world example in this language 
and running it with randomly placed dirt. Make use of the a s s e r t  and r e t r a c t  meta- 
level predicates provided by Prolog to simplify your system (allowing the program itself 
to achieve much of the operation of the next function). 

( 5 )  [Level 2.1 

Try scaling the vacuum world up to a 10 x 10 grid size. Approximately how many rules 
would you need to encode this enlarged example, using the approach presented above? 
Try to generalize the rules, encoding a more general decision-making mechanism. 
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( 6 )  [Level 3.1 

Suppose that the vacuum world could also contain obstacles, which the agent needs 
to avoid. (Imagine it is equipped with a sensor to detect such obstacles.) Try to adapt 
the example to deal with obstacle detection and avoidance. Again, compare a logic-based 
solution with one implemented in a traditional (imperative) programming language. 

(7) [Level 3.1 

Suppose the agent's sphere of perception in the vacuum world is enlarged, so that it 
can see the whole of its world, and see exactly where the dirt lay. In this case, it would be 
possible to generate an optimal decision-making algorithm - one which cleared up the dirt 
in the smallest time possible. Try and think of such general algorithms, and try to code 
them both in first-order logic and a more traditional programming language. Investigate 
the effectiveness of these algorithms when there is the possibility of noise in the perceptual 
input the agent receives (i.e. there is a non-zero probability that the perceptual information 
is wrong), and try to develop decision-making algorithms that are robust in the presence 
of such noise. How do such algorithms perform as the level of perception is reduced? 

(8) [Level 2.1 
Consider the Concurrent MetateM program in Figure 3.7. Explain the behaviour of the 

agents in this system. 

(9) [Level 4.1 

Extend the Concurrent MetateM language by operators for referring to the beliefs and 
commitments of other agents, in the style of Shoham's AgentO. 

(10) [Level 4.1 

Give a formal semantics to AgentO and Concurrent MetateM. 



Practical 
Reasoning 

Agents 

Whatever the merits of agents that decide what to do by proving theorems, it 
seems clear that we do not use purely logical reasoning in order to decide what 
to do. Certainly something like logical reasoning can play a part, but a moment's 
reflection should confirm that for most of the time, very different processes are 
taking place. In this chapter, I will focus on a model of agency that takes its inspi- 
ration from the processes that seem to take place as we decide what to do. 

Practical Reasoning Equals Deliberation Plus 
Means-Ends Reasoning 
The particular model of decision making is known as practical reasoning. Practical 
reasoning is reasoning directed towards actions - the process of figuring out what 
to do. 

Practical reasoning is a matter of weighing conflicting considerations 
for and against competing options, where the relevant considerations 
are provided by what the agent desires/values/cares about and what 
the agent believes. 

(Bratman, 1990, p. 17) 
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It is important to distinguish practical reasoning from theoretical reasoning 
(Eliasmith, 1999). Theoretical reasoning is directed towards beliefs. To use a rather 
tired example, if I believe that all men are mortal, and I believe that Socrates is 
a man, then I will usually conclude that Socrates is mortal. The process of con- 
cluding that Socrates is mortal is theoretical reasoning, since it affects only my 
beliefs about the world. The process of deciding to catch a bus instead of a train, 
however, is practical reasoning, since it is reasoning directed towards action. 

Human practical reasoning appears to consist of at least two distinct activities. 
The first of these involves deciding what state of affairs we want to achieve; the 
second process involves deciding how we want to achieve these states of affairs. 
The former process - deciding what states of affairs to achieve - is known as 
deliberation. The latter process - deciding how to achieve these states of affairs - 
we call means-ends reasoning. 

To better understand deliberation and means-ends reasoning, consider the fol- 
lowing example. When a person graduates from university with a first degree, he 
or she is faced with some important choices. Typically, one proceeds in these 
choices by first deciding what sort of career to follow. For example, one might 
consider a career as an academic, or a career in industry. The process of deciding 
which career to aim for is deliberation. Once one has fxed upon a career, there are 
further choices to be made; in particular, how to bring about this career. Suppose 
that after deliberation, you choose to pursue a career as an academic. The next 
step is to decide how to achieve this state of affairs. This process is means-ends 
reasoning. The end result of means-ends reasoning is a plan or recipe of some 
kind for achieving the chosen state of affairs. For the career example, a plan might 
involve first applying to an appropriate university for a PhD place, and so on. After 
obtaining a plan, an agent will typically then attempt to carry out (or execute) the 
plan, in order to bring about the chosen state of affairs. If all goes well (the plan is 
sound, and the agent's environment cooperates sufficiently), then after the plan 
has been executed, the chosen state of affairs will be achieved. 

Thus described, practical reasoning seems a straightforward process, and in 
an ideal world, it would be. But there are several complications. The first is that 
deliberation and means-ends reasoning are computational processes. In all real 
agents (and, in particular, artificial agents), such computational processes will take 
place under resource bounds. By this I mean that an agent will only have a fixed 
amount of memory and a fixed processor available to carry out its computations. 
Together, these resource bounds impose a limit on the size of computations that 
can be carried out in any given amount of time. No real agent will be able to carry 
out arbitrarily large computations in a finite amount of time. Since almost any real 
environment will also operate in the presence of time constraints of some kind, 
this means that means-ends reasoning and deliberation must be carried out in 
a fixed, finite number of processor cycles, with a fixed, finite amount of memory 
space. From this discussion, we can see that resource bounds have two important 
implications: 
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Computation is a valuable resource for agents situated in real-time environ- 
ments. The ability to perform well will be determined at least in part by the 
ability to make efficient use of available computational resources. In other 
words, an agent must control its reasoning effectively if it is to perform well. 

Agents cannot deliberate indefinitely. They must clearly stop deliberating at 
some point, having chosen some state of affairs, and commit to achieving 
t h s  state of affairs. It may well be that the state of affairs it has fixed upon 
is not optimal - further deliberation may have led it to frx upon an another 
state of affairs. 

We refer to the states of affairs that an agent has chosen and committed to as its 
intentions. 

In ten tions in practical reasoning 

First, notice that it is possible to distinguish several different types of intention. 
In ordinary speech, we use the term 'intention' to characterize both actions and 
states of mind. To adapt an example from Bratman (Bratman, 1987, p. I), I might 
intentionally push someone under a train, and push them with the intention of 
killing them. Intention is here used to characterize an action - the action of push- 
ing someone under a train. Alternatively, I might have the intention this morning 
of pushing someone under a train this afternoon. Here, intention is used to char- 
acterize my state of mind. In this book, when I talk about intentions, I mean inten- 
tions as states of mind. In particular, I mean future-directed intentions - intentions 
that an agent has towards some future state of affairs. 

The most obvious role of intentions is that they are pro-attitudes (Bratman, 
1990, p. 23). By this, I mean that they tend to lead to action. Suppose I have an 
intention to write a book. If I truly have such an intention, then you would expect 
me to make a reasonable attempt to achieve it. This would usually involve, at 
the very least, me initiating some plan of action that I believed would satisfy the 
intention. In this sense, intentions tend to play a primary role in the production 
of action. As time passes, and my intention about the future becomes my inten- 
tion about the present, then it plays a direct role in the production of action. 
Of course, having an intention does not necessarily lead to action. For example, 
I can have an intention now to attend a conference later in the year. I can be 
utterly sincere in this intention, and yet if I learn of some event that must take 
precedence over the conference, I may never even get as far as considering travel 
arrangements. 

Bratman notes that intentions play a much stronger role in influencing action 
than other pro-attitudes, such as mere desires. 

My desire to play basketball this afternoon is merely a potential influ- 
encer of my conduct this afternoon. It must vie with my other relevant 
desires.. .before it is settled what I will do. In contrast, once I intend 
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to play basketball t h s  afternoon, the matter is settled: I normally need 
not continue to weigh the pros and cons. When the afternoon arrives, 
I will normally just proceed to execute my intentions. 

(Bratman, 1990, p. 22) 

The second main property of intentions is that they persist. If I adopt an inten- 
tion to become an academic, then I should persist with this intention and 
attempt to achieve it. For if I immediately drop my intentions without devot- 
ing any resources to achieving them, then I will not be acting rationally. Indeed, 
you might be inclined to say that I never really had intentions in the first 
place. 

Of course, I should not persist with my intention for too long - if it becomes 
clear to me that I will never become an academic, then it is only rational to drop 
my intention to do so. Similarly, if the reason for having an intention goes away, 
then it would be rational for me to drop the intention. For example, if I adopted 
the intention to become an academic because I believed it would be an easy life, 
but then discover that this is not the case (e.g. I might be expected to actually 
teach!), then the justification for the intention is no longer present, and I should 
drop the intention. 

If I initially fail to achieve an intention, then you would expect me to try again - 
you would not expect me to simply give up. For example, if my first application 
for a PhD program is rejected, then you might expect me to apply to alternative 
universities. 

The third main property of intentions is that once I have adopted an intention, 
the very fact of having this intention will constrain my future practical reasoning. 
For example, while I hold some particular intention, I will not subsequently enter- 
tain options that are inconsistent with that intention. Intending to write a book, 
for example, would preclude the option of partying every night: the two are mutu- 
ally exclusive. This is in fact a highly desirable property from the point of view 
of implementing rational agents, because in providing a 'filter of admissibility', 
intentions can be seen to constrain the space of possible intentions that an agent 
needs to consider. 

Finally, intentions are closely related to beliefs about the future. For exam- 
ple, if I intend to become an academic, then I should believe that, assuming 
some certain background conditions are satisfied, I will indeed become an aca- 
demic. For if I truly believe that I will never be an academic, it would be non- 
sensical of me to have an intention to become one. Thus if I intend to become 
an academic, I should at least believe that there is a good chance I will indeed 
become one. However, there is what appears at first sight to be a paradox here. 
While I might believe that I will indeed succeed in achieving my intention, if I 
am rational, then I must also recognize the possibility that I can fail to bring it 
about - that there is some circumstance under which my intention is not satis- 
fied. 
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From t h s  discussion, we can identify the following closely related situations. 

Having an intention to bring about cp, while believing that you will not bring 
about cp is called intention-belief inconsistency, and is not rational (see, for 
example, Bratman, 1987, pp. 37, 38). 

Having an intention to achieve cp without believing that cp will be the case 
is intention-belief incompleteness, and is an acceptable property of rational 
agents (see, for example, Bratman, 1987, p. 38). 

The distinction between these two cases is known as the asymmetry thesis 
(Bratman, 1987, pp. 3 7-4 1). 

Summarizing, we can see that intentions play the following important roles in 
practical reasoning. 

Intentions drive means-ends reasoning. If I have formed an intention, then I will 
attempt to achieve the intention, which involves, among other things, deciding 
how to achieve it. Moreover, if one particular course of action fails to achieve 
an intention, then I will typically attempt others. 

Intentions persist. I will not usually give up on my intentions without good rea- 
son - they will persist, typically until I believe I have successfully achieved them, 
I believe I cannot achleve them, or I believe the reason for the intention is no 
longer present. 

Intentions constrain future deliberation. I will not entertain options that are 
inconsistent with my current intentions. 

Intentions influence beliefs upon which future practical reasoning is based. If 
I adopt an intention, then I can plan for the future on the assumption that I 
will achieve the intention. For if I intend to achieve some state of affairs while 
simultaneously believing that I will not achieve it, then I am being irrational. 

Notice from this discussion that intentions interact with an agent's beliefs and 
other mental states. For example, having an intention to cp implies that I do not 
believe cp is impossible, and moreover that I believe given the right circumstances, 
cp will be achieved. However, satisfactorily capturing the interaction between 
intention and belief turns out to be surprisingly hard - some discussion on this 
topic appears in Chapter 12. 

Throughout the remainder of this chapter, I make one important assumption: 
that the agent maintains some explicit representation of its beliefs, desires, and 
intentions. However, I will not be concerned with how beliefs and the like are 
represented. One possibility is that they are represented symbolically, for example 
as logical statements a la Prolog facts (Clocksin and Mellish, 1981). However, the 
assumption that beliefs, desires, and intentions are symbolically represented is 
by no means necessary for the remainder of the book. I use B to denote a variable 
that holds the agent's current beliefs, and let Bel be the set of all such beliefs. 
Similarly, I use D as a variable for desires, and Des to denote the set of all desires. 
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Finally, the variable I represents the agent's intentions, and I n t  is the set of all 
possible intentions. 

In what follows, deliberation will be modelled via two functions: 

an option generation function; and 

a filtering function. 

The signature of the option generation function options is as follows: 

options : p(Be1) x p ( In t )  - ~ ( D e s ) .  

This function takes the agent's current beliefs and current intentions, and on the 
basis of these produces a set of possible options or desires. 

In order to select between competing options, an agent uses a filter function. 
Intuitively, the filter function must simply select the 'best' option(s) for the agent 
to commit to. We represent the filter process through a function f i l t e r ,  with a 
signature as follows: 

f i l t e r  : p(Be1) x p(Des) x p ( In t )  - p( In t ) .  

An agent's belief update process is modelled through a belief revision function: 

bvf : p(Be1) x Per  - p(Be1). 

4.2 Means-Ends Reasoning 
Means-ends reasoning is the process of deciding how to achieve an end (i.e. an 
intention that you have) using the available means (i.e. the actions that you can 
perform). Means-ends reasoning is perhaps better known in the A1 community as 
planning. 

Planning is essentially automatic programming. A planner is a system that takes 
as input representations of the following. 

(I)  A goal, intention or (in the terminology of Chapter 2)  a task. This is some- 
thing that the agent wants to achieve (in the case of achievement tasks - see 
Chapter 2), or a state of affairs that the agent wants to maintain or avoid (in 
the case of maintenance tasks - see Chapter 2). 

(2) The current state of the environment - the agent's beliefs. 
(3) The actions available to the agent. 

As output, a planning algorithm generates a plan (see Figure 4.1). This is a course 
of action - a 'recipe'. If the planning algorithm does its job correctly, then if the 
agent executes this plan ('follows the recipe') from a state in which the world 
is as described in (2)' then once the plan has been completely executed, the 
goal/intention/task described in (1) will be carried out. 

The first real planner was the STRIPS system, developed by Fikes in the late 
1960s/early 1970s (Fikes and Nilsson, 1971). The two basic components of STRIPS 
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Figure 4.1 Planning. 

were a model of the world as a set of formulae of first-order logic, and a set of 
action schemata, whlch describe the preconditions and effects of all the actions 
available to the planning agent. This latter component has perhaps proved to 
be STRIPS' most lasting legacy in the A1 planning community: nearly all imple- 
mented planners employ the 'STRIPS formalism' for action, or some variant of 
it. The STRIPS planning algorithm was based on a principle of finding the 'differ- 
ence' between the current state of the world and the goal state, and reducing this 
difference by applying an action. Unfortunately, this proved to be an inefficient 
process for formulating plans, as STRIPS tended to become 'lost' in low-level plan 
detail. 

There is not scope in this book to give a detailed technical introduction to plan- 
ning algorithms and technologies, and in fact it is probably not appropriate to do 
so. Nevertheless, it is at least worth giving a short overview of the main concepts. 

The Blocks World 
In time-honoured fashion, I will illustrate the techniques with reference to a Blocks 
World. The Blocks World contains three blocks (A, B, and C) of equal size, a robot 
arm capable of picking up and moving one block at a time, and a table top. The 
blocks may be placed on the table top, or one may be placed on top of the other. 
Figure 4.2 shows one possible configuration of the Blocks World. 

Notice that in the description of planning algorithms I gave above, I stated that 
planning algorithms take as input representations of the goal, the current state 
of the environment, and the actions available. The first issue is exactly what form 
these representations take. The STRIPS system made use of representations based 
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Figure 4.2 The Blocks World. 

on first-order logic. I will use the predicates in Table 4.1 to represent the Blocks 
World. 

A description of the Blocks World in Figure 4.2 is using these predicates as 
follows: 

{Clear(A), On(A, B) ,  OnTable(B), OnTable(C), Clear(C)).  

I am implicitly malung use of the closed world assumption: if something is not 
explicitly stated to be true, then it is assumed false. 

The next issue is how to represent goals. Again, we represent a goal as a set of 
formulae of first-order logic: 

So the goal is that all the blocks are on the table. To represent actions, we make 
use of the precondition/delete/add list notation - the STRIPS formalism. In this 
formalism, each action has 

a name - which may have arguments; 

- a precondition list - a list of facts whch must be true for the action to be 
executed; 

a delete list - a list of facts that are no longer true after the action is per- 
formed; and 

an add list - a list of facts made true by executing the action. 

The stack action occurs when the robot arm places the object x it is holding on 
top of object y: 

Stack(x,  y )  
pre {Clear (y) ,  Holding(x)]  
del {Clear(y) ,  Holding (x) 1 
add {ArmEmpty,  On(x,  y ) ]  

The unstack action occurs when the robot arm picks an object x up from on 
top of another object y: 
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Table 4.1 Predicates for describing the Blocks World. 

Predicate Meaning 

O n ( x ,  Y object x on  top of object y 
On.Table(x) object x is on  the table 
C lea r  (x) nothmg is on top of object x 
H o l d i n g ( x )  robot arm is holding x 
ArmE m p t  y robot arm empty (not holding anything) 

U n S t a c k ( x ,  y ) 
pre { O n ( x ,  y ) ,  C l e a r ( x ) ,  A r m E m p t y )  
del { O n ( x ,  y ) ,  A v m E m p t y j  
add { H o l d i n g ( x ) ,  C l e a r ( y ) }  

The pickup action occurs when the arm picks up an object x from the table: 

P i c k u p  ( x )  
pre { C l e a r  ( x ) ,  O n T a b l e ( x ) ,  A r m E m p t y )  
del { O n T a b l e ( x ) ,  A r m E m p t y }  
add ( H o l d i n g ( x )  1 

The putdown action occurs when the arm places the object x onto the table: 

P u t D o w n ( x )  
pre { H o l d i n g ( x ) )  
del { H o l d i n g  ( x )  j- 
add ( A r m E m p t y ,  O n T a  b l e ( x ) }  

Let us now describe what is going on somewhat more formally. First, as we have 
throughout the book, we assume a fixed set of actions Ac = { a l , .  . . , a,} that the 
agent can perform. A descriptor for an action a E Ac  is a triple 

where 

Pa is a set of formulae of first-order logic that characterize the precondition 
of action a: 

D ,  is a set of formulae of first-order logic that characterize those facts made 
false by the performance of a (the delete list); and 

A, is a set of formulae of first-order logic that characterize those facts made 
true by the performance of a (the add list). 
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For simplicity, we will assume that the precondition, delete, and add lists are 
constrained to only contain ground atoms - individual predicates, which do not 
contain logical connectives or variables. 

A planning problem (over the set of actions Ac) is then determined by a triple 

where 

A is the beliefs of the agent about the initial state of the world - these beliefs 
will be a set of formulae of first order (cf. the vacuum world in Chapter 2); 

0 = {(P,, D,, A,) I a E Ac)  is an indexed set of operator descriptors, one 
for each available action a; and 

y is a set of formulae of first-order logic, representing the goal/task/ 
intention to be achieved. 

A plan rr is a sequence of actions 

where each a, is a member of Ac. 
With respect to a planning problem (A, 0, y) ,  a plan rr = ( & I , .  . . , an)  deter- 

mines a sequence of n + 1 environment models 

where 
no = A 

and 

A (linear) plan rr = ( a l , .  . . , a,) is said to be acceptable with respect to the 
problem (A,  0, y)  if, and only if, the precondition of every action is satisfied in 
the preceding environment model, i.e. if F Psi, for all 1 < i < n. A plan 
TT = ( 0 1 , .  . . , an)  is correct with respect to (A, 0, y)  if and only if 

(1) it is acceptable; and 

(2) A, I= y (i.e. if the goal is aclxeved in the final environment state generated 
by the plan). 

The problem to be solved by a planning system can then be stated as follows. 

Given a planning problem (A, 0, y ) ,  find a correct plan for (A,  0, y)  or 
else announce that none exists). 

(It is worth comparing this discussion with that on the synthesis of agents in 
Chapter 3 - similar comments apply with respect to the issues of soundness and 
completeness.) 

We will use TT (with decorations: TT', n1, .  . . ) to denote plans, and let Plan be 
the set of all plans (over some set of actions Ac). We will make use of a number 
of auxiliary definitions for manipulating plans (some of these will not actually be 
required until later in this chapter): 
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if .rr is a plan, then we write p r e ( ~ )  to denote the precondition of .rr, and 
body (rr) to denote the body of rr; 

if 7~ is a plan, then we write empty(.rr)  to mean that plan 7~ is the empty 
sequence (thus e m p t y ( .  . .) is a Boolean-valued function); 

execute( .  . .) is a procedure that takes as input a single plan and executes 
it without stopping - executing a plan simply means executing each action 
in the plan body in turn; 

if rr is a plan, then by head(7r) we mean the plan made up of the first action 
in the plan body of 7 ~ ;  for example, if the body of 7~ is 0 1 , .  . . , an ,  then the 
body of head(rr)  contains only the action a , ;  

if rr is a plan, then by tail(7r) we mean the plan made up of all but the first 
action in the plan body of IT; for example, if the body of rr is al, 02 ,  . . . , a , ,  
then the body of t a i l ( n )  contains actions a2,. . . , a,; 
if .rr is a plan, I c I n t  is a set of intentions, and B c Bel is a set of beliefs, 
then we write sound(rr ,  I, B) to mean that rr is a correct plan for intentions 
I given beliefs B (Lifschtz, 1986). 

An agent's means-ends reasoning capability is represented by a function 

p l a n  : p(Bel) x ~ ( l n t )  x ~ ( A c )  - Plan ,  

whch, on the basis of an agent's current beliefs and current intentions, deter- 
mines a plan to achieve the intentions. 

Notice that there is nothing in the definition of the p l an ( .  . .) function which 
requires an agent to engage in plan generation - constructing a plan from scratch 
(Allen et al., 1990). In many implemented practical reasoning agents, the p lan( .  . .) 
function is implemented by giving the agent a plan library (Georgeff and Lan- 
sky, 1987). A plan library is a pre-assembled collection of plans, which an agent 
designer gives to an agent. Finding a plan to achieve an intention then simply 
involves a single pass through the plan library to find a plan that, when executed, 
will have the intention as a postcondition, and will be sound given the agent's 
current beliefs. Preconditions and postconditions for plans are often represented 
as (lists of) atoms of first-order logic, and beliefs and intentions as ground atoms 
of first-order logic. Finding a plan to acheve an intention then reduces to finding 
a plan whose precondition unifies with the agent's beliefs, and whose postcon- 
dition unifies with the intention. At the end of this chapter, we will see how this 
idea works in the PRS system. 

Implementing a Practical Reasoning Agent 
We can now discuss the overall control structure of a practical reasoning agent. 
Figure 4.3 gives the pseudo-code for the control cycle of such an agent. The basic 
structure of the decision-making process is a loop, in which the agent continually 



Practical Reasoning Agents 

A1 g o r i  thm: P r a c t i c a l  Reasoning Agent Con t ro l  Loop 
1. 
2 .  B - Bu; /* Bo a r e  i n i t i a l  b e l i e f s  */ 
3 .  1 - 1 0 ;  /'? lo a r e  i n i t i a l  i n t e n t i o n s  */ 
4. w h i l e  t r u e  do 
5 .  g e t  n e x t  pe rcep t  p th rough see( ... ) f u n c t i o n ;  
6. B  - b r f ( B , p ) ;  
7 .  D - o p t i o n s ( B , I )  ; 
8 .  I - f i l t e r ( B , D , l ) ;  
9 .  rr - p l a n ( B , I , A c ) ;  
10. whi 1 e  n o t  ( e m p t y ( r r )  o r  succeeded(1, B) o r  imposs ib le ( l ,  B ) )  do 
11. LX - h e a d ( n )  ; 
12. e x e c u t e ( a )  ; 
1 3 .  rr - tail(7-r) ; 
14. g e t  n e x t  pe rcep t  p th rough see( ...) f u n c t i o n ;  
15. B  - b r f  (B, Q )  ; 
16. i f  reconsider(1 ,  B )  t hen  
1 7 .  D - o p t i o n s ( B , I )  ; 
18. 1  - f  iL ter (B ,D, l ) ;  
19. end- i  f 
20. i f  n o t  sound(rr ,  1, B )  t hen  
21. rr - plan(B,  I ,  Ac) 
22. end- i  f 
2 3 .  end-whi 1  e  
24. end-whi 1  e  

Figure 4.3 A practical reasoning agent. 

observes the world, and updates beliefs; 

deliberates to decide what intention to achieve (deliberation being done by 
first determining the available options and then by filtering); 

uses means-ends reasoning to find a plan to acl-ueve these intentions; 

executes the plan. 

However, this basic control loop is complicated by a number of concerns. The first 
of these is that of commitment - and, in particular, how committed an agent is to 
both ends (the intention) and means (the plan to achieve the intention). 

Commitment to ends and means 

When an option successfully passes through the f i l ter  function and is hence 
chosen by the agent as an intention, we say that the agent has made a commitment 
to that option. Commitment implies temporal persistence - an intention, once 
adopted, should not immediately evaporate. A critical issue is just how committed 
an agent should be to its intentions. That is, how long should an intention persist? 
Under what circumstances should an intention vanish? 
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To motivate the discussion further, consider the following scenario. 

Some time in the not-so-distant future, you are having trouble with 
your new household robot. You say "Willie, bring me a beer." The robot 
replies "OK boss." Twenty minutes later, you screech "Willie, why didn't 
you bring me that beer?" It answers "Well, I intended to get you the 
beer, but I decided to do something else." Miffed, you send the wise 
guy back to the manufacturer, complaining about a lack of commit- 
ment. After retrofitting, Willie is returned, marked "Model C: The Com- 
mitted Assistant." Again, you ask Willie to bring you a beer. Again, it 
accedes, replying "Sure thing." Then you ask: "What h n d  of beer did 
you buy?" It answers: "Genessee." You say "Never mind." One minute 
later, Willie trundles over with a Genessee in its gripper. T h s  time, you 
angrily return Willie for overcommitment. After still more tinkering, 
the manufacturer sends Willie back, promising no more problems with 
its commitments. So, being a somewhat trusting customer, you accept 
the rascal back into your household, but as a test, you ask it to bring 
you your last beer. Willie again accedes, saying "Yes, Sir." (Its attitude 
problem seems to have been fixed.) The robot gets the beer and starts 
towards you. As it approaches, it lifts its arm, wheels around, delib- 
erately smashes the bottle, and trundles off. Back at the plant, when 
interrogated by customer service as to why it had abandoned its com- 
mitments, the robot replies that according to its specifications, it kept 
its commitments as long as required - commitments must be dropped 
when fulfilled or impossible to achieve. By smashng the bottle, the 
commitment became unachevable. 

(Cohen and Levesque, 1990a, pp. 213, 214) 

The mechanism an agent uses to determine when and how to drop intentions is 
known as a commitment strategy. The following three commitment strategies are 
commonly discussed in the literature of rational agents (Rao and Georgeff, 1991b). 

Blind commitment. A blindly committed agent will continue to maintain an inten- 
tion until it believes the intention has actually been achieved. Blind commitment 
is also sometimes referred to as fanatical commitment. 

Single-minded commitment. A single-minded agent will continue to maintain an 
intention until it believes that either the intention has been achieved, or else 
that it is no longer possible to achieve the intention. 

Open-minded commitment. An open-minded agent will maintain an intention as 
long as it is still believed possible. 

Note that an agent has commitment both to ends (i.e. the state of affairs it wishes 
to bring about) and means (i.e. the mechanism via whch the agent wishes to 
acheve the state of affairs). 
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With respect to commitment to means (i.e. plans), the solution adopted in Fig- 
ure 4.3 is as follows. An agent will maintain a commitment to an intention until 
(i) it believes the intention has succeeded; (ii) it believes the intention is impos- 
sible, or (iii) there is nothing left to execute in the plan. This is single-minded 
commitment. I write succeeded(1, B)  to mean that given beliefs B, the intentions 
I can be regarded as having been satisfied. Similarly, we write impossible (I, B) 
to mean that intentions I are impossible given beliefs B. The main loop, capturing 
this commitment to means, is in lines (10)-(23). 

How about commitment to ends? When should an agent stop to reconsider its 
intentions? One possibility is to reconsider intentions at every opportunity - in 
particular, after executing every possible action. If option generation and filtering 
were computationally cheap processes, then this would be an acceptable strat- 
egy. Unfortunately, we know that deliberation is not cheap - it takes a consider- 
able amount of time. While the agent is deliberating, the environment in which 
the agent is working is changing, possibly rendering its newly formed intentions 
irrelevant. 

We are thus presented with a dilemma: 

an agent that does not stop to reconsider its intentions sufficiently often 
will continue attempting to achieve its intentions even after it is clear that 
they cannot be achieved, or that there is no longer any reason for acheving 
them; 

an agent that constantly reconsiders its attentions may spend insufficient 
time actually working to achieve them, and hence runs the risk of never 
actually achieving them. 

There is clearly a trade-off to be struck between the degree of commitment and 
reconsideration at work here. To try to capture this trade-off, Figure 4.3 incor- 
porates an explicit meta-level control component. The idea is to have a Boolean- 
valued function, reconsider ,  such that reconsider  ( I ,  B) evaluates to 'true' just 
in case it is appropriate for the agent with beliefs B and intentions 1 to recon- 
sider its intentions. Deciding whether to reconsider intentions thus falls to this 
function. 

It is interesting to consider the circumstances under which this function can 
be said to behave optimally. Suppose that the agent's deliberation and plan gen- 
eration functions are in some sense perfect: that deliberation always chooses the 
'best' intentions (however that is defined for the application at hand), and planning 
always produces an appropriate plan. Further suppose that time expended always 
has a cost - the agent does not benefit by doing notlung. Then it is not difficult 
to see that the function reconsider  (. . .) will be behaving optimally if, and only 
if, whenever it chooses to deliberate, the agent changes intentions (Wooldridge 
and Parsons, 1999). For if the agent chose to deliberate but did not change inten- 
tions, then the effort expended on deliberation was wasted. Similarly, if an agent 
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Table 4.2 Practical reasoning situations (cf. Bratman et al., 1988, p. 353). 

Situation Chose to Changed Would have reconsider(. . .) 
number deliberate? intentions? changed intentions? optimal? 

1. No No Yes - 

2. No Yes No - 

3. 1-es No - No 
4. Yes Yes - Yes 

should have changed intentions, but failed to do so, then the effort expended on 
attempting to achieve its intentions was also wasted. 

The possible interactions between delibera~ion and meta-level control (the func- 
tion r e c o n s i d e r ( .  . .)) are summarized in Table 4.2. 

In situation (I),  the agent did not choose to deliberate, and as a consequence, 
did not choose to change intentions. Moreover, if it had chosen to deliberate, 
it would not have changed intentions. In this situation, the r e c o n s i d e r ( .  . .? 
function is behaving optimally. 

In situation (Z), the agent did not choose to deliberate, but if it had done 
so, it would have changed intentions. In this situation, the r e c o n s i d e r ( .  . .) 
function is not behaving optimally. 

- In situation (3), the agent chose to deliberate, but did not change intentions. 
In this situation, the recons ider  ( . . . ) function is not behaving op tirnally. 

In situation (4), the agent chose to deliberate, and did change intentions. In 
t h s  situation, the recons ider  (. . .) function is behaving optimally. 

Notice that there is an important assumption implicit within this discussion: that 
the cost of executing the r e c o n s i d e r ( .  . .) function is much less than the cost 
of the deliberation process itself. Otherwise, the r e c o n s i d e r ( .  . .) function could 
simply use the deliberation process as an oracle, running it as a subroutine and 
choosing to deliberate just in case the deliberation process changed intentions. 

The nature of the trade-off was examined by David Kinny and Michael Georgeff 
in a number of experiments carried out using a BD1 agent system (Kinny and 
Georgeff, 1991). The aims of Kinny and Georgeff's investigation were to 

(1) assess the feasibility of experimentally measuring agent effective- 
ness in a simulated environment (2) investigate how commitment to 
goals contributes to effective agent behaviour and (3) compare the 
properties of different strategies for reacting to change. 

(Kinny and Georgeff, 1991, p. 82) 

In Kinny and Georgeff's experiments, two different types of reconsideration strat- 
egy were used: bold agents, which never pause to reconsider their intentions 
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before their current plan is fully executed; and cautious agents, which stop to 
reconsider after the execution of every action. These characteristics are defined 
by a degree of boldness, which specifies the maximum number of plan steps the 
agent executes before reconsidering its intentions. Dynamism in the environment 
is represented by the rate of environment change. Put simply, the rate of environ- 
ment change is the ratio of the speed of the agent's control loop to the rate of 
change of the environment. If the rate of world change is 1, then the environment 
will change no more than once for each time the agent can execute its control 
loop. If the rate of world change is 2, then the environment can change twice for 
each pass through the agent's control loop, and so on. The performance of an 
agent is measured by the ratio of number of intentions that the agent managed 
to achieve to the number of intentions that the agent had at any time. Thus if 
effectiveness is 1, then the agent achieved all its intentions. If effectiveness is 0, 
then the agent failed to achieve any of its intentions. The key results of Kinny and 
Georgeff were as follows. 

If the rate of world change is low (i.e. the environment does not change 
quickly), then bold agents do well compared with cautious ones. This is 
because cautious ones waste time reconsidering their commitments while 
bold agents are busy worlung towards - and acheving - their intentions. 

If the rate of world change is high (i.e. the environment changes frequently), 
then cautious agents tend to outperform bold agents. This is because they 
are able to recognize when intentions are doomed, and also to take advan- 
tage of serendipitous situations and new opportunities when they arise. 

The bottom line is that different environment types require different intention 
reconsideration and commitment strategies. In static environments, agents that 
are strongly committed to their intentions will perform well. But in dynamic envi- 
ronments, the ability to react to changes by modifying intentions becomes more 
important, and weakly committed agents will tend to outperform bold agents. 

4.4 HOMER: an Agent That Plans 
An interesting experiment in the design of intelligent agents was conducted by 
Vere and Bickmore (1990). They argued that the enabling technologies for intel- 
ligent agents were sufficiently developed to be able to construct a prototype 
autonomous agent, with linguistic ability, planning and acting capabilities, and so 
on. They developed such an agent, and christened it HOMER. This agent is a simu- 
lated robot submarine, which exists in a two-dimensional 'Seaworld', about which 
it has only partial knowledge. HOMER takes instructions from a user in a limited 
subset of English with about an 800 word vocabulary; instructions can contain 
moderately sophisticated temporal references. HOMER can plan how to achieve 
its instructions (which typically relate to collecting and moving items around the 
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Figure 4.4 The HOMER architecture. 

Seaworld), and can then execute its plans, modifymg them as required during exe- 
cution. The agent has a limited episodic memory, and using this, is able to answer 
questions about its past experiences. The architecture of HOMER is illustrated in 
Figure 4.4. 

Here is an example of a dialogue with HOMER: the user begins by asking HOMER 
what he sees in front of him. 

USER: What i s  i n  f r o n t  o f  you? 
HOMER: A l o g .  
USER: Do you own the  l o g .  
HOMER: No, I d o n ' t .  

The user then tells HOMER that he owns the log; t h s  is new information, and so 
HOMER expresses surprise. 

USER: The l o g  belongs t o  you. 
HOMER: Oh. 

At this point, the user tells HOMER to move, so that he can no longer see the log, 
and moves the log while it is hidden from HOMER'S sight. When he turns around, 
HOMER expects to see the log, and expresses surprise. 

USER: Turn away from your l o g .  
HOMER: OK, I am t u r n i n g .  
[LOG I S  MOVED] 
USER: Turn around. 
HOMER: OK, I ' m  t u r n i n g .  
HOMER: I ' v e  l o s t  t h e  l o g !  
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In the following dialogue, the user gives HOMER a task to accomplish. 

USER: Drop the  package a t  t he  barge next Saturday a t  9pm. 
HOMER: OK. 

HOMER then generates an appropriate plan for this task. When asked about h s  
plans for Saturday, HOMER demonstrates that he has realized travelling to the 
barge will take some time. 

USER: Are you going t o  t he  barge next Saturday? 
HOMER: Y e s .  
USER: What time? 
HOMER: 8.56pm. 

The Procedural Reasoning System 
The Procedural Reasoning System (PRS), originally developed at Stanford Research 
Institute by Michael Georgeff and Amy Lansky, was perhaps the first agent arch- 
tecture to explicitly embody the belief-desire-intention paradigm, and proved to 
be the most durable agent architecture developed to date. It has been applied 
in several of the most significant multiagent applications so far built, including 
an air-traffic control system called OASIS that is currently undergoing field trials 
at Sydney airport, a simulation system for the Royal Australian Air Force called 
SWARMM, and a business process management system called SPOC (Single Point 
of Contact), that is currently being marketed by Agentis Solutions (Georgeff and 
Rao, 1996). 

An illustration of the PRS archtecture is given in Figure 4.5. The PRS is often 
referred to as a belief-desire-intention (BDI) architecture, because it contains 
explicitly represented data structures loosely corresponding to these mental 
states (Wooldridge, 2000b). 

In the PRS, an agent does no planning from first principles. Instead, it is 
equipped with a library of pre-compiled plans. These plans are manually con- 
structed, in advance, by the agent programmer. Plans in the PRS each have the 
following components: 

a goal - the postcondition of the plan; 

a context - the precondition of the plan; and 

a body - the 'recipe' part of the plan - the course of action to carry out. 

The goal and context part of PRS plans are fairly conventional, but the body is 
slightly unusual. In the plans that we saw earlier in this chapter, the body of a 
plan was simply a sequence of actions. Executing the plan involves executing each 
action in turn. Such plans are possible in the PRS, but much richer l a d s  of plans 
are also possible. The first main difference is that as well has having individual 
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data input from sensors 

I ENVIRONMENT 

action output 

Figure 4.5 The Procedural Reasoning System (PRS). 

primitive actions as the basic components of plans, it is possible to have goals. 
The idea is that when a plan includes a goal at a particular point, this means that 
t h s  goal must then be achieved at this point before the remainder of the plan 
can be executed. It is also possible to have disjunctions of goals ('acheve cp or 
acheve (I/'), and loops ('keep acheving cp until (I/'), and so on. 

At start-up time a PRS agent will have a collection of such plans, and some initial 
beliefs about the world. Beliefs in the PRS are represented as Prolog-like facts - 
essentially, as atoms of first-order logic, in exactly the same way that we saw in 
deductive agents in the preceding chapter. In addition, at start-up, the agent will 
typically have a top-level goal. This goal acts in a rather similar way to the 'main' 
method in Java or C. 

When the agent starts up, the goal to be achieved is pushed onto a stack, called 
the intention stack. This stack contains all the goals that are pending achievement. 
The agent then searches through its plan library to see what plans have the goal 
on the top of the intention stack as their postcondition. Of these, only some will 
have their precondition satisfied, according to the agent's current beliefs. The set 
of plans that (i) acheve the goal, and (ii) have their precondition satisfied, become 
the possible options for the agent (cf. the o p t i o n s  function described earlier in 
t h s  chapter). 

The process of selecting between different possible plans is, of course, delib- 
eration, a process that we have already discussed above. There are several ways 
of deliberating between competing options in PRS-like architectures. In the origi- 
nal PRS deliberation is acheved by the use of meta-level plans. These are literally 
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plans about plans. They are able to modify an agent's intention structures at run- 
time, in order to change the focus of the agent's practical reasoning. However, a 
simpler method is to use utilities for plans. These are numerical values; the agent 
simply chooses the plan that has the highest utility. 

The chosen plan is then executed in its turn; t h s  may involve pushing further 
goals onto the intention stack, which may then in turn involve finding more plans 
to acheve these goals, and so on. The process bottoms out with individual actions 
that may be directly computed ( e g  simple numerical calculations). If a particular 
plan to achieve a goal fails, then the agent is able to select another plan to achieve 
this goal from the set of all candidate plans. 

To illustrate all this, Figure 4.6 shows a fragment of a Jam system (Huber, 1999). 
Jam is a second-generation descendant of the PRS, implemented in Java. The basic 
ideas are identical. The top level goal for this system, which is another Blocks 
World example, is to have achieved the goal bl  ocks-stacked. The initial beliefs 
of the agent are spelled out in the FACTS section. Expressed in conventional logic 
notation, the first of these is On(Block5, Block4), i.e. 'block 5 is on top of block 
4'. 

The system starts by pushng the goal b l  ocks-stacked onto the intention 
stack. The agent must then find a candidate plan for this; there is just one plan 
that has this goal as a GOAL: the 'top level plan'. The context of t h s  plan is empty, 
that is to say, true, and so this plan can be directly executed. Executing the body 
of the plan involves pushing the following goal onto the intention stack: 

On(block3, table). 

This is immediately achieved, as it is a FACT. The second sub-goal is then posted: 

To achieve this, the 'stack blocks that are clear' plan is used; the first sub-goals 
involve clearing both block2 and block3, which in turn will be done by two invo- 
cations of the 'clear a block' plan. When this is done, the move action is directly 
invoked to move block2 onto block3. 

I leave the detailed behaviour as an exercise. 

Notes and Further Reading 
Some reflections on the origins of the BDT model, and on its relationship to 
other models of agency, may be found in Georgeff et al. (1999). Belief-desire- 
intention architectures originated in the work of the Rational Agency project at 
Stanford Research Institute in the mid-1980s. Key figures were Michael Bratman, 
Phil Cohen, Michael Georgeff, David Israel, Kurt Konolige, and Martha Pollack. The 
origins of the model lie in the theory of human practical reasoning developed by 
the philosopher Michael Bratman (Bratman, 1987), which focuses particularly on 
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COALS : 
ACHIEVE blocks-stacked; 

FACTS : 
FACT ON "Block5" "Block4"; FACT ON "Block4" "Block3"; 
FACT ON "B lock l "  "Block2"; FACT ON "Block2" "Tab1 e" ; 
FACT ON "Block3" "Table"; FACT CLEAR "Bl ock l "  ; 
FACT CLEAR "BlockS"; FACT CLEAR "Table"; 

Plan: { 
NAME : "Top-1 eve1 p lan" 
COAL: ACHIEVE blocks-stacked; 
CONTEXT : 
BODY : ACHIEVE ON "Block3" "Table"; 

ACHIEVE ON "Block2" "Block3"; 
ACHIEVE ON "B lock l "  "Block2"; 

1 
Plan: { 

NAME: "Stack blocks t h a t  are a l ready c lea r "  
COAL: ACHIEVE ON BOB31 $OBJ2; 
CONTEXT : 
BODY : ACHIEVE CLEAR 80Bl1; 

ACHIEVE CLEAR SOB12; 
PERFORM move BOB31 80BJ2; 

UTILITY: 10; 
FAILURE: EXECUTE p r i n t  "\n\nStack blocks f a i l e d ! \ n \ n W ;  

1 
Plan: I 

NAME: "Clear a b lock"  
COAL: ACHIEVE CLEAR $OBI; 
CONTEXT: FACT ON $OBI2 $OBI; 
BODY : ACHIEVE ON $OBI2 "Table"; 
EFFECTS: RETRACT ON BOB32 $OBI; 
FAILURE: EXECUTE p r i n t  " \n\nClear ing b lock  f a i l e d ! \ n \ n n ;  

Figure 4.6 The Blocks World in Jam. 

the role of intentions in practical reasoning. The conceptual framework of the BDI 
model is described in Bratman et al. (1988), which also describes a specific BDI 
agent architecture called IRMA. 

The best-known implementation of the BDI model is the PRS system, developed 
by Georgeff and colleagues (Georgeff and Lansky, 1987; Georgeff and Ingrand, 
1989). The PRS has been re-implemented several times since the mid-1980s, for 
example in the Australian AI Institute's DMARS system (dlInverno et al., 1997), the 
University of Michigan's C++ implementation UM-PRS, and a Java version called 
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Jam! (Huber, 1999). Jack is a commercially available programming language, which 
extends the Java language with a number of BDI features (Busetta et al., 2000). 

The description of the BDI model given here draws upon Bratman et al. (1988) 
and Rao and Georgeff (1992), but is not strictly faithful to either. The most obvi- 
ous difference is that I do not incorporate the notion of the 'filter override' mech- 
anism described in Bratman et al. (1988), and I also assume that plans are linear 
sequences of actions (which is a fairly 'traditional' view of plans), rather than the 
hierarchically structured collections of goals used by PRS. 

Plans are central to the BDI model of agency. An excellent discussion on the 
BDI model, focusing in particular on the role of plans in practical reasoning, is 
Martha Pollack's 1991 Computers and Thought award lecture, presented at the 
IJCAI-91 conference in Sydney, Australia, and published as 'The Uses of Plans' 
(Pollack, 1992). Another article, which focuses on the distinction between 'plans 
as recipes' and 'plans as mental states' is Pollack (1990). It is worth emphasizing 
that the BDI model is only one solution to the problem of building autonomous 
rational agents. Many other software archtectures for agent systems have been 
described in the literature (Wooldridge and Jennings, 1995; Brooks, 1999). Other 
practical reasoning-style architectures include Fischer et al. (1996), Jung (1999), 
Mora el al. (1999) and Busetta et al. (2000). 

The BDI model is also interesting because a great deal of effort has been devoted 
to formalizing it. In particular, Anand Rao and Michael Georgeff have developed 
a range of BDI logics, which they use to axiomatize properties of BDI-based 
practical reasoning agents (Rao and Georgeff, 1991a; Rao et al., 1992; Rao and 
Georgeff, 1991b; Rao and Georgeff, 1992; Rao and Georgeff, 1993; Rao, 1996b). 
These models have been extended by others to deal with, for example, communi- 
cation between agents (Haddadi, 1996). 

Class reading: Bratman et al. (1988). This is an interesting, insightful article, 
with not too much technical content. It introduces the IRMA architecture for prac- 
tical reasoning agents, which has been very influential in the design of subsequent 
systems. 



Sys tern 

Exercises 
(1) [Level 1 .] 

Imagine a mobile robot, capable of moving around an office environment. Ultimately, 
this robot must be controlled by very low-level instructions along the lines of 'motor on', 
and so on. How easy would it be to develop STRIPS operators to represent these properties? 
Try it. 

( 2 )  [Level 2.1 
Recall the vacuum-world example discussed in the preceding chapter. Formulate the 

operations available to the agent using the STRIPS notation. 

(3)  [Level 2.1 

Consider an agent that must move from one location to another, collecting items from 
one site and moving them. The agent is able to move by taxi, bus, bicycle, or car. 

Formalize the operations available to the agent (move by taxi, move by car, etc.) using 
the STRIPS notation. (Hint: preconditions might be having money or energy.) 

(4) [Level 3.1 

Read Kinny and Georgeff (1991), and implement these experiments in the programming 
language of your choice. (This is not as difficult as its sounds: it should be possible in a 
couple of days at most.) Now carry out the experiments described in Kinny and Georgeff 
(1991) and see if you get the same results. 

( 5 )  [Level 3.1 

Building on the previous question, investigate the following. 

The effect that reducing perceptual capabilities on agent performance. The idea here 
is to reduce the amount of environment that the agent can see, until it can finally see only 
the grid square on which it is located. Can 'free' planning compensate for the inability 
to see very far? 

The effect of non-deterministic actions. If actions are allowed to become non-determin- 
istic (so that in attempting to move from one grid square to another, there is a certain 
probability that the agent will in fact move to an entirely different grid square), what 
effect does this have on the effectiveness of an agent? 





Reactive and 
Hybrid Agents 

The many problems with symbolic/logical approaches to building agents led some 
researchers to question, and ultimately reject, the assumptions upon which such 
approaches are based. These researchers have argued that minor changes to the 
symbolic approach, such as weakening the logical representation language, will 
not be sufficient to build agents that can operate in time-constrained environ- 
ments: nothng less than a whole new approach is required. In the mid to late 
1980s, these researchers began to investigate alternatives to the symbolic A1 
paradigm. It is difficult to neatly characterize these different approaches, since 
their advocates are united mainly by a rejection of symbolic AI, rather than by a 
common manifesto. However, certain themes do recur: 

the rejection of symbolic representations, and of decision makmg based on 
syntactic manipulation of such representations; 

the idea that intelligent, rational behaviour is seen as innately linked to the 
environment an agent occupies - intelligent behaviour is not disembodied, 
but is a product of the interaction the agent maintains with its environment; 

the idea that intelligent behaviour emerges from the interaction of various 
simpler behaviours. 

Alternative approaches to agency are sometime referred to as behavioural (since 
a common theme is that of developing and combining individual behaviours), sit- 
uated (since a common theme is that of agents actually situated in some environ- 
ment, rather than being disembodied from it), and finally - the term used in this 
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chapter - reactive (because such systems are often perceived as simply reacting 
to an environment, without reasoning about it). 

5.1 Brooks and the Subsumption Architecture 
T h s  section presents a survey of the subsumption architecture, which is arguably 
the best-known reactive agent architecture. It was developed by Rodney Brooks - 
one of the most vocal and influential critics of the symbolic approach to agency 
to have emerged in recent years. Brooks has propounded three key theses that 
have guided his work as follows (Brooks, 1991b; Brooks, 1991a). 

(1) Intelligent behaviour can be generated without explicit representations of 
the kind that symbolic A1 proposes. 

(2) Intelligent behaviour can be generated without explicit abstract reasoning 
of the kind that symbolic A1 proposes. 

(3)  Intelligence is an emergent property of certain complex systems. 

Brooks also identifies two key ideas that have informed his research. 

(1) Situatedness and embodiment. 'Real' intelligence is situated in the world, not 
in disembodied systems such as theorem provers or expert systems. 

(2) Intelligence and emergence. 'Intelligent' behaviour arises as a result of an 
agent's interaction with its environment. Also, intelligence is 'in the eye of the 
beholder' - it is not an innate, isolated property. 

These ideas were made concrete in the subsumption architecture. There 
are two defining characteristics of the subsumption archtecture. The first is 
that an agent's decision-making is realized through a set of task-accomplishing 
behaviours; each behaviour may be thought of as an individual a c t i o n  function, 
as we defined above, which continually takes perceptual input and maps it to 
an action to perform. Each of these behaviour modules is intended to acheve 
some particular task. In Brooks's implementation, the behaviour modules are 
finite-state machines. An important point to note is that these task-accomplishing 
modules are assumed to include no complex symbolic representations, and are 
assumed to do no symbolic reasoning at all. In many implementations, these 
behaviours are implemented as rules of the form 

situation - action, 

which simply map perceptual input directly to actions. 
The second defining characteristic of the subsumption archtecture is that 

many behaviours can 'fire' simultaneously. There must obviously be a mecha- 
nism to choose between the different actions selected by these multiple actions. 
Brooks proposed arranging the modules into a subsumption hierarchy, with the 
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Function: Act ion Se lec t ion  i n  t he  Subsumption A rch i t ec tu re  
1. func t i on  action(p : P )  : A 
2 .  var f i red :  @ ( R )  
3 .  var  selected : A 
4.  begi n  
5 .  f i r ed -  { ( c , a )  I ( c , a )  E R and p E C ]  

6.  f o r  each ( c , a )  E fired do 
7 .  i f  7(3(c ' , a ' )  E fired such t h a t  (c1,a') < ( c , a ) )  then 
8.  r e tu rn  a 
9. end-i f 
10. end-for  
11. re tu rn  null 
1 2 .  end funct ion action 

Figure 5.1 Action Selection in the subsumption architecture. 

behaviours arranged into layers. Lower layers in the herarchy are able to inhibit 
higher layers: the lower a layer is, the hgher is its priority. The idea is that 
higher layers represent more abstract behaviours. For example, one might desire 
a behaviour in a mobile robot for the behaviour 'avoid obstacles'. It makes sense 
to give obstacle avoidance a high priority - hence t h s  behaviour will typically be 
encoded in a low-level layer, whch has high priority. To illustrate the subsumption 
architecture in more detail, we will now present a simple formal model of it, and 
illustrate how it works by means of a short example. We then discuss its relative 
advantages and shortcomings, and point at other similar reactive architectures. 

The see function, whch represents the agent's perceptual ability, is assumed to 
remain unchanged. However, in implemented subsumption architecture systems, 
there is assumed to be quite tight coupling between perception and action - raw 
sensor input is not processed or transformed much, and there is certainly no 
attempt to transform images to symbolic representations. 

The decision function act ion is realized through a set of behaviours, together 
with an inhibition relation holding between these behaviours. A behaviour is a pair 
(c, a), where c G P is a set of percepts called the condition, and a E A is an action. 
A behaviour (c, a) will fire when the environment is in state s E S if and only if 
see(s) E c. Let Beh = (c,  a)  I c E P and a E A) be the set of all such rules. 

Associated with an agent's set of behaviour rules R c Beh is a binary inhibition 
relation on the set of behaviours: i G R x R.  Ths  relation is assumed to be a strict 
total ordering on R (i.e. it is transitive, irreflexive, and antisymmetric). We write 
bl + b2 if (bl ,  b2) E+, and read this as 'bl inhibits bz', that is, bl is lower in the 
hierarchy than b2, and will hence get priority over b2. The action function is then 
as shown in Figure 5.1. 

Thus action selection begins by first computing the set f i r e d  of all behaviours 
that fire ( 5 ) .  Then, each behaviour (c, a)  that fires is checked, to determine whether 
there is some other hgher priority behaviour that fires. If not, then the action part 
of the behaviour, a, is returned as the selected action (8). If no behaviour fires, 
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then the distinguished action null will be returned, indicating that no action has 
been chosen. 

Given that one of our main concerns with logic-based decision malung was 
its theoretical complexity, it is worth pausing to examine how well our simple 
behaviour-based system performs. The overall time complexity of the subsump- 
tion action function is no worse than 0 (n", where n is the larger of the number 
of behaviours or number of percepts. Thus, even with the naive algorithm above, 
decision malung is tractable. In practice, we can do much better than this: the 
decision-malung logic can be encoded into hardware, giving constant decision 
time. For modern hardware, t h s  means that an agent can be guaranteed to select 
an action within microseconds. Perhaps more than anything else, this computa- 
tional simplicity is the strength of the subsumption architecture. 

Steels's Mars explorer experiments 
We will see how subsumption architecture agents were built for the following 
scenario (this example is adapted from Steels (1990)). 

The objective is to explore a distant planet, more concretely, to collect 
samples of a particular type of precious rock. The location of the rock 
samples is not known in advance, but they are typically clustered in 
certain spots. A number of autonomous vehicles are available that can 
drive around the planet collecting samples and later reenter a mother 
ship spacecraft to go back to Earth. There is no detailed map of the 
planet available, although it is known that the terrain is full of obsta- 
cles - hills, valleys, etc. - which prevent the vehicles from exchanging 
any communication. 

The problem we are faced with is that of building an agent control archtecture for 
each vehicle, so that they will cooperate to collect rock samples from the planet 
surface as efficiently as possible. Luc Steels argues that logic-based agents, of the 
type we described above, are 'entirely unrealistic' for t h s  problem (Steels, 1990). 
Instead, he proposes a solution using the subsumption architecture. 

The solution makes use of two mechanisms introduced by Steels. The first is 
a gradient field. In order that agents can know in which direction the mother 
ship lies, the mother ship generates a radio signal. Now t h s  signal will obviously 
weaken as distance from the source increases - to find the direction of the mother 
ship, an agent need therefore only travel 'up the gradient' of signal strength. The 
signal need not carry any information - it need only exist. 

The second mechanism enables agents to communicate with one another. The 
characteristics of the terrain prevent direct communication (such as message 
passing), so Steels adopted an indirect communication method. The idea is that 
agents will carry 'radioactive crumbs', which can be dropped, picked up, and 
detected by passing robots. Thus if an agent drops some of these crumbs in a 
particular location, then later another agent happening upon this location will be 
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able to detect them. Ths  simple mechanism enables a quite sophsticated form 
of cooperation. 

The behaviour of an individual agent is then built up from a number of 
behaviours, as we indicated above. First, we will see how agents can be pro- 
grammed to individually collect samples. We will then see how agents can be 
programmed to generate a cooperative solution. 

For individual (non-cooperative) agents, the lowest-level behaviour (and hence 
the behaviour with the hghest 'priority') is obstacle avoidance. This behaviour 
can be represented in the rule: 

if detect an obstacle then change direction. (5.1) 

The second behaviour ensures that any samples carried by agents are dropped 
back at the mother shp:  

if carrying samples and at the base then drop samples; (5.2) 

i f  carrying samples and not at the base then travel up gradient. (5.3) 

Behaviour (5.3) ensures that agents carrying samples will return to the mother 
ship (by heading towards the origin of the gradient field). The next behaviour 
ensures that agents will collect samples they find: 

if detect a sample then pick sample up. (5.4) 

The final behaviour ensures that an agent with 'nothing better to do' will explore 
randomly: 

if true then move randomly. (5.5) 

The precondition of this rule is thus assumed to always fire. These behaviours are 
arranged into the following herarchy: 

The subsumption herarchy for t h s  example ensures that, for example, an agent 
will always turn if any obstacles are detected; if the agent is at the mother s h p  
and is carrying samples, then it will always drop them if it is not in any immediate 
danger of crashmg, and so on. The 'top level' behaviour - a random walk - will only 
ever be carried out if the agent has nothing more urgent to do. It is not difficult to 
see how t h s  simple set of behaviours will solve the problem: agents will search 
for samples (ultimately by searchng randomly), and when they find them, will 
return them to the mother shp.  

If the samples are distributed across the terrain entirely at random, then equip- 
ping a large number of robots with these very simple behaviours will work 
extremely well. But we know from the problem specification, above, that this is 
not the case: the samples tend to be located in clusters. In t h s  case, it makes 
sense to have agents cooperate with one another in order to find the samples. 
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Thus when one agent finds a large sample, it would be helpful for it to communi- 
cate this to the other agents, so they can help it collect the rocks. Unfortunately, 
we also know from the problem specification that direct communication is impos- 
sible. Steels developed a simple solution to this problem, partly inspired by the 
foraging behaviour of ants. The idea revolves around an agent creating a 'trail' 
of radioactive crumbs whenever it finds a rock sample. The trail will be created 
when the agent returns the rock samples to the mother ship. If at some later point, 
another agent comes across this trail, then it need only follow it down the gradient 
field to locate the source of the rock samples. Some small refinements improve 
the efficiency of this ingenious scheme still further. First, as an agent follows a 
trail to the rock sample source, it picks up some of the crumbs it finds, hence 
making the trail fainter. Secondly, the trail is only laid by agents returning to the 
mother shp.  Hence if an agent follows the trail out to the source of the nominal 
rock sample only to find that it contains no samples, it will reduce the trail on the 
way out, and will not return with samples to reinforce it. After a few agents have 
followed the trail to find no sample at the end of it, the trail will in fact have been 
removed. 

The modified behaviours for t h s  example are as follows. Obstacle avoidance 
(5.1) remains unchanged. However, the two rules determining what to do if carry- 
ing a sample are modified as follows: 

if carrying samples and at the base then drop samples; ( 5 . 6 )  

if carrying samples and not at the base 
then drop 2 crumbs and travel up gradient. (5.7) 

The behaviour (5.7) requires an agent to drop crumbs when returning to base 
with a sample, thus either reinforcing or creating a trail. The 'pick up sample' 
behaviour (5.4) remains unchanged. However, an additional behaviour is required 
for dealing with crumbs: 

if sense crumbs then pick up 1 crumb and travel down gradient. (5 .8)  

Finally, the random movement behaviour (5.5) remains unchanged. These be- 
haviour are then arranged into the following subsumption hierarchy: 

Steels shows how this simple adjustment acheves near-optimal performance in 
many situations. Moreover, the solution is cheap (the computing power required 
by each agent is minimal) and robust (the loss of a single agent will not affect the 
overall system significantly). 

Agre and Chapman - PENGI 

At about the same time as Brooks was describing his first results with the sub- 
sumption architecture, Chapman was completing h s  Master's thesis, in which 
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he reported the theoretical difficulties with planning described above, and was 
coming to similar conclusions about the inadequacies of the symbolic AI model 
hmself. Together with h s  co-worker Agre, he began to explore alternatives to the 
AI planning paradigm (Chapman and Agre, 1986). 

Agre observed that most everyday activity is 'routine' in the sense that it 
requires little - if any - new abstract reasoning. Most tasks, once learned, can 
be accomplished in a routine way, with little variation. Agre proposed that an 
efficient agent architecture could be based on the idea of 'running arguments'. 
Crudely, the idea is that as most decisions are routine, they can be encoded into a 
low-level structure (such as a digital circuit), whch only needs periodic updating, 
perhaps to handle new lunds of problems. His approach was illustrated with the 
celebrated PENGI system (Agre and Chapman, 1987). PENGI is a simulated corn- 
puter game, with the central character controlled using a scheme such as that 
outlined above. 

Rosensche in  and K a e t b l i n g  - s i t u a t e d  automata 

Another sophsticated approach is that of Rosenschein and Kaelbling (see Rosen- 
schein, 1985; Rosenschein and Kaelbling, 1986; Kaelbling and Rosenschein, 1990; 
Kaelbling, 1991). They observed that just because an agent is conceptualized in 
logical terms, it need not be implemented as a theorem prover. In their situated 
automata paradigm, an agent is specified in declarative terms. This specification 
is then compiled down to a digital machine, which satisfies the declarative speci- 
fication. This digital machine can operate in a provably time-bounded fashon; it 
does not do any symbol manipulation, and in fact no symbolic expressions are 
represented in the machne at all. The logic used to specify an agent is essentially 
a logic of knowledge: 

[An agent] x is said to carry the information that p in world state s, 
written s i= K ( x ,  p) ,  if for all world states in whch x has the same 
value as it does in s,  the proposition p is true. 

(Kaelbling and Rosenschein, 1990, p. 36) 

An agent is specified in terms of two components: perception and action. Two pro- 
grams are then used to synthesize agents: RULER is used to specify the perception 
component of an agent; GAPPS is used to specify the action component. 

RULER takes as its input three components as follows. 

[A] specification of the semantics of the [agent's] inputs ('whenever 
bit 1 is on, it is raining'); a set of static facts ('whenever it is raining, 
the ground is wet'); and a specification of the state transitions of the 
world ('if the ground is wet, it stays wet until the sun comes out'). The 
programmer then specifies the desired semantics for the output ('if this 
bit is on, the ground is wet'), and the compiler. . .[synthesizes] a circuit 
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whose output will have the correct semantics. . . . All that declarative 
'knowledge' has been reduced to a very simple circuit. 

(Kaelbling, 1991, p. 86) 

The GAPPS program takes as its input a set of goal reduction rules (essentially 
rules that encode information about how goals can be acheved) and a top level 
goal, and generates a program that can be translated into a digital circuit in order 
to realize the goal. Once again, the generated circuit does not represent or manip- 
ulate symbolic expressions; all symbolic manipulation is done at compile time. 

The situated automata paradigm has attracted much interest, as it appears to 
combine the best elements of both reactive and symbolic declarative systems. 
However, at the time of writing, the theoretical limitations of the approach are 
not well understood; there are similarities with the automatic synthesis of pro- 
grams from temporal logic specifications, a complex area of much ongoing work 
in mainstream computer science (see the comments in Emerson (1990)). 

Maes - agent network architecture 
Pattie Maes has developed an agent archtecture in which an agent is defined as 
a set of competence modules (Maes, 1989, 1990b, 1991). These modules loosely 
resemble the behaviours of Brooks's subsumption archtecture (above). Each mod- 
ule is specified by the designer in terms of preconditions and postconditions 
(rather like STRIPS operators), and an activation level, which gives a real-valued 
indication of the relevance of the module in a particular situation. The higher the 
activation level of a module, the more likely it is that t h s  module will influence 
the behaviour of the agent. Once specified, a set of competence modules is com- 
piled into a spreading activation network, in which the modules are linked to one 
another in ways defined by their preconditions and postconditions. For example, 
if module a has postcondition QI, and module b has precondition p, then a and 
b are connected by a successor link. Other types of link include predecessor links 
and conflicter links. When an agent is executing, various modules may become 
more active in given situations, and may be executed. The result of execution may 
be a command to an effector unit, or perhaps the increase in activation level of a 
successor module. 

There are obvious similarities between the agent network architecture and neu- 
ral network archtectures. Perhaps the key difference is that it is difficult to say 
what the meaning of a node in a neural net is; it only has a meaning in the con- 
text of the net itself. Since competence modules are defined in declarative terms, 
however, it is very much easier to say what their meaning is. 

The Limitations of Reactive Agents 
There are obvious advantages to reactive approaches such as Brooks's sub- 
sumption archtecture: simplicity, economy, computational tractability, robust- 
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! 
ness against failure, and elegance all make such architectures appealing. But there 
are some fundamental, unsolved problems, not just with the subsumption arch- 
tecture, but with other purely reactive architectures. 

If agents do not employ models of their environment, then they must have 
sufficient information available in their local environment to determine an 

1 acceptable action. 

1 Since purely reactive agents make decisions based on local information 
I (i.e. information about the agents current state), it is difficult to see how 
I 

such decision making could take into account non-local information - it 
must inherently take a 'short-term' view. 

It is difficult to see how purely reactive agents can be designed that learn 
from experience, and improve their performance over time. 

- One major selling point of purely reactive systems is that overall behaviour 
emerges from the interaction of the component behaviours when the agent is 
placed in its environment. But the very term 'emerges' suggests that the rela- 
tionshp between individual behaviours, environment, and overall behaviour 
is not understandable. This necessarily makes it very hard to engineer agents 
to fulfil specific tasks. Ultimately, there is no principled methodology for 
building such agents: one must use a laborious process of experimentation, 
trial, and error to engineer an agent. 

While effective agents can be generated with small numbers of behaviours 
(typically less than ten layers), it is much harder to build agents that con- 
tain many layers. The dynamics of the interactions between the different 
behaviours become too complex to understand. 

Various solutions to these problems have been proposed. One of the most popular 
of these is the idea of evolving agents to perform certain tasks. This area of work 
has largely broken away from the mainstream A1 tradition in whch work on, for 
example, logic-based agents is carried out, and is documented primarily in the 
artificial life (alife) literature. 

5.3 Hybrid Agents 

Given the requirement that an agent be capable of reactive and proactive 
behaviour, an obvious decomposition involves creating separate subsystems to 
deal with these different types of behaviours. This idea leads naturally to a class 
of archtectures in whch the various subsystems are arranged into a hierarchy of 
interacting layers. In this section, we will consider some general aspects of lay- 
ered archtectures, and then go on to consider two examples of such architectures: 
1nteRRaP and TouringMachines. 
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Figure 5.2 Information and control flows in three types of layered agent architecture. 
(Source: Miiller et al. (1995, p. 263).) 

Typically, there will be at least two layers, to deal with reactive and proactive 
behaviours, respectively. In principle, there is no reason why there should not be 
many more layers. It is useful to characterize such architectures in terms of the 
information and control flows within the layers. Broadly speakmg, we can identify 
two types of control flow within layered archtectures as follows (see Figure 5.2). 

Horizontal layering. In horizontally layered architectures (Figure 5.2(a)), the soft- 
ware layers are each directly connected to the sensory input and action output. 
In effect, each layer itself acts like an agent, producing suggestions as to what 
action to perform. 

Vertical layering. In vertically layered architectures (see parts (b) and (c) of Fig- 
ure 5.2), sensory input and action output are each dealt with by at most one 
layer. 

The great advantage of horizontally layered archtectures is their conceptual sim- 
plicity: if we need an agent to exhbit n different types of behaviour, then we 
implement n different layers. However, because the layers are each in effect com- 
peting with one another to generate action suggestions, there is a danger that the 
overall behaviour of the agent will not be coherent. In order to ensure that hor- 
izontally layered architectures are consistent, they generally include a mediator 
function, which makes decisions about whch layer has 'control' of the agent at 
any given time. The need for such central control is problematic: it means that 
the designer must potentially consider all possible interactions between layers. 
If there are n layers in the archtecture, and each layer is capable of suggesting 
m possible actions, then this means there are mn such interactions to be consid- 
ered. This is clearly difficult from a design point of view in any but the most simple 
system. The introduction of a central control system also introduces a bottleneck 
into the agent's decision making. 
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Figure 5.3 TouringMachines: a horizontally layered agent architecture. 

These problems are partly alleviated in a vertically layered archtecture. We 
can subdivide vertically layered architectures into one-pass architectures (Fig- 
ure 5.2(b)) and two-pass architectures (Figure 5.2(c)). In one-pass archtectures, 
control flows sequentially through each layer, until the final layer generates action 
output. In two-pass architectures, information flows up the architecture (the first 
pass) and control then flows back down. There are some interesting sirnilari- 
ties between the idea of two-pass vertically layered architectures and the way 
that organizations work, with information flowing up to the highest levels of the 
organization, and commands then flowing down. In both one-pass and two-pass 
vertically layered architectures, the complexity of interactions between layers is 
reduced: since there are n - 1 interfaces between n layers, then if each layer is 
capable of suggesting m actions, there are at most m2(n - 1) interactions to be 
considered between layers. T h s  is clearly much simpler than the horizontally lay- 
ered case. However, this simplicity comes at the cost of some flexibility: in order 
for a vertically layered architecture to make a decision, control must pass between 
each different layer. This is not fault tolerant: failures in any one layer are likely 
to have serious consequences for agent performance. 

In the remainder of this section, we will consider two examples of layered archi- 
tec tures: Innes Ferguson's TouringMachnes, and Jorg Miiller's InteRRaP. The for- 
mer is an example of a horizontally layered archtecture; the latter is a (two-pass) 
vertically layered archtecture. 

TouringMachines 

The TouringMachnes architecture is illustrated in Figure 5.3. As this figure shows, 
TouringMachines consists of three activity producing layers. That is, each layer 
continually produces 'suggestions' for what actions the agent should perform. 
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The reactive layer provides a more-or-less immediate response to changes that 
occur in the environment. It is implemented as a set of situation-action rules, 
like the behaviours in Brooks's subsumption archtecture (see Section 5.1). These 
rules map sensor input directly to effector output. The original demonstration 
scenario for TouringMachnes was that of autonomous vehcles driving between 
locations through streets populated by other similar agents. In this scenario, reac- 
tive rules typically deal with functions like obstacle avoidance. For example, here 
is an example of a reactive rule for avoiding the kerb (from (Ferguson, 1992a, 
p. 59)): 

rule-1: kerb-avoi dance 
i f  

i s-i n-f ront(Kerb, Observer) and 
speed(0bserver) > 0 and 
separa t i  on(Kerb, Observer) < KerbThreshHol d 

then 
change-ori e n t a t i  on(KerbAvoi danceAngl e) 

Here change-ori e n t a t i  on(. . .) is the action suggested if the rule fires. The rules 
can only make references to the agent's current state - they cannot do any explicit 
reasoning about the world, and on the right-hand side of rules are actions, not 
predicates. Thus if  this rule fired, it would not result in any central environment 
model being updated, but would just result in an action being suggested by the 
reactive layer. 

The TouringMachines planning layer acheves the agent's proactive behaviour. 
Specifically, the planning layer is responsible for the 'day-to-day' running of the 
agent - under normal circumstances, the planning layer will be responsible for 
deciding what the agent does. However, the planning layer does not do 'first- 
principles' planning. That is, it does not attempt to generate plans from scratch. 
Rather, the planning layer employs a library of plan 'skeletons' called schemas. 
These skeletons are in essence herarchcally structured plans, whch the Touring- 
Machines planning layer elaborates at run time in order to decide what to do 
(cf. the PRS archtecture discussed in Chapter 4). So, in order to acheve a goal, 
the planning layer attempts to find a schema in its library whch matches that 
goal. This schema will contain sub-goals, whch the planning layer elaborates by 
attempting to find other schemas in its plan library that match these sub-goals. 

The modelling layer represents the various entities in the world (including the 
agent itself, as well as other agents). The modelling layer thus predicts conflicts 
between agents, and generates new goals to be acheved in order to resolve these 
conflicts. These new goals are then posted down to the planning layer, which 
makes use of its plan library in order to determine how to satisfy them. 

The three control layers are embedded withn a control subsystem, w h c h  is 
effectively responsible for deciding which of the layers should have control over 
the agent. This control subsystem is implemented as a set of control rules. Control 
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Figure 5.4 InteRRaP - a vertically layered two-pass agent architecture. 

rules can either suppress sensor information between the control rules and the 
control layers, or else censor action outputs from the control layers. Here is an 
example censor rule (Ferguson, 1995, p. 207): 

censor-rule-1: 
i f  

e n t i  ty(obstac1e-6) i n  percept ion-buffer  
then 

remove-sensory-record(1ayer-R, e n t i  ty(obstac1e-6)) 

T h s  rule prevents the reactive layer from ever knowing about whether 
obstacl  e-6 has been perceived. The intuition is that although the reactive layer 
will in general be the most appropriate layer for dealing with obstacle avoidance, 
there are certain obstacles for which other layers are more appropriate. This rule 
ensures that the reactive layer never comes to know about these obstacles. 

InteRRaP 

InteRRaP is an example of a vertically layered two-pass agent architecture - see 
Figure 5.4. As Figure 5.4 shows, InteRRaP contains three control layers, as in 
TouringMachines. Moreover, the purpose of each InteRRaP layer appears to be 
rather similar to the purpose of each corresponding TouringMachnes layer. Thus 
the lowest (behaviour-based) layer deals with reactive behaviour; the middle (local 
planning) layer deals with everyday planning to acheve the agent's goals, and the 
uppermost (cooperative planning) layer deals with social interactions. Each layer 
has associated with it a knowledge base, i.e. a representation of the world appro- 
priate for that layer. These different knowledge bases represent the agent and 
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its environment at different levels of abstraction. Thus the highest level knowl- 
edge base represents the plans and actions of other agents in the environment; 
the middle-level knowledge base represents the plans and actions of the agent 
itself; and the lowest level knowledge base represents 'raw' information about the 
environment. The explicit introduction of these knowledge bases distinguishes 
TouringMachnes from InteRRaP. 

The way the different layers in InteRRaP conspire to produce behaviour is also 
quite different from TouringMachnes. The main difference is in the way the layers 
interact with the environment. In TouringMachnes, each layer was directly cou- 
pled to perceptual input and action output. This necessitated the introduction 
of a supervisory control framework, to deal with conflicts or problems between 
layers. In InteRRaP, layers interact with each other to achieve the same end. The 
two main types of interaction between layers are bottom-up activation and top- 
down execution. Bottom-up activation occurs when a lower layer passes control to 
a higher layer because it is not competent to deal with the current situation. Top- 
down execution occurs when a higher layer makes use of the facilities provided 
by a lower layer to achieve one of its goals. The basic flow of control in InteRRaP 
begins when perceptual input arrives at the lowest layer in the archtecture. If the 
reactive layer can deal with this input, then it will do so; otherwise, bottom-up 
activation will occur, and control will be passed to the local planning layer. If the 
local planning layer can handle the situation, then it will do so, typically by mak- 
ing use of top-down execution. Otherwise, it will use bottom-up activation to pass 
control to the hghest  layer. In this way, control in InteRRaP will flow from the 
lowest layer to hgher layers of the archtecture, and then back down again. 

The internals of each layer are not important for the purposes of this chapter. 
However, it is worth noting that each layer implements two general functions. 
The first of these is a situation recognition and goal activation function. It maps a 
knowledge base (one of the three layers) and current goals to a new set of goals. 
The second function is responsible for planning and scheduling - it is responsi- 
ble for selecting whch  plans to execute, based on the current plans, goals, and 
knowledge base of that layer. 

Layered architectures are currently the most popular general class of agent 
architecture available. Layering represents a natural decomposition of function- 
ality: it is easy to see how reactive, proactive, social behaviour can be generated by 
the reactive, proactive, and social layers in an architecture. The main problem with 
layered archtectures is that while they are arguably a pragmatic solution, they 
lack the conceptual and semantic clarity of unlayered approaches. In particular, 
while logic-based approaches have a clear logical semantics, it is difficult to see 
how such a semantics could be devised for a layered archtecture. Another issue 
is that of interactions between layers. If each layer is an independent activity- 
producing process (as in TouringMachnes), then it is necessary to consider all 
possible ways that the layers can interact with one another. This problem is partly 
alleviated in two-pass vertically layered architecture such as InteRRaP. 
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Notes and Further Reading 
The introductory discussion of layered architectures given here draws upon 
Muller et al. (1995, pp. 262-264). The best reference to TouringMachines is Fer- 
guson (1992a); more accessible references include Ferguson (1992b, 1995). The 
definitive reference to InteRRaP is Muller (1997), although Fischer et al. (1996) 
is also a useful reference. Other examples of layered architectures include the 
subsumption architecture (Brooks, 1986), and the 3T architecture (Bonasso et 
a)., 1996). 

Brooks's original paper on the subsumption architecture - the one that started 
all the fuss - was published as Brooks (1986). The description and discussion 
here is partly based on Ferber (1996). This original paper seems to be somewhat 
less radical than many of h s  later ones, which include Brooks (1990, 1991b). The 
version of the subsumption architecture used in this chapter is actually a simpli- 
fication of that presented by Brooks. The subsumption architecture is probably 
the best-known reactive archtecture around - but there are many others. The col- 
lection of papers edited by Maes (1990a) contains papers that describe many of 
these, as does the collection by Agre and Rosenschein (1996). Other approaches 
include: 

Nilsson's teleo reactive programs (Nilsson, 1992); 

- Schoppers' universal plans - which are essentially decision trees that can 
be used to efficiently determine an appropriate action in any situation 
(Schoppers, 1987); 

Firby's reactive action packages (Firby, 1987). 

Kaelbling (1986) gives a good discussion of the issues associated with developing 
resource-bounded rational agents, and proposes an agent architecture somewhat 
similar to that developed by Brooks. 

Ginsberg (1989) gives a critique of reactive agent architectures based on cached 
plans; Etzioni (1993) gives a critique of the claim by Brooks that intelligent agents 
must be situated 'in the real world'. He points out that software environments 
(such as computer operating systems and computer networks) can provide a chal- 
lenging environment in which agents might work. 

Class reading: Brooks (1986). A provocative, fascinating article, packed with 
ideas. It is interesting to compare this with some of Brooks's later - arguably 
more controversial - articles. 
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Exercises 
(1) [Level 2.1 

Develop a solution to the vacuum-world example described in Chapter 3 using Brooks's 
subsumption architecture. How does it compare with the logic-based example? 

(2) [Level 2.1 

Try developing a solution to the Mars explorer example using the logic-based approach 
described in Chapter 3. How does it compare with the reactive solution? 

(3)  [Level 3.1 

In the programming language of your choice, implement the Mars explorer example 
using the subsumption architecture. (To do this, you may find it useful to implement a 
simple subsumption architecture 'shell' for programming different behaviours.) Investi- 
gate the performance of the two approaches described, and see if you can do better. 

(4) [Level 3.1 

Using the simulator implemented for the preceding question, see what happens as you 
increase the number of agents. Eventually, you should see that overcrowding leads to a 
sub-optimal solution - agents spend too much time getting out of each other's way to get 
any work done. Try to get around this problem by allowing agents to pass samples to each 
other, thus implementing chains. (See the description in Ferber (1996, p. 305).) 



Multiagent 
Interactions 

So far in t h s  book, we have been focusing on the problem of how to build an 
individual agent. Except in passing, we have not examined the issues associated 
in putting these agents together. But there is a popular slogan in the multiagent 
sys tems community: 

There's no such thing as a single agent system. 

The point of the slogan is that interacting systems, whch used to be regarded as 
rare and unusual beasts, are in fact the norm in the everyday computing world. 
All but the most trivial of systems contains a number of sub-systems that must 
interact with one another in order to successfully carry out their tasks. In this 
chapter, I will start to change the emphasis of the book, from the problem of 
'how to build an agent', to 'how to build an agent society'. I begin by defining 
what we mean by a multiagent system. 

Figure 6.1 (from Jennings (2000)) illustrates the typical structure of a multiagent 
system. The system contains a number of agents, which interact with one another 
through communication. The agents are able to act in an environment; different 
agents have different 'spheres of influence', in the sense that they will have control 
over - or at least be able to influence - different parts of the environment. These 
spheres of influence may coincide in some cases. The fact that these spheres 
of influence may coincide may give rise to dependency relationships between the 
agents. For example, two robotic agents may both be able to move through a door - 
but they may not be able to do so simultaneously. Finally, agents will also typically 
be linked by other relationshps. Examples might be 'power' relationshps, where 
one agent is the 'boss' of another. 
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Figure 6.1 Typical structure of a multiagent system. 

The most important lesson of this chapter - and perhaps one of the most 
important lessons of multiagent systems generally - is that when faced with what 
appears to be a multiagent domain, it is critically important to understand the 
type of interaction that takes place between the agents. To see what I mean by 
this, let us start with some notation. 

Utilities and Preferences 
First, let us simplify things by assuming that we have just two agents; things tend 
to be much more complicated when we have more than two. Call these agents i 
and j ,  respectively. Each of the agents is assumed to be self-interested. That is, 
each agent has its own preferences and desires about how the world should be. 
For the moment, we will not be concerned with where these preferences come 
from; just assume that they are the preferences of the agent's user or owner. 
Next, we will assume that there is a set R = ( w l ,  w2, .  . . } of 'outcomes' or 'states' 
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that the agents have preferences over. To make this concrete, just think of these 
as outcomes of a game that the two agents are playing. 

We formally capture the preferences that the two agents have by means of 
utility functions, one for each agent, whch assign to every outcome a real number, 
indicating how 'good' the outcome is for that agent. The larger the number the 
better from the point of view of the agent with the utility function. Thus agent i's 
preferences will be captured by a function 

and agent j's preferences will be captured by a function 

(Compare with the discussion in Chapter 2 on tasks for agents.) It is not difficult 
to see that these utility function lead to a preference ordering over outcomes. For 
example, if w  and w f  are both possible outcomes in R,  and u i ( w )  3 u i ( w ' ) ,  then 
outcome w  is preferred by agent i at least as much as cur .  We can introduce a bit 
more notation to capture this preference ordering. We write 

as an abbreviation for 
U ~ ( C U )  2 u i ( w f ) .  

Similarly, if ui ( w  ) > ui ( c u r ) ,  then outcome w  is strictly preferred by agent i over 
w' .  We write 

UJ > i  W '  

as an abbreviation for 
u ~ ( w )  > u i ( w f )  

In other words, 

cu > i  W' if and only if u i ( w )  3 u i ( w ' )  and not u i ( w )  = u i ( w f ) .  

We can see that the relation k i  really is an ordering, over R, in that it has the 
following properties. 

Reflexivity: for all w  E R, we have that co k i  w .  

Transitivity: if w  k i  w f ,  and w f  2i w", then w  k i  w" .  

Comparability: for all w  E R and w' E R we have that either w  k i  w' or w' ki 
w .  

The strict preference relation will satisfy the second and thud of these properties, 
but will clearly not be reflexive. 
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utility 

Figure 6.2 The re1 ationship between money and utility. 

What is utility? 
Undoubtedly the simplest way to thnk about utilities is as money; the more 
money, the better. But resist the temptation to thnk that t h s  is all that utili- 
ties are. Utility functions are just a way  o f  representing an  agent's preferences. 
They do not simply equate to money. 

To see what I mean by this, suppose (and t h s  really is a supposition) that I have 
US$SOO million in the bank, whle you are absolutely penniless. A rich benefactor 
appears, with one million dollars, which he generously wishes to donate to one of 
us. If the benefactor gives the money to me, what will the increase in the utility of 
my situation be? Well, I have more money, so there will clearly be some increase in 
the utility of my situation. But there will not be much: after all, there is not much 
that you can do with US$501 million that you cannot do with US$ SO0 million. 
In contrast, if the benefactor gave the money to you, the increase in your utility 
would be enormous; you go from having no money at all to being a millionaire. 
That is a big difference. 

This works the other way as well. Suppose I am in debt to the tune of US$500 
million; well, there is frankly not that much difference in utility between owing 
US$ SO0 million and owing US$499 million; they are both pretty bad. In contrast, 
there is a very big difference between being US$1 million in debt and not being 
in debt at all. A graph of the relationshp between utility and money is shown in 
Figure 6.2. 

6.2 Multiagent Encounters 
Now that we have our model of agent's preferences, we need to introduce a model 
of the environment in which these agents will act. The idea is that our two agents 
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will simultaneously choose an action to perform in the environment, and as a 
result of the actions they select, an outcome in R will result. The actual outcome 
that will result will depend on the particular combination of actions performed. 
Thus both agents can influence the outcome. We will also assume that the agents 
have no choice about whether to perform an action - they have to simply go ahead 
and perform one. Further, it is assumed that they cannot see the action performed 
by the other agent. 

To make the analysis a bit easier, we will assume that each agent has just two 
possible actions that it can perform. We will call these two actions 'C', for 'coop- 
erate', and 'D', for 'defect'. (The rationale for t h s  terminology will become clear 
below.) Let Ac = (C, D) be the set of these actions. The way the environment 
behaves is then determined by a function 

agent i ' s  action agent j 's action 

(Ths is essentially a state transformer function, as discussed in Chapter 2.) In 
other words, on the basis of the action (either C or D) selected by agent i, and the 
action (also either C or D) chosen by agent j an outcome will result. 

Here is an example of an environment function: 

Ths environment maps each combination of actions to a different outcome. Ths  
environment is thus sensitive to the actions that each agent performs. At the other 
extreme, we can consider an environment that maps each combination of actions 
to the same outcome. 

In t h s  environment, it does not matter what the agents do: the outcome will be the 
same. Neither agent has any influence in such a scenario. We can also consider an 
environment that is only sensitive to the actions performed by one of the agents. 

In t h s  environment, it does not matter what agent i does: the outcome depends 
solely on the action performed by j .  If j chooses to defect, then outcome w l  will 
result; if j chooses to cooperate, then outcome w2 will result. 

The interesting story begins when we put an environment together with the 
preferences that agents have. To see what I mean by th s ,  suppose we have the 
most general case, characterized by (6.1), where both agents are able to exert some 
influence over the environment. Now let us suppose that the agents have utility 
functions defined as follows: 
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Since we know that every different combination of choices by the agents are 
mapped to a different outcome, we can abuse notation somewhat by writing the 
following: 

We can then characterize agent i's preferences over the possible outcomes in the 
following way: 

C,C 2 i  C,D > i D , C  k i D , D .  

Now, consider the following question. 

If you were agent i in this scenario, what would you choose to do - 
cooperate or defect? 

In this case (I hope), the answer is pretty unambiguous. Agent i prefers all the out- 
comes in which it cooperates over all the outcomes in which it defects. Agent i's 
choice is thus clear: it should cooperate. It does not matter what agent j chooses 
to do. 

In just the same way, agent j prefers all the outcomes in whch it cooperates 
over all the outcomes in which it defects. Notice that in t h s  scenario, neither agent 
has to expend any effort worrylng about what the other agent will do: the action 
it should perform does not depend in any way on what the other does. 

If both agents in t b s  scenario act rationally, that is, they both choose to perform 
the action that will lead to their preferred outcomes, then the 'joint' action selected 
will be C, C: both agents will cooperate. 

Now suppose that, for the same environment, the agents' utility functions were 
as follows: 

Agent i's preferences over the possible outcomes are thus as follows: 

In this scenario, agent i can do no better than to defect. The agent prefers all 
the outcomes in whch it defects over all the outcomes in which it cooperates. 
Similarly, agent j can do no better than defect: it also prefers all the outcomes in 
whch it defects over all the outcomes in whch it cooperates. Once again, the 
agents do not need to engage in strategic thnking (worrying about what the 
other agent will do): the best action to perform is entirely independent of the 
other agent's choice. I emphasize that in most multiagent scenarios, the choice 
an agent should make is not so clear cut; indeed, most are much more diffi- 
cult. 
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We can neatly summarize the previous interaction scenario by making use of a 
standard game-theoretic notation known as a payoff matrix: 

I i defects I i cooperates 

The way to read such a payoff matrix is as follows. Each of the four cells in the 
matrix corresponds to one of the four possible outcomes. For example, the top- 
right cell corresponds to the outcome in which i cooperates and j defects; the 
bottom-left cell corresponds to the outcome in which i defects and j cooperates. 
The payoffs received by the two agents are written in the cell. The value in the 
top right of each cell is the payoff received by player i (the column player), while 
the value in the bottom left of each cell is the payoff received by agent j (the 
row player). As payoff matrices are standard in the literature, and are a much 
more succinct notation than the alternatives, we will use them as standard in the 
remainder of t h s  chapter. 

Before proceeding to consider any specific examples of multiagent encounter, 
let us introduce some of the theory that underpins the lund of analysis we have 
informally discussed above. 

Dominant Strategies and Nash Equilibria 

Given a particular multiagent encounter involving two agents i and j, there is one 
critically important question that both agents want answered: what should I do? 
We have already seen some multiagent encounters, and informally argued what 
the best possible outcome should be. In this section, we will define some of the 
concepts that are used in answering t h s  question. 

The first concept we will introduce is that of dominance. To understand what 
is meant by dominance, suppose we have two subsets of 0, which we refer to as 
RI and a2, respectively. We will say that R1 dominates R2 for agent i if every 
outcome in R1 is preferred by i over every outcome in R2. For example, suppose 
that 
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Then strongly dominates i,12 since wl > i  W-J, CUI > i  wq, w2 > i  w3, and 
w2 > i  C U ~ .  However, a2 does not strongly dominate R1, since (for example), it is 
not the case that w3 > i  C U I .  

Formally, a set of outcomes R1 strongly dominates set R2 if the following con- 
dition is true: 

Now, in order to bring ourselves in line with the game-theory literature, we will 
start referring to actions (members of the set Ac) as strategies. Given any par- 
ticular strategy s for an agent i in a multiagent interaction scenario, there will 
be a number of possible outcomes. Let us denote by s* the outcomes that may 
arise by i playing strategy s. For example, referring to the example environment 
in Equation (6.1), from agent i's point of view we have C* = (w3,  w4),  while 
D* = { w l ,  w2}.  

Now, we will say a strategy sl dominates a strategy sz if the set of outcomes 
possible by playing sl dominates the set possible by playing s2, that is, if S T  dom- 
inates s;. Again, referring back to the example of (6.5), it should be clear that, for 
agent i, cooperate strongly dominates defect. Indeed, as there are only two strate- 
gies available, the cooperate strategy is dominant: it is not dominated by any other 
strategy. The presence of a dominant strategy makes the decision about what to 
do extremely easy: the agent guarantees its best outcome by performing the dom- 
inant strategy. In following a dominant strategy, an agent guarantees itself the 
best possible payoff. 

Another way of looking at dominance is that if a strategy s is dominated by 
another strategy s f ,  then a rational agent will not follow s (because it can guaran- 
tee to do better with s') .  When considering what to do, this allows us to delete 
dominated strategies from our consideration, simplifying the analysis consid- 
erably. The idea is to iteratively consider each strategy s in turn, and if there 
is another remaining strategy that strongly dominates it, then delete strategy s 
from consideration. If we end up with a single strategy remaining, then this will be 
the dominant strategy, and is clearly the rational choice. Unfortunately, for many 
interaction scenarios, there will not be a strongly dominant strategy; after delet- 
ing strongly dominated strategies, we may find more than one strategy remaining. 
What to do then? Well, we can start to delete weakly dominated strategies. A strat- 
egy sl is said to weakly dominate strategy s2 if every outcome s;" is preferred at 
least as much as every outcome s;. The problem is that if a strategy is only weakly 
dominated, then it is not necessarily irrational to use it; in deleting weakly domi- 
nated strategies, we may therefore 'throw away' a strategy that would in fact have 
been useful to use. We will not take this discussion further; see the Notes and 
Further Reading section at the end of this chapter for pointers to the literature. 

The next notion we shall discuss is one of the most important concepts in 
the game-theory literature, and in turn is one of the most important concepts 
in analysing multiagent systems. The notion is that of equilibrium, and, more 
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specifically, Nash equilibrium. The intuition behnd equilibrium is perhaps best 
explained by example. Every time you drive a car, you need to decide whch  side 
of the road to drive on. The choice is not a very hard one: if you are in the UK, 
for example, you will probably choose to drive on the left; if you are in the US or 
continental Europe, you will drive on the right. The reason the choice is not hard 
is that it is a Nash equilibrium strategy. Assuming everyone else is driving on the 
left, you can do no better than drive on the left also. From everyone else's point 
of view, assuming you are driving on the left then everyone else can do no better 
than drive on the left also. 

In general, we will say that two strategies sl  and s;! are in Nash equilibrium if: 

(1) under the assumption that agent i plays s l ,  agent j can do no better than 
play s2 ; and 

(2) under the assumption that agent j plays s2, agent i can do no better than 
play s1- 

The mutual form of an equilibrium is important because it 'locks the agents in' 
to a pair of strategies. Neither agent has any incentive to deviate from a Nash 
equilibrium. To see why, suppose s l ,  s2 are a pair of strategies in Nash equilibrium 
for agents i and j, respectively, and that agent i chooses to play some other 
strategy, s3 say. Then by definition, i will do no better, and may possibly do worse 
than it would have done by playing sl.  

The presence of a Nash equilibrium pair of strategies in a game might appear 
to be the definitive answer to the question of what to do in any given scenario. 
Unfortunately, there are two important results in the game-theory literature whch  
serve to make life difficult: 

( 1 )  not every interaction scenario has a Nash equilibrium; and 

(2) some interaction scenarios have more than one Nash equilibrium. 

Despite these negative results, Nash equilibrium is an extremely important con- 
cept, and plays an important role in the analysis of multiagent systems. 

Competitive and Zero-Sum Interactions 
Suppose we have some scenario in whch  an outcome w  E R is preferred by 
agent i over an outcome w r  if, and only if, w' is preferred over w  by 
Formally, 

LO > i  w r  if and onlyif w r  > j  W .  

The preferences of the players are thus diametrically opposed to one anot 

agent j .  

her: one 
agent can only improve its lot (i.e. get a more preferred outcome) at the expense of 
the other. An interaction scenario that satisfies this property is said to be strictly 
competitive, for hopefully obvious reasons. 
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Zero-sum encounters are those in which, for any particular outcome, the utilities 
of the two agents sum to zero. Formally, a scenario is said to be zero sum if the 
following condition is satisfied: 

It should be easy to see that any zero-sum scenario is strictly competitive. Zero- 
sum encounters are important because they are the most 'vicious' types of 
encounter conceivable, allowing for no possibility of cooperative behaviour. If 
you allow your opponent positive utility, then t h s  means that you get negative 
utility - intuitively, you are worse off than you were before the interaction. 

Games such as chess and chequers are the most obvious examples of strictly 
competitive interactions. Indeed, any game in which the possible outcomes are 
win or lose will be strictly competitive. Outside these rather abstract settings, 
however, it is hard to think of real-world examples of zero-sum encounters. War 
might be cited as a zero-sum interaction between nations, but even in the most 
extreme wars, there will usually be at least some common interest between the 
participants (e.g. in ensuring that the planet survives). Perhaps games like chess - 
which are a highly stylized form of interaction - are the only real-world examples 
of zero-sum encounters. 

For these reasons, some social scientists are sceptical about whether zero-sum 
games exist in real-world scenarios (Zagare, 1984, p. 22). Interestingly, however, 
people interacting in many scenarios have a tendency to treat them as if they were 
zero sum. Below, we will see that in some scenarios - where there is the possibility 
of mutually beneficial cooperation - this type of behaviour can be damaging. 

Enough abstract theory! Let us now apply this theory to some actual multiagent 
scenarios. First, let us consider what is perhaps the best-known scenario: the pris- 
oner's dilemma. 

The Prisoner's Dilemma 
Consider the following scenario. 

Two men are collectively charged with a crime and held in separate 
cells. They have no way of communicating with each other or malung 
any kind of agreement. The two men are told that: 

(1) if one of them confesses to the crime and the other does not, the 
confessor will be freed, and the other will be jailed for three years; 
and 

(2)  if both confess to the crime, then each will be jailed for two years. 

Both prisoners know that if neither confesses, then they will each be 
jailed for one year. 
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We refer to confessing as defection, and not confessing as cooperating. Before 
reading any further, stop and t h n k  about this scenario: if you were one of the 
prisoners, what would you do? (Write down your answer somewhere, together 
with your reasoning; after you have read the discussion below, return and see 
how you fared.) 

There are four possible outcomes to the prisoner's dilemma, depending on 
whether the agents cooperate or defect, and so the environment is of type (6.1). 
Abstracting from the scenario above, we can write down the utility functions for 
each agent in the following payoff matrix: 

I i defects [ i cooperates 

j defects 

j cooperates 
0 3 

Note that the numbers in the payoff matrix do not refer to years in prison. They 
capture how good an outcome is for the agents - the shorter jail term, the better. 

In other words, the utilities are 

and the preferences are 

What should a prisoner do? The answer is not as clear cut as the previous examples 
we looked at. It is not the case a prisoner prefers all the outcomes in which it 
cooperates over all the outcomes in whch  it defects. Similarly, it is not the case 
that a prisoner prefers all the outcomes in which it defects over all the outcomes 
in which it cooperates. 

The 'standard' approach to this problem is to put yourself in the place of a 
prisoner, i say, and reason as follows. 

Suppose I cooperate. Then if j cooperates, we will both get a payoff of 3. 
But if j defects, then I will get a payoff of 0. So the best payoff I can be 
guaranteed to get if I cooperate is 0. 

Suppose I defect. Then if j cooperates, then I get a payoff of 5 ,  whereas if j 
defects, then I will get a payoff of 2 .  So the best payoff I can be guaranteed 
to get if I defect is 2 .  

So, if I cooperate, the worst case is I will get a payoff of 0, whereas if I defect, 
the worst case is that I will get 2 .  
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I would prefer a guaranteed payoff of 2 to a guaranteed payoff of 0, so I 
should defect. 

Since the scenario is symmetric (i.e. both agents reason the same way), then the 
outcome that will emerge - if both agents reason 'rationally' - is that both agents 
will defect, giving them each a payoff off 2. 

Notice that neither strategy strongly dominates in this scenario, so our first 
route to finding a choice of strategy is not going to work. Turning to Nash equi- 
libria, there is a single Nash equilibrium of D, D. Thus under the assumption that 
i will play D, j can do no better than play D, and under the assumption that j will 
play D, i can also do no better than play D. 

Is this the best they can do? Naive intuition says not. Surely if they both coop- 
erated, then they could do better - they would receive a payoff of 3.  But if you 
assume the other agent will cooperate, then the rational thing to do - the thing 
that maximizes your utility - is to defect, The conclusion seems inescapable: the 
rational thing to do in the prisoner's dilemma is defect, even though t h s  appears 
to 'waste' some utility. (The fact that our naive intuition tells us that utility appears 
to be wasted here, and that the agents could do better by cooperating, even though 
the rational thing to do is to defect, is why this is referred to as a dilemma.) 

The prisoner's dilemma may seem an abstract problem, but it turns out to be 
very common indeed. In the real world, the prisoner's dilemma appears in situa- 
tions ranging from nuclear weapons treaty compliance to negotiating with one's 
children. Consider the problem of nuclear weapons treaty compliance. Two coun- 
tries i and j have signed a treaty to dispose of their nuclear weapons. Each country 
can then either cooperate (i.e. get rid of their weapons), or defect (i.e. keep their 
weapons). But if you get rid of your weapons, you run the risk that the other 
side keeps theirs, malung them very well off while you suffer what is called the 
'sucker's payoff'. In contrast, if you keep yours, then the possible outcomes are 
that you will have nuclear weapons while the other country does not (a very good 
outcome for you), or else at worst that you both retain your weapons. This may 
not be the best possible outcome, but is certainly better than you giving up your 
weapons while your opponent kept theirs, which is what you risk if your give up 
your weapons. 

Many people find the conclusion of this analysis - that the rational thing to 
do in the prisoner's dilemma is defect - deeply upsetting. For the result seems 
to imply that cooperation can only arise as a result of irrational behaviour, and 
that cooperative behaviour can be exploited by those who behave rationally. The 
apparent conclusion is that nature really is 'red in tooth and claw'. Particularly 
for those who are inclined to a liberal view of the world, this is unsettling and 
perhaps even distasteful. As civilized beings, we tend to pride ourselves on some- 
how 'rising above' the other animals in the world, and believe that we are capable 
of nobler behaviour: to argue in favour of such an analysis is therefore somehow 
immoral, and even demeaning to the entire human race. 
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Naturally enough, there have been several attempts to respond to this analy- 
sis of the prisoner's dilemma, in order to 'recover' cooperation (Binmore, 1992, 
pp. 3 5 5-382). 

We are not all Machiavelli! 

The first approach is to argue that we are not all such 'hard-boiled' individuals as 
the prisoner's dilemma (and more generally, this kind of game-theoretic analysis) 
implies. We are not seeking to constantly maximize our own welfare, possibly 
at the expense of others. Proponents of this lund of argument typically point to 
real-world examples of altruism and spontaneous, mutually beneficial cooperative 
behaviour in order to justify their claim. 

There is some strength to t h s  argument: we do not (or at least, most of us do 
not) constantly deliberate about how to maximize our welfare without any con- 
sideration for the welfare of our peers. Similarly, in many scenarios, we would be 
happy to trust our peers to recognize the value of a cooperative outcome with- 
out even mentioning it to them, being no more than mildly annoyed if we get the 
'sucker's payoff'. 

There are several counter responses to ths .  First, it is pointed out that many 
real-world examples of spontaneous cooperative behaviour are not really the pris- 
oner's dilemma. Frequently, there is some built-in mechanism that makes it in the 
interests of participants to cooperate. For example, consider the problem of giv- 
ing up your seat on the bus. We will frequently give up our seat on the bus to an 
older person, mother with chldren, etc., apparently at some discomfort (i.e. loss 
of utility) to ourselves. But it could be argued that in such scenarios, society has 
ways of punishing non-cooperative behaviour: suffering the hard and unforgiv- 
ing stares of fellow passengers when we do not give up our seat, or worse, being 
accused in public of being uncouth! 

Second, it is argued that many 'counter-examples' of cooperative behaviour aris- 
ing do not stand up to inspection. For example, consider a public transport system, 
whch relies on everyone cooperating and honestly paying their fare every time 
they travel, even though whether they have paid is not verified. The fact that such 
a system works would appear to be evidence that relving on spontaneous cooper- 
ation can work. But the fact that such a system works does not mean that it is not 
exploited. It will be, and if there is no means of checking whether or not some- 
one has paid their fare and punishing non-compliance, then all other thngs being 
equal, those individuals that do exploit the system (defect) will be better off than 
those that pay honestly (cooperate). Unpalatable, perhaps, but true nevertheless. 

The other prisoner is my twin! 
A second line of attack is to argue that two prisoner's will ' thnk alike', and recog- 
nize that cooperation is the best outcome. For example, suppose the two prisoners 
are twins, unseparated since birth; then, it is argued, if their thought processes 
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are sufficiently aligned, they will both recognize the benefits of cooperation, and 
behave accordingly. The answer to this is that it implies there are not actually two 
prisoners playing the game. If I can make my twin select a course of action simply 
by 'thinking it', then we are not playing the prisoner's dilemma at all. 

This 'fallacy of the twins' argument often takes the form 'what if everyone were 
to behave like that' (Binmore, 1992, p. 3 11). The answer (as Yossarian pointed out 
in Joseph Heller's Catch 22) is that if everyone else behaved like that, you would 
be a damn fool to behave any other way. 

People are not rational! 

Some would argue - and game theorist Ken Binmore certainly did at the UKMAS 
workshop in December 1998 - that we might indeed be happy to risk cooperation 
as opposed to defection when faced with situations where the sucker's payoff 
really does not matter very much. For example, paying a bus fare that amounts to 
a few pennies does not really hurt us much, even if everybody else is defecting and 
hence exploiting the system. But, it is argued, when we are faced with situations 
where the sucker's payoff really hurts us - life or death situations and the like - we 
will choose the 'rational' course of action that maximizes our welfare, and defect. 

The shadow of  the future 

Lest the discussion has so far proved too depressing, it should be emphasized that 
there are quite natural variants of the prisoner's dilemma in which cooperation is 
the rational thing to do. One idea is to play the game more than once. In the iterated 
prisoner's dilemma, the 'game' of the prisoner's dilemma is played a number of 
times. Each play is referred to as a 'round'. Critically, it is assumed that each agent 
can see what the opponent did on the previous round: player i can see whether j 
defected or not, and j can see whether i defected or not. 

Now, for the sake of argument, assume that the agents will continue to play 
the game forever: every round will be followed by another round. Now, under 
these assumptions, what is the rational thing to do? If you know that you will be 
meeting the same opponent in future rounds, the incentive to defect appears to 
be considerably diminished, for two reasons. 

If you defect now, your opponent can punish you by also defecting. Punish- 
ment is not possible in the one-shot prisoner's dilemma. 

If you 'test the water' by cooperating initially, and receive the sucker's payoff 
on the first round, then because you are playmg the game indefinitely, t h s  
loss of utility (one util) can be 'amortized' over the future rounds. When 
taken into the context of an infinite (or at least very long) run, then the loss 
of a single unit of utility will represent a small percentage of the overall 
utility gained. 
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So, if you play the prisoner's dilemma game indefinitely, then cooperation is a 
rational outcome (Binmore, 1992, p. 358). The 'shadow of the future' encourages 
us to cooperate in the infinitely repeated prisoner's dilemma game. 

Ths seems to be very good news indeed, as truly one-shot games are compar- 
atively scarce in real life. When we interact with someone, then there is often a 
good chance that we will interact with them in the future, and rational cooperation 
begins to look possible. However, there is a catch. 

Suppose you agree to play the iterated prisoner's dilemma a fixed number of 
times (say 100). You need to decide (presumably in advance) what your strategy 
for playing the game will be. Consider the last round (i.e. the 100th game). Now, 
on ths  round, you know - as does your opponent - that you will not be interacting 
again. In other words, the last round is in effect a one-shot prisoner's dilemma 
game. As we know from the analysis above, the rational thng to do in a one- 
shot prisoner's dilemma game is defect. Your opponent, as a rational agent, will 
presumably reason likewise, and will also defect. On the 100th round, therefore, 
you will both defect. But this means that the last 'real' round, is 99. But similar 
reasoning leads us to the conclusion that this round will also be treated in effect 
like a one-shot prisoner's dilemma, and so on. Continuing this backwards induc- 
tion leads inevitably to the conclusion that, in the iterated prisoner's dilemma 
with a fixed, predetermined, commonly known number of rounds, defection is 
the dominant strategy, as in the one-shot version (Binmore, 1992, p. 354). 

Whereas it seemed to be very good news that rational cooperation is possible in 
the iterated prisoner's dilemma with an infinite number of rounds, it seems to be 
very bad news that this possibility appears to evaporate if we restrict ourselves 
to repeating the game a predetermined, fixed number of times. Returning to the 
real-world, we know that in reality, we will only interact with our opponents a 
h t e  number of times (after all, one day the world will end). We appear to be 
back where we started. 

The story is actually better than it might at first appear, for several reasons. 
The first is that actually playing the game an infinite number of times is not 
necessary. As long as the 'shadow of the future' looms sufficiently large, then it 
can encourage cooperation. So, rational cooperation can become possible if both 
players know, with sufficient probability, that they will meet and play the game 
again in the future. 

The second reason is that, even though a cooperative agent can suffer when 
playing against a defecting opponent, it can do well overall provided it gets suf- 
ficient opportunity to interact with other cooperative agents. To understand how 
ths  idea works, we will now turn to one of the best-known pieces of multiagent 
systems research: Axelrod's prisoner's dilemma tournament. 

Axelrod's tournament 
Robert Axelrod was (indeed, is) a political scientist interested in how coopera- 
tion can arise in societies of self-interested agents. In 1980, he organized a pub- 
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lic tournament in whch political scientists, psychologists, economists, and game 
theoreticians were invited to submit a computer program to play the iterated pris- 
oner's dilemma. Each computer program had available to it the previous choices 
made by its opponent, and simply selected either C or D on the basis of these. 
Each computer program was played against each other for five games, each game 
consisting of two hundred rounds. The 'winner' of the tournament was the pro- 
gram that did best overall, i.e. best when considered against the whole range of 
programs. The computer programs ranged from 152 lines of program code to just 
five lines. Here are some examples of the kinds of strategy that were submitted. 

ALL-D. This is the 'hawk' strategy, whch encodes what a game-theoretic analy- 
sis tells us is the 'rational' strategy in the finitely iterated prisoner's dilemma: 
always defect, no matter what your opponent has done. 

RANDOM. This strategy is a control: it ignores what its opponent has done on 
previous rounds, and selects either C or D at random, with equal probability of 
either outcome. 

TIT-FOR-TAT. This strategy is as follows: 

(1) on the first round, cooperate; 

(2)  on round t > 1, do what your opponent did on round t - 1. 

TIT-FOR-TAT was actually the simplest strategy entered, requiring only five lines 
of Fortran code. 

TESTER. This strategy was intended to exploit computer programs that did not 
punish defection: as its name suggests, on the first round it tested its opponent 
by defecting. If the opponent ever retaliated with defection, then it subsequently 
played TIT-FOR-TAT. If the opponent did not defect, then it played a repeated 
sequence of cooperating for two rounds, then defecting. 

JOSS. Like TESTER, the JOSS strategy was intended to exploit 'weak' opponents. 
It is essentially TIT-FOR-TAT, but 10% of the time, instead of cooperating, it will 
defect. 

Before proceeding, consider the following two questions. 

(1) On the basis of what you know so far, and, in particular, what you know of the 
game-theoretic results relating to the finitely iterated prisoner's dilemma, 
which strategy do you think would do best overall? 

(2) If you were entering the competition, which strategy would you enter? 

After the tournament was played, the result was that the overall winner was TIT- 
FOR-TAT: the simplest strategy entered. At first sight, this result seems extraor- 
dinary. It appears to be empirical proof that the game-theoretic analysis of the 
iterated prisoner's dilemma is wrong: cooperation is the rational thing to do, after 
all! But the result, while significant, is more subtle (and possibly less encouraging) 
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than this. TIT-FOR-TAT won because the overall score was computed by takmg 
into account all the strategies that it played against. The result when TIT-FOR- 
TAT was played against ALL-D was exactly as might be expected: ALL-D came 
out on top. Many people have misinterpreted these results as meaning that TIT- 
FOR-TAT is the optimal strategy in the iterated prisoner's dilemma. You should 
be careful not to interpret Axelrod's results in this way. TIT-FOR-TAT was able to 
succeed because it had the opportunity to play against other programs that were 
also inclined to cooperate. Provided the environment in whch TIT-FOR-TAT plays 
contains sufficient opportunity to interact with other 'like-minded' strategies, TIT- 
FOR-TAT can prosper. The TIT-FOR-TAT strategy will not prosper if it is forced to 
interact with strategies that tend to defect. 

Axelrod attempted to characterize the reasons for the success of TIT-FOR-TAT, 
and came up with the following four rules for success in the iterated prisoner's 
dilemma. 

(1) Do not be envious. In the prisoner's dilemma, it is not necessary for you to 
'beat' your opponent in order for you to do well. 

(2) Do not be the first to defect. Axelrod refers to a program as 'nice' if it starts 
by cooperating. He found that whether or not a rule was nice was the single best 
predictor of success in h s  tournaments. There is clearly a risk in starting with 
cooperation. But the loss of utility associated with receiving the sucker's payoff 
on the first round will be comparatively small compared with possible benefits 
of mutual cooperation with another nice strategy. 

(3) Reciprocate cooperation and defection. As Axelrod puts it, 'TIT-FOR-TAT 
represents a balance between punishing and being forgiving' (Axelrod, 1984, 
p. 119): the combination of punishing defection and rewarding cooperation 
seems to encourage cooperation. Although TIT-FOR-TAT can be exploited on 
the first round, it retaliates relentlessly for such non-cooperative behaviour. 
Moreover, TIT-FOR-TAT punishes with exactly the same degree of violence that 
it was the recipient of: in other words, it never 'overreacts' to defection. In addi- 
tion, because TIT-FOR-TAT is forgiving (it rewards cooperation), it is possible 
for cooperation to become established even following a poor start. 

(4) Do not be too clever. As noted above, TIT-FOR-TAT was the simplest pro- 
gram entered into Axelrod's competition. Either surprisingly or not, depending 
on your point of view, it fared significantly better than other programs that 
attempted to make use of comparatively advanced programming techniques in 
order to decide what to do. Axelrod suggests three reasons for this: 

(a) the most complex entries attempted to develop a model of the behaviour of 
the other agent while ignoring the fact that t h s  agent was in turn watching 
the original agent - they lacked a model of the reciprocal learning that 
actually takes place; 
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(b) most complex entries over generalized when seeing their opponent defect, 
and did not allow for the fact that cooperation was still possible in the 
future - they were not forgiving; 

(c) many complex entries exhibited behaviour that was too complex to be 
understood - to their opponent, they may as well have been acting ran- 
domly. 

From the amount of space we have devoted to discussing it, you might assume 
that the prisoner's dilemma was the only type of multiagent interaction there is. 
This is not the case. 

6.6 Other Symmetric 2 x 2 Interactions 

Recall the ordering of agent i's preferences in the prisoner's dilemma: 

Ths  is just one of the possible orderings of outcomes that agents may have. If we 
restrict our attention to interactions in which there are two agents, each agent has 
two possible actions (C or D), and the scenario is symmetric, then there are 4! = 24 
possible orderings of preferences, whch for completeness I have summarized in 
Table 6.1. (In the game-theory literature, these are referred to as symmetric 2 x 2 
games.) 

In many of these scenarios, what an agent should do is clear-cut. For example, 
agent i should clearly cooperate in scenarios (1) and (2), as both of the outcomes 
in which i cooperates are preferred over both of the outcomes in whch i defects. 
Similarly, in scenarios (23) and (24), agent i should clearly defect, as both out- 
comes in which it defects are preferred over both outcomes in whch it cooper- 
ates. Scenario (14) is the prisoner's dilemma, whch we have already discussed at 
length, which leaves us with two other interesting cases to examine: the stag hunt 
and the game of chicken. 

The stag hunt 

The stag hunt is another example of a social dilemma. The name stag hunt arises 
from a scenario put forward by the Swiss philosopher Jean-Jacques Rousseau in 
his 1775 Discourse on Inequality. However, to explain the dilemma, I will use a 
scenario that will perhaps be more relevant to readers at the beginning of the 
21 st century (Poundstone, 1992, pp. 2 18, 2 19). 

You and a friend decide it would be a great joke to show up on 
the last day of school with some ridiculous haircut. Egged on by your 
clique, you both swear you'll get the haircut. 
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Table 6.1 The possible preferences that agent i can have in symmetric interaction sce- 
narios where there are two agents, each of which has two available actions, C (cooperate) 
and D (defect); recall that X, Y means the outcome in which agent i plays X and agent j 
plays Y. 

Scenario Preferences over outcomes Comment 

1. C, C >i C, D >i D, C >i D, D cooperation dominates 
2. C, C >, C, D >, D, D >i D, C cooperation dominates 
3. C, C > i  D, C > i  C, D >i D, D 
4. C, C >, D, C >i D, D >i C, D stag hunt 
5. C, C >i D, D > i  C, D > i  D, C 
6 .  C, C >i D, D >i D, C > i  C, D 
7. C, D >i C, C >i D, C > i  D, D 
8. C , D  > i  C , C  >, D,D > i  D , C  
9. C,D >i D , C  >, C , C  >i D , D  

10. C, D >i D, C > i  D ,  D > i  C, C 
11. C, D >i D, D C, C >i D, C 
12. C, D > i  D, D >i D, C > i  C, C 
13. D, C >i C, C xi C, D > i  D, D game of chicken 
14. D, C > i  C, C > i D, D >i C, D prisoner's dilemma 
15. D , C  >i C , D  >i C , C  > i D , D  
16. D, C >i C, D > i  D, D xi C, C 
17. D , C  >i D , D  >i C , C  > i  C , D  
18. D, C >i D, D > i  C, D >i C, C 
19. D , D  > i C , C > i  C,D >i D , C  
20. D, D >i C, C >, D, C >i C, D 
2 1. D , D  >i C, D C, C >i D, C 
22. D , D  >i C , D  >i D , C  >, C , C  
23. D, D >i D, C >, C, C >i C, D defection dominates 
24. D, D >i D, C >, C, D > i  C, C defection dominates 

A night  of indecis ion follows. As y o u  anticipate y o u r  parents' and 
teachers'  react ions. .  .you s t a r t  wonder ing if y o u r  f r i end  is  really going 
t o  go t h r o u g h  wi th  t h e  plan.  

Not t h a t  y o u  do n o t  want the p lan  t o  succeed:  t h e  b e s t  possible 
outcome w o u l d  be for  b o t h  of you t o  ge t  t h e  haircut .  

The  t rouble  is,  i t  would be awful  t o  be the only one to  show up w i t h  
the  haircut .  T h a t  would be t h e  wors t  possible outcome.  

You're n o t  above enjoylng y o u r  fr iend's  embarrassment. If y o u  
didn't ge t  the haircut ,  b u t  the f r iend did ,  and looked like a real  jerk, 
tha t  would be a lmos t  as g o o d  as if y o u  both got the haircut .  

This scenario is obviously very close t o  t h e  pr isoner ' s  di lemma: t h e  difference is 
that i n  this  scenario,  mutual coopera t ion is the m o s t  preferred  ou tcome,  r a the r  
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than you defecting while your opponent cooperates. Expressing the game in a 
payoff matrix (picking rather arbitrary payoffs to give the preferences): 

I i defects 1 i cooperates 

j defects 

j cooperates 
0 

It should be clear that there are two Nash equilibria in this game: mutual defec- 
tion, or mutual cooperation. If you trust your opponent, and believe that he will 
cooperate, then you can do no better than cooperate, and vice versa, your oppo- 
nent can also do no better than cooperate. Conversely, if you believe your oppo- 
nent will defect, then you can do no better than defect yourself, and vice versa. 

Poundstone suggests that 'mutiny' scenarios are examples of the stag hunt: 
'We'd all be better off if we got rid of Captain Bligh, but we'll be hung as mutineers 
if not enough of us go along' (Poundstone, 1992, p. 220). 

The game of chicken 

The game of chicken (row 13 in Table 6.1) is characterized by agent L having the 
following preferences: 

As with the stag hunt, this game is also closely related to the prisoner's dilemma. 
The difference here is that mutual defection is agent i's most feared outcome, 
rather than i cooperating while j defects. The game of chicken gets its name 
from a rather silly, macho 'game' that was supposedly popular amongst juvenile 
delinquents in 1950s America; the game was immortalized by James Dean in the 
film Rebel Without a Cause. The purpose of the game is to establish who is bravest 
out of two young thugs. The game is played by both players driving their cars at 
high speed towards a cliff. The idea is that the least brave of the two (the 'chicken') 
will be the first to drop out of the game by steering away from the cliff. The winner 
is the one who lasts longest in the car. Of course, if neither player steers away, 
then both cars fly off the cliff, tahng their foolish passengers to a fiery death on 
the rocks that undoubtedly lie below. 

So, how should agent i play this game? It depends on how brave (or foolish) i 
believes j is. If i believes that j is braver than i, then i would do best to steer away 
from the cliff (i.e. cooperate), since it is unlikely that j will steer away from the 
cliff. However, if i believes that j is less brave than i, then i should stay in the car; 
because j is less brave, he will steer away first, allowing i to win. The difficulty 
arises when both agents mistakenly believe that the other is less brave; in this 
case, both agents will stay in their car (i.e. defect), and the worst outcome arises. 
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Expressed as a payoff matrix, the game of chicken is as follows: 

I i defects I i cooperates 

It should be clear that the game of chicken has two Nash equilibria, corresponding 
to the above-right and below-left cells. Thus if you believe that your opponent is 
going to drive straight (i-e. defect), then you can do no better than to steer away 
from the cliff, and vice versa. Similarly, if you believe your opponent is going to 
steer away, then you can do no better than to drive straight. 

j cooperates 

Dependence Relations in Multiagent Systems 

Before leaving the issue of interactions, I will briefly discuss another approach 
to understanding how the properties of a multiagent system can be understood. 
Ths  approach, due to Sichman and colleagues, attempts to understand the depen- 
dencies between agents (Sichman et al., 1994; Sichman and Demazeau, 1995). The 
basic idea is that a dependence relation exists between two agents if one of the 
agents requires the other in order to achieve one of its goals. There are a number 
of possible dependency relations. 

3 
1 

Independence. There is no dependency between the agents. 

2 
2 

Unilateral. One agent depends on the other, but not vice versa. 

Mutual. Both agents depend on each other with respect to the same goal. 

Reciprocal dependence. The first agent depends on the other for some goal, 
while the second also depends on the first for some goal (the two goals are not 
necessarily the same). Note that mutual dependence implies reciprocal depen- 
dence. 

These relationships may be qualified by whether or not they are locally believed 
or mutually believed. There is a locally believed dependence if one agent believes 
the dependence exists, but does not believe that the other agent believes it exists. 
A mutually believed dependence exists when the agent believes the dependence 
exists, and also believes that the other agent is aware of it. Sichman and colleagues 
implemented a social reasoning system called DepNet (Sichman et al., 1994). Given 
a description of a multiagent system, DepNet was capable of computing the rela- 
tionships that existed between agents in the system. 
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Notes and Further Reading 
Ken Binmore, in his lucid and entertaining introduction to game theory, Fun and 
Games, discusses the philosophical implications of the prisoner's dilemma at 
length (Binmore, 1992, p. 310-316). This text is recommended as a readable - 
albeit mathematically demanding - introduction to game theory, which provides 
extensive pointers into the literature. 

There are many other interesting aspects of Axelrod's tournaments that I can 
only briefly mention due to space restrictions. The first is that of noise. I mentioned 
above that the iterated prisoner's dilemma is predicated on the assumption that 
the participating agents can see the move made by their opponent: they can see, 
in other words, whether their opponent defects or cooperates. But suppose the 
game allows for a certain probability that on any given round, an agent will mis- 
interpret the actions of its opponent, and perceive cooperation to be defection 
and vice versa. Suppose two agents are playing the iterated prisoner's dilemma 
against one another, and both are playing TIT-FOR-TAT. Then both agents will 
start by cooperating, and in the absence of noise, will continue to enjoy the fruits 
of mutual cooperation. But if noise causes one of them to misinterpret defec- 
tion as cooperation, then this agent will retaliate to the perceived defection with 
defection. The other agent will retaliate in turn, and both agents will defect, then 
retaliate, and so on, losing significant utility as a consequence. Interestingly, coop- 
eration can be restored if further noise causes one of the agents to misinterpret 
defection as cooperation - this will then cause the agents to begin cooperating 
again! Axelrod (1984) is recommended as a point of departure for further read- 
ing; Mor and Rosenschein (1995) provides pointers into recent prisoner's dilemma 
literature; a collection of Axelrod's more recent essays was published as Axelrod 
(1997). A non-mathematical introduction to game theory, with an emphasis on 
the applications of game theory in the social sciences, is Zagare (1984). 
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Exercises 
(1) [Level 1.1 

Consider the following sets of outcomes and preferences: 

UJ(j X 1  W >  X I  U):j LV1 X i  LV, X I  LV3; 

f l l  = itu1, w.3 I ;  
a2 = I(~.j ,w41; 

fl:{ = { w , ~ } ;  and 

f l 4  = { w 2 ,  0 6 ; ) .  

Which of these sets (if any) dominates the others'! Where neither set dominates the other, 
indicate this. 

(2) [Level 2.1 

Consider the following interaction scenarios: 

I i defects I i cooperates 

j defects 

I i defects I i cooperates 

j cooperates 

3 
3 

-1 
j cooperates 

1 2  1 - 1  

4 
2 

1 
1 

j defects 

I i defects 1 i cooDerates 

2 
4 

- 1 
-1 

j cooperates 
I 4  

2 
I 1  

2 
1 

j defects 

Now, for each of these scenarios, 

begin by informally analysing the scenario to determine what the two agents should 
do; 

3 
3 

classify the preferences that agents have with respect to outcomes; 

4 
2 

determine which strategies are strongly or weakly dominated; 

- use the idea of deleting strongly dominated strategies to simplify the scenario where 
appropriate; 

identify any Nash equilibria. 
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( 3 )  [Class discussion.] 

This is best done as a class exercise, in groups of three: play the prisoner's dilemma. 
Use one of the three as 'umpire', to keep track of progress and scores, and to stop any 
outbreaks of violence. First try playing the one-shot game a few times, and then try the 
iterated version, first for an agreed, predetermined number of times, and then allowing 
the umpire to choose how many times to iterate without telling the players. 

Which strategies do best in the one-shot and iterated prisoner's dilemma? 

Try playing people against strategies such as TIT-FOR-TAT, and ALL-D. 

Try getting people to define their strategy precisely in advance (by writing it down), 
and then see if you can determine their strategy while playing the game; distribute 
their strategy, and see if it can be exploited. 

(4) [Level 2.1 
For each of the scenarios in Table 6.1 that was not discussed in the text, 

draw up a payoff matrix that characterizes the scenario (remembering that these 
arc symmetric interaction scenarios); 

attempt to determine what an agent should do; 

identify, if possible, a real-world interaction situation that corresponds to the 
abstract scenario. 



Reaching 
Agreements 

An obvious problem, related to the issue of cooperation, is that of reaching agree- 
ments in a society of self-interested agents. In the multiagent world that we all 
inhabit every day, we are regularly required to interact with other individuals with 
whom we may well not share common goals. In the most extreme scenario, as dis- 
cussed in the preceding chapter, we may find ourselves in a zero-sum encounter. 
In such an encounter, the only way we can profit is at the expense of our oppo- 
nents. In general, however, most scenarios in which we find ourselves are not so 
extreme - in most realistic scenarios, there is some potential for agents to reach 
mutually beneficial agreement on matters of common interest. The ability to reach 
agreements (without a third party dictating terms!) is a fundamental capability of 
intelligent autonomous agents - without this capability, we would surely find it 
impossible to function in society. The capabilities of negotiation and argumenta- 
tion are central to the ability of an agent to reach agreement. 

Negotiation scenarios do not occur in a vacuum: they will be governed by a 
particular mechanism, or protocol. The protocol defines the 'rules of encounter' 
between agents (Rosenschein and Zlotkin, 1994). It is possible to design protocols 
so that any particular negotiation history has certain desirable properties - this 
is mechanism design, and is discussed in more detail below. 

A second issue is, given a particular protocol, how can a particular strategy 
be designed that individual agents can use while negotiating - an agent will aim 
to use a strategy that maximizes its own individual welfare. A key issue here is 
that, since we are interested in actually building agents that will be capable of 
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negotiating on our behalf, it is not enough simply to have agents that get the best 
outcome in theory - they must be able to obtain the best outcome in practice. 

In the remainder of this chapter, I will discuss the process of reaching agree- 
ments through negotiation and argumentation. I will start by considering the issue 
of mechanism design - broadly, what properties we might want a negotiation or 
argumentation protocol to have - and then go on to discuss auctions, negotiation 
protocols and strategies, and finally argumentation. 

Mechanism Design 
As noted above, mechanism design is the design of protocols for governing multi- 
agent interactions, such that these protocols have certain desirable properties. 
When we design 'conventional' communication protocols, we typically aim to 
design them so that (for example) they are provably free of deadlocks, live- 
locks, and so on (Holzmann, 1991). In multiagent systems, we are still con- 
cerned with such issues of course, but for negotiation protocols, the properties we 
would like to prove are slightly different. Possible properties include, for example 
(Sandholm, 1999, p. 204), the following. 

Guaranteed success. A protocol guarantees success if it ensures that, eventually, 
agreement is certain to be reached. 

Maximizing social welfare. Intuitively, a protocol maximizes social welfare if it 
ensures that any outcome maximizes the sum of the utilities of negotiation par- 
ticipants. If the utility of an outcome for an agent was simply defined in terms 
of the amount of money that agent received in the outcome, then a protocol that 
maximized social welfare would maximize the total amount of money 'paid out'. 

Pareto efficiency. A negotiation outcome is said to be pareto efficient if there is 
no other outcome that will make at least one agent better off without malung 
at least one other agent worse off. Intuitively, if a negotiation outcome is not 
pareto efficient, then there is another outcome that will make at least one agent 
happier while keeping everyone else at least as happy. 

Individual rationality. A protocol is said to be individually rational if following 
the protocol - 'playing by the rules' - is in the best interests of negotiation 
participants. Individually rational protocols are essential because without them, 
there is no incentive for agents to engage in negotiations. 

Stability. A protocol is stable if it provides all agents with an incentive to behave 
ruilibrium, as in a particular way. The best-known kind of stability is Nash eq 

discussed in the preceding chapter. 

'implicity. A 'simple' protocol is one that makes the appropriate 
a negotiation participant 'obvious'. That is, a protocol is simple 
participant can easily (tractably) determine the optimal strategy. 

strategy for 
if using it, a 
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Distribution. A protocol should ideally be designed to ensure that there is no 'sin- 
gle point of failure' (such as a single arbitrator) and, ideally, so as to minimize 
communication between agents. 

The fact that even quite simple negotiation protocols can be proven to have such 
desirable properties accounts in no small part for the success of game-theoretic 
techniques for negotiation (Kraus, 1997). 

Auctions 
Auctions used to be comparatively rare in everyday life; every now and then, one 
would hear of astronomical sums paid at auction for a painting by Monet or Van 
Gogh, but other than this, they did not enter the lives of the majority. The Internet 
and Web fundamentally changed this. The Web made it possible for auctions with a 
large, international audience to be carried out at very low cost. This in turn made 
it possible for goods to be put up for auction which hitherto would have been 
too uneconomical. Large businesses have sprung up around the idea of online 
auctions, with eBay being perhaps the best-known example (EBAY, 200 1). 

One of the reasons why online auctions have become so popular is that auctions 
are extremely simple interaction scenarios. This means that it is easy to automate 
auctions; this makes them a good first choice for consideration as a way for agents 
to reach agreements. Despite their simplicity, auctions present both a rich collec- 
tion of problems for researchers, and a powerful tool that automated agents can 
use for allocating goods, tasks, and resources. 

Abstractly, an auction takes place between an agent known as the auctioneer 
and a collection of agents known as the bidders. The goal of the auction is for the 
auctioneer to allocate the good to one of the bidders. In most settings - and cer- 
tainly most traditional auction settings - the auctioneer desires to maximize the 
price at which the good is allocated, while bidders desire to minimize price. The 
auctioneer will attempt to achieve his desire through the design of an appropriate 
auction mechanism - the rules of encounter - while bidders attempt to achieve 
their desires by using a strategy that will conform to the rules of encounter, but 
that will also deliver an optimal result. 

There are several factors that can affect both the protocol and the strategy that 
agents use. The most important of these is whether the good for auction has a 
private or a public/common value. Consider an auction for a one dollar bill. How 
much is this dollar bill worth to you? Assuming it is a 'typical' dollar bill, then 
it should be worth exactly $1; if you paid $2 for it, you would bc $1 worse off 
than you were. The same goes for anyone else involved in this auction. A typical 
dollar bill thus has a common value: it is worth exactly the same to all bidders in 
the auction. However, suppose you were a big fan of the Beatles, and the dollar 
bill happened to be the last dollar bill that John Lennon spent. Then it may well 
be that, for sentimental reasons, this dollar bill was worth considerably more to 
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you - you might be willing to pay $100 for it. To a fan of the Rolling Stones, with 
no interest in or liking for the Beatles, however, the bill might not have the same 
value. Someone with no interest in the Beatles whatsoever might value the one 
dollar bill at exactly $1. In this case, the good for auction - the dollar bill - is said 
to have a private value: each agent values it differently. 

A third type of valuation is correlated value: in such a setting, an agent's valu- 
ation of the good depends partly on private factors, and partly on other agent's 
valuation of it. An example might be where an agent was bidding for a painting 
that it liked, but wanted to keep open the option of later selling the painting. In 
this case, the amount you would be willing to pay would depend partly on how 
much you liked it, but also partly on how much you believed other agents might 
be willing to pay for it if you put it up for auction later. 

Let us turn now to consider some of the dimensions along which auction pro- 
tocols may vary. The first is that of winner determination: who gets the good that 
the bidders are bidding for. In the auctions with which we are most familiar, the 
answer to this question is probably self-evident: the agent that bids the most is 
allocated the good. Such protocols are known as first-price auctions. This is not 
the only possibility, however. A second possibility is to allocate the good to the 
agent that bid the highest, but this agent pays only the amount of the second 
highest bid. Such auctions are known as second-price auctions. 

At first sight, it may seem bizarre that there are any settings in which a second- 
price auction is desirable, as this implies that the auctioneer does not get as much 
for the good as it could do. However, we shall see below that there are indeed some 
settings in which a second-price auction is desirable. 

The second dimension along which auction protocols can vary is whether or 
not the bids made by the agents are known to each other. If every agent can see 
what every other agent is bidding (the terminology is that the bids are common 
knowledge), then the auction is said to be open cry. If the agents are not able to 
determine the bids made by other agents, then the auction is said to be a sealed-bid 
auction. 

A third dimension is the mechanism by whch bidding proceeds. The simplest 
possibility is to have a single round of bidding, after which the auctioneer allo- 
cates the good to the winner. Such auctions are known as one shot. The second 
possibility is that the price starts low (often at a reservation price) and successive 
bids are for increasingly large amounts. Such auctions are known as ascending. 
The alternative - descending - is for the auctioneer to start off with a high value, 
and to decrease the price in successive rounds. 

English auctions 

English auctions are the most commonly known type of auction, made famous by 
such auction houses as Sothebys. English auction are first-price, open cry, ascend- 
ing auctions: 
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the auctioneer starts off by suggesting a reservation price for the good (which 
may be 0) - if no agent is willing to bid more than the reservation price, then 
the good is allocated to the auctioneer for this amount; 

bids are then invited from agents, who must bid more than the current high- 
est bid - all agents can see the bids being made, and are able to participate 
in the bidding process if they so desire; 

when no agent is willing to raise the bid, then the good is allocated to the 
agent that has made the current highest bid, and the price they pay for the 
good is the amount of this bid. 

What strategy should an agent use to bid in English auctions? It turns out that 
the dominant strategy is for an agent to successively bid a small amount more 
than the current highest bid until the bid price reaches their current valuation, 
and then to withdraw. 

Simple though English auctions are, it turns out that they have some interesting 
properties. One interesting feature of English auctions arises when there is uncer- 
tainty about the true value of the good being auctioned. For example, suppose an 
auctioneer is selling some land to agents that want to exploit it for its mineral 
resources, and that there is limited geological information available about this 
land. None of the agents thus knows exactly what the land is worth. Suppose now 
that the agents engage in an English auction to obtain the land, each using the 
dominant strategy described above. When the auction is over, should the winner 
feel happy that they have obtained the land for less than or equal to their private 
valuation? Or should they feel worried because no other agent valued the land 
so highly? This situation, where the winner is the one who overvalues the good 
on offer, is known as the winner's curse. Its occurrence is not limited to English 
auctions, but occurs most frequently in these. 

Dutch auctions 

Dutch auctions are examples of open-cry descending auctions: 

the auctioneer starts out offering the good at some artificially high value 
(above the expected value of any bidder's valuation of it); 

the auctioneer then continually lowers the offer price of the good by some 
small value, until some agent makes a bid for the good which is equal to the 
current offer price; 

the good is then allocated to the agent that made the offer. 

Notice that Dutch auctions are also susceptible to the winner's curse. There is no 
dominant strategy for Dutch auctions in general. 
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First-price seated-bid auctions 

First-price sealed-bid auctions are examples of one-shot auctions, and are perhaps 
the simplest of all the auction types we will consider. In such an auction, there 
is a single round, in whch bidders submit to the auctioneer a bid for the good; 
there are no subsequent rounds, and the good is awarded to the agent that made 
the hghest bid. The winner pays the price of the hghest bid. There are hence no 
opportunities for agents to offer larger amounts for the good. 

How should an agent act in first-price sealed-bid auctions? Suppose every agent 
bids their true valuation; the good is then awarded to the agent that bid the highest 
amount. But consider the amount bid by the second highest bidder. The winner 
could have offered just a tiny fraction more than the second hlghest price, and 
still been awarded the good. Hence most of the difference between the highest and 
second highest price is, in effect, money wasted as far as the winner is concerned. 
The best strategy for an agent is therefore to bid less than its true valuation. How 
much less will of course depend on what the other agents bid - there is no general 
solution. 

Vickrey auctions 

The next type of auction is the most unusual and perhaps most counterintuitive 
of all the auction types we shall consider. Vickrey auctions are second-price sealed- 
bid auctions. This means that there is a single negotiation round, during which 
each bidder submits a single bid; bidders do not get to see the bids made by other 
agents. The good is awarded to the agent that made the highest bid; however 
the price this agent pays is not the price of the highest bid, but the price of the 
second highest bid. Thus if the hghest bid was made by agent i, who bid $9, and 
the second highest bid was by agent j ,  who bid $8, then agent i would win the 
auction and be allocated the good, but agent i would only pay $8. 

Why would one even consider using Vickrey auctions? The answer is that Vick- 
rey auctions make truth telling the dominant strategy: a bidder's dominant strat- 
egy in a private value Vickrey auction is to bid his true valuation. Consider why 
this is. 

Suppose that you bid more than your true valuation. In thls case, you may 
be awarded the good, but you run the risk of being awarded the good but 
at more than the amount of your private valuation. If you win in such a 
circumstance, then you make a loss (since you paid more than you believed 
the good was worth). 

Suppose you bid less than your true valuation. In this case, note that you 
stand less chance of winning than if you had bid your true valuation. But, 
even if you do win, the amount you pay will not have been affected by the 
fact that you bid less than your true valuation, because you will pay the price 
of the second highest bid. 
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Thl IS the best thing to do in a Vickre y auction is to bid trl ~thfully: to bid to your 
private valuation - no more and no less. 

Because they make truth telling the dominant strategy, Vickrey auctions have 
received a lot of attention in the multiagent systems literature (see Sandholm 
(1999, p. 213) for references). However, they are not widely used in human auc- 
tions. There are several reasons for this, but perhaps the most important is that 
humans frequently find the Vickrey mechanism hard to understand, because at 
first sight it seems so counterintuitive. In terms of the desirable attributes that 
we discussed above, it is not simple for humans to understand. 

Note that Vickrey auctions make it possible for antisocial behaviour. Suppose 
you want some good and your private valuation is $90, but you know that some 
other agent wants it and values it at $100. As truth telling is the dominant strategy, 
you can do no better than bid $90; your opponent bids $100, is awarded the good, 
but pays only $90. Well, maybe you are not too happy about this: maybe you would 
like to 'punish' your successful opponent. How can you do this? Suppose you bid 
$99 instead of $90. Then you still lose the good to your opponent - but he pays $9 
more than he would do i f  you had bid truthfully. To make t h s  work, of course, you 
have to be very confident about what your opponent will bid - you do not want 
to bid $99 only to discover that your opponent bid $95, and you were left with a 
good that cost $5 more than your private valuation. This kind of behaviour occurs 
in commercial situations, where one company may not be able to compete directly 
with another company, but uses their position to try to force the opposition into 
bankruptcy. 

Expected revenue 

There are several issues that should be mentioned relating to the types of auctions 
discussed above. The first is that of expected revenue. If you are an auctioneer, 
then as mentioned above, your overriding consideration will in all likelihood be 
to maximize your revenue: you want an auction protocol that will get you the 
hlghest possible price for the good on offer. You may well not be concerned with 
whether or not agents tell the truth, or whether they are afflicted by the winner's 
curse. It may seem that some protocols - Vickrey's mechanism in particular - do 
not encourage ths .  So, whch should the auctioneer choose? 

For private value auctions, the answer depends partly on the attitude to risk of 
both auctioneers and bidders (Sandholm, 1999, p. 214). 

For risk-neutral bidders, the expected revenue to the auctioneer is provably 
identical in all four types of auctions discussed above (under certain simple 
assumptions). That is, the auctioneer can expect on average to get the same 
revenue for the good using all of these types of auction. 

For risk-averse bidders (i.e. bidders that would prefer to get the good even 
if they paid slightly more for it than their private valuation), Dutch and 
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first-price sealed-bid protocols lead to hgher expected revenue for the auc- 
tioneer. This is because in these protocols, a risk-averse agent can 'insure' 
himself by bidding slightly more for the good than would be offered by a 
risk-neutral bidder. 

Risk-uverse auctioneers, however, do better with Vickrey or English auctions. 

Note that these results should be treated very carefully. For example, the first 
result, relating to the revenue equivalence of auctions given risk-neutral bidders, 
depends critically on the fact that bidders really do have private valuations. In 
choosing an appropriate protocol, it is therefore critical to ensure that the prop- 
erties of the auction scenario - and the bidders - are understood correctly. 

Lies and collusion 

An interesting question is the extent to whch the protocols we have discussed 
above are susceptible to lylng and collusion by both bidders and auctioneer. Ide- 
ally, as an auctioneer, we would like a protocol that was immune to collusion by 
bidders, i.e. that made it against a bidder's best interests to engage in collusion 
with other bidders. Similarly, as a potential bidder in an auction, we would like a 
protocol that made honesty on the part of the auctioneer the dominant strategy. 

None of the four auction types discussed above is immune to collusion. For any 
of them, the 'grand coalition' of all agents involved in bidding for the good can 
agree beforehand to collude to put forward artificially low bids for the good on 
offer. When the good is obtained, the bidders can then obtain its true value (hgher 
than the artificially low price paid for it), and split the profits amongst themselves. 
The most obvious way of preventing collusion is to modify the protocol so that 
bidders cannot identify each other. Of course, t h s  is not popular with bidders in 
open-cry auctions, because bidders will want to be sure that the information they 
receive about the bids placed by other agents is accurate. 

With respect to the honesty or otherwise of the auctioneer, the main opportunity 
for lylng occurs in Vickrey auctions. The auctioneer can lie to the winner about 
the price of the second hghest bid, by overstating it and thus forcing the winner 
to pay more than they should. One way around this is to 'sign' bids in some way 
(e.g. through the use of a digital signature), so that the winner can independently 
verify the value of the second hghest bid. Another alternative is to use a trusted 
third party to handle bids. In open-cry auction settings, there is no possibility 
for lying by the auctioneer, because all agents can see all other bids; first-price 
sealed-bid auctions are not susceptible because the winner will know how much 
they offered. 

Another possible opportunity for lylng by the auctioneer is to place bogus bid- 
ders, known as shills, in an attempt to artificially inflate the current bidding price. 
Shlls are only a potential problem in English auctions. 
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Counterspeculation 
Before we leave auctions, there is at  least one other issue worth mentioning: that of 
counterspeculation. T h s  is the process of a bidder engaging in an activity in order 
to obtain information either about the true value of the good on offer, or about 
the valuations of other bidders. Clearly, if counterspeculation was free (i.e. it did 
not cost anythng in terms of time or money) and accurate (i.e. counterspeculation 
would accurately reduce an agent's uncertainty either about the true value of the 
good or the value placed on it by other bidders), then every agent would engage in 
it at every opportunity. However, in most settings, counterspeculation is not free: 
it may have a time cost and a monetary cost. The time cost will matter in auction 
settings (e.g. English or Dutch) that depend heavily on the time at which a bid is 
made. Slrnilarly, investing money in counterspeculation will only be worth it if, as a 
result, the bidder can expect to be no worse off than if it did not counterspeculate. 
In deciding whether to speculate, there is clearly a tradeoff to be made, balancing 
the potential gains of counterspeculation against the costs (money and time) that 
itwill entail. (It is worth mentioning that counterspeculation can be thought of as a 
kind of meta-level reasoning, and the nature of these tradeoffs is thus very similar 
to that of the tradeoffs discussed in practical reasoning agents as discussed in 
earlier chapters.) 

Negotiation 
Auctions are a very useful techniques for allocating goods to agents. However, 
they are too simple for many settings: they are only concerned with the allocation 
of goods. For more general settings, where agents must reach agreements on mat- 
ters of mutual interest, richer techniques for reaching agreements are required. 
Negotiation is the generic name given to such techniques. In this section, we will 
consider some negotiation techniques that have been proposed for use by artifi- 
cial agents - we will focus on the work of Rosenschein and Zlotlun (1994). One 
of the most important contributions of their work was to introduce a distinction 
between different types of negotiation domain: in particular, they distinguished 
between task-oriented domains and worth-oriented domains. 

Before we start to discuss this work, however, it is worth saying a few words 
about negotiation techniques in general. In general, any negotiation setting will 
have four different components. 

A negotiation set, which represents the space of possible proposals that 
agents can make. 

A protocol, which defines the legal proposals that agents can make, as a 
function of prior negotiation history. 

A collection of strategies, one for each agent, which determine what propos- 
als the agents will make. Usually, the strategy that an agent plays is private: 
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the fact that an agent is using a particular strategy is not generally visible to 
other negotiation participants (although most negotiation settings are 'open 
cry', in the sense that the actual proposals that are made are seen by all par- 
ticipants). 

A rule that determines when a deal has been struck, and what t h s  agreement 
deal is. 

Negotiation usually proceeds in a series of rounds, with every agent making a 
proposal at every round. The proposals that agents make are defined by their 
strategy, must be drawn from the negotiation set, and must be legal, as defined 
by the protocol. If agreement is reached, as defined by the agreement rule, then 
negotiation terminates with the agreement deal. 

These four parameters lead to an extremely rich and complex environment for 
analysis. 

The first attribute that may complicate negotiation is where multiple issues are 
involved. An example of a single-issue negotiation scenario might be where two 
agents were negotiating only the price of a particular good for sale. In such a 
scenario, the preferences of the agents are symmetric, in that a deal which is more 
preferred from one agent's point of view is guaranteed to be less preferred from 
the other's point of view, and vice versa. Such symmetric scenarios are simple to 
analyse because it is always obvious what represents a concession: in order for 
the seller to concede, he must lower the price of his proposal, while for the buyer 
to concede, he must raise the price of his proposal. In multiple-issue negotiation 
scenarios, agents negotiate over not just the value of a single attribute, but over 
the values of multiple attributes, which may be interrelated. For example, when 
buying a car, price is not the only issue to be negotiated (although it may be 
the dominant one). In addition, the buyer might be interested in the length of 
the guarantee, the terms of after-sales service, the extras that might be included 
such as air conditioning, stereos, and so on. In multiple-issue negotiations, it is 
usually much less obvious what represents a true concession: it is not simply the 
case that all attribute values must be either increased or decreased. (Salesmen in 
general, and car salesmen in particular, often exploit this fact during negotiation 
by making 'concessions' that are in fact no such thing.) 

Multiple attributes also lead to an exponential growth in the space of possible 
deals. Let us take an example of a domain in whch agents are negotiating over 
the value of n Boolean variables, v l ,  . . . , v,. A deal in such a setting consists of 
an assignment of either true or false to each variable Ui. Obviously, there are Z n  
possible deals in such a domain. T h s  means that, in attempting to decide what 
proposal to make next, it will be entirely unfeasible for an agent to explicitly con- 
sider every possible deal in domains of moderate size. Most negotiation domains 
are, of course, much more complex than this. For example, agents may need to 
negotiate about the value of attributes where these attributes can have m possible 
values, leading to a set of nzn possible deals. Worse, the objects of negotiation 
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may be individually very complex indeed. In real-world negotiation settings - such 
as labour disputes or (to pick a rather extreme example) the kind of negotiation 
that, at the time of writing, was still going on with respect to the political future 
of Northern Ireland, there are not only many attributes, but the value of these 
attributes may be laws, procedures, and the like. 

The negotiation participants may even have difficulty reaching agreement on 
what the attributes under negotiation actually are - a rather depressing real-world 
example, again from Northern Ireland, is whether or not the decommissioning of 
paramilitary weapons should be up for negotiation. At times, it seems that the 
dfferent sides in this long-standing dispute have simultaneously had different 
beliefs about whether decommissioning was up for negotiation or not. 

Another source of complexity in negotiation is the number of agents involved 
in the process, and the way in which these agents interact. There are three obvious 
possibilities. 

One-to-one negotiation. In which one agent negotiates with just one other agent. 
A particularly simple case of one-to-one negotiation is that where the agents 
involved have symmetric preferences with respect to the possible deals. An 
example from everyday life would be the type of negotiation we get involved 
in when discussing terms with a car salesman. We will see examples of such 
symmetric negotiation scenarios later. 

Many-to-one negotiation. In this setting, a single agent negotiates with a number 
of other agents. Auctions, as discussed above, are one example of many-to-one 
negotiation. For the purposes of analysis, many-to-one negotiations can often 
be treated as a number of concurrent one-to-one negotiations. 

Many-to-many negotiation. In this setting, many agents negotiate with many 
other agents simultaneously. In the worst case, where there are n agents 
involved in negotiation in total, this means there can be up to n(n  - 1 ) / 2  
negotiation threads. Clearly, from an analysis point of view, this makes such 
negotiations hard to handle. 

For these reasons, most attempts to automate the negotiation process have 
focused on rather simple settings. Single-issue, symmetric, one-to-one negotia- 
tion is the most commonly analysed, and it is on such settings that I will mainly 
focus. 

Task-oriented domains 

The first type of negotiation domains we shall consider in detail are the task- 
oriented domains of Rosenschein and Zlotlun (1994, pp. 29-52). Consider the fol- 
lowing example. 
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Imagine that you have three chldren, each of whom needs to be deliv- 
ered to a different school each morning. Your neighbour has four chl-  
dren, and also needs to take them to school. Delivery of each chld  
can be modelled as an indivisible task. You and your neighbour can 
discuss the situation, and come to an agreement that it is better for 
both of you (for example, by carrymg the other's chld to a shared des- 
tination, saving him the trip). There is no concern about being able to 
acheve your task by yourself. The worst that can happen is that you 
and your neighbour will not come to an agreement about setting up 
a car pool, in whch case you are no worse off than if you were alone. 
You can only benefit (or do no worse) from your neighbour's tasks. 
Assume, though, that one of my chldren and one of my neighbours' 
chldren both go to the same school (that is, the cost of carrying out 
these two deliveries, or two tasks, is the same as the cost of carrymg 
out one of them). It obviously makes sense for both children to be 
taken together, and only my neighbour or I will need to make the trip 
to carry out both tasks. 
What kinds of agreement might we reach? We might decide that I will 
take the children on even days each month, and my neighbour will 
take them on odd days; perhaps, if there are other chldren involved, 
we might have my neighbour always take those two specific chldren, 
while I am responsible for the rest of the children. 

(Rosenschein and Zlotkin, 1994, p. 29) 

To formalize this lund of situation, Rosenschein and Zlotkin defined the notion 
of a task-oriented domain (TOD). A task-oriented domain is a triple 

where 

T is the (finite) set of all possible tasks; 

Ag = {l,  . . . , n)  is the (finite) set of negotiation participant agents; 

c : p ( T )  - R+ is a function which defines the cost of executing each subset 
of tasks: the cost of executing any set of tasks is a positive real number. 

The cost function must satisfy two constraints. First, it must be monotonic. Intu- 
itively, this means that adding tasks never decreases the cost. Formally, this con- 
straint is defined as follows: 

If T I ,  T2 G T  are sets of tasks such that T1 G T2,  then c ( T 1 )  < c ( f i ) .  

The second constraint is that the cost of doing nothng is zero, i.e. c ( 0 )  = 0. 
An encounter within a task-oriented domain (T, Ag, c )  occurs when the agents 

Ag are assigned tasks to perform from the set T. Intuitively, when an encounter 
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occurs, there is potential for the agents to reach a deal by reallocating the tasks 
amongst themselves; as we saw in the informal car pool example above, by reallo- 
cating the tasks, the agents can potentially do better than if they simply performed 
their tasks themselves. Formally, an encounter in a TOD (T, Ag, c)  is a collection 
of tasks 

(Tl, - - 9 Tn), 

where, for all i, we have that i E Ag and Ti c T. Notice that a TOD together 
with an encounter in this TOD is a type of task environment, of the kind we saw 
in Chapter 2. It defines both the characteristics of the environment in which the 
agent must operate, together with a task (or rather, set of tasks), which the agent 
must carry out in the environment. 

Hereafter, we will restrict our attention to one-to-one negotiation scenarios, as 
discussed above: we will assume the two agents in question are { 1 , 2 } .  Now, given 
an encounter (TI, T2), a deal will be very similar to an encounter: it will be an 
allocation of the tasks TI u T2 to the agents 1 and 2. Formally, a pure deal is a pair 
{Dl, D2) where Dl u D2 = Tl u T2. The semantics of a deal (Dl, D2) is that agent 1 
is committed to performing tasks Dl and agent 2 is committed to performing 
tasks D2. 

The cost to agent i of a deal 6 = (D1,D2) is defined to be c(Di) ,  and will be 
denoted costi (6). The utility of a deal 6 to an agent i is the difference between the 
cost of agent i doing the tasks Ti that it was originally assigned in the encounter, 
and the cost cost i(6)  of the tasks it is assigned in 6: 

Thus the utility of a deal represents how much the agent has to gain from the deal; 
if the utility is negative, then the agent is worse off than if it simply performed 
the tasks it was originally allocated in the encounter. 

What happens if the agents fail to reach agreement? In this case, they must 
perform the tasks (TI, T2) that they were originally allocated. This is the intu- 
ition behnd the terminology that the conflict deal, denoted O, is the deal (TI, T2) 
consisting of the tasks originally allocated. 

The notion of dominance, as discussed in the preceding chapter, can be easily 
extended to deals. A deal 61 is said to dominate deal 62 (written 61 >- S2) if and 
only if the following hold. 

(I) Deal 6 ,  is at least as good for every agent as 6?: 

(2) Deal 61 is better for some agent than 6?: 

If deal 61 dominates another deal 62, then it should be clear to all participants 
that is better than S2. That is, all 'reasonable' participants would prefer 6 ,  to 
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utility for 
agent i 

deals on this line 

R ,,---- from B to C are 

I conflict deal I 

utility of conflict 
deal for j 

Figure 7.1 The negotiation set. 

62.  Deal is said to weakly dominate d2 (written 61 2 a2) if at least the first 
condition holds. 

A deal that is not dominated by any other deal is said to be pareto optimal. 
Formally, a deal 6 is pareto optimal if there is no deal 6' such that 6' > 6. If a 
deal is pareto optimal, then there is no alternative deal that will improve the lot 
of one agent except at some cost to another agent (who presumably would not be 
happy about it!). If a deal is not pareto optimal, however, then the agents could 
improve the lot of at least one agent, without malung anyone else worse off. 

A deal 6 is said to be individual rational if it weakly dominates the conflict deal. 
If a deal is not individual rational, then at least one agent can do better by simply 
performing the tasks it was originally allocated - hence it will prefer the conflict 
deal. Formally, deal 6 is individual rational if and only if S 2 0. 

We are now in a position to define the space of possible proposals that agents 
can make. The negotiation set consists of the set of deals that are (i) individual 
rational, and (ii) pareto optimal. The intuition behind the first constraint is that 
there is no purpose in proposing a deal that is less preferable to some agent than 
the conflict deal (as this agent would prefer conflict); the intuition behnd the 
second condition is that there is no point in making a proposal if an alternative 
proposal could make some agent better off at nobody's expense. 

The intuition behnd the negotiation set is illustrated in Figure 7.1. In this graph, 
the space of all conceivable deals is plotted as points on a graph, with the utility to 
i on the y-axis, and utility to j on the x-axis. The shaded space enclosed by points 



Negotiation 143 

A, B, C, and D contains the space of all possible deals. (For convenience, I have 
illustrated this space as a circle, although of course it need not be.) The conflict 
deal is marked at point E. It follows that all deals to the left of the line B-D will 
not be individual rational for agent j (because j could do better with the conflict 
deal). For the same reason, all deals below line A-C will not be individual rational 
for agent i. This means that the negotiation set contains deals in the shaded area 
B-C-E. However, not all deals in this space will be pareto optimal. In fact, the 
only pareto optimal deals that are also individual rational for both agents will lie 
on the line B-C. Thus the deals that lie on this line are those in the negotiation 
set. Typically, agent i will start negotiation by proposing the deal at point B, and 
agent j will start by proposing the deal at point C. 

The monotonic concession protocol 
The protocol we will introduce for this scenario is known as the monotonic con- 
cession protocol (Rosenschein and Zlotkin, 1994, pp. 40, 41). The rules of this 
protocol are as follows. 

Negotiation proceeds in a series of rounds. 

On the first round, both agents simultaneously propose a deal from the 
negotiation set. 

An agreement is reached if the two agents propose deals 61 and 62, respec- 
tively, such that either (i) u t i l i t y l  (6;!) 3 u t i l i t y l  (a1) or (ii) ~ t i l i t y ~ ( 6 ~ )  3 
~ t i l i t y 2 ( 6 ~ ) ,  i.e. if one of the agents finds that the deal proposed by the 
other is at least as good or better than the proposal it made. 
If agreement is reached, then the rule for determining the agreement deal is 
as follows. If both agents' offers match or exceed those of the other agent, 
then one of the proposals is selected at random. If only one proposal exceeds 
or matches the other's proposal, then this is the agreement deal. 

If no agreement is reached, then negotiation proceeds to another round of 
simultaneous proposals. In round u + 1, no agent is allowed to make a pro- 
posal that is less preferred by the other agent than the deal it proposed at 
time u .  

If neither agent makes a concession in some round u > 0, then negotiation 
terminates, with the conflict deal. 

It should be clear that this protocol is effectively verifiable: it is easy for both 
parties to see that the rules of the protocol are being adhered to. 

Using the monotonic concession protocol, negotiation is guaranteed to end 
(with or without agreement) after a finite number of rounds. Since the set of pos- 
sible deals is finite, the agents cannot negotiate indefinitely: either the agents will 
reach agreement, or a round will occur in which neither agent concedes. However, 
the protocol does not guarantee that agreement will be reached quickly. Since the 
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number of possible deals is 0 (21TI), it is conceivable that negotiation will continue 
for a number of rounds exponential in the number of tasks to be allocated. 

The Zeuthen strategy 

So far, we have said nothing about how negotiation participants might or should 
behave when using the monotonic concession protocol. On examining the proto- 
col, it seems there are three key questions to be answered as follows. 

What should an agent's first proposal be? 

On any given round, who should concede? 

If an agent concedes, then how much should it concede? 

The first question is straightforward enough to answer: an agent's first proposal 
should be its most preferred deal. 

With respect to the second question, the idea of the Zeuthen strategy is to 
measure an agent's willingness to risk conflict. Intuitively, an agent will be more 
willing to risk conflict if the difference in utility between its current proposal and 
the conflict deal is low. 

In contrast, if the difference between the agent's current proposal and the con- 
flict deal is high, then the agent has more to lose from conflict and is therefore 
less willing to risk conflict - and thus should be more willing to concede. 

Agent i's willingness to risk conflict at round t, denoted risk:, is measured in 
the following way (Rosenschein and Zlotkin, 1994, p. 43): 

utility i loses by conceding and accepting j's offer 
r isk:  = 

utility i loses by not conceding and causing conflict' 

The numerator on the right-hand side of this equation is defined to be the dif- 
ference between the utility to i of its current proposal, and the utility to i of j 's 
current proposal; the denominator is defined to be the utility of agent i's current 
proposal. Until an agreement is reached, the value of ris k: will be a value between 
0 and 1. Higher values of r i skf  (nearer to 1) indicate that i has less to lose from 
conflict, and so is more willing to risk conflict. Conversely, lower values of riskf 
(nearer to 0) indicate that i has more to lose from conflict, and so is less willing 
to risk conflict. 

Formally, we have 

u t i l i t y i (6 ; )  - utilityi(6:) 
otherwise. 

u t i l i t y i  (6:) 

The idea of assigning risk the value 1 if ut i l i ty i (d:)  = 0 is that in this case, the 
utility to i of its current proposal is the same as from the conflict deal; in this 
case, i is completely willing to risk conflict by not conceding. 
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So, the Zeuthen strategy proposes that the agent to concede on round t of 
negotiation should be the one with the smaller value of risk. 

The next question to answer is how much should be conceded? The simple 
answer to this question is just enough. If an agent does not concede enough, then 
on the next round, the balance of risk will indicate that it still has most to lose 
from conflict, and so should concede again. This is clearly inefficient. On the other 
hand, if an agent concedes too much, then it 'wastes' some of its utility. Thus an 
agent should make the smallest concession necessary to change the balance of 
risk - so that on the next round, the other agent will concede. 

There is one final refinement that must be made to the strategy. Suppose that, 
on the final round of negotiation, both agents have equal risk. Hence, according 
to the strategy, both should concede. But, knowing this, one agent can 'defect' 
(cf. discussions in the preceding chapter) by not conceding, and so benefit from 
the other. If both agents behave in this way, then conflict will arise, and no deal 
will be struck. We extend the strategy by an agent 'flipping a coin' to decide who 
should concede if ever an equal risk situation is reached on the last negotiation 
step. 

Now, given the protocol and the associated strategy, to what extent does it 
satisfy the desirable criteria for mechanisms discussed at the opening of this 
chapter? While the protocol does not guarantee success, it does guarantee termi- 
nation; it does not guarantee to maximize social welfare, but it does guarantee 
that if agreement is reached, then this agreement will be pareto optimal; it is indi- 
vidual rational (if agreement is reached, then this agreement will be better for 
both agents than the default, conflict deal); and clearly there is no single point of 
failure - it does not require a central arbiter to monitor negotiation. With respect 
to simplicity and stability, a few more words are necessary. As we noted above, the 
space of possible deals may be exponential in the number of tasks allocated. For 
example, in order to execute his strategy, an agent may need to carry out 0 (2 IT i )  
computations of the cost function (Rosenschein and Zlotkin, 1994, p. 49). This is 
clearly not going to be feasible in practice for any realistic number of tasks. 

With respect to stability, we here note that the Zeuthen strategy (with the equal 
risk rule) is in Nash equilibrium, as discussed in the previous chapter. Thus, under 
the assumption that one agent is using the strategy the other can do no better 
than use it himself. 

This is of particular interest to the designer of automated agents. It 
does away with any need for secrecy on the part of the programmer. 
An agent's strategy can be publicly known, and no other agent designer 
can exploit the information by choosing a different strategy. In fact, it 
is desirable that the strategy be known, to avoid inadvertent conflicts. 

(Rosenschein and Zlotkin, 1994, p. 46) 

An interesting issue arises when one considers that agents need not necessarily 
be truthful when declaring their tasks in an encounter. By so doing, they can 
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subvert the negotiation process. There are two obvious ways in which an agent 
can be deceitful in such domains as follows. 

Phantom and decoy tasks. Perhaps the most obvious way in which an agent can 
deceive for personal advantage in task-oriented domains is by pretending to 
have been allocated a task that it has not been allocated. These are called phan- 
tom tasks. Returning to the car pool example, above, one might pretend that 
some additional task was necessary by saying that one had to collect a relative 
from a train station, or visit the doctor at the time when the children needed 
to be delivered to school. In this way, the apparent structure of the encounter 
is changed, so that outcome is in favour of the deceitful agent. The obvious 
response to this is to ensure that the tasks an agent has been assigned to carry 
out are verifiable by all negotiation participants. In some circumstances, it is 
possible for an agent to produce an artificial task when asked for it. Detection 
of such decoy tasks is essentially impossible, making it hard to be sure that 
deception will not occur in such domains. Whether or not introducing artificial 
tasks is beneficial to an agent will depend on the particular TOD in question. 

Hidden tasks. Perhaps counterintuitively, it is possible for an agent to benefit 
from deception by hiding tasks that it has to perform. Again with respect to 
the car pool example, agent 1 might have two children to take to schools that 
are close to one another. It takes one hour for the agent to visit both schools, 
but only 45 minutes to visit just one. If the neighbour, agent 2, has to take a 
child to one of these schools, then by hiding his task of going to one of these 
schools, agent 1 can perhaps get agent 2 to take his child, thus improving his 
overall utility slightly. 

Before we leave task-oriented domains, there are some final comments worth 
making. First, the attractiveness of the monotonic concession protocol and 
Zeuthen strategy is obvious. They closely mirror the way in which human negoti- 
ation seems to work - the assessment of risk in particular is appealing. The Nash 
equilibrium status of the (extended) Zeuthen strategy is also attractive. However, 
the computational complexity of the approach is a drawback. Moreover, exten- 
sions to n > 2 agent negotiation scenarios are not obvious - for the reasons 
discussed earlier, the technique works best with symmetric preferences. Never- 
theless, variations of the monotonic concession protocol are in wide-scale use, 
and the simplicity of the protocol means that many variations on it have been 
developed. 

Worth-oriented domains 

We saw in earlier chapters that there are different ways of defining the task that an 
agent has to achieve. In task-oriented domains, the task(s) are explicitly defined 
in the encounter: each agent is given a set of tasks to accomplish, associated 
with which there is a cost. An agent attempts to minimize the overall cost of 
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accomplishing these tasks. Intuitively, this corresponds to the idea of telling an 
agent what to do by explicitly giving to it a collection of programs that it should 
execute. In this section, we will discuss a more general kind of domain, in which 
the goals of an agent are specified by defining a worth function for the possible 
states of the environment. The goal of the agent is thus implicitly to bring about 
the state of the environment with the greatest value. How does an agent bring 
about a goal? We will assume that the collection of agents have available to them 
a set of joint plans. The plans are joint because executing one can require several 
different agents. These plans transform one state of the environment to another. 
Reaching agreement involves the agents negotiating not over a distribution of 
tasks to agents, as in task-oriented domains, but over the collection of joint plans. 
It is in an agent's interest to reach agreement on the plan that brings about the 
environment state with the greatest worth. 

Formally, a worth-oriented domain (WOD) is a tuple (Rosenschein and Zlothn, 
1994, p. 55) 

(E,Ag, J , d ,  

where 

E is the set of possible environment states; 

A g  = { 1,. . . , n )  is the set of possible agents; 

- J is the set of possible joint plans; and 

c : J x Ag - R is a cost function, whch  assigns to every plan j E J and 
every agent i E A g  a real number which represents the cost c ( j ,  i) to i of 
executing the plan j.  

An encounter in a WOD (E, A g ,  J ,  c} is a tuple 

where 

e E E is the initial state of the environment; and 

W : E x Ag - R is a worth function, which assigns to each environment 
state e E E and each agent i E A g  a real number W(e, i)  which represents 
the value, or worth, to agent i of state e. 

I write plans using the notation j : e l  -- e2; the intuitive reading of this is that 
the (joint) plan j can be executed in state e l ,  and when executed in this state, will 
lead to state e2. 

Suppose for the sake of argument that agent i operates alone in an environment 
that is in initial state eo. What should this agent do? In this case, it does not need 
to negotiate - it should simply pick the plan j;,, such that jQ,, can be executed 
in state eo and, when executed, will bring about a state that maximizes the worth 
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for agent i. Formally, jb,, will satisfy the following equation (Rosenschein and 
Zlotkin, 1994, p. 156): 

j;,, = arg max W ( i ,  e )  - C ( j ,  i ) .  
j:eo -e  t J 

Operating alone, the utility that i obtains by executing the plan jQ,, represents 
the best it can do. Turning to multiagent encounters, it may at first seem that 
an agent can do no better than executing jOpt, but of course this is not true. An 
agent can benefit from the presence of other agents, by being able to execute joint 
plans - and hence bring about world states - that it would be unable to execute 
alone. If there is no joint plan that improves on j&, for agent i, and there is no 
interaction between different plans, then negotiation is not individual rational: i 
may as well work on its own, and execute j&,. HOW might plans interact? Suppose 
my individual optimal plan for tomorrow involves using the family car to drive 
to the golf course; my wife's individual optimal plan involves using the car to go 
elsewhere. In this case, our individual plans interact with one another because 
there is no way they can both be successfully executed. If plans interfere with one 
another, then agents have no choice but to negotiate. 

It may be fruitful to consider in more detail exactly what agents are negotiating 
over in WODs. [Jnlike TODs, agents negotiating over WODs are not negotiating 
over a single issue: they are negotiating over both the state that they wish to bring 
about (which will have a different value for different agents), and over the means 
by which they will reach this state. 

Argumentation 
The game-theoretic approaches to reaching agreement that we have seen so far 
in this chapter have a number of advantages, perhaps the most important of 
which are that we can prove some desirable properties of the negotiation protocols 
we have considered. However, there are several disadvantages to such styles of 
negotiation (Jennings et a!., 2001) as follows. 

Positions cannot be justified. When humans negotiate, they justify their negoti- 
ation stances. For example, if you attempt to sell a car to me, you may justify 
the price with respect to a list of some of the features that the car has - for 
example, a particularly powerful engine. In turn, I may justify my proposal for 
a lower price by pointing out that I intend to use the car for short inner-city 
journeys, rendering a powerful engine less useful. More generally, negotiating 
using a particular game-theoretic technique may make it very hard to under- 
stand how an agreement was reached. This issue is particularly important if we 
intend to delegate tasks such as buying and selling goods to agents. To see why, 
suppose you delegate the task of buying a car to your agent: after some time, 
the agent returns, having purchased a car using your credit card. Reasonably 
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enough, you want to know how agreement was reached: Why did the agent pay 
this much for this car? But if the agent cannot explain how the agreement was 
reached in terms that you can easily understand and relate to, then you may find 
the agreement rather hard to accept. Notice that simply pointing to a sequence 
of complex equations will not count as an explanation for most people; nor will 
the claim that 'the agreement was the best for you1. If agents are to act on our 
behalf in such scenarios, then we will need to be able to trust and relate to the 
decisions they make. 

Positions cannot be changed. Game theory tends to assume that an agent's util- 
ity function is fixed and immutable: it does not change as we negotiate. It could 
be argued that from the point of view of an objec~ive, external, omniscient 
observer, this is in one sense true. However, from our subjective, personal point 
of view, our preferences certainly do change when we negotiate. Returning to 
the car-buying example, when I set out to buy a car, I may initially decide that I 
want a car with an electric sun roof. However, if I subsequently read that elec- 
tric sun roofs are unreliable and tend to leak, then this might well change my 
preferences. 

These limitations of game-theoretic negotiation have led to the emergence of 
argumentation-based negotiation (Sycara, 1989b; Parsons et at., 1998). Put crudely, 
argumentation in a multiagent context is a process by which one agent attempts 
to convince another of the truth (or falsity) of some state of affairs. The process 
involves agents putting forward arguments for and against propositions, together 
with justifications for the acceptability of these arguments. 

The philosopher Michael Gilbert suggests that if we consider argumentation 
as it occurs between humans, we can identify at least four different modes of 
argument (Gilbert, 1994) as follows. 

(1) Logical mode. The logical mode of argumentation resembles mathematical 
proof. It tends to be deductive in nature ('if you accept that A and that A implies 
3, then you must accept that 3'). The logical mode is perhaps the paradigm 
example of argumentation. It is the kind of argument that we generally expect 
(or at least hope) to see in courts of law and scientific papers. 

(2) Emotional mode. The emotional mode of argumelitation occurs when appeals 
are made to feelings, attitudes, and the like. An example is the 'how would you 
feel if it happened to you' type of argument. 

(3) Visceral mode. The visceral mode of argumentation is the physical, social 
aspect of human argument. It occurs, for example, when one argumentation 
participant stamps their feet to indicate the strength of their feeling. 

(4) Kisceral mode. Finally, the kisceral mode of argumentation involves appeals 
to the intuitive, mystical, or religious. 

Of course, depending on the circumstances, we might not be inclined to accept 
some of these modes of argument. In a court of law in most western societies, for 
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example, the emotional and kisceral modes of argumentation are not permitted. 
Of course, t h s  does not stop lawyers trying to use them: one of the roles of a 
judge is to rule such arguments unacceptable when they occur. Other societies, 
in contrast, explicitly allow for appeals to be made to religious beliefs in legal 
settings. Similarly, while we might not expect to see arguments based on emotion 
accepted in a court of law, we might be happy to permit them when arguing with 
our children or spouse. 

Logic-based argumentation 

The logical mode of argumentation might be regarded as the 'purest' or 'most 
rational' kind of argument. In this subsection, I introduce a system of argumenta- 
tion based upon that proposed by Fox and colleagues (Fox et al., 1992; Krause e t  
al., 1995). This system works by constructing a series of logical steps (arguments) 
for and against propositions of interest. Because this closely mirrors the way 
that human dialectic argumentation (Jowett, 1875) proceeds, this system forms 
a promising basis for building a framework for dialectic argumentation by which 
agents can negotiate (Parsons and Jennings, 1996). 

In classical logic, an argument is a sequence of inferences leading to a conch- 
sion: we write A I- g, to mean that there is a sequence of inferences from premises 
A that will allow us to establish proposition cp. Consider the simple database Al  
which expresses some very familiar information in a Prolog-like notation in which 
variables are capitalized and ground terms and predicate names start with small 
letters: 

huwzan(Socrates).  

h u m a n ( X )  a mor ta l (X) .  A1 

The argument A l  I-- mor ta l (Soc ra t e s )  may be correctly made from this 
database because mor t a l (Soc ra t e s )  follows from A l  given the usual logical 
axioms and rules of inference of classical logic. Thus a correct argument simply 
yields a conclusion which in this case could be paraphrased 'mor ta l (Socra tes )  
is true in the context of human(Soc ra t e s )  and h u m a n ( X )  a morta l (X) ' .  
In the system of argumentation we adopt here, this traditional form of reason- 
ing is extended by explicitly recording those propositions that are used in the 
derivation. This makes it possible to assess the strength of a given argument by 
examining the propositions on which it is based. 

The basic form of arguments is as follows: 

Da tabase  I- (Sentence, Grounds) ,  

where 

Database  is a (possibly inconsistent) set of logical formulae; 

Sentence is a logical formula known as the conclusion; and 
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Grounds  is a set of logical formulae such that 

(1) Grounds  _c Database ;  and 

(2) Sentence can be proved from Grounds .  

The intuition is that D a t a b a s e  is a set of formulae that is 'agreed' between the 
agents participating in the argumentation process. This database provides some 
common ground between the agents. Given this common ground, an agent makes 
the argument (Sentence, Grounds )  in support of the claim that Sentence  is 
true; the justification for this claim is provided by Grounds ,  whch  is a set of 
formulae such that Sentence  can be proved from it. 

Formally, if A is a database, then an argument over A is a pair (cp, T), where p 
is a formula known as the conclusion, and r r A is a subset of A known as the 
grounds, or support, such that r I- cp. We denote the set of all such arguments 
over database A by A ( A ) ,  and use A r g ,  A r g ' ,  A r g , , .  . . to stand for members of 
A(N.  

Typically an agent will be able to build several arguments for a given propo- 
sition, some of which will be in favour of the proposition, and some of which 
wdl be against the proposition (in which case they are for its negation). In order 
to establish whether or not the set of arguments as a whole are in favour of the 
proposition, it is desirable to provide some means of flattening the set of argu- 
ments into some measure of how favoured the proposition is. One way of doing 
t h s  is to attach a numerical or symbolic weight to arguments and then have a 
flattening function that combines these in a suitable way. However, it is also pos- 
sible to use the structure of the arguments themselves to determine how good 
they are. 

We can identify two important classes of arguments as follows. 

Non-trivial argument. An argument (cp, T) is non-trivial if r is consistent. 

Tautological argument. An argument (cp ,T)  is tautological if T = 0. 

The important idea of defeat between arguments is as follows. 

Defeat. Let (cpl ,  TI ) and (432, T2) be arguments from some database A. The argu- 
ment (p2, F2) can be defeated in one of two ways. Firstly, (cpl ,  rl ) rebuts (p2, T2) 
if cpl attacks cp2. Secondly, (cpl ,  T1) undercuts (cp;!, T2) if cpl attacks w for some 
w E r2. 

In which attack is defined as follows. 

Attack. For any two propositions cp and tp, we say that cp attacks q if and only 
if cp = l + .  
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Consider the following set of formulae, which extend the example of Al with 
information in common currency at the time of Plato: 

h u m a n  (Herucles) 

f a t h e r  (Herucles,  Zeus) 

f a t h e r  (Apollo, Zeus)  

d iv ine (X)  a l m o r t a l ( X )  

f a t h e r  (X, Zeus) 3 d i v i n e  (X) 

l( f a t h e r ( X ,  Zeus) 3 d iv ine (X) )  

From this we can build the obvious argument, Arg l  about Heracles ,  

(mor ta l (Heruc le s ) ,  

{ h u m a n ( H e r a c l e s ) ,  h u m u n ( X )  * m o r t a l  ( X ) )  ), 

as well as a rebutting argument Argz ,  

( l r n o r t u l ( H e r a c l e s ) ,  

{ f a the r (Herac le s ,  Zeus),  f a t h e r ( X ,  Zeus) 3 d iv ine (X) ,  

d iv ine(X)  3 l r n o r t a l ( X ) ) ) .  

The second of these is undercut by Arg3: 

(l( f a t h e r ( X ,  Zeus)  a d iv ine (X) ) ,  

( l ( f a t h e r ( X , Z e u s )  3 d iv ine (X) ) ) ) .  

The next step is to define an ordering over argument types, which approxi- 
mately corresponds to increasing acceptability. The idea is that, when engaged in 
argumentation, we intuitively recognize that some types of argument are more 
'powerful' than others. For example, given database A = { p  + q, p] ,  the argu- 
ments Argl = ( p  v l p ,  0) and Arg;! = (q, { p + q, p ) )  are both acceptable 
members of A(A) .  However, it is generally accepted that A r g l  - a tautological 
argument - is stronger than Arg2,  for the simple reason that it is not possible 
to construct a scenario in which the conclusion of A r g l  is false. Any agent that 
accepted classical propositional logic would have to accept Arg l  (but an agent 
that only accepted intuitionistic propositional logic would not). In contrast, the 
argument for the conclusion of Arg2 depends on two other propositions, both of 
which could be questioned. 

In fact, we can identify five classes of argument type, which we refer to as Al 
to A s ,  respectively. In order of increasing acceptability, these are as follows. 

Al The class of all arguments that may be made from A. 

A;! The class of all non-trivial arguments that may be made from A. 

A3 The class of all arguments that may be made from A for which there are no 
rebutting arguments. 
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A4 The class of all arguments that may be made from A for which there are no 
undercutting arguments. 

As The class of all tautological arguments that may be made from A. 

There is an order, 3 ,  over the acceptability classes: 

meaning that arguments in higher numbered classes are more acceptable than 
arguments in lower numbered classes. The intuition is that there is less reason 
for thinking that there is something wrong with them - because, for instance, 
there is no argument which rebuts them. The idea that an undercut attack is less 
damaging than a rebutting attack is based on the notion that an undercut allows 
for another, undefeated, supporting argument for the same conclusion. This is 
common in the argumentation literature (see, for example, Krause et al., 1995). 

In the previous example, the argument 

is in A5, while Argl and k g - ,  are mutually rebutting and thus in A?, whereas 
i4rcq41 

( -mor ta l  (apollo),  

{ f ather(npol10, Zeus), f a t h e r  (X, Zeus) * dizline(X), 

divine(X) * l m o r t a l  (X) I ) ,  

is in A4. This logic-based model of argumentation has been used in argumentation- 
based negotiation systems (Parsons and Jennings, 1996; Parsons et al., 1998). The 
basic idea is as follows. You are attempting to negotiate with a peer oi7er who will 
carry out a particular task. Then the idea is to argue for the other agent intending 
to carry this out, i.e. you attempt to convince the other agent of the acceptability 
of the argument that it should intend to carry out the task for you. 

Dialogues and dialogue systems for argumentation 
Many authors are concerned with agents that argue with themselves, either to 
resolve inconsistencies or else to determine which set of assumptions to adopt. 
In contrast, we are interested in agents that are involved in a dialogue with other 
agents. As we noted above, an agent engages in such a dialogue in order to con- 
vince another agent of some state of affairs. In this section, we define the notion 
of dialogue, and investigate the concept of winning an argument. Call the two 
agents involved in argumentation 0 and 1. 

Intuitively, a dialogue is a series of arguments, with the first made by agent 0, the 
second by agent 1, the third by agent 0, and so on. Agent 0 engages in the dialogue 
in order to convince agent 1 of the conclusion of the first argument made. Agent 1 
attempts to defeat this argument, by either undercutting or rebutting it. Agent 0 
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must respond to the counter argument if it can, by presenting an argument that 
defeats it, and so on. (For a concrete example of how this kind of argumentation 
can be used to solve negotiation problems, see Parsons et a!. (1998) and Amgoud 
(1 999).) 

Each step of a dialogue is referred to as a move. A move is simply a pair 
(Playev, A v g ) ,  where P l a y e r  E {0,1)  is the agent making the argument, and 
A v g  E A ( A )  is the argument being made. I use m (with decorations: m, ml ,  . . . 
and so on) to stand for moves. 

Formally, a non-empty, finite sequence of moves 

is a dialogue history if it satisfies the following conditions. 

(1) Playero = 0 
(the first move is made by agent 0). 

(2)  Player ,  = 0 if and only if u is even, Player, = 1 if and only if u is odd 
(the agents take it in turns to make proposals). 

(3) If Player ,  = Player,, and u * v then A r g ,  * A r g v  
(agents are not allowed to make the same argument twice). 

(4) A r g ,  defeats A r g ,  

Consider the following dialogue in which agent 0 starts by making A r g ~  for r: 

Agent 1 undercuts this with an attack on the connection between p and q,  

and agent 0 counters with an attack on the premise t using Arg:{, 

A dialogue has ended if there are no further moves possible. The winner of a 
dialogue that has ended is the last agent to move. If agent 0 was the last agent to 
move, then this means that agent 1 had no argument available to defeat 0's last 
argument. If agent 1 was the last agent to move, then agent 0 had no argument 
available to defeat 1's last argument. Viewed in this way, argument dialogues can 
be seen as a game played between proposers and opponents of arguments. 

Types of dialogue 
Walton and Krabbe (1995, p. 66) suggest a typology of six different modes of dia- 
logues, which are summarized in Table 7.1. The first (type 1) involves the 'canoni- 
cal' form of argumentation, where one agent attempts to convince another of the 
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Table 7.1 Walton and Krabbe's dialogue types. 

Type Initial situation Main goal Participants aim 

I. Persuasion 

11. Negotiation 

111. Inquiry 

IV. Deliberation 

V. Information 
seeking 

VI. Eristics 

VII. Mixed 

conflict of opinions 

conflict of interests 

general ignorance 

need for action 
personal ignorance 

conflict/ 
antagonism 
various 

resolve the issue 

make a deal 

growth of knowledge 
reach a decision 
spread knowledge 

reaching an 
accommodation 
various 

persuade the other 

get the best 
for oneself 
find a 'proof' 

influence outcome 
gain or pass on 
personal knowledge 
strike the 
other party 
various 

truth of something. Initially, agents involved in persuasion dialogues will have 
conflicting opinions about some state of affairs. To use a classic, if somewhat 
slightly morbid example, you may believe the murderer is Alice, while I believe 
the murderer is Bob. We engage in a persuasion dialogue in an attempt to convince 
one another of the truth of our positions. 

In a persuasion dialogue, the elements at stake are primarily beliefs. In con- 
trast, a negotiation (type 11) dialogue directly involves utility. It may involve (as in 
Rosenschein and Zlotkin's TODs, discussed earlier in the chapter) attempting to 
reach agreement on a division of labour between us. 

An inquiry (type 111) dialogue is one that is related to a matter of common inter- 
est, where the object of the inquiry is a belief. A public inquest into some event 
(such as a train crash) is perhaps the best-known example of an inquiry. It takes 
place when a group of people have some mutual interest in determining some- 
thmg. Notice that the aim of an inquiry is simply to determine facts - what to 
believe. If the aim of a dialogue is for a group to decide upon a course of action, 
then the dialogue is a deliberation dialogue. An information-seeking (type V) dia- 
logue is also related to an inquiry, but occurs when an agent attempts to find 
out something for itself. An eristic (type VI) dialogue occurs when agents have 
a conflict that they air in public. The aim of such a dialogue may be to reach an 
accommodation, but need not be. Finally, type XI or mixed dialogues occur when 
a number of different dialogue types are combined. Most committee meetings 
are of this kind: different parts of the meeting involve negotiation, deliberation, 
inquiry, and, frequently, eristic dialogues. Figure 7.2 shows how the type of a 
dialogue may be determined (Walton and Krabbe, 1995, p. 81). 

Abstract argumentation 
There is another, more abstract way of looking at arguments than the view we have 
adopted so far. In this view, we are not concerned with the internal structure of 
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is there a conflict? 

is resolution the goal? is there a common problem to be solved? 

/YES 

persuasion is settlement the goal'! is this a theoretical problem'? information seeking 

YES,; 

negotiation eristics inquiry deliberation 

Figure 7.2 Determining the type of a dialogue. 

individual arguments, but rather with the overall structure of the argument. We 
can model such an abstract argument system .A as a pair (Dung, 1995): 

where 

X is a set of arguments (we are not concerned with exactly what members 
of X are); and 

- G X x X is a binary relation on the set of arguments, representing the 
notion of attack. 

I write x - y as a shorthand for ( x ,  y)  E -. The expression x - y may be read 
as 

'argument x attacks argument y ' ;  

'x is a counter-example of y'; or 

- 'x is an attacker of y'. 

Notice that, for the purposes of abstract argument systems, we are not concerned 
with the contents of the set X, nor are we concerned with 'where the attack relation 
comes from'. Instead, we simply look at the overall structure of the argument. 

Given an abstract argument system, the obvious question is when an argument 
in it is considered 'safe' or 'acceptable'. Similarly important is the notion of a 
set of arguments being a 'defendable position', where such a position intuitively 
represents a set of arguments that are mutually defensive, and cannot be attacked. 
Such a set of arguments is referred to as being admissible. 

There are different ways of framing t h s  notion, and I will present just one of 
them (from Vreeswijk and Prakken, 2000, p. 242). Given an abstract argument 
system .A = (X, - ), we have the following. 

An argument x E X is attacked by a set of arguments Y E X if at least one 
member of Y attacks x (i.e. if y - x for some y E Y). 
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Figure 7.3 An abstract argument system. 

An argument x E X is acceptable (or 'in') with respect to a set of arguments 
Y c X if every attacker of x in Y is also attacked. 

A set of arguments Y is conflict free if no argument in Y attacks some other 
argument in Y. A conflict-free set of arguments may be thought of as being 
in some sense consistent. 

A conflict-free set of arguments Y is admissible if each argument in Y is 
acceptable with respect to Y .  

Figure 7.3 (from Vreeswijk and Prakken, 2000, pp. 241,242) illustrates an abstract 
argument system. With respect to this example, 

argument h has no attackers, and so is clearly acceptable ('in'); 

since h is in, and h attacks a, then a is not an acceptable argument - it is 
'out'; 

similarly, since h is in, and h attacks p,  then p is out; and 

since p is out, and this is the only attacker of q, then q is in. 

What of i and j, which attack each other? Well, at least one of them must be in, 
and since they both attack n, then this implies that at least one argument attacks 
n. Hence n has one undefeated attacker, and so n is out. 

Implemented argumentation agents 
Several agent systems have been developed which make use of argumentation- 
based negotiation. Probably the first of these was Sycara's PERSUADER system 
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profits f+) 

sales (+) 1 
production cost (-) \ 

/ t ( + I  
prices (-) 

plant efficiency (+) materials cost (-) /_ lah)ur  cost 

t 

economic 
concearions (+) 

satisfaction (+) employment (-) economic concessions (-) 

\ / t / \ 
uneconomic automation (+) subcontract (+) wages (-) fringes (-) 

concessions (+) 

t 
wages (+) 

Figure 7.4 Argument structure in the PERSUADER system. 

(Sycara, 1989a,b, 1990). PERSUADER operated in the domain of labour negotia- 
tion, and involved three agents (a labour union, a company, and a mediator). It 
modelled the iterative exchange of proposals and counter-proposals in order for 
the parties to reach agreement. The negotiation involved multiple issues (such as 
wages, pensions, seniority, and subcontracting). 

Argumentation in PERSUADER makes use of a model of each agent's beliefs. An 
agent's beliefs in PERSUADER capture an agent's goals and the interrelationships 
among them, An example of an agent's beliefs (from Sycara, 1989b, p. 130) is 
given in Figure 7.4. This captures the beliefs of a company, the top-level goal of 
which is to maximize profit. So, for example, a decrease (-) in production costs 
will lead to an increase (+) in profit; an increase in quality or a decrease in prices 
will lead to an increase in sales, and so on. Sycara (1989b) gives an example of the 
following argument, addressed to a labour union that has refused to a proposed 
wage increase: 

If the company is forced to grant higher wage increases, then it will 
decrease employment. 

To generate this argument, the system determines which goals (illustrated in 
Figure 7.4) are violated by the union's refusal, and then looks for compensat- 
ing actions. In this case, a compensating action might be to reduce employment, 
either by subcontracting or increasing automation. Such a compensating action 
can violate a goal that the union rates more highly than higher wages. Figure 7.5 
illustrates a run of PERSUADER (from Sycara, 1989b, p. 13 I), showing how the 
system generates the argument from the belief structure in Figure 7.4. 

In general, PERSUADER can generate more than one possible argument for a 
particular position. These arguments are presented in order of 'severity', with the 
weakest type of argument first. The order of argument types (weakest first) is as 
follows (Sycara, 1989b, p. 13 1): 



Argumentation 159 

Importance o f  wage-goal1 i s  6 f o r  un 
Searching companyl goal  -graph. . . 
Increase i n wage-goal 1 by companyl w 

increase i n economi c-concessi ons 
Increase i n  wage-goal1 by companyl w 

decrease i n  p r o f i t s 1  
To compensate, companyl can decrease 

on 1 

71 r e s u l t  i n  
1 abou r - cos t l ,  p roduc t i on -cos t1  

11 r e s u l t  i n  

f r i n g e - b e n e f i t s l ,  
decrease employmentl, i nc rease  p l  a n t - e f f i  c i  ency l ,  
increase s a l  e s l  

Only decrease f r i n g e - b e n e f i t s l ,  decreases employmentl 
v i o l  a t e  goa ls  o f  un i  on1  

Importance o f  f r i n g e - b e n e f i t s 1  i s  4 f o r  u n i o n l  
Importance o f  employmentl  i s  8 f o r  u n i o n l  
Since importance o f  empl oyment l  > importance o f  wage-goal 1 
One poss ib l e  argument found 

Figure 7.5 PERSUADER generates an argument. 

(1) appeal to universal principle; 

(2) appeal to a theme; 

(3) appeal to authority; 

(4) appeal to 'status quo'; 

( 5 )  appeal to 'minor standards'; 

(6) appeal to 'prevailing practice'; 

(7) appeal to precedents as counter-examples; 

(8) threaten. 

The idea is closely related to the way in which humans use arguments of different 
'strength' in argumentation (Gilkinson ei al., 1954). 

Notes and Further Reading 
Despite their obvious advantages, there are a number of problems associated with 
the use of game theory when applied to negotiation problems. 

Game theory assumes that it is possible to characterize an agent's prefer- 
ences with respect to possible outcomes. Humans, however, find it extremely 
hard to consistently define their preferences over outcomes - in general, 
human preferences cannot be characterized even by a simple ordering over 
outcomes, let alone by numeric utilities (Russell and Norvig, 1995, pp. 475- 
480). In scenarios where preferences are obvious (such as the case of a 
person buying a particular CD and attempting to minimize costs), game- 
theoretic techniques may work well. With more complex (multi-issue) pref- 
erences, it is much harder to use them. 
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Most game-theoretic negotiation techniques tend to assume the availability 
of unlimited computational resources to find an optimal solution - they 
have the characteristics of NP-hard problems. (A well-known example is the 
problem of winner determination in combinatorial auctions.) In such cases, 
approximations of game-theoretic solutions may be more appropriate. 

In writing this chapter, I drew heavily upon Tuomas Sandholm's very useful survey 
of distributed rational decision making (Sandholm, 1999). Tuomas presents many 
of the results and discussions in this chapter in a much more formal and rigorous 
way than I have attempted to do, and provides extensive references and pointers 
to further reading: h s  article is recommended for further reading. The negotiation 
text also drew heavily upon Rosenschein and Zlotkin's influential 1994 book Rules 
of Encounter (Rosenschein and Zlotkin, 1994). This book is essential reading if 
you wish to gain a more detailed understanding of game-theoretic negotiation 
techniques. Sarit Kraus presents a short survey of the negotiation literature in 
Kraus (1997), and an extensive advanced introduction to strategic negotiation in 
Kraus (2001). Another useful short survey of work on negotiation as applied to 
electronic commerce is Jennings et al. (2001). 

Argumentation was originally studied by philosophers and logicians in an 
attempt to understand the 'informal logic' that humans use to interact with one 
another (van Eemeren et al., 1996; Walton and Krabbe, 1995). More recently, 
argumentation has been found to have a number of applications in AI, partic- 
ularly in decision making (Fox et al., 1992; Krause et al., 1995), the semantics 
of logic programming (Dung, 1995; Dimpoulos et al., 1999), and defeasible rea- 
soning (Loui, 1987; Pollock, 1992; Pollock, 1994). An excellent survey of work 
on argumentation was published as Prakken and Vreeswijk (2001), although this 
does not deal with the subject from the standpoint of multiagent systems. Build- 
ing largely on the work of Sycara's PERSUADER system, several other agents 
capable of argumentation have been implemented. An attempt to formalize 
some of the ideas in PERSUADER using logic and then to implement this for- 
mal version was Kraus et al. (1998). A number of authors have proposed the 
use of variations of Walton and Krabbe's dialogue types for multiagent systems 
(Reed, 1998; Amgoud, 1999; Amgoud et a!., 2000). 

Class reading: Kraus (1997). This article provides an overview of negotiation 
techniques for multiagent systems. It provides a number of pointers into the 
research literature, and will be particularly useful for mathematically oriented 
students. 
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Exercises 
(1) [Class discussion.] 

Pick real-world examples of negotiation with which you are familiar (buying a second- 
hand car or house, for example). For these, identify what represents a 'deal'. Is the deal 
single attribute or multiple attribute? Is it a task-oriented domain or a worth-oriented 
domain? Or neither? Is it two agent or n agent? What represents a concession in such a 
domain? Is a particular protocol used when negotiating? What are the rules? 

(2) [Level 1 .] 

Why are shills not a potential problem in Dutch, Vickrey, and first-price sealed-bid 
auctions? 

(3) [Level 2.1 

With respect to the argument system in Figure 7.3, state with justification the status of 
the arguments were not discussed in the text (i.e. a-q). 





Communication 

Communication has long been recognized as a topic of central importance in 
computer science, and many formalisms have been developed for representing 
the properties of communicating concurrent systems (Hoare, 1978; Milner, 1989). 
Such formalisms have tended to focus on a number of key issues that arise when 
dealing with systems that can interact with one another. 

Perhaps the characteristic problem in communicating concurrent systems 
research is that of synchronizing multiple processes, which was widely stud- 
ied throughout the 1970s and 1980s (Ben-Ari, 1990). Essentially, two processes 
(cf. agents) need to be synchronized if there is a possibility that they can interfere 
with one another in a destructive way. The classic example of such interference is 
the 'lost update' scenario. In this scenario, we have two processes, pl and p2, both 
of whch have access to some shared variable v. Process pl begins to update the 
value of v , by first reading it, then modifying it (perhaps by simply incrementing 
the value that it obtained), and finally saving this updated value in v. But between 
pl reading and again saving the value of v ,  process p2 updates v ,  by saving some 
value in it. When pl saves its modified value of v ,  the update performed by p2 
is thus lost, which is almost certainly not what was intended. The lost update 
problem is a very real issue in the design of programs that communicate through 
shared data structures. 

So, if we do not treat communication in such a 'low-level' way, then how is com- 
munication treated by the agent community? In order to understand the answer, 
it is helpful to first consider the way that communication is treated in the object- 
oriented programming community, that is, communication as method invocation. 
Suppose we have a Java system containing two objects, 01 and 0 2 ,  and that 01 has 
a publicly available method ml .  Object 0 2  can communicate with 01 by invok- 
ing method ml. In Java, this would mean 0 2  executing an instruction that looks 
something like 01. ml(arg), where arg is the argument that 0 2  wants to cornrnu- 
nicate to 01. But consider: whch object makes the decision about the execution of 
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method ml? Is it object 0 1  or object 02? In this scenario, object 0 1  has no control 
over the execution of ml: the decision about whether to execute ml lies entirely 
with 02. 

Now consider a similar scenario, but in an agent-oriented setting. We have two 
agents i and j, where i has the capability to perform action a, whch corresponds 
loosely to a method. But there is no concept in the agent-oriented world of agent j 
'invoking a method' on i. This is because i is an autonomous agent: it has control 
over both its state and its behaviour. It cannot be taken for granted that agent i 
will execute action a just because another agent j wants it to. Performing the 
action a may not be in the best interests of agent i. The locus of control with 
respect to the decision about whether to execute an action is thus very different 
in agent and object systems. 

In general, agents can neither force other agents to perform some action, nor 
write data onto the internal state of other agents. This does not mean they can- 
not communicate, however. What they can do is perform actions - cornmunica- 
tive actions - in an attempt to influence other agents appropriately. For example, 
suppose I say to you 'It is raining in London', in a sincere way. Under normal cir- 
cumstances, such a communication action is an attempt by me to modify your 
beliefs. Of course, simply uttering the sentence 'It is raining in London' is not 
usually enough to bring about this state of affairs, for all the reasons that were 
discussed above. You have control over your own beliefs (desires, intentions). 
You may believe that I am notoriously unreliable on the subject of the weather, 
or even that I am a pathological liar. But in performing the communication action 
of uttering 'It is raining in London', I am attempting to change your internal state. 
Furthermore, since t h s  utterance is an action that I perform, I am performing it 
for some purpose - presumably because I intend that you believe it is raining. 

8.1 Speech Acts 
Speech act theory treats communication as action. It is predicated on the assump- 
tion that speech actions are performed by agents just like other actions, in the 
furtherance of their intentions. 

I begin with an historical overview of speech act theory, focusing in particular 
on attempts to develop formal theories of speech acts, where communications are 
modelled as actions that alter the mental state of communication participants. 

8.1.1 Austin 

The theory of speech acts is generally recognized to have begun with the work 
of the phlosopher John Austin (Austin, 1962). He noted that a certain class of 
natural language utterances - hereafter referred to as speech acts - had the char- 
acteristics of actions, in the sense that they change the state of the world in a way 
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analogous to physical actions. It may seem strange to think of utterances chang- 
ing the world in the way that physical actions do. If I pick up a block from a table 
(to use an overworked but traditional example), then the world has changed in an 
obvious way. But how does speech change the world? Austin gave as paradigm 
examples declaring war and saying 'I now pronounce you man and wife'. Stated 
in the appropriate circumstances, these utterances clearly change the state of the 
world in a very tangible way1. 

Austin identified a number of performative verbs, whch correspond to various 
different types of speech acts. Examples of such performative verbs are request, 
inform, and promise. In addition, Austin distinguished three different aspects of 
speech acts: the locutionary act, or act of making an utterance (e.g. saying 'Please 
make some tea'), the illocutionary act, or action performed in saying something 
(e.g. 'He requested me to make some tea'), and perlocution, or effect of the act 
(e.g. 'He got me to make tea'). 

Austin referred to the conditions required for the successful completion of per- 
formatives as felicity conditions. He recognized three important felicity conditions. 

(1) There must be an accepted conventional procedure for the performative, 
and the circumstances and persons must be as specified in the procedure. 

(2) The procedure must be executed correctly and completely. 

(3) The act must be sincere, and any uptake required must be completed, insofar 
as is possible. 

Searle 

Austin's work was extended by John Searle in h s  1969 book Speech Acts 
(Searle, 1969). Searle identified several properties that must hold for a speech 
act performed between a hearer and a speaker to succeed. For example, consider 
a request by SPEAKER to HEARER to perform ACTION. 

(1) Normal 1 / 0  conditions. Normal 1/0 conditions state that HEARER is able to 
hear the request (thus must not be deaf, etc.), the act was performed in normal 
circumstances (not in a film or play, etc.), etc. 

(2) Preparatory conditions. The preparatory conditions state what must be true 
of the world in order that SPEAKER correctly choose the speech act. In t h s  
case, HEARER must be able to perform ACTION, and SPEAKER must believe that 
HEARER is able to perform ACTION. Also, it must not be obvious that HEARER 
will do ACTION anyway. 

l ~ o t i c e  that when referring to the effects of communication, I am ignoring 'pathological' cases, 
such as shouting while on a ski run and causing an avalanche. Similarly, I will ignore 'microscopic' 
effects (such as the minute changes in pressure or temperature in a room caused by speaking). 
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(3) Sincerity conditions. These conditions distinguish sincere performances of 
the request; an insincere performance of the act might occur if SPEAKER did 
not really want ACTION to be performed. 

Searle also attempted a systematic classification of possible types of speech acts, 
identifying the following five key classes. 

( I )  Representatives. A representative act commits the speaker to the truth of an 
expressed proposition. The paradigm case is informing. 

(2) Directives. A directive is an attempt on the part of the speaker to get the 
hearer to do somethmg. Paradigm case: requesting. 

(3) Commissives. Commit the speaker to a course of action. Paradigm case: 
promising. 

(4) Expressives. Express some psychological state (gratitude for example). Para- 
digm case: thanking. 

(5) Declarations. Effect some changes in an institutional state of affairs. Paradigm 
case: declaring war. 

8.1.3 The plan-based theory of speech acts 

In the late 1960s and early 1970s, a number of researchers in A1 began to build 
systems that could plan how to autonomously achieve goals (Allen et al., 1990). 
Clearly, if such a system is required to interact with humans or other autonomous 
agents, then such plans must include speech actions. T h s  introduced the question 
of how the properties of speech acts could be represented such that planning 
systems could reason about them. Cohen and Perrault (1979) gave an account 
of the semantics of speech acts by using t echques  developed in AI planning 
research (Fikes and Nilsson, 1971). The aim of their work was to develop a theory 
of speech acts 

. . .by modelling them in a planning system as operators defined. . .in 
terms of speakers' and hearers' beliefs and goals. Thus speech acts are 
treated in the same way as physical actions. 

(Cohen and Perrault, 1979) 

The formalism chosen by Cohen and Perrault was the STRIPS notation, in whch 
the properties of an action are characterized via preconditions and postconditions 
(Fikes and Nilsson, 1971). The idea is very similar to Hoare logic (Hoare, 1969). 
Cohen and Perrault demonstrated how the preconditions and postconditions of 
speech acts such as request could be represented in a multimodal logic containing 
operators for describing the beliefs, abilities, and wants of the participants in the 
speech act. 
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Consider the Request act. The aim of the Request act will be for a speaker 
to get a hearer to perform some action. Figure 8.1 defines the Request act. 
Two preconditions are stated: the 'cando.pr' (can-do preconditions), and 'want.pr' 
(want preconditions). The cando.pr states that for the successful completion of 
the Request, two conditions must hold. First, the speaker must believe that the 
hearer of the Request is able to perform the action. Second, the speaker must 
believe that the hearer also believes it has the ability to perform the action. The 
want.pr states that in order for the Request to be successful, the speaker must 
also believe it actually wants the Request to be performed. If the preconditions of 
the Request are fulfilled, then the Request will be successful: the result (defined 
by the 'effect' part of the definition) will be that the hearer believes the speaker 
believes it wants some action to be performed. 

While the successful completion of the Request ensures that the hearer is aware 
of the speaker's desires, it is not enough in itself to guarantee that the desired 
action is actually performed. This is because the definition of Request only mod- 
els the illocutionary force of the act. It says nothing of the perlocutionary force. 
What is required is a mediating act. Figure 8.1 gives a definition of CauseToWant, 
which is an example of such an act. By t h s  definition, an agent will come to believe 
it wants to do somethmg if it believes that another agent believes it wants to do it. 
This definition could clearly be extended by adding more preconditions, perhaps 
to do with beliefs about social relationships, power structures, etc. 

The I n f o r m  act is as basic as Request. The aim of performing an I n f o r m  
will be for a speaker to get a hearer to believe some statement. Like Request, the 
definition of I n f o r m  requires an associated mediating act to model the perlocu- 
tionary force of the act. The cando.pr of I n f o r m  states that the speaker must 
believe cp is true. The effect of the act will simply be to make the hearer believe 
that the speaker believes cp. The cando.pr of Convince simply states that the 
hearer must believe that the speaker believes q. The effect is simply to make the 
hearer believe q. 

Speech acts as rational action 

While the plan-based theory of speech acts was a major step forward, it was rec- 
ognized that a theory of speech acts should be rooted in a more general theory 
of rational action. This observation led Cohen and Levesque to develop a theory 
in which speech acts were modelled as actions performed by rational agents in 
the furtherance of their intentions (Cohen and Levesque, 1990b). The foundation 
upon which they built this model of rational action was their theory of intention, 
described in Cohen and Levesque (1990a). The formal theory is summarized in 
Chapter 1 2 ,  but, for now, here is the Cohen-Levesque definition of requesting, 
paraphrased in English. 

A request is an attempt on the part of s p  k r ,  by doing e, to bring about a 
state where, ideally (i) a d d r  intends or (relative to the s p k ~  still having 
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Figure 8.1 Definitions from Cohen and Perrault's plan-based theory of speech acts 

Preconditions Cando.pr ( S  BELIEVE ( H  CANDO a ) )  A 

( S  BELIEVE ( H  BELIEVE ( H  CANDO a ) ) )  

Want.pr ( S  BELIEVE ( S  W A N T  r e q u e s t l n s t a n c e ) )  

Effect ( H  BELIEVE ( S  BELIEVE ( S  W A N T  a ) ) )  

C a u s e T o W a n t ( A 1 ,  A? ,  a )  

Preconditions Cando.pr ( A 1  BELIEVE ( A 2  BELIEVE ( A 2  W A N T  a ) ) )  

Want.pr x 

Effect ( A 1  BELIEVE (A1 W A N T  a ) )  

Preconditions Cando.pr ( S  BELIEVE q )  

Want.pr ( S  BELIEVE ( S  W A N T  in f o r m l n s  t a n c e )  ) 

Effect ( H  BELIEVE ( S  BELIEVE 9 ) )  

C o n v i n c e  ( A 1 ,  A?,  p )  

Preconditions Cando.pr ( A 1  BELIEVE ( A 2  BELIEVE p ) )  

Want.pr x 

Effect (A1 BELIEVE q)  

that goal, and addr  still being helpfully inclined to sp k r ) ,  and (ii) addr  
actually eventually does oc., or at least brings about a state where a d d r  
believes it is mutually believed that it wants the ideal situation. 

(Cohen and Levesque, 1990b, p. 241) 

8.2 Agent Communication Languages 

As I noted earlier, speech act theories have directly informed and influenced a 
number of languages that have been developed specifically for agent cornrnuni- 
cation. In the early 1990s, the US-based DARPA-funded Knowledge Sharing Effort 
(KSE) was formed, with the remit of 
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[developing] protocols for the exchange of represented knowledge 
between autonomous information systems. 

(Finin et al., 1993) 

The KSE generated two main deliverables as follows. 

The Knowledge Query and Manipulation Language (KQML). KQML is an 
'outer' language for agent communication. It defines an 'envelope' format 
for messages, using whch an agent can explicitly state the intended illocu- 
tionary force of a message. KQML is not concerned with the content part of 
messages (Patil et al., 1992; Mayfield et al., 1996). 

- The Knowledge Interchange Format (KIF). KIF is a language explicitly in- 
tended to allow the representation of knowledge about some particular 
'domain of discourse'. It was intended primarily (though not uniquely) to 
form the content parts of KQML messages. 

1 KIF 

I d l  begin by describing the Knowledge Interchange Format - KIF (Genesereth 
and Fikes, 1992). Ths  language was originally developed with the intent of being 
a common language for expressing properties of a particular domain. It was not 
intended to be a language in whch messages themselves would be expressed, but 
rather it was envisaged that the KIF would be used to express message content. 
KIF is closely based on first-order logic (Enderton, 1972; Genesereth and Nilsson, 
1987). (In fact, KIF looks very like first-order logic recast in a LISP-like notation; 
to fully understand the details of t h s  section, some understanding of first-order 
logic is therefore helpful.) Thus, for example, by using KIF, it is possible for agents 
to express 

properties of thngs in a domain (e.g. 'Michael is a vegetarian' - Michael has 
the property of being a vegetarian); 

relationshps between thngs in a domain (e.g. 'Michael and Janine are mar- 
ried' - the relationship of marriage exists between Michael and Janine); 

general properties of a domain (e.g. 'everybody has a mother'). 

In order to express these thngs, KIF assumes a basic, fixed logical apparatus, 
which contains the usual connectives that one finds in first-order logic: the binary 
Boolean connectives and, or ,  not, and so on, and the universal and existential 
quantifiers fo ral  1 and e x i  s ts. In addition, KIF provides a basic vocabulary of 
objects - in particular, numbers, characters, and strings. Some standard func- 

! 
tions and relations for these objects are also provided, for example the 'less than' 

r relationshp between numbers, and the 'addition' function. A LISP-like notation is 
[ 

also provided for handling lists of objects. Using this basic apparatus, it is pos- 
sible to define new objects, and the functional and other relationships between 
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these objects. At t h s  point, some examples seem appropriate. The following KIF 
expression asserts that the temperature of ml  is 83 Celsius: 

(= (temperature m l )  ( sca la r  83 Celsius)) 

In t h s  expression, = is equality: a relation between two objects in the domain; 
temperature is a function that takes a single argument, an object in the domain 
(in t h s  case, m l ) ,  and scal a r  is a function that takes two arguments. The =relation 
is provided as standard in KIF, but both the temperature and sca l a r  functions 
must be defined. 

The second example shows how definitions can be used to introduced new 
concepts for the domain, in terms of existing concepts. It says that an object 
is a bachelor if this object is a man and is not married: 

(def re1 a t i  on bachel or  (?x) : = 

(and (man ?x) 
(not (married ?x)))) 

In t h s  example, ?x is a variable, rather like a parameter in a programming lan- 
guage. There are two relations: man and married, each of whch takes a single 
argument. The : = symbol means 'is, by definition'. 

The next example shows how relationshps between individuals in the domain 
can be stated - it says that any individual with the property of being a person also 
has the property of being a mammal: 

(def re1 a t i  on person (?x) : => (mammal ?x)) 

Here, both person and mammal are relations that take a single argument. 

8.2.2 KQML 

KQML is a message-based language for agent communication. Thus KQML defines 
a common format for messages. A KQML message may crudely be thought of 
as an object (in the sense of object-oriented programming): each message has 
a performative (whch may be thought of as the class of the message), and a 
number of parameters (attribute/value pairs, whch may be thought of as instance 
variables). 

Here is an example KQML message: 

(ask-one 
: content (PRICE I B M  ?pri ce) 
: receiver  stock-server 
: 1 anguage LPROLOG 
: onto1 ogy NYSE-TICKS 

1 
The intuitive interpretation of t h s  message is that the sender is aslung about 
the price of IBM stock. The performative is ask-one, which an agent will use to 
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Table 8.1 Parameters for KQML messages. 
-- 

Parameter Meaning 

: c o n t e n t  content of the message 

: f o r c e  whether the sender of the message 
will ever deny the content of the message 

: r e p l  y-wi  t h  whether the sender expects a reply, and, 
if so, an identifier for the reply 

: i n- r e p l  y- t o  reference to the : r e p l  y -w i  t h  parameter 

: sender  sender of the message 

: r e c e i v e r  intended recipient of the message 

ask a question of another agent where exactly one reply is needed. The various 
other components of this message represent its attributes. The most important of 
these is the : content  field, which specifies the message content. In this case, the 
content simply asks for the price of IBM shares. The : receiver  attribute speci- 
fies the intended recipient of the message, the : 1 anguage attribute specifies that 
the language in which the content is expressed is called LPROLOG (the recipient 
is assumed to 'understand' LPROLOC), and the final : onto1 ogy attribute defines 
the terminology used in the message - we will hear more about ontologies later 
in t h s  chapter. The main parameters used in KQML messages are summarized 
in Table 8.1; note that different performatives require different sets of parame- 
ters. 

Several different versions of KQML were proposed during the 1990s, with dif- 
ferent collections of performatives in each. In Table 8.2, I summarize the ver- 
sion of KQML performatives that appeared in Finin el al. (1993); this version 
contains a total of 41 performatives. In this table, S denotes the :sender of 
the messages, R denotes the : rece iver ,  and C denotes the content of the mes- 
sage. 

To more fully understand these performatives, it is necessary to understand 
the notion of a virtual knowledge base (VKB) as it was used in KQML. The idea 
was that agents using KQML to communicate may be implemented using differ- 
ent programming languages and paradigms - and, in particular, any information 
that agents have may be internally represented in many different ways. No agent 

i can assume that another agent will use the same internal representation; indeed, 
! no actual 'representation' may be present in an agent at all. Nevertheless, for the 

; purposes of communication, it makes sense for agents to treat other agents as i f  
i they had some internal representation of knowledge. Thus agents attribute knowl- 
i edge to other agents; this attributed knowledge is known as the virtual knowledge 
i base. 
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Table 8.2 KQML performatives. 

Performative Meaning 

achieve 
a d v e r t i  se 
ask-about 
ask-a1 1 
ask - i  f 
ask-one 
break 
broadcast 
broker-a1 1 
broker-one 
deny 
de l  e t e - a l l  
de l  ete-one 
d i  scard 
eos 
e r r o r  
eva l  ua te  
fo rward  
generator  
i n s e r t  
moni t o r  
nex t  

p i  Pe 
ready 

recommend-a1 1 
recommend-one 
r e c r u i  t - a l l  
r e c r u i  t -one 
r e g i s t e r  

rep1 Y 
r e s t  

s o r r y  
standby 
stream-about 
stream-a1 1 
subscr ibe 
t e l l  

wants R to make something true of their environment 
claims to be suited to processing a performative 
wants all relevant sentences in R's VKB 
wants all of R's answers to a question C 
wants to know whether the answer to C is in R's VKB 
wants one of R's answers to question C 
wants R to break an established pipe 
wants R to send a performative over all connections 
wants R to collect all responses to a performative 
wants R to get help in responding to a performative 

the embedded performative does not apply to S (anymore) 
S wants R to remove all sentences matching C from its VKB 
S wants R to remove one sentence matching C from its VKB 
S will not want R's remaining responses to a query 
end of a stream response to an earlier query 
S considers R's earlier message to be malformed 
S wants R to evaluate (simplify) C 
S wants R to forward a message to another agent 
same as a standby of a stream-a1 1 
S asks R to add content to its VKB 
S wants updates to R's response to a stream-a1 1 
S wants R's next response to a previously streamed 
performative 
S wants R to route all further performatives to another agent 
S is ready to respond to R's previously mentioned 
performative 

S wants all names of agents who can respond to C 
S wants the name of an agent who can respond to a C 
S wants R to get all suitable agents to respond to C 
S wants R to get one suitable agent to respond to C 
S can deliver performatives to some named agent 
communicates an expected reply 
S wants R's remaining responses to a previously 
named performative 
S cannot provide a more informative reply 
S wants R to be ready to respond to a performative 
multiple response version of ask-about 
multiple response version of ask-a1 1 
S wants updates to R's response to a performative 
S claims to R that C is in S's VKB 

t ranspor t -address  S associates symbolic name with transport address 
unregi  s t e r  the deny of a r e g i s t e r  
u n t e l l  S claims to R that C is not in S's VKB 
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Dialogue (a) 
(eval  ua te  

:sender A : r e c e i v e r  B 
: language K IF  : onto1 ogy motors 
: rep l y -w i  t h  q l  : con ten t  (va l  ( torque m l ) ) )  

(rep1 Y 
:sender B : r e c e i v e r  A 
:language K IF  :on to logy  motors 
: i n - r e p l y - t o  q l  : con ten t  (= ( torque m l )  ( s ca la r  12 kgf))) 

Dialogue (b) 
( s t  ream-about 

: sender A : r e c e i v e r  B 
:language KIF :on to logy  motors 
: r e p l  y-wi  t h  q l  : con ten t  m l )  

( t e l l  
:sender B : r ece i ve r  A 
: i n - r e p l y - t o  q l  : con ten t  (= ( torque m l )  ( s c a l a r  12 kgf ) ) )  

( t e l l  
:sender B : r e c e i v e r  A 
: i n-rep1 y - t o  q l  : con ten t  (= ( s ta tus  m l )  normal)) 

(eos 
:sender B : r e c e i v e r  A 
: i n- r e p l  y - t o  q l )  

-- 

Figure 8.2 Example KQML Dialogues. 

Example KQML dialogues 

To illustrate the use of KQML, we will now consider some example KQML dia- 
logues (these examples are adapted from Finin et al. (1993)). In the first dialogue 
(Figure 8.2(a)), agent A sends to agent B a query, and subsequently gets a response 
to this query. The query is the value of the torque on m l ;  agent A gives the query the 
name q l  so that B can later refer back to t h s  query when it responds. Finally, the 
: on to1  ogy of the query is m o t o r s  - as might be guessed, t h s  ontology defines 
a terminology relating to motors. The response that B sends indicates that the 
torque of r n l  is equal to 1 2  kgf - a scalar value. 

The second dialogue (Figure 8.2(b)) illustrates a stream of messages: agent A 
asks agent B for everythng it knows about m l .  Agent B responds with two t e l l  
messages, indicating what it knows about m l ,  and then sends an eos (end of 
stream) message, indicating that it will send no more messages about m l .  The 
first t e l l  message indicates that the torque of m l  is 1 2  kgf (as in dialogue (a)); 
the second t e l l  message indicates that the status of m l  is normal. Note that there 
is no content to the eos  message; eos  is thus a kind of meta-message - a message 
about messages. 



Communication 

Dialogue (c) 
( a d v e r t i  se 

:sender A 
: 1 anguage KQML : onto1 ogy K10 
: con ten t  

(subscr i  be 
:language KQML :on to logy  K10 
:con ten t  

( s t  ream-about 
:language KIF :on to logy  motors 
: con ten t  m l ) ) )  

( subscr i  be 
:sender B : r e c e i v e r  A 
: r e p l y - w i t h  s l  
: con ten t  

( s t  ream-about 
: 1 anguage K IF  :on to logy  motors 
: con ten t  ml)) 

( t e l l  
:sender A : r e c e i v e r  B 
: i n - r e p l y - t o  s l  : con ten t  (= ( torque m l )  ( s c a l a r  12 kgf ) ) )  

( t e l l  
: sender A : r e c e i v e r  B 
: i n - r e p l y - t o  s l  : con ten t  (= ( s ta tus  m l )  normal)) 

( u n t e l l  
:sender A : r e c e i v e r  B 
: i n - r e p l y - t o  s l  : con ten t  (= ( to rque  m l )  ( s ca la r  12 kg f ) ) )  

( t e l l  
: sender A : rece i  v e r  B 
: i n - r e p l y - t o  s l  : con ten t  (= ( to rque  m l )  ( s ca la r  1 5  kgf ) ) )  

(eos 
:sender A : r e c e i v e r  B 
: i n - r e p l y - t o  s l )  

. - -- - - - . .- 

Figure 8.3 Another KQML dialogue. 

The third (and most complex) dialogue, shown in Figure 8.3, shows how KQML 
messages themselves can be the content of KQML messages. The dialogue begins 
when agent A advertises to agent B that it is willing to accept subscriptions relat- 
ing to ml. Agent B responds by subscribing to agent A with respect to ml. Agent A 
then responds with sequence of messages about ml; as well as including t e l l  mes- 
sages, as we have already seen, the sequence includes an untel 1  message, to the 
effect that the torque of m l  is no longer 1 2  kgf, followed by a t e l l  message indi- 
cating the new value of torque. The sequence ends with an end of stream message. 



Agent Communication Languages 175 

The take-up of KQML by the multiagent systems community was significant, and 
several KQML-based implementations were developed and distributed. Despite 
thls success, KQML was subsequently criticized on a number of grounds as fol- 
lows. 

The basic KQML performative set was rather fluid - it was never tightly con- 
strained, and so different implementations of KQML were developed that 
could not, in fact, interoperate. 

Transport mechanisms for KQML messages (i.e. ways of getting a message 
from agent A to agent B) were never precisely defined, again making it hard 
for different KQML-tallung agents to interoperate. 

The semantics of KQML were never rigorously defined, in such a way that it 
was possible to tell whether two agents claiming to be talking KQML were in 
fact using the language 'properly'. The 'meaning' of KQML performatives was 
only defined using informal, English language descriptions, open to different 
interpretations. (I discuss this issue in more detail later on in this chapter.) 

The language was missing an entire class of performatives - comrnissives, by 
which one agent makes a commitment to another. As Cohen and Levesque 
point out, it is difficult to see how many multiagent scenarios could be imple- 
mented without comrnissives, which appear to be important if agents are to 
coordinate their actions with one another. 

The performative set for KQML was overly large and, it could be argued, 
rather ad hoc. 

These criticisms - amongst others - led to the development of a new, but rather 
closely related language by the FIPA consortium. 

!.3 The FIPA agent communication languages 
In 1995, the Foundation for Intelligent Physical Agents (FIPA) began its work on 
developing standards for agent systems. The centerpiece of this initiative was the 
development of an ACL (FIPA, 1999). This ACL is superficially similar to KQML: 
it defines an 'outer' language for messages, it defines 20 performatives (such as 

I i nform) for defining the intended interpretation of messages, and it does not man- 
! date any specific language for message content. In addition, the concrete syntax 

for FIPA ACL messages closely resembles that of KQML. Here is an example of a I FIPA ACL message (from PIPA, 1999 p. 10): 

( in form 
:sender agen t1  
: r e c e i v e r  agent2 
:con ten t  ( p r i c e  good2 150) 
: language s l  
: onto1 ogy h p l  - a u c t i  on 

1 
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Table 8.3 Performatives provided by the FIPA communication language. 

Passing Requesting Performing Error 
Performative information information Negotiation actions handling 

accept-proposal 
agree 
cancel 

cf P 
c o n f i  rrn 
d i  s c o n f i  r m  
f a i l u r e  
i n f o r m  
i nform- i  f 
i nfo rm- re f  
not -understood 
propagate 
propose 

P roxy  
q u e r y - i f  
query- r e f  
r e fuse  
r e  j ec t -p roposa l  
request  
request-when 
request-whenever 
subscr ibe 

As should be clear from this example, the FIPA communication language is similar 
to KQML: the structure of messages is the same, and the message attribute fields 
are also very similar. The relationship between the FIPA ACL and KQML is dis- 
cussed in FIPA (1999, pp. 68, 69). The most important difference between the two 
languages is in the collection of performatives they provide. The performatives 
provided by the FIPA communication language are categorized in Table 8.3. 

Informally, these performatives have the following meaning. 

accept-proposal The accept-proposal performative allows an agent to state 
that it accepts a proposal made by another agent. 

agree An accept performative is used by one agent to indicate that it has acqui- 
esced to a request made by another agent. It indicates that the sender of 
the agree message intends to carry out the requested action. 

cancel A cancel performative is used by an agent to follow up to a previous 
request message, and indicates that it no longer desires a particular action 
to be carried out. 

cfp A cfp (call for proposals) performative is used to initiate negotiation 
between agents. The content attribute of a c f p  message contains both an 
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action (e.g. 'sell me a car') and a condition (e.g. 'the price of the car is less 
than US$10 000'). Essentially, it says 'here is an action that I wish to be car- 
ried out, and here are the terms under which I want it to be carried out - send 
me your proposals'. (We will see in the next chapter that the c f p  message is 
a central component of task-sharing systems such as the Contract Net.) 

c o n f i  r m  The con f  i r m  performative allows the sender of the message to confirm 
the truth of the content to the recipient, where, before sending the message, 
the sender believes that the recipient is unsure about the truth or otherwise 
of the content. 

d i s c o n f i  r m  Similar to c o n f i  rm, but t h s  performative indicates to a recipient 
that is unsure as to whether or not the sender believes the content that the 
content is in fact false. 

f a i  1 u r e  T h s  allows an agent to indicate to another agent that an attempt to 
perform some action (typically, one that it was previously requested to 
perform) failed. 

i n f o rm  Along with request,  the i n f o r m  performative is one of the two most 
important performatives in the FIPA ACL. It is the basic mechanism for com- 
municating information. The content of an i nform performative is a state- 
ment, and the idea is that the sender of the i n f o r m  wants the recipient to 
believe this content. Intuitively, the sender is also implicitly stating that it 
believes the content of the message. 

i nf orm-i f An i n f  orm-i f implicitly says either that a particular statement is 
true or that it is false. Typically, an i nform-i f performative forms the con- 
tent part of a message. An agent will send a request  message to another 
agent, with the content part being an i nform- i  f message. The idea is that 
the sender of the request  is saying 'tell me if the content of the i n f o rm- i  f 
is either true or false'. 

in form-ref  The idea of i n f o rm-  r e f  is somewhat similar to that of i n fo rm- i f :  
the difference is that rather than asking whether or not an expression is true 
or false, the agent asks for the value of an expression. 

i not-understood T h s  performative is used by one agent to indicate to another 
t agent that it recognized that it performed some action, but did not un- 
I 

destand why t h s  action was performed. The most common use of n o t -  
understood is for one agent to indicate to another agent that a mes- 
sage that was just received was not understood. The content part of a 
not-understood message consists of both an action (the one whose pur- 
pose was not understood) and a statement, which gives some explanation of 
why it was not understood. T h s  performative is the central error-handling 
mechanism in the FIPA ACL. 
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propagate The content attribute of a propagate message consists of two 
things: another message, and an expression that denotes a set of agents. 
The idea is that the recipient of the propagate message should send the 
embedded message to the agent(s) denoted by this expression. 

propose This performative allows an agent to make a proposal to another agent, 
for example in response to a c fp  message that was previously sent out. 

proxy The proxy message type allows the sender of the message to treat the 
recipient of the message as a proxy for a set of agents. The content of a 
proxy message will contain both an embedded message (one that it wants 
forwarded to others) and a specification of the agents that it wants the mes- 
sage forwarded to. 

query-if  This performative allows one agent to ask another whether or not 
some specific statement is true or not. The content of the message will be 
the statement that the sender wishes to enquire about. 

query- ref This performative is used by one agent to determine a specific value 
for an expression (cf. the eval uat e performative in KQML). 

refuse A refuse performative is used by one agent to state to another agent 
that it will not perform some action. The message content will contain both 
the action and a sentence that characterizes why the agent will not perform 
the action. 

reject-proposal Allows an agent to indicate to another that it does not accept 
a proposal that was made as part of a negotiation process. The content 
specifies both the proposal that is being rejected, and a statement that chac- 
terizes the reasons for this rejection. 

request The second fundamental performative allows an agent to request 
another agent to perform some action. 

request-when The content of a request-when message will be both an action 
and a statement; the idea is that the sender wants the recipient to carry 
out the action when the statement is true (e.g. 'sound the bell when the 
temperature falls below 20 Celsius'). 

request-whenever Similar to request-when, the idea is that the recipient 
should perform the action whenever the statement is true. 

subscri  be Essentially as in KQML: the content will be a statement, and the 
sender wants to be notified whenever something relating to the statement 
changes. 

Given that one of the most frequent and damning criticisms of KQML was the 
lack of an adequate semantics, it is perhaps not surprising that the developers 
of the FIPA agent communication language felt it important to give a compre- 
hensive formal semantics to their language. The approach adopted drew heavily 
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on Cohen and Levesque's theory of speech acts as rational action (Cohen and 
Levesque, 1990b), but in particular on Sadek's enhancements to this work (Bretier 
and Sadek, 1997). The semantics were given with respect to a formal language 
called SL. T h s  language allows one to represent beliefs, desires, and uncertain 
beliefs of agents, as well as the actions that agents perform. The semantics of the 
FIPA ACL map each ACL message to a formula of SL, whch defines a constraint 
that the sender of the message must satisfy if it is to be considered as conforming 
to the FIPA ACL standard. FIPA refers to t h s  constraint as the feasibility condi- 
tion. The semantics also map each message to an SL-formula that defines the 
rational effect of the action - the 'purpose' of the message: what an agent will be 
attempting to acheve in sending the message (cf. perlocutionary act). However, 
in a society of autonomous agents, the rational effect of a message cannot (and 
should not) be guaranteed. Hence conformance does not require the recipient 
of a message to respect the rational effect part of the ACL semantics - only the 
feasibility condition. 

As I noted above, the two most important communication primitives in the 
FIPA languages are inform and request. In fact, all other performatives in FIPA 
are defined in terms of these performatives. Here is the semantics for inform 
(FIPA, 1999, p. 25): 

( 2 ,  inf o rm( j ,  p)> 
feasibility precondition: Bip A lB i  (Bifj p v U i f j  p) 
rational effect: Bjp.  (8.1) 

The B i p  means 'agent i believes p'; Bif ip  means that 'agent i has a definite 
opinion one way or the other about the truth or falsity of p ' ;  and CTifip means 
that agent i is 'uncertain' about p. Thus an agent i sending an i n f o r m  message 
with content p to agent j will be respecting the semantics of the FIPA ACL if it 
believes p, and it is not the case that it believes of j either that j believes whether 
q is true or false, or that j is uncertain of the truth or falsity of p .  If the agent is 
successful in performing the i n f o  rm, then the recipient of the message - agent j - 
will believe p .  

The semantics of request  are as follows2: 

(i ,  reques t  ( j ,  a) )  
feasibility precondition: BiAgent (a, j) A 1 BiIjDone (a) 

rational effect: Done(a ) .  (8.2) 

The SL expression Agent (a, j) means that the agent of action a is j (i.e. j is the 
agent who performs a); and Done(a )  means that the action a has been done. 
Thus agent i requesting agent j to perform action a means that agent i believes 
that the agent of a is j (and so it is sending the message to the right agent), and 

'1n the interests of comprehension, I have simplified the semantics a little. 



180 Communication 

agent i believes that agent j does not currently intend that LY is done. The rational 
effect - what i wants to acheve by t h s  - is that the action is done. 

One key issue for t h s  work is that of semantic conformance testing. The con- 
formance testing problem can be summarized as follows (Wooldridge, 1998). We 
are given an agent, and an agent communication language with some well-defined 
semantics. The aim is to determine whether or not the agent respects the seman- 
tics of the language whenever it communicates. Syntactic conformance testing 
is of course easy - the difficult part is to see whether or not a particular agent 
program respects the semantics of the language. 

The importance of conformance testing has been recognized by the ACL com- 
munity (FIPA, 1999, p. 1). However, to date, little research has been carried out 
either on how verifiable communication languages might be developed, or on how 
existing ACLs might be verified. One exception is (my) Wooldridge (1998), where 
the issue of conformance testing is discussed from a formal point of view: I point 
out that ACL semantics are generally developed in such a way as to express con- 
straints on the senders of messages. For example, the constraint imposed by the 
semantics of an 'inform' message might state that the sender believes the mes- 
sage content. This constraint can be viewed as a specification. Verifying that an 
agent respects the semantics of the agent communication language then reduces 
to a conventional program verification problem: show that the agent sending the 
message satisfies the specification given by the communication language seman- 
tics. But to solve this verification problem, we would have to be able to talk about 
the mental states of agents - what they believed, intended and so on. Given an 
agent implemented in (say) Java, it is not clear how this might be done. 

8.3 Ontologies for Agent Communication 
One issue that I have rather glossed over until now has been that of ontologies. The 
issue of ontologies arises for the following reason. If two agents are to communi- 
cate about some domain, then it is necessary for them to agree on the terminology 
that they use to describe this domain. For example, imagine an agent is buying 
a particular engineering item (nut or bolt) from another agent: the buyer needs 
to be able to unambiguously specify to the seller the desired properties of the 
item, such as its size. The agents thus need to be able to agree both on what 'size' 
means, and also what terms like 'inch' or 'centimetre' mean. An ontology is thus 
a specification of a set of terms as follows. 

An ontology is a formal definition of a body of knowledge. The most 
typical type of ontology used in building agents involves a structural 
component. Essentially a taxonomy of class and subclass relations cou- 
pled with definitions of the relationshps between these things. 

(Jim Hendler) 
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Figure 8.4 Architecture of the Ontolingua server 

In fact, we have already seen an example of a language for defining ontologies: 
KIF (Genesereth and Fikes, 1992). By using KIF, we can declaratively express 
the properties of a domain and the relationshps between the things in this 
domain. As KIF was not primarily intended as a language for use by humans, 
but for processing by computers, software tools were developed that allow a user 
to develop KIF ontologies - of these, the best known is the Ontolingua server 
(Farquhar et al., 1997). The Ontolingua server is a Web-based service that is 
intended to provide a common platform in which ontologies developed by dif- 
ferent groups can be shared, and perhaps a common view of these ontologies 
achieved. 

The structure of the Ontolingua server is illustrated in Figure 8.4. The cen- 
tral component is a library of ontologies, expressed in the Ontolingua ontol- 
ogy definition language (based on KIF). A server program provides access to 
t h s  library. The library may be accessed through the server in several differ- 
ent ways: either by editing it directly (via a Web-based interface), or by pro- 
grams that contact the server remotely via the NGFP interface. The Ontolingua 
server was capable of automatically transforming ontologies expressed in one 
format to a variety of others (e.g. the CORBA Inkiface Definition Language - 
IDL). 

As I noted above, KIF is very closely based on first-order logic, which gives it 
a clean, well-understood semantics, and in addition means that it is extremely 
expressive (with sufficient ingenuity, pretty much any kind of knowledge can be 
expressed in first-order logic). However, many other languages and tools have 
been developed for expressing ontologies. Perhaps the most important of these 
at the time of writing is the Xtensible Markup Language (XML, 2001) and its 
close relative, the DARPA Agent Markup Language (DAML, 2001). To understand 
how XML and DAML came about, it is necessary to look at the history of the 
Web. The Web essentially comprises two things: a protocol (HTTP), which pro- 
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vides a common set of rules for enabling Web servers and clients to commu- 
nicate with one another, and a format for documents called (as I am sure you 
know!) the Hypertext Markup Language (HTML). Now HTML essentially defines 
a grammar for interspersing documents with markup commands. Most of these 
markup commands relate to document layout, and thus give indications to a Web 
browser of how to display a document: which parts of the document should be 
treated as section headers, emphasized text, and so on. Of course, markup is not 
restricted to layout information: programs, for example in the form of JavaScript 
code, can also be attached. The grammar of HTML is defined by a Document 
Type Declaration (DTD). A DTD can be thought of as being analogous to the for- 
mal grammars used to define the syntax of programming languages. The HTML 
DTD thus defines what constitutes a syntactically acceptable HTML document. A 
DTD is in fact itself expressed in a formal language - the Standard Generalized 
Markup Language (SGML, 2001). SGML is essentially a language for defining other 
languages. 

Now, to all intents and purposes, the HTML standard is fixed, in the sense that 
you cannot arbitrarily introduce tags and attributes into HTML documents that 
were not defined in the HTML DTD. But this severely limits the usefulness of the 
Web. To see what I mean by this, consider the following example. An e-commerce 
company selling CDs wishes to put details of its prices on its Web page. Using 
conventional HTML techniques, a Web page designer can only markup the docu- 
ment with layout information (see, for example, Figure 8.5(a)). But this means that 
a Web browser - or indeed any program that looks at documents on the Web - has 
no way of knowing which parts of the document refer to the titles of CDs, which 
refer to their prices, and so on. Using XML it is possible to define new markup 
tags - and so, in essence, to extend HTML. To see the value of this, consider 
Figure 8.5(b), which shows the same information as Figure 8.5(a), expressed using 
new tags ( ca ta l  ogue, product, and so on) that were defined using XML. Note that 
new tags such as these cannot be arbitrarily introduced into HTML documents: 
they must be defined. The way they are defined is by writing an XML DTD: thus 
XML, like SGML, is a language for defining languages. (In fact, XML is a subset of 
SGML.) 

I hope it is clear that a computer program would have a much easier time under- 
standing the meaning of Figure 8.5(b) than Figure 8.5(a). In Figure 8.5(a), there is 
nothmg to help a program understand which part of the document refers to the 
price of the product, which refers to the title of the product, and so on. In contrast, 
Figure 8.5(b) makes all this explicit. 

XML was developed to answer one of the longest standing critiques of the Web: 
the lack of semantic markup. Using languages like XML, it becomes possible to 
add information to Web pages in such a way that it becomes easy for computers 
not simply to display it, but to process it in meaningful ways. This idea led Tim 
Berners-Lee, widely credited as the inventor of the Web, to develop the idea of the 
semantic Web. 
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(a) Plain HTML 

(b) XML 

Figure 8.5 Plain HTML versus XML. 

I have a dream for the Web [in which computers] become capable of 
analysing all the data on the Web - the content, links, and transac- 
tions between people and computers. A 'Semantic Web', which should 
make this possible, has yet to emerge, but when it does, the day-to-day 
mechanisms of trade, bureaucracy and our daily lives will be handled 
by machines talking to machines. The 'intelligent agents' people have 
touted for ages will finally materialise. 

(Berners-Lee, 1999, pp. 169, 170) 

In an attempt to realize this vision, work has begun on several languages and 
tools - notably the Darpa Agent Markup Language (DAML, 2001), which is based 
on XML. A fragment of a DAML ontology and knowledge base (from the DAML 
version of the CIA world fact book (DAML, 2001)) is shown in Figure 8.6. 

Coordination Languages 
One of the most important precursors to the development of multiagent systems 
was the blackboard model (Engelmore and Morgan, 1988). Initially developed as 
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< rd f :  D e s c r i  p t i  o n  r d f  : ID="UNITED-KINGDOMu> 
< r d f : t y p e  rd f : resource="GEOREF" />  
<HAS-TOTAL-AREA> 

(* 2 4 4 8 2 0  S q u a r e - K i l o m e t e r )  
</HAS-TOTAL-AREA> 
<HAS-LAND-AREA> 

(* 2 4 1 5 9 0  S q u a r e - K i l o m e t e r )  
</HAS-LAND-AREA> 
<HAS-COMPARATIVE-AREA-DOC> 

s l i g h t l y  s m a l l  e r than O r e g o n  
</HAS-COMPARATIVE-AREA-DOC> 
<HAS-BIRTH-RATE> 

1 3 . 1 8  
</HAS-BIRTH-RATE> 
<HAS-TOTAL-BORDER-LENGTH> 

(?: 3 6 0  K i l o m e t e r )  
</HAS-TOTAL-BORDER-LENGTH> 
<HAS-BUDGET-REVENUES> 

(* 3 . 2 5 5 E 1 1  U s - D o l l a r s )  
</HAS-BUDGET-REVENUES> 
<HAS-BUDGET-EXPENDITURES> 

(* 4 .  O O g E l l  Us-Do1 1 a r s )  
</HAS-BUDGET-EXPENDITURES> 
<HAS-BUDGET-CAPITAL-EXPENDITURES> 

(* 3 . 3 E l O  Us-Do1 1 a r s )  
</HAS-BUDGET-CAPITAL-EXPENDITURES 
<HAS-CLIMATE-DOC> 

m o r e  than h a l f  o f  t h e  d a y s  a r e  o v e r c a s t  
</HAS-CLIMATE-DOC> 
<HAS-COASTLINE-LENGTH> 

(* 1 2 4 2 9  K i l o m e t e r )  
</HAS-COASTLINE-LENGTH> 
<HAS-CONSTITUTION-DOC> 

u n w r i t t e n  ; p a r t l  y s t a t u t e s ,  p a r t l  y common l aw 
</HAS-CONSTITUTION-DOC> 

</ rd f :  D e s c r i  p t i  on>  

F i g u r e  8.6 Some facts about the UK, expressed in DAML. 

part of the Hearsay speech understanding project, the blackboard model proposes 
that group problem solving proceeds by a group of 'knowledge sources' (agents) 
observing a shared data structure known as a blackboard: problem solving pro- 
ceeds as these knowledge sources contribute partial solutions to the problem. 
In the 1980s, an interesting variation on the blackboard model was proposed 
within the programming language community. This variation was called Linda 
(Gelernter, 1985; Carriero and Gelernter, 1989). 

Strictly speakmg, Linda is not a programming language. It is the generic name 
given to a collection of programming language constructs, whch can be used to 
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implement blackboard-like systems. The core of the Linda model - corresponding 
loosely to a blackboard - is the tuple space. A tuple space is a shared data structure, 
the components of which are tagged tuples. Here is an example of a tagged tuple: 

("person", "rnjw", 35). 

A tuple may be thought of as a list of data elements. The first of these is the 
tag of the tuple, which corresponds loosely to a class in object-oriented program- 
ming. In the example above, the tag is 'person', suggesting that this tuple records 
information about a person. The remainder of the elements in the tuple are data 
values. 

Processes (agents) who can see the tuple space can access it via three instruc- 
tions (Table 8.4). The out  operation is the simplest: the expressions that are 
parameters to the operation are evaluated in turn, and the tagged tuple that 
results is deposited into the tuple space. The i n and out  operations allow a pro- 
cess to access the tuple space. The idea of the i n operation is that the parameters 
to it may either be expressions or parameters of the form ?v, where v is a variable 
name. When an instruction 

in(" tag" ,  f i e l d l ,  . . . , fieldN) 

is executed, then each of the expressions it contains is evaluated in turn. When 
this is done, the process that is executing the instruction waits (blocks) until a 
matching tuple is in the tuple space. For example, suppose that the tuple space 
contained the single person tuple above, and that a process attempted to execute 
the following instruction: 

in("person",  " r n j w " ,  ?age). 

Then this operation would succeed, and the variable age would subsequently have 
the value 3 5 .  If, however, a process attempted to execute the instruction 

in("personU,  "sdp", ?age), 

then the process would block until a tuple whose tag was "person" and whose 
first data element was "sdp" appeared in the tuple space. (If there is more than 
one matching tuple in the tuple space, then one is selected at random.) 

The rd operation is essentially the same as i n  except that it does not remove 
the tuple from the tuple space - it simply copies the data elements into fields. 

Despite its simplicity, Linda turns out be a very simple and intuitive language 
for developing complex distributed applications that must be coordinated with 
one another. 

Notes and Further Reading 
The problems associated with communicating concurrent systems have driven a 
significant fraction of research into theoretical computer science since the early 
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Table 8.4 Operations for manipulating Linda tuple spaces. 

Operation Meaning 

out("tagW, e x p r l ,  . . . ,  exprN) 

in("tagn,  f i e l d l ,  . . . ,  fieldN) 

rd("tagU, f i e l d l ,  . . . , fieldN) 

evaluate exprl, ..., exprN and 
deposit resulting tuple in tuple spacc 

wait until matching tuple occupies tuple space, 
then remove it, copying its values into fields 

wait until matching tuple occupies tuple space, 
then copy its values into fields 

1980s. Two of the best-known formalisms developed in this period are Tony 
Hoare's Communicating Sequential Processes (CSPs) (Hoare, 1978), and Robin Mil- 
ner's Calculus of Communicating Systems (CCS) (Milner, 1989). Temporal logic has 
also been widely used for reasoning about concurrent systems - see, for example, 
Pnueli (1986) for an overview. A good reference, which describes the key problems 
in concurrent and distributed systems, is Ben-Ari (1990). 

The plan-based theory of speech acts developed by Cohen and Perrault made 
speech act theory accessible and directly usable to the artificial intelligence com- 
munity (Cohen and Perrault, 1979). In the multiagent systems community, this 
work is arguably the most influential single publication on the topic of speech 
act-like communication. Many authors have built on its basic ideas. For example, 
borrowing a formalism for representing the mental state of agents that was devel- 
oped by Moore (1990), Douglas Appelt was able to implement a system that was 
capable of planning to perform speech acts (Appelt, 1982, 1985). 

Many other approaches to speech act semantics have appeared in the literature. 
For example, Perrault (1990) described how Reiter's default logic (Reiter, 1980) 
could be used to reason about speech acts. Appelt gave a critique of Perrault's 
work (Appelt and Konolige, 1988, pp. 167, 168), and Konolige proposed a related 
technique using hierarchic auto-epistemic logic (HAEL) (Konolige, 1988) for rea- 
soning about speech acts. Galliers emphasized the links between speech acts and 
AMG belief revision (Gardenfors, 1988): she noted that the changes in a hearer's 
state caused by a speech act could be understood as analogous to an agent revis- 
ing its beliefs in the presence of new information (Galliers, 1991). Singh developed 
a theory of speech acts (Singh, 1991 c, 1993) using his formal framework for rep- 
resenting rational agents (Singh, 1 99Oa,b, 199 1a,b, 1994, l998b; Singh and Asher, 
1991). He introduced a predicate comm(i ,  j, m )  to represent the fact that agent i 
communicates message m to agent j, and then used this predicate to define the 
semantics of assertive, directive, commissive, and permissive speech acts. 

Dignum and Greaves (2000) is a collection of papers on agent communica- 
tion languages. As I mentioned in the main text of the chapter, a number of 
KQML implementations have been developed: well-known examples are InfoS- 
leuth (Nodine and Unruh, 1998), KAoS (Bradshaw et al., 1997) and JATLite (Jeon e t  
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al., 2000)). Several FIPA implementations have also been developed, of which the 
Java-based Jade system is probably the best known (Poggi and nmassa, 2001). 

A critique of KIF was published as Ginsberg (1991), while a critique of KQML 
appears in Cohen and Levesque (1995). A good general survey of work on ontolo- 
gies (up to 1996) is Uschold and Gruninger (1996). There are many good online 
references to XML, DAML and the like: a readable published reference is Decker et  
a!. (2000). The March/April 2001 issue of IEEE Intelligent Systems magazine con- 
tained a useful collection of articles on the semantic web (Fensel and Musen, 2001), 
agents in the semantic Web (Hendler, 2001), and the OIL language for ontologies 
on the semantic Web (Fensel et  al., 2001). 

Recently, a number of proposals have appeared for communication languages 
with a verifiable semantics (Singh, 1998a; Pitt and Mamdani, 1999; Wooldridge, 
1999). See Labrou et al. (1999) for a discussion of the state of the art in agent 
communication languages as of early 1999. 

Coordination languages have been the subject of much interest by the theoret- 
ical computer science community: a regular conference is now held on the sub- 
ject, the proceedings of which were published as Ciancarini and Hanhn (1996). 
Interestingly, the Linda model has been implemented in the JavaSpaces package 
(Freeman et al., 1999), mahng it possible to use the model with Java/JINI systems 
(Oaks and Wong, 2000). 

Class discussion: Cohen and Perrault (1979). A nice introduction to speech acts 
and the semantics of speech acts, this paper was hugely influential, and although 
it was written for a natural language understanding audience, it is easy to make 
sense of. 
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Exercises 
(1)  [Class discussion.] 

What are the potential advantages and disadvantages of the use of agent communication 
languages such as KQML or FIPA, as compared with (say) method invocation in object- 
oriented languages? If you are familiar with distributed object systems like the Java RMI 
paradigm, then compare the benefits of the two. 

( 2 )  [Level 2.1 

Using the ideas of Cohen and Perrault's plan-based theory of speech acts, as well as the 
semantics of FIPA's r e q u e s t  and i nform performatives, try to give a semantics to other 
FIPA performatives. 



Working 
Together 

In the three preceding chapters, we have looked at the basic theoretical principles 
of multiagent encounters and the properties of such encounters. We have also 
seen how agents might reach agreements in encounters with other agents, and 
looked at languages that agents might use to communicate with one another. 
So far, however, we have seen nothing of how agents can work together. In this 
chapter, we rectify this. We will see how agents can be designed so that they can 
work together effectively. As I noted in Chapter 1, the idea of computer systems 
worlung together may not initially appear to be very novel: the term 'cooperation' 
is frequently used in the concurrent systems literature, to describe systems that 
must interact with one another in order to carry out their assigned tasks. There are 
two main distinctions between multiagent systems and 'traditional' distributed 
systems as follows. 

Agents in a multiagent system may have been designed and implemented 
by different individuals, with different goals. They therefore may not share 
common goals, and so the encounters between agents in a multiagent system 
more closely resemble games, where agents must act strategically in order 
to achieve the outcome they most prefer. 

Because agents are assumed to be acting autonomously (and so making deci- 
sions about what to do a t  run time, rather than having all decisions hard- 
wired in at design time), they must be capable of dynamically coordinating 
their activities and cooperating with others. In traditional distributed and 
concurrent systems, coordination and cooperation are typically hardwired 
in at design time. 
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Working together involves several different lunds of activities, that we will inves- 
tigate in much more detail throughout this chapter, in particular, the sharing both 
of tasks and of information, and the dynamic (i.e. run-time) coordination of multi- 
agent activities. 

Cooperative Distributed Problem Solving 
Work on cooperative distributed problem solving began with the work of Lesser 
and colleagues on systems that contained agent-like entities, each of which with 
distinct (but interrelated) expertise that they could bring to bear on problems that 
the entire system is required to solve: 

CDPS studies how a loosely-coupled network of problem solvers can 
work together to solve problems that are beyond their individual capa- 
bilities. Each problem-solving node in the network is capable of sophis- 
ticated problem-solving and can work independently, but the problems 
faced by the nodes cannot be completed without cooperation. Coop- 
eration is necessary because no single node has sufficient expertise, 
resources, and information to solve a problem, and different nodes 
might have expertise for solving different parts of the problem. 

(Durfee et a/., 1989b, p. 6 3 )  

Historically, most work on cooperative problem solving has made the benev- 
olence assumption: that the agents in a system implicitly share a common goal, 
and thus that there is no potential for conflict between them. T h s  assumption 
implies that agents can be designed so as to help out whenever needed, even if 
it means that one or more agents must suffer in order to do so: intuitively, all 
that matters is the overall system objectives, not those of the individual agents 
within it. The benevolence assumption is generally acceptable if all the agents in 
a system are designed or 'owned' by the same organization or individual. It is 
important to emphasize that the ability to assume benevolence greatly simplifies 
the designer's task. If we can assume that all the agents need to worry about is 
the overall utility of the system, then we can design the overall system so as to 
optimize this. 

In contrast to work on distributed problem solving, the more general area 
of multiagent systems has focused on the issues associated with societies of 
self-interested agents. Thus agents in a multiagent system (unlike those in typ- 
ical distributed problem-solving systems), cannot be assumed to share a com- 
mon goal, as they will often be designed by different individuals or organiza- 
tions in order to represent their interests. One agent's interests may therefore 
conflict with those of others, just as in human societies. Despite the potential 
for conflicts of interest, the agents in a multiagent system will ultimately need 
to cooperate in order to achieve their goals; again, just as in human societies. 
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Multiagent systems research is therefore concerned with the wider problems of 
designing societies of autonomous agents, such as why and how agents cooperate 
(Wooldridge and Jennings, 1994); how agents can recognize and resolve conflicts 
(Adler et aL, 1989; Galliers, l988b; Galliers, 1990; Klein and Baskin, 199 1; Lander 
et al., 1991); how agents can negotiate or compromise in situations where they 
are apparently at loggerheads (Ephrati and Rosenschein, 1993; Rosenschein and 
Zlotkin, 1994); and so on. 

I t  is also important to distinguish CDPS from parallel problem solving (Bond 
and Gasser, 1988, p. 3). Parallel problem solving simply involves the exploitation 
of parallelism in solving problems. Typically, in parallel problem solving, the com- 
putational components are simply processors; a single node will be responsible 
for decomposing the overall problem into sub-components, allocating these to 
processors, and subsequently assembling the solution. The nodes are frequently 
assumed to be homogcneous in the sense that they do not have distinct cxpcr- 
tise - they are simply processors to be exploited in solving the problem. Although 
parallel problem solving was synonymous with CDPS in the early days of multi- 
agent systems, the two fields are now regarded as quite separate. (However, it 
goes without saying that a multiagent system will employ parallel architectures 
and languages: the point is that the concerns of the two areas are rather different.) 

Coherence and coordination 
Having implemented an artificial agent society in order to solve some problem, 
how does one assess the success (or otherwise) of the implementation? What 
criteria can be used? The multiagent systems literature has proposed two types 
of issues that need to be considered. 

Coherence. Refers to 'how well the [multiagent] system behaves as a unit, along 
some dimension of evaluation' (Bond and Gasser, 1988, p. 19). Coherence may be 
measured in terms of solution quality, efficiency of resource usage, conceptual 
clarity of operation, or how well system performance degrades in the presence 
of uncertainty or failure; a discussion on the subject of when multiple agents 
can be said to be acting coherently appears as (Wooldridge, 1994). 

Coordination. In contrast, is 'the degree.. .to which [the agents]. . .can avoid 
'extraneous' activity [such as]. . .synchronizing and aligning their activities' 
(Bond and Gasser, 1988, p. 19); in a perfectly coordinated system, agents will not 
accidentally clobber each other's sub-goals while attempting to achieve a com- 
mon goal; they will not need to explicitly communicate, as they will be mutu- 
ally predictable, perhaps by maintaining good internal models of each other. 
Thc presence of conflict between agents, in the sense of agents destructivcly 
interfering with one another (whch requires time and effort to resolve), is an 
indicator of poor coordination. 

It is probably true to say that these problems have been the focus of more atten- 
tion in multiagent systems research than any other issues (Durfee and Lesser, 
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( i )  Problem 
Decomposition 

(ii) Subproblem (iii) Answer 
solution synthesis 

Figure 9.1 The three stages of CDPS. 

1987; Durfee, 1988; Gasser and Hill, 1990; Goldman and Rosenschein, 1993; Jen- 
nings, 1993a; Weifi, 1993). 

The main issues to be addressed in CDPS include the following. 

How can a problem be divided into smaller tasks for distribution among 
agents? 

How can a problem solution be effectively synthesized from sub-problem 
results? 

How can the overall problem-solving activities of the agents be optimized 
so as to produce a solution that maximizes the coherence metric? 

What techniques can be used to coordinate the activity of the agents, so 
avoiding destructive (and thus unhelpful) interactions, and maximizing 
effectiveness (by exploiting any positive interactions)? 

In the remainder of this chapter, we shall see some techniques developed by the 
multiagent systems community for addressing these concerns. 

9.2 Task Sharing and Result Sharing 
How do a group of agents work together to solve problems? Smith and Davis 
(1980) suggested that the CDPS process can canonically be viewed as a three-stage 
activity (see Figure 9.1) as follows. 

(1) Problem decomposition. In this stage, the overall problem to be solved is 
decomposed into smaller sub-problems. The decomposition will typically be 
hierarchical, so that sub-problems are then further decomposed into smaller 



Task Sharing and Result Shaving 193 

sub-problems, and so on, until the sub-problems are of an appropriate granu- 
larity to be solved by individual agents. The different levels of decomposition 
will often represent different levels of problem abstraction. For example, con- 
sider a (real-world) example of cooperative problem solving, which occurs when 
a government body asks whether a new hospital is needed in a particular region. 
In order to answer this question, a number of smaller sub-problems need to be 
solved, such as whether the existing hospitals can cope, what the likely demand 
is for hospital beds in the future, and so on. The smallest level of abstraction 
might involve asking individuals about their day-to-day experiences of the cur- 
rent hospital provision. Each of these different levels in the problem-solving 
herarchy represents the problem at a progressively lower level of abstraction. 
Notice that the grain size of sub-problems is important: one extreme view 
of CDPS is that a decomposition continues until the sub-problems represent 
'atomic' actions, which cannot be decomposed any further. This is essen- 
tially what happens in the ACTOR paradigm, with new agents - ACTORs 
being spawned for every sub-problem, until ACTORs embody individual pro- 
gram instructions such as addition, subtraction, and so on (Agha, 1986). But 
t h s  approach introduces a number of problems. In particular, the overheads 
involved in managing the interactions between the (typically very many) sub- 
problems outweigh the benefits of a cooperative solution. 
Another issue is how to perform the decomposition. One possibility is that 
the problem is decomposed by one individual agent. However, this assumes 
that t h s  agent must have the appropriate expertise to do this - it must have 
knowledge of the task structure, that is, how the task is 'put together'. If other 
agents have knowledge pertaining to the task structure, then they may be able 
to assist in identifying a better decomposition. The decomposition itself may 
therefore be better treated as a cooperative activity. 
Yet another issue is that task decomposition cannot in general be done without 
some knowledge of the agents that will eventually solve problems. There is no 
point in arriving at a particular decomposition that is impossible for a particular 
collection of agents to solve. 

(2) Sub-problem solution. In this stage, the sub-problems identified during prob- 
lem decomposition are individually solved. This stage typically involves sharing 
of information between agents: one agent can help another out if it has infor- 
mation that may be useful to the other. 

(3) Solution synthesis. In this stage, solutions to individual sub-problems are 
integrated into an overall solution. As in problem decomposition, this stage may 
be hierarchical, with partial solutions assembled at different levels of abstrac- 
tion. 

Note that the extent to which these stages are explicitly carried out in a particular 
problem domain will depend very heavily on the domain itself; in some domains, 
some of the stages may not be present at all. 



194 Working Together 

Task 1 -rx 

Task 1 . 1  Task 1.2 Task 1.3 
- .  

(a) Task sharing (b) Result sharing 

Figure 9.2 (a) Task sharing and (b) result sharing. In task sharing, a task is decomposed 
into sub-problems that are allocated to agents, while in result sharing, agents supply each 
other with relevant information, either proactively or on demand. 

Given this general framework for CDPS, there are two specific cooperative 
problem-solving activities that are likely to be present: task sharing and result 
sharing (Smith and Davis, 1980) (see Figure 9.2). 

Task sharing. Task sharing takes place when a problem is decomposed to smaller 
sub-problems and allocated to different agents. Perhaps the key problem to be 
solved in a task-sharing system is that of how tasks are to be allocated to indi- 
vidual agents. If all agents are homogeneous in terms of their capabilities (cf. the 
discussion on parallel problem solving, above), then task sharing is straightfor- 
ward: any task can be allocated to any agent. However, in all but the most trivial 
of cases, agents have very different capabilities. In cases where the agents are 
really autonomous - and can hence decline to carry out tasks (in systems that 
do not enjoy the benevolence assumption described above), then task alloca- 
tion will involve agents reaching agreements with others, perhaps by using the 
techniques described in Chapter 7. 

Result sharing. Result sharing involves agents sharing information relevant to 
their sub-problems. T h s  information may be shared proactively (one agent 
sends another agent some information because it believes the other will be 
interested in it), or reactively (an agent sends another information in response 
to a request that was previously sent - cf. the subscr ibe performatives in the 
agent communication languages discussed earlier). 

In the sections that follow, I shall discuss task sharing and result sharing in more 
detail. 

Task sharing in the Contract Net 

The Contract Net (CNET) protocol is a high-level protocol for acheving efficient 
cooperation through task sharing in networks of communicating problem solvers 
(Smith, 1977, 1980a,b; Smith and Davis, 1980). The basic metaphor used in the 
CNET is, as the name of the protocol suggests, contracting - Smith took h s  inspi- 
ration from the way that companies organize the process of putting contracts out 
to tender (see Figure 9.3). 
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I have a problem 

A A3 

(a)  Recognizing 
the problem 

A (c) Bidding 

T (b) Task announcement 

A (d) Awarding the contract 

Figure 9.3 The Contract Net (CNET) protocol. 

[A] node that generates a task advertises existence of that task to other 
nodes in the net with a task announcement, then acts as the manager 
of that task for its duration. In the absence of any information about 
the specific capabilities of the other nodes in the net, the manager is 
forced to issue a general broadcast to all other nodes. If, however, the 
manager possesses some knowledge about whch of the other nodes 
in the net are likely candidates, then it can issue a limited broadcast to 
just those candidates. Finally, if the manager knows exactly which of 
the other nodes in the net is appropriate, then it can issue a point-to- 
point announcement. As work on the problem progresses, many such 
task announcements will be made by various managers. 

Nodes in the net listen to the task announcements and evaluate 
them with respect to their own specialized hardware and software 
resources. When a task to which a node is suited is found, it submits 
a bid. A bid indicates the capabilities of the bidder that are relevant to 
the execution of the announced task. A manager may receive several 
such bids in response to a single task announcement; based on the 
information in the bids, it selects the most appropriate nodes to exe- 
cute the task. The selection is communicated to the successful bidders 
through an award message. These selected nodes assume responsibil- 
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ity for execution of the task, and each is called a contractor for that 
task. 

After the task has been completed, the contractor sends a report to 
the manager. (Smith, 1980b, pp. 60, 61) 

[This] normal contract negotiation process can be simplified in 
some instances, with a resulting enhancement in the efficiency of the 
protocol. If a manager knows exactly which node is appropriate for 
the execution of a task, a directed contract can be awarded. Thls dif- 
fers from the announced contract in that no announcement is made 
and no bids are submitted. Instead, an award is made directly. In such 
cases, nodes awarded contracts must acknowledge receipt, and have 
the option of refusal. 

Finally, for tasks that amount to simple requests for information, a 
contract may not be appropriate. In such cases, a request-response 
sequence can be used without further embellishment. Such messages 
(that aid in the distribution of data as opposed to control) are imple- 
mented as request and information messages. The request message is 
used to encode straightforward requests for information when con- 
tracting is unnecessary. The information message is used both as a 
response to a request message and a general data transfer message. 

(Smith, 1980b, pp. 62, 63) 

In addition to describing the various messages that agents may send, Smith 
describes the procedures to be carried out on receipt of a message. Briefly, these 
procedures are as follows (see Smith (1980b, pp. 96-102) for more details). 

(1) Task announcement processing. On receipt of a task announcement, an 
agent decides if it is eligible for the task. It does this by looking at the eligi- 
bility specification contained in the announcement. If it is eligible, then details 
of the task are stored, and the agent will subsequently bid for the task. 

(2) Bid processing. Details of bids from would-be contractors are stored by 
(would-be) managers until some deadline is reached. The manager then awards 
the task to a single bidder. 

(3) Award processing. Agents that bid for a task, but fail to be awarded it, simply 
delete details of the task. The successful bidder must attempt to expedite the 
task (whch may mean generating new sub-tasks). 

(4) Request and inform processing. These messages are the simplest to handle. 
A request simply causes an inform message to be sent to the requestor, con- 
taining the required information, but only if that information is immediately 
available. (Otherwise, the requestee informs the requestor that the information 
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I 

1 is unknown.) An inform message causes its content to be added to the recipi- 
I 
l 

ent's database. It is assumed that at the conclusion of a task, a contractor will 
send an information message to the manager, detailing the results of the expe- 
dited task1. 

E Despite (or perhaps because of) its simplicity, the Contract Net has become the 
most implemented and best-studied framework for distributed problem solving. 

B.3 Result Sharing 
In result sharing, problem solving proceeds by agents cooperatively exchanging 
information as a solution is developed. Typically, these results will progress from 
being the solution to small problems, which are progressively refined into larger, 
more abstract solutions. Durfee (1999, p. 131) suggests that problem solvers can 
improve group performance in result sharing in the following ways. 

Confidence: independently derived solutions can be cross-checked, highlighting 
possible errors, and increasing confidence in the overall solution. 

Completeness: agents can share their local views to achieve a better overall global 
view. 

Precision: agents can share results to ensure that the precision of the overall 
solution is increased. 

Timeliness: even if one agent could solve a problem on its own, by sharing a 
solution, the result could be derived more quickly. 

9.4 Combining Task and Result Sharing 
In the everyday cooperative worlung that we all engage in, we frequently combine 
task sharing and result sharing. In t h s  section, I will briefly give an overview of 
how this was achieved in the FELINE system (Wooldridge et al., 1991). FELINE was 
a cooperating expert system. The idea was to build an overall problem-solving 
system as a collection of cooperating experts, each of which had expertise in 
dstinct but related areas. The system worked by these agents cooperating to 
both share knowledge and distribute subtasks. Each agent in FELINE was in fact an 
independent rule-based system: it had a working memory, or database, containing 
information about the current state of problem solving; in addition, each agent 
had a collection of rules, which encoded its domain knowledge. 

Each agent in FELINE also maintained a data structure representing its beliefs 
about itself and its environment. This data structure is called the environment 
model (cf. the agents with symbolic representations discussed in Chapter 3). It 

 his is done via a special report message type in the original CNET framework. 
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contained an entry for the modelling agent and each agent that the modelling 
agent might communicate with (its acquaintances). Each entry contained two 
important attributes as follows. 

Skills. This attribute is a set of identifiers denoting hypotheses which the agent 
has the expertise to establish or deny. The slulls of an agent will correspond 
roughly to root nodes of the inference networks representing the agent's 
domain expertise. 

Interests. This attribute is a set of identifiers denoting hypotheses for whch thc 
agent requires the truth value. It may be that an agent actually has the expertise 
to establish the truth value of its interests, but is nevertheless 'interested' in 
them. The interests of an agent will correspond roughly to leaf nodes of the 
inference networks representing the agent's domain expertise. 

Messages in FELINE were triples, consisting of a sender, receiver, and contents. 
The contents field was also a triple, containing message type, attribute, and value. 
Agents in FELINE communicated using three message types as follows (the system 
predated the KQML and FIPA languages discussed in Chapter 8). 

Request. If an agent sends a request, then the attribute field will contain an iden- 
tifier denoting a hypothesis. It is assumed that the hypothesis is one which lies 
within the domain of the intended recipient. A request is assumed to mean that 
the sender wants the receiver to derive a truth value for the hypothesis. 

Response. If an agent receives a request and manages to successfully derive a 
truth value for the hypothesis, then it will send a response to the originator of 
the request. The attribute field will contain the identifier denoting the hypoth- 
esis: the value field will contain the associated truth value. 

Inform. The attribute field of an inform message will contain an identifier denot- 
ing a hypothesis. The value field will contain an associated truth value. An 
inform message will be unsolicited; an agent sends one if it thinks the recipient 
will be 'interested' in the hypothesis. 

To understand how problem solving in FELINE worked, consider goal-driven 
problem solving in a conventional rule-based system. Typically, goal-driven rea- 
soning proceeds by attempting to establish the truth value of some hypothesis. 
If the truth value is not known, then a recursive descent of the inference network 
associated with the hypothesis is performed. Leaf nodes in the inference network 
typically correspond to questions which are asked of the user, or data that is 
acquired in some other way. Within FELINE, t h s  scheme was augmented by the 
following principle. When evaluating a leaf node, if it is not a question, then the 
environment model was checked to see if any other agent has the node as a 'slull'. 
If there was some agent that listed the node as a slull, then a request was sent 
to that agent, requesting the hypothesis. The sender of the request then waited 
until a response was received; the response indicates the truth value of the node. 
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Typically, data-driven problem solving proceeds by taking a database of facts 
(hypotheses and associated truth values), and a set of rules, and repeatedly gen- 
erating a set of new facts. These new facts are then added to the database, and 
the process begins again. If a hypothesis follows from a set of facts and a set 
of rules, then this style of problem solving will eventually generate a result. In 
FELINE, this scheme was augmented as follows. Whenever a new fact was gener- 
ated by an agent, the environment model was consulted to see if any agent has 
the hypothesis as an 'interest'. If it did, then an 'inform' message was sent to the 
appropriate agent, containing the hypothesis and truth value. Upon receipt of an 
'inform' message, the recipient agent added the fact to its database and entered 
a forward chaining cycle, to determine whether any further information could be 
derived; thls could lead to yet more information being sent to other agents. Simi- 
lar schemes were implemented in (for example) the CoOpera system (Sommaruga 
et a!,, 1989). 

Handling Inconsistency 
One of the major problems that arises in cooperative activity is that of inconsis- 
tencies between different agents in the system. Agents may have inconsistencies 
with respect to both their beliefs (the information they hold about the world), 
and their goals/intentions (the things they want to achieve). As I indicated ear- 
lier, inconsistencies between goals generally arise because agents are assumed to 
be autonomous, and thus not share common objectives. Inconsistencies between 
the beliefs that agents have can arise from several sources. First, the viewpoint 
that agents have will typically be limited - no agent will ever be able to obtain 
a complete picture of their environment. Also, the sensors that agents have may 
be faulty, or the information sources that the agent has access to may in turn be 
faulty. 

In a system of moderate size, inconsistencies are inevitable: the question is how 
to deal with them. Durfee et al. (1989a) suggest a number of possible approaches 
to the problem as follows. 

Do not allow it to occur - or at least ignore it. This is essentially the approach 
of the Contract Net: task sharing is always driven by a manager agent, who 
has the only view of the problem that matters. 

Resolve inconsistencies through negotiation (see Chapter 7). While this may 
be desirable in theory, the communication and computational overheads 
incurred suggest that it will rarely be possible in practice. 

= Build systems that degrade gracefully in the presence of inconsistency. 

The third approach is clearly the most desirable. Lesser and Corkill (1981) refer to 
systems that can behave robustly in the presence of inconsistency as functionally 
uccura te/coopera rive (FA/C): 
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[In FA/C systems]. . .nodes cooperatively exchange and integrate par- 
tial, tentative, high-level results to construct a consistent and complete 
solution. [An agent's] problem-solving is structured so that its local 
knowledge bases need not be complete, consistent, and up-to-date in 
order to make progress on its problem-solving tasks. Nodes do the 
best they can with their current information, but their solutions to 
their local sub-problems may be only partial, tentative, and incorrect. 

(Durfee et al., 1989a, pp. 117, 118) 

Lesser and Corlull(1981) suggested the following characteristics of FA/C systems 
that tolerate inconsistent/incorrect information. 

= Problem solving is not tightly constrained to a particular sequence of 
events - it progresses opportunistically (i.e. not in a strict predetermined 
order, but taking advantage of whatever opportunities arise) and incremen- 
tally (i.e. by gradually piecing together solutions to sub-problems). 

Agents communicate by exchanging high-level intermediate results, rather 
than by exchanging raw data. 

Uncertainty and inconsistency is implicitly resolved when partial results are 
exchanged and compared with other partial solutions. Thus inconsistency 
and uncertainty is resolved as problem solving progresses, rather than at 
the beginning or end of problem solving. 

The solution is not constrained to a single solution route: there are many 
possible ways of arriving at a solution, so that if one fails, there are other 
ways of achieving the same end. This makes the system robust against local- 
ized failures and bottlenecks in problem solving. 

Coordination 
Perhaps the defining problem in cooperative working is that of coordination. The 
coordination problem is that of managing inter-dependencies between the activ- 
ities of agents: some coordination mechanism is essential if the activities that 
agents can engage in can interact in any way. How might two activities interact? 
Consider the following real-world examples. 

You and I both want to leave the room, and so we independently walk 
towards the door, which can only fit one of us. I graciously permit you to 
leave first. 

In t h s  example, our activities need to be coordinated because there is a 
resource (the door) which we both wish to use, but whch can only be used 
by one person at a time. 
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Figure 9.4 Von Martial's typology of coordination relationships. 

I intend to submit a grant proposal, but in order to do this, I need your 
signature. 

In this case, my activity of sending a grant proposal depends upon your activ- 
ity of signing it off - I cannot carry out my activity until yours is completed. 
In other words, my activity depends upon yours. 

I obtain a soft copy of a paper from a Web page. I know that this report 
d l  be of interest to you as well. Knowing this, I proactively photocopy the 
report, and give you a copy. 

In this case, our activities do not strictly need to be coordinated - since the 
report is freely available on a Web page, you could download and print your 
own copy. But by proactively printing a copy, I save you time and hence, 
intuitively, increase your utility. 

von Martial (1990) suggested a typology for coordination relationships (see Fig- 
ure 9.4). He suggested that, broadly, relationships between activities could be 
either positive or negative. 

Positive relationslvps 'are all those relationships between two plans from which 
some benefit can be derived, for one or both of the agents plans, by combining 
them' (von Martial, 1990, p. 11 1). Such relationships may be requested (I explic- 
itly ask you for help with my activities) or non-requested (it so happens that by 
worlung together we can achieve a solution that is better for at least one of us, 
without malung the other any worse off, cf. discussions of pareto optimality in 
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the preceding chapters). von Martial (1990, p. 112)  &stinguishes three types of 
non-requested relationship as follows. 

The action equality relationship. We both plan to perform an identical action, 
and by recognizing this, one of us can perform the action alone and so save the 
other effort. 

The consequence relationship. The actions in my plan have the side-effect of 
achieving one of your goals, thus relieving you of the need to explicitly achieve 
it. 

The favour relationship. Some part of my plan has the side effect of contributing 
to the achievement of one of your goals, perhaps by making it easier (e.g. by 
achieving a precondition of one of the actions in it). 

Coordination in multiagent systems is assumed to happen a t  run time, that is, 
the agents themselves must be capable of recognizing these relationships and, 
where necessary, managing them as part of their activities (von Martial, 1992). 
This contrasts with the more conventional situation in computer science, where 
a designer explicitly attempts to anticipate possible interactions in advance, and 
designs the system so as to avoid negative interactions and exploit potential pos- 
itive interactions. 

In the sections that follow, I present some of the main approaches that have 
been developed for dynamically coordinating activities. 

9.6.1 Coordination through partial global planning 

The Distributed Vehicle Monitoring Testbed (DVMT) was one of the earliest and 
best-known testbeds for multiagent systems. The DVMT was a fully instrumented 
testbed for developing distributed problem-solving networks (Lesser and Erman, 
1980; Lesser and Corkill, 1988). The testbed was based around the domain of 
distributed vehcle sensing and monitoring: the aim was to successfully track a 
number of vehicles that pass within the range of a set of distributed sensors. 
The main purpose of the testbed was to support experimentation into different 
problem-solving strategies. 

The distributed sensing domain is inherently data driven: new data about veh- 
cle movements appears and must be processed by the system. The main problem 
with the domain was to process information as rapidly as possible, so that the 
system could come to conclusions about the paths of vehcles in time for them to 
be useful. To coordinate the activities of agents in the DVMT, Durfee developed 
an approach known as partial global planning (Durfee and Lesser, 1987; Durfee, 
1988, 1996). 

The main principle of partial global planning is that cooperating agents 
exchange information in order to reach common conclusions about the problem- 
solving process. Planning is partial because the system does not (indeed cannot) 
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generate a plan for the entire problem. It is global because agents form non-local 
plans by exchanging local plans and cooperating to acheve a non-local view of 
problem solving. 

Partial global planning involves three iterated stages. 

(1) Each agent decides what its own goals are, and generates short-term plans 
in order to achieve them. 

(2)  Agents exchange information to determine where plans and goals interact. 

(3)  Agents alter local plans in order to better coordinate their own activities. 

In order to prevent incoherence during these processes, Durfee proposed the use 
of a meta-level structure, which guided the cooperation process within the sys- 
tem. The meta-level structure dictated which agents an agent should exchange 
information with, and under what conditions it ought to do so. 

The actions and interactions of a group of agents were incorporated into a data 
structure known as a partial global plan. This data structure will be generated 
cooperatively by agents exchanging information. It contained the following prin- 
ciple attributes. 

Objective. The objective is the larger goal that the system is working towards. 

Activity maps. An activity map is a representation of what agents are actually 
doing, and what results will be generated by their activities. 

Solution construction graph. A solution construction graph is a representation 
of how agents ought to interact, what information ought to be exchanged, and 
when, in order for the system to successfully generate a result. 

Keith Decker extended and refined the PGP coordination mechanisms in his TLMS 
testbed (Decker, 1996); this led to what he called generalized partial global plan- 
ning (GPGP - pronounced 'gee pee gee pee') (Decker and Lesser, 1995). GPGP makes 
use of five techniques for coordinating activities as follows. 

Updating non-local viewpoints. Agents have only local views of activity, and so 
sharing information can help them achieve broader views. In his TEMS system, 
Decker uses three variations of t h s  policy: communicate no local information, 
communicate all information, or an intermediate level. 

Communicate results. Agents may communicate results in three different ways. 
A minimal approach is where agents only communicate results that are essential 
to satisfy obligations. Another approach involves sending all results. A third is 
to send results to those with an interest in them. 

Handling simple redundancy. Redundancy occurs when efforts are duplicated. 
This may be deliberate - an agent may get more than one agent to work on a task 
because it wants to ensure the task gets done. However, in general, redundan- 
cies indicate wasted resources, and are therefore to be avoided. The solution 
adopted in GPGP is as follows. When redundancy is detected, in the form of 
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multiple agents worlung on identical tasks, one agent is selected at random to 
carry out the task. The results are then broadcast to other interested agents. 

Handling hard coordination relationships. 'Hard' coordination relationshps are 
essentially the 'negative' relationships of von Martial, as discussed above. Hard 
coordination relationships are thus those that threaten to prevent activities 
being successfully completed. Thus a hard relationshp occurs when there is 
a danger of the agents' actions destructively interfering with one another, or 
preventing each others actions being carried out. When such relationships are 
encountered, the activities of agents are rescheduled to resolve the problem. 

Handling soft coordination relationships. 'Soft' coordination relationshps in- 
clude the 'positive' relationships of von Martial. Thus these relationships 
include those that are not 'mission critical', but which may improve overall 
performance. When these are encountered, then rescheduling takes place, but 
with a high degree of 'negotiability': if rescheduling is not found possible, then 
the system does not worry about it too much. 

9.6.2 Coordination through joint intentions 

The second approach to coordination that I shall discuss is the use of human team- 
work models. We saw in Chapter 4 how some researchers have built agents around 
the concept of practical reasoning, and how central intentions are in this practical 
reasoning process. Intentions also play a critical role in coordination: they pro- 
vide both the stability and predictability that is necessary for social interaction, 
and the flexibility and reactivity that is necessary to cope with a changing envi- 
ronment. If you know that I am planning to write a book, for example, then this 
gives you information that you can use to coordinate your activities with mine. 
For example, it allows you to rule out the possibility of going on holiday with me, 
or partying with mc all night, because you know I will be workmg hard on the 
book. 

When humans work together as a team, mental states that are closely related to 
intentions appear to play a similarly important role (Levesque et al., 1990; Cohen 
and Levesque, 1991). It is important to be able to distinguish coordinated action 
that is not cooperativc from coordinated cooperative action. As an illustration of 
this point, consider the following scenario (Searle, 1990). 

A group of people are sitting in a park. As a result of a sudden down- 
pour all of them run to a tree in the middle of the park because it is the 
only available source of shelter. This may be coordinated behaviour, 
but it is not cooperative action, as each person has the intention of 
stopping themselves from becoming wet, and even if they are aware 
of what others are doing and what their goals are, it does not affect 
their intended action. T h s  contrasts with the situation in which the 
people are dancers, and the choreography calls for them to converge 



Coordination 205 

on a common point (the tree). In this case, the individuals are perform- 
ing exactly the same actions as before, but because they each have the 
aim of meeting at the central point as a consequence of the overall aim 
of executing the dance, this is cooperative action. 

How does having an individual intention towards a particular goal differ from 
being part of a team, with some sort of collective intention towards the goal? 
The distinction was first studied in Levesque et al. (1990), where it was observed 
that being part of a team implies some sort of responsibility towards the other 
members of the team. To illustrate t h s ,  suppose that you and I are together lifting 
a heavy object as part of a team activity. Then clearly we both individually have 
the intention to lift the object - but is there more to teamwork than this? Well, 
suppose I come to believe that it is not going to be possible to lift it for some 
reason. If I just have an individual goal to lift the object, then the rational thing 
for me to do is simply drop the intention (and thus perhaps also the object). 
But you would hardly be inclined to say I was cooperating with you if I did so. 
Being part of a team implies that I show some responsibility towards you: that if 
I discover the team effort is not going to work, then I should at least attempt to 
make you aware of ths .  

Building on the work of Levesque et al. (1990), Jennings distinguished between 
the commitment that underpins an intention and the associated convention 
(Jennings, 1993a). A commitment is a pledge or a promise (for example, to have 
lifted the object); a convention in contrast is a means of monitoring a commit- 
ment - it specifies under what circumstances a commitment can be abandoned 
and how an agent should behave both locally and towards others when one of 
these conditions arises. 

In more detail, one may commit either to a particular course of action, or, more 
generally, to a state of affairs. Here, we are concerned only with commitments 
that are future directed towards a state of affairs. Commitments have a number 
of important properties (see Jennings (1993a) and Cohen and Levesque (1990a, 
pp. 217-219) for a discussion), but the most important is that commitments per- 
sist: having adopted a commitment, we do not expect an agent to drop it until, 
for some reason, it becomes redundant. The conditions under which a comrnit- 
ment can become redundant are specified in the associated convention - exam- 
ples include the motivation for the goal no longer being present, the goal being 
acheved, and the realization that the goal will never be achieved (Cohen and 
Levesque, 1 990a). 

When a group of agents are engaged in a cooperative activity they must have a 
joint commitment to the overall aim, as well as their individual commitments to 
the specific tasks that they have been assigned. This joint commitment shares the 
persistence property of the individual commitment; however, it differs in that its 
state is distributed amongst the team members. An appropriate social convention 
must also be in place. This social convention identifies the conditions under which 
the joint commitment can be dropped, and also describes how an agent should 
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behave towards its fellow team members. For example, if an agent drops its joint 
commitment because it believes that the goal will never be attained, then it is part 
of the notion of 'cooperativeness' that is inherent in joint action that it informs 
all of its fellow team members of its change of state. In this context, social con- 
ventions provide general guidelines, and a common frame of reference in which 
agents can work. By adopting a convention, every agent knows what is expected 
both of it, and of every other agent, as part of the collective worlung towards the 
goal, and knows that every other agent has a similar set of expectations. 

We can begin to define this lund of cooperation in the notion of a joint persistent 
goal (JPG), as defined in Levesque et al. (1990). In a JPG, a group of agents have 
a collective commitment to bringing about some goal q ;  the motivation for t h s  
goal, i.e. the reason that the group has the commitment, is represented by +. 
Thus q might be 'move the heavy object', while + might be 'Michael wants the 
heavy object moved'. The mental state of the team of agents with this JPG might 
be described as follows: 

initially, every agent does not believe that the goal p is satisfied, but believes 
q is possible; 

every agent i then has a goal of p until the termination condition is satisfied 
(see below); 

until the termination condition is satisfied, then 

- if any agent i believes that the goal is acheved, then it will have a goal 
that this becomes a mutual belief, and will retain this goal until the 
termination condition is satisfied; 

- if any agent i believes that the goal is impossible, then it will have a 
goal that this becomes a mutual belief, and will retain t h s  goal until 
the termination condition is satisfied; 

- if any agent i believes that the motivation + for the goal is no longer 
present, then it will have a goal that this becomes a mutual belief, and 
will retain this goal until the termination condition is satisfied; 

the termination condition is that it is mutually believed that either 

- the goal q is satisfied; 

- the goal q is impossible to acheve; 

- the motivation/justification + for the goal is no longer present. 

Commitments and conventions in ARCHON 
Jennings (1993a, 1995) investigated the use of commitments and such as JPGs in 
the coordination of an industrial control system called ARCHON (Wittig, 1992; Jen- 
nings et al., 1996a; Perriolat et al., 1996). He noted that commitments and conven- 
tions could be encoded as rules in a rule-based system. T h s  makes it possible to 
explicitly encode coordination structures in the reasoning mechanism of an agent. 
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Figure 9.5 ARCHON agent architecture. 

The overall architecture of agents in ARCHON is illustrated in Figure 9.5. Agents 
have three layers. The lowest layer is the control layer. T h s  layer contains domain- 
specific agent capabilities. The idea is that agents in ARCHON wrap legacy soft- 
ware in agent-like capabilities. In the ARCHON case, these legacy systems were 
stand-alone expert systems. The legacy systems were embedded within a control 
module, whch provided access to them via an API. ARCHON agents maintained 
three different types of information, in the forms of an acquaintance model (cf. the 
acquaintance models of the MACE system described later in this chapter), a self 
model (which contains information about the agent's own skills and interests), 
and, finally, a general-purpose information store, which contains other informa- 
tion about the agent's environment. The behaviour of the agent was determined 
by three main control modules: the cuuperatiun mudule, which was responsible for 
the agent's social ability; the situation assessment module, which was responsible 
for determining when the need for new teamwork arose; and, finally, the commu- 
nication manager, which was responsible for sending/receiving messages. 

Some of the rules used for reassessing joint commitments and selecting actions 
to repair failed teamwork are shown in Figure 9.6 (from Jennings, 1995). The 
first four rules capture the conditions where the joint goal has been successfully 
acheved, where the motivation for the joint goal is no longer present, and where 
the current plan to achieve the joint goal has been invalidated in some way. The 
following 'select' rules are used to determine a repair action. 
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Figure 9.6 Joint commitment rules in ARCHON. 

Milind Tambe developed a similar framework for teamwork called Steam 
(Tambe, 1997). Agents in Steam are programmed using the Soar rule-based archi- 
tecture (Newel1 et al., 1989, 1990). The cooperation component of Steam is 
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encoded in about 300 domain-independent rules, somewhat similar in principle 
to Jennings's teamwork rules, as shown above. However, the cooperation rules of 
Steam are far more complex, allowing for sophisticated hierarchical team struc- 
tures. 

The Steam framework was used in a number of application domains, including 
military mission simulations, as well as the RoboCup simulated robotic soccer 
domain. 

A teamwork-based model of CDPS 

Building on Jennings's teamwork-based coordination model (Jennings, 1995), a 
four-stage model of CDPS was presented in Wooldridge and Jennings (1994,1999). 
The four stages of the model are as follows. 

(1) Recognition. CDPS begins when some agent in a multiagent community has 
a goal, and recognizes the potential for cooperative action with respect to that 
goal. Recognition may occur for several reasons. The paradigm case is that in 
whch the agent is unable to acheve the goal in isolation, but believes that coop- 
erative action can achieve it. For example, an agent may have a goal whch, to 
acheve, requires information that is only accessible to another agent. Without 
the cooperation of t h s  other agent, the goal cannot be achieved. More pro- 
saically, an agent with a goal to move a heavy object might simply not have the 
strength to do t h s  alone. 

Alternatively, an agent may be able to achieve the goal on its own, but may 
not want to. There may be several reasons for this. First, it may believe that in 
worlung alone, it will clobber one of its other goals. For example, suppose I have 
a goal of lifting a heavy object. I may have the capability of lifting the object, 
but I might believe that in so doing, I would injure my back, thereby clobbering 
my goal of being healthy. In this case, a cooperative solution - involving no 
injury to my back - is preferable. More generally, an agent may believe that 
a cooperative solution will in some way be better than a solution achieved by 
action in isolation. For example, a solution might be obtained more quickly, or 
may be more accurate as a result of cooperative action. 

Believing that you either cannot acheve your goal in isolation, or that (for what- 
ever reason) you would prefer not to work alone, is part of the potential for 
cooperation. But it is not enough in itself to initiate the social process. For there 
to be potential for cooperation with respect to an agent's goal, the agent must 
also believe there is some group of agents that can actually achieve the goal. 

(2) Team formation. During t h s  stage, the agent that recognized the potential for 
cooperative action at stage (1) solicits assistance. If this stage is successful, then 
it will end with a group of agents having some kmd of nominal commitment to 
collective action. T h s  stage is essentially a collective deliberation stage (see the 
discussion on deliberation in Walton and Krabbe's dialogue types, discussed in 
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Chapter 7). At the conclusion of this stage, the team will have agreed to the ends 
to be achieved (i.e. to the principle of joint action), but not to the means (i.e. the 
way in which this end will be achieved). Note that the agents are assumed to 
be rational, in the sense that they will not form a team unless they implicitly 
believe that the goal is achievable. 

(3) Plan formation. We saw above that a group will not form a collective unless 
they believe they can actually achieve the desired goal. This, in turn, implies 
there is at least one action known to the group that will take them 'closer' to 
the goal. However, it is possible that there are many agents that know of actions 
the group can perform in order to take them closer to the goal. Moreover, some 
members of the collective may have objections to one or more of these actions. 
It is therefore necessary for the collective to come to some agreement about 
exactly which course of action they will follow. Such an agreement is reached 
via negotiation or argumentation, of exactly the kind discussed in Chapter 7. 

(4) Team action. During this stage, the newly agreed plan of joint action is exe- 
cuted by the agents, which maintain a close-knit relationship throughout. T h s  
relationshp is defined by a convention, which every agent follows. The JPG 
described above might be one possible convention. 

9.6.3 Coordination by mutual modelling 

Another approach to coordination, closely related to the models of human team- 
work I discussed above, is that of coordination by mutual modelling. The idea is 
as follows. Recall the simple coordination example I gave earlier: you and I are 
both walking to the door, and there is not enough room for both of us - a col- 
lision is imminent. What should we do? One option is for both of us  to simply 
stop wallung. This possibility guarantees that no collision will occur, but it is in 
some sense sub-optimal: whle we stand and wait, there is an unused resource 
(the door), which could fruitfully have been exploited by one of us. Another pos- 
sibility is for both of us to put ourselves in the place o f  the other: to build a model 
of other agents - their beliefs, intentions, and the like - and to coordinate our 
activities around the predictions that this model makes. In this case, you might 
believe that I am eager to please you, and therefore that I will likely allow you to 
pass through the door first; on this basis, you can continue to walk to the door. 

This approach to coordination was first explicitly articulated in Genesereth et 
al. (1986), where the approach was dubbed 'cooperation without communication'. 
The models that were proposed were essentially the game-theoretic models that 
I discussed in Chapter 6. The idea was that if you assume that both you and the 
other agents with which you interact share a common view of the scenario (in 
game-theory terms, you all know the payoff matrix), then you can do a game- 
theoretic analysis to determine what is the rational thing for each player to do. 
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Note that - as the name of the approach suggests - explicit communication is not 
necessary in this scenario. 

MACE 

Les Gasser's MACE system, developed in the mid-1980s, can, with some justifi- 
cation, claim to be the first general experimental testbed for multiagent systems 
(Gasser et al., 1987a,b). MACE is noteworthy for several reasons, but perhaps most 
importantly because it brought together most of the components that have sub- 
sequently become common in testbeds for developing multiagent systems. I men- 
tion it in this section because of one critical component: the acquaintance models, 
which are discussed in more detail below. Acquaintance models are representa- 
tions of other agents: their abilities, interests, capabilities, and the like. 

A MACE system contains five components: 

a collection of application agents, which are the basic computational units 
in a MACE system (see below); 

a collection of predefined system agents, which provide service to users 
(e.g. user interfaces); 

a collection of facilities, available to all agents (e.g. a pattern matcher); 

a description database, which maintains agent descriptions, and produces 
executable agents from those descriptions; and 

a set of kernels, one per physical machine, which handle communication and 
message routing, etc. 

Gasser et al. identified three aspects of agents: they contain knowledge, they 
sense their environment, and they perform actions (Gasser et al., 1987b1 p. 124). 
Agents have two kinds of knowledge: specialized, local, domain knowledge, and 
acquaintance knowledge - knowledge about other agents. An agent maintains the 
following information about its acquaintances (Gasser et al., 1987b, pp. 126, 12 7). 

Class. Agents are organized in structured groups called classes, which are iden- 
tified by a class name. 

Name. Each agent is assigned a name, unique to its class - an agent's address is 
a (class, n a m e )  pair. 

Roles. A role describes the part an agent plays in a class. 

Skills. Skills are what an agent knows are the capabilities of the modelled agent. 

Goals. Goals are what the agent knows the modelled agent wants to achieve. 

Plans. Plans are an agent's view of the way a modelled agent will achieve its goals. 

Agents sense their environment primarily through receiving messages. An agent's 
ability to act is encoded in its engine. An engine is a LISP function, evaluated 
by default once on every scheduling cycle. The only externally visible signs of 
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((NAME p l  us-ks) 
(IMPORT ENGINE FROM dbb-def) 
(ACQUAINTANCES 

( p l  us-ks  
. . . model f o r  p l  us-ks . . . 

) 
(de-exp 

[ROLE (ORG-MEMBER)] 
[GOALS ( . . . goa l  l i s t  . . . ) ]  
[SKILLS ( . . .  s k i l l  l i s t  . . .  ) ]  
[PLANS ( . . . p l a n  l i s t  . . . ) I  

1 
( s i  rnpl e - p l  us 

. . . acqua in tance model f o r  s i m p l e - p l  u 
1 

1 
(INIT-CODE ( . . .  LISP code . . . ) )  

) ; end o f  p l u s - k s  

Figure 9.7 Structure of MACE agents. 

an agent's activity are the messages it sends to other agents. Messages may be 
directed to a single agent, a group of agents, or all agents; the interpretation of 
messages is left to the programmer to define. 

An example MACE agent is shown in Figure 9.7. The agent modelled in this 
example is part of a simple calculator system implemented using the black- 
board model. The agent being modelled here is called PLUS-KS. It is a knowledge 
source which knows about how to perform the addition operation. The PLUS-KS 
knowledge source is the 'parent' of two other agents; DE-EXP, an agent whch 
knows how to decompose simple expressions into their primitive components, 
and SIMPLE-PLUS, an agent which knows how to add two numbers. 

The definition frame for the PLUS-KS agent consists of a name for the agent - in 
this case PLUS-KS - the engine, which defines what actions the agent may perform 
(in this case the engine is imported, or inherited, from an agent called DBB-DEF), 
and the acquaintances of the agent. 

The acquaintances slot for PLUS-KS defines models for three agents. Firstly, the 
agent models itself. T h s  defines how the rest of the world will see PLUS-KS. Next, 
the agents DE-EXP and SIMPLE-PLUS are modelled. Consider the model for the 
agent DE-EXP. The role slot defines the relationship of the modelled agent to the 
modeller. In this case, both DE-EXP and SIMPLE-PLUS are members of the class 
defined by PLUS-KS. The COALS slot defines what the modelling agent believes 
the modelled agent wants to achieve. The SKILLS slot defines what resources the 
modeller believes the modelled agent can provide. The PLANS slot defines how 
the modeller believes the modelled agent will achieve its goals. The PLANS slot 
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consists of a list of skills, or operations, which the modelled agent will perform 
in order to achieve its goals. 

Gasser et al. described how MACE was used to construct blackboard systems, a 
Contract Net system, and a number of other experimental systems (see Gasser et 
aL, 1987b, 1989, pp. 138-140). 

Coordination by norms and social laws 

In our everyday lives, we use a range of techniques for coordinating activities. One 
of the most important is the use of norms and social laws (Lewis, 1969). A norm is 
simply an established, expected pattern of behaviour; the term social law carries 
essentially the same meaning, but it is usually implied that social laws carry with 
them some authority. Examples of norms in human society abound. For example, 
in the UK, it is a norm to form a queue when waiting for a bus, and to allow those 
who arrived first to enter the bus first. This norm is not enforced in any way: it is 
simply expected behaviour: diverging from this norm will (usually) cause nothing 
more than icy looks from others on the bus. Nevertheless, this norm provides a 
template that can be used by all those around to regulate their own behaviour. 

Conventions play a key role in the social process. They provide agents with 
a template upon whch to structure their action repertoire. They represent a 
behavioural constraint, strilung a balance between individual freedom on the one 
hand, and the goal of the agent society on the other. As such, they also simplify an 
agent's decision-malung process, by dictating courses of action to be followed in 
certain situations. It is important to emphasize what a key role conventions play 
in our everyday lives. As well as formalized conventions, which we all recognize as 
such (an example being driving on the left- or right-hand side of the road), almost 
every aspect of our social nature is dependent on convention. After all, language 
itself is nothing more than a convention, which we use in order to coordinate our 
activities with others. 

One key issue in the understanding of conventions is to decide on the most 
effective method by which they can come to exist within an agent society. There 
are two main approaches as follows. 

Offline design. In t h s  approach, social laws are designed offline, and hardwired 
into agents. Examples in the multiagent systems literature include Shoham and 
Tennenholtz (1992b), Goldman and Rosenschein (1993) and Conte and Castel- 
franchi (1993). 

Emergence from within the system. T h s  possibility is investigated in Shoham 
and Tennenholtz (1992a), kt tock (1993) and Walker and Wooldridge (1995), 
who experiment with a number of t e c h q u e s  by which a convention can 
'emerge' from withn a group of agents. 

The first approach will often be simpler to implement, and might present the sys- 
tem designer with a greater degree of control over system functionality. However, 
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there are a number of disadvantages with this approach. First, it is not always 
the case that all the characteristics of a system are known at design time. (Ths  
is most obviously true of open systems such as the Internet.) In such systems, 
the ability of agents to organize themselves would be advantageous. Secondly, in 
complex systems, the goals of agents (or groups of agents) might be constantly 
changing. To keep reprogramming agents in such circumstances would be costly 
and inefficient. Finally, the more complex a system becomes, the less likely it is 
that system designers will be able to design effective norms or social laws: the 
dynamics of the system - the possible 'trajectories' that it can take - will be too 
hard to predict. Here, flexibility within the agent society might result in greater 
coherence. 

Emergent norms and social laws 
A key issue, then, is how a norm or social law can emerge in a society of agents. 
In particular, the question of how agents can come to reach a global agreement 
on the use of social conventions by using only locally available information is of 
critical importance. The convention must be global in the sense that all agents use 
it. But each agent must decide on which convention to adopt based solely on its 
own experiences, as recorded in its internal state: predefined inter-agent power 
structures or authority relationships are not allowed. 

This problem was perhaps first investigated in Shoham and Tennenholtz 
(1992a), who considered the following scenario, which I will call the tee shirt game. 

Consider a group of agents, each of which has two tee shirts: one red 
and one blue. The agents - who have never met previously, and who 
have no prior knowledge of each other - play a game, the goal of which 
is for all the agents to end up wearing the same coloured tee shr t .  
Initially, each agent wears a red or blue tee s h r t  selected randomly. 
The game is played in a series of rounds. On each round, every agent is 
paired up with exactly one other agent; pairs are selected at random. 
Each pair gets to see the colour of the tee shirt the other is wearing - 
no other information or communication between the agents is allowed. 
After a round is complete, every agent is allowed to either stay wearing 
the same coloured tee shirt, or to swap to the other colour. 

Notice that no global view is possible in this game: an agent can never 'climb 
the wall' to see what every other agent is wearing. An agent must therefore base 
its decision about whether to change tee sh r t s  or stick with the one it is cur- 
rently wearing using only its memory of the agents it has encountered on previous 
rounds. The key problem is ths :  to design what Shoham and Tennenholtz (1992b) 
refer to as a strategy update function, which represents an agent's decision-malung 
process. A strategy update function is a function from the history that the agent 
has observed so far, to a colour (red or blue). Note that the term 'strategy' here 
may be a bit misleading - it simply refers to the colour of the tee shirt. The goal is 
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to develop a strategy update function such that, when it is used by every agent in 
the society, will bring the society to a global agreement as efficiently as possible. 

In Shoham and Tennenholtz (1992b, 1997) and Walker and Wooldridge (1995), 
a number of different strategy update functions were evaluated as follows. 

Simple majority. This is the simplest form of update function. Agents will change 
to an alternative strategy if so far they have observed more instances of it in 
other agents than their present strategy. If more than one strategy has been 
observed more than that currently adopted, the agent will choose the strategy 
observed most often. 

Simple majority with agent types. As simple majority, except that agents are 
divided into two types. As well as observing each other's strategies, agents in 
these experiments can communicate with others whom they can 'see', and who 
are of the same type. When they communicate, they exchange memories, and 
each agent treats the other agent's memory as if it were his own, thus being 
able to take advantage of another agent's experiences. In other words, agents 
are particular about whom they confide in. 

Simple majority with communication on success. This strategy updates a form 
of communication based on a success threshold. When an individual agent has 
reached a certain level of success with a particular strategy, he communicates 
his memory of experiences with t h s  successful strategy to all other agents that 
he can 'see'. Note, only the memory relating to the successful strategy is broad- 
cast, not the whole memory. The intuition behind this update function is that an 
agent will only communicate with another agent when it has something mean- 
ingful to say. T h s  prevents 'noise' communication. 

Highest cumulative reward. For this update to work, an agent must be able to 
see that using a particular strategy gives a particular payoff (cf. the discussion in 
Chapter 6). The highest cumulative reward update rule then says that an agent 
uses the strategy that it sees has resulted in the highest cumulative payoff to 
date. 

In addition, the impact of memory restarts on these strategies was investigated. 
Intuitively, a memory restart means that an agent periodically 'forgets' everything 
it has seen to date - its memory is emptied, and it starts as if from scratch again. 
The intuition behnd memory restarts is that it allows an agent to avoid being 
over-committed to a particular strategy as a result of history: memory restarts 

I thus make an agent more 'open to new ideas'. 
The efficiency of  convergence was measured by Shoham and Tennenholtz 

(1992b) primarily by the time taken to convergence: how many rounds of the tee 
shirt game need to be played before all agents converge on a particular strategy. 
However, it was noted in Walker and Wooldridge (1995) that changing from one 
strategy to another can be expensive. Consider a strategy such as using a partic- 
ular kind of computer operating system. Changing from one to another has an 
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associated cost, in terms of the time spent to learn it, and so we do not wish to 
change too frequently. Another issue is that of stability. We do not usually want 
our society to reach agreement on a particular strategy, only for it then to imme- 
diately fall apart, with agents reverting to different strategies. 

When evaluated in a series of experiments, all of the strategy update functions 
described above led to the emergence of particular conventions within an agent 
society. However, the most important results were associated with the highest 
cumulative reward update function (Shoham and Tennenholtz, 199 7, pp. 150, 
151).  It was shown that, for any value E such that 0 < E < 1, there exists some 
bounded value n such that a collection of agents using the highest cumulative 
reward update function will reach agreement on a strategy in n rounds with proba- 
bility 1 - E .  Furthermore, it was shown that this strategy update function is stable 
in the sense that, once reached, the agents would not diverge from the norm. 
Finally, it was shown that the strategy on which agents reached agreement was 
'efficient', in the sense that it guarantees agents a payoff no worse than that they 
would have received had they stuck with the strategy they initially chose. 

Offline design of norms and social laws 
The alternative to allowing conventions to emerge within a society is to design 
them offline, before the multiagent system begins to execute. The offline design 
of social laws is closely related to that of mechanism design, whch I discussed 
in Chapter 7 in the context of protocols for multiagent systems, and much of the 
discussion from that chapter applies to the design of social laws. 

There have been several studies of offline design of social laws, particularly 
with respect to the computational complexity of the social law design problem 
(Shoham and Tennenholtz, 1992b, 1996). To understand the way these problems 
are formulated, recall the way in which agents were defined in Chapter 2, as func- 
tions from runs (whch end in environment states) to actions: 

A g :  aE - Ac. 

A constraint is then a pair 
(El, a), 

where 

E' E E is a set of environment states; and 

a E Ac is an action. 

The reading of a constraint (El, a) is that, if the environment is in some state 
e E E', then the action a is forbidden. A social law is then defined to be a set 
sl of such constraints. An agent - or plan, in the terminology of Shoham and 
Tennenholtz (1992b, p. 279) - is then said to be legal with respect to a social law 
sl if it never attempts to perform an action that is forbidden by some constraint 
in s L. 
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The next question is to define what is meant by a useful social law. The answer 
is to define a set F G E of focal states. The intuition here is that these are the 
states that are always legal, in that an agent should always be able to 'visit' the 
focal states. To put it another way, whenever the environment is in some focal 
state e E F, it should be possible for the agent to act so as to be able to guar- 
antee that any other state e' E F is brought about. A useful social law is then 
one that does not constrain the actions of agents so as to make this impossi- 
ble. 

The useful social law problem can then be understood as follows. 

Given an environment Env = (E, T ,  eO)  and a set of focal states F G E, 
find a useful social law if one exists, or else announce that none exists. 

In Shoham and Tennenholtz (1992b, 1996), it is proved that this problem is NP- 
complete, and so is unlikely to be soluble by 'normal' computing techniques in 
reasonable time. Some variations of the problem are discussed in Shoham and 
Tennenholtz (1992b, 1996), and some cases where the problem becomes tractable 
are examined. However, these tractable instances do not appear to correspond to 
useful real-world cases. 

Social laws in practice 

Before leaving the subject of social laws, I will briefly discuss some examples of 
social laws that have been evaluated both in theory and practice. These are traffic 
laws (Shoham and Tennenholt z, 1996). 

Imagine a two-dimensional grid world - rather like the Tileworld introduced in 
Chapter 2 - populated by mobile robots. Only one robot is allowed to occupy a 
grid point at any one time - more than one is a collision. The robots must collect 
and transport items from one grid point to another. The goal is then to design a 
social law that prevents collisions. However, to be useful in this setting, the social 
law must not impede the movement of the robots to such an extent that they are 
unable to get from a location where they collect an item to the delivery location. As 
a first cut, consider a law whlch completely constrains the movements of robots, 
so that they must all follow a single, completely predetermined path, leaving no 
possibility of collision. Here is an example of such a social law, from Shoham and 
Tennenholtz (1996, p. 602). 

Each robot is required to move constantly. The direction of motion is 
fixed as follows. On even rows each robot must move left, whle in odd 
rows it must move right. It is required to move up when it is in the right- 
most column. Finally, it is required to move down when it is on either 
the leftmost column of even rows or on the second rightmost column 
of odd rows. The movement is therefore in a 'snake-like' structure, and 
defines a Hamiltonian cycle on the grid. 
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It should be clear that, using this social law, 

the next move of an agent is uniquely determined: the law does not leave 
any doubt about the next state to move to; 

an agent will always be able to get from its current location to its desired 
location, 

to get from the current location to the desired location will require at most 
0 (n2 )  moves, where n is the size of the grid (to see this, simply consider 
the dimensions of the grid). 

Although it is effective, this social law is obviously not very efficient: surely there 
are more 'direct' social laws which do not involve an agent moving around all the 
points of the grid? Shoham and Tennenholtz (1996) give an example of one, which 
superimposes a 'road network' on the grid structure, allowing robots to change 
direction as they enter a road. They show that t h s  social law guarantees to avoid 
collisions, while permitting agents to achieve their goals much more efficiently 
than the naive social law described above. 

Multiagent Planning and Synchronization 
An obvious issue in multiagent problem solving is that of planning the activities 
of a group of agents. In Chapter 4, we saw how planning could be incorporated 
as a component of a practical reasoning agent: what extensions or changes might 
be needed to plan for a team of agents? Although it is broadly similar in nature to 
'conventional' planning, of the type seen in Chapter 4, multiagent planning must 
take into consideration the fact that the activities of agents can interfere with one 
another - their activities must therefore be coordinated. There are broadly two 
possibilities for multiagent planning as follows (Durfee, 1999, p. 139). 

Centralized planning for distributed plans: a centralized planning system de- 
velops a plan for a group of agents, in which the division and ordering of labour 
is defined. This 'master' agent then distributes the plan to the 'slaves', who then 
execute their part of the plan. 

Distributed planning: a group of agents cooperate to form a centralized plan. 
Typically, the component agents will be 'specialists' in different aspects of the 
overall plan, and will contribute to a part of it. However, the agents that form 
the plan will not be the ones to execute it; their role is merely to generate the 
plan. 

Distributed planning for distributed plans: a group of agents cooperate to form 
individual plans of action, dynamically coordinating their activities along the 
way. The agents may be self-interested, and so, when potential coordination 
problems arise, they may need to be resolved by negotiation of the type dis- 
cussed in Chapter 7. 
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In general, centralized planning will be simpler than decentralized planning, 
because the 'master' can take an overall view, and can dictate coordination rela- 
tionshlps as required. The most difficult case to consider is the third. In this case, 
there may never be a 'global' plan. Individual agents may only ever have pieces of 
the plan which they are interested in. 

Plan merging 
Georgeff (1 98 3) proposed an algorithm which allows a planner to take a set a plans 
generated by single agents, and from them generate a conflict free (but not neces- 
sarily optimal) multiagent plan. Actions are specified by using a generalization of 
the STRIPS notation (Chapter 4). In addition to the usual precondition-delete-add 
lists for actions, Georgeff proposes using a during list. This list contains a set of 
conditions which must hold while the action is being carried out. A plan is seen as 
a set of states; an action is seen as a function which maps the set onto itself. The 
precondition of an action specifies the domain of the action; the add and delete 
lists specify the range. 

Given a set of single agent plans specified using the modified STRIPS notation, 
generating a synchronized multiagent plan consists of three stages. 

(1) Interaction analysis. Interaction analysis involves generating a description of 
how single agent plans interact with one another. Some of these interactions will 
be harmless; others will not. Georgeff used the notions of satisfiability, commu- 
tativity, and precedence to describe goal interactions. Two actions are said to 
be satisfiable if there is some sequence in which they may be executed without 
invalidating the preconditions of one or both. Commutativity is a restricted case 
of satisfiability: if two actions may be executed in parallel, then they are said 
to be commutative. It follows that if two actions are commutative, then either 
they do not interact, or any interactions are harmless. Precedence describes the 
sequence in which actions may be executed; if action or1 has precedence over 
action a2, then the preconditions of a2 are met by the postconditions of al. 
That is not to say that a1 must be executed before a2; it is possible for two 
actions to have precedence over each other. 
Interaction analysis involves searching the plans of the agents to detect any 
interactions between them. 

(2) Safety analysis. Having determined the possible interactions between plans, 
it now remains to see whch of these interactions are unsafe. Georgeff defines 
safeness for pairs of actions in terms of the precedence and commutativity of 
the pair. Safety analysis involves two stages. First, all actions which are harmless 
(i.e. where there is no interaction, or the actions commute) are removed from 
the plan. This is known as simplification. Georgeff shows that the validity of 
the final plan is not affected by this process, as it is only boundary regions that 
need to be considered. Secondly, the set of all harmful interactions is generated. 
This stage also involves searching; a rule known as the commutativity theorem 
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is applied to reduce the search space. All harmful interactions have then been 
identified. 

(3) Interaction resolution. In order to resolve conflicts in the simplified plan, 
Georgeff treats unsafe plan interactions as critical sections; to resolve the con- 
flicts, mutual exclusion of the critical sections must be guaranteed. To do this, 
Georgeff used ideas from Hoare's CSP paradigm to enforce mutual exclusion, 
although simpler mechanisms (e.g. semaphores) may be used to achieve pre- 
cisely the same result (Ben-Ari, 1993). 

Stuart (198 5) describes an implemented system which bears a superficial resem- 
blance to Georgeff's algorithm. It takes a set of unsynchronized single agent plans 
and from them generates a synchronized multiagent plan. Like Georgeff's algo- 
rithm, Stuart's system also guarantees a synchronized solution if one exists. Also, 
the final plan is represented as a sequence of actions interspersed with CSP prim- 
itives to guarantee mutual exclusion of critical sections (Hoare, 1978). Actions are 
also represented using an extended STRIPS notation. There, however, the resem- 
blance ends. The process of determining which interactions are possibly harmful 
and resolving conflicts is done not by searching the plans, but by representing the 
plan as a set of formulae of temporal logic, and attempting to derive a synchro- 
nized plan using a temporal logic theorem prover. The idea is that temporal logic 
is a language for describing sequences of states. As a plan is just a description of 
exactly such a sequence of states, temporal logic could be used to describe plans. 
Suppose two plans, .rrl and ~ 1 ,  were represented by temporal logic formulae ql 
and q2, respectively. Then if the conjunction of these two plans is satisfiable - if 
there is some sequence of events that is compatible with the conjunction of the 
formulae - then there is some way that the two plans could be concurrently exe- 
cuted. The temporal logic used was very similar to that used in the Concurrent 
MetateM language discussed in Chapter 3. 

The algorithm to generate a synchronized plan consists of three stages. 

(1) A set of single agent plans are given as input. They are then translated into 
a set of formulae in a propositional linear temporal logic (LTL) (Manna and 
Pnueli, 1992, 1995). 

(2) The formulae are conjoined and fed into an LTL theorem prover. If the con- 
joined formula is satisfiable, then the theorem prover will generate a set 
of sequences of actions which satisfy these formulae. These sequences are 
encoded in a graph structure. If the formula is not satisfiable, then the the- 
orem prover will report this. 

(3)  The graph generated as output encodes all the possible synchronized exe- 
cutions of the plans. A synchronized plan is then 'read off' from the graph 
structure. 
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Ingeneral, t h s  approach to multiagent synchronization is computationally expen- 
sive, because the temporal theorem prover has to solve a PSPACE-complete prob- 
lem. 

Notes and Further Reading 

Published in 1988, Bond and Gasser's Readings in Distributed Artificial Intelligence 
brings together most of the early classic papers on CDPS (Bond and Gasser, 1988). 
Although some of the papers that make up  thls collection are perhaps now rather 
dated, the survey article written by the editors as a preface to this collection 
remains one of the most articulate and insightful introductions to the problems 
and issues of CDPS to date. Victor Lesser and his group at the University of Mas- 
sachusetts are credited with more or less inventing the field of CDPS, and most 
innovations in this field to date have originated from members of this group over 
the years. Two survey articles that originated from the work of Lesser's group 
provide overviews of the field: Durfee et al. (1989a,b). Another useful survey is 
Decker et a1. (1989). 

The Contract Net has been hugely influential in the multiagent systems lit- 
erature. It originally formed the basis of Smith's doctoral thesis (published as 
Smith (1980b)), and was further described in Smith (1980a) and Smith and Davis 
(1980). Many variations on the Contract Net theme have been described, includ- 
ing the effectiveness of a Contract Net with 'consultants', which have expertise 
about the abilities of agents (Tidhar and Rosenschein, 1992), and a sophisticated 
variation involving marginal cost calculations (Sandholm and Lesser, 1995). Sev- 
eral formal specifications of the Contract Net have been developed, using basic 
set theore tic/firs t-order logic constructs (Werner, 1989), temporal belief logics 
(Wooldridge, 1992), and the Z specification language (d'Inverno and Luck, 1996). 

In addition to the model of cooperative action discussed above, a number of 
other similar formal models of cooperative action have also been developed, the 
best known of which is probably the Shared Plans model of Barbara Grosz and 
Sarit Kraus (Grosz and Kraus, 1993, 1999); also worth mentioning is the work of 
Tuomela and colleagues (Tuomela and Miller, 1988; Tuomela, 1 W l ) ,  Power (1 984), 

I and Rao and colleagues (Rao et al., 1992; Kinny et al., 1992). 
A number of researchers have considered the development and exploitation 

' of norms and social laws in multiagent systems. Examples of the issues inves- 
tigated include the control of aggression (Conte and Castelfranchi, 1993), the 
role of social structure in the emergence of conventions (Kittock, 1993), group 

1 behaviour (Findler and Malyankar, 1993), and the reconsideration of commitments 
i 
j (Jennings, 1993a). In addition, researchers working in philosophy, sociology, and 
1 economics have considered similar issues. A good example is the work of Lewis 
1 (1969), who made some progress towards a (non-formal) theory of normative 
I behaciour. 
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One issue that I have been forced to omit from this chapter due to space and 
time limitations is the use of normative specifications in multiagent systems, and, 
in particular, the use of deontic logic (Meyer and Wieringa, 1993). Deontic logic 
is the logic of obligations and permissions. Originally developed within formal 
philosophy, deontic logic was been taken up by researchers in computer science 
in order to express the desirable properties of computer systems. Dignum (1999) 
gives an overview of the use of deontic logic in multiagent systems, and also 
discusses the general issue of norms and social laws. 

Class reading: Durfee (1999). A detailed and precise introduction to distributed 
problem solving and distributed planning, with many useful pointers into the 
literature. 
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Exercises 
(1) [Level 2.1 

Using the FIPA or KQML languages 
implement the Contract Net protocol. 

(2) [Level 3.1 

(see preceding chapter), describe how you would 

Implement the Contract Net protocol using Java (or your programming language of 
choice). You mght  implement agents as threads, and have tasks as (for example) factoring 
numbers. Have an agent that continually generates new tasks and allocates them to an 
agent, which must distribute them to others. 

(3) [Level 3.1 
Download an FIPA or KQML system (such as Jade or JATLite - see preceding chapter), 

and use it to re-implement your Contract Net system. 





Methodologies 

As multiagent systems become more established in the collective consciousness 
of the computer science community, we might expect to see increasing effort 
devoted to devising methodologies to support the development of agent systems. 
Such methodologies have been lughly successful in the 00 community: examples 
include the methodologies of Booch, and Rumbaugh and colleagues (Booch, 1994; 
Rumbaugh et al., 1991). 

In this chapter I give an overview of work that has been carried out on the 
development of methodologies for multiagent systems. This work is, at the time 
of writing, rather tentative - not much experience has yet been gained with 
them. I begin by considering some of the domain attributes that indicate the 
appropriateness of an agent-based solution. I then go on to describe various 
prototypical methodologies, and discuss some of the pitfalls associated with 
agent-oriented development. I conclude by discussing the technology of mobile 
agents. 

When is an Agent-Based Solution Appropriate? 
There are a number of factors which point to the appropriateness of an agent- 
based approach (cf. Bond and Gasser, 1988; Jennings and Wooldridge, 1998b). 

The environment is open, or at least highly dynamic, uncertain, or complex. 
In such environments, systems capable of flexible autonomous action are often 
the only solution. 

Agents are a natural metaphor. Many environments (including most organiza- 
tions, and any commercial or competitive environment) are naturally modelled 



226 MethodoIog ies 

as societies of agents, either cooperating with each other to solve complex prob- 
lems, or else competing with one another. Sometimes, as in intelligent inter- 
faces, the idea of an agent is seen as a natural metaphor: Maes (1994a) dis- 
cusses agents as 'expert assistants', cooperating with the user to work on some 
problem. 

Distribution of data, control or expertise. In some environments, the distribu- 
tion of either data, control, or expertise means that a centralized solution is 
at best extremely difficult or at worst impossible. For example, distributed 
database systems in which each database is under separate control do not 
generally lend themselves to centralized solutions. Such systems may often 
be conveniently modelled as multiagent systems, in which each database is a 
semi-autonomous component. 

Legacy systems. A problem increasingly faced by software developers is that 
of legacy: software that is technologically obsolete but functionally essential 
to an organization. Such software cannot generally be discarded, because of 
the short-term cost of rewriting. And yet it is often required to interact with 
other software components, which were never imagined by the original design- 
ers. One solution to this problem is to wrap the legacy components, pro- 
viding them with an 'agent layer' functionality, enabling them to communi- 
cate and cooperate with other software components (Genesereth and Ketch- 
pel, 1994). 

10.2 Agent-Oriented Analysis and 
Design Techniques 
An analysis and design methodology is intended to assist first in gaining an under- 
standing of a particular system, and, secondly, in designing it. Methodologies gen- 
erally consist of a collection of models, and associated with these models, a set of 
guidelines. The models are intended to formalize understanding of a system being 
considered. Typically, the models start out as being tentative and rather abstract, 
and as the analysis and design process continues, they become increasingly more 
concrete, detailed, and closer to implementation. 

Methodologies for the analysis and design of agent-based systems can be 
broadly divided into two groups: 

those that take their inspiration from object-oriented development, and 
either extend existing 00 methodologies or adapt 00 methodologies to 
the purposes of AOSE (Burmeister, 1996; Kinny et a!., 1996; Wooldridge et 
al., 1999; Ode11 et al., 2001; Depke et al., 2001; Bauer et al., 2001; Kendall, 
2001; Ornicini, 2001; Wood and DeLoach, 2001); and 

- those that adapt knowledge engineering or other techniques (Brazier et al., 
1995; Luck et al., 1997; Iglesias et al., 1998; Collinot et al., 1996). 
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In the remainder of this section, I review some representative samples of this 
work. As representatives of the first category, I survey the AAII methodology of 
Kinny et al. (1996), the Gaia methodology of Wooldridge et al. (1999), and sum- 
marize work on adapting UML (Odcll et al., 2001; Dcpke et al., 2001; Bauer et 
al., 2001). As representatives of the second category, I survey the Cassiopeia 
methodology of Collinot et al. (1996), the DESIRE framework of Brazier et al. 
(1995), and the use of Z for specifying agent systems (Luck et al., 1997; d'Inverno 
and Luck, 2001). 

Kinny et 01.: the AAII methodology 

Throughout the 1990s, the Australian A1 Institute (AAII) developed a range of 
agent-based systems using their PRS-based belief-desire-intention technology 
(Wooldridge, 2000b) and the Distributed Multiagent Reasoning System (DMARS) 
(Rao and Georgeff, 1995). The M I  methodology for agent-oriented analysis and 
design was developed as a result of experience gained with these major appli- 
cations. It draws primarily upon object-oriented methodologies, and enhances 
them with some agent-based concepts. The methodology itself is aimed at the 
construction of a set of models which, when fully elaborated, define an agent 
system specification. 

The M I 1  methodology provides both internal and external models. The external 
model presents a system-level view: the main components visible in t h s  model are 
agents themselves. The external model is thus primarily concerned with agents 
and the relationships between them. It is not concerned with the internals of 
agents: how they are constructed or what they do. In contrast, the internal model 
is entirely concerned with the internals of agents: their beliefs, desires, and inten- 
tions. 

The external model is intended to define inheritance relationshps between 
agent classes, and to identify the instances of these classes that will appear 
at run-time. It is itself composed of two further models: the agent model and 
the interaction model. The agent model is then further divided into an agent 
class model and an agent instance model. These two models define the agents 
and agent classes that can appear, and relate these classes to one another 
via inheritance, aggregation, and instantiation relations. Each agent class is 
assumed to have at least three attributes: beliefs, desires, and intentions. The 
analyst is able to define how these attributes are overridden during inheri- 
tance. For example, it is assumed that by default, inherited intentions have less 
priority than those in sub-classes. The analyst may tailor these properties as 
desired. 

Details of the internal model are not given, but it seems clear that develop- 
ing an internal model corresponds fairly closely to implementing a PRS agent, 
i.e. designing the agent's belief, desire, and intention structures. 
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The AAII methodology is aimed at elaborating the models described above. It 
may be summarized as follows. 

(1) Identify the relevant roles in the application domain, and, on the basis of 
these, develop an agent class hierarchy. An example role might be a weather 
monitor, whereby agent i is required to make agent j aware of the prevailing 
weather conditions every hour. 

(2) Identify the responsibilities associated with each role, the services required 
by and provided by the role, and then determine the goals associated with 
each service. With respect to the above example, the goals would be to find 
out the current weather, and to make agent j aware of t h s  information. 

(3) For each goal, determine the plans that may be used to achieve it, and the 
context conditions under whch each plan is appropriate. With respect to the 
above example, a plan for the goal of making agent j aware of the weather 
conditions might involve sending a message to j .  

(4) Determine the belief structure of the system - the information requirements 
for each plan and goal. With respect to the above example, we might propose 
a unary predicate w indspeed(x)  to represent the fact that the current wind 
speed is x. A plan to determine the current weather conditions would need 
to be able to represent this information. 

Note that the analysis process will be iterative, as in more traditional method- 
ologies. The outcome will be a model that closely corresponds to the PRS agent 
architecture. As a result, the move from end-design to implementation using PRS 
is relatively simple. 

Wooldridge et al.: Gaia 
The ~ a i a '  methodology is intended to allow an analyst to go systematically from 
a statement of requirements to a design that is sufficiently detailed that it can be 
implemented directly. Note that we view the requirements capture phase as being 
independent of the paradigm used for analysis and design. In applymg Gaia, the 
analyst moves from abstract to increasingly concrete concepts. Each successive 
move introduces greater implementation bias, and shrinks the space of possible 
systems that could be implemented to satisfy the original requirements state- 
ment. (See Jones (1990, pp. 2 16-222) for a discussion of implementation bias.) 

Gaia borrows some terminology and notation from object-oriented analysis and 
design (specifically, FUSION (Coleman et al., 1994)). However, it is not simply 
a naive attempt to apply such methods to agent-oriented development. Rather, 
it provides an agent-specific set of concepts through which a software engineer 
can understand and model a complex system. In particular, Gaia encourages a 

lThe name comes from the Gaia hypothesis put forward by James Lovelock, to the effect that 
all the organisms in the Earth's biosphere can be viewed as acting together to regulate the Earth's 
environment. 
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Table 10.1 Abstract and concrete concepts in Gaia. 

Abstract concepts Concrete concepts 

Roles Agent types 
Permissions Services 

I 

i I Responsibilities Acquaintances 
Protocols 
Activities 

I Liveness properties 

Safety properties 

developer to think of building agent-based systems as a process of organizational 
design. 

The main Gaian concepts can be divided into two categories: abstract and con- 
crete (both of which are summarized in Table 10.1). Abstract entities are those 
used during analysis to conceptualize the system, but whch do not necessarily 
have any direct realization within the system. Concrete entities, in contrast, are 
used withn the design process, and will typically have direct counterparts in the 
run-time system. 

The objective of the analysis stage is to develop anunderstanding of the system 
and its structure (without reference to any implementation detail). In the Gaia 
case, this understanding is captured in the system's organization. An organization 
is viewed as a collection of roles that stand in certain relationships to one another 
and that take part in systematic, institutionalized patterns of interactions with 
other roles. 

The idea of a system as a society is useful when thinking about the next level in 
the concept hierarchy: roles. It may seem strange to think of a computer system 
as being defined by a set of roles, but the idea is quite natural when adopting an 
organizational view of the world. Consider a human organization such as a typical 
company. The company has roles such as 'president', 'vice president', and so on. 
Note that in a concrete realization of a company, these roles will be instantiated 
with actual individuals: there will be an individual who takes on the role of pres- 
ident, an individual who takes on the role of vice president, and so on. However, 
the instantiation is not necessarily static. Throughout the company's lifetime, 
many individuals may take on the role of company president, for example. Also, 
there is not necessarily a one-to-one mapping between roles and individuals. It 
is not unusual (particularly in small or informally defined organizations) for one 
individual to take on many roles. For example, a single individual might take on 
the role of 'tea maker', 'mail fetcher', and so on. Conversely, there may be many 
individuals that take on a single role, e.g. 'salesman'. 

A role is defined by four attributes: responsibilities, permissions, activities, and 
protocols. Responsibilities determine functionality and, as such, are perhaps the 
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key attribute associated with a role. An example responsibility associated with the 
role of company president might be calling the shareholders meeting every year. 
Responsibilities are divided into two types: liveness properties and safety prop- 
erties (Pnueli, 1986). Liveness properties intuitively state that 'something good 
happens'. They describe those states of affairs that an agent must bring about, 
given certain environmental conditions. In contrast, safety properties are invari- 
ants. Intuitively, a safety property states that 'nothing bad happens' (i.e. that an 
acceptable state of affairs is maintained across all states of execution). An example 
might be 'ensure the reactor temperature always remains in the range 0-100'. 

In order to realize responsibilities, a role has a set of permissions. Permissions 
are the 'rights' associated with a role. The permissions of a role thus identify 
the resources that are available to that role in order to realize its responsibili- 
ties. Permissions tend to be information resources. For example, a role might have 
associated with it the ability to read a particular item of information, or to modify 
another piece of information. A role can also have the ability to generate infor- 
mation. 

The activities of a role are computations associated with the role that may be 
carried out by the agent without interacting with other agents. Activities are thus 
'private' actions, in the sense of Shoham (1993). 

Finally, a role is also identified with a number of protocols, which define the 
way that it can interact with other roles. For example, a 'seller' role might have 
the protocols 'Dutch auction' and 'English auction' associated with it; the Contract 
Net protocol is associated with the roles 'manager' and 'contractor' (Smith, 1980b). 

Odell et al.: agent UML 

Over the past two decades, many different notations and associated methodolo- 
gies have been developed withn the object-oriented development community 
(see, for example, Booch, 1994; Rumbaugh et al., 1991; Coleman et al., 1994). 
Despite many similarities between these notations and methods, there were never- 
theless many fundamental inconsistencies and differences. The Unified Modelling 
Language - UML - is an attempt by three of the main figures behind object-oriented 
analysis and design (Grady Booch, James Rumbaugh and Ivar Jacobson) to develop 
a single notation for modelling object-oriented systems (Booch et al., 1998). It is 
important to note that UML is not a methodology; it is, as its name suggests, a lan- 
guage for documenting models of systems; associated with UML is a methodology 
known as the Rational Unified Process (Booch et al., 1998, pp. 449-456). 

The fact that UML is a de facto standard for object-oriented modelling promoted 
its rapid take-up. When loolung for agent-oriented modelling languages and tools, 
many researchers felt that UML was the obvious place to start (Odell et al., 2001; 
Depke et al., 2001; Bauer et al., 2001). The result has been a number of attempts to 
adapt the UML notation for modelling agent systems. Odell and colleagues have 
discussed several ways in whch the UML notation might usefully be extended to 



! 
Agent-Oriented Analysis and Design Techniques 231 

; enable the modelling of agent systems (Ode11 et al., 2001; Bauer et al., 2001). The 
proposed modifications include: 

support for expressing concurrent threads of interaction (e.g. broadcast 
messages), thus enabling UML to model such well-known agent protocols 
as the Contract Net (Chapter 9); 

a notion of 'role' that extends that provided in UML, and, in particular, allows 
the modelling of an agent playing many roles. 

Both the Object Management Group (OMG, 2001), and FIPA (see Chapter 8) are cur- 
rently supporting the development of UML-based notations for modelling agent 
systems, and there is therefore likely to be considerable work in this area. 

Treur et al.: DESIRE 

In an extensive scrics of papcrs (scc, for example, Brazicr et al., 1995; Dunin- 
Keplicz and Treur, 1995), Treur and colleagues have described the DESIRE frame- 
work. DESIRE is a framework for the design and formal specification of compo- 
sitional systems. As well as providing a graphcal notation for specifying such 

: compositional systems, DESIRE has associated with it a graphical editor and other 
tools to support the development of agent systems. 

Collinot et al.: Cassiopeia 
In contrast to Gaia and the AAII methodology, the Cassiopeia method proposed by 
Collinot et al. is essentially bottom up in nature (Collinot et al., 1996). Essentially, 
with the Cassiopeia method, one starts from the behaviours required to carry out 
some task; t h s  is rather similar to the behavioural view of agents put forward 
by Brooks and colleagues (Brooks, 1999). Essentially, the methodology proposes 
three steps: 

(1) identify the elementary behaviours that are implied by the overall system 
task; 

(2) identify the relationships between elementary behaviours; 

(3) identify the organizational behaviours of the system, for example, the way 
in which agents form themselves into groups. 

Collinot et al. illustrate the methodology by way of the design of a RoboCup soccer 
team (see RoboCup, 2001). 

Luck and d'lnverno: agents in Z 
Luck and d'Inverno have developed an agent specification framework in the Z lan- 
guage (Spivey, 1992), although the types of agents considered in this framework 
are somewhat different from those discussed throughout most of this book (Luck 
and d'lnverno, 1995; Luck et al., 1997; d'Inverno and Luck, 2001). They define a 
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four-tiered herarchy of the entities that can exist in an agent-based system. They 
start with entities, whch are inanimate objects - they have attributes (colour, 
weight, position) but nothing else. They then define objects to be entities that 
have capabilities (e.g. tables are entities that are capable of supporting things). 
Agents are then defined to be objects that have goals, and are thus in some sense 
active; finally, autonomous agents are defined to be agents with motivations. The 
idea is that a chair could be viewed as taking on my goal of supporting me when 
I am using it, and can hence be viewed as an agent for me. But we would not view 
a chair as an autonomous agent, since it has no motivations (and cannot easily be 
attributed them). Starting from this basic framework, Luck and d'Inverno go on 
to examine the various relationshps that might exist between agents of different 
types. In Luck et a/. (1997), they examine how an agent-based system specified 
in their framework might be implemented. They found that there was a natural 
relationship between their hierarchical agent specification framework and object- 
oriented systems. 

The formal definitions of agents and autonomous agents rely on inher- 
iting the properties of lower-level components. In the Z notation, t h s  
is acheved through schema inclusion.. .. Ths  is easily modelled in C++ 
by deriving one class from another. . . . Thus we move from a principled 
but abstract theoretical framework through a more detailed, yet still 
formal, model of the system, down to an object-oriented implementa- 
tion, preserving the herarchical structure at each stage. 

(Luck et al., 1997) 

The Luck-d'hverno formalism is attractive, particularly in the way that it cap- 
tures the relationships that can exist between agents. The emphasis is placed on 
the notion of agents acting for another, rather than on agents as rational systems, 
as we discussed above. The types of agents that the approach allows us to develop 
are thus inherently different from the "rational' agents discussed above. So, for 
example, the approach does not help us to construct agents that can interleave 
proactive and reactive behaviour. Ths  is largely a result of the chosen specifica- 
tion language: Z. Ths  language is inherently geared towards the specification of 
operation-based, functional systems. The basic language has no mechanisms that 
allow us to easily specify the ongoing behaviour of an agent-based system. There 
are of course extensions to Z designed for this purpose. 

Discussion 

The predominant approach to developing methodologies for multiagent systems 
is to adapt those developed for object-oriented analysis and design (Booch, 1994). 
There are several disadvantages with such approaches. First, the kinds of decom- 
position that object-oriented methods encourage is at odds with the kind of 
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design encourages. I discussed the relation- 
ship between agents and objects in Chapter 2: it should be clear from t h s  dis- 
cussion that agents and objects are very different beasts. Whle agent systems 
implemented using object-oriented programming languages will typically contain 
many objects, they will contain far fewer agents. A good agent-oriented design 
methodology would encourage developers to acheve the correct decomposition 
of entities into either agents or objects. 

Another problem is that object-oriented methodologies simply do not allow us 
to capture many aspects of agent systems; for example, it is hard to capture in 
object models such notions as an agent proactively generating actions or dynam- 
ically reacting to changes in their environment, still less how to effectively coop- 
erate and negotiate with other self-interested agents. The extensions to UML pro- 
posed in Ode11 et al. (2001), Depke et al. (2001) and Bauer et al. (2001) address 
some, but by no means all of these deficiencies. At the heart of the problem is the 
problem of the relationship between agents and objects, which has not yet been 
satisfactorily resolved. 

Pitfalls of Agent Development 
In t h s  section (summarized from Wooldridge and Jennings (1998)), I give an 
overview of some of the main pitfalls awaiting the unwary multiagent system 
developer. 

You oversell agent solutions, or fail to understand where agents may usefully 
be applied. Agent technology is currently the subject of considerable atten- 
tion in the computer science and A1 communities, and many predictions have 
been made about its long-term potential. However, one of the greatest current 
sources of perceived failure in agent-development initiatives is simply the fact 
that developers overestimate the potential of agent systems. While agent tech- 
nology represents a potentially novel and important new way of conceptualizing 
and implementing software, it is important to understand its limitations. Agents 
are ultimately just software, and agent solutions are subject to the same funda- 
mental limitations as more conventional software solutions. In particular, agent 
technology has not somehow solved the (very many) problems that have dogged 
AI since its inception. Agent systems typically make use of AI techniques. In this 
sense, they are an application of A1 technology. But their 'intelligent' capabilities 
are limited by the state of the art in this field. Artificial intelligence as a field has 
suffered from over-optimistic claims about its potential. It seems essential that 
agent technology does not fall prey to this same problem: realistic expectations 
of what agent technology can provide are thus important. 

You get religious or dogmatic about agents. Although agents have been used in 
a wide range of applications (see Chapter ll), they are not a universal solu- 
tion. There are many applications for which conventional software develop- 
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ment paradigms (such as object-oriented programming) are more appropriate. 
Indeed, given the relative immaturity of agent technology and the small number 
of deployed agent applications, there should be clear advantages to an agent- 
based solution before such an approach is even contemplated. 

You do not know why you want agents. This is a common problem for any new 
technology that has been hyped as much as agents. Managers read optimistic 
financial forecasts of the potential for agent technology and, not surprisingly, 
they want part of this revenue. However, in many cases, managers who propose 
an agent project do not actually have a clear idea about what 'having agents' 
will buy them. In short, they have no business model for agents - they have no 
understanding of how agents can be used to enhance their existing products, 
how they can enable them to generate new product lines, and so on. 

You want to build generic solutions to one-off problems. T h s  is a pitfall to 
which many software projects fall victim, but it seems especially prevalent in the 
agent community. It typically manifests itself in the devising of an architecture 
or testbed that supposedly enables a whole range of potential types of system 
to be built, when what is really required is a bespoke design to tackle a single 
problem. In such situations, a custom-built solution will be easier to develop 
and far more likely to satisfy the requirements of the application. 

You believe that agents are a silver bullet. The holy grail of software engineering 
is a 'silver bullet': a technique that will provide an order of magnitude improve- 
ment in software development. Agent technology is a newly emerged, and as yet 
essentially untested, software paradigm: but it is only a matter of time before 
someone claims agents are a silver bullet. Ths  would be dangerously naive. 
As we pointed out above, there are good arguments in favour of the view that 
agent technology will lead to improvements in the development of complex dis- 
tributed software systems. But, as yet, these arguments are largely untested in 
practice. 

You forget you are developing software. At the time of writing, the develop- 
ment of any agent system - however trivial - is essentially a process of exper- 
imentation. Although I discussed a number of methodologies above, there are 
no tried and trusted methodologies available. Unfortunately, because the pro- 
cess is experimental, it encourages developers to forget that they are actually 
developing software. The result is a foregone conclusion: the project flounders, 
not because of agent-specific problems, but because basic software engineering 
good practice was ignored. 

You forget you are developing multi-threaded software. Multi- threaded sys- 
tems have long been recognized as one of the most complex classes of computer 
system to design and implement. By their very nature, multiagent systems tend 
to be multi-threaded (both withn an agent and certainly withn the society of 
agents). So, in building a multiagent system, it is vital not to ignore the lessons 
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learned from the concurrent and distributed systems community - the problems 
inherent in multi-threaded systems do not go away, just because you adopt an 
agent-based approach. 

Your design does not exploit concurrency. One of the most obvious features of 
a poor multiagent design is that the amount of concurrent problem solving is 
comparatively small or even in extreme cases non-existent. If there is only ever 
a need for a single thread of control in a system, then the appropriateness of 
an agent-based solution must seriously be questioned. 

You decide you want your own agent architecture. Agent architectures are 
essentially templates for building agents. When first attempting an agent 
project, there is a great temptation to imagine that no existing agent archi- 
tecture meets the requirements of your problem, and that it is therefore nec- 
essary to design one from first principles. But designing an agent architecture 
from scratch in t h s  way is often a mistake: my recommendation is therefore 
to study the various architectures described in the literature, and either license 
one or else implement an 'off-the-shelf' design. 

Your agents use too much AI. When one builds an agent application, there is an 
understandable temptation to focus exclusively on the agent-specific, 'intelli- 
gence' aspects of the application. The result is often an agent framework that 
is too overburdened with experimental techniques (natural language interfaces, 
planners, theorem provers, reason maintenance systems, etc.) to be usable. 

You see agents everywhere. When one learns about multiagent systems for the 
first time, there is a tendency to view everything as an agent. This is perceived 
to be in some way conceptually pure. But if one adopts t h s  viewpoint, then 
one ends up with agents for everythng, including agents for addition and sub- 
traction. It is not difficult to see that naively viewing everything as an agent in 
this way will be extremely inefficient: the overheads of managing agents and 
inter-agent communication will rapidly outweigh the benefits of an agent-based 
solution. Moreover, we do not believe it is useful to refer to very fine-grained 
computational entities as agents. 

You have too few agents. Whle some designers imagine a separate agent for 
every possible task, others appear not to recognize the value of a multiagent 
approach at all. They create a system that completely fails to exploit the power 
offered by the agent paradigm, and develop a solution with a very small number 
of agents doing all the work. Such solutions tend to fail the standard software 
engineering test of cohesion, whch requires that a software module should 
have a single, coherent function. The result is rather as if one were to write an 
object-oriented program by bundling all the functionality into a single class. It 
can be done, but the result is not pretty. 

You spend all your time implementing infrastructure. One of the greatest obs- 
tacles to the wider use of agent technology is that there are no widely used 
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software platforms for developing multiagent systems. Such platforms would 
provide all the basic infrastructure (for message handling, tracing and monitor- 
ing, run-time management, and so on) required to create a multiagent system. As 
a result, almost every multiagent system project that we have come across has 
had a significant portion of available resources devoted to implementing this 
infrastructure from scratch. During this implementation stage, valuable time 
(and hence money) is often spent implementing libraries and software tools 
that, in the end, do little more than exchange messages across a network. By 
the time these libraries and tools have been implemented, there is frequently 
little time, energy, or enthusiasm left to work either on the agents themselves, 
or on the cooperative/social aspects of the system. 

Your agents interact too freely or in an disorganized way. The dynamics of 
multiagent systems are complex, and can be chaotic. Often, the only way to find 
out what is likely to happen is to run the system repeatedly. If a system contains 
many agents, then the dynamics can become too complex to manage effectively. 
Another common misconception is that agent-based systems require no real 
structure. Whle t h s  may be true in certain cases, most agent systems require 
considerably more system-level engineering than ths .  Some way of structuring 
the society is typically needed to reduce the system's complexity, to increase the 
system's efficiency, and to more accurately model the problem being tackled. 

Mobile Agents 

So far in t h s  book I have avoided mention of an entire species of agent, whch 
has aroused much interest, particularly in the programming-language and object- 
oriented-development community. Mobile agents are agents that are capable of 
transmitting themselves - their program and their state - across a computer net- 
work, and recommencing execution at a remote site. Mobile agents became known 
largely through the pioneering work of General Magic, Inc., on their Telescript pro- 
gramming language, although there are now mobile agent platforms available for 
many languages and platforms (see Appendix A for some notes on the hstory of 
mobile agents). 

The original motivation behnd mobile agents is simple enough. The idea was 
that mobile agents would replace remote procedure calls as a way for processes 
to communicate over a network - see Figure 10.1. With remote procedure calls, 
the idea is that one process can invoke a procedure (method) on another process 
which is remotely located. Suppose one process A invokes a method m on pro- 
cess B with arguments args; the value returned by process B is to be assigned to 
a variable v. Using a Java-like notation, A executes an instruction somewhat like 
the following: 
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Crucially, in remote procedure calls, communication is synchronous. That is, pro- 
cess A blocks from the time that it starts executing the instruction until the time 
that B returns a value. If B never returns a value - because the network fails, for 

I example - then A may remain indefinitely suspended, waiting for a reply that will 
i never come. The network connection between A and B may well also remain open, 

and even though it is largely unused (no data is being sent for most of the time), 
' this may be costly. 

The idea of mobile agents (Figure lO.l(b)) is to replace the remote procedure 
call by sending out an agent to do the computation. Thus instead of invoking a 
method, process A sends out a program - a mobile agent - to process B. This 
program then interacts with process B. Since the agent shares the same address 
space as B, these interactions can be carried out much more efficiently than if 
the same interactions were carried out over a network. When the agent has com- 
pleted its interactions, it returns to A with the required result. During the entire 
operation, the only network time required is that to send the agent to B, and that 
required to return the agent to A when it has completed its task. This is poten- 
tially a much more efficient use of network resources than the remote procedure 
call alternative described above. One of the original visions for Telescript was 
that it might provide an efficient way of managing network resources on devices 
such as hand-held/palmtop computers, which might be equipped with expensive, 
limited-bandwidth Internet connections. 

There are a number of technical issues that arise when considering mobile 
agents. 

Serialization. How is the agent serialized (i.e. encoded in a form suitable to be sent 
across the network), and, in particular, what aspects of the agent are serialized - 
the program, the data, or the program and its data? 

Hosting and remote execution. When the agent arrives at its destination, how is 
it executed, for example if the original host of the agent employs a different 
operating system or processor to the destination host? 

Security. When the agent from A is sent to the computer that hosts process 6, 
there is obvious potential for the agent to cause trouble. It could potentially do 
t h s  in a number of ways: 

it might obtain sensitive information by reading filestore or RAM directly; 

it might deny service to other processes on the host machine, by either 
occupymg too much of the available processing resource (processor cycles 
or memory) or else by causing the host machine to malfunction (for exam- 
ple by writing over the machine's RAM); and, finally, 

it might simply cause irritation and annoyance, for example by causing 
many windows to pop up on the user's GUI. 
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Figure 10.1 Remote procedure calls (a) versus mobile agents (b). 

Many different answers have been developed to address these issues. With respect 
to the first issue - that of how to serialize and transmit an agent - there are several 
possibilities. 

Both the agent and its state are transmitted, and the state includes the pro- 
gram counter, i.e. the agent 'remembers' where it was before it was transrnit- 
ted across the network, and when it reaches its destination, it recommences 
execution at the program instruction following that which caused it to be 
transmitted. This is the kind of mobility employed in the Telescript language 
(White, 1994, 1997). 

The agent contains both a program and the values of variables, but not the 
'program counter', so the agent can remember the values of all variables, 
but not where it was when it transmitted itself across the network. Ths  is 
how Danny Lange's Java-based Aglets framework works (Lange and Oshima, 
1999). 
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The agent to be transmitted is essentially a script, without any associated 
state (although state might be downloaded from the original host once the 
agent has arrived at its destination). 

The issue of security dominates discussions about mobile agents. The key diffi- 
culty is that, in order for an agent to be able to do anything useful when it arrives 
at a remote location, it must access and make use of the resources supplied by the 
remote host. But providing access to these resources is inherently dangerous: it 
lays open the possibility that the host will be abused in some way. Languages like 
Java go some way to addressing these issues. For example, unlike languages such 
as C or C++, the Java language does not have pointers. It is thus inherently difficult 
(though not impossible) for a Java process to access the memory of the machine on 
which it is running. Java virtual machnes also have a built in Secu r i  tyManage r, 
which defines the extent to which processes running on the virtual machine can 
access various resources. However, it is very hard to ensure that (for example) a 
process does not use more than a certain number of processor cycles. 

Telescript 

Telescript was a language-based environment for constructing multiagent sys- 
tems developed in the early 1990s by General Magic, Inc. It was a commercial 
product, developed with the then very new palm-top computing market in mind 
(White, 1994, 1997). 

There are two key concepts in Telescript technology: places and agents. Places 
are virtual locations that are occupied by agents - a place may correspond to a sin- 
gle machine, or a family of machines. Agents are the providers and consumers of 
goods in the electronic marketplace applications that Telescript was developed to 
support. Agents in Telescript are interpreted programs; the idea is rather similar 
to the way that Java bytecodes are interpreted by the Java virtual machine. 

Telescript agents are able to move from one place to another, in which case their 
program and state are encoded and transmitted across a network to another place, 
where execution recommences. In order to travel across the network, an agent 
uses a ticket, which specifies the parameters of its journey: 

the agent's destination; 

the time at whch the journey will be completed. 

Telescript agents communicate with one another in several different ways: 

if they occupy different places, then they can connect across a network; 

if they occupy the same location, then they can meet one another. 

Telescript agents have an associated permit, which specifies what the agent can 
do (e.g. limitations on travel), and what resources the agent can use. The most 
important resources are 
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'money', measured in 'teleclicks' (whch correspond to real money); 

lifetime (measured in seconds); 

size (measured in bytes). 

Both Telescript agents and places are executed by an engine, whch is essentially a 
virtual machine in the style of Java. Just as operating systems can limit the access 
provided to a process (e.g. in Unix, via access rights), so an engine limits the way 
an agent can access its environment. Engines continually monitor agent's resource 
consumption, and kill agents that exceed their limit. In addition, engines provide 
(C/C++) links to other applications via APIs. 

Agents and places are programmed using the Telescript language. The Tele- 
script language has the following characteristics. 

- It is a pure object oriented language - everything is an object (somewhat 
based on Smalltalk). 

It is interpreted, rather than compiled. 

It comes in two levels - high (the 'visible' language for programmers) and 
low (a semi-compiled language for efficient execution, rather like Java byte- 
codes). 

It contains a 'process' class, of whch 'agent' and 'place' are sub-classes. 

I t  is persistent, meaning that, for example, if a host computer was switched 
off and then on again, the state of the Telescript processes running on the 
host would have been automatically recorded, and execution would recom- 
mence automatically. 

As noted in Appendix A, although Telescript was a pioneering language, whch 
attracted a lot of attention, it was rapidly overtaken by Java, and throughout the 
late 1990s, a number of Java-based mobile agent frameworks appeared. The best 
known of these was Danny Lange's Aglets system. 

Aglets - mobile agents in Java 

Aglets is probably the best-known Java-based mobile agent platform. The core of 
Aglets lies in Java's ability to dynamically load and make instances of classes at 
run-time. An Aglet is an instance of a Java class that extends the A g l e t  class. 
When implementing such a class, the user can override a number of important 
methods provided by the Agl e t  class. The most important of these are 

the onCreat i  on () method, whch allows an Aglet to initialize itself; and 

the run() method, which is executed when an Aglet arrives at a new desti- 
nation. 
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I The core of an Aglet - the bit that does the work - is the run() method. Ths  
defines the behaviour of the Aglet. Inside a run () method, an Aglet can execute 

i the d i  spatch () method, in order to transmit itself to a remote destination. An 
I 

example of the use of the d i  spatch () method might be: 

this.dispatch(new URL("atp://some.host.com/contextl")); 

This instruction causes the Aglet executing it to be serialized (i.e. for its state 
to be recorded), and then sent to the 'context' called contex t1  on the host 
some. host . corn. A context plays the role of a host in Telescript; a single host 
machne can support many different Aglet contexts. In t h s  instruction, a tp  is 
the name of the protocol via whch the agent is transferred (in fact, a tp  stands 
for Agent Transfer Protocol). When the agent is received at the remote host, an 
instance of the agent is created, the agent is initialized, its state is reconstructed 
from the serialized state sent with the agent, and, finally, the run() method is 
invoked. Notice that this is not the same as Telescript, where the agent recom- 
mences execution at the program instruction following the go instruction that 
caused the agent to be transmitted. T h s  information is lost in Aglets (although the 
user can record this information 'manually' in the state of the Aglet if required). 

Agent Tcl and other scripting languages 
The Tool Control Language (Tcl - pronounced 'tickle') and its companion Tk are 
sometimes mentioned in connection with mobile agent systems. Tcl was primarily 
intended as a standard command language (Ousterhout, 1994). The idea is that 
many applications provide control languages (databases, spreadsheets, etc.), but 
every time a new application is developed, a new command language must be as 
well. Tcl provides the facilities to easily implement your own command language. 
Tk is an X Window based widget toolkit - it provides faciIities for making GUI fea- 
tures such as buttons, labels, text and graphc windows (much like other X widget 
sets). Tk also provides powerful facilities for interprocess communication, via the 
exchange of Tcl scripts. TcI/Tk combined make an attractive and simple to use 
GUI development tool; however, they have features that make them much more 
interesting: 

- Tcl it is an interpreted language; 

Tcl is extendable - it provides a core set of primitives, implemented in C/C++, 
and allows the user to build on these as required; 

Tcl/Tk can be embedded - the interpreter itself is available as C++ code, 
whch can be embedded in an application, and can itself be extended. 

Tcl programs are called scripts. These scripts have many of the properties that 
Unix shell scripts have: 

they are plain text programs, that contain control structures (iteration, 
sequence, selection) and data structures (e.g. variables, lists, and arrays) just 
like a normal programming language; 
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they can be executed by a shell program ( t c l  s h or w i  s h); 

they can call up various other programs and obtain results from these pro- 
grams (cf. procedure calls). 

As Tcl programs are interpreted, they are very much easier to prototype and debug 
than compiled languages like C/C++ - they also provide more powerful control 
constructs. The idea of a mobile agent comes in because it is easy to build applica- 
tions where Tcl scripts are exchanged across a network, and executed on remote 
machines. The Safe Tcl language provides mechanisms for limiting the access 
provided to a script. As an example, Safe Tcl controls the access that a script has 
to the GUI, by placing limits on the number of times a window can be modified 
by a script. 

In summary, Tcl/Tk provide a rich environment for building language-based 
applications, particularly GUI-based ones. But they are not/were not intended as 
agent programming environments. The core primitives may be used for building 
agent programming environments - the source code is free, stable, well-designed, 
and easily modified. The Agent Tcl framework is one attempt to do this (Gray, 
1996; Kotz et al., 1997). 

Notes and Further Reading 
Two collections of papers on the subject of agent-oriented software engineering 
are Ciancarini and Wooldridge (2001) and Wooldridge el al. (2002). Huhns (2001) 
and Lind (2001) give motivations for agent-oriented software engineering. A sur- 
vey of methodologies for agent-oriented software engineering can be found in 
Iglesias el a!. (1999). 

A number of issues remain outstanding for the developer of agent-oriented 
methodologies. 

Sorting out the relationship of agents to other software paradigms - objects in 
particular. It is not yet clear how the development of agent systems will coexist 
with other software paradigms, such as object-oriented development. 

Agent-oriented methodologies. Although a number of preliminary agent-ori- 
ented analysis and design methodologies have been proposed, there is compar- 
atively little consensus between these. In most cases, there is not even agree- 
ment on the lunds of concepts the methodology should support. The waters 
are muddied by the presence of UML as the predominant modelling language 
for object-oriented systems (Booch et  al., 1998): the kinds of concepts and nota- 
tions supported by UML are not necessarily those best suited to the development 
of agent systems. Finding common ground between them - fitting agents into 
'conventional' approaches to software development - needs some work. 

Engineering for open systems. In open systems, it is essential to be capable of 
reacting to unforeseen events, exploiting opportunities where these arise, and 
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dynamically reaching agreements with system components whose presence 
could not be predicted at design time. However, it is difficult to know how to 
specify such systems; still less how to implement them. In short, we need a 
better understanding of how to engineer open systems. 

Engineering for scalability. Finally, we need a better understanding of how to 
safely and predictably engineer systems that comprise massive numbers of 
agents dynamically interacting with one another in order to achieve their goals. 
Such systems seem prone to problems such as unstable/chaotic behaviours, 
feedback, and so on, and may fall prey to malicious behaviour such as viruses. 

See Wooldridge and Jennings (1998) for a more detailed discussion of the pitfalls 
that await the agent developer, and Webster (1995) for the book that inspired this 
article. 

There is a substantial literature on mobile agents; see, for example, Rothermel 
and Popescu-Zeletin (1997) for a collection of papers on the subject; also worth 
looking at are Knabe (19951, Merz et a2. (19971, Kiniry and Zimmerman (1997), 
Oshuga et al. (1997), Pham and Karmouch (1998), Breugst et al. (1999) and Brew- 
ington e t  al. (1999). Security for mobile agent systems is discussed in Tschudin 
(1999) and Yoshioka et al. (2001) 

Class reading: Kinny and Georgeff (1997). This article describes arguably the 
first agent-specific methodology. For a class familiar with 00 methodologies, it 
may be worth discussing the similarities, differences, and what changes might be 
required to make this methodology really usable in practice. 
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Exercises 
(1)  [Class discussion.] 

For classes with some familiarity with object-oriented development: decomposition is 
perhaps the critical issue in an analysis and design methodology. Discuss the differences 
in the decomposition achieved with 00 techniques to those of an agent system. What is 
the right 'grain size' for an agent? When we do analysis and design for agent systems, 
what are the key attributes that we need to characterize an agent in terms of? 

( 2 )  [Class discussion.] 
With respect to mobile agent systems, discuss those circumstances where a mobile 

agent solution is essential - where you cannot imagine how it could be done without 
mobility. 

(3)  [Level 2/3.] 

Use GAIA or the AAII methodology to do an analysis and design of a system with whch 
you are familiar (if you are stuck for one, read about the ADEPT system described in 
Chapter 11). Compare it with an 00 analysis and design approach. 

(4) [Level 4.1 
Extend the UML notation to incorporate agent facilities (such as communication in an 

agent communication languages). How might you capture the fact that agents are self- 
interested? 



Applications 

Agents have found application in many domains: in t h s  chapter, I will describe 
some of the most notable. Broadly speakmg, applications of agents can be divided 
into two main groups. 

Distributed systems. In whch agents become processing nodes in a distributed 
system. The emphasis in such systems is on the 'multi' aspect of multiagent 
systems. 

Personal software assistants. In whch agents play the role of proactive assis- 
tants to users workng with some application. The emphasis here is on 'individ- 
ual' agents. 

Agents for Workflow and Business Process 
Management 
Workflow and business process control systems art- dn area of increasing impor- 
tance in computer science. Workflow systems aim to automate the processes of 
a business, ensuring that different business tasks are expedited by the appropri- 
ate people at the right time, typically ensuring that a particular document flow 
is maintained and managed within an organization. The ADEPT system is a cur- 
rent example of an agent-based business process management system (Jennings 
et al., 1996b). In ADEPT, a business organization is modelled as a society of nego- 
tiating, service providing agents. 

More specifically, the process was providing customers with a quote for 
installing a network to deliver a particular type of telecommunications service. 
This activity involves the following British Telecom (BT) departments: the Cus- 
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tomer Service Division (CSD), the Design Division (DD), the Surveyor Department 
(SD), the Legal Division (LD), and the various organizations which provide the 
outsourced service of vetting customers (VCs). The process is initiated by a cus- 
tomer contacting the CSD with a set of requirements. In parallel to capturing 
the requirements, the CSD gets the customer vetted. If the customer fails the 
vetting procedure, the quote process terminates. Assuming the customer is sat- 
isfactory, their requirements are mapped against the service portfolio. If they 
can be met by an off-the-shelf item, then an immediate quote can be offered. In 
the case of bespoke services, however, the process is more complex. CSD further 
analyses the customer's requirements and whilst this is occurring LD checks the 
legality of the proposed service. If the desired service is illegal, the quote pro- 
cess terminates. If the requested service is legal, the design phase can start. To 
prepare a network design it is usually necessary to dispatch a surveyor to the 
customer's premises so that a detailed plan of the existing equipment can be 
produced. On completion of the network design and costing, DD informs CSD 
of the quote. CSD, in turn, informs the customer. The business process then 
terminates. 

From this high-level system description, a number of autonomous problem- 
solving entities were identified. Thus, each department became an agent, and 
each individual within a department became an agent. To achieve their individ- 
ual objectives, agents needed to interact with one another. In this case, all inter- 
actions took the form of negotiations about which services the agents would 
provide to one another and under what terms and conditions. The nature of 
these negotiations varied, depending on the context and the prevailing circum- 
stances: interactions between BT internal agents were more cooperative than 
those involving external organizations, and negotiations where time is plenti- 
ful differed from those where time is short. In this context, negotiation involved 
generating a series of proposals and counter-proposals. If negotiation was suc- 
cessful, it resulted in a mutually agreeable contract. The agents were arranged 
in various organizational structures: collections of agents were grouped together 
as a single conceptual unit (e.g. the individual designers and lawyers in DD and 
LD, respectively), authority relationships (e.g. the DD agent is the manager of the 
SD agent), peers within the same organization (e.g. the CSD, LD, and DD agents) 
and customer-subcontractor relationships (e.g. the CSD agent and the various 
VCs). 

The ADEPT application had a clear rationale for adopting an agent-based 
solution. Centralized workflow systems are simply too unresponsive and are 
unable to cope with unpredictable events. It was decided, therefore, to devolve 
responsibility for managing the business process to software entities that could 
respond more rapidly to changing circumstances. Since there will inevitably be 
inter-dependencies between the various devolved functions, these software enti- 
ties must interact to resolve their conflicts. Such a method of approach leaves 
autonomous agents as the most natural means of modelling the solution. Further 
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arguments in favour of an agent-based solution are that agents provide a soft- 
ware model that is ideally suited to the devolved nature of the proposed business 
management system. Thus, the project's goal was to devise an agent framework 
that could be used to build agents for business process management. Note that 
ADEPT was neither conceived nor implemented as a general-purpose agent frame- 
work. 

Rather than reimplementing communications from first principles, ADEPT was 
built on top of a commercial CORBA platform (OMG, 2001). This platform pro- 
vided the basis of handling distribution and heterogeneity in the ADEPT sys- 
tem. ADEPT agents also required the ability to undertake context-dependent 
reasoning and so a widely used expert system shell was incorporated into the 
agent archtecture for t h s  purpose. Development of either of these compo- 
nents from scratch would have consumed large amounts of project resources 
and would probably have resulted in a less robust and reliable solution. On 
the negative side, ADEPT failed to exploit any of the available standards for 
agent communication languages. This is a shortcoming that restricts the inter- 
operation of the ADEPT system. In the same way that ADEPT exploited an off- 
the-shelf communications framework, so it used an archtecture that had been 
developed in two previous projects (GRATE* (jennings, 1993b) and ARCHON 
(jennings et  al., 1996a)). This meant the analysis and design phases could be 
shortened since an architecture (together with its specification) had already been 
devised. 

The business process domain has a large number of legacy components (espe- 
cially databases and scheduling software). In this case, these were generally 
wrapped up as resources or tasks within particular agents. 

ADEPT agents embodied comparatively small amounts of A1 technology. For 
example, planning was handled by having partial plans stored in a plan library 
(in the style of the Procedural Reasoning System (Georgeff and Lansky, 1987)). 
The main areas in which A1 techniques were used was in the way agents negoti- 
ated with one another and the way that agents responded to their environment. 
In the former case, each agent had a rich set of rules governing whch negoti- 
ation strategy it should adopt in which circumstances, how it should respond 
to incoming negotiation proposals, and when it should change its negotiation 
strategy. In the latter case, agents were required to respond to unanticipated 
events in a dynamic and uncertain environment. To achieve their goals in such 
circumstances they needed to be flexible about their individual and their social 
behaviour. 

ADEPT agents were relatively coarse grained in nature. They represented orga- 
nizations, departments or individuals. Each such agent had a number of resources 
under its control, and was capable of a range of problem-solving behaviours. T h s  
led to a system design in which there were typically less than 10 agents at each 
level of abstraction and in which primitive agents were still capable of fulfilling 
some high-level goals. 
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1 1.2 Agents for Distributed Sensing 

The classic application of multiagent technology was in distributed sensing 
(Lesser and Erman, 1980; Durfee, 1988). The broad idea is to have a system 
constructed as a network of spatially distributed sensors. The sensors may, for 
example, be acoustic sensors on a battlefield, or radars distributed across some 
airspace. The global goal of the system is to monitor and track all vehicles that 
pass within range of the sensors. This task can be made simpler if the sensor 
nodes in the network cooperate with one another, for example by exchanging 
predictions about when a vehicle will pass from the region of one sensor to the 
region of another. This apparently simple domain has yielded surprising rich- 
ness as an environment for experimentation into multiagent systems: Lesser's 
well-known Distributed Vehicle Monitoring Testbed (DVMT) provided the proving 
ground for many of today's multiagent system development techniques (Lesser 
and Erman, 1980). 

1 1.3 Agents for Information Retrieval and 
Management 

The widespread provision of distributed, semi-structured information resources 
such as the World Wide Web obviously presents enormous potential; but it also 
presents a number of difficulties (such as 'information overload'). Agents have 
widely been proposed as a solution to these problems. An information agent is 
an agent that has access to at least one and potentially many information sources, 
and is able to collate and manipulate information obtained from these sources in 
order to answer queries posed by users and other information agents (the net- 
work of interoperating information sources are often referred to as intelligent 
and cooperative information systems (Papazoglou e t  a!., 1992)). The information 
sources may be of many types, including, for example, traditional databases as 
well as other information agents. Finding a solution to a query might involve an 
agent accessing information sources over a network. A typical scenario is that of 
a user who has heard about somebody at Stanford who has proposed something 
called agent-oriented programming. The agent is asked to investigate, and, after a 
careful search of various Web sites, returns with an appropriate technical report, 
as well as the name and contact details of the researcher involved. 

To see how agents can help in t h s  task, consider the Web. What makes the Web 
so effective is that 

it allows access to networked, widely distributed information resources; 

it provides a uniform interface to multi-media resources including text, 
images, sound, video, and so on; 
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it is hypertext based, making it possible to link documents together in novel 
or interesting ways; and 

perhaps most importantly, it has an extraordinarily simple and intuitive user 
interface, which can be understood and used in seconds. 

The reality of Web use at the beginning of the 2 1st century is, however, still some- 
what beset by problems. These problems may be divided into two categories: 
human and organizational. 

Human factors 
The most obvious difficulty from the point of view of human users of the World- 
Wide Web is the 'information overload' problem (Maes, 1994a). People get over- 
whelmed by the sheer amount of information available, malung it hard for them 
to filter out the junk and irrelevancies and focus on what is important, and also 
to actively search for the right information. Search engines such as Google and 
Yahoo attempt to alleviate t h s  problem by indexing largely unstructured and 
unmanaged information on the Web. While these tools are useful, they tend to 
lack functionality: most search engines provide only simple search features, not 
tailored to a user's particular demands. In addition, current search engine func- 
tionality is directed at textual (typically HTML) content - despite the fact that 
one of the main selling features of the Web is its support for heterogeneous, 
multi-media content. Finally, it is not at all certain that the brute-force indexing 
techniques used by current search engines will scale to the size of the Internet in 
the next century. So finding and managing information on the Internet is, despite 
tools such as Google, still a problem. 

In addition, people easily get bored or confused while browsing the Web. The 
hypertext nature of the Web, while making it easy to link related documents 
together, can also be disorienting - the 'back' and 'forward' buttons provided 
by most browsers are better suited to linear structures than the highly connected 
graph-like structures that underpin the Web. This can make it hard to understand 
the topology of a collection of linked Web pages; indeed, such structures are inher- 
ently difficult for humans to visualize and comprehend. In short, it is all too easy 
to become lost in cyberspace. When searclung for a particular item of information, 
it is also easy for people to either miss or misunderstand things. 

Finally, the Web was not really designed to be used in a methodical way. Most 
Web pages attempt to be attractive and highly animated, in the hope that people 
will find them interesting. But there is some tension between the goal of mak- 
ing a Web page animated and diverting and the goal of conveying information. 
Of course, it is possible for a well-designed Web page to effectively convey infor- 
mation, but, sadly, most Web pages emphasize appearance, rather than content. 
It is telling that the process of using the Web is known as 'browsing' rather than 
'reading'. Browsing is a useful activity in many circumstances, but is not generally 
appropriate when attempting to answer a complex, important query. 
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Organizational factors 
In addition, there are many organizational factors that make the Web difficult to 
use. Perhaps most importantly, apart from the (very broad) HTML standard, there 
are no standards for how a Web page should look. 

Another problem is the cost of providing online content. Unless significant 
information owners can see that they are malung money from the provision of 
their content, they will simply cease to provide it. How this money is to be made 
is probably the dominant issue in the development of the Web today. I stress 
that these are not criticisms of the Web - its designers could hardly have antici- 
pated the uses to which it would be put, nor that they were developing one of the 
most important computer systems to date. But these are all obstacles that need 
to be overcome if the potential of the Internet/Web is to be realized. The obvious 
question is then: what more do we need? 

In order to realize the potential of the Internet, and overcome the limitations 
discussed above, it has been argued that we need tools that (Durfee et al., 1997) 

give a single coherent view of distributed, heterogeneous information 
resources; 

give rich, personalized, user-oriented services, in order to overcome the 
'information overload' problem - they must enable users to find informa- 
tion they really want to find, and shield them from information they do not 
want; 

are scalable, distributed, and modular, to support the expected growth of 
the Internet and Web; 

are adaptive and self-optimizing, to ensure that services are flexible and 
efficient. 

Personal information agents 
Many researchers have argued that agents provide such a tool. Pattie Maes from 
the MIT media lab is perhaps the best-known advocate of this work. She developed 
a number of prototypical systems that could carry out some of these tasks. I will 
here describe MAXIMS, an email assistant developed by Maes. 

[MAXIMS] learns to prioritize, delete, forward, sort, and archive mail 
messages on behalf of a user. 

(Maes, 1994a) 

MAXIMS works by 'looking over the shoulder' of a user, and learning about how 
they deal with email. Each time a new event occurs (e.g. email arrives), MAXIMS 
records the event in the form of 

situation - action 

pairs. A situation is characterized by the following attributes of an event: 
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sender of email; 

recipients; 

subject line; 

keywords in message body and so on. 

When a new situation occurs, MAXIMS matches it against previously recorded 
rules. Using these rules, it then tries to predict what the user will do, and generates 
a confidence level: a real number indicating how confident the agent is in its deci- 
sion. The confidence level is matched against two preset real number thresholds: 
a 'tell me' threshold and a 'do it' threshold. If the confidence of the agent in its 
decision is less than the 'tell me' threshold, then the agent gets feedback from the 
user on what to do. If the confidence of the agent in its decision is between the 'tell 
me' and 'do it' thresholds, then the agent makes a suggestion to the user about 
what to do. Finally, if the agent's confidence is greater than the 'do it' threshold, 
then the agent takes the initiative, and acts. 

Rules can also be hard coded by users (e.g. 'always delete mails from person 
XI). MAXIMS has a simple 'personality' (an animated face on the user's GUI), which 
communicates its 'mental state' to the user: thus the icon smiles when it has made 
a correct guess, frowns when it has made a mistake, and so on. 

The NewT system is a Usenet news filter (Maes, 1994~1, pp. 38, 39). A NewT agent 
is trained by giving it a series of examples, illustrating articles that the user would 
and would not choose to read. The agent then begins to make suggestions to the 
user, and is given feedback on its suggestions. NewT agents are not intended to 
remove human choice, but to represent an extension of the human's wishes: the 
aim is for the agent to be able to bring to the attention of the user articles of 
the type that the user has shown a consistent interest in. Similar ideas have been 
proposed by McGregor, who imagines prescient agents - intelligent administrative 
assistants, that predict our actions, and carry out routine or repetitive adminis- 
trative procedures on our behalf (McGregor, 1992). 

Web agents 
Etzioni and Weld (1995) identify the following specific types of Web-based agent 
they believe are likely to emerge in the near future. 

Tour guides. The idea here is to have agents that help to answer the question 
'where do I go next' when browsing the Web. Such agents can learn about the 
user's preferences in the same way that MAXIMS does, and, rather than just 
providing a single, uniform type of hyperlink, they actually indicate the likely 
interest of a link. 

Indexing agents. Indexing agents will provide an extra layer of abstraction on top 
of the services provided by search/indexing agents such as Google and InfoS- 
eek. The idea is to use the raw information provided by such engines, together 
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Figure 11.1 The Web information food chain. 

with knowledge of the user's goals, preferences, etc., to provide a personalized 
service. 

FAQ-finders. The idea here is to direct users to 'Frequently Asked Questions' 
(FAQs) documents in order to answer specific questions. Since FAQs tend to 
be knowledge-intensive, structured documents, there is a lot of potential for 
automated FAQ finders. 

Expertise finders. Suppose I want to know about people interested in temporal 
belief logics. Current Web search tools would simply take the three words 'tem- 
poral', 'belief', 'logic', and search on them. Thls is not ideal: Google has no model 
of what you mean by this search, or what you really want. Expertise finders 'try 
to understand the user's wants and the contents of information services' in 
order to provide a better information provision service. 

Etzioni (1 996) put forward a model of information agents that add value to the 
underlying information infrastructure of the Web - the information food chain 
(see Figure 11.1). At the lowest level in the Web information food chain is raw 
content: the home pages of individuals and companies. The next level up the 
food chain is the services that 'consume' this raw content. These services include 
search engines such as Google, Lycos, and Yahoo. 

These search engines maintain large databases of Web pages, indexed by 
content. Apart from the technical difficulties associated with storing such large 
databases and being able to process and retrieve their contents sufficiently 
quickly to provide a useful online service, the search engines must also obtain 
and index new or changed Web pages on a regular basis. Currently, this is 
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done in one of two ways. The simplest is to have humans search for pages and 
classify them manually. Thls has the advantage that the classifications obtained 
in this way are likely to be meaningful and useful. But it has the very obvious 
disadvantage that it is not necessarily thorough, and is costly in terms of human 

I : resources. The second approach is to use simple software agents, often called 
spiders, to systematically search the Web, following all links, and automatically 

! classifying content. The classification of content is typically done by removing 
'noise' words from the page ('the', 'and', etc.), and then attempting to find those 
words that have the most meaning. 

All current search engines, however, suffer from the disadvantage that their 
coverage is partial. Etzioni (1996) suggested that one way around t h s  is to use 
a meta search engine. T h s  search engine works not by directly maintaining a 
database of pages, but by querying a number of search engines in parallel. The 
results from these search engines can then be collated and presented to the user. 
The meta search engine thus 'feeds' off the other search engines. By allowing the 
engine to run on the user's machne, it becomes possible to personalize services - 
to tailor them to the needs of individual users. 

Multiagen t in formation retrieval systems 

The information resources - Web sites - in the lunds of applications I discussed 
above are essentially passive. They simply deliver specific pages when requested. 
A common approach is thus to make information resources more 'intelligent' by 
wrapping them with agent capabilities. The structure of such a system is illus- 
trated in Figure 11.2. 

In t h s  figure, there are a number of information repositories; these repositories 
may be Web sites, databases, or any other form of store. Access to these reposi- 
tories is provided by information agents. These agents, which typically communi- 
cate using an agent communication language, are 'experts' about their associated 
repository. As well as being able to provide access to the repository, they are 
able to answer 'meta-level' queries about the content ('do you know about X'?). 
The agents will communicate with the repository using whatever native API the 
repository provides - HTTP, in the case of Web repositories. 

To address the issue of finding agents in an open environment like the Internet, 
middle agents or brokers are used (Wiederhold, 1992; Kuokka and Harada, 1996). 
Each agent typically advertises its capabilities to some broker. Brokers come in 
several different types. They may be simply matchmakers or yellow page agents, 
whch match advertisements to requests for advertised capabilities. Alternatively, 
they may be blackboard agents, which simply collect and make available requests. 
Or they may do both of these (Decker et al., 1997). Different brokers may be 
specialized in different areas of expertise. For example, in Figure 11.2, one broker 
'knows about' repositories 1, 2,  and 3; the other knows about 2,  3, and 4. 
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Figure 1 1.2 Typical architecture of a multiagent information system. 

Brokered systems are able to cope more quickly with a rapidly fluctuating agent 
population. Middle agents allow a system to operate robustly in the face of inter- 
mittent communications and agent appearance and disappearance. 

The overall behaviour of a system such as that in Figure 11.2 is that a user issues 
a query to an agent on their local machine. Thls agent may then contact informa- 
tion agents directly, or it may go to a broker, which is skilled at the appropriate 
type of request. The broker may then contact a number of information agents, 
asking first whether they have the correct skills, and then issuing specific queries. 
This kind of approach has been successfully used in digital library applications 
(Wellman et al., 1996). 

11.4 Agents for Electronic Commerce 
The boom in interest in the Internet throughout the late 1990s went hand-in-hand 
with an explosion of interest in electronic commerce (e-commerce) (Ovum, 1994; 
Guilfoyle et al., 1997). As it currently stands, the Web has a number of features 
that limit its use as an 'information market'. Many of these stem from the fact 
that the Web has academic origins, and as such, it was designed for free, open 
access. The Web was thus not designed to be used for commercial purposes, and 
a number of issues limit its use for this purpose. 
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Trust: in an online global marketplace, it is difficult for consumers to know which 
vendors are reliable/secure and which are not, as they are faced with vendor 
brands that they have not previously encountered. 

Privacy and security: consumers (still) have major worries about the security of 
their personal information when using e-commerce systems - mechanisms such 
as secure HTTP (h t tps)  go some way to alleviating this problem, but it remains 
a major issue. 

Billing/revenue: no built-in billing mechanisms are provided by the Web - they 
must be implemented over the basic Web structure; in addition, the Web was 
not designed with any particular revenue model in mind. 

Reliability: the Internet - and hence the Web - is unreliable, in that data and 
connections are frequently lost, and it thus has unpredictable performance. 
These limitations may be accepted by academic or home/hobby users, but they 
represent a very real obstacle in the way of the wider commercial use of the 
Web. 

'First-generation' e-commerce systems (of whlch amazon. com was perhaps the 
best known example) allowed a user to browse an online catalogue of products, 
choose some, and then purchase these selected products using a credit card. How- 
ever, agents make it possible for second-generation e-commerce systems, in which 
many aspects of a consumer's buying behaviour is automated. 

There are many models that attempt to describe consumer buying behaviour. 
Of these, one of the most popular postulates that consumers tend to engage in 
the following six steps (Guttman et al., 1998, pp. 148, 149). 

(1) Need identification. This stage characterizes the consumer becoming aware 
of some need that is not satisfied. 

(2) Product brokering. In thls stage, a would-be consumer obtains information 
relating to available products, in order to determine what product to buy. 

(3) Merchant brokering. In this stage, the consumer decides who to buy from. 
This stage will typically involve examining offers from a range of different mer- 
chants. 

(4) Negotiation. In this stage, the terms of the transaction are agreed between the 
would-be consumer and the would-be merchant. In some markets (e.g. regular 
retail markets), the negotiation stage is empty - the terms of agreement are 
fixed and not negotiable. In other markets (e.g. the used car market), the terms 
are negotiable. 

(5) Purchase and delivery. In this stage, the transaction is actually carried out, 
and the good delivered. 

(6) Product service and evaluation. The post-purchase stage involves product 
service, customer service, etc. 
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Table 11.1 Current agents for electronic commerce. 

Persona Bargain Auction Tete- 
Logic Firefly Finder Jango Kasbah Bot a-t6te 

Need identification x x x x 
Product brokering x x x 
Merchant brokering x x x x x 
Negotiation x x x 
Purchase & delivery 
Service & evaluation 

Agents have been widely promoted as being able to automate (or at least partially 
automate) some of these stages, and hence assist the consumer to reach the best 
deal possible (Noriega and Sierra, 1999). Table 11.1 (from Guttman et al., 1998) 
summarizes the extent to which currently developed agents can help in each stage. 

Comparison shopping agents  
The simplest type of agent for e-commerce is the comparison shopping agent. The 
idea is very similar to the meta search engines discussed above. Suppose you want 
to purchase the CD 'Music' by Madonna. Then a comparison shopping agent will 
search a number of online shops to find the best deal possible. 

Such agents work well when the agent is required to compare goods with respect 
to a single attribute - typically price. The obvious examples of such situations are 
'shrink wrapped' goods such as CDs and books. However, they work less well when 
there is more than one attribute to consider. An example might be the used-car 
market, where in addition to considering price, the putative consumer would want 
to consider the reputation of the merchant, the length and type of any guarantee, 
and many other attributes. 

The Jango system (Doorenbos et al., 1997) is a good example of a first-generation 
e-commerce agent. The long-term goals of the Jango project were to 

help the user decide what to buy; 

find specifications and reviews of products; 

make recommendations to the user; 

perform comparison shopping for the best buy; 

monitor 'what's new' lists; and 

watch for special offers and discounts. 

A key obstacle that the developers of Jango encountered was simply that Web 
pages are all different. Jango exploited several regularities in vendor Web sites in 
order to make 'intelligent guesses' about their content. 
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Navigation regularity. Web sites are designed by vendors so that products are 
easy to find. 

Corporate regu 
'look'n'feel'; 

.larity. Web sites are usually designed so that pages have a similar 

Vertical separation. Merchants use white space to separate products, 

Internally, Jango has two key components: 

a component to learn vendor descriptions (i.e. learn about the s 
vendor Web pages); and 

tructure of 

a comparison shopping component, capable of comparing products across 
different vendor sites. 

In 'second-generation' agent mediated electronic commerce systems, it is pro- 
posed that agents will be able to assist with the fourth stage of the purchasing 
model set out above: negotiation. The idea is that a would-be consumer delegates 
the authority to negotiate terms to a software agent. Thls agent then negotiates 
with another agent (which may be a software agent or a person) in order to reach 
an agreement. 

There are many obvious hurdles to overcome with respect to this model: The 
most important of these is trust. Consumers will not delegate the authority to 
negotiate transactions to a software agent unless they trust the agent. In partic- 
ular, they will need to trust that the agent (i) really understands what they want, 
and (ii) that the agent is not going to be exploited ('ripped off') by another agent, 
and end up with a poor agreement. 

Comparison shopping agents are particularly interesting because it would seem 
that, if the user is able to search the entire marketplace for goods at the best price, 
then the overall effect is to force vendors to push prices as low as possible. Their 
profit margins are inevitably squeezed, because otherwise potential purchasers 
would go elsewhere to find their goods. 

Auction bots 

A highly active related area of work is auction bots: agents that can run, and 
participate in, online auctions for goods. Auction bots make use of the kinds of 
auction techniques discussed in Chapter 7. A well-known example is the Kasbah 
system (Chavez and Maes, 1996). The aim of Kasbah was to develop a Web-based 
system in which users could create agents to buy and sell goods on their behalf. 
In Kasbah, a user can set three parameters for selling agents: 

- desired date to sell the good by; 

desired price to sell at; and 

minimum price to sell at. 
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Selling agents in Kasbah start by offering the good at the desired price, and as the 
deadline approaches, this price is systematically reduced to the minimum price 
fixed by the seller. The user can specify the 'decay' function used to determine the 
current offer price. Initially, three choices of decay function were offered: linear, 
quadratic, and cubic decay. The user was always asked to confirm sales, giving 
them the ultimate right of veto over the behaviour of the agent. 

As with selling agents, various parameters could be fixed for buying agents: the 
date to buy the item by, the desired price, and the maximum price. Again, the user 
could specify the 'growth' function of price over time. 

Agents in Kasbah operate in a marketplace. The marketplace manages a num- 
ber of ongoing auctions. When a buyer or seller enters the marketplace, Kasbah 
matches up requests for goods against goods on sale, and puts buyers and sellers 
in touch with one another. 

The Spanish Fishmarket is another example of an online auction system 
(Rodriguez et al., 1997). Based on a real fishmarket that takes place in the town 
of Blanes in northern Spain, the FM system provides similar facilities to Kasbah, 
but is specifically modelled on the auction protocol used in Blanes. 

1 1.5 Agents for Human-Computer Interfaces 
Currently, when we interact with a computer via a user interface, we are making 
use of an interaction paradigm known as direct manipulation. Put simply, t h s  
means that a computer program (a word processor, for example) will only do 
something if we explicitly tell it to, for example by clicking on an icon or selecting 
an item from a menu. When we work with humans on a task, however, the inter- 
action is more two-way: we work with them as peers, each of us carrying out parts 
of the task and proactively helping each other as problem-solving progresses. In 
essence, the idea behnd interface agents is to make computer systems more like 
proactive assistants. Thus, the goal is to have computer programs that in certain 
circumstances could take the initiative, rather than wait for the user to spell out 
exactly what they wanted to do. T h s  leads to the view of computer programs as 
cooperating with a user to achieve a task, rather than acting simply as servants. 
A program capable of taking the initiative in t h s  way would in effect be operat- 
ing as a semi-autonomous agent. Such agents are sometimes referred to as expert 
assistants or interface agents. Maes (1994b, p. 71) defines interface agents as 

[Clomputer programs that employ artificial intelligence techniques in 
order to provide assistance to a user dealing with a particular applica- 
tion. . . . The metaphor is that of a personal assistant who is collaborat- 
ing with the user in the same work environment. 

One of the key figures in the development of agent-based interfaces has been 
Nicholas Negroponte (director of MIT's influential Media Lab). His vision of agents 
at the interface was set out in his 1995 book Being Digital (Negroponte, 1995): 
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The agent ansnrers the phone, recognizes the callers, disturbs you when 
appropriate, and may even tell a white lie on your behalf. The same 
agent is well trained in timing, versed in finding opportune moments, 
and respectful of idiosyncrasies. . . . If you have somebody who knows 
you well and shares much of your information, that person can act on 
your behalf very effectively. If your secretary falls ill, it would make no 
difference if the temping agency could send you Albert Einstein. This 
issue is not about IQ. It is shared knowledge and the practice of using 
it in your best interests. . . . Like an army commander sending a scout 
ahead.. .you will dispatch agents to collect information on your behalf. 
Agents will dispatch agents. The process multiplies. But [this process] 
started at the interface where you delegated your desires. 

Agents for Virtual Environments 
There is obvious potential for marrying agent technology with that of the cinema, 
computer games, and virtual reality. The OZ project was initiated to develop: 

. . .artistically interesting, highly interactive, simulated worlds. . .to give 
users the experience of living in (not merely watching) dramatically rich 
worlds that include moderately competent, emotional agents. 

(Bates et al., 1992b, p. 1) 

In order to construct such simulated worlds, one must first develop believable 
agents: agents that 'provide the illusion of life, thus permitting the audience's 
suspension of disbelief' (Bates, 1994, p. 122). A key component of such agents 
is emotion: agents should not be represented in a computer game or animated 
film as the flat, featureless characters that appear in current computer games. 
They need to show emotions; to act and react in a way that resonates in tune with 
our empathy and understanding of human behaviour. The OZ group investigated 
various architectures for emotion (Bates et al., 1992a), and have developed at least 
one prototype implementation of their ideas (Bates, 1994). 

Agents for Social Simulation 
I noted in Chapter 1 that one of the visions behind multiagent systems technol- 
ogy is that of using agents as an experimental tool in the social sciences (Gilbert 
and Doran, 1994; Gilbert, 1995; Moss and Davidsson, 2001). h t  crudely, the idea 
is that agents can be used to simulate the behaviour of human societies. At its 
simplest, individual agents can be used to represent individual people; alterna- 
tively, individual agents can be used to represent organizations and similar such 
entities. 
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Conte and Gilbert (1995, p. 4) suggest that multiagent simulation of social pro- 
cesses can have the following benefits: 

computer simulation allows the observation of properties of a model that 
may in principle be analytically derivable but have not yet been established; 

possible alternatives to a phenomenon observed in nature may be found; 

properties that are difficult/awkward to observe in nature may be studied 
at leisure in isolation, recorded, and then 'replayed' if necessary; 

'sociality' can be modelled explicitly - agents can be built that have rep- 
resentations of other agents, and the properties and implications of these 
representations can be investigated. 

Moss and Davidsson (2001, p. 1) succinctly states a case for multiagent simulation: 

[For many systems,] behaviour cannot be predicted by statistical 
or qualitative analysis. . . . Analysing and designing.. .such systems 
requires a different approach to software engineering and mechanism 
design. 

Moss goes on to give a general critique of approaches that focus on formal analy- 
sis at the expense of accepting and attempting to deal with the 'messiness' that 
is inherent in most multiagent systems of any complexity. It is probably fair to 
say that his critique might be applied to many of the techniques described in 
Chapter 7, particularly those that depend upon a 'pure' logical or game-theoretic 
foundation. There is undoubtedly some strength to these arguments, which echo 
cautionary comments made by some of the most vocal proponents of game theory 
(Binmore, 1992, p. 196). In the remainder of this section, I will review one major 
project in the area of social simulation, and point to some others. 

The EOS project 

The EOS project, undertaken at the University of Essex in the UK, is a good exam- 
ple of a social simulation system (Doran, 1987; Doran et a/., 1992; Doran and 
Palmer, 1995). The aim of the EOS project was to investigate the causes of the 
emergence of social complexity in Upper Palaeolithic France. Between 1 5  000 and 
30 000 years ago, at the height of the last ice age, there was a relatively rapid 
growth in the complexity of societies that existed at this time. The evidence of 
this social complexity came in the form of Doran and Palmer (1995) 

larger and more abundant archaeological sites; 

increased wealth, density, and stratigraphic complexity of archaeological 
material in sites; 

more abundant and sophisticated cave art (the well-known caves at Lascaux 
are an example); 
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Figure 11.3 Agents in EOS. 

increased stone, bone, and antler technology; 

abundance of 'trade' objects. 

A key open question for archaeologists is what exactly caused this emergence 
of complexity. In 1985, the archaeologist Paul Mellars proposed a model that 
attempted to explain this complexity. The main points of Mellar's model were that 
the key factors leading to this growth in complexity were an exceptional wealth 
and diversity of food resources, and a strong, stable, predictable concentration of 
these resources. 

In order to investigate this model, a multiagent experimental platform - the 
EOS testbed - was developed. This testbed, implemented in the Prolog language 
(Clocksin and Mellish, 1981), allows agents to be programmed as rule-based sys- 
tems. The structure of an EOS agent is shown in Figure 11.3. 

Each agent in EOS is endowed with a symbolic representation of its environ- 
ment - its beliefs. Beliefs are composed of beliefs about other agents (the social 
model), beliefs about resources in the environment (the resource model), and mis- 
cellaneous other beliefs. To update its beliefs, an agent has a set of cognitive rules, 
which map old beliefs to new ones. To decide what action to perform, agents have 
action rules: action rules map beliefs to actions. (Compare with Shoham's Agent0 
system described in Chapter 3.) Both cognitive rules and action rules are executed 
in a forward-chaining manner. 

Agents in the EOS testbed inhabit a simulated two-dimensional environment, 
some 10 000 x 10 000 cells in size (cf. the Tileworld described in Chapter 2.) Each 
agent occupies a single cell, initially allocated at random. Agents have associated 
with them skills (cf. the MACE system described in Chapter 9.) The idea is that 
an agent will attempt to obtain resources ('food') which are situated in the envi- 
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ronment; resources come in different types, and only agents of certain types are 
able to obtain certain resources. Agents have a number of 'energy stores', and 
for each of these a 'hunger level'. If the energy store associated with a particular 
hunger level falls below the value of the hunger level, then the agent will attempt 
to replenish it by consuming appropriate resources. Agents travel about the EOS 
world in order to obtain resources, which are scattered about the world. Recall 
that the Mellars model suggested that the availability of resources at predictable 
locations and times was a key factor in the growth of the social complexity in the 
Palacolithic period. To reflect this, resources (intuitively corresponding to things 
like a Reindeer herd or a fruit tree) were clustered, and the rules governing the 
emergence and disappearance of resources reflects this. 

The basic form of social structure that emerges in EOS does so because certain 
resources have associated with them a skill profile. This profile defines, for every 
type of slull or capability that agents may possess, how many agents with this 
skill are required to obtain the resource. For example, a 'fish' resource might 
require two 'boat' capabilities; and a 'deer' resource might require a single 'spear' 
capability. 

In each experiment, a user may specify a number of parameters: 

the number of resource locations of each type and their distribution; 
the number of resource instances that each resource location comprises; 

the type of energy that each resource location can supply; 

the quantity of energy an instance of a particular resource can supply; 
- the skill profiles for each resource; and 

the 'renewal' period, which elapses between a resource being consumed and 
being replaced. 

To form collaborations in order to obtain resources, agents use a variation of 
Smith's Contract Net protocol (see Chapter 9): thus, when an agent finds a 
resource, it can advertise t h s  fact by sending out a broadcast announcement. 
Agents can then bid to collaborate on obtaining a resource, and the successful 
bidders then work together to obtain the resource. 

A number of social phenomena were observed in running the EOS testbed, for 
example: 'overcrowding', when too many agents attempt to obtain resources in 
some locale; 'clobbering', when agents accidentally interfere with each other's 
goals; and semi-permanent groups arising. With respect to the emergence of deep 
hierarchies of agents, it was determined that the growth of hierarchies depended 
to a great extent on the perceptual capabilities of the group. If the group is not 
equipped with adequate perceptual ability, then there is insufficient information 
to cause a group to form. A second key aspect in the emergence of social structure 
is the complexity of resources - how many slulls it requires in order to obtain and 
exploit a resource. If resources are too complex, then groups will not be able to 
form to exploit them before they expire. 



Agents for X 263 

An interesting aspect of the EOS project was that it highlighted the cognitive 
aspects of multiagent social simulation. That is, by using EOS, it was possible 
to see how the beliefs and aspirations of individuals in a society can influence 
the possible trajectories of this society. One of the arguments in favour of this 
style of multiagent societal simulation is that this kind of property is very hard 
to model or understand using analytical techniques such as game or economic 
theory (cf. the quote from Moss, above). 

Policy modelling by multiagent simulation 
Another application area for agents in social simulation is that of policy modelling 
and development (Downing et al., 2001). Regulatory and other similar bodies put 
forward policies, which are designed - or at least intended - to have some desired 
effect. An example might be related to the issue of potential climate change caused 
by the release of greenhouse gases (cf. Downing et al., 2001). A national govern- 
ment, or an international body such as the EU, might desire to reduce the poten- 
tially damaging effects of climate change, and put forward a policy designed to 
limit it. A typical first-cut at such a policy might be to increase fuel taxes, the idea 
being that this reduces overall fuel consumption, in turn reducing the release of 
greenhouse gases. But policy makers must generally form their policies in igno- 
rance of what the actual effect of their policies will be, and, in particular, the 
actual effect may be something quite different to that intended. In the greenhouse 
gas example, the effect of increasing fuel taxes might be to cause consumers to 
switch to cheaper - dirtier - fuel types, at best causing no overall reduction in 
the release of greenhouse gases, and potentially even leading to an increase. So, 
it is proposed, multiagent simulation models might fruitfully be used to gain an 
understanding of the effect of their nascent policies. 

An example of such a system is the Freshwater Integrated Resource Man- 
agement with Agents (FIRMA) project (Downing et al., 2001). This project is 
specifically intended to understand the impact of governments exhorting water 
consumers to exercise care and caution in water use during times of drought 
(Downing et al., 2001, p. 206). (In case you were wondering, yes, droughts do 
happen in the UK!) Downing et al. (2001) developed a multiagent simulation 
model in which water consumers were represented by agents, and a 'policy' agent 
issued exhortations to consume less at times of drought. The authors were able to 
develop a simulation model that fairly closely resembled the observed behaviour 
in human societies in similar circumstances; developing this model was an itera- 
tive process of model reformulation followed by a review of the observed results 
of the model with water utilities. 

Agents for X 
Agents have been proposed for many more application areas than I have the space 
to discuss here. In this section, I will give a flavour of some of these. 
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Agents for industrial systems management. Perhaps the largest and proba- 
bly best-known European multiagent system development project to date was 
ARCHON (Wittig, 1992; Jennings and Wittig, 1992; Jennings et al., 1995). This 
project developed and deployed multiagent technology in several industrial 
domains. The most significant of these domains was a power distribution sys- 
tem, which was installed and is currently operational in northern Spain. Agents in 
ARCHON have two main parts: a domain component, which realizes the domain- 
specific functionality of the agent; and a wrapper component, which provides 
the agent functionality, enabling the system to plan its actions, and to repre- 
sent and communicate with other agents. The ARCHON technology has sub- 
sequently been deployed in several other domains, including particle accelera- 
tor control. (ARCHON was the platform through whch Jennings's joint inten- 
tion model of cooperation (Jennings, 1995), discussed in Chapter 9, was devel- 
oped.) 

Agents for Spacecraft Control. It is difficult to imagine a domain with harder 
real-time constraints than that of in-flight diagnosis of faults on a spacecraft. 
Yet one of the earliest applications of the PRS architecture was precisely this 
(Georgeff and Lansky, 1987). In brief, the procedures that an astronaut would use 
to diagnose faults in the Space Shuttle's reaction control systems were directly 
coded as PRS plans, and the PRS architecture was used to interpret these plans, 
and provide real-time advice to astronauts in the event of failure or malfunction 
in this sys tem. 

Agents for Air-Traffic Control. Air-traffic control systems are among the old- 
est application areas in multiagent systems (Steeb et al., 1988; Findler and Lo, 
1986). A recent example is OASIS (Optimal Aircraft Sequencing using Intelligent 
Scheduling), a system that is currently undergoing field trials at Sydney airport 
in Australia (Ljunberg and Lucas, 1992). The specific aim of OASIS is to assist 
an air-traffic controller in managing the flow of aircraft at an airport: it offers 
estimates of aircraft arrival times, monitors aircraft progress against previously 
derived estimates, informs the air-traffic controller of any errors, and perhaps 
most importantly finds the optimal sequence in which to land aircraft. OASIS 
contains two types of agents: global agents, which perform generic domain func- 
tions (for example, there is a 'sequencer agent', which is responsible for arranging 
aircraft into a least-cost sequence); and aircraft agents, one for each aircraft in 
the system airspace. The OASIS system was implemented using the PRS agent 
architecture. 

Notes and Further Reading 
Jennings and Wooldridge (1998a) is a collection of papers on applications of agent 
systems. Parunak (1999) gives a more recent overview of industrial applications. 
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Hayzelden and Bigham (1999) is a collection of articles loosely based around the 
theme of agents for computer network applications; Klusch (1999) is a similar 
collection centred around the topic of information agents. 

Van Dyke Parunak (1987) describes the use of the Contract Net protocol 
(Chapter 8) for manufacturing control in the YAMS (Yet Another Manufacturing 
System). Mori et al. have used a multiagent approach to controlling a steel coil 
processing plant (Mori et al., 1988), and Wooldridge et al. have described how 
the process of determining an optimal production sequence for some factory can 
naturally be viewed as a problem of negotiation between the various production 
cells within the factory (Wooldridge et al., 1996). 

A number of studies have been made of information agents, including a the- 
oretical study of how agents are able to incorporate information from different 
sources (Levy et al., 1994; Gruber, 1991), as well as a prototype system called IRA 
(information retrieval agent) that is able to search for loosely specified articles 
from a range of document repositories (Voorhees, 1994). Another important sys- 
tem in this area was Carnot (Huhns et al., 1992), which allows preexisting and 
heterogeneous database systems to work together to answer queries that are out- 
side the scope of any of the individual databases. 

There is much related work being done by the computer supported coopera- 
tive work (CSCW) community. CSCW is informally defined by Baecker to be 'com- 
puter assisted coordinated activity such as problem solving and communication 
carried out by a group of collaborating individuals' (Baecker, 1993, p. 1). The pri- 
mary emphasis of CSCW is on the development of (hardware and) software tools 
to support collaborative human work - the term groupware has been coined to 
describe such tools. Various authors have proposed the use of agent technology 
in groupware. For example, in his participant systems proposal, Chang suggests 
systems in which humans collaborate with not only other humans, but also with 
artificial agents (Chang, 1987). We refer the interested reader to the collection of 
papers edited by Baecker (1993) and the article by Greif (1994) for more details 
on CSCW. 

Noriega and Sierra (1999) is a collection of paper on agent-mediated electronic 
commerce. Kephart and Greenwald (1999) investigates the dynamics of systems 
in which buyers and sellers are agents. 

Gilbert and Doran (1994), Gilbert and Conte (1995) and Moss and Davidsson 
(2001) are collections of papers on the subject of simulating societies by means of 
multiagent systems. Davidsson (2001) discusses the relationship between multi- 
agent simulation and other types of simulation (e.g. object-oriented simulation 
and discrete event models). 

Class reading: Parunak (1999). This paper gives an overview of the use of agents 
in industry from one of the pioneers of agent applications. 
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Exercises 
( 1 ) [Level 1 /Class Discussion.] 

Many of the systems discussed in this chapter (e.g. MAXIMS, NewT, Jango) do not per- 
haps match up too well to the notion of an agent as I discussed it in Chapter 2 (i.e. reactive, 
proactive, social). Does this matter? Do they still deserve to be called agents? 

(2)  [Level 4.1 

Take an agent programming environment off the shelf ( e g  Jam (Huber, 1999), Jack 
(Busetta et al., 2000), Jade (Poggi and Rimassa, 2001) or JATLite (Jeon et al., 2000)) and, 
using one of the methodologies described in the preceding chapter, use it to implement a 
major multiagent system. Document your experiences, and contrast them with the expe- 
riences you would expect with conventional approaches to system development. Weigh 
up the pros and cons, and use them to feed back into the multiagent research and devel- 
opment literature. 



Logics for 
Multiagent 

Systems 

Computer science is, as much as it is about anything, about developing formal 
theories to specify and reason about computer systems. Many formalisms have 
been developed in mainstream computer science to do this, and it comes as no 
surprise to discover that the agents community has also developed many such 
formalisms. In this chapter, I give an overview of some of the logics that have been 
developed for reasoning about multiagent systems. The predominant approach 
has been to use what are called modal logics to do this. The idea is to develop 
logics that can be used to characterize the mental states of agents as they act and 
interact. (See Chapter 2 for a discussion on the use of mental states for reasoning 
about agents.) 

Following an introduction to the need for modal logics for reasoning about 
agents, I introduce the paradigm of normal modal logics with Kripke semantics, 
as this approach is almost universally used. I then go on to discuss how these 
logics can be used to reason about the knowledge that agents possess, and then 
integrated theories of agency. I conclude by speculating on the way that these 
formalisms might be used in the development of agent systems. 

Please note: this chapter presupposes some understanding of the use 
of logic and formal methods for specification and verification. It is 
probably best avoided by those without such a background. 
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1 2.1 Why Modal Logic? 
Suppose one wishes to reason about mental states - beliefs and the like - in a log- 
ical framework. Consider the following statement (after Genesereth and Nilsson, 
1987, pp. 210, 21 1): 

Janine believes Cronos is the father of Zeus. (1 2.1) 

The best-known and most widely used logic in computer science is first-order 
logic. So, can we represent this statement in first-order logic? A naive attempt to 
translate (12.1) into first-order logic might result in the following: 

Bel( Jan ine ,  F a t h e r  (Zeus, Crones)). (12.2) 

Unfortunately, this naive translation does not work, for at least two reasons. The 
first is syntactic: the second argument to the Bel predicate is a formula of first- 
order logic, and is not, therefore, a term. So (12.2) is not a well-formed formula 
of classical first-order logic. 

The second problem is semantic. The constants Zeus and J u p i t e r ,  by any 
reasonable interpretation, denote the same individual: the supreme deity of the 
classical world. It is therefore acceptable to write, in first-order logic, 

(Zeus = J u p i t e r ) .  (12.3) 

Given (1 2.2) and (12.3), the standard rules of first-order logic would allow the 
derivation of the following: 

Be1( Jan ine ,  F a t h e r ( J u p i t e r ,  Cronos)) .  (1 2.4) 

But intuition rejects this derivation as invalid: believing that the father of Zeus is 
Cronos is not the same as believing that the father of Jupiter is Cronos. 

So what is the problem? Why does first-order logic fail here? The problem is that 
the intentional notions - such as belief and desire - are referentially opaque, in that 
they set up opaque contexts, in which the standard substitution rules of first-order 
logic do not apply. In classical (propositional or first-order) logic, the denotation, 
or semantic value, of an expression is dependent solely on the denotations of its 
sub-expressions. For example, the denotation of the propositional logic formula 
p A q is a function of the truth-values of p and q. The operators of classical logic 
are thus said to be truth functional. 

In contrast, intentional notions such as belief are not truth functional. It is 
surely not the case that the truth value of the sentence: 

Janine believes p 

is dependent solely on the truth-value of pl .  So substituting equivalents into 
opaque contexts is not going to preserve meaning. This is what is meant by ref- 
erential opacity. The existence of referentially opaque contexts has been known 

' ~ o t e ,  however, that the sentence (12.5) is itself a proposition, in that its denotation is the value 
true or false. 



Why Modal Logic? 269 

since the time of Frege. He suggested a distinction between sense and reference. In 
ordinary formulae, the 'reference' of a term/formula (i.e. its denotation) is needed, 
whereas in opaque contexts, the 'sense' of a formula is needed (see also Seel, 1989, 
p. 3).  

Clearly, classical logics are not suitable in their standard form for reasoning 
about intentional notions: alternative formalisms are required. A vast enterprise 
has sprung up devoted to developing such formalisms. 

The field of formal methods for reasoning about intentional notions is widely 
reckoned to have begun with the publication, in 1962, of Jaakko Hintikka's 
book Knowledge and Belief: An Introduction to the Logic of the Two Notions 
(Hintikka, 1962). At that time, the subject was considered fairly esoteric, of inter- 
est to comparatively few researchers in logic and the philosophy of mind. Since 
then, however, it has become an important research area in its own right, with con- 
tributions from researchers in AI, formal philosophy, linguistics and economics. 
There is now an enormous literature on the subject, and with a major biannual 
international conference devoted solely to theoretical aspects of reasoning about 
knowledge, as well as the input from numerous other, less specialized confer- 
ences, this literature is growing ever larger. 

Despite the diversity of interests and applications, the number of basic tech- 
niques in use is quite small. Recall, from the discussion above, that there are 
two problems to be addressed in developing a logical formalism for intentional 
notions: a syntactic one, and a semantic one. It follows that any formalism can be 
characterized in terms of two independent attributes: its language of formulation, 
and semantic model (Konolige, 1986, p. 83). 

There are two fundamental approaches to the syntactic problem. The first is 
to use a modal language, which contains non-truth-functional modal operators, 
which are applied to formulae. An alternative approach involves the use of a 
meta-language: a many-sorted first-order language containing terms which denote 
formulae of some other object-language. Intentional notions can be represented 
using a me ta-language predicate, and given whatever axiomatization is deemed 
appropriate. Both of these approaches have their advantages and disadvantages, 
and will be discussed at length in the sequel. 

As with the syntactic problem, there are two basic approaches to the seman- 
tic problem. The first, best-known, and probably most widely used approach is to 
adopt a possible-worlds semantics, where an agent's beliefs, knowledge, goals, etc., 
are characterized as a set of so-called possible worlds, with an accessibility relation 
holding between them. Possible-worlds semantics have an associated correspon- 
dence theory which makes them an attractive mathematical tool to work with 
(Chellas, 1980). However, they also have many associated difficulties, notably the 
well-known logical omniscience problem, which implies that agents are perfect 
reasoners. A number of minor variations on the possible-worlds theme have been 
proposed, in an attempt to retain the correspondence theory, but without logical 
omniscience. 
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The most common alternative to the possible-worlds model for belief is to use 
a sentential or interpreted symbolic structures approach. In this scheme, beliefs 
are viewed as symbolic formulae explicitly represented in a data structure associ- 
ated with an agent. An agent then believes p if p is present in the agent's belief 
structure. Despite its simplicity, the sentential model works well under certain 
circumstances (Konolige, 1986). 

The next part of this chapter contains detailed reviews of some of these for- 
malisms. First, the idea of possible-worlds semantics is discussed, and then a 
detailed analysis of normal modal logics is presented, along with some variants 
on the possible-worlds theme. 

Possible-Worlds Semantics for Modal Logics 
The possible-worlds model for epistemic logics was originally proposed by Hin- 
tikka (1962)' and is now most commonly formulated in a normal modal logic using 
the techniques developed by Kripke (1963). Hintikka's insight was to see that an 
agent's beliefs could be characterized in terms of a set of possible worlds, in the 
following way. Consider an agent playing the card game Gin Rummy (this example 
was adapted from Halpern (1987)). In this game, the more one knows about the 
cards possessed by one's opponents, the better one is able to play. And yet com- 
plete knowledge of an opponent's cards is generally impossible (if one excludes 
cheating). The ability to play Gin Rummy well thus depends, at least in part, on the 
ability to deduce what cards are held by an opponent, given the limited informa- 
tion available. Now suppose our agent possessed the ace of spades. Assuming the 
agent's sensory equipment was functioning normally, it would be rational of her 
to believe that she possessed this card. Now suppose she were to try to deduce 
what cards were held by her opponents. This could be done by first calculating 
all the various different ways that the cards in the pack could possibly have been 
distributed among the various players. (This is not being proposed as an actual 
card-playing strategy, but for illustration!) For argument's sake, suppose that each 
possible configuration is described on a separate piece of paper. Once the process 
was complete, our agent could then begin to systematically eliminate from this 
large pile of paper all those configurations which were not possible, given what 
she knows. For example, any configuration in which she did not possess the ace 
of spades could be rejected immediately as impossible. Call each piece of paper 
remaining after this process a world. Each world represents one state of affairs 
considered possible, given what she knows. Hintikka coined the term epistemic 
alternatives to describe the worlds possible given one's beliefs. Something true 
in all our agent's epistemic alternatives could be said to be believed by the agent. 
For example, it will be true in all our agent's epistemic alternatives that she has 
the ace of spades. 

On a first reading, this technique seems a peculiarly roundabout way of charac- 
terizing belief, but it has two advantages. First, it remains neutral on the subject 
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of the cognitive structure of agents. It certainly does not posit any internalized 
collection of possible worlds. It is just a convenient way of characterizing belief. 
Second, the mathematical theory associated with the formalization of possible 
worlds is extremely appealing (see below). 

The next step is to show how possible worlds may be incorporated into the 
semantic framework of a logic. T h s  is the subject of the next section. 

Normal Modal Logics 
Epistemic logics are usually formulated as normal modal logics using the seman- 
tics developed by Kripke (1963). Before moving on to explicitly epistemic logics, 
this section describes normal modal logics in general. 

Modal logics were originally developed by philosophers interested in the dis- 
tinction between necessary truths and mere contingent truths. Intuitively, a nec- 
essary truth is something that is true because it could not have been otherwise, 
whereas a contingent truth is somethng that could, plausibly, have been other- 
wise. For example, it is a fact that as I write, the Labour Party of Great Britain 
holds a majority in the House of Commons. But although t h s  is true, it is not a 
necessary truth; it could quite easily have turned out that the Conservative Party 
won a majority at the last general election. This fact is thus only a contingent 
truth. 

Contrast t h s  with the following statement: the square root of 2 is not a rational 
number. There seems no earthly way that this could be anythng but true (given 
the standard reading of the sentence). This latter fact is an example of a necessary 
truth. Necessary truth is usually defined as something true in all possible worlds. It 
is actually quite difficult to thnk  of any necessary truths other than mathematical 
laws. 

To illustrate the principles of modal epistemic logics, I will define a simple 
normal propositional modal logic. This logic is essentially classical propositional 
logic, extended by the addition of two operators: ' 0' (necessarily), and '0 '  (pos- 
sibly). 

First, its syntax. Let Prop = { p, q ,  . . . ) be a countable set of atomic propositions. 
The syntax of normal propositional modal logic is defined by the following rules. 

(1) If p E Prop,  then p is a formula. 

(2) If p, II/ are formulae, then so are 

true p p V II/. 

(3)  If p is a formula, then so are 

00 o w  
The operators '1' (not) and ' v '  (or) have their standard meaning; true is a logical 

constant (sometimes called verum) that is always true. The remaining connectives 
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(M, w) k true 

(bf,w) p where p G Prop, if andonlyif p r n ( w )  

(M,w) t= lg, ifandonlyif(M,ul)t#g, 

(M,w) t= q v c y  i f a n d o n l y i f ( M , w ) b p o r ( M , w ) ~ c C /  

(M, w) k ag, if and only if Vw' E W . if (.w;w1) E R then (M, w') k g, 

w )  k Og, if and only if 3w' E W . (w, w' )  E R and (M, w') k g, 

Figure 12.1 The semantics of normal modal logic. 

of propositional logic can be defined as abbreviations in the usual way. The for- 
mula up is read 'necessarily p', and the formula O p  is read 'possibly p ' .  Now 
to the semantics of the language. 

Normal modal logics are concerned with truth at worlds; models for such logics 
therefore contain a set of worlds, W, and a binary relation, R,  on W, saylng whch 
worlds are considered possible relative to other worlds. Additionally, a valuation 
function n is required, saylng what propositions are true at each world. 

A model for a normal propositional modal logic is a triple (W,  R ,  n) ,  where W 
is a non-empty set of worlds, R G W x W, and 

is a valuation function, which says for each world w E W whch atomic propo- 
sitions are true in w .  An alternative, equivalent technique would have been to 
define n as follows: 

n : W x Prop - {true, false), 

though the rules defining the semantics of the language would then have to be 
changed slightly. 

The semantics of the language are given via the satisfaction relation, 'k', whch 
holds between pairs of the form (M, w )  (where M is a model, and w is a reference 
world), and formulae of the language. The semantic rules defining t h s  relation 
are given in Figure 12.1. 

The definition of satisfaction for atomic propositions thus captures the idea of 
truth in the 'current' world (which appears on the left of 'E'). The semantic rules 
for 'true', '-', and ' v '  are standard. The rule for ' 0' captures the idea of truth in 
all accessible worlds, and the rule for '0' captures the idea of truth in at least one 
possible world. 

Note that the two modal operators are duals of each other, in the sense that the 
universal and existential quantifiers of first-order logic are duals: 

It would thus have been possible to take either one as primitive, and introduce 
the other as a derived operator. 
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Correspondence theory 
To understand the extraordinary properties of this simple logic, it is first neces- 
sary to introduce validity and satisfiability. A formula is 

satisfiable if it is satisfied for some model/world pair; 

unsatisfiable if it is not satisfied by any model/world pair; 

I 
I 

true in a model if it is satisfied for every world in the model; 
I 

I valid in a class o f  models if it true in every model in the class; 

valid if it is true in the class of all models. 

If p is valid, we indicate this by writing I= p .  Notice that validity is essentially the 
same as the notion of 'tautology' in classical propositional logic - all tautologies 
are valid. 

The two basic properties of this logic are as follows. First, the following axiom 
schema is valid: 

I= O(P =+ w >  =+ ( U p  * Ow). 
This axiom is called K, in honour of Kripke. The second property is as follows. 

If I= p, then I= up. 
Proofs of these properties are trivial, and are left as an exercise for the reader. 
Now, since K is valid, it will be a theorem of any complete axiomatization of nor- 
mal modal logic. Similarly, the second property will appear as a rule of inference 
in any axiomatization of normal modal logic; it is generally called the necessita- 
tion rule. These two properties turn out to be the most problematic features of 
normal modal logics when they are used as logics of knowledgebelief (this point 
will be examined later). 

The most intriguing properties of normal modal logics follow from the prop- 
erties of the accessibility relation, R ,  in models. To illustrate these properties, 
consider the following axiom schema: 

It turns out that this axiom is characteristic of the class of models with a reflexive 
accessibility relation. (By characteristic, we mean that it is true in all and only 
those models in the class.) There are a host of axioms whlch correspond to certain 
properties of R: the study of the way that properties of R correspond to axioms 
is called correspondence theory. In Table 12.1, I list some axioms along with their 
characteristic property on R ,  and a first-order formula describing the property. 

A system o f  logic can be thought of as a set of formulae valid in some class of 
models; a member of the set is called a theorem of the logic (if p is a theorem, t h s  
is usually denoted by F p ) .  The notation ICE1 . . . C, is often used to denote the 
smallest normal modal logic containing axioms .El,.  . . ,.En (recall that any normal 
modal logic will contain K ;  cf. Goldblatt (1987, p. 25)). 
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Table 12.1 Some correspondence theory. 

Condition First-order 
Name Axiom onR characterization 

T ~ P * V  Reflexive V W E M / . ( W , W ) E R  

3 O ~ I  * ng, Transitive V w ,  w ' ,  w" E W . ( w ,  w ' )  E R A 

( w ' ,  w") E R * ( w ,  w " )  E R 

5 Og, * m O g ,  Euclidean V w , w t , w "  E W .  ( w , w t )  E R A  
( w , w " )  E R 3 ( w f , w " )  E R 

For the axioms T, Dl 4, and 5, it would seem that there ought to be 16 distinct 
systems of logic (since z4 = 16). However, some of these systems turn out to 
be equivalent (in that they contain the same theorems), and as a result there are 
only 11 distinct systems. The relationships between these systems are described 
in Figure 12.2 (after Konolige (1986, p. 99) and Chellas (1980, p. 132)). In this 
diagram, an arc from A to 3 means that B is a strict superset of A: every theorem 
of A is a theorem of B, but not vice versa; A = B means that A and B contain 
precisely the same theorems. 

Because some modal systems are so widely used, they have been given names: 

KT is known as T, 

KT4 is known as S4, 

KD45 is known as weak-S5, 

KT5 is known as S5. 

Normal modal logics as epistemic logics 
To use the logic developed above as an epistemic logic, the formula up is read 
as 'it is known that p'. The worlds in the model are interpreted as epistemic alter- 
natives, the accessibility relation defines what the alternatives are from any given 
world. The logic deals with the knowledge of a single agent. To deal with multi- 
agent knowledge, one adds to a model structure an indexed set of accessibility 
relations, one for each agent. A model is then a structure 

where Ri is the knowledge accessibility relation of agent i. The simple language 
defined above is extended by replacing the single modal operator ' 0' by an 
indexed set of unary modal operators { K i ) ,  where i E { 1, . . . , n).  The formula 
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Figure 12.2 The modal systems based on axioms T, D, 4 and 5. 

K i q  is read 'i knows that q ' .  The semantic rule for ' 0' is replaced by the follow- 
ing rule: 

(M, w )  I= K i q  if and only if Vwr E W . if (w,  w r )  E Ri  then (M, w ' )  i= p. 

Each operator Ki thus has exactly the same properties as ' 0'. Corresponding to 
each of the modal systems 1, above, a corresponding system 1, is defined, for 
the multiagent logic. Thus K, is the smallest multiagent epistemic logic and S 5 n  
is the largest. 

The next step is to consider how well normal modal logic serves as a logic of 
knowledge/belief. Consider first the necessitation rule and axiom K, since any 
normal modal system is committed to these. 

The necessitation rule tells us that an agent knows all valid formulae. Amongst 
other things, this means an agent knows all propositional tautologies. Since there 
are an infinite number of these, an agent will have an infinite number of items 
of knowledge: immediately, one is faced with a counterintuitive property of the 
knowledge operator. 
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Now consider the axiom K, which says that an agent's knowledge is closed under 
implication. Suppose p is a logical consequence of the set @ = {pl, . . . , pn}, then 
in every world where all of @ are true, p must also be true, and hence 

must be valid. By necessitation, this formula will also be believed. Since an agent's 
beliefs are closed under implication, whenever it believes each of @, it must also 
believe p .  Hence an agent's knowledge is closed under logical consequence. This 
also seems counterintuitive. For example, suppose, like every good logician, our 
agent knows Peano's axioms. It may well be that Fermat's last theorem follows 
from Peano's axioms - although, it took the labour of centuries to prove it. Yet if 
our agent's beliefs are closed under logical consequence, then our agent must 
know it. So consequential closure, implied by necessitation and the K axiom, 
seems an overstrong property for resource-bounded reasoners. 

Logical omniscience 
These two problems - that of knowing all valid formulae, and that of knowl- 
edgebelief being closed under logical consequence - together constitute the 
famous logical omniscience problem. This problem has some damaging corollar- 
ies. 

The first concerns consistency. Human believers are rarely consistent in the logi- 
cal sense of the word; they will often have beliefs p and q ~ ,  where p t- i q J ,  without 
being aware of the implicit inconsistency. However, the ideal reasoners implied by 
possible-worlds semantics cannot have such inconsistent beliefs without believ- 
ing every formula of the logical language (because the consequential closure of 
an inconsistent set of formulae is the set of all formulae). Konolige has argued 
that logical consistency is much too strong a property for resource-bounded rea- 
soners: he argues that a lesser property, that of being non-contradictory, is the 
most one can reasonably demand (Konolige, 1986). Non-contradiction means that 
an agent would not simultaneously believe p and -p, although the agent might 
have logically inconsistent beliefs. 

The second corollary is more subtle. Consider the following propositions (this 
example is from Konolige (1986, p. 88)). 

(1) Hamlet's favourite colour is black. 

(2) Hamlet's favourite colour is black and every planar map can be four 
coloured. 

The second conjunct of (2) is valid, and will thus be believed. This means that (1) 
and (2) are logically equivalent; (2) is true just when (1) is. Since agents are ideal 
reasoners, they will believe that the two propositions are logically equivalent. This 
is yet another counterintuitive property implied by possible-worlds semantics, as 
'equivalent propositions are not equivalent as beliefs' (Konolige, 1986, p. 88). Yet 
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t h s  is just what possible-worlds semantics implies. It has been suggested that 
propositions are thus too coarse grained to serve as the objects of belief in this 
way. 

Axioms for knowledge and belief 
Let us now consider the appropriateness of the axioms D,, T,, 4,, and 5, for 
logics of knowledge/belief. 

The axiom D, says that an agent's beliefs are non-contradictory; it can be rewrit- 
ten in the following form: 

K i q  * ~ K i l p ,  

which is read 'if i knows cp, then i does not know -cp-'. This axiom seems a rea- 
sonable property of knowledgebelief. 

The axiom T, is often called the knowledge axiom, since it says that what is 
known is true. It is usually accepted as the axiom that distinguishes knowledge 
from belief: it seems reasonable that one could believe something that is false, 
but one would hesitate to say that one could know something false. Knowledge 
is thus often defined as true belief: i knows cp if i believes cp and cp is true. So 
defined, knowledge satisfies T,. 

Axlom 4, is called the positive introspection axiom. Introspection is the pro- 
cess of examining one's own beliefs, and is discussed in detail in Konolige (1986, 
Chapter 5). The positive introspection axiom says that an agent knows what it 
knows. Similarly, axiom 5, is the negative introspection axiom, which says that 
an agent is aware of what it does not know. Positive and negative introspection 
together imply that an agent has perfect knowledge about what it does and does 
not know (cf. Konolige, 1986, Equation (5.11), p. 79). Whether or not the two types 
of introspection are appropriate properties for knowledge/belief is the subject of 
some debate. However, it is generally accepted that positive introspection is a less 
demanding property than negative introspection, and is thus a more reasonable 
property for resource-bounded reasoners. 

Given the comments above, the modal system S5, is often chosen as a logic of 
knowledge, and weak-S5, is often chosen as a logic of belief. 

Discussion 
To sum up, the basic possible-worlds approach described above has the following 
disadvantages as a multiagent epistemic logic: 

agents believe all valid formulae; 

agents' beliefs are closed under logical consequence; 

equivalent propositions are identical beliefs; and 

if agents are inconsistent, then they believe everything. 

To which many people would add the following: 
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[Tlhe ontology of possible worlds and accessibility relations.. .is frank- 
ly mysterious to most practically minded people, and in particular has 
nothing to say about agent archtecture. 

(Seel, 1989) 

Despite these serious disadvantages, possible worlds are still the semantics of 
choice for many researchers, and a number of variations on the basic possible- 
worlds theme have been proposed to get around some of the difficulties - see 
Wooldridge and Jennings (1995) for a survey. 

Epistemic Logic for Multiagent Systems 
Most people, confronted with possible-worlds semantics for the first time, are - 
initially at least - uncomfortable with the idea: 

[The notion] of one possible world being accessible to another has at 
first sight a certain air of fantasy or science fiction about it. 

(Hughes and Cresswell, 1968, p. 77) 

The problem seems to be with the ontological status of possible worlds: do 
they really exist? If so, where are they? How do they map onto an agent's phys- 
ical architecture? If these questions cannot be answered, then one would be 
reluctant to treat epistemic alternatives as anything other than a theoretical 
nicety. 

Some researchers have proposed grounding epis temic a1 ternatives: giving them 
a precise meaning in the real world, thus overcoming any confusion about their 
status. This section describes grounded possible worlds, and will focus on the 
distributed systems approach; the formal treatment is adapted from Fagin et al. 
(1 99 5). 

Using a logic of knowledge to analyse a distributed system may seem strange. 
However, as Halpern points out, when informally reasoning about a distributed 
system, one often makes statements such as: 'processor 1 cannot send a packet 
to processor 2 until it knows that processor 2 received the previous one' (Halpern, 
1987). A logic of knowledge formalizes such reasoning. 

The starting point for our study is to define a simple model of distributed sys- 
tems. A system contains an environment, which may be in any of a set E of envi- 
ronment states, and a set of n processes (1, . . . , n),  each of which may be in any 
of a set L of 'local' states. At any time, a system may therefore be in any of a set 
G of global states: 

G = E x L x . - - x L .  - 
n times 

Next, a run of a system is a function which assigns to each time point a global 
state: time points are isomorphic to the natural numbers (and time is thus discrete, 
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bounded in the past, and infinite in the future). Note that this is essentially the 
same notion of runs that was introduced in Chapter 2, but I have formulated it 
slightly differently. A run r is thus a function 

A point is a run together with a time: 

Point = R u n  x N. 

A point implicitly identifies a global state. Points will serve as worlds in the logic 
of knowledge to be developed. A system is a set of runs. 

Now, suppose s and s' are two global states. 

1 We now define a relation - i  on states, for each process i, 

s - i  s f  if and onlyif ( l i  = I : ) .  

Note that - i  will be an equivalence relation. The terminology is that if s -, s', then 
s and s' are indistinguishable to i, since the local state of i is the same in each 
global state. Intuitively, the local state of a process represents the information 
that the process has, and if two global states are indistinguishable, then it has the 
same information in each. 

The crucial point here is that since a processes [sic] [choice of] 
actions.. .are a function of its local state, if two points are indis- 
tinguishable to processor i, then processor i will perform the same 
actions in each state. 

(Halpern, 1987, pp. 46, 47) 

(Again, this is the same notion of indistinguishability that I introduced in Chap- 
ter 2, except that there it was with respect to the notion of percepts.) 

The next step is to define a language for reasoning about such systems. The 
language is that of the multiagent episternic logic defined earlier (i.e. classical 
propositional logic enriched by the addition of a set of unary modal operators Ki, 
for i E (1,. . . , n ) ) .  The semantics of the language are presented via the satisfac- 
tion relation, 'I=', which holds between triples of the form 

and formulae of the language. Here, ( r ,  u) is a point, and M is a structure 
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where R is a system (cf. the set of runs discussed in Chapter 2), and 

.rr : Point  - $?(Prop)  

returns the set of atomic propositions true at a point. The structure ( R , n )  is 
called an interpreted system. The only non-standard semantic rules are for propo- 
sitions and modal formulae: 

( 1 ,  , u I= p where p E P r o p ,  if and only if p E n((r ,  u) ) ,  

(M, v ,  u )  i= Kiq if and only if (M, rr,  u r )  k p for all rr € R 
and ur E N such that r ( u )  - i  r ' (u f )  

Note that since -, is an equivalence relation (i.e. it is reflexive, symmetric, and 
transitive), this logic will have the properties of the system S5,, discussed above. 
In what sense does the second rule capture the idea of a processes knowledge? 
The idea is that if v ( u )  - i  r ' ( u r ) ,  then for all i knows, it could be in either run 
r, time u, or run r', time u'; the process does not have enough information to 
be able to distinguish the two states. The information/knowledge it does have are 
the things true in all its indistinguishable states. 

In this model, knowledge is an external notion. We do not imagine 
a processor scratching its head wondering whether or not it knows 
a fact q,. Rather, a programmer reasoning about a particular proto- 
col would say, from the outside, that the processor knew q, because 
in all global states [indistinguishable] from its current state (intu- 
itively, all the states the processor could be in, for all it knows), q, 
is true. 

(Halpern, 1986, p. 6) 

Pro-attitudes: Goals and Desires 
An obvious approach to developing a logic of goals or desires is to adapt possible- 
worlds semantics - see, for example, Cohen and Levesque (1990a) and Wooldridge 
(1994). In this view, each goal-accessible world represents one way the world might 
be if the agent's goals were realized. However, this approach falls prey to the side 
effect problem, in that it predicts that agents have a goal of the logical conse- 
quences of their goals (cf. the logical omniscience problem, discussed above). 
T h s  is not a desirable property: one might have a goal of going to the dentist, 
with the necessary consequence of suffering pain, without having a goal of suf- 
fering pain. The problem is discussed (in the context of intentions) in Bratman 
(1990). The basic possible-worlds model has been adapted by some researchers 
in an attempt to overcome this problem (Wainer, 1994). Other, related semantics 
for goals have been proposed (Doyle et a]., 1991; Kiss and Reichgelt, 1992; Rao 
and Georgeff, 199 1 b). 
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and Distributed knowledge 
In addition to reasoning about what one agent knows or believes, it is often useful 
to be able to reason about 'cultural' knowledge: the thngs that everyone knows, 
and that everyone knows that everyone knows, etc. This lund of knowledge 
is called common knowledge. The famous 'muddy chldren' puzzle - a classic 
problem in epistemic reasoning - is an example of the lund of problem that is 
efficiently dealt with via reasoning about common knowledge (see Fagin el a!. 
(1995) for a statement of the problem). 

The starting point for common knowledge is to develop an operator for things 
that 'everyone knows'. A unary modal operator E is added to the modal language 
discussed above; the formulae E q  is read 'everyone knows q ' .  It can be defined 
as an abbreviation: 

E q - K l q ~ - - . ~ K , q .  

The E operator does not satisfactorily capture the idea of common knowledge. 
For ths ,  another derived operator C is required; C is defined, ultimately, in terms 
of E. It is first necessary to introduce the derived operator Ek; the formula E k q  
is read 'everyone knows q to degree k'. It is defined as follows: 

The common knowledge operator can then be defined as an abbreviation: 

Thus common knowledge is the infinite conjunction: everyone knows, and 
everyone knows that everyone knows, and so on. 

It is interesting to ask when common knowledge can arise in a system. A classic 
problem in distributed systems folklore is the coordinated attack problem. 

Two divisions of an army, each commanded by a general, are camped 
on two hlltops overlookmg a valley. In the valley awaits the enemy. 
It is clear that if both divisions attack the enemy simultaneously they 
will win the battle, whle if only one division attacks, it will be defeated. 
As a result, neither general will attack unless he is absolutely sure that 
the other will attack with him. In particular, a general will not attack 
if he receives no messages. The commanding general of the first divi- 
sion wishes to coordinate a simultaneous attack (at some time the next 
day). The generals can communicate only by means of messengers. Nor- 
mally, it takes a messenger one hour to get from one encampment to 
the other. However, it is possible that he will get lost in the dark or, 
worse yet, be captured by the enemy. Fortunately, on this particular 
night, everythng goes smoothly. How long will it take them to coordi- 
nate an attack? 
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Suppose a messenger sent by general A reaches General 3 with a mes- 
sage saying "attack at dawn." Should General B attack? Although the 
message was in fact delivered, General A has no way of knowing that 
it was delivered. A must therefore consider it possible that 3 did not 
receive the message (in which case 3 would definitely not attack). Hence 
A will not attack given his current state of knowledge. Knowing this, 
and not willing to risk attaclung alone, 3 cannot attack solely based 
on receiving A's message. Of course, 3 can try to improve matters by 
sending the messenger back to A with an acknowledgment. When A 
receives this acknowledgment, can he then attack? A here is in a simi- 
lar position to the one B was in when he received the original message. 
This time B does not know that the acknowledgment was delivered. 

(Fagin et  al., 1995, p. 176). 

Intuitively, the two generals are trying to bring about a state where it is common 
knowledge between them that the message to attack was delivered. Each succes- 
sive round of communication, even if successful, only adds one level to the depth 
of nested belief. No amount of communication is sufficient to bring about the infi- 
nite nesting that common knowledge requires. As it turns out, if communication 
delivery is not guaranteed, then common knowledge can never arise in such a 
scenario. Ultimately, this is because, no matter how many messages and acknowl- 
edgments are sent, at least one of the generals will always be uncertain about 
whether or not the last message was received. 

One might ask about whether infinite nesting of common knowledge is required. 
Could the two generals agree between themselves beforehand to attack after, say, 
only two acknowledgments? Assuming that they could meet beforehand to come 
to such an agreement, then this would be feasible. But the point is that whoever 
sent the last acknowledgment would be uncertain as to whether t h s  was received, 
and would hence be attacking while unsure as to whether it was a coordinated 
attack or a doomed solo effort. 

A related issue to common knowledge is that of distributed, or implicit, knowl- 
edge. Suppose there is an omniscient observer of some group of agents, with the 
ability to 'read' each agent's beliefs/knowledge. Then this agent would be able 
to pool the collective knowledge of the group of agents, and would generally be 
able to deduce more than any one agent in the group. For example, suppose, in a 
group of two agents, agent 1 only knew p, and agent 2 only knew g? * @. Then 
there would be distributed knowledge of cy, even though no agent explicitly knew 
w. Distributed knowledge cannot be reduced to any of the operators introduced 
so far: it must be given its own definition. The distributed knowledge operator D 
has the following semantic rule: 

(M, w) L Dq if and only if ( M ,  w ') F p for all w ' 

such that ( w , w 1 )  E ( R ,  n . . . n R n ) .  
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Ths rule might seem strange at first, since it uses set intersection rather than 
set union, which is at odds with a naive perception of how distributed knowledge 
works. However, a restriction on possible worlds generally means an increase in 
knowledge. 

Distributed knowledge is potentially a useful concept in cooperative problem- 
solving systems, where knowledge about a problem is distributed among a group 
of problem-solving agents, which must try to deduce a solution through cooper- 
ative interaction. 

The various group knowledge operators form a herarchy: 

C p  E~~ * . . * * E p  * K i p  * D p .  

See Fagin et al. (1995) for further discussion of these operators and their prop- 
erties. 

Integrated Theories of Agency 
All of the formalisms considered so far have focused on just one aspect of agency. 
However, it is to be expected that a realistic agent theory will be represented in 
a logical framework that combines these various components. Additionally, we 
expect an agent logic to be capable of representing the dynamic aspects of agency. 
A complete agent theory, expressed in a logic with these properties, must define 
how the attributes of agency are related. For example, it will need to show how an 
agent's information and pro-attitudes are related; how an agent's cognitive state 
changes over time; how the environment affects an agent's cognitive state; and 
how an agent's information and pro-attitudes lead it to perform actions. Giving 
a good account of these relationships is the most significant problem faced by 
agent theorists. 

An all-embracing agent theory is some time off, and yet significant steps have 
been taken towards it. In the following subsection, I survey the work of Cohen and 
Levesque on intention logics - one of the most influential agent theories developed 
to date. 

Cohen and Levesque's intention logic 
One of the best known, and most sophisticated, attempts to show how the various 
components of an agent's cognitive make-up could be combined to form a logic 
of rational agency is due to Cohen and Levesque (1990a). Cohen and Levesque's 
formalism was originally used to develop a theory of intention (as in 'I intended 
to.. .'), whch the authors required as a prerequisite for a theory of speech acts 
(see the next chapter for a summary, and Cohen and Levesque (1990b) for full 
details). However, the logic has subsequently proved to be so useful for speci- 
fying and reasoning about the properties of agents that it has been used in an 
analysis of conflict and cooperation in multiagent dialogue (Galliers, 1988a,b), as 
well as several studies in the theoretical foundations of cooperative problem solv- 
ing (Levesque et al., 1990; Jennings, 1992a,b). Ths  section will focus on the use 
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of the logic in developing a theory of intention. The first step is to lay out the 
criteria that a theory of intention must satisfy. 

When building intelligent agents - particularly agents that must interact with 
humans - it is important that a rational balance is achieved between the beliefs, 
goals, and intentions of the agents. 

For example, the following are desirable properties of intention: an 
autonomous agent should act on its intentions, not in spite of them; 
adopt intentions it believes are feasible and forego those believed to be 
infeasible; keep (or commit to) intentions, but not forever; discharge 
those intentions believed to have been satisfied; alter intentions when 
relevant beliefs change; and adopt subsidiary intentions during plan 
formation. 

(Cohen and Levesque, 1990a, p. 214) 

Recall the properties of intentions, as discussed in Chapter 4. 

(1) Intentions pose problems for agents, who need to determine ways of achiev- 
ing them. 

(2) Intentions provide a 'filter' for adopting other intentions, which must not 
conflict . 

(3) Agents track the success of their intentions, and are inclined to try again if 
their attempts fail. 

(4) Agents believe their intentions are possible. 

(5) Agents do not believe they will not bring about their intentions. 

(6) Under certain circumstances, agents believe they will bring about their inten- 
tions. 

(7) Agents need not intend all the expected side effects of their intentions. 

Given these criteria, Cohen and Levesque adopt a two-tiered approach to the prob- 
lem of formalizing a theory of intention. First, they construct the logic of rational 
agency, 'being careful to sort out the relationships among the basic modal opera- 
tors' (Cohen and Levesque, 1990a, p. 221). On top of this framework, they intro- 
duce a number of derived constructs, which constitute a 'partial theory of rational 
action' (Cohen and Levesque, 1990a, p. 221); intention is one of these constructs. 

Syntactically, the logic of rational agency is a many-sorted, first-order, multi- 
modal logic with equality, containing four primary modalities (see Table 12.2). 

The semantics of Bel and Goal are given via possible worlds, in the usual way: 
each agent is assigned a belief accessibility relation, and a goal accessibility rela- 
tion. The belief accessibility relation is Euclidean, transitive, and serial, giving a 
belief logic of KD45. The goal relation is serial, giving a conative logic KD. It is 
assumed that each agent's goal relation is a subset of its belief relation, implylng 
that an agent will not have a goal of something it believes will not happen. Worlds 
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Table 12.2 Atomic modalities in Cohen and Levesque's logic. 

Operator Meaning 

(Be1 i q )  agent i believes tp 
(Coal i q) agent i has goal of p 
(Happens pr) action pr will happen next 
(Done a) action a has just happened 

in the formalism are a discrete sequence of events, stretchng infinitely into past 
and future. 

i 
L The two basic temporal operators, Happens and Done, are augmented by some 
I operators for describing the structure of event sequences, in the style of dynamic 

logic (Harel, 1979). The two most important of these constructors are I ; '  and '?': 

a ;  a' denotes a followed by a', 
p? denotes a 'test action' q. 

The standard future time operators of temporal logic, ' 0' (always), and '0' 
(sometime), can be defined as abbreviations, along with a 'strict' sometime oper- 
ator, Later: 

0 a A 3x - (Happens x; a?) ,  

A temporal precedence operator, (Before p q)  can also be derived, and holds if p 
holds before q .  An important assumption is that all goals are eventually dropped: 

Oi(Coal x (Later p ) ) .  

The first major derived construct is a persistent goal: 

(P-Coal i p )  - (Coal i (Later p ) )  A 

(Bel i l p )  A 

Before 
((Bel i p) v (Bel i 0 7 ~ ) )  
 goal i (Later p ) )  

So, an agent has a persistent goal of p if 

(1) it has a goal that p eventually becomes true, and believes that p is not cur- 
rently true; and 

(2) before it drops the goal, one of the following conditions must hold: 

(a) the agent believes the goal has been satisfied; 

(b) the agent believes the goal will never be satisfied. 
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It is a small step from persistent goals to a first definition of intention, as in 
'intending to act'. Note that 'intending that something becomes true' is similar, 
but requires a slightly different definition (see Cohen and Levesque, 1990a). An 
agent i intends to perform action a if it has a persistent goal to have brought 
about a state where it had just believed it was about to perform a, and then did 
a :  

(Int i a)  4 (P-Goal i 
[Done i (Bel i (Happens a ) ) ? ;  a] 

1 

Cohen and Levesque go on to show how such a definition meets many of Bratman's 
criteria for a theory of intention (outlined above). In particular, by basing the def- 
inition of intention on the notion of a persistent goal, Cohen and Levesque are 
able to avoid overcommitment or undercommitment. An agent will only drop an 
intention if it believes that the intention has either been achieved, or is unachiev- 
able. 

Modelling speech acts 

We saw in Chapter 8 how speech acts form the basis of communication in most 
multiagent systems. Using their logic of intention, Cohen and Levesque developed 
a theory which arguably represents the state of the art in the logical analysis of 
speech acts (Cohen and Levesque, 1990b). Their work proceeds from two basic 
premises. 

(1) Illocutionary force recognition is unnecessary. 

What speakers and hearers have to do is only recognize each 
other's intentions (based on mutual beliefs). We do not require 
that those intentions include intentions that the hearer recognize 
precisely what illocutionary act(s) were being performed. 

(Cohen and Levesque, 1990b, p. 223) 

(2) Illocutionary acts are complex event types, and not primitives. 

Given this latter point, one must find some way of describing the actions that are 
performed. Cohen and Levesque's solution is to use their logic of rational action, 
which provides a number of primitive event types, which can be put together into 
more complex event types, using dynamic-logic-style constructions. Illocutionary 
acts are then defined as complex event types. 

Their approach is perhaps best illustrated by giving their definition of a request. 
Some preliminary definitions are required. First, alternating belief: 

(A-Be1 n x y p )  - (Bel x (Bel y (Bel x - . - (Bel x p ) . . . ) . 
'. v J - 

n times ?I times 
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And the related concept of mutual belief: 

(M-Bel x y p )  V n  - (A-Bel n x y p ) .  

Next, an attempt is defined as a complex action expression - hence the use of 
curly brackets, to distinguish it from a predicate or modal operator: 

(Bel x l p )  
Attempt x e  p q 4 [ (Coal x (Happens x e; p? ) )  A ?; e 

(Int x e;  q?) - 1 
In English: 

An attempt is a complex action that agents perform when they do 
something (e) desiring to bring about some effect (p)  but with intent 
to produce at least some result (q). 

(Cohen and Levesque, 1990b, p. 240) 

The idea is that p represents the ultimate goal that the agent is aiming for by 
doing e; the proposition q represents what it takes to at least make an 'honest 
effort' to achieve p. A definition of helpfulness is now presented: 

(Bel x (Coal y O(Done x e ) ) )  A 
(Helpful x y )  2 V e  . 

 goal x [ 7 1 ( ~ o n e  x e ) )  1 
+ (Coal x O(Done x e ) ) .  

In English: 

[Clonsider an agent [x] to be helpful to another agent [y] if, for any 
action [el he adopts the other agent's goal that he eventually do that 
action, whenever such a goal would not conflict with his own. 

(Cohen and Levesque, 1990b1 p. 230) 

The definition of requests can now be given (note again the use of curly brackets: 
requests are complex event types, not predicates or operators): 

{Request s p k r  a d d r  e a} {Attempt s p k r  e  p 
(M-Bel a d d r  s p k r  (Goal s p k r  p))  

I 
where p is 

O(Done addr cu) A 

(Int a d d r  a 
(Coal s p k r  O(Done a d d r  a))  A 

(Helpful a d d r  s p k r )  
1. 

1 
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In English: 

A request is an attempt on the part of s p k r ,  by doing e, to bring about a 
state where, ideally (i) addr intends a (relative to the s p k r  still having 
that goal, and a d d r  still being helpfully inclined to spkr) ,  and (ii) a d d r  
actually eventually does a, or at least brings about a state where a d d r  
believes it is mutually believed that it wants the ideal situation. 

By this definition, there is no primitive request act: 

[A] speaker is viewed as having performed a request if he executes any 
sequence of actions that produces the needed effects. 

(Cohen and Levesque, 1990b, p. 246) 

In short, any event, of whatever complexity, that satisfies t h s  definition, can be 
counted a request. Cohen and Levesque show that if a request takes place, it is 
possible to infer that many of Searle's preconditions for the act must have held 
(Cohen and Levesque, 1990b, pp. 246-25 1). 

Using Cohen and Levesque's work as a starting point, Galliers has developed a 
more general framework for multiagent dialogue, which acknowledges the possi- 
bility for conflict (Galliers, l988b). 

Formal Methods in Agent-Oriented 
Software Engineering 
The next question to address is what role logics of agency might actually play in 
the development of agent systems. Broadly speaking, formal methods play three 
roles in software engineering: 

in the specification of systems; 

for directly programming systems; and 

in the verification of systems. 

In the subsections that follow, we consider each of these roles in turn. Note that 
these subsections presuppose some familiarity with formal methods, and logic in 
particular. 

12.8.1 Formal methods in specification 

In this section, we consider the problem of specifying an agent system. What are 
the requirements for an agent specification framework? What sort of properties 
must it be capable of representing? 
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Comparatively few serious attempts have been made to specify real agent sys- 
tems using such logics - see, for example, Fisher and Wooldridge (1997) for one 
such attempt. 

A specification expressed in such a logic would be a formula p. The idea is that 
such a specification would express the desirable behaviour of a system. To see how 
this might work, consider the following, intended to form part of a specification 
of a process control system: 

if 
i believes valve 32 is open 

then 
i should intend that j should believe valve 32 is open. 

Expressed in a Cohen-Levesque type logic, t h s  statement becomes the formula: 

(Bel i Open(vulve32))  3 (Int i (Bel j Open(valve32)) ) .  

It should be intuitively clear how a system specification might be constructed 
using such formulae, to define the intended behaviour of a system. 

One of the main desirable features of a software specification language is that 
it should not dictate how a specification will be satisfied by an implementation. 
The specification above has exactly t h s  property: it does not dictate how agent i 
should go about mahng j aware that valve 32 is open. We simply expect i to 
behave as a rational agent given such an intention (Wooldridge, 2000b). 

There are a number of problems with the use of such languages for specification. 
The most worrying of these is with respect to their semantics. The semantics 
for the modal connectives (for beliefs, desires, and intentions) are given in the 
normal modal logic tradition of possible worlds (Chellas, 1980). So, for example, 
an agent's beliefs in some state are characterized by a set of different states, each 
of which represents one possibility for how the world could actually be, given 
the information available to the agent. In much the same way, an agent's desires 
in some state are characterized by a set of states that are consistent with the 
agent's desires. Intentions are represented similarly. There are several advantages 
to the possible-worlds model: it is well studied and well understood, and the 
associated mathematics of correspondence theory is extremely elegant. These 
attractive features make possible worlds the semantics of choice for almost every 
researcher in formal agent theory. However, there are also a number of serious 
drawbacks to possible-worlds semantics. First, possible-worlds semantics imply 
that agents are logically perfect reasoners (in that their deductive capabilities are 
sound and complete), and they have infinite resources available for reasoning. No 
real agent, artificial or otherwise, has these properties. 

Second, possible-worlds semantics are generally ungrounded. That is, there is 
usually no precise relationship between the abstract accessibility relations that 
are used to characterize an agent's state, and any concrete computational model. 
As we shall see in later sections, t h s  makes it difficult to go from a formal speci- 
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fication of a system in terms of beliefs, desires, and so on, to a concrete computa- 
tional system. Similarly, given a concrete computational system, there is generally 
no way to determine what the beliefs, desires, and intentions of that system are. 
If temporal modal logics such as these are to be taken seriously as specification 
languages, then this is a significant problem. 

12.8.2 Formal methods in implementation 
Specification is not (usually!) the end of the story in software development. Once 
given a specification, we must implement a system that is correct with respect to 
this specification. The next issue we consider is the move from abstract specifi- 
cation to concrete computational model. There are at least three possibilities for 
achieving t h s  transformation: 

(1) manually refine the specification into an executable form via some principled 
but informal refinement process (as is the norm in most current software 
development); 

(2) directly execute or animate the abstract specification; or 
(3)  translate or compile the specification into a concrete computational form 

using an automatic translation technique (cf. the synthesis of agents, dis- 
cussed in Chapter 2). 

In the subsections that follow, we shall investigate each of these possibilities in 
turn. 

Refinement 
At the time of writing, most software developers use structured but informal 
techniques to transform specifications into concrete implementations. Probably 
the most common techniques in widespread use are based on the idea of top- 
down refinement. In t h s  approach, an abstract system specification is refined 
into a number of smaller, less abstract subsystem specifications, which together 
satisfy the original specification. If these subsystems are still too abstract to be 
implemented directly, then they are also refined. The process recurses until the 
derived subsystems are simple enough to be directly implemented. Throughout, 
we are obliged to demonstrate that each step represents a true refinement of the 
more abstract specification that preceded it. Ths  demonstration may take the 
form of a formal proof, if our specification is presented in, say, Z (Spivey, 1992) 
or VDM (Jones, 1990). More usually, justification is by informal argument. Object- 
oriented analysis and design techniques, which also tend to be structured but 
informal, are also increasingly playing a role in the development of systems (see, 
for example, Booch, 1994). 

For functional systems, which simply compute a function of some input and 
then terminate, the refinement process is well understood, and comparatively 
straightforward. Such systems can be specified in terms of preconditions and 
postconditions (e.g. using Hoare logic (Hoare, 1969)). Refinement calculi exist, 
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which enable the system developer to take a precondition and postcondition spec- 
ification, and from it systematically derive an implementation through the use of 
proof rules (Morgan, 1994). Part of the reason for t h s  comparative simplicity is 
that there is often an easily understandable relationship between the precondi- 
tions and postconditions that characterize an operation and the program struc- 
tures required to implement it. 

For agent systems, which fall into the category of Pnuelian reactive systems (see 
the discussion in Chapter 2 ) ,  refinement is not so straightforward. This is because 
such systems must be specified in terms of their ongoing behaviour - they cannot 
be specified simply in terms of preconditions and postconditions. In contrast to 

I 
I precondition and postcondition formalisms, it is not so easy to determine what 

program structures are required to realize such specifications. As a consequence, 
researchers have only just begun to investigate refinement and design technique 
for agent-based systems. 

Directly executing agent specifications 
One major disadvantage with manual refinement methods is that they introduce 
the possibility of error. If no proofs are provided, to demonstrate that each refine- 
ment step is indeed a true refinement, then the correctness of the implementa- 
tion process depends upon little more than the intuitions of the developer. This 
is clearly an undesirable state of affairs for applications in which correctness is 
a major issue. One possible way of circumventing thls problem, which has been 
widely investigated in mainstream computer science, is to get rid of the refine- 
ment process altogether, and directly execute the specification. 

It might seem that suggesting the direct execution of complex agent specifica- 
tion languages is naive - it is exactly the lund of suggestion that detractors of 
logic-based AI hate. One should therefore be very careful about what claims or 
proposals one makes. However, in certain circumstances, the direct execution of 
agent specification languages is possible. 

What does it mean, to execute a formula cp of logic L?  It means generating a 
logical model, M, for cp, such that M b p (Fisher, 1996). If this could be done 
without interference from the environment - if the agent had complete control 
over its environment - then execution would reduce to constructive theorem- 
proving, where we show that cp is satisfiable by building a model for cp. In reality, 
of course, agents are not interference free: they must iteratively construct a model 
in the presence of input from the environment. Execution can then be seen as a 
two-way iterative process: 

environment makes something true; 
agent responds by doing something, i.e. malung something else true in the 
model; 
environment responds, making something else true; 
etc. 
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Execution of logical languages and theorem-proving are thus closely related. This 
tells us that the execution of sufficiently rich (quantified) languages is not possible 
(since any language equal in expressive power to first-order logic is undecidable). 

Auseful way to think about execution is as if the agent is playing a game against 
the environment. The specification represents the goal of the game: the agent must 
keep the goal satisfied, while the environment tries to prevent the agent from 
doing so. The game is played by agent and environment talung turns to build a 
little more of the model. If the specification ever becomes false in the (partial) 
model, then the agent loses. In real reactive systems, the game is never over: 
the agent must continue to play forever. Of course, some specifications (logically 
inconsistent ones) cannot ever be satisfied. A winning strategy for building models 
from (satisfiable) agent specifications in the presence of arbitrary input from the 
environment is an execution algorithm for the logic. 

Automatic synthesis from agent specifications 

An alternative to direct execution is compilation. In this scheme, we take our 
abstract specification, and transform it into a concrete computational model via 
some automatic synthesis process. The main perceived advantages of compila- 
tion over direct execution are in run-time efficiency. Direct execution of an agent 
specification, as in Concurrent MetateM, above, typically involves manipulating a 
symbolic representation of the specification at run time. This manipulation gen- 
erally corresponds to reasoning of some form, which is computationally costly 
(and, in many cases, simply impracticable for systems that must operate in any- 
thmg like real time). In contrast, compilation approaches aim to reduce abstract 
symbolic specifications to a much simpler computational model, which requires 
no symbolic representation. The 'reasoning' work is thus done offline, at compile- 
time; execution of the compiled system can then be done with little or no run-time 
symbolic reasoning. As a result, execution is much faster. The advantages of com- 
pilation over direct execution are thus those of compilation over interpretation in 
mainstream programming. 

Compilation approaches usually depend upon the close relationship between 
models for temporal/modal logic (which are typically labelled graphs of some 
kind) and automata-like finite-state machines. Crudely, the idea is to take a spec- 
ification p, and do a constructive proof of the implementability of p, wherein we 
show that the specification is satisfiable by systematically attempting to build a 
model for it. If the construction process succeeds, then the specification is satisfi- 
able, and we have a model to prove it. Otherwise, the specification is unsatisfiable. 
If we have a model, then we 'read off' the automaton that implements q;, from its 
corresponding model. The most common approach to constructive proof is the 
semantic tableaux method of Smullyan (1968). 

In mainstream computer science, the compilation approach to automatic pro- 
gram synthesis has been investigated by a number of researchers. Perhaps the 
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closest to our view is the work of Pnueli and Rosner (1989) on the automatic syn- 
thesis of reactive systems from branching time temporal logic specifications. The 
goal of their work is to generate reactive systems, whlch share many of the prop- 
erties of our agents (the main difference being that reactive systems are not gen- 
erally required to be capable of rational decision making in the way we described 
above). To do this, they specify a reactive system in terms of a first-order branch- 
ing time temporal logic formula Vx 3 y Acp(x, y ) :  the predicate cp characterizes 
the relationship between inputs to the system (x) and outputs (y). Inputs may 
be thought of as sequences of environment states, and outputs as corresponding 
sequences of actions. The A is the universal path quantifier. The specification is 
intended to express the fact that in all possible futures, the desired relationship 
cp holds between the inputs to the system, x, and its outputs, y. The synthesis 
process itself is rather complex: it involves generating a Rabin tree automaton, 
and then checking t h s  automaton for emptiness. Pnueli and Rosner show that 
the time complexity of the synthesis process is double exponential in the size of 
the specification, i.e. 0 ( 2 ~ " "  ), where c is a constant and n = lcp 1 is the size of 
the specification cp. The size of the synthesized program (the number of states it 
contains) is of the same complexity. 

The Pnueli-Rosner technique is rather similar to (and in fact depends upon) 
techniques developed by Wolper, Vardi, and colleagues for synthesizing Biichi 
automata from linear temporal logic specifications (Vardi and Wolper, 1994). 
Buchi automata are those that can recognize w-regular expressions: regular 
expressions that may contain infinite repetition. A standard result in temporal 
logic theory is that a formula cp of linear time temporal logic is satisfiable if and 
only if there exists a Biichi automaton that accepts just the sequences that satisfy 
9. Intuitively, this is because the sequences over whch linear time temporal logic 
is interpreted can be viewed as w-regular expressions. This result yields a deci- 
sion procedure for linear time temporal logic: to determine whether a formula cp 
is satisfiable, construct an automaton that accepts just the (infinite) sequences 
that correspond to models of cp; if the set of such sequences is empty, then cp is 
unsatisfiable. 

Similar automatic synthesis techniques have also been deployed to develop con- 
current system skeletons from temporal logic specifications. Manna and Wolper 
present an algorithm that takes as input a linear time temporal logic specification 
of the synchronization part of a concurrent system, and generates as output a pro- 
gram skeleton (based upon Hoare's CSP formalism (Hoare, 1978)) that realizes the 
specification (Manna and Wolper, 1984). The idea is that the functionality of a con- 
current system can generally be divided into two parts: a functional part, which 
actually performs the required computation in the program, and a synchroniza- 
tion part, which ensures that the system components cooperate in the correct 
way. For example, the synchronization part will be responsible for any mutual 
exclusion that is required. The synthesis algorithm (like the synthesis algorithm 
for Biichi automata, above) is based on Wolper's tableau proof method for tem- 
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poral logic (Wolper, 1985). Very similar work is reported by Clarke and Emerson 
(1981): they synthesize synchronization skeletons from branching time temporal 
logic (CTL) specifications. 

Perhaps the best-known example of t h s  approach to agent development is the 
situated automata paradigm of Rosenschein and Kaelbling (1996), discussed in 
Chapter 5. 

12.8.3 Verification 

Once we have developed a concrete system, we need to show that t h s  system is 
correct with respect to our original specification. This process is known as verifi- 
cation, and it is particularly important if we have introduced any informality into 
the development process. For example, any manual refinement, done without a 
formal proof of refinement correctness, creates the possibility of a faulty transfor- 
mation from specification to implementation. Verification is the process of con- 
vincing ourselves that the transformation was sound. We can divide approaches 
to the verification of systems into two broad classes: (1) axiomatic, and (2) seman- 
tic (model checlung). In the subsections that follow, we shall look at the way in 
which these two approaches have evidenced themselves in agent-based systems. 

Deductive verification 

Axiomatic approaches to program verification were the first to enter the main- 
stream of computer science, with the work of Hoare in the late 1960s (Hoare, 
1969). Axiomatic verification requires that we can take our concrete program, 
and from this program systematically derive a logical theory that represents the 
behaviour of the program. Call this the program theory. If the program theory 
is expressed in the same logical language as the original specification, then veri- 
fication reduces to a proof problem: show that the specification is a theorem of 
(equivalently, is a logical consequence of) the program theory. 

The development of a program theory is made feasible by axiomatizing the 
programming language in which the system is implemented. For example, Hoare 
logic gives us more or less an axiom for every statement type in a simple Pascal- 
like language. Once given the axiomatization, the program theory can be derived 
from the program text in a systematic way. 

Perhaps the most relevant work from mainstream computer science is the 
specification and verification of reactive systems using temporal logic, in the 
way pioneered by Pnueli, Manna, and colleagues (see, for example, Manna and 
Pnueli, 1995). The idea is that the computations of reactive systems are infinite 
sequences, which correspond to models for linear temporal logic. Temporal logic 
can be used both to develop a system specification, and to axiomatize a program- 
ming language. Ths  axiomatization can then be used to systematically derive 
the theory of a program from the program text. Both the specification and the 



Formal Methods in Agent-Oriented Sofrware Engineering 295 

program theory will then be encoded in temporal logic, and verification hence 
becomes a proof problem in temporal logic. 

Comparatively little work has been carried out within the agent-based systems 
community on axiomatizing multiagent environments. I shall review just one 
approach. 

In Wooldridge (1992), an axiomatic approach to the verification of multiagent 
systems was proposed. Essentially, the idea was to use a temporal belief logic to 
axiomatize the properties of two multiagent programming languages. Given such 
an axiomatization, a program theory representing the properties of the system 
could be systematically derived in the way indicated above. 

A temporal belief logic was used for two reasons. First, a temporal compo- 
nent was required because, as we observed above, we need to capture the ongo- 
ing behaviour of a multiagent system. A belief component was used because the 
agents we wish to verify are each symbolic A1 systems in their own right. That is, 
each agent is a symbolic reasoning system, which includes a representation of its 
environment and desired behaviour. A belief component in the logic allows us to 
capture the symbolic representations present within each agent. 

The two multiagent programming languages that were axiomatized in the tem- 
poral belief logic were Shoham's AGENTO (Shoham, 1993), and Fisher's Concurrent 
MetateM (see above). The basic approach was as follows. 

(1) First, a simple abstract model was developed of symbolic A1 agents. This 
model captures the fact that agents are symbolic reasoning systems, capable 
of communication. The model gives an account of how agents might change 
state, and what a computation of such a system might look like. 

(2)  The histories traced out in the execution of such a system were used as the 
semantic basis for a temporal belief logic. This logic allows us to express 
properties of agents modelled at stage (I). 

(3)  The temporal belief logic was used to axiomatize the properties of a multi- 
agent programming language. Ths  axiomatization was then used to develop 
the program theory of a multiagent system. 

(4) The proof theory of the temporal belief logic was used to verify properties 
of the system (cf. Fagin et al., 1995). 

Note that this approach relies on the operation of agents being sufficiently sim- 
ple that their properties can be axiomatized in the logic. It works for Shoham's 
AGENTO and Fisher's Concurrent MetateM largely because these languages have 
a simple semantics, closely related to rule-based systems, which in turn have a 
simple logical semantics. For more complex agents, an axiomatization is not so 
straightforward. Also, capturing the semantics of concurrent execution of agents 
is not easy (it is, of course, an area of ongoing research in computer science gen- 
erally). 
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Model checking 
Ultimately, axiomatic verification reduces to a proof problem. Axiomatic ap- 
proaches to verification are thus inherently limited by the difficulty of this proof 
problem. Proofs are hard enough, even in classical logic; the addition of temporal 
and modal connectives to a logic makes the problem considerably harder. For this 
reason, more efficient approaches to verification have been sought. One particu- 
larly successful approach is that of model checking (Clarke et al., 2000). As the 
name suggests, whereas axiomatic approaches generally rely on syntactic proof, 
model-checking approaches are based on the semantics of the specification lan- 
guage. 

The model-checking problem, in abstract, is quite simple: given a formula cp 
of language L, and a model M  for L, determine whether or not cp is valid in M ,  
i.e. whether or not M  b~ cp. Verification by model checlung has been studied in 
connection with temporal logic (Clarke et al., 2000). The technique once again 
relies upon the close relationship between models for temporal logic and finite- 
state machines. Suppose that cp is the specification for some system, and rr is a 
program that claims to implement cp. Then, to determine whether or not 7-r truly 
implements q, we proceed as follows: 

take rr, and from it generate a model M ,  that corresponds to n, in the sense 
that M ,  encodes all the possible computations of rr; 

determine whether or not M ,  b cp, i.e. whether the specification formula cp 
is valid in M,; the program n. satisfies the specification q just in case the 
answer is 'yes'. 

The main advantage of model checking over axiomatic verification is in complex- 
ity: model checking using the branching time temporal logic CTL (Clarke and Emer- 
son, 198 1) can be done in time 0 ( I q I x I M  I ), where I q I is the size of the formula to 
be checked, and I M  I is the size of the model against which cp is to be checked - the 
number of states it contains. 

In Rao and Georgeff (1993), the authors present an algorithm for model- 
checking BDI systems. More precisely, they give an algorithm for taking a logical 
model for their (propositional) BDI logic, and a formula of the language, and deter- 
mining whether the formula is valid in the model. The technique is closely based 
on model-checking algorithms for normal modal logics (Clarke et al., 2000). They 
show that despite the inclusion of three extra modalities (for beliefs, desires, and 
intentions) into the CTL branching time framework, the algorithm is still quite 
efficient, running in polynomial time. So the second step of the two-stage model- 
checking process described above can still be done efficiently. Similar algorithms 
have been reported for BDI-like logics in Benerecetti et al. (1999). 

The main problem with model-checking approaches for BDI is that it is not clear 
how the first step might be realized for BDI logics. Where does the logical model 
characterizing an agent actually come from? Can it be derived from an arbitrary 
program rr, as in mainstream computer science? To do this, we would need to 
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take a program implemented in, say, Pascal, and from it derive the belief-, desire-, 
and intention-accessibility relations that are used to give a semantics to the BDI 
component of the logic. Because, as we noted earlier, there is no clear relationship 
between the BDI logic and the concrete computational models used to implement 
agents, it is not clear how such a model could be derived. 

Notes and Further Reading 
The definitive modern reference to modal logic is Blackburn et al. (2001). Writ- 
ten by three of the best people in the field, this is an astonishingly thorough 
and authoritative work, unlikely to be surpassed for some time to come. The 
only caveat is that it is emphatically not for the mathematically faint-hearted. For 
an older (but very readable) introduction to modal logic, see Chellas (1980); an 
even older, though more wide-ranging introduction, may be found in Hughes and 
Cresswell (1968). 

As for the use of modal logics to model knowledge and belief, the definitive 
work is Fagin et al. (1995). This book, written by the 'gang of four', is a joy to read. 
Clear, detailed, and rigorous, it is (for my money) one of the most important books 
in the multiagent systems canon. Another useful book, which has perhaps been 
overshadowed slightly by Fagin et al. (1995) is Meyer and van der Hoek (1995). 

Another useful reference to logics of knowledge and belief is Halpern and 
Moses (1992), which includes complexity results and proof procedures. Related 
work on modelling knowledge has been done by the distributed systems com- 
munity, who give the worlds in possible-worlds semantics a precise interpreta- 
tion; for an introduction and further references, see Halpern (1987) and Fagin 
et al. (1992). Overviews of formalisms for modelling belief and knowledge 
may be found in Halpern (1986), Konolige (1986), Reichgelt (1989), Wooldridge 
(1992) and Fagin et al. (1995). A variant on the possible-worlds framework, 
called the recursive modelling method, is described in Gmytrasiewicz and Durfee 
(1993). Situation semantics, developed in the early 1980s, represent a fundamen- 
tally new approach to modelling the world and cognitive systems (Barwise and 
Perry, 1983; Devlin, 1991). 

Logics which integrate time with mental states are discussed in Kraus and Leh- 
mann (1988), Halpern and Vardi (1989), Wooldridge and Fisher (1994), Wooldridge 
et al. (1998) and Dixon et a1. (1998); the last of these presents a tableau-based proof 
method for a temporal belief logic. Two other important references for temporal 
aspects are Shoham (1988) and Shoham (1989). Thomas developed some logics 
for representing agent theories as part of her framework for agent programming 
languages; see Thomas et  al. (1991) and Thomas (1993). For an introduction to 
temporal logics and related topics, see Goldblatt (1987) and Emerson (1990). 

An informal discussion of intention may be found in Bratman (1987), or more 
briefly in Bratman (1990). Further work on modelling intention may be found in 
Grosz and Sidner (1990), Sadek (1992), Goldman and Lang (1991), Konolige and 
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Pollack (1993), Bell (1995) and Dongha (1995). A critique of Cohen and Levesque's 
theory of intention is presented in Singh (1992). Related works, focusing less on 
single-agent attitudes, and more on social aspects, are Levesque et 01. (1990), Jen- 
nings (1 993a), Wooldridge (1 994) and Wooldridge and Jennings (1 994). 

Although I have not discussed formalisms for reasoning about action here, we 
suggested above that an agent logic would need to incorporate some mechanism 
for representing agent's actions. Our reason for avoiding the topic is simply that 
the field is so big, it deserves a whole review in its own right. Good starting points 
for A1 treatments of action are Allen (1984) and Allen et al. (1990, 1991). Other 
treatments of action in agent logics are based on formalisms borrowed from main- 
stream computer science, notably dynamic logic (originally developed to reason 
about computer programs) (Harel, 1984; Harel et al., 2000). The logic of seeing 
to it that has been discussed in the formal philosophy literature, but has yet 
to impact on multiagent systems (Belnap and Perloff, 1988; Perloff, 1991; Bel- 
nap, 1991; Segerberg, 1989). 

See Wooldridge (1997) for a discussion on the possibility of using logic to engi- 
neer agent-based systems. Since this article was published, several other authors 
have proposed the use of agents in software engineering (see, for example, Jen- 
nings, 1999). 

With respect to the possibility of directly executing agent specifications, a num- 
ber of problems suggest themselves. The first is that of finding a concrete com- 
putational interpretation for the agent specification language in question. To 
see what we mean by ths ,  consider models for the agent specification language 
in Concurrent MetateM. These are very simple: essentially just linear discrete 
sequences of states. Temporal logic is (among other things) simply a language 
for expressing constraints that must hold between successive states. Execution 
in Concurrent MetateM is thus a process of generating constraints as past-time 
antecedents are satisfied, and then trying to build a next state that satisfies these 
constraints. Constraints are expressed in temporal logic, which implies that they 
may only be in certain, regular forms. Because of ths ,  it is possible to devise an 
algorithm that is guaranteed to build a next state if it is possible to do so. Such an 
algorithm is described in Barringer et al. (1989). The agent specification language 
upon which Concurrent MetateM is based thus has a concrete computational 
model, and a comparatively simple execution algorithm. Contrast t h s  state of 
affairs with languages like that of Cohen and Levesque (1990a), where we have not 
only a temporal dimension to the logic, but also modalities for referring to beliefs, 
desires, and so on. In general, models for these logics have ungrounded semantics. 
That is, the semantic structures that underpin these logics (typically accessibil- 
ity relations for each of the modal operators) have no concrete computational 
interpretation. As a result, it is not clear how such agent specification languages 
might be executed. Another obvious problem is that execution techniques based 
on theorem-proving are inherently limited when applied to sufficiently expressive 
(first-order) languages, as firs t-order logic is undecidable. However, complexity is 



Formal Methods in Agent-Oriented Sofrware Engineering 2 99 

a problem even in the propositional case. For 'vanilla' propositional logic, the 
decision problem for satisfiability is NP-complete (Fagin et al., 1995, p. 72); richer 
logics, or course, have more complex decision problems. 

Despite these problems, the undoubted attractions of direct execution have led 
to a number of attempts to devise executable logic-based agent languages. Rao 
proposed an executable subset of BDI logic in his AgentSpeak(L) language (Rao, 
1996a). Building on this work, Hindriks and colleagues developed the 3APL agent 
programming language (Hindriks et al., 1998; Hindriks et al., 1999). Lesperance, 
Reiter, Levesque, and colleagues developed the Golog language throughout the lat- 
ter half of the 1990s as an executable subset of the situation calculus (Lesperance 
et al., 1996; Levesque et al., 1996). Fagin and colleagues have proposed knowledge- 
based programs as a paradigm for executing logical formulae which contain epis- 
temic modalities (Fagin et al., 1995, 1997). Although considerable work has been 
carried out on the properties of knowledge-based programs, comparatively lit- 
tle research to date has addressed the problem of how such programs might be 
actually executed. 

Turning to automatic synthesis, the techniques described above have been 
developed primarily for propositional specification languages. If we attempt to 
extend these techniques to more expressive, first-order specification languages, 
then we again find ourselves coming up against the undecidability of quanti- 
fied logic. Even in the propositional case, the theoretical complexity of theorem- 
proving for modal and temporal logics is likely to limit the effectiveness of compi- 
lation techniques: given an agent specification of size 1000, a synthesis algorithm 
that runs in exponential time when used offline is no more useful than an execu- 
tion algorithm that runs in exponential time on-line. Kupferman and Vardi (1997) 
is a recent article on automatic synthesis from temporal logic specifications. 

Another problem with respect to synthesis techniques is that they typically 
result in finite-state, automata-like machnes, which are less powerful than Turing 
machines. In particular, the systems generated by the processes outlined above 
cannot modify their behaviour at run-time. In short, they cannot learn. Whle for 
many applications this is acceptable - even desirable - for equally many others, it 
is not. In expert assistant agents, of the type described in Maes (1994a), learning 
is pretty much the raison dJe^tre. Attempts to address this issue are described in 
Kaelbling (1 993). 

Turning to verification, axiomatic approaches suffer from two main problems. 
First, the temporal verification of reactive systems relies upon a simple model of 
concurrency, where the actions that programs perform are assumed to be atomic. 
We cannot make this assumption when we move from programs to agents. The 
actions we t h n k  of agents as performing will generally be much more coarse- 
grained. As a result, we need a more realistic model of concurrency. One possibil- 
ity, investigated in Wooldridge (1995), is to model agent execution cycles as inter- 
vals over the real numbers, in the style of the temporal logic of reals (Barringer 
et al., 1986). The second problem is the difficulty of the proof problem for agent 
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specification languages. The theoretical complexity of proof for many of these 
logics is quite daunting. 

Hindriks and colleagues have used Plotlun's structured operational semantics 
to axiomatize their 3APL language (Hindriks et al., 1998, 1999). 

With respect to model-checking approaches, the main problem, as we indicated 
above, is again the issue of ungrounded semantics for agent specification lan- 
guages. If we cannot take an arbitrary program and say, for t h s  program, what its 
beliefs, desires, and intentions are, then it is not clear how we might verify that 
this program satisfied a specification expressed in terms of such constructs. 

Formalisms for reasoning about agents have come a long way since Hintikka's 
pioneering work on logics of knowledge and belief (Hintikka, 1962). Within AI, per- 
haps the main emphasis of subsequent work has been on attempting to develop 
formalisms that capture the relationship between the various elements that com- 
prise an agent's cognitive state; the paradigm example of this work is the well- 
known theory of intention developed by Cohen and Levesque (1990a). Despite the 
very real progress that has been made, there still remain many fairly fundamental 
problems and issues outstanding. 

On a technical level, we can identify a number of issues that remain open. First, 
the problems associated with possible-worlds semantics (notably, logical omni- 
science) cannot be regarded as solved. As we observed above, possible worlds 
remain the semantics of choice for many researchers, and yet they do not in gen- 
eral represent a realistic model of agents with limited resources - and of course 
all real agents are resource-bounded. One solution is to ground possible-worlds 
semantics, giving them a precise interpretation in terms of the world. Ths  was 
the approach taken in Rosenschein and Kaelbling's situated automata paradigm, 
and can be very successful. However, it is not clear how such a grounding could 
be given to pro-attitudes such as desires or intentions (although some attempts 
have been made (Singh, 1990a; Wooldridge, 1992; Werner, 1990)). There is obvi- 
ously much work remaining to be done on formalisms for knowledge and belief, 
in particular in the area of modelling resource-bounded reasoners. 

With respect to logics that combine different attitudes, perhaps the most impor- 
tant problems still outstanding relate to intention. In particular, the relationship 
between intention and action has not been formally represented in a satisfactory 
way. The problem seems to be that having an intention to act makes it more likely 
that an agent will act, but does not generally guarantee it. While it seems straight- 
forward to build systems that appear to have intentions (Wooldridge, 1995), it 
seems much harder to capture this relationship formally. Other problems that 
have not yet really been addressed in the literature include the management 
of multiple, possibly conflicting intentions, and the formation, scheduling, and 
reconsideration of intentions. 

The question of exactly which combination of attitudes is required to charac- 
terize an agent is also the subject of some debate. As we observed above, a cur- 
rently popular approach is to use a combination of beliefs, desires, and intentions 
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(hence BDI architectures (Rao and Georgeff, 1991b)). However, there are alterna- 
tives: Shoham, for example, suggests that the notion of choice is more funda- 
mental (Shoham, 1990). Comparatively little work has yet been done on formally 
comparing the suitability of these various combinations. One might draw a par- 
allel with the use of temporal logics in mainstream computer science, where the 
expressiveness of specification languages is by now a well-understood research 
area (Emerson and Halpern, 1986). Perhaps the obvious requirement for the short 
term is experimentation with real agent specifications, in order to gain a better 
understanding of the relative merits of different formalisms. 

More generally, the kinds of logics used in agent theory tend to be rather elabo- 
rate, typically containing many modalities which interact with each other in subtle 
ways. Very little work has yet been carried out on the theory underlying such logics 
(perhaps the only notable exception is Catach (1988)). Until the general principles 
and limitations of such multi-modal logics become understood, we might expect 
that progress with using such logics will be slow. One area in which work is likely 
to be done in the near future is theorem-proving techniques for multi-modal log- 
ics. 

Finally, there is often some confusion about the role played by a theory of 
agency. The view we take is that such theories represent specifications for agents. 
The advantage of treating agent theories as specifications, and agent logics as 
specification languages, is that the problems and issues we then face are familiar 
from the discipline of software engineering. How useful or expressive is the spec- 
ification language? How concise are agent specifications? How does one refine or 
otherwise transform a specification into an implementation? However, the view 
of agent theories as specifications is not shared by all researchers. Some intend 
their agent theories to be used as knowledge representation formalisms, which 
raises the difficult problem of algorithms to reason with such theories. Still oth- 
ers intend their work to formalize a concept of interest in cognitive science or 
philosophy (this is, of course, what Hintikka intended in his early work on logics 
of knowledge of belief). What is clear is that it is important to be precise about 
the role one expects an agent theory to play. 

Class reading: Rao and Georgeff (1992). This paper is not too formal, but is 
focused on the issue of when a particular agent implementation can be said to 
implement a particular theory of agency. 
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Exercises 
(1)  [Level 1.1 

Consider the attitudes of believing, desiring, intending, hoping, and fearing. For each 
of the following. 

(a) Discuss the appropriateness of the axioms K, T, D, 4, and 5 for these attitudes. 

(b) Discuss the interrelationships between these attitudes. For example, if Biq means 
'i believes q' and Iiq means 'i intends q ' ,  then should liq 3 Biq hold? What 
about Iiq 3 B i l q  or lip 3 1 B i - l ~  and so on? Systematically draw up a table of 
these possible relationships, and informally argue for/against them - discuss the 
circumstances under which they might be acceptable. 

( c )  Add temporal modalities into the framework (as in Cohen and Levesque's formal- 
ism), and carry out the same exercise. 

(2) [Level 2.1 

Formally, prove the correspondences in Table 12.1 

(3 )  [Level 3.1 

I argued that formalisms such as Cohen and Levesque's might be used as specification 
languages. Using their formalism (or that in Wooldridge (2000b)), develop a specification 
of a system with which you are familiar (in case you are stuck, look at the ADEPT system 
in the preceding chapter). 
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A History Lesson 

We often naively assume that technologies and academic disciplines somehow 
spontaneously emerge from nowhere, fully formed and well-defined. Of course, 
nothing could be further from the truth. They tend to emerge in a rather haphaz- 
ard fashion, and are shaped as much as anything by the personalities, prejudices, 
and fashions of the time. The multiagent systems field is no exception to this 
rule. Indeed, the number of other disciplines that have contributed to the multi- 
agent systems field is so large that the story is even murkier than is normally the 
case. In this section, therefore, I will attempt to give a potted history of the field, 
identifying some of the milestones and key players. 

Please note: more than any other part of the book, t h s  appendix is 
subjective. The interpretation of events is my own, and as I was not 
personally present for many of the events described, I have sometimes 
had to construct a (serni)coherent history from the literature. It follows 
that not everyone will agree with my version of events. I welcome com- 
ments and suggestions, whch I will endeavour to take into account if 
there is ever a second edition. 

A history of intelligent agent research 

We could spend a month debating exactly when the multiagent systems field was 
born; as with the computing and artificial intelligence fields, we could identify 
many agent related ideas that emerged prior to the 20th century. But we can say 
with some certainty that the agents field (although not necessarily the mukiagent 
systems field) was alive following the now famous 1956 Dartmouth workshop 
at which John McCarthy coined the term 'artificial intelligence'. The notion of an 
'agent' is clearly evident in the early A1 literature. For example, consider the Turing 
test, put forward by Alan Turing as a way of settling the argument about whether 
machines could ever be considered to be intelligent. The idea of the test is that a 
person interrogates some entity via a monitor. The person is free to put forward 
any questions or statements whatsoever, and after five minutes is required to 
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decide whether or not the entity at the other end is either another person or 
a machine. If such a test cannot distinguish a particular program from a person, 
then, Turing argued, the program must be considered intelligent to all intents and 
purposes. Clearly, we can think of the program at the other end of the teletype as 
an agent - the program is required to respond, in real time, to statements made 
by the person, and the rules of the test prohibit interference with the program. It 
exhbits some autonomy, in other words. 

Although the idea of an agent was clearly present in the early days of AI, there 
was comparatively little development in the idea of agents as holistic entities 
(i.e. integrated systems capable of independent autonomous action) until the mid- 
1980s; below, we will see why t h s  happened. 

Between about 1969 and 1985, research into systems capable of independent 
action was carried out primarily within the AI planning community, and was dom- 
inated by what I will call the 'reasoning and planning' paradigm. A1 planning (see 
Chapter 3) is essentially automatic programming: a planning algorithm takes as 
input a description of a goal to be achieved, a description of how the world cur- 
rently is, and a description of a number of available actions and their effects. The 
algorithm then outputs a plan - essentially, a program - whch describes how the 
available actions can be executed so as to bring about the desired goal. The best- 
known, and most influential, planning algorithm was the STRIPS system (Fikes 
and Nilsson, 1971). STRIPS was so influential for several reasons. First, it devel- 
oped a particular notation for describing actions and their effects that remains 
to this day the foundation for most action representation notations. Second, it 
emphasized the use of formal, logic-based notations for representing both the 
properties of the world and the actions available. Finally, STRIPS was actually 
used in an autonomous robot called Shakey at Stanford Research Institute. 

The period between the development of STRIPS and the mid-1980s might be 
thought of as the 'classic' period in AI planning. There was a great deal of progress 
in developing planning algorithms, and understanding the requirements for rep- 
resentation formalisms for the world and actions. At the risk of over generalizing, 
this work can be characterized by two features, both of which were pioneered in 
the STRIPS system: 

the use of explicit, symbolic representations of the world; 

an increasing emphasis on the use of formal, typically logic-based represen- 
tations, and, associated with this work, an increasing emphasis on deductive 
decision malung (i.e. decision making as logical proof). 

Rodney Brooks recalls the title of a seminar series in the early 1980s: From Pixels 
to Predicates, whch for him neatly summed up the spirit of the age (Brooks, 1999, 
p. ix). By the mid-1980s, however, some researchers were having doubts about the 
assumptions on which this work was based, and were beginning to voice concerns 
about the direction in which research on the design of agents was going. 
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1 noted above that the idea of 'integrated' or 'whole' agents, as opposed to 
agent behaviours (such as learning and planning) did not greatly evolve between 
the emergence of AI and the mid-1980s. The reason for this lack of progress is 
as follows. In the early days of AI, there was a great deal of scepticism about 
computers being able to exhibit 'intelligent' behaviour. A common form of argu- 
ment was that 'computers will never be able to X', where X = solve problems, 
learn, communicate in natural language, and so on (see Russell and Norvig (1995, 
p. 823) for a discussion). A natural response to these kinds of arguments by those 
interested in AI was to build systems that could exhibit behaviour X. These early 
systems that could plan, learn, communicate in natural language, and so on, led 
to the emergence of a number of sub-disciplines in AI: the planning, learning, and 
natural language communication communities, for example, all have their own 
conferences, workshops, and literature. And all these communities evolved from 
the groundbreaking work done on these types of behaviour in the early days of 
AI. 

But critically, there were few attempts to actually integrate these lunds of 
behaviours into whole systems - agents. Instead, researchers focused on building 
better planning algorithms, better learning algorithms, and so on. By and large, 
they did not address the problem of how such algorithms might be placed in 
the context of a 'whole' agent. As a consequence, by the mid-1980s (as we will 
see below), significant progress had been made in each of these component dis- 
ciplines, but there was a dearth of experience with respect to building agents 
from these components. Worse, some researchers began to argue that, because 
no consideration had been given to how these components might be integrated 
to build an agent, the component technologies had evolved in such a way that the 
integration and use of these components in realistic systems was, for all practical 
purposes, impossible: most component techniques had been evaluated on prob- 
lems that were some distance from being as complex as real-world problems. 

The upshot of all this was that, some researchers argued, 'vertical decomposi- 
tion' of an agent into the different functional components was based on the flawed 
assumption that the components could be easily integrated to produce an agent. 

In addition, it was argued that 'Artificial intelligence research has foundered 
on the issue of representation' (Brooks, 199lb)l. The problems associated with 
building an agent that decides what to do by manipulating a symbolic (particu- 
larly logic-based) representation of the world were simply too deep to make the 
approach viable. The conclusion that many researchers came to was that a com- 
pletely new approach was required. 

The result was an entirely new approach to building agents, variously referred 
to as 'behavioural AI', 'reactive AI', or simply 'the new AI'. Rodney Brooks was 
perhaps the most vocal member of t h s  community, and came to be seen as the 
champion of the movement. The workers in t h s  area were not united by any com- 

'TO many researchers who do 'good old fashioned AI', the title of this paper - Intelligence without 
representation - is provocative, if not actually heretical. 
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mon approaches, but certain themes did recur in this work. Recurring themes were 
the rejection of architectures based on symbolic representations, an emphasis on 
a closer coupling between the agent's environment and the action it performs, 
and the idea that intelligent behaviour can be seen to emerge from the interaction 
of a number of much simpler behaviours. 

The term 'furore' might reasonably be used to describe the response from the 
symbolic and logical reasoning communities to the emergence of behavioural AI. 
Some researchers seemed to feel that behavioural AI was a direct challenge to the 
beliefs and assumptions that had shaped their entire academic careers. Not sur- 
prisingly, they were not predisposed simply to abandon their ideas and research 
programs. 

I do not believe there was (or is) a clear cut 'right' or 'wrong' in this debate. 
With the benefit of hindsight, it seems clear that much symbolic A1 research had 
wandered into the realms of abstract theory, and did not connect in any realistic 
way with the reality of building and deploymg agents in realistic scenarios. It also 
seems clear that the decomposition of A1 into components such as planning and 
learning, without any emphasis on synthesizing these components into an inte- 
grated architecture, was perhaps not the best strategy for A1 as a discipline. But 
it also seems that some claims made by members of the behavioural community 
were extreme, and in many cases suffered from the over-optimism that A1 itself 
suffered from in its early days. 

The practical implications of all this were threefold. 

The first was that the behavioural A1 community to a certain extent split 
off from the mainstream AI community. Taking inspiration from biological 
metaphors, many of the researchers in behavioural AI began working in a 
community that is today known as 'artificial life' (alife). 

The second was that mainstream A1 began to recognize the importance of 
integrating the components of intelligent behaviour into agents, and, from 
the mid-1980s to the present day, the area of agent archtectures has grown 
steadily in importance. 

The third was that within AI, the value of testing and deploymg agents in 
realistic scenarios (as opposed to simple, contrived, obviously unrealistic 
scenarios) was recognized. This led to the emergence of such scenarios as 
the RoboCup robotic soccer challenge, in which the aim is to build agents 
that can actually play a game of soccer against a team of robotic opponents 
(RoboCup, 2001). 

So, by the mid-1980s, the area of agent architectures was becoming established 
as a specific research area within AI itself. 

Most researchers in the agent community accept that neither a purely logicist 
or reasoning approach nor a purely behavioural approach is the best route to 
building agents capable of intelligent autonomous action. Intelligent autonomous 
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action seems to imply the capability for both reasoning and reactive behaviour. 
As Innes Ferguson succinctly put it (Ferguson, 1992~1, p. 31): 

It is both desirable and feasible to combine suitably designed delibera- 
tive and non-deliberative control functions to obtain effective, robust, 
and flexible behaviour from autonomous, task-achieving agents oper- 
ating in complex environments. 

This recognition led to the development of a range of hybrid architectures, which 
attempt to combine elements of both behavioural and deliberative systems. At 
the time of writing, hybrid approaches dominate in the literature. 

A history of multiagent systems research 
Research in multiagent systems progressed quite independently of research into 
individual agents until about the early 1990s. It is interesting to note that although 
the notion of an agent as an isolated system was evident in the early A1 literature, 
the notion of a multiagent system did not begin to gain prominence until the 
early 1980s. Some attention was certainly given to interaction between artificial 
agents and humans, in the form of research on natural language understanding 
and generation. (The Turing test, after all, is predicated on the development of 
other computer systems with such abilities.) But almost no consideration was 
given to interactions among artificial agents. 

To understand how multiagent systems research emerged, it is necessary to go 
back to the work of Alan Newel1 and Herb Simon on production systems (Russell 
and Norvig, 1995, pp. 297, 298). A production system is essentially a collection of 
'pattern - action' rules, together with a working memory of facts. The produc- 
tion system works by forward chaining through the rules: continually matching 
the left-hand side of rules against worlung memory, and performing the action of 
a rule that fires. The action may involve adding or removing facts from worlung 
memory. A key problem with standard production systems is that the system's 
knowledge is unstructured: all the rules are collected together into a single amor- 
phous set. This can make it hard to understand and structure the behaviour of the 
production system. The need for structured knowledge led to the earliest work 
that was recognizably multiagent systems: bIackboard systems (Engelmore and 
Morgan, 1988). A blackboard system is characterized by two main attributes (see 
Figure A. 1): 

a collection of independent entities known as knowledge sources, each of 
which has some specialized knowledge, typically encoded in the form of 
rules; and 

= a shared data structure known as a blackboard, which knowledge sources 
use to communicate. 

Knowledge sources in blackboard systems are capable of reading and writing to 
the blackboard data structure, and problem solving proceeds by the knowledge 
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Figure A.l  A blackboard architecture: a number of knowledge sources encapsulate 
knowledge about a problem, and communicate by reading and writing on a shared data 
structure known as a blackboard. 

sources each monitoring the blackboard and writing to it when they can contribute 
partial problem solutions. The blackboard metaphor was neatly described by Alan 
Newel1 long before the blackboard model became widely known: 

Metaphorically we can think of a set of workers, all loolung at the same 
blackboard: each is able to read everything that is on it, and to judge 
when he has something worthwhile to add to it. This conception is.. .a 
set of demons, each independently looking at the total situation and 
shrieking in proportion to what they see fits their natures 

(Newell, 1962) 

(quoted from Engelmore and Morgan (1988, p. 16)). 

The first, and probably best-known, blackboard system was the Hearsay system 
for speech understanding, developed in the early 1970s under the supervision of 
Reddy et al. (1973). One of Reddy's co-workers on the Hearsay project was Vic- 
tor ('Vic') Lesser, who moved to the University of Massachusetts at Amherst in 
1977. Lesser had worked on multiprocessing computer systems in the 1960s, 
and was well aware of the potential value of parallelism. He recognized that the 
blackboard model, with its multiple knowledge sources each contributing partial 
solutions to the overall problem, provided a natural metaphor for problem solving 
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that exploited parallelism (Fennel1 and Lesser, 1977). But the blackboard model is 
essentially a shared data structure architecture; in order for knowledge sources 
to communicate in a classical blackboard architecture, they need to write to t h s  
shared data structure, which implies that there can only ever be a single thread of 
control writing to the blackboard at any given time. This limits the parallelism pos- 
sible in the classical blackboard model, as the shared data structure (and the need 
to synchronize access to t h s  data structure) introduces a bottleneck in problem 
solving. The next step was to introduce 'true' parallelism into the architecture, by 
allowing multiple blackboard systems to communicate by message passing: Lesser 
and Erman did this in the late 1970s, still workmg withn the Hearsay problem 
domain of speech understanding (Lesser and Erman, 1980). 

Blackboard systems were highly influential in the early days of multiagent sys- 
tems, but are no longer a major area of research activity. The definitive reference 
is Engelmore and Morgan (1988), and other useful references include Erman et al. 
(1980)' Hayes-Roth (1985) and Corhll et aI. (1987). 

At about the same time as Lesser and colleagues were beginning to build par- 
allel blackboard systems, Doug Lenat proposed the BEINGS model of problem 
solving (Lenat, 1975). T h s  model of problem solving is very similar to the black- 
board model, the metaphor being that of a number of experts cooperating to solve 
problems by aslung and answering questions. The beings in Lenat's system were 
not autonomous agents - they were more closely related to knowledge sources 
in the blackboard model - but the metaphors of cooperation and distribution are 
clearly evident. 

Throughout the 1970s, several other researchers developed prototypical multi- 
agent systems. The first was Carl Hewitt, who proposed the ACTOR model of 
computation. Hewitt obtained h s  PhD from MIT in 1971 for his work on a system 
called PLANNER (Hewitt, 1971). T h s  system made use of data structures called 
schemata, which somewhat resemble the knowledge sources in blackboard archi- 
tectures. After his PhD work, Hewitt was made aware of work on the Smalltalk sys- 
tem underway at Xerox Palo Alto Research Center (Xerox PARC) (Goldberg, 1984). 
Smalltalk is widely recognized as the first real object-oriented programming lan- 
guage. Smalltalk made liberal use of the metaphor of message passing to describe 
how objects communicated with one another2. Takirg inspiration from Smalltalk, 
Hewitt proposed the ACTOR model, in which computation itself is viewed pri- 
marily as message passing. The ACTOR model was described as early as 1973 
(Hewitt, 1973), but the best-known and most widely cited expression of the ACTOR 
model was a 1977 article published in Artificial IntelIigence journal (Hewitt, 1977). 
The ACTOR model was Hewitt's expression of some radical views about the future 
direction of computation, and with the benefit of hindsight, it is remarkable just 
how far ahead of his time Hewitt was. He recognized that the future of comput- 

 he notion of objects communicating by message passing was a key idea in early object-orientcd 
programming systems, but has been somewhat obscured in languages such as C++ and Java. Message 
passing in Smalltalk was essentially method invocation. 
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ing itself was inexorably tied to distributed, open systems (Hewitt, 1985), and that 
traditional models of computation were not well suited for modelling or under- 
standing such distributed computation. The ACTOR paradigm was his attempt to 
develop a model of computation that more accurately reflected the direction in 
which computer science was going. 

An ACTOR is a computational system with the following properties. 

ACTORs are social - they are able to send messages to other ACTORs. 

ACTORs are reactive - they carry out computation in response to a message 
received from another ACTOR. (ACTORs are thus message driven.) 

Intuitively, an actor can be considered as consisting of 

a mail address which names the ACTOR; 

a behaviour, which specifies what the ACTOR will do upon receipt of a mes- 
sage. 

The possible components of an ACTOR'S behaviour are 

sending messages to itself or other ACTORs; 

creating more actors; 

specifying a replacement behaviour. 

Intuitively, the way an ACTOR works is quite simple: 

upon receipt of a message, the message is matched against the ACTOR'S 
behaviour (script); 

upon a match, the corresponding action is executed, which may involve 
sending more messages, creating more ACTORs, or replacing the ACTOR 
by another. 

An example ACTOR, which computes the factorial of its argument, is shown in 
Figure A.2 (from Agha, 1986). Receipt of a message containing a non-zero integer 
n by F a c t o r i  a1 will result in the following behaviour: 

create an ACTOR whose behaviour will be to multiply n by an integer it 
receives and send the reply to the mail address to which the factorial of n 
was to be sent; 

send itself the 'request' to evaluate the factorial of n - 1  and send the value 
to the customer it created. 

The creation of ACTORs in this example mirrors the recursive procedures for 
computing factorials in more conventional programming languages. 

The ACTOR paradigm greatly influenced work on concurrent object languages 
(Agha et al., 1993). Particularly strong communities working on concurrent object 
languages emerged in France (led by Jacques Ferber and colleagues (Ferber and 
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Rec-Factori  a1 w i t h  acquai ntances s e l f  
l e t  communication be an i n t e g e r  n and a customer u 
become Rec-Factori  a1 
i f  n=O 

then 
send [I] t o  customer 

e l  se 
l e t  c=Rec-Customer w i t h  acquaintances n and u 
{send [n-1, mai l  address o f  c] t o  s e l f )  

Rec-Customer w i t h  acquaintances i n t e g e r  n and customer u 
l e t  communication be an i n t e g e r  k 
{send [n * k] t o  u) 

Figure A.2 An ACTOR for computing factorials. 

Carle, 1991)) and Japan (led by Akinora Yonezawa, Mario Tokoro and colleagues 
(Yonezawa and Tokoro, 1997; Yonezawa, 1990; Sueyoshi and Tokoro, 1991)). 

In the late 1970s at Stanford University in California, a doctoral student called 
Reid Smith was completing his PhD on a system called the Contract Net, in which 
a number of agents ('problem solving nodes' in Smith's parlance) solved problems 
by delegating sub-problems to other agents (Smith, 1977, 1980a,b). As the name 
suggests, the key metaphor is that of sub-contracting in human organizations. 
The Contract Net remains to this day one of the most influential multiagent sys- 
tems developed. It introduced several key concepts into the multiagent systems 
literature, including the economics metaphor and the negotiation metaphor. 

Smith's thesis was published in 1980, a year also notable for the emergence of 
the first academic forum for research specifically devoted to the new paradigm of 
multiagent systems. Randy Davis from MIT organized the first workshop on what 
was then called 'Distributed Artificial Intelligence' (DAI) (Davis, 1980). Throughout 
the 1980s, the DAI workshops, held more or less annually in the USA, became the 
main focus of activity for the new community. The 1985 workshop, organized 
by Michael Genesereth and Matt Ginsberg of Stanford University, was particularly 
important as the proceedings were published as the first real book on the field: the 
'green book', edited by Michael Huhns (Huhns, 1987). The proceedings of the 1988 
workshop, held at Lake Arrowhead in California, were published two years later 
as the 'second green book' (Gasser and Huhns, 1989). Another key publication at 
this time was Bond and Gasser's 1988 collection Readings in Distributed Artificial 
Intelligence (Bond and Gasser, 1988). This volume brought together many of the 
key papers of the field. It was prefaced with a detailed and insightful survey article, 
which attempted to summarize the key problems and issues facing the field; the 
survey remains relevant even at the time of writing. 

Until about the mid-1980s the emphasis was on 'parallelism in problem solv- 
ing', or distributed problem solving as it became known. In other words, the main 
type of issue being addressed was 'given a problem, how can we exploit multiple 
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processor architectures to solve this problem'. In the mid-1980s, a Stanford Uni- 
versity PhD student called Jeff Rosenschein fundamentally changed the emphasis 
of the field, by recognizing that distributed problem-solving systems implicitly 
assumed 'common interest' among the agents in the system. He realized that 
while such systems are undoubtedly important, they represent a special case of 
a much more general class of systems, in which agents are assumed to be self- 
interested. In his 1985 paper Deals Among Rational Agents, he coined the term 
'benevolent agent' to describe agents that could be assumed to help out wherever 
asked (Rosenschein and Genesereth, 1985). As well as making the critically impor- 
tant distinction between self-interested and benevolent agents, this paper is also 
significant for a second reason: it was the first paper to make use of techniques 
from game theory to analyse interactions among artificial agents. 

The mid-1980s also saw the development of the first general-purpose testbed 
for experimentation with agent systems. The MACE system (an acronym of 'multi- 
agent computing environment') was developed under the supervision of Les 
Gasser at the University of Southern California (Gasser et al., 1987a,b). MACE 
provided many features that have subsequently become standard in multiagent 
systems; for example, it pioneered the provision of acquaintance models by which 
agents could have representations of the capabilities and plans of their peers. 

Somewhat surprisingly, those active in the field at the time report that interest 
in DAI actually waned throughout the latter half of the 1980s. The reasons for 
this are unclear; it may well be that this reduction of interest was simply a result 
of some of the key figures from the early days of the field moving into new jobs 
and new areas of work. But the seeds sown with the establishment of a regular 
workshop and the publication of three key books led to an international flowering 
of interest in DAI. In the late 1980s, the European Commission funded a research 
project entitled ARCHON ('Architecture for Cooperating Heterogeneous Online 
Systems'), whch was originally focused on the problem of getting a number of 
distinct 'expert systems' to pool their expertise in solving problems and diagnos- 
ing faults in several industrial domains (Wittig, 1992; Jennings et al., 1996a; Per- 
riolat et al., 1996). ARCHON was a large project (14 partners across 9 European 
countries!), and subsequently became recognized as one of the first real industrial 
applications of agent systems. 

At about the same time, the European Commission also funded the MAGMA 
project (loosely derived from 'Modelling an Autonomous Agent in a Multiagent 
World'). As part of this project, the participants decided to organize a workshop 
with the same name; it was held in Cambridge, UK, in 1989, and was so success- 
ful that the MAAMAW workshops became an annual event. Through the early 
1990s, led by Yves Demazeau, MAAMAW was the main European forum for agent 
research (Demazeau and Miiller, 1990). In Japan, the MACC workshops were also 
established as a regional forum for agent research. 

Interest in agent systems grew very rapidly in the first half of the 1990s. There 
were several reasons for this. The first, and probably most important reason 
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was the spread of the Internet, which through the 1990s changed from being 
a tool unknown outside academia to something in everyday use for commerce 
and leisure across the globe. In many ways, 1994 seems to have been a mile- 
stone year for agents. The first is that 1994 was the year that the Web emerged; 
the Mosaic browser only began to reach a truly wide audience in 1994 (Berners- 
Lee, 1999). The Web provided an easy-to-use front end for the Internet, enabling 
people with very limited IT training to productively use the Internet for the first 
time. The explosive growth of the Internet was perhaps the most vivid illustra- 
tion possible that the future of computing lay in distributed, networked systems, 
and that in order to exploit the potential of such distributed systems, new mod- 
els of computation were required. By the summer of 1994 it was becoming clear 
that the Internet would be a major proving ground for agent technology (perhaps 
even the 'luller application'), although the full extent of this interest was not yet 
apparent. 

As well as the emergence of the Web, 1994 saw the publication in July of a spe- 
cial issue of Communications of the ACM that was devoted to intelligent agents. 
CACM is one of the best-known publications in the computing world, and ACM 
is arguably its foremost professional body; the publication of a special issue of 
CACM on agents was therefore some lund of recognition by the computing world 
that agents were worth knowing about. Many of the articles in this special issue 
described a new type of agent system, that acted as a lund of 'expert assistant' 
to a user working with a particular class of application. The vision of agents as 
intelligent assistants was perhaps articulated most clearly by Pattie Maes from 
MIT's Media Lab, who described a number of prototype systems to realize the 
vision (Maes, 1994a). Such user interface agents rapidly caught the imagination of 
a wider community, and, in particular, the commercial possibilities of such tech- 
nologies was self-evident. A number of agent startup companies were founded 
to commercialize this technology, including Pattie Maes' s company FireFly (sub- 
sequently sold to Microsoft), and Oren Etzioni's company NetBot (subsequently 
sold to the Web portal company Excite). 

With the growth of the Internet in the late 1990s came electronic commerce 
(e-commerce), and the rapid international expansion of 'dot com' companies. It 
was quickly realized that e-commerce represents a natural - and potentially very 
lucrative - application domain for multiagent systems. The idea is that agents 
can partially automate many of the stages of electronic commerce, from finding a 
product to buy, through to actually negotiating the terms of agreement (Noriega 
and Sierra, 1999). This area of agent-mediated electronic commerce became per- 
haps the largest single application area for agent technology by the turn of the 
century, and gave an enormous impetus (commercial, as well as scientific) to the 
areas of negotiation and auctions in agent systems. Researchers such as Sarit 
Kraus, Carles Sierra, Tuomas Sandholm, Moshe Tennenholtz, and Makoto Yokoo 
investigated the theoretical foundations of agent-mediated electronic commerce 
(building to a great extent on the pioneering work of Jeff Rosenschein and col- 
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leagues on game-theoretic models) and began to investigate how such techniques 
could be applied in real systems. 

The emergence of agents on and for the Internet gave rise to a new, asso- 
ciated software technology, somewhat distinct from the 'mainstream' of agent 
research and development. In the summer of 1994, a California-based com- 
pany called General Magic was creating intense interest in the idea of mobile 
agents - programs that could transmit themselves across an electronic net- 
work and recommence execution at a remote site (Whlte, 1997). At the time, 
General Magic were distributing a widely read white paper that described Tele- 
script - a programming language intended to realize the vision of mobile agents 
(White, 1994). In the event, it was not Telescript, but another programming 
language that caught the imagination of the Internet community: Java. When 
Netscape incorporated a Java virtual machine into their Navigator browser, they 
made it possible for browsers to download and execute small programs called 
applets. Applets transformed the Web from being a large but essentially static 
collection of linked documents to being an active and dynamic system of inter- 
working components. The potential to the computer science community was 
obvious, and this gave Java an enormous impetus, both as a way of animat- 
ing the Internet, but also as a powerful, well-designed object-oriented program- 
ming language in its own right. Although they are not agents in the sense that 
I use the term in this book, applets give a hint of what might be possible in the 
future. 

A number of mobile agent frameworks were rapidly developed and released 
as Java packages, and interest in Telescript waned. As I write t h s  history in the 
summer of 2000, Java is the programming language of choice not just for agent 
systems, but also, it seems, for most other applications in computing. Java was 
never intended to be an 'agent programming language' (although it can of course 
be used for programming agents), but since it was first released, the language has 
been progressively extended to give it ever more agent-like features. A good exam- 
ple is the JINI framework, whch allows objects to advertise their services and, in 
a simple way, to cooperate with one another in a similar way to that proposed by 
the agent community (Oaks and Wong, 2000). 

By the mid-1990s, the level of industrial interest in agent systems was such that 
standardization became a major issue, and some researchers began to suspect that 
the lack of recognized international standards was an impediment to the wider 
take-up of agent technology. The early 1990s had already seen some activity in 
this area, in the form of the US-based Knowledge Sharing Effort, within which two 
influential languages for agent communication were developed: KQML and KIF 
(Patil et al., 1992). However, these languages were never formally standardized, 
which led to great difficulties for agent developers that actually wanted to use 
them in open settings. As a result, in 1995, the FIPA movement began its work on 
standards for agent systems (FIPA, 2001). The centrepiece of the FIPA initiative 
was a language for agent communication. By the end of the decade, many major IT 



and telecommunications companies had become involved in the FIPA movement, 
and a set of prototypical standards had been developed. At the time of writing, 
the major initiative underway is to deploy these languages in real settings, and - 
hopefully - demonstrate their value to agent developers. 

Another body of work that arose in the mid-1990s, led by Rosaria Conte, Jim 
Doran, and Nigel Gilbert, was the use of multiagent systems for modelling natu- 
ral societies (Gilbert and Doran, 1994; Gilbert and Conte, 1995). The Simulating 
Societies (SimSoc) workshop, first held in 1993, brought together researchers who 
were interested in using multiagent systems to gain insights into the behaviour 
of human societies. 

Finally, in the late 1990s, researchers in multiagent systems began to seek 
increasingly realistic domains in which to develop systems. This led, perhaps 
indirectly, to the RoboCup initiative (RoboCup, 2001; Kitano, 1998). The RoboCup 
challenge is simple: to demonstrate, within 50 years, a team of soccer-playlng 
robots that can beat a World Cup-strength team of human soccer players. The 
rationale for RoboCup is that successfully playing soccer demands a range of dif- 
ferent slulls, such as real-time dynamic coordination using limited communica- 
tion bandwidth. (From a robotics point of view, RoboCup also presents profound 
challenges - today's autonomous robots come nowhere near the dexterity or flex- 
ibility of human soccer players.) Interest in RoboCup had exploded by the turn of 
the century, with hundreds of teams from across the world attending the regu- 
lar RoboCup tournaments. In 2000, RoboCup launched a new initiative, entitled 
RoboCup Rescue. In RoboCup rescue, the goal is to build robots that can cooperate 
to carry out search and rescue missions in a scenario based on the earthquake 
that hit the city of Kobe, Japan, in the mid-1990s. Miniature robots designed by a 
team worlung on the RoboCup Rescue scenario were used to search in the ruins of 
the World Trade Center in New York, following the devastating terrorist attacks 
of 11 September 2001. 





Afterword 

I began t h s  book by pointing to some trends that have so far marked the short 
history of computer science: ubiquity, interconnection, intelligence, delegation, 
and human-orientation. I claimed that these trends naturally led to the emergence 
of the multiagent systems paradigm. I hope that after reading this book, you will 
agree with this claim. 

After opening this book by tallung about the history of computing, you may 
expect me to close it by talking about its future. But prediction, as Nils Bohr 
famously remarked, is hard - particularly predicting the future. Rather than mak- 
ing specific predictions about the future of computing, I will therefore restrict my 
observations to some hopefully rather uncontentious (and safe) points. The most 
important of these is simply that these trends will continue. Computer systems 
will continue to be ever more ubiquitous and interconnected; we will continue to 
delegate ever more tasks to computers, and these tasks will be increasingly com- 
plex, requiring ever more intelligence to successfully carry them out; and, finally, 
the way in whch we interact with computers will increasingly resemble the way 
in which we interact with each other. 

Douglas Adams, author of the well-known Hitch Hiker's Guide to the Galaxy 
books, was also, in the final years of his life, a commentator on the computer 
industry. In a radio programme broadcast by the BBC shortly before his death, he 
predicted that, eventually, computers and processor power will become as cheap 
and common as grains of sand. Imagine such a world: in which every device cre- 
ated by humans is equipped with processor power, and is capable of interacting 
with any other device, or any person, anywhere in the world. Outlandish - pre- 
posterous - as it may seem, t h s  future follows directly from the trends that I 
discussed above. Now imagine the potential in this vision. Those of us old enough 
to have worked with computers before 1993 will recall the sense of awe as we 
realized what might be possible with the Web. But this pales into insignificance 
next to the possibilities of ths ,  as yet distant future Internet. 

Note that the plumbing for this future - the processors and the network connec- 
tions to link them - is the easy part. The difficult part - the real challenge - is the 
software to realize its potential. I do not know exactly what software technologies 
will be deployed to make this future happen. But it seems to me - and to many 
other researchers - that multiagent systems are the best candidate we currently 
have. It does not matter whether we call them agents or not; in 20 years, the term 
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may not be used. The key thing is that the problems being addressed by the agent 
community are exactly the problems that I believe will need to be solved to realize 
the potential. 
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