An Introduction to

MultiAgent

MICHAEL WOOLDRIDGE

An Introduction to
Multiagent Systems

An Introduction to

Multiagent Systems
Michael Wooldridge
Department of Computer Science,

University of Liverpool, UK

JOHN WILEY & SONS, LTD

Copyright < 2002 John Wiley & Sons Ltd

Batfime | TChicrhooror
patiliis Lane, Lnicnester,

West Sussex PO19 1UD, England
National 01243 779777

international (+44) 1243 779777
e-mail {(for orders and customer service enquiries): cs-hooks@wiley.couk
Visit our Home Page on http://www.wileyeurope.com or http://www.wiley.com

Reprinted Auguse 20012

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recarding, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
[td, 90 Tottenham Court Road, London, UK W1P QOLP, without the permission in writing of
the Publisher with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system for exclusive use by the purchaser of
the publication.

Neither the author nor John Wiley & Sons, Ltd accept any responsibility or liability for loss
or damage occasioned to any person or property through using the material, instructions,

mothnde orideac cantained harpin ar acting or rofraining from acting ae a2 rocnlr of cuch
MCINoAas OF 1Geas ContalinCa nerein, or aclng or réiraining 1vom aCing a8 a rést O sulin

use. The author and publisher expressly disclaim all implied warranties, including mer-
chantability or fitness for any particular purpose. There will be no duty on the author or
publisher to correct any errors or defects in the software.

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Ltd is aware of a claim, the product names
appear in capital or all capital letters. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration

Library of Congress Cataloging-in-Publication Data

Wooldridge, Michael]., 1966-

An introduction to multiagent systems / Michael Wooldridge.

p.cm,

Includes bibliographical references and index.

ISBN 0-471-49691-X

{.intelligent agents (Computer software) 1. Title.
QA76.76.158 WG5S 2001
006.3 — dc2i

2001055949

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 0 «71 49691 X

Typeset in 9.5/12.5pt Lucida Bright by Tgl" Productions Ltd, London.

Printed and bound in Great Britain by Biddles Ltd, Guildford and Kings Lynn.

This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

To my family:
Jean, John, Andrew,

Christopher, and of course Janine.

[o ——

Preface

Contents

1 Introduction

1.1
1.2
1.3

The Vision Thing
Some Views of the Field
Objections to Multiagent Systems

2 Intelligent Agents

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Environments

Intelligent Agents

Agents and Objects

Agents and Expert Systems

Agents as Intentional Systems

Abstract Architectures for intelligent Agents
How to Tell an Agent What to Do
Synthesizing Agents

3 Deductive Reasoning Agents

3.1
3.2
3.3

Agents as Theorem Provers
Agent-Oriented Programming
Concurrent MetateM

4 Practical Reasoning Agents

4.1
4.2
4.3
4.4
4.5

Practical Reasoning Equals Deliberation Plus Means-Ends Reasoning
Means-Ends Reasoning

Implementing a Practical Reasoning Agent

HOMER: an Agent That Plans

The Procedural Reasoning System

5 Reactive and Hybrid Agents

5.1
5.2
5.3

Brooks and the Subsumption Architecture
The Limitations of Reactive Agents
Hybrid Agents

5.3.1 TouringMachines

5.3.2 InteRRaP

6 Multiagent Interactions

6.1

Utilities and Preferences

e SN S

15

17
23
25
27
28
31
36
42

47

49
54
56

65

65
70
75
80
82

89

90
96
97
99
101

105

106

viii

6.2
6.3
6.4
6.5
6.6
6.7

Contents

Multiagent Encounters

Dominant Strategies and Nash Equilibria
Competitive and Zero-Sum Interactions

The Prisoner’s Dilemma

Other Symmetric 2 X 2 Interactions
Dependence Relations in Multiagent Systems

7 Reaching Agreements

7.1
7.2
7.3

7.4

Mechanism Design

Auctions

Negatiation

7.3.1 Task-oriented domains
7.3.2 Worth-oriented domains
Argumentation

8 Communication

8.1

8.2

8.3
8.4

Speech Acts
8.1.1 Austin
8.1.2 Searle

8.1.3 The plan-based theory of speech acts
8.1.4 Speech acts as rational action

Agent Communication Languages

8.2.1 KIF

8.2.2 KQML

8.2.3 The FIPA agent communication languages
Ontologies for Agent Communication
Coordination Languages

9 Working Together

9.1
9.2

9.3
9.4
9.5
9.6

9.7

Cooperative Distributed Problem Solving

Task Sharing and Result Sharing

9.2.1 Task sharing in the Contract Net
Result Sharing

Combining Task and Result Sharing

Handling Inconsistency

Coordination

9.6.1 Coordination through partial global planning
9.6.2 Coordination through joint intentions
9.6.3 Coordination by mutual modelling
9.6.4 Coordination by norms and social laws
Multiagent Planning and Synchronization

10 Methodologies

10.1
10.2
10.3
10.4

11 Ap

- TA

11.1
11.2
11.3
11.4

When is an Agent-Based Solution Appropriate?
Agent-Oriented Analysis and Design Techniques
Pitfalls of Agent Development

Mobile Agents

plications

Agents for Workflow and Business Process Management
Agents for Distributed Sensing

Agents for Information Retrieval and Management
Agents for Flectronic Commerce

108
111
113
114
122
125

129

130
131
137
139
146
148

163

164
164
165
166
167
168
169
170
175
180
183

189

190
192
194
197
197
199
200
202
204
210
213
218

225

225
226

233
236

245

245
248
248
254

11.5
11.6
11.7
11.8

Agents for Human-Computer Interfaces
Agents for Virtua Environments

Agents for Socia Simulation

Agentsfor X

12 Logicsfor Multiagent Systems

12.1
12.2
12.3
12.4
125
12.6
12.7
12.8

Why Modd Logic?
Possible-WorldsSemantics for Modal Logics
Normal Moda Logics

Epistemic Logic for Multiagent Systems
Pro-attitudes:. Goalsand Desires

Common and Distributed knowledge
Integrated Theories of Agency

Formal Methods in Agent-Oriented Software Engineering
12.8.1 Formal methods in specification
12.8.2 Formal methods in implementation
12.8.3 Verification

Appendix A. A Higory Lesson

Afterword

References

I ndex

Contents

ix

258
259
259
263

267

268
270
271
278
280
281
283
288
288
290
294

303

317

319

343

Preface

Multiagent systems are systems composed of multiple interacting computing ele-
ments, known as agents. Agents are computer systems with two important capa-
bilities. First, they are at least to some extent capable of autonomous action - of
deciding for themselves what they need to do in order to satisfy their design objec-
tives. Second, they are capable of interacting with other agents - not simply by
exchanging data, but by engaging in analogues of the kind of social activity that

a1l sovy Aa AF ~arn licrngs AoanmAamatinm;: oo Ainatin magntiatinm
we dii cugagc 111 CVCI)’ uay O Oour llVC5 LUUptLauuu, LUUlUlllallUll, lJCl‘-’,UllClllUll,

and the like,

Multiagent systems are a relatively new sub- field of computer science - hpv

iuiuiasc SuCiiny 1T & L

ly n
have only been studled since about 1980, nd the field has only gained w1deqpread
recognition since about the mid-1990s. However, since then international interest
in the field has grown enormously. This rapid growth has heen spurred at least in
part by the belief that agents are an appropriate software paradigm through which
to exploit the possibilities presented by massive open distributed systems - such
as the Internet. Although they will certainly have a pivotal role to play in exploiting
the potential of the Internet, there is a lot more to multiagent systems than this.
Multiagent systems seem to be a natural metaphor for understanding and building
a wide range of what we might crudely call artificial social systems. The ideas of
multiagent systems are not tied to a single application domain, but, like cbjects
before them, seem to find currency in a host of different application domains.
My intention in writing this book is simple. I aim to introduce the main issues in
the theory and practice of multiagent systems in a way that will be accessible to
anyone with a basic background in computer science/IT. The book is deliberately
intended to sit on the fence between science and engineering. Thus, as well as
discussing the principles and issues in the theory of multiagent systems (i.e. the
science of multiagent systems), [very much hope that I manage to communicate
something of how to build such systems (i.e. multiagent systems engineering).
The multiagent systems field can be understood as consisting of two closely
interwoven strands of work. The first is concerned with individual agents, while
the second is concerned with collections of these agents. The structure of the book
reflects this division. The first part of the book - Chapter 1 - sets the scene by
discussing where the multiagent system field emerged from, and presenting some

I —

xii Preface

visions of where it is going. The second part - Chapters 2-5 inclusive - are con-
cerned with individual agents. Following an introduction to the concept of agents,
their environments, and the various ways in which we might tell agents what to
do, I describe and contrast the main techniques that have been proposed in the
literature for building agents. Thus I discuss agents that decide what to do via
logical deduction, agents in which decision making resembles the process of prac-
tical reasoning in humans, agents that do not explicitly reason at all, and, finally,
agents that make decisions by combining deductive and other decision-making
mechanisms. In the third part of the book - Chapters 6-10 inclusive - I focus on
collections of agents. Following a discussion on the various ways in which multi-
agent encounters and interactions can be classified, I discuss the ways in which
self-interested agents can reach agreements, communicate with one another, and
work together. [also discuss some of the main approaches proposed for designing
multiagent systems. The fourth and final part of the book presents two advanced
supplemental chapters, on applications of agent systems, and formal methods
for reasoning about agent systems, respectively.

I have assumed that the main audience for the book will be undergraduate

11{‘]01’11‘(‘ of comnutror coience /IT - tho hanl chanlld he enitahle faor enich cetindentc
st €IS C1 Compuier 5aaence/ia ulC DOOK S11CULIG 0C SUltadnlC 106 SUCl S5TUUCIts

n their second or third year of study. However, I alsc hope that the book will be
ccessible to computing/IT professionals, who wish to know more about some of

the ideas driving one of the major areas of research and development activity in
computing today.

3}

Prerequisites: what you need to know before you start

The book assumes a knowledge of computer science that would be gained in the
first year or two of a computing or information technology degree course. In order
of decreasing importance, the specific skills required in order to understand and
make the most of the book are

an understanding of the principles of programming in high level languages
such as C or Java, the ability to make sense of pseudo-code descriptions of
algorithms, and a nodding acquaintance with some of the issues in concur-
rent and distributed systems (e.g. threads in Java);

familiarity with the basic concepts and issues of artificial intelligence (such
as the role of search and knowledge representation);

familiarity with basic set and logic notation (e.g. an understanding of what
is meant by such symbols as €, <, n, U, A, v, 0, ¥, 3, +, E).

However, in order to gain some value from the book, all that is really required is
an appreciation of what computing is about. There is not much by way of abstract
mathematics in the book, and wherever there is a quantity n of mathematics, 1
have tried to compensate by including at least 2n intuition to accompany and
explain it.

Preface xiii
Teaching with this book
[have written this book primarily with its use as a course text in mind. The book is
specifically intended for middle to advanced undergraduates, or beginning grad-
uates of computing/IT. The students at my University for whom this book is
intended are either in the third year of an undergraduate computing degree, or
else in the second semester of a three semester ‘conversion’ MSc¢ course (i.e. an
MSc course designed to equip graduates with non-computing degrees with basic
computing skills).

The book contains somewhat more material than is likely to be taught in most
one-semester undergraduate courses, but strong students should certainly be able
to read and make sense of most of the material in a single semester. The ‘core’ of
the book is Chapters 1-9 and 11 inclusive. This is the material that I would regard

as being the ‘core curriculum’ of the multiagent systems field. This material is
divided into four main parts:

an introduction (Chapter 1), which sets the scene for the remainder of the
book:

an introduction to intelligent agents (Chapters 2-5 inclusive);
an introduction to multiagent systems (Chapters 6-9 inclusive);

a discussion of applications of multiagent systems (Chapter 11).

Although individual teachers may wish to spend larger or smaller amounts of
time covering the different parts of the book, I would nevertheless expect most
courses 10 at least touch on the material in all these chapters.

I have included three jokers in the pack.

Chapter 10 (Methodologies) introduces techniques for the analysis and
design of multiagent systems, some of the pitfalls associated with designing
and deploying multiagent systems, and a discussion of mobile agents tech-
nology. Most of this material is, more than any other material in the book,
not yet really at a stage where I believe it can form part of an undergraduate
degree (at least in my opinion!). I would not therefore expect this material to
be taught on most undergraduate courses; it is included because (i) [suspect
it will be important in the near future; {ii) I wanted to provide pointers for
those interested in finding out more; and most importantly (iii) I think its
interesting, and it is my book.

Chapter 12 (Logics for Multiagent Systems) focuses on logics for multiagent
systems. Logics of agency form a significant part of the research literature on

multiacent svstems. butin mv exnerience manv students view this material
iy Mlllua\.llk U,L’L\.Jllu RWAL 114 lll) _I\H\.l l\.ll_\.’ 111\.\11) DULWELAL 11l ¥VILYY Liflwy 1Al Ll

as being hard - perhaps because it seems so abstract. However, I strongly
felt that omitting this material entirely would be doing the field a disservice,
and again, 1 find it interesting. Hence Chapter 12. Students with courses on
logic or semantics under their belt should find this chapter a breeze.

xiv Preface

- Appendix A (A History Lesson) gives a (rather subjective!) history of the
agents field. Nobody has vet attempted to do this, and so it seems to me
to be a useful thing to do. Originally, this section was included in Chapter 1,
but several reviewers of the draft manuscript felt that perhaps it included
too much material to be really useful in an introductory chapter.

Lecture slides and other associated teaching material, as well as extensive Web
links for this book are available at

http://www.csc.liv.ac.uk/"mjw/pubs/imas/

[welcome additional teaching materials (e.g. tutorial/discussion questions, exam
papers and so on), which I will make available on an ‘open source’ basis - please
email to

M.J.Wooldridge@csc.liv.ac.uk

Chapter structure

Every chapter of the book ends with three sections, which 1 hope will be of wider
interest.

+ A ‘class reading’ suggestion, which lists one or two key articles from the
research literature that may be suitable for class reading in seminar-based
courses.

+ A 'notes and further reading’ section, which provides additional technical
comments on the chapter and extensive pointers into the literature for
advanced reading. This section is aimed at those who wish to gain a deeper,
research-level understanding of the material.

- An ‘exercises’ section, which might form the basis of homework to be set for
students. Exercises are graded on a scale of one to four, with one being the
casiest (a few minutes work), and four being the hardest (research projects).
Exercises of difficulty three might be undertaken as projects over some
weeks or months; exercises of level one or two should be feasible within
a few hours at most, and might be undertaken as part of weekly homework
or tutorials. Some exercises are suggested for class discussion.

What I left out and why

Part of the joy in working in the multiagent systems field is that it takes inspiration
from, and in turn contributes to, a very wide range of other disciplines. The field
is in part Artificial Intelligence (Al), part economics, part software engineering,
part social sciences, and so on. But this poses a real problem for anyone writing a
book on the subject, namely, what to put in and what to leave out. While there is a
large research literature on agents, there are not too many models to look at with
respect to texthooks on the subject, and so I have had to make some hard choices

Preface XV

here. When deciding what to put in/leave out, I have been guided to a great extent
by what the ‘mainstream’ multiagent systems literature regards as important, as
evidenced by the volume of published papers on the subject. The second consid-
eration was what might reasonably be (i) taught and (ii) understood in the context
of a typical one-semester university course. This largely excluded most abstract
theoretical material, which will probably make most students happy - if not their
teachers.
[deliberately chose to omit some material as follows.

Learning. My view is that learning is an important agent capability, but is not cen-
tral to agency. After some agonizing, I therefore decided not to cover learning.
There are plenty of references to learning algorithms and techniques: see, for
example, Kaelbling (1993), Weill (1993, 1997), Weill and Sen (1996) and Stone
(2000).

Artificial life. Some sections of this book (in Chapter 5 particularly) are closely
related to work carried out in the artificial life, or ‘alife’ community. However,
the work of the alife community is carried out largely independently of that in
the ‘mainstream’ multiagent systems community. By and large, the two commu-
nities do not interact with one another. For these reasons, I have chosen not to
focus on alife in this book. (Of course, this should not be interpreted as in any
way impugning the work of the alife community: it just is not what this book is
about.) There are many easily available references to alife on the Weh. A useful
starting point is Langton (1989); another good reference is Mitchell (1996).

Mobility. Thereis something of a schism in the agents community between those
that do mobility and those who do not - I mostly belong to the second group.
Like learning, I believe mobility is an important agent capability, which is par-
ticularly valuable for some applications. But, like learning, I do not view it to be
central to the multiagent systems curriculum. In fact, I do touch on mobhility, in
Chapter 10 - but only relatively briefly: the interested reader will find plenty of
references in this chapter.

Markov decision problems. Markov decision problems (MDPs), together with
their close relatives partially observable MDPs, are now the subject of much
attention in the Al community, as they seem to provide a promising approach
to the problem of making decisions under uncertainty. As we will see in much
of the remainder of this book, this is a fundamental problem in the agent agent
community also. To give a detailed introduction to MDPs, however, would be
out of the question in a textbook on agents. See Blythe (1999) for pointers into
the literature, and Kaelbling et al. (1998) for a detailed technical overview of the
area and issues; Russell and Norvig (1995, pp. 498-522) give an overview in the
context of an Al textbook.

In my opinion, the most important thing for students to understand are (i) the
‘big picture’ of multiagent systems (why it is important, where it came from, what

xXvi Preface

the issues are, and where it is going), and (ii) what the key tools, techniques, and
principles are. Students who understand these two things should be well equipped
to make sense of the deeper research literature if they choose to.

Omissions and errors

In writing this book, I tried to set out the main threads of work that make up the
multiagent systems field, and to critically assess their relative merits. In doing
so, I have tried to be as open-minded and even-handed as time and space permit.
However, 1 will no doubt have unconsciously made my own foolish and igno-
rant prejudices visible, by way of omissions, oversights, and the like. If you find
yourself speechless with rage at something I have omitted - or included, for that
matter - then all I can suggest is that you accept my apology, and take solace from
the fact that someone else is almost certainly more annoyed with the book than
you are.

Little did I imagine as 1 looked upon the results of my labours where
these sheets of paper might finally take me. Publication is a powerful
thing. It can bring a man all manner of unlooked-for events, making
friends and enemies of perfect strangers, and much more besides.

Matthew Kneale (English Passengers)

Comments and corrections - and suggestions for a possible second edition - are
welcome, and should be sent to the email address given above.

Web references

It would be very hard to write a book about Web-related issues without giving
URLs as references. In many cases, the best possible reference to a subject is
a Web site, and given the speed with which the computing field evolves, many
important topics are only documented in the ‘conventional’ literature very late
in the day. But citing Web pages as authorities can create big problems for the
reader. Companies go bust, sites go dead, people move, research projects finish,
and when these things happen, Web references become useless. For these reasons,
I have therefore attempted to keep Web references to a minimum. I have preferred
to cite the ‘conventional’ (i.e. printed), literature over Web pages when given a
choice. In addition, I have tried to cite only Web pages that are likely to be stable
and supported for the foreseeable future. The date associated with a Web page is
the date at which I checked the reference was working. Many useful Web links are
available from the book’s Web page, listed earlier.

Acknowledgments

Several people gave invaluable feedback on the ‘history of the field' section. In
particular, Les Gasser and Victor Lesser were extremely helpful in sorting out my

Preface xvil

muddled view of the early days of distributed Al, and Jeff Rosenschein gave a lot
of help in understanding how game-theoretic techniques entered the multiagent
systems literature. Keith Decker gave suggestions about material to cover on bro-

kers and middle agents. Michael Fisher helped with examples to illustrate his
Concurrent MetateM l;\nmmop in Chanter 3. Valentina Tamma set me straight on

(S ULULE D o g VAL LYL AGiAis R e e Y YOI 2202220 2 Qaiiiilh SO 2 ~L 28

ontologies and DAML. Karen Mosman from Wiley was (and indeed is) an unspeak-
ably cheerful, enthusiastic, and charming editor, and 1 suppose | should grudg-
ingly admit that I very much enjoyed working with her. Simon Parscns and Peter
McBurney were enormously helpful with the section on argumentation. Nick Jen-

NiNog AQ aver oaus onoen
lllllﬁo’ a3 Uy Ll, t‘_"u\rL Ciivyu

contents and style.

Marie Devlin, Shaheen Fatima, Marc-Philippe Huget, Peter McBurney, Carmen
Pardavila, and Valentina Tamma read drafts of the book and gave detailed, help-
ful comments. Marie saved me many hours and much tedium by checking and
uusaulcuuug, the u1u110grapu'y' for me. 1 hdate books with blUpp) or 111LU1up1th:
references, and so Marie’s help was particularly appreciated. We both made exten-
sive use of the CITESEER autonomous citation system from NEC {see NEC, 2001),
which, as well as helping to provide the definitive reference for many obscure
articles, also helped to obtain the actual text in many instances. Despite all this
heip, many typos and more serious errors will sureiy remain, and these are of
course my responsibility.

I have taught parts of this book in various guises at various locations since
1995. The comments and feedback from students and other participants at these
venues has helped me to improve it significantly. So, thanks here to those at the
1996 German Spring School on Al (KIFS) in Giinne am Mohnesee, the AgentLink

summer schools in Utrecht (1999), Saarbriicken (2000), and Prague (2001), the
ESSLLI course on agent rhpnr\ in Saarhriicken {1998), tutorial participants at

Iia2ad o RJRAE ST LU Y LUV S 2i2 oG4 LUK LE [V SR VE L4l] @i il @it

ICMAS in San Francisco (1995) and Paris (1998), tutonal participants at ECAI in
Budapest (1996), Brighton (1998), and Berlin (2000), and AGENTS in Minneapolis
(1998), Seattle (1999), Barcelona (2000), and Montreal (2001), as well as students in

courses on agents that [have taught at Lausanne (1999), Barcelona (2000), Helsinki

(1000 and 20001 and Tivarnanl (21011 RaAi Baltivmoe in T ancanne [licoe (Cnrtoc
WL JJ0 Al ZwuulLl), atiu LIVOCIpPUUL \CUVLj, DUL I'AlllipEd 11l uuuo(ulllL LJLlD_O LUy

and Carles Sierra in Barcelona, and Heimo Lammanen and Kimmo Raatikainen in
Helsinki were all helpful and generous hosts during my visits to their respective
institutions.

As ever, my heartfelt thanks go out to my colleagues and friends in the multi-
agent systenis research comimunity, who have made academia rew cuuuuz, and
enjoyable. You know who you are! Deserving of a special mention here are Carles
Sierra and Carme: their kindness and hospitality has been astonishing.

| took over as Head of Department while | was completing this book, which
nearly killed both the book and the Department stone dead. Fortunately - or not,
depending on your point of view - Katrina Houghton fought hard to keep the
University at bay, and thus bought me enough time to complete the job. For this

ja Y Fal nnrt ciinnnrt and cancihle nractieal aduvice an
AR/CIHCIIL,, DUPRPUL L, dllu OUHIoiJILC plavuaval uu\ INC Wil

xviii Preface

I am more grateful than she could imagine. Paul Leng was a beacon of common
sense and good advice as I took over being Head of Department, without which I
would have been even more clueless about the job than I am now.

A network of friends have helped me keep my feet firmly on the ground through-
out the writing of this book, but more generally throughout my career. Special
thanks here to Dave, Janet, Pangus, Addy, Josh, Ant, Emma, Greggy, Helen, Patrick,
Bisto, Emma, Ellie, Mogsie, Houst, and the rest of the Herefordians.

My family have always been there, and writing this book has been made much
easier for that, My parents, Jean and John Wooldridge, have always supported me
in my career. Brothers Andrew and Christopher have done what all good brothers
do: mercilessly tease at every opportunity, while simultaneously making their love
abundantly clear. Janine, as ever, has been my world.

Finally, I hope everyone in the Department office will accept this finished book
as definitive proof that when I said I was ‘working at home’, I really was. Well,
sometimes at least.

Mike Wooldridge
Liverpool
Autumn 2001

0

1

Introduction

The history of computing to date has been marked by five important, and contin-
uing, trends:

« ubiquity;

- Interconnection;

« intelligence,

+ delegation; and

« human-orientation.

By ubiquity, [simply mean that the continual reduction in cost of computing
capability has made it possible to introduce processing power into places and
devices that would hitherto have been uneconomic, and perhaps even unimagin-
able. This trend will inevitably continue, making processing capability, and hence
intelligence of a sort, ubiquitous.

While the earliest computer systems were isolated entities, communicating only
with their human operators, computer systems today are usually interconnected.
They are networked into large distributed systems. The Internet is the obvious
example; it is becoming increasingly rare to find computers in use in commercial
or academic settings that do not have the capability to access the Internet. Until
a comparatively short time ago, distributed and concurrent systems were seen by
many as strange and difficult beasts, best avoided. The very visible and very rapid
growth of the Internet has (I hope) dispelled this belief forever. Today, and for the
future, distributed and concurrent systems are essentially the norm in commercial
and industrial computing, leading some researchers and practitioners to revisit
the very foundations of computer science, seeking theoretical models that better
reflect the reality of computing as primarily a process of interaction.

2 Introduction

The third trend is toward ever more intelligent systems. By this, I mean that the
complexity of tasks that we are capable of automating and delegating to comput-
ers has also grown steadily. We are gaining a progressively better understanding
of how to engineer computer systems to deal with tasks that would have been
unthinkable only a short time ago.

The next trend is toward ever increasing delegation. For example, we routinely
delegate to computer systems such safety critical tasks as piloting aircraft. Indeed,
in fly-by-wire aircraft, the judgement of a computer program is frequently trusted
over that of experienced pilots. Delegation implies that we give control to com-
puter systems.

The fifth and final trend is the steady move away from machine-oriented views
of programming toward concepts and metaphors that more closely reflect the
way in which we ourselves understand the world. This trend is evident in every
way that we interact with computers. For example, in the earliest days of com-
puters, a user interacted with computer by setting switches on the panel of the
machine. The internal operation of the device was in no way hidden from the
user - in order to use it successfully, one had to fully understand the internal
structure and operation of the device. Such primitive - and unproductive - inter-
faces gave way to command line interfaces, where one could interact with the
device in terms of an ongoing dialogue, in which the user issued instructions
that were then executed. Such interfaces dominated until the 1980s, when they
gave way to graphical user interfaces, and the direct manipulation paradigm in
which a user controls the device by directly manipulating graphical icons cor-
responding to objects such as files and programs. Similarly, in the earliest days
of computing, programmers had no choice but to program their computers in
terms of raw machine code, which implied a detailed understanding of the internal
structure and operation of their machines. Subsequent programming paradigms
have progressed away from such low-level views: witness the development of
assembler languages, through procedural abstraction, to abstract data types, and
most recently, objects. Each of these developments have allowed programmers
to conceptualize and implement software in terms of higher-level - more human-
oriented - abstractions.

These trends present major challenges for software developers. With respect
to ubiquity and interconnection, we do not yet know what techniques might be
used to develop systems to exploit ubiquitous processor power. Current software
development models have proved woefully inadequate even when dealing with
relatively small numbers of processors. What techniques might be needed to deal
with systems composed of 101 processors? The term global computing has been
coined to describe such unimaginably large systems.

Thae + Adc tn Aal + A intall m thns npa
1¢ renas o anreaSIHg uﬁlegadgn ana uu%ulgCnCC 'ulp y thne nee

computer systems that can act effectively on our behalf. This in turn implies two
capabilities. The first is the ability of systems to operate independently, without
our direct intervention. The second is the need for computer systems to be able

d tn hiild
u U vulia

Introduction 3

to act in such a way as to represent our best interests while interacting with other
humans or systems.

The trend toward interconnection and distribution has, in mainstream com-
puter science, long been recognized as a key challenge, and much of the intellec-
tual energy of the field throughout the last three decades has been directed toward
developing software tools and mechanisms that allow us to build distributed sys-
tems with greater ease and reliability. However, when coupled with the need for
systems that can represent our best interests, distribution poses other funda-
mental problems. When a computer system acting on our behalf must interact
with another computer system that represents the interests of another, it may
well be that (indeed, it is likely), that these interests are not the same. It becomes
necessary to endow such systems with the ability to cooperate and reach agree-
ments with other systems, in much the same way that we cooperate and reach
agreements with others in everyday life. This type of capability was not studied
in computer science until very recently.

Together, these trends have led to the emergence of a new field in computer
science: multiagent systems. The idea of a multiagent system is very simple. An
agent is a computer system that is capable of independent action on behalf of its
user or owner. In other words, an agent can figure out for itself what it needs to
do in order to satisfy its design objectives, rather than having to be told explicitly
what to do at any given moment. A multiagent system is one that consists of
a number of agents, which interact with one another, typically by exchanging
messages through some computer network infrastructure. In the most general
case, the agents in a multiagent system will be representing or acting on behalf of
users or owners with very different goals and motivations. In order to successfully
interact, these agents will thus require the ability to cooperate, coordinate, and
negotiate with each other, in much the same way that we cooperate, coordinate,
and negotiate with other people in our everyday lives.

This book is about multiagent systems. It addresses itself to the two key prob-
lems hinted at above.

- How do we build agents that are capable of independent, autonomous action
in order to successfully carry out the tasks that we delegate to them?

- How do we build agents that are capable of interacting (cooperating, coordi-
nating, negotiating) with other agents in order to successfully carry out the
tasks that we delegate to them, particularly when the other agents cannot
be assumed to share the same interests/goals?

The first problem is that of agent design, and the second problem is that of society
design. The two problems are not orthogonal - for example, in order to build a
society of agents that work together effectively, it may help if we give members
of the society models of the other agents in it. The distinction between the two
issues is often referred to as the micro/macro distinction. In the remainder of this
book, I address both of these issues in detail.

)

4 Introduction

Researchers in multiagent systems may be predominantly concerned with engi-
neering systems, but this is by no means their only concern. As with its stable
mate Al, the issues addressed by the multiagent systems field have profound
implications for our understanding of ourselves. Al has been largely focused on
the issues of intelligence in individuals. But surely a large part of what makes us
unique as a species is our social ability. Not only can we communicate with one

+h h_1 11 i + nrd it ith
anctherin 111g11 wevelr iangudages, we can CGGperaLc cooraindie, anG nego tiate with

one another. While many other species have social ability of a kind - ants and
other social insects being perhaps the best-known examples - no other species
even begins to approach us in the sophistication of our social ability. In multiagent
systems, we address ourselves to such questions as follow.

« How can cooperation emerge in societies of self-interested agents?

+ What sorts of common languages can agents use to communicate their
beliefs and aspirations, both to people and to other agents?

» How can self-interested agents recognize when their beliefs, goals, or actions
conflict, and how can they reach agreements with one another on matters
of self-interest, without resorting to conflict?

+ How can autonomous agents coordinate their activities so as to coopera-
tively achieve goals?

While these questions are all addressed in part by other disciplines (notably eco-
nomics and the social sciences), what makes the multiagent systems field unique
and distinct is that it emphasizes that the agents in question are computational,
information processing entities.

The remainder of this chapter

The purpose of this first chapter is to orient you for the remainder of the book.
The chapter is structured as follows.

- I begin, in the following section, with some scenarios. The aim of these sce-
narios is to give you some feel for the long-term visions that are driving
activity in the agents area.

- As with multiagent systems themselves, not everyone involved in the agent
community shares a common purpose. I therefore summarize the different
ways that people think about the ‘multiagent systems project’.

- I then present and discuss some common objections to the multiagent sys-
tems field.

1.1 The Vision Thing

It is very often hard to understand what people are doing until you understand
what their motivation is. The aim of this section is therefore to provide some

The Vision Thing 5

motivation for what the agents community does. This motivation comes in the
style of long-term future visions - ideas about how things might be. A word of
caution: these visions are exactly that, visions. None is likely to be realized in the
immediate future. But for each of the visions, work is underway in developing the
kinds of technologies that might be required to realize them.

Due to an unexpected system failure, a space probe approaching Sat-
urn loses contact with its Earth-based ground crew and becomes disori-
ented. Rather than simply disappearing into the void, the probe recog-
nizes that there has been a key system failure, diagnoses and isolates
the fault, and correctly re-orients itself in order to make contact with
its ground crew.

They key issue here is the ability of the space probe to act autonomously. First
the probe needs to recognize that a fault has occurred, and must then figure out
what needs to be done and how to do it. Finally, the probe must actually do the
actions it has chosen, and must presumably monitor what happens in order to
ensure that all goes well. If more things go wrong, the probe will be required to
recognize this and respond appropriately. Notice that this is the kind of behaviour
that we (humans) find easy: we do it every day, when we miss a flight or have a flat
tyre while driving to work. But, as we shall see, it is very hard to design computer
programs that exhibit this kind of behaviour.

NASA’s Deep Space 1 (DS1) mission is an example of a system that is close to
this kind of scenaric. Launched from Cape Canaveral on 24 October 1998, DS1
was the first space probe to have an autonomous, agent-based control system
(Muscettola et al., 1998). Before DS1, space missions required a ground crew of
up to 300 staff to continually monitor progress. This ground crew made all neces-
sary control decisions on behalf of the probe, and painstakingly transmitted these
decisions to the probe for subsequent execution. Given the length of typical plan-
etary exploration missions, such a procedure was expensive and, if the decisions
were ever required quickly, it was simply not practical. The autonomous control
system in DS1 was capable of making many important decisions itself. This made
the mission more robust, particularly against sudden unexpected problems, and
also had the very desirable side effect of reducing overall mission costs.

The next scenario is not quite down-to-earth, but is at least closer to home.

A key air-traffic control system at the main airport of Ruritania sud-
denly fails, leaving flights in the vicinity of the airport with no air-traffic
control support. Fortunately, autonomous air-traffic control systems
in nearby airports recognize the failure of their peer, and cooperate
to track and deal with all affected flights. The potentially disastrous
situation passes without incident.

There are several key issues in this scenario. The first is the ability of systems to
take the initiative when circumstances dictate. The second is the ability of agents

L

6 Introduction

to cooperate to solve problems that are beyond the capabilities of any individ-
ual agents. The kind of cooperation required by this scenario was studied exten-
sively in the Distributed Vehicle Monitoring Testbed (DVMT) project undertaken
between 1981 and 1991 (see, for example, Durfee, 1988). The DVMT simulates
a network of vehicle monitoring agents, where each agent is a problem solver
that analyses sensed data in order to identify, locate, and track vehicles moving
through space. Each agent is typically associated with a sensor, which has only a
partial view of the entire space. The agents must therefore cooperate in order to
track the progress of vehicles through the entire sensed space. Air-traffic control
systems have been a standard application of agent research since the work of
Cammarata and colleagues in the early 1980s (Cammarata et al.,, 1983); a recent
multiagent air-traffic control application is the OASIS system implemented for use
at Sydney airport in Australia (Ljunberg and Lucas, 1992).

Well, most of us are neither involved in designing the control systems for NASA
space probes, nor are we involved in the design of safety critical systems such as
air-traffic controllers. So let us now consider a vision that is closer to most of our
everyday lives.

After the wettest and coldest UK winter on record, you are in des-
perate need of a last minute holiday somewhere warm and dry. After
specifying your requirements to your personal digital assistant (PDA),
it converses with a number of different Web sites, which sell services
such as flights, hotel rooms, and hire cars. After hard negotiation on
your behalf with arange of sites, your PDA presents you with a package
holiday.

This example is perhaps the closest of all four scenarios to actually being realized.
There are many Web sites that will allow you to search for last minute holidays,
but at the time of writing, to the best of my knowledge, none of them engages
in active real-time negotiation in order to assemble a package specifically for you
from a range of service providers. There are many basic research problems that
need to be solved in order to make such a scenario work; such as the examples
that follow.

- How do you state your preferences to your agent?
- How can your agent compare different deals from different vendors?

- What algorithms can your agent use to negotiate with other agents (so as to
ensure you are not ‘ripped off’)?

The ability to negotiate in the style implied by this scenario is potentially very
valuable indeed. Every year, for example, the European Commission puts out thou-
sands of contracts to public tender. The bureaucracy associated with managing
this process has an enormous cost. The ability to automate the tendering and
negotiation process would save enormous sums of money (taxpayers’ money!).
Similar situations arise in government organizations the world over - a good

1.2

Some Views of the Field 7

example is the US military. So the ability to automate the process of software
agents reaching mutually acceptable agreements on matters of common interest
is not just an abstract concern - it may affect our lives (the amount of tax we pay)
In a significant way.

Some Views of the Field

The multiagent systems field is highly interdisciplinary: it takes inspiration from
such diverse areas as economics, philosophy, logic, ecology, and the social sci-
ences. It should come as no surprise that there are therefore many different views
about what the ‘multiagent systems project’ is all about. In this section, I will sum-
marize some of the main views.

Agents as a paradigm for software engineering

Software engineers have derived a progressively better understanding of the char-
acteristics of complexity in software. It is now widely recognized that interaction
is probably the most important single characteristic of complex software. Soft-
ware architectures that contain many dynamically interacting components, each
with their own thread of control and engaging in complex, coordinated proto-
cols, are typically orders of magnitude more compiex to engineer correctly and
efficiently than those that simply compute a function of some input through a
single thread of control. Unfortunately, it turns out that many (if not most) real-
world applications have precisely these characteristics. As a consequence, a major
research topic in computer science over at least the past two decades has been
the development of tools and techniques to model, understand, and implement
systems in which interaction is the norm. Indeed, many researchers now believe
that in the future, computation itself will be understood chiefly as a process of
interaction. Just as we can understand many systems as being composed of essen-
tially passive objects, which have a state and upon which we can perform opera-
tions, so we can understand many others as being made up of interacting, semi-
autonomous agents. This recognition has led to the growth of interest in agents
as a new paradigm for software engineering.

As I noted at the start of this chapter, the trend in computing has been - and
will continue to be - toward ever more ubiquitous, interconnected computer sys-
tems. The development of software paradigms that are capable of exploiting the
potential of such systems is perhaps the greatest challenge in computing at the
start of the 21st century. Agents seem a strong candidate for such a paradigm.

Agents as a tool for understanding human societies

In Isaac Asimov’s popular Foundation science fiction trilogy, a character called
Hari Seldon is credited with inventing a discipline that Asimov refers to as ‘psy-

1.3

8 Introduction

chohistory’. The idea is that psychohistory is a combination of psychology, his-
tory, and economics, which allows Seldon to predict the behaviour of human soci-
eties hundreds of years into the future. In particular, psychohistory enables Sel-
don to predict the imminent collapse of society. Psychohistory is an interesting
plot device, but it is firmly in the realms of science fiction. There are far too many
variables and unknown guantities in human societies to do anything except pre-
dict very broad trends a short term into the future, and even then the process is
notoriously prone to embarrassing errors. This situation is not likely to change
in the foreseeable future. However, multiagent systems do provide an interesting
and novel new tool for simulating societies, which may help shed some light on
various kinds of social processes. A nice example of this work is the EOS project
(Doran and Palmer, 1995). The aim of the EOS project was to use the tools of
multiagent systems research to gain an insight into how and why social complex-
ity emerged in a Palaeolithic culture in southern France at the time of the last
ice age. The goal of the project was not to directly simulate these ancient soci-
eties, but to try to understand some of the factors involved in the emergence of
social complexity in such societies. (The EOS project is described in more detail
in Chapter 12.)

Objections to Multiagent Systems

No doubt some readers are already sceptical about multiagent systems, as indeed
are some in the international computer science research community. In this sec-
tion, therefore, I have attempted to anticipate and respond to the most commonly
voiced objections to multiagent systems.

Is it not all just distributed/concurrent systems?

The concurrent systems community have for several decades been investigat-
ing the properties of systems that contain muitiple interacting components, and
have been developing theories, programming languages, and tools for explaining,
modelling, and developing such systems (Ben-Ari, 1990; Holzmann, 1991; Magee
and Kramer, 1999). Multiagent systems are - by definition - a subclass of con-
current systems, and there are some in the distributed systems community who
question whether multiagent systems are sufficiently different to ‘standard’ dis-
tributed/concurrent systems to merit separate study. My view on this is as follows.
First, it is important to understand that when designing or implementing a multi-
agent system, it is essential to draw on the wisdom of those with experience in
distributed/concurrent systems. Failure to do so invariably leads to exactly the
kind of problems that this community has been working for so long to overcome.
Thus it is important to worry about such issues as mutual exclusion over shared
resources, deadlock, and livelock when implementing a multiagent system.

Objections to Multiagent Systems 9

In multiagent systems, however, there are two important twists to the concur-
rent systems story.

- First, because agents are assumed to be autonomous - capable of making
independent decisions about what to do in order to satisfy their design
objectives - it is generally assumed that the synchronization and coordi-
nation structures in a multiagent system are not hardwired in at design
time, as they typically are in standard concurrent/distributed systems.
We therefore need mechanisms that will allow agents to synchronize and
coordinate their activities at run time.

- Second, the encounters that occur among computing elements in a multi-
agent system are economic encounters, in the sense that they are encounters
between self-interested entities. In a classic distributed/concurrent system,
all the computing elements are implicitly assumed to share a common goal
(of making the overall system function correctly). In multiagent systems, it is
assumed instead that agents are primarily concerned with their own welfare
(although of course they will be acting on behalf of some user/owner).

For these reasons, the issues studied in the multiagent systems community have
arather different flavour to those studied in the distributed/concurrent systems
community. We are concerned with issues such as how agents can reach agree-

ment through negotiation on matters of common interest, and how agents can
rhmnmu‘;ﬂlv coordinate their activities with agents whose on:ﬂQ and motives are

AAQALLAN QALY LV RALIAGLT taatir GQhuaVial o viiii il 130 Qad Quaile 212828 VEo AL L

unknown. (It is worth pointing out, however, that I see these issues as a natural
next step for distributed/concurrent systems research.)

Is it not all just artificial intelligence (Al)?

The multiagent systems field has enjoyed an intimate relationship with the arti-
ficial intelligence (Al) field over the years. Indeed, until relatively recently it was
common to refer to multiagent systems as a subfield of Al; although multiagent
systems researchers would indignantly - and perhaps accurately - respond that Al

ic morae nronarly rindaratrnnd ne o anthfinld Af mnltiacont eyvetama Mars rarantly
43 111V O J_-’l UP‘.II)’ UILUTILI OLUULL Ao d OULIICIU UL lllulleB\.llL DyDL\.lllD IVIJL L LLLelinly,

it has become increasingly common practice to define the endeavour of Al itself
as one of constructing an intelligent agent (see, for example, the enormously suc-
cessful introductory textbook on Al by Stuart Russell and Peter Norvig (Russell
and Norvig, 1995)). There are several important points to be made here:

- First, Al has largely (and, perhaps, mistakenly) been concerned with the com-
ponents of intelligence: the ability to learn, plan, understand images, and so
on. In contrast the agent field is concerned with entities that integrate these
components, in order to provide a machine that is capable of making inde-
pendent decisions. It may naively appear that in order to build an agent,
we need to solve all the problems of Al itself: in order to build an agent,
we need to solve the planning problem, the learning problem, and so on

10 Introduction

(because our agent will surely need to learn, plan, and so on). This is not the
case. As Oren Etzioni succinctly put it: ‘Intelligent agents are ninety-nine per-
cent computer science and one percent Al’ (Etzioni, 1996). When we build
an agent to carry out a task in some environment, we will very likely draw
upon Al techniques of some sort - but most of what we do will be standard
computer science and software engineering. For the vast majority of appli-
cations, it is not necessary that an agent has all the capabilities studied in
Al - for some applications, capabilities such as learning may even be unde-
sirable. In short, while we may draw upon Al techniques to build agents, we
do not need to solve all the problems of Al to build an agent.

- Secondly, classical Al has largely ignored the social aspects of agency. I hope
you will agree that part of what makes us unique as a species on Earth is not
simply our undoubted ability to learn and solve problems, but our ability to
communicate, cooperate, and reach agreements with our peers. These kinds
of social ability - which we use every day of our lives - are surely just as
important to intelligent behaviour as are components of intelligence such
as planning and learning, and yet they were not studied in Al until about
1980.

Is it not all just economics/game theory?

Game theory is a mathematical theory that studies interactions among self-
interested agents (Binmore, 1992). It is interesting to note that von Neumann,
one of the founders of computer science, was also one of the founders of game
theory (Neumann and Morgenstern, 1944); Alan Turing, arguably the other great
figure in the foundations of computing, was also interested in the formal study
of games, and it may be that it was this interest that ultimately led him to write
his classic paper Computing Machinery and Intelligence, which may be seen as the
foundation of Al as a discipline (Turing, 1963). However, since these beginnings,
game theory and computer science went their separate ways for some time. Game
theory was largely - though by no means solely - the preserve of economists, who
were interested in using it to study and understand interactions among economic
entities in the real world.

Recently, the tools and techniques of game theory have found many applica-
tions in computational multiagent systems research, particularly when applied
to problems such as negotiation (see Rosenschein and Zlotkin (1994), Sandholm
(1999) and Chapters 6 and 7). Indeed, at the time of writing, game theory seems
to be the predominant theoretical tool in use for the analysis of multiagent sys-
tems. An obvious question is therefore whether multiagent systems are properly
viewed as a subfield of economics/game theory. There are two points here.

- First, many of the solution concepts developed in game theory (such as Nash
equilibrium, discussed in Chapter 6), were developed without a view to com-
putation. They tend to be descriptive concepts, telling us the properties of

Objections to Multiagent Systems 11

an appropriate, optimal solution without telling us how to compute a solu-

tion, Moreover, it turns out that the problem of computing a solution is

often computationally very hard (e.g. NP-complete or worse). Multiagent sys-

tems research highlights these problems, and allows us to bring the tools
vt 2ot o] P Y a T T 2NN ATt et ey il Anranan Al +hhamver (M A

UJ. LUlllpuLCl DLICllkC \C B LUlllpuldllulldl LUIllplC}\lLy I.lJ.CUl b4 \\J(ll cy o.uu JU].J.I.I'
son, 1979; Papadimitriou, 1994)) to bear on them.

- Secondly, some researchers question the assumptions that game theory
makes in order to reach its conclusions. In particular, debate has arisen in
the multiagent systems community with respect to whether or not the notion
of a rational agent, as modelled in game theory, is valid and/or useful for
understanding human or artificial agent societies.

(Please note that all this should not be construed as a criticism of game theory,
which is without doubt a valuable and important tool in multiagent systems, likely
to become much more widespread in use over the coming years.)

Is it not all just social science?

The social sciences are primarily concerned with understanding the behaviour of
human societies. Some social scientists are interested in (computational) multi-
agent systems because they provide an experimental tool with which to model
human societies. In addition, an obvious approach to the design of multiagent
systems - which are artificial societies - is to look at how a particular function
works in human societies, and try to build the multiagent system in the same way.
(An analogy may be drawn here with the methodology of Al, where it is quite com-
mon to study how humans achieve a particular kind of intelligent capability, and
then to attempt to model this in a computer program.) Is the multiagent systems
field therefore simply a subset of the social sciences?

Although we can usefully draw insights and analogies from human societies, it
does not follow that we can build artificial societies in exactly the same way. It
is notoriously hard to precisely model the behaviour of human societies, simply
because they are dependent on so many different parameters. Moreover, although
itis perfectly legitimate to design a multiagent system by drawing upon and mak-
ing use of analogies and metaphors from human societies, it does not follow that
this is going to be the best way to design a multiagent system: there are other
tools that we can use equally well (such as game theory - see above).

It seems to me that multiagent systems and the social sciences have a lot to say
to each other. Multiagent systems provide a powerful and novel tool for modelling
and understanding societies, while the social sciences represent a rich repository
of concepts for understanding and building multiagent systems - but they are
quite distinct disciplines.

12 Introduction

Notes and Further Reading

There are now many introductions to intelligent agents and multiagent systems.
Ferber (1999) is an undergraduate textbook, although it was written in the early
1990s, and so (for example) does not mention any issues associated with the
Web. A first-rate collection of articles introducing agent and multiagent systems
is Weild (1999). Many of these articles address issues in much more depth than is
possible in this book. I would certainly recommend this volume for anyone with
a serious interest in agents, and it would make an excellent companion to the
present volume for more detailed reading.

Three collections of research articles provide a comprehensive introduction
to the field of autonomous rational agents and multiagent systems: Bond and

Gasser’s 1988 collection, Readings in Distributed Artificial Intelligence, introduces

almanet all the haciec nrahlamece in the mnltingent cveteme finld and althniioh ecameae
CQULIIJOL Gl LN UQOoIL PEUMILLLILID 1L LN Lll.u.l\.lcls\.-ll\. Dy alllo 1ICiu, Allidd ﬂllll\}us.\.l OUL.lL_.

of the papers it contains are now rather dated, it remains essential reading (Bond
and Gasser, 1988); Huhns and Singh’s more recent collection sets itself the ambi-
tious goal of providing a survey of the whole of the agent field, and succeeds
in this respect very well (Huhns and Singh, 1998). Finally, Bradshaw (1997) is a
coliection of papers on software agents.

For a general introduction to the theory and practice of intelligent agents, see
Wooldridge and Jennings (1995), which focuses primarily on the theory of agents,
but also contains an extensive review of agent architectures and programming
languages. A short but thorough roadmap of agent technology was published as
Jennings et al. (1998).

cor (198R). Thig article ig hrnhnhlv

a '
Qaiva WFGOSSTL o uuu[A% 1D pa o Qesay

the best survey of the problems and issues associated with multiagent systems
research yet published. Most of the issues it addresses are fundamentally still
open, and it therefore makes a useful preliminary to the current volume. It may
be worth revisiting when the course is complete.

_,;uu \..u“;.;b AZARA UCALAL LASEL LW/ A5

R |

Objections to Multiagent Systems 13

Exercises

(1) [Class discussion.]

Moore’s law - a well-known dictum in computing - tells us that the number of tran-
sistors that it is possible to place on an integrated circuit doubles every 18 months. This
suggests that world’s net processing capability is currently growing at an exponential rate.
Within a few decades, it seems likely that computers will outnumber humans by several
orders of magnitude - for every person on the planet there will be tens, hundreds, perhaps
thousands or millions of processors, linked together by some far distant descendant of

today’s Internet. (This is not fanciful thinking: just extrapolate from the record of the past
five decades.)

In light of this, discuss the following.
- What such systems might offer - what possibilities are there?
- What are the challenges to make this vision happen?

2

Intelligent
Agents

The aim of this chapter is to give you an understanding of what agents are, and
some of the issues associated with building them. In later chapters, we will see
specific approaches to building agents.

An obvious way to open this chapter would be by presenting a definition of the
term agent. After all, this is a book about multiagent systems - surely we must all
agree on what an agent is? Sadly, there is no universally accepted definition of the
term agent, and indeed there is much ongoing debate and controversy on this very
subject. Essentially, while there is a general consensus that autonomy is central
to the notion of agency, there is little agreement beyond this. Part of the difficulty
is that various attributes associated with agency are of differing importance for
different domains. Thus, for some applications, the ability of agents to learn from
their experiences is of paramount importance; for other applications, learning is
not only unimportant, it is undesirable!.

Nevertheless, some sort of definition is important - otherwise, there is a danger
that the term will lose all meaning. The definition presented here is adapted from
Wooldridge and Jennings (1995).

An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order
to meet its design objectives.

I'Michael Georgeff, the main architect of the PRS agent system discussed in later chapters, gives
the example of an air-traffic control system he developed; the clients of the system would have been
horrified at the prospect of such a system modifying its behaviour at run time. ..

]

16 Intelligent Agents

AGENT

sensor
input

action
output

ENVIRONMENT W

Figure 2.1 An agentin its environment. The agent takes sensory input from the environ-
ment, and produces as output actions that affect it. The interaction is usually an ongoing,
non-terminating one.

Figure 2.1 gives an abstract view of an agent. In this diagram, we can see the
action output generated by the agent in order to affect its environment. In most
domains of reasonable complexity, an agent will not have complete control over
its environment. It will have at best partial control, in that it can influence it. From
the point of view of the agent, this means that the same action performed twice in
apparently identical circumstances might appear to have entirely different effects,
and in particular, it may fail to have the desired effect. Thus agents in all but the
most trivial of environments must be prepared for the possibility of failure. We
can sum this situation up formally by saying that environments are in general
assumed to be non-deterministic.

Normally, an agent will have a repertoire of actions available to it. This set of
possible actions represents the agents effectoric capability: its ability to modify
its environments. Note that not all actions can be performed in all situations. For
example, an action ‘lift table’ is only applicable in situations where the weight
of the table is sufficiently small that the agent can lift it. Similarly, the action
‘purchase a Ferrari’ will fail if insufficient funds are available to do so. Actions
therefore have preconditions associated with them, which define the possible sit-
uations in which they can be applied.

The key problem facing an agent is that of deciding which of its actions it
should perform in order to best satisfy its design objectives. Agent architectures,
of which we shall see many examples later in this book, are really software
architectures for decision-making systems that are embedded in an environment.
At this point, it is worth pausing to consider some examples of agents (though
not, as yet, intelligent agents).

Control systems

First, any control system can be viewed as an agent. A simple {(and overused)
example of such a system is a thermostat. Thermostats have a sensor for detect-

N

.

Environments 17

ing room temperature, This sensor is directly embedded within the environment
(i.e. the room), and it produces as output one of two signals: one that indicates
that the temperature is too low, another which indicates that the temperature is
OK. The actions available to the thermostat are ‘heating on’ or ‘heating off’. The
action ‘heating on’ will generally have the effect of raising the room temperature,
but this cannot be a guaranteed effect - if the door to the room is open, for exam-
ple, switching on the heater may have no effect. The (extremely simple) decision-
making component of the thermostat implements (usually in electro-mechanical
hardware) the following rules:

AAQLRIVVAL L) WAL LRIV ALIE s ke,

too cold — heating on,
temperature OK — heating off.

More complex environment control systems, of course, have considerably richer
decision structures. Examples include autonomous space probes, fly-by-wire air-
craft, nuclear reactor control systems, and so on.

Software demons

Second, most software demons (such as background processes in the Unix operat-
ing system), which monitor a software environment and perform actions to modify

e S22, YV RAAn AL a2l Qe CarVaiiainaai Galll ol aios

it, can be V1ewed as agents. An example is the X Windows program xhiff. This
utility continually monitors a user’s incoming email, and indicates via a GUI icon
whether or not they have unread messages. Whereas our thermostat agent in the
previous example inhabited a physical environment - the physical world - the
xbiff program inhabits a software environment. It obtains information about
this environment by carrying out software functions (by executing system pro-
grams such as 1s, for example), and the actions it performs are software actions
(changing an icon on the screen, or executing a program). The decision-making
component is just as simple as our thermostat example.

To summarize, agents are simply computer systems that are capable of
autonomous action in some environment in order to meet their design objectives.

An agent will tvnically sense its environment (bv nhvsical sensors in the case of
L7341 ub\.llL AAR YW L)’Hl\ull)‘ DL 310N AL NAAVAELFARILINAAL \IJ)/ Hll)/ DLV I LIONFL O LT LY VAU WL

agents situated in part of the real world, or by software sensors in the case of soft-
ware agents), and will have available a repertoire of actions that can be executed
to modify the environment, which may appear to respond non-deterministically
to the execution of these actions.

Russell and Norvig suggest the following classification of environment properties
(Russell and Norvig, 1995, p. 46).

18 Intelligent Agents

Accessible versus inaccessible. An accessible environment is one in which the
agent can obtain complete, accurate, up-to-date information about the environ-
ment's state. Most real-world environments (including, for example, the every-
day physical world and the Internet) are not accessible in this sense.

Deterministic versus non-deterministic. A deterministic environment is one in
which any action has a single guaranteed effect - there is no uncertainty about
the state that will result from performing an action.

Static versus dynamic. A static environment is one that can be assumed to
remain unchanged except by the performance of actions by the agent. In con-
trast, a dynamic environment is one that has other processes operating on it,
and which hence changes in ways beyond the agent’s control. The physical world
is a highly dynamic environment, as is the Internet.

Discrete versus continuous. An environment is discrete if there are a fixed, finite
number of actions and percepts in it.

We begin our discussion with accessibility. First, note that in extreme cases, the
laws of physics prevent many environments from being completely accessible.
For example, it may be that as I write, the surface temperature at the North Pole
of Mars is —100 °C, but the laws of physics will prevent me from knowing this
fact for some time. This information is thus inaccessible to me. More mundanely,
in almost any realistic environment uncertainty is inherently present.

The more accessible an environment is, the simpler it is to build agents that
operate effectively within it. The reason for this should be self-evident. Ultimately,
a ‘good’ agent is one that makes the ‘right’ decisions. The quality of decisions
that an agent can make is clearly dependent on the quality of the information
available to it. If little, or inaccurate information is available, then the agent’s
decision is uninformed, and is hence likely to be poor. As more complete and
accurate information becomes available, the potential to make a good decision
increases.

The next source of complexity we consider is determinism. An environment is
deterministic if the outcome of any action performed is uniquely defined, and
non-deterministic otherwise. Non-determinism can seem an unusual property to
attribute to environments. For example, we usually imagine that software envi-
ronments, governed as they are by precise rules, are paradigms of determinism.
Non-determinism captures several important aspects of such environments as
follows.

- Non-determinism captures the fact that agents have a limited ‘sphere of
influence’ - they have at best partial control over their environment.

- Similarly, actions are typically performed by agents in order to bring about
some desired state of affairs. Non-determinism captures the fact that actions
can fail to have the desired result.

I

s

Environments 19

Clearly, deterministic environments are preferable from the point of view of the
agent designer to non-deterministic environments. If there is never any uncer-
tainty about the outcome of some particular action, then an agent need never
stop to determine whether or not a particular action had a particular outcome,
and thus whether or not it needs to reconsider its course of action. In particular,
in a deterministic environment, an agent designer can assume that the actions
performed by an agent will always succeed: they will never fail to bring about
their intended effect.

Unfortunately, as Russell and Norvig (1995) point out, if an environment is
sufficiently complex, then the fact that it is actually deterministic is not much
help. To all intents and purposes, it may as well be non-deterministic. In practice,
almost all realistic environments must be regarded as non-deterministic from an
agent’s perspective.

Non-determinism is closely related to dynamism. Early artificial intelligence
research on action selection focused on planning algorithms - algorithms that,
given a description of the initial state of the environment, the actions available to
an agent and their effects, and a goal state, will generate a plan (i.e. a sequence
of actions) such that when executed from the initial environment state, the plan
will guarantee the achievement of the goal (Allen et al., 1990). However, such
planning algorithms implicitly assumed that the environment in which the plan
was being executed was static - that it did not change except through the perfor-
mance of actions by the agent. Clearly, many environments (including software
environments such as computer operating systems, as well as physical environ-
ments such as the real world), do not enjoy this property - they are dynamic, with
many processes operating concurrently to modify the environment in ways that
an agent has no control over.

From an agent’s point of view, dynamic environments have at least two impor-
tant properties. The first is that if an agent performs no external action between
times ty and £, then it cannot assume that the environment at t; will be the same
as it was at time t(. This means that in order for the agent to select an appropriate
action to perform, it must perform information gathering actions to determine the
state of the environment (Moore, 1990). In a static environment, there is no need

for such actions. The second property is that other processes in the environment
can ‘interfere’ with the actions it attemnts to nerform. The idea is essentiallv the

Azil A YYAull it QU UviLy 20 Qi ol (U pliiUadiie i sl A3 Looaiaui)y uav

concept of interference in concurrent systems theory (Ben-Ari, 1990). Thus if an
agent checks that the environment has some property @ and then starts execut-
ing some action « on the basis of this information, it cannot in general guarantee
that the environment will continue to have property @ while it is executing «.
These properties suggest that static environments will be inherently simpler to
design agents for than dynamic ones, First, in a static environment, an agent need
only ever perform information gathering actions once. Assuming the information
it gathers correctly describes the environment, and that it correctly understands
the effects of its actions, then it can accurately predict the effects of its actions

20 Intelligent Agents

on the environment, and hence how the state of the environment will evolve.
(This is in fact how most artificial intelligence planning algorithms work (Lifschitz,
1986).) Second, in a static environment, an agent never needs to worry about
synchronizing or coordinating its actions with those of other processes in the
environment (Bond and Gasser, 1988).

The final distinction made in Russell and Norvig (1995) is between discrete and
continuous environments. A discrete environment is one that can be guaranteed
to only ever be in a finite number of discrete states; a continuous one may be
in uncountably many states. Thus the game of chess is a discrete environment -
there are only a finite (albeit very large) number of states of a chess game. Russell
and Norvig (1995) give taxi driving as an example of a continuous environment.

Discrete environments are simpler to design agents for than continuous ones,
for several reasons. Most obviously, digital computers are themselves discrete-
state systems, and although they can simulate continuous systems to any desired
degree of accuracy, there is inevitably a mismatch between the two types of sys-
tems. Some information must be lost in the mapping from continuous environ-
ment to discrete representation of that environment. Thus the information a
discrete-state agent uses in order to select an action in a continuous environ-
ment will be made on the basis of information that is inherently approximate.
Finally, with finite discrete state environments, it is in principle possible to enu-
merate all possible states of the environment and the optimal action to perform
in each of these states. Such a lookup table approach to agent design is rarely
possible in practice, but it is at least in principle possible for finite, discrete state
environments.

In summary, the most complex general class of environments are those that
are inaccessible. non-deterministic rl\mnmm and continunus. Environments that

A AGRAR LS SAVA,y R AATRAC A L A2 SN, 4iQisalihoy Gadla LAFLARIRIIN RS . .2l il 4‘...-‘u L8y §

have these properties are often referred to as open (Hewitt, 1986).

Environmental properties have a role in determining the complexity of the agent
design process, but they are by no means the only factors that play a part. The sec-
ond important property that plays a part is the nature of the interaction between
agent and environment.

Originally, software engineering concerned itself with what are known as ‘func-
tional’ systems. A functional system is one that simply takes some input, performs
some computation over this input, and eventually produces some output. Such
systems may formally be viewed as functions f : I — O from a set I of inputs
to a set O of outputs. The classic example of such a system is a compiler, which
can be viewed as a mapping from a set I of legal source programs to a set O of

AnrracnnnAing Alhinat Ar manrhiian ~cAadA AavAaagrn

COITESPoONGing o0jeCt O madnirne Coac prograriis.

One of the key attributes of such functional systems is that they terminate.
This means that, formally, their properties can be understood in terms of pre-
conditions and postconditions (Hoare, 1969). The idea is that a precondition ¢
represents what must be true of the program’s environment in order for that pro-
gram to operate correctly. A postcondition ¢ represents what will be true of the

Environments 21

program’s environment after the program terminates, assuming that the precon-
dition was satisfied when execution of the program commenced. A program is
said to be completely correct with respect to precondition ¢ and postcondition
¢ if it is guaranteed to terminate when it is executed from a state where the pre-
condition is satisfied, and, upon termination, its postcondition is guaranteed to
be satisfied. Crucially, it is assumed that the agent’s environment, as character-
ized by its precondition @, is only modified through the actions of the program
itself. As we noted above, this assumption does not hold for many environments.

Although the internal complexity of a functional system may be great (e.g. in the
case of a compiler for a complex programming language such as Ada), functional
programs are, in general, comparatively simple to correctly and efficiently engi-
neer. For example, functional systems lend themselves to design methods based
on ‘divide and conquer’. Top-down stepwise refinement (Jones, 1990} is an exam-
ple of such a method. Semi-automatic refinement techniques are also available,
which allow a designer to refine a high-level (formal) specification of a functional
system down to an implementation (Morgan, 1994).

Unfortunately, many computer systems that we desire to build are not func-
tional in this sense. Rather than simply computing a function of some input and
then terminating, many computer systems are reactive, in the following sense:

Reactive systems are systems that cannot adequately be described
by the relational or functional view. The relational view regards pro-
grams as functions. . .from an initial state to a terminal state. Typically,
the main role of reactive systems is to maintain an interaction with
their environment, and therefore must be described (and specified) in
terms of their on-going behaviour. . .[EJvery concurrent system...must
be studied by behavioural means. This is because each individual mod-
ule in a concurrent system is a reactive subsystem, interacting with its
own environment which consists of the other modules.

There are at least three current usages of the term reactive system in computer
science. The first, oldest, usage is that by Pnueli and followers (see, for example,
Pnueli (1986), and the description above). Second, researchers in Al planning take
areactive system to be one that is capable of responding rapidly to changes in its
environment - here the word ‘reactive’ is taken to be synonymous with ‘respon-
sive’ (see, for example, Kaelbling, 1986). More recently, the term has been used to
denote systems which respond directly to the world, rather than reason explicitly
about it (see, for example, Connah and Wavish, 1990).

Reactive systems are harder to engineer than functional ones. Perhaps the
most important reason for this is that an agent engaging in a (conceptually)
non-terminating relationship with its environment must continually make local
decisions that have global consequences. Consider a simple printer controller
agent. The agent continually receives requests to have access to the printer, and

22 Intelligent Agents

is allowed to grant access to any agent that requests it, with the proviso that it
is only allowed to grant access to one agent at a time. At some time, the agent
reasons that it will give control of the printer to process pi, rather than p», but
that it will grant p» access at some later time point. This seems like a reasonable
decision, when considered in isolation. But if the agent always reasons like this,
it will never grant p» access. This issue is known as fairness (Francez, 1986). In
other words, a decision that seems entirely reasonable in a local context can have
undesirable effects when considered in the context of the system’s entire history.
This is a simple example of a complex problem. In general, the decisions made
by an agent have long-term effects, and it is often difficult to understand such
long-term effects.

One possible solution is to have the agent explicitly reason about and predict
the behaviour of the system, and thus any temporally distant effects, at run-time.
But it turns out that such prediction is extremely hard.

Russell and Subramanian (1995) discuss the essentially identical concept of
episodic environments. In an episodic environment, the performance of an agent
is dependent on a number of discrete episodes, with no link between the perfor-
mance of the agent in different episodes. An example of an episodic environment
would be a mail sorting system (Russell and Subramanian, 1995). As with reactive
systems, episodic interactions are simpler from the agent developer’s perspective
because the agent can decide what action to perform based only on the current
episode - it does not need to reason about the interactions between this and future
episodes.

Another aspect of the interaction between agent and environment is the con-
cept of real time. Put at its most abstract, a real-time interaction is simply one
in which time plays a part in the evaluation of an agent’s performance (Russell
and Subramanian, 1995, p. 585). It is possible to identify several different types
of real-time interactions:

. thosein which a decision must be made about what action to perform within
some specified time bound;

- those in which the agent must bring about some state of affairs as quickly
as possible;

- those in which an agent is required to repeat some task, with the objective
being to repeat the task as often as possible.

If time is not an issue, then an agent can deliberate for as long as required in order
to select the ‘best’ course of action in any given scenario. Selecting the best course
of action implies search over the space of all possible courses of action, in order
to find the ‘best’. Selecting the best action in this way will take time exponential in
the number of actions available to the agent?. It goes without saying that for any

2If the agent has n actions available to it, then it has #! courses of action available to it (assuming
no duplicate actions).

2.2

Intelligent Agents 23

realistic environment, such deliberation is not viable. Thus any realistic system
must be regarded as real-time in some sense.

Some environments are real-time in a much stronger sense than this. For exam-
ple, the PRS, one of the best-known agent systems, had fault diagnosis on NASA’s
Space Shuttle as its initial application domain (Georgeff and Lansky, 1987). In
order to be of any use, decisions in such a system must be made in milliseconds.

Intelligent Agents

We are not used to thinking of thermostats or Unix demons as agents, and cer-
tainly not as intelligent agents. So, when do we consider an agent to be intelligent?
The question, like the question ‘what is intelligence?’ itself, is not an easy one to
answer. One way of answering the question is to list the kinds of capabilities that
we might expect an intelligent agent to have. The following list was suggested in
Wooldridge and Jennings (1995).

Reactivity. Intelligent agents are able to perceive their environment, and respond
in a timely fashion to changes that occur in it in order to satisfy their design
objectives.

Proactiveness. Intelligent agents are able to exhibit goal-directed behaviour by
taking the initiative in order to satisfy their design objectives.

Social ability. Intelligent agents are capable of interacting with other agents (and
possibly humans) in order to satisfy their design objectives.

These properties are more demanding than they might at first appear. To see
why, let us consider them in turn. First, consider proactiveness: goal-directed
behaviour. It is not hard to build a system that exhibits goal-directed behaviour -
we do it every time we write a procedure in Pascal, a function in C, or a method in
Java. When we write such a procedure, we describe it in terms of the assumptions
on which it relies (formally, its precondition) and the effect it has if the assump-
tions are valid (its postcondition). The effects of the procedure are its goal: what
the author of the software intends the procedure to achieve. If the precondition
holds when the procedure is invoked, then we expect that the procedure will exe-
cute correctly: thatit will terminate, and that upon termination, the postcondition
will be true, i.e. the goal will be achieved. This is goal-directed behaviour: the pro-
cedure is simply a plan or recipe for achieving the goal. This programming model
is fine for many environments. For example, it works well when we consider func-
tional systems, as discussed above.

But for non-functional systems, this simple model of goal-directed program-
ming is not acceptable, as it makes some important limiting assumptions. In par-
ticular, it assumes that the environment does not change while the procedure is
executing. If the environment does change, and, in particular, if the assumptions

24 Intelligent Agents

(precondition) underlying the procedure become false while the procedure is exe-
cuting, then the behaviour of the procedure may not be defined - often, it will
simply crash. Also, it is assumed that the goal, that is, the reason for executing
the procedure, remains valid at least until the procedure terminates. If the goal
does not remain valid, then there is simply no reason to continue executing the
procedure.

In many environments, neither of these assumptions are valid. In particular,
in domains that are too complex for an agent to observe completely, that are
multiagent (i.e. they are populated with more than one agent that can change the
environment), or where there is uncertainty in the environment, these assump-
tions are not reasonable. In such environments, blindly executing a procedure
without regard to whether the assumptions underpinning the procedure are valid
is a poor strategy. In such dynamic environments, an agent must be reactive, in
just the way that we described above. That is, it must be responsive to events that
occur in its environment, where these events affect either the agent’s goals or the
assumptions which underpin the procedures that the agent is executing in order
to achieve its goals.

As we have seen, building purely goal-directed systems is not hard. As we shall
see later, building purely reactive systems - ones that continually respond to their
environment - is also not difficult. However, what turns out to be hard is building
a system that achieves an effective balance between goal-directed and reactive
behaviour. We want agents that will attempt to achieve their goals systematically,
perhaps by making use of complex procedure-like patterns of action. But we do
not want our agents to continue blindly executing these procedures in an attempt
to achieve a goal either when it is clear that the procedure will not work, or when
the goal is for some reason no longer valid. In such circumstances, we want our
agent to be able to react to the new situation, in time for the reaction to be of
some use. However, we do not want our agent to be continually reacting, and
hence never focusing on a goal long enough to actually achieve it.

On reflection, it should come as little surprise that achieving a good balance
between goal-directed and reactive behaviour is hard. After all, itis comparatively
rare to find humans that do this very well. This problem - of effectively integrating
goal-directed and reactive behaviour - is one of the key problems facing the agent
designer. As we shall see, a great many proposals have been made for how to
build agents that can do this - but the problem is essentially still open.

Finally, let us say something about social ability, the final component of flexible
autonomous action as defined here. In one sense, social ability is trivial: every
day, millions of computers across the world routinely exchange information with
both humans and other computers. But the ability to exchange bit streams is
not really social ability. Consider that in the human world, comparatively few of
our meaningful goals can be achieved without the cooperation of other people,
who cannot be assumed to share our goals - in other words, they are themselves
autonomous, with their own agenda to pursue. To achieve our goals in such sit-

Agents and Ohbjects 25

uations, we must negotiate and cooperate with others. We may be required to
understand and reason about the goals of others, and to perform actions (such
as paying them money} that we would not otherwise choose to perform, in order
to get them to cooperate with us, and achieve our goals. This type of social ability
is much more complex, and much less well understood, than simply the ability to
exchange binary information. Social ability in general (and topics such as nego-
tiation and cooperation in particular) are dealt with elsewhere in this book, and
will not therefore be considered here. In this chapter, we will be concerned with
the decision making of individual intelligent agents in environments which may
be dynamic, unpredictable, and uncertain, but do not contain other agents.

Agents and Objects

Programmers familiar with object-oriented languages such as Java, C++, or
Smalltalk sometimes fail to see anything novel in the idea of agents. When one
stops to consider the relative properties of agents and objects, this is perhaps not
surprising.

There is a tendency.. .to think of objects as ‘actors’ and endow them
with human-like intentions and abilities. It's tempting to think about
objects ‘deciding’ what to do about a situation, [and] ‘asking’ other
objects for information. . .. Objects are not passive containers for state
and behaviour, but are said to be the agents of a program’s activity.

(NeXT Computer Inc., 1993, p. 7)

Objects are defined as computational entities that encapsulate some state, are
able to perform actions, or methods on this state, and communicate by message
passing. While there are obvious similarities, there are also significant differences
between agents and objects. The first is in the degree to which agents and objects
are autonomous. Recall that the defining characteristic of object-oriented pro-
gramming is the principle of encapsulation - the idea that objects can have con-
trol over their own internal state. In programming languages like Java, we can
declare instance variables (and methods) to be private, meaning they are only
accessible from within the object. (We can of course also declare them public,
meaning that they can be accessed from anywhere, and indeed we must do this
for methods so that they can be used by other objects. But the use of public
instance variables is usually considered poor programming style.) In this way, an
object can be thought of as exhibiting autonomy over its state: it has control over
it. But an object does not exhibit control over its behaviour. That is, if a method m
is made available for other objects to invoke, then they can do so whenever they
wish - once an object has made a method public, then it subsequently has no
control over whether or not that method is executed. Of course, an object must
make methods available to other objects, or else we would be unable to build a

26 Intelligent Agents

system out of them. This is not normally an issue, because if we build a system,
then we design the objects that go in it, and they can thus be assumed to share a
‘common goal’. But in many types of multiagent system (in particular, those that
contain agents built by different organizations or individuals), no such common
goal can be assumed. It cannot be taken for granted that an agent i will execute
an action (method) a just because another agent j wants it to - a may not be in
the best interests of i. We thus do not think of agents as invoking methods upon
one another, but rather as requesting actions to be performed. If j requests i to
perform a, then i may perform the action or it may not. The locus of control with
respect to the decision about whether to execute an action is thus different in
agent and object systems. In the object-oriented case, the decision lies with the
object that invokes the method. In the agent case, the decision lies with the agent
that receives the request. This distinction between objects and agents has been
nicely summarized in the following slogan.

Objects do it for free; agents do it because they want to.

Of course, there is nothing to stop us implementing agents using object-oriented
techniques. For example, we can build some kind of decision making about
whether to execute a method into the method itself, and in this way achieve a
stronger kind of autonomy for our objects. The point is that autonomy of this
kind is not a component of the basic object-oriented model.

The second important distinction between object and agent systems is with
respect to the notion of flexible (reactive, proactive, social} autonomous be-
haviour. The standard object model has nothing whatsoever to say about how to
build systems that integrate these types of behaviour. Again, one could object that
we can build object-oriented programs that do integrate these types of behaviour.
But this argument misses the point, which is that the standard object-oriented
programming model has nothing to do with these types of behaviour.

The third important distinction between the standard object model and our
view of agent systems is that agents are each considered to have their own thread
of control - in the standard object model, there is a single thread of control in
the system. Of course, a lot of work has recently been devoted to concurrency in
object-oriented programming. For example, the Java language provides built-in
constructs for multi-threaded programming. There are also many programming
languages available (most of them admittedly prototypes) that were specifically
designed to allow concurrent object-based programming. But such languages do
not capture the idea of agents as autonomous entities. Perhaps the closest that
the object-oriented community comes is in the idea of active objects.

An active object is one that encompasses its own thread of control....
Active objects are generally autonomous, meaning that they can exhibit
some behaviour without being operated upon by another object. Pas-
sive objects, on the other hand, can only undergo a state change when

—h Ry, RALZ LA AR, LA ARy AR S LACR L

explicitly acted upon.

Y

Agents and Expert Systems 27

(Booch, 1994, p. 91)

to exhibit flexible autonomous behaviour.
To summarize, the traditional view of an object and our view of an agent have
at least three distinctions:

+ agents embody a stronger notion of autonomy than objects, and, in partic-
ular, they decide for themselves whether or not to perform an action on
request from another agent;

- agents are capable of flexible (reactive, proactive, social) behaviour, and the
standard object model has nothing to say about such types of behaviour;
and

- a multiagent system is inherently multi-threaded, in that each agent is
assumed to have at least one thread of control.

Agents and Expert Systems

Expert systems were the most important Al technology of the 1980s (Hayes-Roth
etal, 1983). An expert system is one that is capable of solving problems or giving
advice in some knowledge-rich domain (Jackson, 1986). A classic example of an
expert system is MYCIN, which was intended to assist physicians in the treatment
of blood infections in humans. MYCIN worked by a process of interacting with a
user in order to present the system with a number of (symbolically represented)
facts, which the system then used to derive some conclusion. MYCIN acted very
much as a consultant: it did not operate directly on humans, or indeed any other
environment. Thus perhaps the most important distinction between agents and
expert systems is that expert systems like MYCIN are inherently disembodied. By
this, mean that they do not interact directly with any environment: they get their
information not via sensors, but through a user acting as middle man. In the same
way, they do not act on any environment, but rather give feedback or advice to a
third party. In addition, expert systems are not generally capable of cooperating
with other agents.

In summary, the main differences between agents and expert systems are as
follows:

. ‘classic’ expert systems are disembodied - they are not coupled to any envi-
ronment in which they act, but rather act through a user as a ‘middleman’;

. expert systems are not generally capable of reactive, proactive behaviour;
and

- expert systems are not generally equipped with social ability, in the sense
of cooperation, coordination, and negotiation.

2.5

4
I

o]
-
)
=
2]

ot
]

e

Despite these differences, some expert systems (particularly those that perform
real-time control tasks) look very much like agents. A good example is the
ARCHON system, discussed in Chapter 9 (Jennings et al., 1996a).

Agents as Intentional Systems

One common approach adopted when discussing agent systems is the intentional

Stance. With thig annroach, we ‘endow’ acents with mental states: beliefs, degires

;;;;; O QpprivGlii, VWL LI UYY GQETIIl0 VVLUL AriC7 I olUiT o, T iilt i oy ML ol oy

wishes, hope, and so on. The rationale for this approach is as follows. When
explaining human activity, it is often useful to make statements such as the fol-
lowing.

Janine took her umbrella because she believed it was going to rain.
Michael worked hard because he wanted to finish his book.

These statements make use of a folk psychology, by which human behaviour is
predicted and explained through the attribution of attitudes, such as believing and
wanting (as in the above examples), hoping, fearing, and so on (see, for example,
Stich (1983, p. 1) for a discussion of folk psychology). This folk psychology is well
established: most people reading the above statements would say they found their
meaning entirely clear, and would not give them a second glance.

The attitudes employed in such folk psychological descriptions are called the
intentional notions®. The philosopher Daniel Dennett has coined the term inten-

tinnal cuctom tn Angerrilhn ontiting ‘avshnca hohasviniir cnnm ho mradisrtod hy thoe mathnd
Luricat x))’..)lﬁ’fl LU ULOULLIJTC TLILILICD Wl oUT pllidviuvudl Ldil Jc lJl Culiv vy U)‘ LLIC Ll univyg

of attributing belief, desires and rational acumen’ (Dennett, 1978, 1987, p. 49).
Dennett identifies different ‘levels’ of intentional system as follows.

A first-order intentional system has beliefs and desires (etc.) but no
beliefs and desires about beliefs and desires. ... A second-order inten-
tional system is more sophisticated; it has beliefs and desires (and no
doubt other intentional states) about beliefs and desires (and other
intentional states) - both those of others and its own.

(Dennett, 1987, p. 243)

One can carry on this hierarchy of intentionality as far as required.

Now we have been using phrases like belief, desire, intention to talk about
computer programs. An obvious question is whether it is legitimate or useful
to attribute beliefs, desires, and so on to artificial agents Is this not just anthro-

POLLILL plllblu‘ lVlLLdl llly, dllOIY Ullltlb lldb dlgutu Uldl llltlt dle UL(.dblUilb WUCU
the intentional stance is appropriate as follows.

$Unfortunately, the word ‘intention’ is used in several different ways in logic and the philosophy
of mind. First, there is the BDI-like usage, as in ‘T intended to kill him’. Second, an intentional notion
is one of the attitudes, as above. Finally, in logic, the word intension (with an ‘s’) means the internal
content of a concept, as opposed to its extension. In what foliows, the intended meaning should
always be clear from context,

Agents as Intentional Systems 29

To ascribe beliefs, free will, intentions, consciousness, abilities, or wants
to a machine is legitimate when such an ascription expresses the
same information about the machine that it expresses about a per-
son. It is useful when the ascription helps us understand the struc-
ture of the machine, its past or future behaviour, or how to repair
or improve it. It is perhaps never logically required even for humans,
but expressing reasonably briefly what is actually known about the
state of the machine in a particular situation may require mental qual-
ities or qualities isomorphic to them. Theories of belief, knowledge
and wanting can be constructed for machines in a simpler setting than
for humans, and later applied to humans. Ascription of mental quali-
ties is most straightforward for machines of known structure such as
thermostats and computer operating systems, but is most useful when
applied to entities whose structure is incompletely known.

(McCarthy, 1978) (The underlining is from Shoham (1990).)

What objects can be described by the intentional stance? As it turns out, almost
any automaton can. For example, consider a light switch as follows.

It is perfectly coherent to treat a light switch as a (very cooperative)
agent with the capability of transmitting current at will, who invariably
transmits current when it believes that we want it transmitted and not
otherwise; flicking the switch is simply our way of communicating our
desires.

(Shoham, 1990, p. 6)

And yet most adults in the modern world would find such a description absurd -
perhaps even infantile. Why is this? The answer seems to be that while the inten-
tional stance description is perfectly consistent with the observed behaviour of a
light switch, and is internally consistent,

...it does not buy us anything, since we essentially understand the
mechanism sufficiently to have a simpler, mechanistic description of
its behaviour.

(Shoham, 1990, p. 6)

Put crudely, the more we know about a system, the less we need to rely on ani-
mistic, intentional explanations of its behaviour - Shoham observes that the move
from an intentional stance to a technical description of behaviour correlates well
with Piaget’s model of child development, and with the scientific development
of humankind generally (Shoham, 1990). Children will use animistic explanations
of objects - such as light switches - until they grasp the more abstract techni-
cal concepts involved. Similarly, the evolution of science has been marked by a
gradual move from theological/animistic explanations to mathematical ones. My

30 Intelligent Agents

own experiences of teaching computer programming suggest that, when faced
with completely unknown phenomena, it is not only children who adopt animistic
explanations. It is often easier to teach some computer concepts by using expla-
nations such as ‘the computer does not know...’, than to try to teach abstract
principles first.

An cbvious question is then, if we have alternative, perhaps less contentious
ways of explaining systems: why should we bother with the intentional stance?

Consider the alternatives available to us. One possibility is to characterize the
behaviour of a complex system by using the nhvcmnl stance (Dennett, 1996, p. 36).

“iii Miadl W2 GOV AN A Sy Slcill W MO aiaE A SIL UL SULAVILC AR08, 2 .27

The idea of the physical stance is to start w1th the original configuration of a
system, and then use the laws of physics to predict how this system will behave.

When 1 predict that a stone released from my hand will fall to the
ground, I am using the physical stance. I don't attribute beliefs and
desires to the stone; I attribute mass, or weight, to the stone, and rely
on the law of gravity to yield my prediction.

(Dennett, 1996, p. 37)

Another alternative is the design stance. With the design stance, we use knowledge
of what purpose a system is supposed to fulfil in order to predict how it behaves.
Dennett gives the example of an alarm clock (see pp. 37-39 of Dennett, 1996).
When someone presents us with an alarm clock, we do not need to make use of
physical laws in order to understand its behaviour. We can simply make use of
the fact that all alarm clocks are designed to wake people up if we set them with
a time. No understanding of the clock’s mechanism is required to justify such an
understanding - we know that all alarm clocks have this behaviour.

However, with very complex systems, even if a complete, accurate picture of the
system’s architecture and working is available, a physical or design stance expla-
nation of its behaviour may not be practicable. Consider a computer. Although we
might have a complete technical description of a computer available, it is hardly
practicable to appeal to such a description when explaining why a menu appears
when we click a mouse on an icon. In such situations, it may be more appropriate
to adopt an intentional stance description, if that description is consistent, and
simpler than the alternatives.

Note that the intentional stance is, in computer science terms, nothing more
than an abstraction tool It is a convenient shorthand for talking about complex
systems, which allows us to succinctly predict and explain their behaviour without
having to understand how they actually work. Now, much of computer science is
concerned with looking for good abstraction mechanisms, since these allow sys-
tem developers to manage complexity with greater ease. The history of program-
ming languages illustrates a steady move away from low-level machine-oriented
views of programming towards abstractions that are closer to human experience.
Procedural abstraction, abstract data types, and, most recently, objects are exam-
ples of this progression. So, why not use the intentional stance as an abstraction

g

2.6

Abstract Architectures for Intelligent Agents 31

tool in computing - to explain, understand, and, crucially, program complex com-
puter systems?

For many researchers this idea of programming computer systems in terms of
mentalistic notions such as belief, desire, and intention is a key component of
agent-based systems.

Abstract Architectures for Intelligent Agents

We can easily formalize the abstract view of agents presented so far. First, let us
assume that the environment may be in any of a finite set E of discrete, instanta-
neous states:

22LRMAS SLAIL S,

E={ee,...}.

Notice that whether or not the environment ‘really is’ discrete in this way is not too
important for our purposes: it is a (fairly standard) modelling assumption, which
we can justify by pointing out that any continuous environment can be modelled
by a discrete environment to any desired degree of accuracy.

Agents are assumed to have a repertoire of possibie actions available to them,
which transform the state of the environment. Let

Ac=1{o,0,...}

be the (finite) set of actions.

The basic model of agents interacting with their environments is as follows. The
environment starts in some state, and the agent begins by choosing an action to
perform on that state. As a result of this action, the environment can respond with
a number of possible states. However, only one state will actually result - though
of course, the agent does not know in advance which it will be. On the basis of
this second state, the agent again chooses an action to perform. The environment
responds with one of a set of possible states, the agent then chooses another
action, and so on.

A run, v, of an agent in an environment is thus a sequence of interleaved envi-
ronment states and actions:

] X X3 Xy -t
Fieg e e gy T el o
Let
- R be the set of all such possible finite sequences (over E and Ac);
- RAC be the subset of these that end with an action; and
- RE be the subset of these that end with an environment state.

We will use r,¥’,... to stand for members of R.
In order to represent the effect that an agent’s actions have on an environment,
we introduce a state transformer function (cf. Fagin et al., 1995, p. 154):

T RAC — p(E).

32 Intelligent Agents

Thus a state transformer function maps a run (assumed to end with the action of
an agent) to a set of possible environment states - those that could result from
performing the action.

There are two important points to note about this definition. First, environ-
ments are assumed to be history dependent. In other words, the next state of
an environment is not solely determined by the action performed by the agent
and the current state of the environment, The actions made earlier by the agent
also play a part in determining the current state. Second, note that this definition
allows for non-determinism in the environment. There is thus uncertainty about
the result of performing an action in some state,

If T(r) = @ (where r is assumed to end with an action), then there are no
possible successor states to v. In this case, we say that the system has ended its
run. We will also assume that all runs eventually terminate.

Formally, we say an environment Env is a triple Env = (E, ey, T), where E is a
set of environment states, e, € E is an initial state, and T is a state transformer
function.

We now need to introduce a model of the agents that inhabit systems. We model
agents as functions which map runs (assumed to end with an environment state)
to actions (cf. Russell and Subramanian, 1995, pp. 580, 581):

Ag:RF -~ Ac.

Thus an agent makes a decision about what action to perform based on the history
of the system that it has witnessed to date.

Notice that while environments are implicitly non-deterministic, agents are
assumed to be deterministic. Let /AG be the set of all agents.

We say a system is a pair containing an agent and an environment. Any system
will have associated with it a set of possible runs; we denote the set of runs of
agent Ag in environment Env by R(Ag, Env). For simplicity, we will assume that
R(Ag, Env) contains only terminated runs, i.e. runs ¥ such that » has no possible
successor states: T(v) = &. (We will thus not consider infinite runs for now.)

Formally, a sequence

(eo, g, €1, Oy, €2,...)

represents

(1) e

un of an agent Ag in environment Env = (E, ey, T) if

=
‘3‘ QJ
=
5

itial state of Fnuv;

(2) o = Ag(e()); and
(3) for u > 0,

eb(€ T((801 a()l e ,O(u*]_))’

where

Xy = Ag((eg, Xp,...,eu)).

Abstract Architectures for Intelligent Agents 33

Two agents Ag; and Ag» are said to be behaviourally equivalent with respect
to environment Env if and only if R(Ag,,Env) = R(Ag:,Env), and simply
behaviourally equivalent if and only if they are behaviourally equivalent with
respect to all environments.

Notice that so far, I have said nothing at all about how agents are actually imple-
mented; we will return to this issue later.

Purely reactive agents

Certain types of agents decide what to do without reference to their history. They
base their decision making entirely on the present, with no reference at all to the
past. We will call such agents purely reactive, since they simply respond directly

to their environment. (Sometimes they are called tropistic agents (Genesereth and

Nilsson, 1987): tropism is the tendency of plants or animals to react to certain
stimulae.)
Formally, the behaviour of a purely reactive agent can be represented by a func-
tion
Ag:E — Ac.

It should be easy to see that for every purely reactive agent, there is an equivalent
‘standard’ agent, as discussed above; the reverse, however, is not generally the
case.

Our thermostat agent is an example of a purely reactive agent. Assume, without
loss of generality, that the thermostat’s environment can be in one of two states -
either too cold, or temperature OK. Then the thermostat is simply defined as
follows:
heater off if e = temperature OK,

heater on otherwise.

Agle) ={

Perception

Viewing agents at this abstract level makes for a pleasantly simple analysis. How-
ever, it does not help us to construct them. For this reason, we will now begin
to refine our abstract model of agents, by breaking it down into sub-systems in
exactly the way that one does in standard software engineering. As we refine our
view of agents, we find ourselves making design choices that mostly relate to the
subsystems that go t0 make up an agent - what data and control structures will be
present. An agent architecture is essentially a map of the internals of an agent - its
data structures, the operations that may be performed on these data structures,
and the control flow between these data structures. Later in this book, we will dis-
cuss a number of different types of agent architecture, with very different views
on the data structures and algorithms that will be present within an agent. In the
remainder of this section, however, we will survey some fairly high-level design
decisions. The first of these is the separation of an agent’s decision function into
perception and action subsystems: see Figure 2.2.

34 Intelligent Agents

see —>=| action

AGENT

ENVIRONMENT

Figure 2.2 Perception and action subsystems.

The idea is that the function see captures the agent’s ability to observe its envi-
ronment, whereas the action function represents the agent’s decision-making
process. The see function might be implemented in hardware in the case of an
agent situated in the physical world: for example, it might be a video camera or
an infrared sensor on a mobile robot. For a software agent, the sensors might
be system commands that obtain information about the software environment,
such as 1s, finger, or suchlike. The output of the see function is a percept - a
perceptual input. Let Per be a (non-empty) set of percepts. Then see is a function

see:E — Per
which maps environment states to percepts, and action is a function
action : Per* — Ac

s. An agent Ag is now considered to
), consisting of a see function and an action function.

These simple definitions allow us to explore some interesting properties of
agents and perception. Suppose that we have two environment states, e; € E and
e» € E, such that e; # e;, but see(ey) = see(ez). Then two different environ-
ment states are mapped to the same percept, and hence the agent would receive
the same perceptual information from different environment states. As far as
the agent is concerned, therefore, ¢; and e; are indistinguishable. To make this
example concrete, let us return to the thermostat example. Let x represent the
statement

‘the room temperature is OK’
and let y represent the statement

‘John Major is Prime Minister’.

e) N A O

Abstract Architectures for Intelligent Agents 35

If these are the only two facts about our environment that we are concerned
with, then the set E of environment states contains exactly four elements:

E={{~x, -y}, {=x,p}, {x,~ ¥} {x, ¥}}.
N ¢ s\ - . y P ——

€1 ey e3 [

Thus in state e, the room temperature is not OK, and John Major is not Prime
Minister; in state ez, the room temperature is not OK, and John Major is Prime
Minister. Now, our thermostat is sensitive only to temperatures in the room. This
room temperature is not causally related to whether or not John Major is Prime
Minister. Thus the states where John Major is and is not Prime Minister are literally
indistinguishable to the thermostat. Formally, the see function for the thermostat
would have two percepts in its range, p; and p», indicating that the temperature
is too cold or OK, respectively. The see function for the thermostat would behave

as follows:
1 ife=e;ore=e
seele) = P _ ’
P> ife=e3o0re=ey.
Given two environment states e € E and ¢ € E, let us write e ~ ¢’ if

see(e) = see(e’). It is not hard to see that ‘~' is an equivalence relation over
environment states, which partitions E into mutually indistinguishable sets of
states. Intuitively, the coarser these equivalence classes are, the less effective is
the agent’s perception. If |~| = |E] (i.e. the number of distinct percepts is equal to
the number of different environment states), then the agent can distinguish every
state - the agent has perfect perception in the environment; it is omniscient. At the
other extreme, if |~| = 1, then the agent’s perceptual ability is non-existent - it
cannot distinguish between any different states. In this case, as far as the agent
is concerned, all environment states are identical.

Agents with state

We have so far modelled an agent’s decision function as from sequences of envi-
ronment states or percepts to actions. This allows us to represent agents whose
decision making is influenced by history. However, this is a somewhat unintuitive
representation, and we shall now replace it by an equivalent, but somewhat more
natural, scheme. The idea is that we now consider agents that maintain state - see
Figure 2.3.

These agents have some internal data structure, which is typically used to
record information about the environment state and history. Let I be the set of all
internal states of the agent. An agent’s decision-making process is then based, at
least in part, on this information. The perception function see for a state-based
agent is unchanged, mapping environment states to percepts as before:

see: E — Per,

2.7

36 Intelligent Agents

4 A
AGENT

see action

. %

_{ ENVIRONMENT

Figure 2.3 Agents that maintain state.

The action-selection function action is defined as a mapping
action:I - Ac

from internal states to actions. An additional function next is introduced, which
maps an internal state and percept to an internal state:

next: I x Per — 1.

The behaviour of a state-based agent can be summarized in the following way. The
agent starts in some initial internal state iy. It then observes its environment state
e, and generates a percept see(e). The internal state of the agent is then updated
via the next function, becoming set to next(iy, see(e)). The action selected by
the agent is then action(next(ig,see(e))). This action is then performed, and
the agent enters another cycle, perceiving the world via see, updating its state via
next, and choosing an action to perform via action.

It is worth observing that state-based agents as defined here are in fact no
more powerful than the standard agents we introduced earlier. In fact, they are
identical in their expressive power - every state-based agent can be transformed
into a standard agent that is behaviourally equivalent.

How to Tell an Agent What to Do

We do not (usually) build agents for no reason. We build them in order to carry
out tasks for us. In order to get the agent to do the task, we must somehow
communicate the desired task to the agent. This implies that the task to be carried
out must be specified by us in some way. An obvious question is how to specify

How to Tell an Agent What to Do 37

these tasks: how to tell the agent what to do. One way to specify the task would
be simply to write a program for the agent to execute. The obvious advantage of
this approach is that we are left in no uncertainty about what the agent will do; it
will do exactly what we told it to, and no more. But the very obvious disadvantage
is that we have to think about exactly how the task will be carried out ourselves -
if unforeseen circumstances arise, the agent executing the task will be unable

tn roennnd nccnardingly €A mnre 1ienallyy wao want ta toll Ay anant what +o An
wr JCOHULL\J ClLLUL\.«llllsly L)U’ JESAV /) w uauauy YV ¥valll tv o vur MHCIIL Frip4t v 1y

without telling it how to do it. One way of doing this is to define tasks indirectly,
via some kind of performance measure. There are several ways in which such a
performance measure can be defined. The first is to associate utilities with states
of the environment.

Utility functions

A utility is a numeric value representing how ‘good’ the state is: the higher the
utility, the better. The task of the agent is then to bring about states that maximize
utility - we do not specify to the agent how this is to be done. In this approach, a
task specification would simply be a function

u:k-R

which associates a real value with every environment state. Given such a perfor-
mance measure, we can then define the overall utility of an agent in some partic-
ular environment in several different ways. One (pessimistic) way is to define the
utility of the agent as the utility of the worst state that might be encountered by
the agent; another might be to define the overall utility as the average utility of all
states encountered. There is no right or wrong way: the measure depends upon
the kind of task you want your agent to carry out.

The main disadvantage of this approach is that it assigns utilities to local states;
it is difficult to specify a long-term view when assigning utilities to individual
states. To get around this problem, we can specify a task as a function which

J R R, [

assigns a utility not to individual states, but to runs themselves:
u:R—-R.

If we are concerned with agents that must operate independently over long peri-
ods of time, then this approach appears more appropriate to our purposes, One
well-known example of the use of such a utility function is in the Tileworld
(Pollack, 1990). The Tileworid was proposed primarily as an experimental envi-
ronment for evaluating agent architectures. It is a simulated two-dimensional grid
environment on which there are agents, tiles, obstacles, and holes. An agent can
move in four directions, up, down, left, or right, and if it is located next to a tile, it
can push it. An obstacle is a group of immovable grid cells: agents are not allowed
to travel freely through obstacles. Holes have to be filled up with tiles by the agent.
An agent scores points by filling holes with tiles, with the aim being to fill as many

38 Intelligent Agents

H H
} } }
T T T
54T ST 54l T|H
(a) (b) (c)

Figure 2.4 Three scenarios in the Tileworld are {a) the agent detects a hole ahead, and
begins to push a tile towards it; (b) the hole disappears before the agent can get to it -
the agent should recognize this change in the environment, and modify its behaviour
appropriately; and (¢) the agent was pushing a tile north, when a hole appeared to its
right; it would do better to push the tile to the right, than to continue to head north.

holes as possible. The Tileworld is an example of a dynamic environment: starting
in some randomly generated world state, based on parameters set by the experi-
menter, it changes over time in discrete steps, with the random appearance and
disappearance of holes. The experimenter can set a number of Tileworld parame-
ters, including the frequency of appearance and disappearance of tiles, obstacles,
and holes; and the choice between hard bounds (instantaneous) or soft bounds
(slow decrease in value) for the disappearance of holes. In the Tileworld, holes
appear randomly and exist for as long as their life expectancy, unless they dis-
appear because of the agent’s actions. The interval between the appearance of
successive holes is called the hole gestation time. The performance of an agent in
the Tileworld is measured by running the Tileworld testbed for a predetermined
number of time steps, and measuring the number of holes that the agent succeeds
in filling. The performance of an agent on some particular run is then defined as

wir) = number of holes filled in »
~ number of holes that appeared in +°

This gives a normalized performance measure in the range O (the agent did not
succeed in filling even one hole) to 1 (the agent succeeded in filling every hole that
appeared). Experimental error is eliminated by running the agent in the environ-
ment a number of times, and computing the average of the performance.
Despite its simplicity, the Tileworld allows us to examine several important
capabilities of agents. Perhaps the most important of these is the ability of an
agent to react to changes in the environment, and to exploit opportunities when
they arise. For example, suppose an agent is pushing a tile to a hole (Figure 2.4(a)),
when this hole disappears (Figure 2.4(b)). At this point, pursuing the original objec-
tive is pointless, and the agent would do best if it noticed this change, and as a

consequence ‘rethought’ its original objective. To illustrate what I mean by rec-

R s e L= L LAV LT IS VAARLIIQE U ety AiivAagta A, YYaaiin 1 aranKAnx

ognizing opportunities, suppose that in the same situation, a hole appears to the

How to Tell an Agent What to Do 39

£

—'n]—. AE El A At (T AL o~ 1~ A io m 1n +1 1 +L1'
1€ LU 111

rignt or tne agent \rlguxc 2. 4(C)) The agent is more }11\6}‘)/' 1o e il
than its originally planned one, for the simple reason that it only has to push the
tile one step, rather than four. All other things being equal, the chances of the
hole on the right still being there when the agent arrives are four times greater.
Assuming that the utility function u has some upper bound to the utilities it
assigns (i.e. that there exists a k € R such that for all » € R, we have u(r) < k),
then we can talk about optimal agents: the optimal agent is the one that maximizes
expected utility.,
Let us write P(v | Ag, Env) to denote the probability that run » occurs when
agent Ag is placed in environment Env. Clearly,

o hnla
o 11U1C

 —

Z P(r | Ag,Env) =1,
reR{Ag.Env)

Then the optimal agent Agep: in an environment Env is defined as the one that
maximizes expected utility:

Agopt = arg max > u()P(r| Ag,Env). (2.1)
AGEAG | g (Ag.Env)

This idea is essentially identical to the notion of maximizing expected utility in
decision theory (see Russell and Norvig, 1995, p. 472).

Notice that while (2.1) tells us the properties of the desired agent Aggp, it sadly
does not give us any clues about how to implement this agent. Worse still, some
agents cannot be implemented on some actual machines. To see this, simply note
that agents as we have considered them so far are just abstract mathematical
functions Ag : RE — Ac. These definitions take no account of (for example)
the amount of memory required to implement the function, or how complex the
computation of this function is. It is quite easy to define functions that cannot
actually be computed by any real computer, and so it is just as easy to define
agent functions that cannot ever actually be implemented on a real computer.

Russell and Subramanian (1995) introduced the notion of bounded optimal
agents in an attempt to try to address this issue. The idea is as follows. Suppose
m is a particular computer - for the sake of argument, say it is the Dell Latitude
1400 I am currently typing on: a laptop with 128 MB of RAM, 6 GB of disk space,
and a 500 MHz Pentium III processor. There are only a certain set of programs that
can run on this machine. For example, any program requiring more than 128 MB
RAM clearly cannot run on it. In just the same way, only a certain subset of the
set of all agents AAG can be implemented on this machine. Again, any agent Ag
that required more than 128 MB RAM would not run. Let us write AAG,,, to denote
the subset of AAG that can be implemented on m:

AG,, = {Ag | Ag € AG and Ag can be implemented on mn}.

Now, assume we have machine (i.e. computer) m, and we wish to place this
machine in environment Env; the task we wish m to carry out is defined by utility

40 Intelligent Agents

function u : R — R. Then we can replace Equation (2.1) with the following, which
more precisely defines the properties of the desired agent Agop::

A =4ar u(r)pP Ag,E . 2.2
Gopt agAgrg%mrER(AZgEnu) (r)P(r | Ag, Env) (2.2)

The subtle change in (2.2} is that we are no longer looking for our agent from the
set of all possible agents AAG, but from the set AAG,, of agents that can actually
be implemented on the machine that we have for the task.

Utility-based approaches to specifying tasks for agents have several disadvan-
tages. The most important of these is that it is very often difficult to derive an
appropriate utility function; the Tileworld is a useful environment in which to
experiment with agents, but it represents a gross simplification of real-world sce-
narios. The second is that usually we find it more convenient to talk about tasks
in terms of ‘goals to be achieved’ rather than utilities. This leads us to what I call
predicate task specifications.

Predicate task specifications

Put simply, a predicate task specification is one where the utility function acts
as a predicate over runs. Formally, we will say a utility function u : R — R is a
predicate if the range of u is the set {0, 1}, that is, if u guarantees to assign a
run either 1 (‘true’) or 0 (‘false’). A run r € R will be considered to satisfy the
specification u if u(r) = 1, and fails to satisfy the specification otherwise.

We will use ¥ to denote a predicate specification, and write ¥ (r) to indicate that
run ¥ € ‘R which satisfies ¥. In other words, ¥ (r) is true if and only if u(v) = 1.
For the moment, we will leave aside the questions of what form a predicate task
specification might take.

Task environments

A task environment is defined to be a pair (Env, ¥}, where Env is an environment,
and
¥Y:R - 10,1}

is a predicate over runs. Let 7 F be the set of all task environments. A task envi-
ronment thus specifies:

- the properties of the system the agent will inhabit (i.e. the environment Env);
and also

- the criteria by which an agent will be judged to have either failed or suc-
ceeded in its task (i.e. the specification ¥).

Given a task environment (Env, ¥), we write Ry (Ag, Env) to denote the set of
all runs of the agent Ag in the environment Env that satisfy ¥. Formally,

Ry({Ag,Env)y={r |r e R(Ag,Env) and ¥(r)}.

How to Tell an Agent What to Do 41

We then say that an agent Ag succeeds in task environment (Env, ¥) if
Ry(Ag,Env) = R(Ag,Env).

In other words, Ag succeeds in (Env,¥) if every run of Ag in Env satisfies
specification ¥, i.e. if

Vr € R(Ag,Env) we have ¥(r).

Notice that this is in one sense a pessimistic definition of success, as an agent
is only deemed to succeed if every possible run of the agent in the environment
satisfies the specification. An alternative, optimistic definition of success is that
the agent succeeds if at least one run of the agent satisties ¥:

dr € R(Ag,Env) such that ¥(r).

If required, we could easily modify the definition of success by extending the
state transformer function T to include a probability distribution over possible
outcomes, and hence induce a probability distribution over runs. We can then
define the success of an agent as the probability that the specification ¥ is satisfied
by the agent. As before, let P(v | Ag,Env) denote the probability that run
occurs if agent Ag is placed in environment Env. Then the probability P(¥ |
Ag,Env) that ¥ is satisfied by Ag in Env would simply be

P(¥Y | Ag,Env) = > P(r | Ag, Env).
rERyplAg,Env)

The notion of a predicate task specification may seem a rather abstract way of
describing tasks for an agent to carry out. In fact, it is a generalization of certain
very common forms of tasks. Perhaps the two most common types of tasks that
we encounter are achievement tasks and maintenance tasks.

(1) Achievement tasks. Those of the form ‘achieve state of affairs ¢’.

(2) Maintenance tasks. Those of the form ‘maintain state of affairs y/’.

Intuitively, an achievement task is specified by a number of goal states; the agent
is required to bring about one of these goal states (we do not care which one - all
are considered equally good). Achievement tasks are probably the most commonly
studied form of task in Al. Many well-known Al problems (e.g. the Blocks World)
are achievement tasks. A task specified by a predicate ¥ is an achievement task if
we can identify some subset G of environment states E such that ¥ (r) is true just
in case one or more of G occur in v; an agent is successful if it is guaranteed to
bring about one of the states G, that is, if every run of the agent in the environment
results in one of the states §.

Formally, the task environment (Env,¥) specifies an achievement task if and
only if there is some set G < E such that for all r € R(Ag, Env), the predicate
¥ () is true if and only if there exists some e € G such that e € . We refer to

2.8

42 Intelligent Agents

the set G of an achievement task environment as the goal states of the task; we
use (Env,G) to denote an achievement task environment with goal states G and
environment Env.

A useful way to think about achievement tasks is as the agent playing a game
against the environment. In the terminology of game theory (Binmore, 1992), this

lQ exactlv whnf i meant hv a ‘game aocainst n:-\hn*p Thp environment and agent

LAY VWILGL 20 AT e HGaT QuiaiiSt 1akial RS W SRS PO VSIS LW SN S LT Hiivn

both begin in some state; the agent takes a turn by executing an action, and
the environment responds with some state; the agent then takes another turn,
and so on. The agent ‘wins’ if it can force the environment into one of the goal
states G.

Just as many tasks can be characterized as probiems where an agent is required
to bring about some state of affalrs, so many others can be classified as problems
where the agent is required to avoid some state of affairs. As an extreme example,
consider a nuclear reactor agent, the purpose of which is to ensure that the reactor
never enters a ‘meltdown’ state. Somewhat more mundanely, we can imagine a
software agent, one of the tasks of which is to ensure that a particular file is
never simultaneously open for both reading and writing. We refer to such task
environments as maintenance task environments.

A task environment with specification ¥ is said to be a maintenance task envi-
ronment if we can identify some subset B of environment states, such that ¥ ()
is false if any member of ‘B occurs in v, and true otherwise, Formally, (Env,¥)
is a maintenance task environment if there is some B < E such that ¥(r) if
and only if for all e € B, we have ¢ ¢ v for all ¥ € R(Ag,Env). We refer to
B as the failure set. As with achievement task environments, we write (Env, B)
to denote a maintenance task environment with environment Env and failure
set B.

It is again useful to think of maintenance tasks as games. This time, the agent
wins if it manages to avoid all the states in B. The environment, in the role of
opponent, is attempting to force the agent into ‘B; the agent is successful if it has
a winning strategy for avoiding B.

More complex tasks might be specified by combinations of achievement and
maintenance tasks. A simple combination might be ‘achieve any one of states
G while avoiding all states B’. More complex combinations are of course also
possible.

Synthesizing Agents

Knowing that there exists an agent which will succeed in a given task environment
is helpful, but it would be more helpful if, knowing this, we also had such an agent
to hand. How do we obtain such an agent? The obvious answer is to ‘manually’
implement the agent from the specification. However, there are at least two other
possihilities (see Wooldridge (1997) for a discussion):

Synthesizing Agents 43

AAAAAA m Az . i + = R h: avsiatls + P oY

(1) we can try to develop an algorithm that will automatically syntt
agents for us from task environment specifications; or

(2) we can try to develop an algorithm that will directly execute agent specifica-
tions in order to produce the appropriate behaviour.

In this section, I briefly consider these possibilities, focusing primarily on agent
synthesis.

Agent synthesis is, in effect, automatic programming: the goal is to have a pro-
gram that will take as input a task environment, and from this task environment
automatically generate an agent that succeeds in this environment. Formally, an
agent synthesis aigorithm sy# can be understood as a function

syn:TFE - (AGU {1}).

Note that the function syn can output an agent, or else output 1L - think of 1 as
being like nul11 in Java. Now, we will say a synthesis algorithm is

sound if, whenever it returns an agent, this agent succeeds in the task environ-
ment that is passed as input; and

complete if it is guaranteed to return an agent whenever there exists an agent
that will succeed in the task environment given as input.

Thus a sound and complete synthesis algorithm will only output 1 given input
{Env,Y¥) when no agent exists that will succeed in (Env, V).
Formally, a synthesis algorithm sy n is sound if it satisfies the following condi-
tion:
syn{({Env,¥)) = Ag implies R(Ag,Env) = Ry(Ag,Env).

Similarly, s yn is complete if it satisfies the following condition:
JAg € AG s.t. R(Ag,Env) = Ry(Ag,Env) implies syn({Env,¥)) = 1.

Intuitively, soundness ensures that a synthesis aigorithm always delivers agents
that do their job correctly, but may not always deliver agents, even where such
agents are in principle possible. Completeness ensures that an agent will always
be delivered where such an agent is possible, but does not guarantee that these
agents will do their job correctly. Ideally, we seek synthesis algorithms that are
both sound and complete. Of the two conditions, soundness is probably the more
important: there is not much point in complete synthesis algorithms that deliver
‘buggy’ agents.

Notes and Further Reading

A view of artificial intelligence as the process of agent design is presented in
Russell and Norvig (1995), and, in particular, Chapter 2 of Russell and Norvig

44 Intelligent Agents

(1995) presents much useful material. The definition of agents presented here is

based on Wooldridge and Jennings (1995), which also contains an extensive review
of agent architectures and programming languages. The question of ‘what is an

—iZ (LR R UVED LR {Raiila H~Qaiiiililiih R H5GH 4 A3% LIV L 11ia

agent’ is one that continues to generate some debate; a collection of answers may
be found in Miiller et al. (1997). The relationship between agents and objects has
not been widely discussed in the literature, but see Gasser and Briot (1992). Other
interesting and readable introductions to the idea of intelligent agents include
Kaelbling (1986) and Etzioni (1993).

The abstract model of agents presented here is based on that given in Gene-
sereth and Nilsson (1987, Chapter 13), and also makes use of some ideas from
Russell and Wefald (1991) and Russell and Subramanian (1995). The properties of
perception as discussed in this section lead to knowledge theory, a formal analy-
sis of the information implicit within the state of computer processes, which has
had a profound effect in theoretical computer science: this issue is discussed in
Chapter 12.

The relationship between artificially intelligent agents and software complexity
has been discussed by several researchers: Simon (1981) was probably the first.
More recently, Booch (1994) gives a good discussion of software complexity and
the role that object-oriented development has to play in overcoming it. Russell
and Norvig (1995) introduced the five-point classification of environments that we
reviewed here, and distinguished between the ‘easy’ and ‘hard’ cases. Kaelbling
(1986) touches on many of the issues discussed here, and Jennings (1999} also
discusses the issues associated with complexity and agents.

The relationship between agent and environment, and, in particular, the prob-
lem of understanding how a given agent will perform in a given environment,
has been studied empirically by several researchers. Pollack and Ringuette (1990)
introduced the Tileworld, an environment for experimentally evaluating agents
that allowed a user to experiment with various environmental parameters (such
as the rate at which the environment changes - its dynamism). Building on this
work, Kinny and Georgeff (1991) investigated how a specific class of agents, based
on the belief-desire-intention model (Wooldridge, 2000b), could be tailored to per-
form well in environments with differing degrees of change and complexity. An
attempt to prove some results corresponding to Kinny and Georgeff (1991) was
Wooldridge and Parsons (1999); an experimental investigation of some of these
relationships, building on Kinny and Georgeff (1991), was Schut and Wooldridge
(2000). An informal discussion on the relationship between agent and environ-
ment is Miuller (1999).

In artificial intelligence, the planning problem is most closely related to
achievement-based task environments (Allen et al., 1990). STRIPS was the archety-
pal planning system (Fikes and Nilsson, 1971). The STRIPS system is capable of
taking a description of the initial environment state e, a speciﬁcation of the goal

ty ha achi ahla o - - <
to be achieved, Egood, and the actions Ac available to an agent, and generates a

sequence of actions m € Ac* such that when executed from ey, m will achieve

Synthesizing Agents 45

one of the states Ego0q. The initial state, goal state, and actions were characterized
in STRIPS using a subset of first-order logic. Bylander showed that the (proposi-
tional) STRIPS decision problem (given eg, Ac, and Eg.0q Specified in propositional
logic, does there exist a 1 € Ac™ such that 7 achieves Egn0q?) is PSPACE-complete
(Bylander, 1994).

More recently, there has been renewed interest by the artificial inteliigence plan-
ning community in decision theoretic approaches to planning (Blythe, 1999). One
popular approach involves representing agents and their environments as ‘par-
tially observable Markov decision processes’ (POMDPs) (Kaelbling et al., 1998). Put
simply, the goal of solving a POMDP is to determine an optimal policy for acting in
an environment in which there is uncertainty about the environment state (cf. our
visibility function), and which is non-deterministic. Work on POMDP approaches
to agent design are at an early stage, but show promise for the future.

The discussion on task specifications is adapted from Wooldridge (2000a) and
Wooldridge and Dunne (2000).

Class reading: Franklin and Graesser (1997). This paper informally discusses

various different notions of agency. The focus of the discussion might be on a
comparison with the discussion in this chapter.

|
L

46 Intelligent Agents

Exercises

(1) [Level 1.]

Give other examples of agents (not necessarily intelligent) that you know of. For each,
define as precisely as possible the following.

(1) The environment that the agent occupies (physical, software, etc.), the states that
this environment can be in, and whether the environment is: accessible or inaccessi-
ble; deterministic or non-deterministic; episodic or non-episodic; static or dynamiic;
discrete or continuous.

(2) The action repertoire available to the agent, and any preconditions associated with
these actions.

(3) The goal, or design objectives of the agent - what it is intended to achieve.

(2) [Level 1.]
Prove the following.
(1) For every purely reactive agent, there is a behaviourally equivalent standard agent.
(2) There exist standard agents that have no behaviourally equivalent purely reactive
agent.
(3) [Level 1.]

Show that state-based agents are equivalent in expressive power to standard agents,
i.e. that for every state-based agent there is a behaviourally equivalent standard agent
and vice versa.

(4) [Level 1.]

There were two ways of specifying tasks by utility functions, by associating utilities
with either states (1 : E — R) or with runs (1 : R — R). The second type of utility function
is strictly more expressive than the first. Give an example of a utility function over runs
that cannot be defined simply by associating utilities with states.

(5) [Level 4.]

Read about traditional control theory, and compare the problems and techniques of
control theory with what we are trying to accomplish in building intelligent agents. How
are the techniques and problems of traditional control theory similar to those of intelligent
agent work, and how do they differ?

(6) [Class discussion.]
Discuss the various different ways in which a task might be specified.

3

Deductive
Reasoning

A aonitc
|

L .l:/] AV

The ‘traditional’ approach to building artificially intelligent systems, known as
symbolic Al suggests that intelligent behaviour can be generated in a system by

giving that system a symbolic representation of its environment and its desired

behaviour, and syntactically manipulating this representation. In this chapter, we
focus on the apotheosis of this tradition, in which these symbolic representa-
tions are logical formulae, and the syntactic manipulation corresponds to logical
deduction, or theorem-proving.

{ will begin by giving an example to informally introduce the ideas behind deduc-
tive reasoning agents. Suppose we have some robotic agent, the purpose of which
is to navigate around an office building picking up trash. There are many possible
ways of implementing the control system for such a robot - we shall see several
in the chapters that follow - but one way is to give it a description, or represen-
tation of the environment in which it is to operate. Figure 3.1 illustrates the idea
(adapted from Konolige (1986, p. 15)).

RALPH is an autonomous robot agent that operates in a real-world
environment of corridors and big blocks. Sensory input is from a video
rarmmorar a cithouctar 1ahallad fintarn? i Biagiasra 2 1 tranclatace tho vidon
Laillivia, a DUUD)/D[C]JJ. 1apClicu ILLLCLIJ 111 1 15u1c .1 LLALIdIALTD LLIC VIUCUY

feed into an internal representation format, based on first-order logic.

48 Deductive Reasoning Agents

Interp
Pixel stuff 1

DOOR TO ROOM 3.07

Knowledge base/ -
beliefs:
Dist(me, d1) = 3ft
Door(d1)

Plan @
Stop!

Action
Brake!

/\
9 O

Figure 3.1 A robotic agent that contains a symbolic description of its environment.

The agent’s information about the world is contained in a data struc-
ture which for historical reasons is labelled as a ‘knowledge base’ in

Tiginira 2 1
riguic o.1.

In order to build RALPH, it seems we must solve two key problems.

(1) The transduction problem. The problem of translating the real world into an
accurate, adequate symbolic description of the world, in time for that descrip-
tion to be useful.

(2) The representation/reasoning problem. The problem of representing infor-
mation symbolically, and getting agents to manipulate/reason with it, in time
for the results to be useful.

The former problem has led to work on vision, speech understanding, learning,
etc. The latter has led to work on knowledge representation, automated reasoning,
automated planning, etc. Despite the immense volume of work that the problems
have generated, many people would argue that neither problem is anywhere near
solved. Even seemingly trivial problems, such as common sense reasoning, have

turned out to be extremely difficult.

3.1

Agents as Theorem Provers 49

Despite these problems, the idea of agents as theorem provers is seductive.
Suppose we have some theory of agency - some theory that explains how an intel-
ligent agent should behave so as to optimize some performance measure (see
Chapter 2). This theory might explain, for example, how an agent generates goals
so as to satisty its design objective, how it interleaves goal-directed and reac-
tive behaviour in order to achieve these goals, and so on. Then this theory @
can be considered as a specification for how an agent should behave. The tradi-
tional approach to implementing a system that will satisfy this specification would
involve refining the specification through a series of progressively more concrete
stages, until finally an implementation was reached. In the view of agents as the-
orem provers, however, no such refinement takes place. Instead, @ is viewed as
an executable specification: it is directly executed in order to produce the agent’s
behaviour.

Agents as Theorem Provers

To see how such an idea might work, we shall develop a simple model of logic-
based agents, which we shall call deliberate agents (Genesereth and Nilsson, 1987,
Chapter 13). In such agents, the internal state is assumed to be a database of
formulae of classical first-order predicate logic. For example, the agent’s database
might contain formulae such as

Open(valve2?l)
Temperature(reactor4726,321)
Pressure(tank776,28).

It is not difficult to see how formulae such as these can be used to represent the
properties of some environment. The database is the information that the agent
has about its environment. An agent’s database plays a somewhat analogous role
to that of belief in humans. Thus a person might have a belief that valve 221 is
open - the agent might have the predicate Open(valve221) in its database. Of
course, just like humans, agents can be wrong. Thus I might believe that valve 221
is open when it is in fact closed; the fact that an agent has Open(valve221) inits
database does not mean that valve 221 (or indeed any valve) is open. The agent’s
sensors may be faulty, its reasoning may be faulty, the information may be out
of date, or the interpretation of the formula Open(valve221) intended by the
agent’s designer may be something entirely different.

Let L be the set of sentences of classical first-order logic, and let D = (L) be
the set of L databases, i.e. the set of sets of L-formulae. The internal state of an
agent is then an element of D. We write A, A;,... for members of D. An agent’s
decision-making process is modelled through a set of deduction rules, p. These
are simply rules of inference for the logic. We write A +, @ if the formula @
can be proved from the database A using only the deduction rules p. An agent’s

50 Deductive Reasoning Agents

Function: Action Selection as Theorem Proving

1 function action(A:D) returns an action Ac
2 begin

3 for each o € Ac do

4. if A+, Do(x) then
5. return «

6 end-if

7 end-for

8 for each x e Ac do

9. if Ay, "Do(x) then
10. return

11. end-if

12. end-for

13. return null

14. end function action

Figure 3.2 Action selection as theorem-proving.

perception function see remains unchanged:
see:S — Per.
Similarly, our next function has the form
next : D x Per — D.

It thus maps a database and a percept to a new database. However, an agent’s
action selection function, which has the signature

action: D — Ac,

is defined in terms of its deduction rules. The pseudo-code definition of this func-
tion is given in Figure 3.2.

The idea is that the agent programmer will encode the deduction rules p and
database A in such a way that if a formula Do(«x) can be derived, where «
is a term that denotes an action, then « is the best action to perform. Thus,
in the first part of the function (lines (3)-(7)), the agent takes each of its pos-
sible actions « in turn, and attempts to prove the formula Do(x) from its
database (passed as a parameter to the function) using its deduction rules p.
If the agent succeeds in proving Do(«), then « is returned as the action to be
performed.

What happens if the agent fails to prove Do (), for all actions a € Ac? In this
case, it attempts to find an action that is consistent with the rules and database,
i.e. one that is not explicitly forbidden. In lines (8)-(12), therefore, the agent
attempts to find an action @ € Ac such that =Do(«) cannot be derived from

al Y 3
2o oA
v '- . dirt -~ .
dirt : :
_____________ ©2: A G2
o4 O
............. O b &b
0.0) (1.0 2.0)

Figure 3.3 Vacuum world.

its database using its deduction rules. If it can find such an action, then this is
returned as the action to be performed. If, however, the agent fails to find an
action that is at least consistent, then it returns a special action null (or noop),

ndiratinag t e artinmn hago hany anlantad

HH 1u1\.uujls Lllﬂl. o aCtliGil das oecli saiedieq.

In this way, the agent’s behaviour is determined by the agent’s deduction rules
(its ‘program’) and its current database (representing the information the agent
has about its environment).

To illustrate these ideas, let us consider a small example (based on the vacuum

Cleamng world example of Russell and Norvig (1995, p. 51)). The idea is that we

have a small robotic agent that will clean up a house. The robot is equipped with a
sensor that will tell it whether it is over any dirt, and a vacuum cleaner that can be

L5888 lat 222 .22 2 Aaieladla 2L A3 VLD QALY [Aal Galia Q VAL LI LA QI Ra2GLY LQal W/

used to suck up dirt. In addition, the robot always has a definite orientation (one of
north, south, east, or west). In addition to being able to suck up dirt, the agent
can move forward one ‘step’ or turn right 90°. The agent moves around a room,
which is divided grid -like into a number of equally sized squares (Conveniently
corresponding to the unit of movement of the agent). We will assume that our
agent does nothing but clean - it never leaves the room, and further, we will
assume in the interests of simplicity that the roomis a 3 x 3 grid, and the agent
always starts in grid square (0, 0) facing north.

To summarize, our agent can receive a percept dirt (signifying that there is dirt
beneath it), or null (indicating no special information). It can perform any one of
three possible actions: forward, suck, or turn. The goal is to traverse the room

continually anw‘}hna for and remo oving dirt. See Figure 3.3 for an illustration of

asaaiissiadiaiy SV Qs asaag u LE O LU 3 U SL IS L i W

the vacuum world.

52 Deductive Reasoning Agents

First, note that we make use of three simple domain predicates in this exercise:

In(x,y) agent is at (x, v), (3.1)
Dirt{x,y) thereis dirt at (x,y), (3.2)
Facing(d) the agentis facing direction d. (3.3)

Now we specify our next function. This function must look at the perceptual
information obtained from the environment (either dirt or null), and generate a
new database which includes this information. But, in addition, it must remove old
or irrelevant information, and also, it must try to figure out the new location and
orientation of the agent. We will therefore specify the next function in several
parts. First, let us write old (A) to denote the set of ‘old’ information in a database,
which we want the update function next to remove:

old(A) = {P(ty,...,tp) | P € {In,Dirt,Facing} and P(ty,...,ty) € A}.

Next, we require a function new, which gives the set of new predicates to add to
the database. This function has the signature

new : D x Per — D.

The definition of this function is not difficult, but it is rather lengthy, and so we
will leave it as an exercise. (It must generate the predicates In(...), describing the
new position of the agent, Facing(...) describing the orientation of the agent,
and Dirt(...) if dirt has been detected at the new position.) Given the new and
old functions, the next function is defined as follows:

next(A,p) = (A\old(A)) unew (A, p).

Now we can move on to the rules that govern our agent’s behaviour. The deduction
rules have the form

P..)—wl.),

where @ and ¢ are predicates over some arbitrary list of constants and variables.
The idea being that if ¢ matches against the agent’s database, then ¢ can be
concluded, with any variables in ¢ instantiated.

The first rule deals with the basic cleaning action of the agent: this rule will take
priority over all other possible behaviours of the agent (such as navigation):

In(x,v) ADirt{x,v) — Do(suck). (3.4)

Hence, if the agent is at location (x, ¥) and it perceives dirt, then the prescribed
action will be to suck up dirt. Otherwise, the basic action of the agent will be to
traverse the world. Taking advantage of the simplicity of our environment, we will
hardwire the basic navigation algorithm, so that the robot will always move from
(0,0) to (0,1) to (0,2) and then to (1, 2), (1, 1) and so on. Once the agent reaches

P——~—-

Agents as Theorem Provers 53

(2,2),it must head back to (0, 0). The rules dealing with the traversal up to (0, 2)
are very simple:

In(0,0) A Facing(north) A ~Dirt(0,0) — Do(forward), (3.5)
In(0,1) A Facing(north) A -Dirt(0,1) — Do(forward), (3.6)
In(0,2) A Facing(north) A -Dirt(0,2) — Do(turn), (3.7)

In(0,2) A Facing(east) — Do(forward). (3.8)

Notice that in each rule, we must explicitly check whether the antecedent of rule
(3.4) fires. This is to ensure that we only ever prescribe one action via the Do(...)
predicate. Similar rules can easily be generated that will get the agent to (2, 2),
and once at (2, 2) back to (0,0). It is not difficult to see that these rules, together
with the next function, will generate the required behaviour of our agent.

At this point, it is worth stepping back and examining the pragmatics of the
logic-based approach to building agents. Probably the most important point to
make is that a literal, naive attempt to build agents in this way would be more
or less entirely impractical. To see why, suppose we have designed out agent’s
rule set p such that for any database A, if we can prove Do(x), then « is an
optimal action - that is, « is the best action that could be performed when the
environment is as described in A. Then imagine we start running our agent. At
time t,, the agent has generated some database A, and begins to apply its rules
p in order to find which action to perform. Some time later, at time t», it manages
to establish A; , Do(x) for some & € Ac, and so « is the optimal action that
the agent could perform at time ;. But if the environment has changed between
t) and t,, then there is no guarantee that o will still be optimal. It could be far
from optimal, particularly if much time has elapsed between t, and to. If t» — £
is infinitesimal - that is, if decision making is effectively instantaneous - then we
could safely disregard this problem. But in fact, we know that reasoning of the
kind that our logic-based agents use will be anything but instantaneous. (If our
agent uses classical first-order predicate logic to represent the environment, and
its rules are sound and complete, then there is no guarantee that the decision-
making procedure will even terminate.) An agent is said to enjoy the property of

calculative }’ﬂhnnﬂhh) if and onlv if its decision-making annaratus will suggest

Qiaie Uiaxy L1 WLV ASIVIAT LGNS QP prALI QLS Viia

an action that was optlmal when the decision-making process began. Calculatlve
rationality is clearly not acceptable in environments that change faster than the
agent can make decisions - we shall return to this point later.

One might argue that this problem is an artefact of the pure logic-based
approach adopted here. There is an element of truth in this. By moving away from
strictly logical representation languages and complete sets of deduction rules, one
can build agents that enjoy respectable performance. But one also loses what is
arguably the greatest advantage that the logical approach brings: a simple, elegant
logical semantics.

e are several other pro blems associa the logical approach t :
First, the see function of an agent (its perception component) maps its environ-

3.2

54 Deductive Reasoning Agents

n‘--i- [ot +

nent to a percept. case of a logic-based agent, this percept is likely to be
symbohc - typically, a set of formulae in the agent’s representation language. But
for many env1ronments, it is not obvious how the mapping from environment
to symbolic percept might be realized. For example, the problem of transform-
ing an image to a set of declarative statements representing that image has been
the object of study in Al for decades, and is still essentially open. Another prob-
lem is that actually representing properties of dynamic, real-world environments
is extremely hard. As an example, representing and reasoning about temporal
information - how a situation changes over time - turns out to be extraordinar-
ily difficult. Finally, as the simple vacuum-world example illustrates, representing
even rather simple procedural knowledge (i.e. knowledge about ‘what to do’) in
traditional logic can be rather unintuitive and cumbersome.

To summarize, in logic-based approaches to building agents, decision making
is viewed as deduction. An agent’s ‘program’ - that is, its decision-making strat-
egy - is encoded as a logical theory, and the process of selecting an action reduces
to a problem of proof. Logic-based approaches are elegant, and have a clean (log-
ical) semantics - wherein lies much of their long-lived appeal. But logic-based
approaches have many disadvantages. In particular, the inherent computational
complexity of theorem-proving makes it questionable whether agents as theorem
provers can operate effectively in time-constrained environments. Decision mak-
ing in such agents is predicated on the assumption of calculative rationality - the
assumption that the world will not change in any significant way while the agent
is deciding what to do, and that an action which is rational when decision making
begins will be rational when it concludes. The problems associated with repre-
senting and reasoning about complex, dynamic, possibly physical environments
are also essentially unsolved.

Tan +1a
11k L1l

~ -

Hn:

Agent-Oriented Programming

Yoav Shoham has proposed a ‘new programming paradigm, based on a societal
view of computation’ which he calls agent-oriented programming. The Key idea
which informs AQP is that of directly programming agents in terms of mentalistic
notions (such as belief, desire, and intention) that agent theorists have developed
to represent the properties of agents. The motivation behind the proposal is that
humans use such concepts as an abstraction mechanism for representing the
properties of complex systems. In the same way that we use these mentalistic
notions to describe and explain the behaviour of humans, so it might be useful to
use them to program machines. The idea of programming computer systems in
terms of mental states was articulated in Shoham (1993).

The first implementation of the agent-oriented programming paradigm was the
AGENTO programming language. In this language, an agent is specified in terms
of a set of capabilities (things the agent can do), a set of initial beliefs, a set of
initial commitments, and a set of commitment rules. The key component, which

Agent-Oriented Programming 55
determines how the agent acts, is the commitment rule set. Each commitment
rule contains a message condition, a mental condition, and an action. In order to
determine whether such a rule fires, the message condition is matched against
the messages the agent has received; the mental condition is matched against the
beliefs of the agent. If the rule fires, then the agent becomes committed to the
action.

Actions in Agent(Q may be private, corresponding to an internally executed sub-
routine, or communicative, i.e. sending messages. Messages are constrained to be
one of three types: ‘requests’ or ‘unrequests’ to perform or refrain from actions,
and ‘inform’ messages, which pass on information (in Chapter 8, we will see that
this style of communication is very common in multiagent systems). Request and
unrequest messages typically result in the agent’s commitments being modified;
inform messages result in a change to the agent’s beliefs.

Here is an example of an Agent0 commitment rule:

COMMIT(
(agent, REQUEST, DO(time, action)
), :;; msg condition
(B,

[now, Friend agent] AND
CAN(self, action) AND
NOT [time, CMT(self, anyaction)]
), :;; mental condition
self,

DO(time, action))
This rule may be paraphrased as follows:

if I receive a message from agent which requests me to do action at
time, and I believe that

- agent is currently a friend;
- I can do the action;
« at time, [am not committed to doing any other action,
then commit to doing action at time.
The operation of an agent can be described by the following loop (see Figure 3.4).

(1) Read all current messages, updating beliefs - and hence commitments -
where necessary.

(2) Execute all commitments for the current cycle where the capability condition
of the associated action is satisfied.

(3) Goto (1).

3.3

56 Deductive Reasoning Agents

messages in

initialize

]

]

)

]

]

~ |

l

|
I beliefs T T
L- [
P | |
update 47— o |
beliefs : !
i
I i
: 11 commitments | [~ =
- i
update A= I
commitments| | ;
I
\. J abilities [=
]
{
]
I
i
I
I
EXECUTE I

= ~
\ ~
\ o
\ ~
~
5 BN meg‘;age‘i out
\
N

internal actions

Figure 3.4 The flow of control in Agent0.

[t should be clear how more complex agent behaviours can be designed and
built in Agent0. However, it is important to note that this language is essentially a
prototype, not intended for building anything like large-scale production systems.
But it does at least give a feel for how such systems might be built.

Concurrent MetateM

The Concurrent MetateM language developed by Michael Fisher is based on the
direct execution of logical formulae. In this sense, it comes very close to the ‘ideal’
of the agents as deductive theorem provers (Fisher, 1994). A Concurrent MetateM
system contains a number of concurrently executing agents, each of which is able
to communicate with its peers via asynchronous broadcast message passing. Each
agent is programmed by giving it a temporal logic specification of the behaviour
that it is intended the agent should exhibit. An agent’s specification is executed

+ tc hah % +i f tha + 12g) accnnndc
dll‘ECﬂY o generate its benaviour. Execution of the agent program correspondas

to iteratively building a logical model for the temporal agent specification. It is

Concurrent MetateM 57

possible to prove that the procedure used to execute an agent specification is
correct, in that if it is possible to satisfy the specification, then the agent will do
so {(Barringer et al., 1989).

Agents in Concurrent MetateM are concurrently executing entities, able to com-
municate with each other through broadcast message passing. Each Concurrent
MetateM agent has two main components:

- an interface, which defines how the agent may interact with its environment
(i.e. other agents); and

- a computational engine, which defines how the agent will act - in Concurrent
MetateM, the approach used is based on the MetateM paradigm of executable

temporal logic (Barringer et al., 1989).

- aunique agent identifier (or just agent id), which names the agent;

- a set of symbols defining which messages will be accepted by the agent -
these are termed environment propositions; and

- a set of symbols defining messages that the agent may send - these are
termed component propositions.

For example, the interface definition of a ‘stack’ agent might be
stack{pop,push)[popped, full].

Here, stack is the agent id that names the agent, {pop, push} is the set of envi-
ronment propositions, and {popped, full} is the set of component propositions.
The intuition is that, whenever a message headed by the symbol pop is broadcast,
the stack agent will accept the message; we describe what this means below. If
a message is broadcast that is not declared in the stack agent’s interface, then
stack ignores it. Similarly, the only messages that can be sent by the stack agent
are headed by the symbols popped and full.

The computational engine of each agent in Concurrent MetateM is based on the
MetateM paradigm of executable temporal logics (Barringer et al., 1989). The idea
is to directly execute an agent specification, where this specification is given as a
set of program rules, which are temporal logic formulae of the form:

antecedent about past = consequent about present and future.

The antecedent is a temporal logic formula referring to the past, whereas the
consequent is a temporal logic formula referring to the present and future. The
intuitive interpretation of such a rule is ‘on the basis of the past, construct the
future’, which gives rise to the name of the paradigm: declarative past and imper-
ative future (Gabbay, 1989). The rules that define an agent’s behaviour can be
animated by directly executing the temporal specification under a suitable oper-

ational model (Fisher, 1995).

58 Deductive Reasoning Agents

Table 3.1 Temporal connectives for Concurrent MetateM rules.

Operator Meaning

Og @ is true ‘tomorrow’
Oy @ was true ‘yesterday’
O at some time in the future, @
e always in the future, @
e at some time in the past, @
[o2 always in the past, ¢

@ Uy @ will be true until

Sy @ has been true since @

o Wy @ is true unless

Iy @ is true zince

To make the discussion more concrete, we introduce a propositional temporal
logic, called Propositional MetateM Logic (PML), in which the temporal rules that
are used to specify an agent’s behaviour will be given. (A complete definition of
PML is given in Barringer et al. (1989).) PML is essentially classical propositional
logic augmented by a set of modal connectives for referring to the temporal order-
ing of events.

The meaning of the temporal connectives is quite straightforward: see Table 3.1
for a summary. Let ¢ and y be formulae of PML, then: O @ is satisfied at the
current moment in time (i.e. now) if @ is satisfied at the next moment in time;
O @ is satisfied now if @ is satisfied either now or at some future moment in time;
@ is satisfied now if @ is satisfied now and at all future moments; @ ‘U ' is
satisfied now if y is satisfied at some future moment, and @ is satisfied until
then - ‘W is a binary connective similar to U, allowing for the possibility that
the second argument might never be satisfied.

The past-time connectives have similar meanings: © @ and @ ¢ are satisfied
now if ¢ was satisfied at the previous moment in time - the difference between
them is that, since the model of time underlying the logic is bounded in the past,
the beginning of time is treated as a special case in that, when interpreted at the
beginning of time, © ¢ cannot be satisfied, whereas @ @ will always be satisfied,
regardless of @; & @ is satisfied now if @ was satisfied at some previous moment
in time; @@ is satisfied now if @ was satisfied at all previous moments in time;
@ S is satisfied now if @ was satisfied at some previous moment in time, and
@ has been satisfied since then - Z is similar, but allows for the possibility that
the second argument was never satisfied; finally, a nullary temporal operator can
be defined, which is satisfied only at the beginning of time - this useful operator
is called ‘start’.

To illustrate the use of these temporal connectives, consider the following

examnleg:

ARLLLpIA Ty

Llimportant(agents)

P

Concuirerit M AL
COoncurrent iviewdievi

vl
O

means ‘it is now, and will always be true that agents are important’.
Oimportant(Janine)
means ‘sometime in the future, Janine will be important’.
(= friends(us)) Uapologize(you)
means ‘we are not friends until you apologize’. And, finally,
Capologize(you)

means ‘tomorrow (in the next state), you apologize’.

The actual execution of an agent in Concurrent MetateM is, superficially at least,
Very simple to understand. Each agent obeys a Lyuc of tr ying to match the past-
time antecedents of its rules against a history, and executing the consequents
of those rules that ‘fire’. More precisely, the computational engine for an agent

continually executes the following cycle.

(1) Update the history of the agent h\/ eceivi

Dt W 23

against the current history to see which are satisfied.

P

(3) Jointly execute the fired rules together with any commitments carried over
from previous cycles.

This involves first collecting together consequents of newly fired rules with
old commitments - these become the current constraints. Now attempt to
create the next state while satisfying these constraints. As the current con-
straints are represented by a disjunctive formula, the agent will have to
choose between a number of execution possibilities.

Note that it may not be possible to satisfy all the relevant commitments on
the current cycle, in which case unsatisfied commitments are carried over

1. ~<rm1

10 tne next cycie.
(4) Goto (1).

Clearly, step (3) is the heart of the execution process. Making the wrong choice at
this step may mean that the agent specification cannot subsequently be satisfied.

When a proposition in an agent becomes true, it is compared against that agent’s
interface (see above); if it is one of the agent’s component propositions, then that
proposition is broadcast as a message to all other agents. On receipt of a message,
each agent attempts to match the proposition against the environment proposi-
tions in their interface. If there is a match, then they add the proposition to their
history.

I 1 r 18 S
propositions) from other agents and adding them to its history.
(2) Check which rules fire, by comparing past-time antecedents of each rule

60 Deductive Reasoning Agents

rofackl ackNNlagivel give?l
'V\l/lv.)'\r*,VDJI\&,L&DVVL,&DV‘/&Jl
Qaskl = Ogivel,;
Qask2 = Ogive2;

start = [_]-(givel A give2).

start = askl;
Qaskl = askl.

vc2(askl,give2)[ask?2]:
O (askl A —~ask2) = ask2.

Figure 3.5 A simple Concurrent MetateM systern.

Time Agent
rp rcl rc?

0. askl
1. askl askl ask?2
2. askl,ask2, givel askl
3. askl,give2 askl,givel ask?2
4. askl,ask2,givel askl give?2
5.

Figure 3.6 An example run of Concurrent MetateM.

Figure 3.5 shows a simple system containing three agents: ¥p, ¥cl, and rc2.
The agent Yp is a ‘resource producer’: it can awp to only one agent at a time,

and will commit to eventually give to any agent that asks. Agent v p will only
accept messages askl and ask?2, and can only send givel and give2 messages.
The interface of agent rc1 states that it will only accept givel messages, and can
only send ask1 messages. The rules for agent »¢1 ensure that an ask1 message

ic cont nn ovarv cvucla — thic ic horatice ctart ic eaticfiod at the hoginninog nf Him
19 OLLIL Wil UVLL Y LYo LILLOD 1D UL AUDU oLaQl L 12 DALIOoLIILVY Al L1IC U‘s—slll-lLIlla LW NS Lll‘-l\—

thus firing the first rule, so ©askl will be satisfied on the next cycle, thus fir-
ing the second rule, and so on. Thus rc1 asks for the resource on every cycle,
using an askl message. The interface for agent rc2 states that it will accept
both askl and give2 messages, and can send ask2 messages. The single rule
for agent »¢2 ensures that an ask2 message is sent on every cycle where, on its
previous cycle, it did not send an ask2 message, but received an askl message
(from agent rc1). Figure 3.6 shows a fragment of an example run of the system
in Figure 3.5.

Concurrent MetateM 61
Notes and Further Reading

My presentation of logic based agents draws heavily on the discussion of deliber-
ate agents presented in Genesereth and Nilsson (1987, Chapter 13), which repre-
sents the logic-centric view of Al and agents very well. The discussion is also partly
based on Konolige (1986). A number of more-or-less ‘pure’ logical approaches
to agent programming have been developed. Well-known examples include the
ConGolog system of Lespérance and colleagues (Lésperance et al., 1996) (which is
based on the situation calculus (McCarthy and Hayes, 1969)). Note that these archi-
tectures (and the discussion above) assume that if one adopts a logical approach
to agent building, then this means agents are essentially theorem provers, employ-
ing explicit symbolic reasoning (theorem-proving) in order to make decisions. But
just because we find logic a useful tool for conceptualizing or specifying agents,

L A A « 1115L% H+= & ol AL AV ARV PRl Allls e =) LA

this does not mean that we must view decision making as logical manipulation.
An alternative is to compile the logical specification of an agent into a form more
amenable to efficient decision making. The difference is rather like the distinc-
tion between interpreted and compiled programming languages. The best-known
example of this work is the situated automata paradigm of Rosenschein and Kael-
bling (1996). A review of the role of logic in intelligent agents may be found
in Wooldridge (1997). Finally, for a detailed discussion of calculative rational-
ity and the way that it has affected thinking in Al (see Russell and Subramanian,
1995).

The main references to Ageni0 are Shoham {1990, 1993). Shoham’s AQOP pro-
posal has been enormously influential in the multiagent systems community.
In addition to the reasons set out in the main text, there are other reasons for
believing that an intentional stance will be useful for understanding and reason-
ing about computer programs (Huhns and Singh, 1998). First, and perhaps most
importantly, the ability of heterogeneocus, self-interested agents to communicate
seems to imply the ability to talk about the beliefs, aspirations, and intentions
of individual agents. For example, in order to coordinate their activities, agents
must have information about the intentions of others (Jennings, 1993a). This idea
is closely related to Newell's knowledge level (Newell, 1982). Later in this book, we
will see how mental states such as beliefs, desires, and the like are used to give
a semantics to speech acts (Searle, 1969; Cohen and Levesque, 1990a). Second,
mentalistic models are a good candidate for representing information about end
users. For example, imagine a tutoring system that works with students to teach
them Java programming. One way to build such a system is to give it a model of the
user. Beliefs, desires, intentions, and the like seem appropriate for the make-up
of such models.

Michael Fisher’s Concurrent MetateM language is described in Fisher (1994); the
execution algorithm that underpins it is described in Barringer et al. (1989). Since
Shoham’s proposal, a number of languages have been proposed which claim to
be agent oriented. Examples include Becky Thomas’s Planning Communicating

62 Deductive Reasoning Agents

Agents (PLACA) language (Thomas, 1993; Thomas, 1995), MAIL (Haugeneder et
al., 1994), and the AgentSpeak(L) language (Rao, 1996a).

Class reading: Shoham (1993). This is the article that introduced agent-oriented
programming and, throughout the late 1990s, was one of the most cited articles in
the agent community. The main point about the article, as far as [am concerned, is
that it explicitly articulates the idea of programming systems in terms of ‘mental
states’. Agent(, the actual language described in the article, is not a language that
you would be likely to use for developing ‘real’ systems. A useful discussion might
be had on (i) whether ‘mental states’ are really useful in programming systems;
(i) how one might go about proving or disproving the hypothesis that mental
states are useful in programming systems, and (iii) how Agent0-like features might
be incorporated in a language such as Java.

Concurrent MetateM 63

SnowWhite(ask)[give]:
Qask(x) = Ogive(x)

give(x) ngive(y) = (x=Y¥)

eager(give)lask]:
start = ask(eager)
Oygive(eager) = ask(eager)

greedy(give)lask]:
start => [Jask(greedy)

courteous(give)lask]:
((mask(courteous) Sgivel(eager))a
(mask(courteous) Sgive(grveedy))) = ask(courteous)

shy(give)lask]:
start => Qask(shy)
Oask(x) = —ask(shy)

Ogive(shy) = Oask(shy)

Figure 3.7 Snow White in Concurrent MetateM.

Exercises

(1) [Level 2.] (The following few questions refer to the vacuum-world example.}

Give the full definition (using pseudo-code if desired) of the new function, which
defines the predicates to add to the agent’s database.

(2} [Level 2.]

Complete the vacuum-world example, by filling in the missing rules. How intuitive do
you think the solution is? How elegant is it? How compact is it?

{3) [Level 2.]

Try using your favourite (imperative) programming language to code a solution to
the basic vacuum-world example. How do you think it compares with the logical solu-
tion? What does this tell you about trying to encode essentially procedural knowledge
(i.e. knowledge about what action to perform) as purely logical rules?

{4) [Level 2.]

If you are familiar with Prolog, try encoding the vacuum-world example in this language
and running it with randomly placed dirt. Make use of the assert and retract meta-
level predicates provided by Prolog to simplify your system (allowing the program itself
to achieve much of the operation of the next function).

{5) [Level 2.]

Try scaling the vacuum world up to a 10 x 10 grid size. Approximately how many rules
would you need to encode this enlarged example, using the approach presented above?
Try to generalize the rules, encoding a more general decision-making mechanism.

64 Deductive Reasoning Agents

(6) [Level 3.]

Suppose that the vacuum world could also contain obstacles, which the agent needs
to avoid. (Imagine it is equipped with a sensor to detect such obstacles.) Try to adapt
the example to deal with obstacle detection and avoidance. Again, compare a logic-based
solution with one implemented in a traditional (imperative} programming language.

(7y [Level 3.]

Suppose the agent’s sphere of perception in the vacuum world is enlarged, so that it
can see the whole of its world, and see exactly where the dirt lay. In this case, it would be
possible to generate an optimal decision-making algorithm - one which cleared up the dirt
in the smallest time possible. Try and think of such general algorithms, and try to code
them both in first-order logic and a more traditional programming language. Investigate
the effectiveness of these algorithms when there is the possibility of noisein the perceptual
input the agent receives (i.e. there is a non-zero probability that the perceptual information
is wrong), and try to develop decision-making algorithms that are robust in the presence
of such noise. How do such algorithms perform as the level of perception is reduced?

(8) [Level 2.]

Consider the Concurrent MetateM program in Figure 3.7. Explain the behaviour of the
agents in this system.

{9) [Level 4.]

Extend the Concurrent MetateM language by operators for referring to the beliefs and
commitments of other agents, in the style of Shoham’s Agent0.

{(10) [Level 4.]
Give a formal semantics to Agent0 and Concurrent MetateM.

4.1

F_"""'""""""""'

4|
“x

Practical
Reasoning
Agents

Whatever the merits of agents that decide what to do by proving theorems, it
seems clear that we do not use purely logical reasoning in order to decide what
to do. Certainly something like logical reasoning can play a part, but a moment’s
reflection should confirm that for most of the time, very different processes are

taking place. In this chapter, I will focus on a model of agency that takes its inspi-

wWhaiaa g Qe 212 LaanS LIIQpsLCLy VI LN UG Wi Gl VU Sl ui@y WD 1S iaSpra

ration from the processes that seem to take place as we decide what to do.

Practical Reasoning Equals Deliberation Plus
Means-Ends Reasoning

The particular model of decision making is known as practical reasoning. Practical
reasoning is reasoning directed towards actions - the process of figuring out what
to do.

Practical reasoning is a matter of weighing conflicting considerations
for and against competing options, where the relevant considerations
are provided by what the agent desires/values/cares about and what
the agent believes.

(Bratman, 1990, p. 17)

66 Practical Reasoning Agents

It is important to distinguish practical reasoning from theoretical reasoning
(Eliasmith, 1999). Theoretical reasoning is directed towards beliefs. To use arather
tired example, if I believe that all men are mortal, and I believe that Socrates is
a man, then I will usually conclude that Socrates is mortal. The process of con-
cluding that Socrates is mortal is theoretical reasoning, since it affects only my
beliefs about the world. The process of deciding to catch a bus instead of a train,
however, is practical reasoning, since it is reasoning directed towards action.
Human practical reasoning appears to consist of at least two distinct activities.
The first of these involves deciding what state of affairs we want to achieve; the
second process involves deciding how we want to achieve these states of affairs.
The former process - deciding what states of affairs to achieve - is known as
deliberation. The latter process - deciding how to achieve these states of affairs -

TA TD f")]] VI AAIVIOC /)Vl/"(’ Vﬁﬂ(‘/\")]ﬂ
W Coldll rricuiioT Crivo 1 CUoUrtiniYy.

To better understand deliberation and means-ends reasoning, consider the fol-
lowing example. When a person graduates from university with a first degree, he
or she is faced with some important choices. Typically, one proceeds in these
choices by first deciding what sort of career to follow. For example, one might
consider a career as an academic, or a career in industry. The process of deciding
which career to aim for is deliberation. Once one has fixed upon a career, there are
further choices to be made; in particular, how to bring about this career. Suppose
that after deliberation, you choose to pursue a career as an academic. The next
step is to decide how to achieve this state of affairs. This process is means-ends
reasoning. The end result of means-ends reasoning is a plan or recipe of some
kind for achieving the chosen state of affairs. For the career example, a plan might
involve first applying to an appropriate university for a PhD place, and so on. After
obtaining a plan, an agent will typically then attempt to carry out (or execute) the
plan, in order to bring about the chosen state of affairs. If all goes well (the plan is
sound, and the agent’s environment cooperates sufficiently), then after the plan
has been executed, the chosen state of affairs will be achieved.

Thus described, practical reasoning seems a straightforward process, and in
an ideal world, it would be. But there are several complications. The first is that
deliberation and means-ends reasoning are computational processes. In all real
agents (and, in particular, artificial agents), such computational processes will take
place under resource bounds. By this [mean that an agent will only have a fixed
amount of memory and a fixed processor available to carry out its computations.
Together, these resource bounds impose a limit on the size of computations that
can be carried out in any given amount of time. No real agent will be able to carry
out arbitrarily large computations in a finite amount of time. Since almost any real
environment will also operate in the presence of time constraints of some kind,
this means that means-ends reasoning and deliberation must be carried out in

a fixed, finite number of processor cycles, with a fixed, finite amount of memory
space,. From this discussion, we can see that resource hounds have two imnortant

4 LR il Liad LMASN A S Satsaay LR SO LAl 1 LS UC RFvaiavaS 1AV~ ¥As daiipsisa LiAiat

implications:

!
!
|
|
| -

Practical Reasoning Equals Deliberation Plus Means-Ends Reasoning 67

- Computation is a valuabie resource for agents situated in real-time environ-
ments. The ability to perform well will be determined at least in part by the
ability to make efficient use of available computational resources. In other
words, an agent must control its reasoning effectively if it is to perform well.

+ Agents cannot deliberate indefinitely. They must clearly stop deliberating at
some point, having chosen some state of affairs, and commit to achieving
this state of affairs. It may well be that the state of affairs it has fixed upon
is not optimal - further deliberation may have led it to fix upon an another
state of affairs.

We refer to the states of affairs that an agent has chosen and commmitted to as its
intentions.

Intentions in practical reasoning

First, notice that it is possible to distinguish several different types of intention.
In ordinary speech, we use the term ‘intention’ to characterize both actions and
states of mind. To adapt an example from Bratman (Bratman, 1987, p. 1), [might
intentionally push someone under a train, and push them with the intention of
killing them. Intention is here used to characterize an action - the action of push-
ing someone under a train. Alternatively, [might have the intention this morning
of pushing someone under a train this afternoon. Here, intention is used to char-
acterize my state of mind. In this book, when I talk about intentions, I mean inten-
tions as states of mind. In particular, I mean future-directed intentions - intentions
that an agent has towards some future state of affairs.

The most obvious role of intentions is that they are pro-attitudes (Bratman,
1990, p. 23). By this, [mean that they tend to lead to action. Suppose I have an
intention to write a book. If I truly have such an intention, then you would expect
me to make a reasonable attempt to achieve it. This would usually involve, at
the very least, me initiating some plan of action that I believed would satisfy the
intention. In this sense, intentions tend to play a primary role in the production
of action. As time passes, and my intention about the future becomes my inten-
tion about the present, then it plays a direct role in the production of action.
Of course, having an intention does not necessarily lead to action. For example,
I can have an intention now to attend a conference later in the year. I can be
utterly sincere in this intention, and yet if I learn of some event that must take
precedence over the conference, I may never even get as far as considering travel
arrangements.

Bratman notes that intentions play a much stronger role in influencing action

My desire to play basketball this afternoon is merely a potential influ-
encer of my conduct this afternoon. It must vie with my other relevant
desires.. .before it is settled what [will do. In contrast, once I intend

68 Practical Reasoning Agents

to play basketball this afternoon, the matter is settled: I normally need
not continue to weigh the pros and cons. When the afternoon arrives,
I will normally just proceed to execute my intentions.

(Bratman, 1990, p. 22)

The second main property of intentions is that they persist. If I adopt an inten-
tion to become an academic, then I should persist with this intention and
attempt to achieve it. For if I immediately drop my intentions without devot-
ing any resources to achieving them, then I will not be acting rationally. Indeed,
you might be inclined to say that I never really had intentions in the first
place.

Of course, I should not persist with my intention for too long - if it becomes
clear to me that I will never become an academic, then it is only rational to drop
my intention to do so. Similarly, if the reason for having an intention goes away,
then it would be rational for me to drop the intention. For example, if [adopted
the intention to become an academic because I believed it would be an easy life,
but then discover that this is not the case (e.g. I might be expected to actually
teach!), then the justification for the intention is no longer present, and I should
drop the intention.

If I initially fail to achieve an intention, then you would expect me to try again -
you would not expect me to simply give up. For example, if my first application
for a PhD program is rejected, then you might expect me to apply to alternative
universities,

The third main property of intentions is that once I have adopted an intention,
the very fact of having this intention will constrain my future practical reasoning.
For example, while [hold some particular intention, [will not subsequently enter-
tain options that are inconsistent with that intention. Intending to write a book,
for example, would preclude the option of partying every night: the two are mutu-
ally exclusive. This is in fact a highly desirable property from the point of view
of implementing rational agents, because in providing a ‘filter of admissibility’,
intentions can be seen to constrain the space of possible intentions that an agent
needs to consider.

Finally, intentions are closely related to beliefs about the future. For exam-
ple, if [intend to become an academic, then I should believe that, assuming
some certain background conditions are satisfied, I will indeed become an aca-
demic. For if I truly believe that 1 will never be an academic, it would be non-
sensical of me to have an intention to become one. Thus if I intend to become
an academic, I should at least believe that there is a good chance 1 will indeed
become one. However, there is what appears at first sight to be a paradox here.
While I might believe that I will indeed succeed in achieving my intention, if I
am rational, then I must also recognize the possibility that I can fail to bring it

ahoit — that there i¢ coome circnimetance 11mder which mv intention ic not catic-
ARSI A L LAl LLANL L N 1\) [CAVESSLUNR NS TR WM ENIUIASFIVAVA R C Y LT LW "'11)\,ll llly AJIL\.IAL AV IS TS)].L L WA Lagy

fied.

r

Practical Reasoning Equals Deliberation Plus Means-Ends Reasoning 69

From this discussion, we can identify the following closely related situations.

- Having an intention to bring about ¢, while believing that you will not bring
about @ is called intention-belief inconsistency, and is not rational (see, for

example, Bratman, 1987, pp. 37, 38).

- Having an intention to achieve @ without believing that @ will be the case
is intention-belief incompleteness, and is an acceptable property of rational
agents (see, for example, Bratman, 1987, p. 38).

The distinction between these two cases is known as the asymmetry thesis
(Bratman, 1987, pp. 37-41).

Summarizing, we can see that intentions play the following important roles in
practical reasoning.

Intentions drive means-ends reasoning. If[have formed anintention, thenIwill
attempt to achieve the intention, which involves, among other things, deciding
how to achieve it. Moreover, if one particular course of action fails to achieve
an intention, then I will typically attempt others.

arcict. I will not ugually give 1m on mv intentiong without good rea-
e A AFEALY L A \.' — A

4 ¥VLILL 1aVL MOWQLL Y SaV L UWps VLl siay A. AL LALAVAL A VALIIJ AL s

son - they will persist, typically until I believe I have successfully achieved them,
[believe I cannot achieve them, or I believe the reason for the intention is no
longer present.

Inteantiong
ARA VU BRALANF RALF

Intentions constrain future deliberation. I will not entertain options that are
inconsistent with my current intentions.

Intentions influence beliefs upon which future practical reasoning is based. If
[adopt an intention, then I can plan for the future on the assumption that [

will achieve the intention. For if I intend to achieve some state of affairs while
sim 1]f:\ppmlclv hphmnno that I will not achieve it. then I am being irrational.

ARSI AS LU S L LiAGL 2 VVaas dafu GRanal VR Ay, Lia o2 Qe ssvaiag i QAAR AT

Notice from this discussion that intentions interact with an agent’s beliefs and
other mental states. For example, having an intention to ¢ implies that I do not
believe @ is impossible, and moreover that I believe given the right circumstances,
@ will be achieved. However, satisfactorily capturing the interaction between
intention and belief turns out to be surprisingly hard - some discussion on this
topic appears in Chapter 12.

Throughout the remainder of this chapter, [make one important assumption:
that the agent maintains some explicit representation of its beliefs, desires, and
intentions. However, I will not be concerned with how beliefs and the like are
represented. One possibility is that they are represented symbolically, for example
as logical statements a la Prolog facts (Clocksin and Mellish, 1981). However, the
assumption that beliefs, desires, and intentions are symbolically represented is
by no means necessary for the remainder of the book. [use B to denote a variable
that holds the agent’s current beliefs, and let Bel be the set of all such beliefs.

Similarly, I use D as a variable for desires, and Des to denote the set of all desires.

70 Practical Reasoning Agents

Finally, the variable I represents the agent’s intentions, and Int is the set of all
possible intentions.
In what follows, deliberation will be modelled via two functions:

- an option generation function; and
« a filtering function.
The signature of the option generation function options is as follows:

ptions: p(Bel) x p(Int

R

— <)
[0 d -~ re

u

This function takes the agent’s current beliefs and current intentions, and on the
basis of these produces a set of possible options or desires.

In order to select between competing options, an agent uses a filter function.
Intuitively, the filter function must simply select the ‘best’ option(s) for the agent
to commit to. We represent the filter process through a function filter, with a
signature as follows:

filter : p(Bel) x p(Des) x p(Int) — p(Int).
An agent’s belief update process is modelled through a belief revision function:
br f : pp(Bel) x Pev — p(Bel).

Means-Ends Reasonin

Reasoning
Means-ends reasoning is the process of deciding how to achieve an end (i.e. an
intention that you have) using the available means (i.e. the actions that you can
perform). Means-ends reasoning is perhaps better known in the Al community as
planning.

Planning is essentially automatic programming. A planner is a system that takes

as input representations of the following.

(1) A goal, intention or (in the terminology of Chapter 2) a task. This is some-
thing that the agent wants to achieve (in the case of achievement tasks - see

lldplt:[L}, Or a state Ul clucu[b LIldL LIIC dgtﬁlll wanis to llldl[lldl[l ur VUIU U.Il
the case of maintenance tasks - see Chapter 2).

(2) The current state of the environment - the agent’s beliefs.
(3) The actions available to the agent.

As output, a planning algorithm generates a plan (see Figure 4.1). This is a course

w2 O S il

of action - a ‘recipe’. If the planning algorlthm does its job correctly, then if the
agent executes this plan (‘follows the recipe’) from a state in which the world
is as described in (2), then once the plan has been completely executed, the
goal/intention/task described in (1) will be carried out.

The first real planner was the STRIPS system, develop

1960s/early 1970s (Fikes and Nilsson, 1971). The two basic Components of STRIPS

ard hy 7 Eibnc in
(el d} I

Means-Ends Reasoning 71

goal/
intention/ state of
task environment possible actions
" ™

planner

plan to achieve goal

Figure 4.1 Planning.

were a model of the world as a set of formulae of first-order logic, and a set of
action schemata, which describe the preconditions and effects of all the actions
available to the planning agent. This latter component has perhaps proved to
be STRIPS’ most lasting legacy in the Al planning community: nearly all imple-
mented planners employ the ‘STRIPS formalism’ for action, or some variant of
it. The STRIPS planning algorithm was based on a principle of finding the ‘differ-
ence’ between the current state of the world and the goal state, and reducing this
difference by applying an action. Unfortunately, this proved to be an inefficient
process for formulating plans, as STRIPS tended to become ‘lost’ in low-level plan
detail.

There is not scope in this book to give a detailed technical introduction to plan-
ning algorithms and technologies, and in fact it is probably not appropriate to do
so. Nevertheless, it is at least worth giving a short overview of the main concepts.

The Blocks World

In time-honoured fashion, 1 will illustrate the techniques with reference to a Blocks
World. The Blocks World contains three blocks (A, B, and C) of equal size, a robot
arm capable of picking up and moving one block at a time, and a table top. The
blocks may be placed on the table top, or one may be placed on top of the other.
Figure 4.2 shows one possible configuration of the Blocks World.

Notice that in the description of planning algorithms I gave above, I stated that
planning algorithms take as input representations of the goal, the current state
of the environment, and the actions available. The first issue is exactly what form
these representations take. The STRIPS system made use of representations based

72 Practical Reasoning Agents

| (

A

SRS

Figure 4.2 The Blocks World.

on first-order logic. I will use the predicates in Table 4.1 to represent the Blocks
World.

A description of the Blocks World in Figure 4.2 is using these predicates as
follows:

{Clear (A},On(A,B),OnTable(B),OnTable(C),Clear(C)}.

I am implicitly making use of the closed world assumption: if something is not
explicitly stated to be true, then it is assumed false.

The next issue is how to represent goals. Again, we represent a goal as a set of
formulae of first-order logic:

{OnTable(A),OnTable(B),OnTable(C)}.

So the goal is that all the blocks are on the table. To represent actions, we make
use of the precondition/delete/add list notation - the STRIPS formalism. In this
formalism, each action has

+ a name - which may have arguments;

- a precondition list - a list of facts which must be true for the action to be
executed;

+ a delete list - a list of facts that are no longer true after the action is per-
formed; and

1AL OlvaL e

Stack(x,y)

pre {Clear(y),Holding(x)}
del {Cleav(y),Holding(x)}
add {ArmEmpty,On(x,y)}

The unstack action occurs when the robot arm picks an object x up from on
top of another object y:

——“

Means-Fnds Reasoning 73

Table 4.1 Predicates for describing the Blocks World.

Predicate Meaning

On(x,vy) obiject x on top of object y
OnTable(x) object x is on the table
Clear(x) nothing is on top of object x
Holding(x) robot arm is holding x

ArmEmpty robot arm empty (not holding anything)

UnStack(x,y)

pre {On(x,y), Clear(x), ArmEmpty}
del {On(x,y), AvmEmpty}

add {Holding(x), Clear(y)}

The pickup action occurs when the arm picks up an object x from the table:

Pickup(x)
pre {Clear(x), OnTable(x), ArmEmpty}
del {OnTable(x), AvmEmpty}
add {Holding(x)}
The putdown action occurs when the arm places the object x onto the table:

PutDowmn(x)

pre {Holding(x)}

del {Holding(x)}

add {ArmEmpty,OnTable(x)}

Let us now describe what is going on somewhat more formally. First, as we have
throughout the book, we assume a fixed set of actions Ac = {x,..., &} that the
agent can perform. A descriptor for an action & € Ac is a triple

(P(X!D(XsA(X)l
where

+ Py is a set of formulae of first-order logic that characterize the precondition
of action «;

D, is a set of formulae of first-order logic that characterize those facts made

A AL iAa Uil 11 k_o L 11 LL

false by the performance of o (the delete list); and

« Ay is aset of formulae of first-order logic that characterize those facts made
true by the performance of « (the add list).

74 Practical Reasoning Agents

For simplicity, we will assume that the precondition, delete, and add lists are
constrained to only contain ground atoms - individual predicates, which do not
contain logical connectives or variables.

A planning problem (over the set of actions Ac) is then determined by a triple

(A! Oi y)!
where

- A is the beliefs of the agent about the initial state of the world - these beliefs
will be a set of formulae of first order (cf. the vacuum world in Chapter 2);

O = {{Py, Dy, Ax) | 00 € Ac} is an indexed set of operator descriptors, one
for each available action o; and

- y is a set of formulae of first-order logic, representing the goal/task/
intention to be achieved.
A plan 1 is a sequence of actions
= (al!"‘lan)l

where each «; is a member of Ac.
With respect to a planning problem {A, Q,y}, a plan m = (x,..., &) deter-

mines a sequence of n + 1 environment models

AO)All---iAni
where

Ap = A
and _
Ai = (A1 \Dg,) UAg, forl<igmn.

A (linear) plan ™ = (o
problem (A, O, y) if, an

the nreceding environme
LEAN PL_\, w4l L& AR VLA WIRLILIN IR L

1,.-., 0n) 18 said to be acceptable with respect to the
0 ly if, the precondition of every action is satisfied in

model ie. if A = P Fnr Aall 1 <« 1 <« . A nlan

AT A S AW P L A L “I 1 L LWL QUL 4 S b Ny fre i3 praliRa

™= (xy,...,Q&p) is correct with respect to (A, O, y) 1f and only if
(1) it is acceptable; and

(2) A, = y (i.e. if the goal is achieved in the final environment state generated
by the plan).

The problem to be solved by a planning system can then be stated as follows.

Given a planning problem (A, O, y}, find a correct plan for (A, O, y) or
else announce that none exists).

ny

(Tt ic wort inm with t
TYAWJL L

(It is comparing this disc 0
Chapter 3 - similar comments apply with respect to
completeness.)

We will use 1 (with decorations: ', mmy, ..

the set of all plans (over some set of actions
ns

at
v

m
ir l& Lieio \Alﬂ\.uﬂ l\lll. ¥yiuie Lircd

o denote plans, and let Plan be
We will make use of a number
e

£ tlanon ta73ll st armtrrnl ‘an
1 LLICOHE ¥vIiil 11Ul ClLLLl(l 1y o

1rvilinme; Aoafemitinmo Fam mamimcslafimg =

of a duxliiiary aennitions 101 manipulating pla
required until later in this chapter):

Implementing a Practical Redsoning Agent 75

. if 1 is a plan, then we write pre(1r) to denote the precondition of 1, and
body (1) to denote the body of m;

« if 7 is a plan, then we write empty (1) to mean that plan 7 is the empty
sequence (thus empty(...) is a Boolean-valued functiony;

« execute(...) is a procedure that takes as input a single plan and executes
it without stopping - executing a plan simply means executing each action
in the plan body in turn;

- if 1T is a plan, then by head (1) we mean the plan made up of the first action
in the plan body of ; for example, if the body of m is oy, ..., &y, then the
body of head (1) contains only the action o;;

- if 77 is a plan, then by tail(1m) we mean the plan made up of all but the first
action in the plan body of m; for example, if the body of m is oy, 0o, ..., o,
then the body of tail(rr) contains actions oo, ..., &u;

- if rr is a plan, I < Int is a set of intentions, and B < Bel is a set of beliefs,
then we write sound/(mr, I, B) to mean that 7t is a correct plan for intentions
I given beliefs B (Lifschitz, 1986).

An agent’s means-ends reasoning capability is represented by a function
plan : p(Bel) x p(Int) X p(Ac) — Plan,

which, on the basis of an agent’s current beliefs and current intentions, deter-
mines a plan to achieve the intentions.

Notice that there is nothing in the definition of the plan(...) function which
requires an agent to engage in plan generation - constructing a plan from scratch
(Allen et al., 1990). In many implemented practical reasoning agents, the plan(...)
function is implemented by giving the agent a plan library (Georgeff and Lan-
sky, 1987). A plan library is a pre-assembled collection of plans, which an agent
designer gives to an agent. Finding a plan to achieve an intention then simply
involves a single pass through the plan library to find a plan that, when executed,
will have the intention as a postcondition, and will be sound given the agent’s
current beliefs. Preconditions and postconditions for plans are often represented
as (lists of) atoms of first-order logic, and beliefs and intentions as ground atoms
of first-order logic. Finding a plan to achieve an intention then reduces to finding
a plan whose precondition unifies with the agent’s beliefs, and whose postcon-
dition unifies with the intention. At the end of this chapter, we will see how this
idea works in the PRS system.

Implementing a Practical Reasoning Agent

We can now discuss the overall control structure of a practical reasoning agent.
Figure 4.3 gives the pseudo-code for the control cycle of such an agent. The basic
structure of the decision-making process is a loop, in which the agent continually

76 Practical Reasoning Agents

Algorithm: Practical Reasoning Agent Control Loop
1.

2. B~ By; /* Bp are initial beliefs */

3. I~ 1y; /* Ip are initial intentions */

4. while true do

5. get next percept p through see(...) function;
6. B—brf(B,m;

7. D — options(B,I);

8. I — filter(B,D,I);

9. T — plan(B,I,Ac);

10. while not (empty(m) or succeeded(l,B) or impeossible(l,B)) do
11. o — head(m);

12. execute(o);

13. m— tail(m);

14. get next percept p through see(...) function;
15. B—brf(B,p);

16. if reconsider(I,B) then

17. D — options(B,1);

18. I~ filter(B,D,I);

19. end-if

20. if not sound(m,I,B) then

21. m— plan(B,I, Ac)

22. end-if

23. end-while

24. end-while

Figure 4.3 A practical reasoning agent.

- observes the world, and updates beliefs;

- deliberates to decide what intention to achieve (deliberation being done by
first determining the available options and then by filtering);

- uses means-ends reasoning to find a plan to achieve these intentions;
- executes the plan.

However, this basic control loop is complicated by a number of concerns. The first
of these is that of commitment - and, in particular, how committed an agent is to
both ends (the intention)} and means (the plan to achieve the intention).

Commitment to ends and means

When an option successfully passes through the filter function and is hence
chosen by the agent as an intention, we say that the agent has made a commitment
to that option. Commitment implies temporal persistence - an intention, once
adopted, should not immediately evaporate. A critical issue is just how committed
an agent should be to its intentions. That is, how long should an intention persist?
Under what circumstances should an intention vanish?

F

ent 77

To motivate the discussion further, consider the following scenario.

Some time in the not-so-distant future, you are having trouble with
your new household robot. You say “Willie, bring me a beer.” The robot
replies “OK boss.” Twenty minutes later, you screech “Willie, why didn’t
you bring me that beer?” It answers “Well, I intended to get you the
bEEF, but I decided to do Someuung else.” Lvuuc:u, you send the wise
guy back to the manufacturer, complaining about a lack of commit-
ment. After retrofitting, Willie is returned, marked “Model C: The Com-
mitted Assistant.” Again, you ask Willie to bring you a beer. Again, it
accedes, replying “Sure thing.” Then you ask: “What kind of beer did
you buy?” It answers: “Genessee.” You say “Never mind.” One minute
later, Willie trundles over with a Genessee in its gripper. This time, you
angrily return Willie for overcommitment. After still more tinkering,

the manufacturer sends Willie back, promising no more problems with
its commitments. So, being a somewhat trusting customer, you accept
the rascal back into your household, but as a test, you ask it to bring
you your last beer. Willie again accedes, saying “Yes, Sir.” (Its attitude

Aatrn hoonnm Fuvad)y Tha vahnat goto the hoar anAd gtanta

prﬁblcm seems to have been fixed. } 1Ne ronot gets tne peer ana starts
towards you. As it approaches, it lifts its arm, wheels around, delib-
erately smashes the bottle, and trundles off. Back at the plant, when
interrogated by customer service as to why it had abandoned its com-
mitments, the robot replies that according to its specifications, it kept
its commitments as long as required - commitments must be dropped
when fulfilled or impossible to achieve. By smashing the bottle, the
commitment became unachievable.

(Cohen and Levesque, 1990a, pp. 213, 214)

The mechanism an agent uses to determine when and how to drop intentions is
known as a commitment strategy. The following three commitment strategies are

COI’I’]IHOI’]IY discussed in the literature of rational agents (Rao and LJEOI'gEII 1991b).

Blind commitment. A blindly committed agent will continue to maintain an inten-
tion until it believes the intention has actually been achieved. Blind commitment
is also sometimes referred to as fanatical commitment.

Single-minded commitment. A single-minded agent will continue to maintain an
intention until it believes that either the intention has been achieved, or else
that it is no longer possible to achieve the intention.

Open-minded commitment. An open-minded agent will maintain an intention as
long as it is still believed possible.

Note that an agent has commitment both to ends (i.e. the state of affairs it wishes
to bring about) and means (i.e. the mechanism via which the agent wishes to

achieve the state of affairs).

With respect to commitment to means (i.e. plans), the solution adopted in Fig-
ure 4.3 is as follows. An agent will maintain a commitment to an intention until
(i) it believes the intention has succeeded; (ii) it believes the intention is impos-
ou.m:: or uu; theie is Il()uﬂi’ig left to execute in the p1a11 This is sir g e-minded
commitment. [write succeeded (I, B) to mean that given beliefs B, the intentions
I can be regarded as having been satisfied. Similarly, we write impossible(l, B)
to mean that intentions [are impossible given beliefs B. The main loop, capturing
this commitment to means, is in lines (10)-(23).

How about commitment to ends? When should an agent stop to reconsider its

intentions? One possibility is to reconsider intentions at every opportunity - in

pnrhrn]:\r after executing everv nossihle action. If ontion generation and filtering

CAL LI Ll @It CALL UGS LVLUL Y PUSSINIIC AL LIV 11 Upyuuil 5Uiits Rl Gisie faatti iy

were computationally cheap processes, then this would be an acceptable strat-
egy. Unfortunately, we know that deliberation is not cheap - it takes a consider-
able amount of time. While the agent is deliberating, the environment in which
the agent is working is changing, possibly rendering its newly formed intentions
irrelevant.

We are thus presented with a dilemma:

. an agent that does not stop to reconsider its intentions sufficiently often
will continue attempting to achieve 1ts intentions even after it is clear that
they cannot be achieved

them;

- an agent that constantly reconsiders its attentions may spend insufficient
time actually workmg to achieve them, and hence runs the risk of never

There is clearly a trade-off to be struck between the degree of commitment and
reconsideration at work here. To try to capture this trade-off, Figure 4.3 incor-
porates an explicit meta-level control component. The idea is to have a Boolean-
valued function, reconsider, such that reconsider (I, B) evaluates to ‘true’ just
in case it is approprlate for the agent with beliefs B and intentions I to recon-
sider its intentions. Deciding whether to reconsider intentions thus falls to this
function.

It is interesting to consider the circumstances under which this function can
be said to behave optimally. Suppose that the agent’s deliberation and plan gen-
eration functions are in some sense perfect: that deliberation always chooses the
‘best’ intentions (however that is defined for the application at hand), and planning
always produces an appropriate plan. Further suppose that time expended always
has a cost - the agent does not benefit by doing nothing. Then it is not difficult
to see that the function reconsider(...) will be behaving optimally if, and only
if, whenever it chooses to deliberate, the agent changes intentions (Wooldridge
and Parsons, 1999). For if the agent chose to deliberate but did not change inten-

Qitve L QL 3ViSy 2 00 11 laEL /iRl Laavos AR el SRS Seihe RalF/L NGEQEAIEN 22232

tions, then the effort expended on deliberation was wasted. Similarly, if an agent

l

Implementing a Practical Reasoning Agent

Table 4.2 Practical reasoning situations (cf. Bratman et al., 1988, p. 353).

79

Situation Chose to Changed Would have reconsider(...)
number deliberate? intentions? changed intentions? optimal?

1. No — No Yes

2. No — Yes No

3. Yes No — No

4, Yes Yes — Yes

should have changed intentions, but failed to do so, then the effort expended on
attempting to achieve its intentions was also wasted.

The possible interactions between deliberation and meta-level control (the func-
tion veconsider(...)) are summarized in Table 4.2.

. Insituation (1), the agent did not choose to deliberate, and as a consequence,
did not choose to change intentions. Moreover, if it had chosen to deliberate,
it would not have changed intentions. In this situation, the reconsider(...)
function is behaving optimally.

In situation (2), the agent did not choose to deliberate, but if it had done
S0, it would have changed intentions. In this situation, the reconsider(...)
function is not behaving optimally.

- In situation (3), the agent chose to deliberate, but did not change intentions.
In this situation, the reconsider(...) function is not behaving optimally.

- In situation (4), the agent chose to deliberate, and did change intentions. In
this situation, the reconsider(...) function is behaving optimally.

Notice that there is an important assumption implicit within this discussion: that
the cost of executing the reconsider(...) function is much less than the cost
of the deliberation process itself. Otherwise, the reconsider(...) function could
simply use the deliberation process as an oracle, running it as a subroutine and
choosing to deliberate just in case the deliberation process changed intentions.
The nature of the trade-off was examined by David Kinny and Michael Georgeff

in a number of experimenis carried out using a BDI agent system (Kinny and
Georgeff, 1991). The aims of Kinny and Georgeff’s investigation were to

(1) assess the feasibility of experimentally measuring agent effective-
ness in a simulated environment (2) investigate how commitment to
goals contributes to effective agent behaviour and (3) compare the
properties of different strategies for reacting to change.

(Kinny and Georgeff, 1991, p. 82)

In Kinny and Georgeff's experiments, two different types of reconsideration strat-
egy were used: bold agents, which never pause to reconsider their intentions

4.4

80 Practical Reasoning Agents

before their current plan is fully executed; and cautious agents, which stop to
reconsider after the execution of every action. These characteristics are defined
by a degree of boldness, which specifies the maximum number of plan steps the
agent executes before reconsidering its intentions. Dynamism in the environment
is represented by the rate of environment change. Put simply, the rate of environ-
ment change is the ratio of the speed of the agent's control loop to the rate of
change of the environment. If the rate of world change is 1, then the environment
will change no more than once for each time the agent can execute its control
loop. If the rate of world change is 2, then the environment can change twice for
each pass through the agent’s control loop, and so on. The performance of an
agent is measured by the ratio of number of intentions that the agent managed
to achieve to the number of intentions that the agent had at any time. Thus if
effectiveness is 1, then the agent achieved all its intentions. If effectiveness is 0,
then the agent failed to achieve any of its intentions. The key results of Kinny and
Georgeff were as follows.

- If the rate of world change is low (i.e. the environment does not change
quickly), then bold agents do well compared with cautious ones. This is
because cautious ones waste time reconsidering their commitments while
bold agents are busy working towards - and achieving - their intentions.

- If the rate of world change is high (i.e. the environment changes frequently),
then cautious agents tend to outperform bold agents. This is because they
are able to recognize when intentions are doomed, and also to take advan-
tage of serendipitous situations and new opportunities when they arise.

The bottom line is that different environment types require different intention
reconsideration and commitment strategies. In static environments, agents that
are strongly committed to their intentions will perform well. But in dynamic envi-
ronments, the ability to react to changes by modifying intentions becomes more
important, and weakly committed agents will tend to outperform bold agents.

HOMER: an Agent That Plans

An interesting experiment in the design of intelligent agents was conducted by
Vere and Bickmore (1990). They argued that the enabling technologies for intel-
ligent agents were sufficiently developed to be able to construct a prototype
autonomous agent, with linguistic ability, planning and acting capabilities, and so
on. They developed such an agent, and christened it HOMER. This agent is a simu-
lated robot submarine, which exists in a two-dimensional ‘Seaworld’, about which
it has only partial knowledge. HOMER takes instructions from a user in a limited
subset of English with about an 800 word vocabulary; instructions can contain
moderately sophisticated temporal references. HOMER can plan how to achieve
its instructions (which typically relate to collecting and moving items around the

r-——-————--.

HOMER: an Agent That Plans 81
f]
text __plan
interpreter interpreter
] }
planner dynamic
plan
episodic
- :
reflective text
memory process generator
I)
S J
human director
~world
simulator

Figure 4.4 The HOMER architecture.

Seaworld), and can then execute its plans, modifying them as required during exe-
cution. The agent has a limited episodic memory, and using this, is able to answer
questions about its past experiences. The architecture of HOMER is illustrated in
Figure 4.4,

Here is an example of a dialogue with HOMER: the user begins by asking HOMER
what he sees in front of him.

USER: What is in front of you?

HOMER: A log.
IHHCED « N vwimies mugem lha T
VoLR. UJUU yuu uUwll Liie Uy .

HOMER: No, I don’t.
The user then tells HOMER that he owns the log; this is new information, and so
HOMER expresses surprise.
USER:
HOMER: Oh.
At this point, the user tells HOMER to move, so that he can no longer see the log,

and moves the log while it is hidden from HOMER’s sight. When he turns around,
HOMER expects to see the log, and expresses surprise.

The 1o

a halan
\-’3 AMi 11

ne tn
yo v

\V7e 1)
YU

USER: Turn away from your Tlog.
HOMER: OK, I am turning.

[LOG IS MOVED]

USER: Turn around.

HOMER: OK, I'm turning.

HOMER: I've lost the log!

4.5

23 Dyvootioa
[P 47 uaL Il i

%

N
2
%)
&
=
I:

In the following dialogue, the user gives HOMER a task to accomplish.

USER: Drop the package at the barge next Saturday at 9pm.
HOMER: OK.

HOMER then generates an appropriate plan for this task. When asked about his
plans for Saturday, HOMER demonstrates that he has realized travelling to the
barge will take some time.

USER: Are you going to the barge next Saturday?
HOMER: Yes.

USER: What time?

HOMER: 8.56pm.

The Procedural Reasoning System

The Procedural Reasoning System (PRS), originally developed at Stanford Research
Institute by Michael Georgeff and Amy Lansky, was perhaps the first agent archi-

tactiira tn o Tieit] mhndy tha holiaf_A ira_3 i 10N
tecture to explicitly embody the belief-desire-intention paradigm, and proved to

be the most durable agent architecture developed to date. It has been applied
in several of the most significant multiagent applications so far built, including
an air-traffic control system called QASIS that is currently undergoing field trials
at Sydney airport, a simulation system for the Royal Australian Air Force called
SWARMM, and a business process management system called SPOC (Single Point
of Contact), that is currently being marketed by Agentis Solutions (Georgeff and
Rao, 1996).

An illustration of the PRS architecture is given in Figure 4.5. The PRS is often
referred to as a belief-desire-intention (BDI) architecture, because it contains
explicitly represented data structures loosely corresponding to these mental
states (Wooldridge, 2000b).

Tn tha DRC an
1l Wi G, dit agent dOES ne p

6 .
equipped with a library of pre-compiled plans. These plans are manually con-
structed, in advance, by the agent programmer. Plans in the PRS each have the
following components:

t ic
L An

- a goal - the postcondition of the plan;

+ a context - the precondition of the plan; and

The goal and context part of PRS plans are fairly conventional, but the body is
slightly unusual. In the plans that we saw earlier in this chapter, the body of a
plan was simply a sequence of actions. Executing the plan involves executing each
action in turn. Such plans are possible in the PRS, but much richer kinds of plans

are also possible. The first main difference is that as well has having individual

The Procedural Reasoning System 83
data input from sensors
ENVIRONMENT
AGENT
BELIEFS PLANS
Interpreter

DESIRES / \ INTENTIONS

action output

Figure 4.5 The Procedural Reasoning System (PRS).

primitive actions as the basic components of plans, it is possible to have goals.
The idea is that when a plan includes a goal at a particular point, this means that
this goal must then be achieved at this point before the remainder of the plan
can be executed. It is also possible to have disjunctions of goals (‘achieve @ or
achieve y’), and loops {‘keep achieving @ until ¢’), and so on.

At start-up time a PRS agent will have a collection of such plans, and some initial
beliefs about the world. Beliefs in the PRS are represented as Prolog-like facts -
essentially, as atoms of first-order logic, in exactly the same way that we saw in
deductive agents in the preceding chapter. In addition, at start-up, the agent will
typically have a top-level goal. This goal acts in a rather similar way to the ‘main’
method in Java or C.

When the agent starts up, the goal to be achieved is pushed onto a stack, called
the intention stack. This stack contains all the goals that are pending achievement.
The agent then searches through its plan library to see what plans have the goal
on the top of the intention stack as their postcondition. Of these, only some will
have their precondition satisfied, according to the agent’s current beliefs. The set
of plans that (i) achieve the goal, and (ii) have their precondition satisfied, become
the possible options for the agent (cf. the options function described earlier in
this chapter).

The process of selecting between different possible plans is, of course, delib-
eration, a process that we have already discussed above. There are several ways
of deliberating between competing options in PRS-like architectures. In the origi-
nal PRS deliberation is achieved by the use of meta-level plans. These are literally

84 Practical Reasoning Agents

plans about plans. They are able to modify an agent’s intention structures at run-
time, in order to change the focus of the agent’s practical reasoning. However, a
simpler method is to use utilities for plans. These are numerical values; the agent
simply chooses the plan that has the highest utility.

The chosen plan is then executed in its turn; this may involve pushing further
goals onto the intention stack, which may then in turn involve finding more plans
to achieve these goals, and so on. The process bottoms out with individual actions
that may be directly computed (e.g. simple numerical calculations). If a particular
plan to achieve a goal fails, then the agent is able to select another plan to achieve
this goal from the set of all candidate plans.

Toillustrate all this, Figure 4.6 shows a fragment of a Jam system (Huber, 1999).
Jam is a second-generation descendant of the PRS, implemented in java. The basic
ideas are identical. The top level goal for this system, which is another Blocks
World example, is to have achieved the goal blocks_stacked. The initial beliefs
of the agent are spelled out in the FACTS section. Expressed in conventional logic
notation, the first of these is On(Block5, Block4), i.e. ‘block 5 is on top of block
4.

The system starts by pushing the goal blocks_stacked onto the intention
stack. The agent must then find a candidate plan for this; there is just one plan
that has this goal as a GOAL: the ‘top level plan’. The context of this plan is empty,
that is to say, true, and so this plan can be directly executed. Executing the body
of the plan involves pushing the following goal onto the intention stack:

On(block3, table).
This is immediately achieved, as it is a FACT. The second sub-goal is then posted:
On(block2,block3).

To achieve this, the ‘stack blocks that are clear’ plan is used; the first sub-goals
involve clearing both block? and block3, which in turn will be done by two invo-
cations of the ‘clear a block’ plan. When this is done, the move action is directly
invoked to move block?2 onto block3.

I leave the detailed behaviour as an exercise.

Notes and Further Reading

Some reflections on the origins of the BDI model, and on its relationship to
other models of agency, may be found in Georgeff et al. (1999). Belief-desire-
intention architectures originated in the work of the Rational Agency project at
Stanford Research Institute in the mid-1980s. Key figures were Michael Bratman,
Phil Cohen, Michael Georgeff, David Israel, Kurt Konolige, and Martha Pollack. The
origins of the model lie in the theory of human practical reasoning developed by
the philosopher Michael Bratman (Bratman, 1987), which focuses particularly on

s

The Procedural Reasoning System 85

GOALS:
ACHIEVE blocks_stacked;

FACTS:
FACT ON "Block5" "Block4™: FACT ON "Block4" "Block3";
FACT ON "Blockl" "Block2"; FACT ON "Block2" "Table";
FACT ON "Block3"” "Table"; FACT CLEAR "Blockl";
FACT CLEAR "Block5"; FACT CLEAR "Table";
Plan: {
NAME: "Top-level plan”
GOAL: ACHIEVE blocks_stacked;
CONTEXT:
BODY : ACHIEVE ON "Block3" "Table";
ACHTEVE ON "Block2" "Block3”;
ACHIEVE ON "Blockl"™ "Block2";
}
Plan: {

NAME: "Stack blocks that are already clear”
GOAL: ACHIEVE ON $0BRJ1 $0B]2;

CONTEXT:
BODY: ACHIEVE CLEAR $0BJ11;
ACHIEVE CLEAR $%0BlZ;
PERFORM move $0BJ1 $0BJ2;
UTILITY: 10;
FATLURE: EXECUTE print "\n\nStack blocks failed!\n\n";
}
Plan: {
NAME: "Clear a block”
GOAL: ACHIEVE CLEAR $0BJ;
CONTEXT: FACT ON $0BJ]Z $0BJ;
}
Figure 4.6 The Blocks World in Jam.
the role of intentions in practical reasoning. The conceptual framework of the BDI

BODY : ACHIEVE ON $0Bl}2 "Table';
EFFECTS: RETRACT ON $0BJ2 $0BJ1;
FATLURE: EXECUTE print "\n\nClearing block failed!\n\n";

model is described in Bratman et al. (1988), which also describes a specific BDI

agoant architartiira rallad TRMA
us_lll. (VR FIIAWM I BECI BB WIVILWMT B ILVL) Ve ¥

The best-known implementation of the BDI model is the PRS system, developed
by Georgeff and colleagues (Georgeff and Lansky, 1987; Georgeff and Ingrand,
1989). The PRS has been re-implemented several times since the mid-1980s, for
example in the Australian Al Institute’s DMARS system (d'Inverno et al., 1997), the
University of Michigan’s C++ implementation UM-PRS, and a Java version called

j

86 Practical Reasoning Agents

Jam! (Huber, 1999). Jack is a commercially available programming language, which
extends the Java language with a number of BDI features (Busetta et al., 2000).
The description of the BDI model given here draws upon Bratman et al. (1988)
and Rao and Georgeff (1992), but is not strictly faithful to either. The most obvi-
ous difference is that I do not incorporate the notion of the ‘filter override’ mech-
anism described in Bratman et al. (1988), and I also assume that plans are linear

sequences of actions (which is a fairly ‘traditional’ view of plans), rather than the
hierarchically structured collections of goals used by PRS

SRS WA ANd.

Plans are central to the BDI model of agency. An excellent discussion on the
BDI model, focusing in particular on the role of plans in practical reasoning, is
Martha Pollack’s 1991 Computers and Thought award lecture, presented at the
IJCAI-91 conference in Sydney, Australia, and published as ‘The Uses of Plans'

ticla which oy tha Ai ctinn hatu,
{DellaCk, 1992), Another article, which focuses on the distinction between l.uauo

as recipes’ and ‘plans as mental states’ is Pollack (1990). It is worth emphasizing
that the BDI model is only one solution to the problem of building autonomous
rational agents. Many other software architectures for agent systems have been
described in the literature (Wooldridge and Jennings, 1995; Brooks, 1999). Other
practical reasoning-style architectures inciude Fischer et al. (1996), Jung {1999),
Moéra et al. (1999) and Busetta et al. (2000).

The BDI model is also interesting because a great deal of effort has been devoted
to formalizing it. In particular, Anand Rao and Michael Georgeff have developed
a range of BDI logics, which they use to axiomatize properties of BDI-based
practical reasoning agents (Rao and Georgeff, 1991a; Rao et al., 1992; Rao and
Georgeff, 1991b; Rao and Georgeff, 1992; Rao and Georgeff, 1993; Rao, 1996b).
These models have been extended by others to deal with, for example, communi-
cation between agents (Haddadi, 1996).

Class reading: Bratman et al. (1988). This is an interesting, insightful article,
with not too much technical content. It introduces the IRMA architecture for prac-
tical reasoning agents, which has been very influential in the design of subsequent
systems.

The Procedural Reasoning System 87

Exercises

1) [Level 1.]

Imagine a mobile robot, capable of moving around an office environment. Ultimately,
this robot must be controlled by very low-level instructions along the lines of ‘motor on’,
and so on. How easy would it be to develop STRIPS operators to represent these properties?
Try it.

(2) [Level 2.}

Recall the vacuum-world example discussed in the preceding chapter. Formulate the
operations available to the agent using the STRIPS notation.

(3) [Level 2.]

Consider an agent that must move from one location to another, collecting items from
one site and moving them. The agent is able to move by taxi, bus, bicycle, or car.

Formalize the operations available to the agent (move by taxi, move by car, etc.) using
the STRIPS notation. (Hint: preconditions might be having money or energy.)

(4) [Level 3.]

Read Kinny and Georgeff (1991), and implement these experiments it the programming
language of your choice. (This is not as difficult as its sounds: it should be possible in a
couple of days at most.) Now carry out the experiments described in Kinny and Georgeff
(1991) and see if you get the same results.

(5) [Level 3.]
Building on the previous question, investigate the following.

Thn affart that A 4+ 1 I " i
The effect that reducing perceptual capabilities on agent performance. The idea here

is to reduce the amount of environment that the agent can see, until it can finally see only
the grid square on which it is located. Can ‘free’ planning compensate for the inability
to see very far?

The effect of non-deterministic actions. If actions are allowed to become non-determin-
istic (so that in attempting to move from one grid square to another, there is a certain
probability that the agent will in fact move to an entirely different grid square), what
effect does this have on the effectiveness of an agent?

The many problems with symbolic/logical approaches to building agents led some
researchers to question, and ultimately reject, the assumptions upon which such
approaches are based. These researchers have argued that minor changes to the
symbolic approach, such as weakening the logical representation language, will
not be sufficient to build agents that can operate in time-constrained environ-
ments: nothing less than a whole new approach is required. In the mid to late
1980s, these researchers began to investigate alternatives to the symbolic Al
paradigm. It is difficult to neatly characterize these different approaches, since
their advocates are united mainly by a rejection of symbolic Al, rather than by a
common manifesto. However, certain themes do recur:

- the rejection of symbolic representations, and of decision making based on
syntactic manipulation of such representations;

+ the idea that intelligent, rational behaviour is seen as innately linked to the
environment an agent occupies - intelligent behaviour is not disembodied,
but is a product of the interaction the agent maintains with its environment;

- the idea that intelligent behaviour emerges from the interaction of various
simpler behaviours.

Alternative approaches to agency are sometime referred to as behavioural (since
a common theme is that of developing and combining individual behaviours), sit-
uated (since a common theme is that of agents actually situated in some environ-
ment, rather than being disembodied from it), and finally - the term used in this

5.1

90 Reactive and Hybrid Agents

chapter - reactive (because such systems are often perceived as simply reacting
to an environment, without reasoning about it).

Brooks and the Subsumption Architecture

This section presents a survey of the subsumption architecture, which is arguably
the best-known reactive agent architecture. It was developed by Rodney Brooks -
one of the most vocal and influential critics of the symbolic approach to agency
to have emerged in recent years. Brooks has propounded three key theses that
have guided his work as follows (Brooks, 1991b; Brooks, 1991a).

(1) Intelligent behaviour can be generated without explicit representations of
tha kind that cvmhanlier

AT nronngacg
LS INBIINA L1 1u L’)’ A1RSLS

Faa v g l.ll. UHUVOoLO.

(2) Intelligent behaviour can be generated without explicit abstract reasoning
of the kind that symbolic Al proposes.

(3) Intelligence is an emergent property of certain complex systems.
Brooks also identifies two key ideas that have informed his research.

(1) Situatedness and embodiment. ‘Real’ intelligence is situated in the world, not
in disembodied systems such as theorem provers or expert systems.

(2) Intelligence and emergence. ‘Intelligent’ behaviour arises as a result of an
agent’s interaction with its environment. Also, intelligence is ‘in the eye of the
beholder’ - it is not an innate, isolated property.

These ideas were made concrete in the subsumption architecture. There
are two defining characteristics of the subsumption architecture. The first is
that an agent’'s decision- mamng is realized Lui‘()ugu a set of task- accomplishing
behaviours; each behaviour may be thought of as an individual action function,
as we defined above, which continually takes perceptual input and maps it to
an action to perform. Each of these behaviour modules is intended to achieve
some particular task. in Brooks’s implementation, the behaviour modules are
finite-state machines. An important point to note is that these task-accomplishing
modules are assumed to include no complex symbolic representations, and are
assumed to do no symbolic reasoning at all. In many implementations, these

behaviours are implemented as rules of the form

which simply map perceptual input directly to actions.
The second defining characteristic of the subsumption architecture is that

many behaviours can ‘fire’ simultaneously. There must obviously be a mecha-
nism to choose between the different actions selected hv thege mn]ﬂnlp actions.

4232132 S U LWLV by LW hoix waals RaxaaUa vaxy Gouilsiad il LS LR LA B ¥ LV | § A0 QL7223

Brooks proposed arranging the modules into a subsumption hierarchy, with the

Brooks and the Subsumption Architecture 91

Function: Action Selection 1in the Subsumption Architecture

end-for
return null
. end function action

1. function action(p:P): A

2. var fired:g(R)

3. wvar selected: A

4. hegin

5. fired — {{c,a) | (c,a) €R and p €}
6. for each (c,a) € fired do

7. if ~(3(c’,a’) € fired such that (c¢’,a’) < (c,a)) then
8. return a

9. end-if

10,

11.

12

I

Figure 5.1 Action Selection in the subsumption architecture.

behaviours arranged into layers. Lower layers in the hierarchy are able to inhibit
higher layers: the lower a layer is, the higher is its priority. The idea is that
higher layers represent more abstract behaviours. For example, one might desire
a behaviour in a mobile robot for the behaviour ‘avoid obstacles’. It makes sense
to give obstacle avoidance a high priority - hence this behaviour will typically be
encoded in a low-level layer, which has high priority. To illustrate the subsumption
architecture in more detail, we will now present a simple formal model of it, and
illustrate how it works by means of a short example. We then discuss its relative
advantages and shortcomings, and point at other similar reactive architectures.

The see function, which represents the agent’s perceptual ability, is assumed to
remain unchanged. However, in implemented subsumption architecture systems,
there is assumed to be quite tight coupling between perception and action - raw
sensor input is not processed or transformed much, and there is certainly no
attempt to transform images to symbolic representations.

The decision function action is realized through a set of behaviours, together
with an inhibition relation holding between these behaviours. A behaviour is a pair
(c,a), where ¢ < P is a set of percepts called the condition, and a € A is an action.
A behaviour (¢, a) will fire when the environment is in state s € S if and only if
see(s) e c.Let Beh = {(¢,a) | ¢ = P and a € A} be the set of all such rules.

Associated with an agent’s set of behaviour rules R < Beh is a binary inhibition
relation on the set of behaviours: < = R x R. This relation is assumed to be a strict
total ordering on R (i.e. it is transitive, irreflexive, and antisymmetric). We write
b, < by if (b1, by) €<, and read this as ‘b; inhibits b»’', that is, b; is lower in the
hierarchy than b;, and will hence get priority over b». The action function is then
as shown in Figure 5.1.

Thus action selection begins by first computing the set fired of all behaviours
that fire (5). Then, each behaviour (¢, a) that fires is checked, to determine whether
there is some other higher priority behaviour that fires. If not, then the action part
of the behaviour, a, is returned as the selected action (8). If no behaviour fires,

92 Reactive and Hybrid Agents

then the distinguished action null will be returned, indicating that no action has
been chosen.

Given that one of our main concerns with logic-based decision making was
its theoretical complexity, it is worth pausing to examine how well our simple
behaviour-based system performs. The overall time complexity of the subsump-
tion action function is no worse than O(n?), where n is the larger of the number
of behaviours or number of percepts. Thus, even with the naive algorithm above,
decision making is tractable. In practice, we can do much better than this: the
decision-making logic can be encoded into hardware, giving constant decision
time. For modern hardware, this means that an agent can be guaranteed to select
an action within microseconds. Perhaps more than anything else, this computa-
tional simplicity is the strength of the subsumption architecture.

Steels’s Mars explorer experiments

We will see how subsumption architecture agents were built for the following
scenario (this example is adapted from Steels {1990)).

The objective is to explore a distant planet, more concretely, to collect
samples of a particular type of precious rock. The location of the rock
samples is not known in advance, but they are typically clustered in
certain spots. A number of autonomous vehicles are available that can
drive around the planet collecting samples and later reenter a mother
ship spacecraft to go back to Earth. There is no detailed map of the
planet available, although it is known that the terrain is full of obsta-
cles - hills, valleys, etc. - which prevent the vehicles from exchanging
any communication.

The problem we are faced with is that of building an agent control architecture for
each vehicle, so that they will cooperate to collect rock samples from the planet
surface as efficiently as possible. Luc Steels argues that logic-based agents, of the
type we described above, are ‘entirely unrealistic’ for this problem (Steels, 1990).
Instead, he proposes a solution using the subsumption architecture.

The solution makes use of two mechanisms introduced by Steels. The first is
a gradient field. In order that agents can know in which direction the mother
ship lies, the mother ship generates a radio signal. Now this signal will obviously
weaken as distance from the source increases - to find the direction of the mother
ship, an agent need therefore only travel ‘up the gradient’ of signal strength. The
signal need not carry any information - it need only exist.

The second mechanism enables agents to communicate with one another. The
characteristics of the terrain prevent direct communication (such as message
passing), so Steels adopted an indirect communication method. The idea is that

agents will carry ‘radioactive crumbs’, which can be dropped, picked up, and
detected by passing robots. Thus if an agent drops some of these crumbs in a

particular location, then later another agent happening upon this location will be

Brooks and the Subsumption Architecture 93

able to detect them. This simple mechanism enables a quite sophisticated form
of cooperation.

The behaviour of an individual agent is then built up from a number of
behaviours, as we indicated above. First, we will see how agents can be pro-
grammed to individually collect samples. We will then see how agents can be
programmed to generate a cooperative solution.

et e g e own PR 0 PO P) [P P Y Pt | v

For individual (non-cooperative) agents, the lowest-level behaviour (and hence
the behaviour with the highest ‘priority’} is obstacle avoidance. This behaviour
can be represented in the rule:

if detect an obstacle then change direction. (5.1)

The second behaviour ensures that any samples carried by agents are dropped
back at the mother ship:

if carrying samples and at the base then drop samples; (5.2)
if carrying samples and not at the base then travel up gradient. (5.3)

j e . -

ship {(by heading towards the origin of the gradient field). The nex
ensures that agents will collect samples they find:

Behaviour (5.3) ensures that agents carrying samples will return to the mother
i

if detect a sample then pick sample up. (5.4)

The final behaviour ensures that an agent with ‘nothing better to do’ will explore
randomly:
if true then move randomly. (5.5)

The precondition of this rule is thus assumed to always fire. These behaviours are
arranged into the following hierarchy:

(5.1) < (5.2) < (5.3) < (5.4} < (5.5).

The subsumption hierarchy for this example ensures that, for example, an agent
will always turn if any obstacles are detected; if the agent is at the mother ship
and is carrying samples, then it will always drop them if it is not in any immediate
danger of crashing, and so on. The ‘top level’ behaviour - a random walk - will only
ever be carried out if the agent has nothing more urgent to do. It is not difficult to
see how this simple set of behaviours will solve the problem: agents will search
for samples (ultimately by searching randomly), and when they find them, will
return them to the mother ship.

If the samples are distributed across the terrain entirely at random, then equip-
ping a large number of robots with these very simple behaviours will work
extremely well. But we know from the problem specification, above, that this is
not the case: the samples tend to be located in clusters. In this case, it makes
sense to have agents cooperate with one another in order to find the samples.

E,——— e

94 Reactive and Hybrid Agents

Thus when one agent finds a large sample, it would be helpful for it to communi-
cate this to the other agents, so they can help it collect the rocks. Unfortunately,
we also know from the problem specification that direct communication is impos-
sible. Steels developed a simple solution to this problem, partly inspired by the
foraging behaviour of ants. The idea revolves around an agent creating a ‘trail’
of radioactive crumbs whenever it finds a rock sample. The trail will be created
when the agent returns the rock samples to the mother ship. If at some later point,
another agent comes across this trail, then it need only follow it down the gradient
field to locate the source of the rock samples. Some small refinements improve
the efficiency of this ingenious scheme still further. First, as an agent follows a
trail to the rock sample source, it picks up some of the crumbs it finds, hence
making the trail fainter. Secondly, the trail is only laid by agents returning to the

mnthor chin Hanro if an acoant fallawe tha trail nit tn tho ennrvra nf the naminal
INUAVAN Y LW § Oluy- A AV LA L 11 QL uS_J.LL LWVIIVYY D LLIL LIl VUl LY LI UL VL UL UL LA isa0adag

rock sample only to find that it contains no samples, it will reduce the trail on the
way out, and will not return with samples to reinforce it. After a few agents have
followed the trail to find no sample at the end of it, the trail will in fact have been
removed.

The modified behaviours for this example are as follows. Obstacle avoidance
(5.1) remains unchanged. However, the two rules determining what to do if carry-
ing a sample are modified as follows:

if carrying samples and at the base then drop samples; (5.6)

LI S P an
t[Ldl.ly g OdIIIPICS dll U. not at lllC UdbE
2cC

then drop 2 crumbs and travel up gradient. (5-7)

The behaviour (5.7) requires an agent to drop crumbs when returning to base
with a sample, thus either reinforcing or creating a trail. The ‘pick up sample’
behaviour (5.4) remains unchanged. However, an additional behaviour is required
for dealing with crumbs:

if sense crumbs then pick up 1 crumb and travel down gradient. (5.8)

Finally, the random movement behaviour () emains unchanged. These be-

Attt T s Al A ARt e LR PR, . . L el "

haviour are then arranged into the following subsumption hierarchy:
(5.1) < (5.6) < (5.7) < (5.4) < (5.8) < (5.5).

Steels shows how this simple adjustment achieves near-optimal performance in
many situations. Moreover, the solution is cheap (the computing power required
by each agent is minimal) and robust (the loss of a single agent will not affect the
overall system significantly).

Agre and Chapman - PENGI

At ahnnt tha cama H ac Pranlc wnae Aocrvihing hice firaet roaciilte with tho cithe
Faa N 8 ul.JUblL lllL SCLLIL LLILLC A DIUUND YYAO uCDLJ.J.IJJ.J.l.E’, 1119 111 o0 1 COULILS YYLIULLL L1IIL SuUp)
sumption architecture, Chapman was completing his Master’s thesis, in which

Brooks and the Subsumption Architecture 95

he reported the theoretical difficulties with planning described above, and was
coming to similar conclusions about the inadequacies of the symbolic Al model
himself. Together with his co-worker Agre, he began to explore alternatives to the
Al planning paradigm (Chapman and Agre, 1986).

Agre observed that most everyday activity is ‘routine’ in the sense that it
requires little - if any new abstract reasoning. Most tasks, once learned, can
Ut: aCCOIIlpubIIE(l in a routine way, with HIUE variation. Agre pI‘OpObtU. l[ld.l a1l
efficient agent architecture could be based on the idea of ‘running arguments’.
Crudely, the idea is that as most decisions are routine, they can be encoded into a
low-level structure (such as a digital circuit), which only needs periodic updating,
perhaps to handle new kinds of problems. His approach was illustrated with the
celebrated PENGI system (Agre and Chapman, 1987). PENGI is a simulated com-
puter game, with the central character controlled using a scheme such as that
outlined above.

Rosenschein and Kaelbling - situated automata

Another sophisticated approach is that of Rosenschein and Kaelbling (see Rosen-

aQc. D h AL anlhli 1006 W 115 AD h 1Q4aN-
SChElﬂ 1JUJ Rosenschein and AACIOLNE, 1 00, KaCidullg and Rosenschein, 1990;

Kaelbling, 1991). They observed that just because an agent is conceptualized in
logical terms, it need not be implemented as a theorem prover. In their situated
automata paradigm, an agent is specified in declarative terms. This specification
is then compiled down to a digital machine, which satisfies the declarative speci-
fication. This digital machine can operate in a provably time-bounded fashion; it
does not do any symbol manipulation, and in fact no symbolic expressions are
represented in the machine at all. The logic used to specify an agent is essentially
a logic of knowledge:

[An agent] x is said to carry the information that p in world state s,
written s = K(x, p), if for all world states in which x has the same
value as it does in s, the proposition p is true.

(Kaelbling and Rosenschein, 1990, p. 36)

An agent is specified in terms of two components: perception and action. Two pro-
grams are then used to synthesize agents: RULER is used to specify the perception
component of an agent; GAPPS is used to specify the action component.

RULER takes as its input three components as follows.

[A] specification of the semantics of the [agent's] inputs (‘whenever
bit 1 is on, it is raining'); a set of static facts (‘whenever it is raining,
the ground is wet’); and a specification of the state transitions of the
world (‘if the ground is wet, it stays wet until the sun comes out’). The
programmer then specifies the desired semantics for the output (‘if this
bit is on, the ground is wet’), and the compiler. . .[synthesizes] a circuit

5.2

96 Reactive and Hybrid Agents

whose output will have the correct semantics. ... All that declarative
‘knowledge’ has been reduced to a very simple circuit.

(Kaelbling, 1991, p. 86)

The GAPPS program takes as its input a set of goal reduction rules (essentially
rules that encode information about how goals can be achieved) and a top level
goal, and generates a program that can be translated into a digital circuit in order
to realize the goal. Once again, the generated circuit does not represent or manip-
ulate symbolic expressions; all symbolic manipulation is done at compile time.

The situated automata paradigm has attracted much interest, as it appears to
combine the best elements of both reactive and symbolic declarative systems.
However, at the time of writing, the theoretical limitations of the approach are
not well understood; there are similarities with the automatic synthesis of pro-
grams from temporal logic specifications, a complex area of much ongoing work
in mainstream computer science (see the comments in Emerson (1990)).

Maes - agent network architecture

Dattio Mane hao douvalanmad "t ar~hit tecture i arh

'n Ly 1'1'\1«\ an '\rrnn'l' ig Aafin
L AQlLuc jYriavy llab uCVCluycu all GSCJ.LL al Lll.l CTOULULICT 111 ¥Y1liL]gl

4dgert 1S aeinine
a set of competence modules (Maes, 1989, 1990b, 1991). These modules loosely
resemble the behaviours of Brooks’s subsumption architecture (above). Each mod-

ule is specified by the designer in terms of preconditions and postconditions
(rather like STRIPS operators), and an activation level, which gives a real-valued
indication of the relevance of the module in a particular situation. The higher the
activation level of a module, the more likely it is that this module will influence
the behaviour of the agent. Once specified, a set of competence modules is com-
piled into a spreading activation network, in which the modules are linked to one
another in ways defined by their preconditions and postconditions. For example,
if module a has postcondition @, and modulie b has precondition ¢, then a and
b are connected by a successor link. Other types of link include predecessor links
and conflicter links. When an agent is executing, various modules may become
more active in given situations, and may be executed. The result of execution may
be a command to an effector unit, or perhaps the increase in activation leve] of a
successor module.

There are obvious similarities between the agent network architecture and neu-
ral network architectures. Perhaps the key difference is that it is difficult to say
what the meaning of a node in a neural net is; it only has a meaning in the con-
text of the net itself. Since competence modules are defined in declarative terms,
however, it is very much easier to say what their meaning is.

The Limitations of Reactive Agents

5.3

Hybrid Agents 97

ness against failure, and elegance all make such architectures appealing. But there
are some fundamental, unsolved problems, not just with the subsumption archi-
tecture, but with other purely reactive architectures.

- If agents do not employ models of their environment, then they must have
sufficient information available in their local environment to determine an
acceptable action.

. Since purely reactive agents make decisions hased on local information
(i.e. information about the agents current state), it is difficult to see how
such decision making could take into account non-local information - it
must inherently take a ‘short-term’ view.

- It is difficult to see how purely reactive agents can be designed that learn
from experience, and improve their performance over time.

- One major selling point of purely reactive systems is that overall behaviour
emerges from the interaction of the component behaviours when the agent is
placed in its environment. But the very term ‘emerges’ suggests that the rela-
tionship between individual behaviours, environment, and overall behaviour
is not understandable. This necessarily makes it very hard to engineer agents
to fulfil specific tasks. Ultimately, there is no principled methodology for
building such agents: one must use a laborious process of experimentation,
trial, and error to engineer an agent.

+ While effective agents can be generated with small numbers of behaviours
(typically less than ten layers), it is much harder to build agents that con-
tain many layers. The dynamics of the interactions between the different
behaviours become too complex to understand.

Various solutions to these problems have heen proposed. One of the mos]
of these is the idea of evolving agents to perform certain tasks. ThIS area of work
has largely broken away from the mainstream Al tradition in which work on, for
example, logic-based agents is carried out, and is documented primarily in the

artificial life (alife) literature.

Hybrid Agents

Given the requirement that an agent be capable of reactive and proactive
behaviour, an obvicus decomposition involves creating separate subsystems to
deal with these different types of behaviours. This idea leads naturally to a class

of architoartiirac in whirh tha variniie einthavetorme ara arrangad intn 2 hisrarerhy nf
WL AL LRI L LD Ll VY LLIA L LIC valirivuo auuoyoltlllo Al ulLuLLBcu LY a iiivial Llly i

interacting layers. In this section, we will consider some general aspects of lay-
ered architectures, and then go on to consider two examples of such architectures:
InteRRaP and TouringMachines.

98 Reactive and Hybrid Agents

action
output
4 -
' Layer n
Layer n \ A Layer n A A Yy y
A
perceptual ~\ action 4 A 1 Layer 2 ¥
input Layer 2 7 output A Layer 2 A A L | ¥
Layer 1 ayer
Layer 1 Y
! J } {
perceptual perceptual action
input input output
(a) Horizontal layering (b) Vertical layering (c) Vertical layering
(One pass control) {Two pass control)

Figure 5.2 Information and control flows in three types of layered agent architecture.
(Source: Miiller et al. (1995, p. 263).)

Typically, there will be at least two layers, to deal with reactive and proactive
behaviours, respectively. In principle, there is no reason why there should not be
many more layers. It is useful to characterize such architectures in terms of the
information and control flows within the layers. Broadly speaking, we can identify
two types of control flow within layered architectures as follows (see Figure 5.2).

Horizontal laver lngi In hnr17nnfn”vln\mr9ﬂ architectures (Figure 5 .2(a)), the soft-

--v“-‘v-- LD A S S LT A VET RN g el

ware layers are each directly connected to the sensory input and action output.
In effect, each layer itself acts like an agent, producing suggestions as to what
action to perform.

Vertical layering. In vertically layered architectures (see parts (b) and (c) of Fig-
ure 5.2), sensory input and action output are each dealt with by at most one
layer.

The great advantage of horizontally layered architectures is their conceptual sim-

plicity: if we need an agent to exhibit n different types of behaviour, then we
implement n different layers. However, because the layers are each in effect com-

22223 FL AR AR AL AV O, LS P S ALUR S 8T Y. 4 iRl ARY CORA 2L LAa R AR

peting with one another to generate action suggestions, there is a danger that the
overall behaviour of the agent will not be coherent. In order to ensure that hor-
izontally layered architectures are consistent, they generally include a mediator
function, which makes decisions about which layer has ‘control’ of the agent at
any given time. The need for such central control is problematic: it means that
the designer must potentially consider all possible interactions between layers.
If there are m layers in the architecture, and each layer is capable of suggesting
m possible actions, then this means there are m™ such interactions to be consid-
ered. This is clearly difficult from a design point of view in any but the most simple

orvrata an itmadirarinam n Aa A g axrotaaa PR R smng o hartlan L

D)’ch111 111c INGoaucidoi Ul d Centr CU CULILLIUL bybltlll CllbU 111 OU.LILCD d DULLIETIEUN
into the agent’s decision making.

e ——— |
<
o
[

-

7]
o
j€=]

sensor
input / \
¥
Perception subsystem Planning Layer Action subsystem
A
* / action

\ Y Reactive layer output
|

Control subsystem

Figure 5.3 TouringMachines: a horizontally layered agent architecture.

These problems are partly alleviated in a vertically layered architecture. We
can subdivide vertically layered architectures into one-pass architectures (Fig-
ure 5.2(b)) and two-pass architectures (Figure 5.2(c)). In one-pass architectures,
control flows sequentially through each layer, until the final layer generates action
output. in two-pass architectures, information flows up the architecture (the first
pass) and control then flows back down. There are some interesting similari-
ties between the idea of two-pass vertically layered architectures and the way
that organizations work, with information flowing up to the highest levels of the
organization, and commands then flowing down. In both one-pass and two-pass
vertically layered architectures, the complexity of interactions between layers is
reduced: since there are n — 1 interfaces between n layers, then if each layer is

. . 2 . .
capable of suggesting m actions, there are at most m*(n — 1) interactions to be

considered between layers. This is clearly much simpler than the horizontally lay-
ered case. However, this simplicity comes at the cost of some flexibility: in order
for a vertically layered architecture to make a decision, control must pass between
each different layer. This is not fault tolerant: failures in any one layer are likely

to have serious consequences for agent performance.

In the remainder of this section, we will consider two examples of layered archi-
tectures: Innes Ferguson’s TouringMachines, and Jorg Miiller’s InteRRaP. The for-
mer is an example of a horizontally layered architecture; the latter is a (two-pass)

vertically layered architecture.

TouringMachines

The TouringMachines architecture is illustrated in Figure 5.3. As this figure shows,
TouringMachines consists of three activity producing layers. That is, each layer

oy L UATESLD AL AL IEVIL Y LIT UALAAL

continually produces ‘suggestions’ for what actions the agent should perform.

100 Reactive and Hybrid Agents

The reactive layer provides a more-or-less immediate response to changes that

occur in the environment. It is implemented as a set of situation-action rules,
like the behaviours in BRrooks’s subsumntion architecture (see Section 5.1). These

PUOUAL R ARTVIAVMAL G 141 DIUVURS O S OUIIIp/tIv ALl (R Lt LAl DT LA Jadje 1TSS

rules map sensor input directly to effector output. The original demonstration
scenario for TouringMachines was that of autonomous vehicles driving between
locations through streets populated by other similar agents. In this scenario, reac-
tive rules typically deal with functions like obstacle avoidance. For example, here
is an example of a reactive rule for avoiding the kerb (from (Ferguson, 1992a,
p- 59)):

rule-1: kerb-avoidance
if
is-in-front(Kerb, Observer) and
speed(Observer) > 0 and
separation(Kerb, Observer) < KerbThreshHold
then
change-orientation(KerbAvoidanceAngle)

Here change-orientation(...) is the action suggested if the rule fires. The rules
can only make references to the agent’s current state - they cannot do any explicit
reasoning about the world, and on the right-hand side of rules are actions, not
predicates. Thus if this rule fired, it would not result in any central environment
model being updated, but would just resuit in an action being suggested by the
reactive layer.

The TouringMachines planning layer achieves the agent’s proactive behaviour.
Specifically, the planning layer is responsible for the ‘day-to-day’ running of the
agent - under normal circumstances, the planning layer will be responsible for
deciding what the agent does. However, the planning layer does not do ‘first-
principles’ planning. That is, it does not attempt to generate plans from scratch.
Rather, the planning layer employs a library of plan ‘skeletons’ called schemas.
These skeletons are in essence hierarchically structured plans, which the Touring-
Machines planning layer elaborates at run time in order to decide what to do
(cf. the PRS architecture discussed in Chapter 4). So, in order to achieve a goal,

the planning layer attempts to find a schema in its library which matches that
goal. This schema will contain sub-goals, which the planning layer elaborates by
attempting to find other schemas in its plan library that match these sub-goals.

The modelling layer represents the various entities in the world (including the
agent itself, as well as other agents). The modelling layer thus predicts conflicts
between agents, and generates new goals to be achieved in order to resolve these
conflicts. These new goals are then posted down to the planning layer, which
makes use of its plan library in order to determine how to satisfy them.

The three control layers are embedded within a control Subsystem which is

l'_'llth UVCL)/ ll'_'leUllb].UlE l.Ul ut'LIUIIlg WIllLll Ul lllE ldytf[b bllULllLl lldVE COlLLr Ul uveln
the agent. This control subsystem is implemented as a set of control rules. Control

|532

Hybrid Agents 101

s N
cooperation layer social knowledge
plan layer planning knowledge
behaviour layer world model
world interface
\ T /
perceptual input action output

Figure 5.4 InteRRaP - a vertically layered two-pass agent architecture.

rules can either suppress sensor information between the control rules and the
control layers, or else censor action outputs from the control layers. Here is an
example censor rule (Ferguson, 1995, p. 207):

censor-rule-1:
if
entity(obstacle-6) in perception-buffer
then
remove-sensory-record(layer-R, entity(obstacle-6))

This rule prevents the reactive layer from ever knowing about whether
obstacle-6 has been perceived. The intuition is that although the reactive layer
will in general be the most appropriate layer for dealing with obstacle avoidance,
there are certain obstacles for which other layers are more appropriate. This rule

LS A e AL AtAalt UL alCGL Ao VD VYA AR AR MGyl QL AN LA it 1238

ensures that the reactive layer never comes to know about these obstacles.

InteRRaP

InteRRaP is an example of a vertically layered two-pass agent architecture - see
Figure 5.4. As Figure 5.4 shows, InteRRaP contains three control layers, as in
TouringMachines. Moreover, the purpose of each InteRRaP layer appears to be
rather similar to the purpose of each corresponding TouringMachines layer. Thus
the lowest (behaviour-based) layer deals with reactive behaviour; the middle (local
planning) layer deals with everyday planning to achieve the agent’s goals, and the
uppermost (cooperative planning) layer deals with social interactions. Each layer
has associated with it a knowledge base, i.e. a representation of the world appro-
priate for that layer. These different knowledge bases represent the agent and

102 Reactive and Hybrid Agents

its environment at different levels of abstraction. Thus the highest level knowl-
edge base represents the plans and actions of other agents in the environment;
the middle-level knowledge base represents the plans and actions of the agent
itself; and the lowest level knowledge base represents ‘raw’ information about the
environment. The explicit introduction of these knowledge bases distinguishes
TouringMachines from InteRRaP.

The way the different layers in InteRRaP conspire to produce behaviour is also
quite different from TouringMachines. The main difference is in the way the layers
interact with the environment. In TouringMachines, each layer was directly cou-
pled to perceptual input and action output. This necessitated the introduction
of a supervisory control framework, to deal with conflicts or problems between
layers. In InteRRaP, layers interact with each other to achieve the same end. The
two main types of interaction between layers are bottom-up activation and top-
down execution. Bottom-up activation occurs when a lower layer passes control to
a higher layer because it is not competent to deal with the current situation. Top-
down execution occurs when a higher layer makes use of the facilities provided
by a lower layer to achieve one of its goals. The basic flow of control in InteRRaP
begins when perceptual input arrives at the lowest layer in the architecture. If the
reactive layer can deal with this input, then it will do so; otherwise, bottom-up
activation will occur, and control will be passed to the local planning layer. If the
local planning layer can handle the situation, then it will do so, typically by mak-
ing use of top-down execution. Otherwise, it will use bottom-up activation to pass
control to the highest laver. In this way, control in InteRRaP will flow from the
lowest layer to higher layers of the architecture, and then back down again.

The internals of each layer are not important for the purposes of this chapter.
However, it is worth noting that each layer implements two general functions.
The first of these is a situation recognition and goal activation function. It maps a
knowledge base (one of the three layers) and current goals to a new set of goals.
The second function is responsible for planning and scheduling - it is responsi-
ble for selecting which plans to execute, based on the current plans, goals, and
knowledge base of that layer.

Layered architectures are currently the most popular general class of agent
architecture available. Layering represents a natural decomposition of function-
ality: it is easy to see how reactive, proactive, social behaviour can be generated by
the reactive, proactive, and social layers in an architecture. The main problem with
layered architectures is that while they are arguably a pragmatic solution, they
lack the conceptual and semantic clarity of unlayered approaches. In particular,
while logic-based approaches have a clear logical semantics, it is difficult to see
how such a semantics could he devised for a layered architecture. Another issue
is that of interactions between layers. If each layer is an independent activity-
producing process (as in TouringMachines), then it is necessary to consider all
possible ways that the layers can interact with one another. This problem is partly
alleviated in two-pass vertically layered architecture such as InteRRaP.

Hybrid Agents 103

Notes and Further Reading

The introductory discussion of layered architectures given here draws upon
Miiller et al. (1995, pp. 262-264). The best reference to TouringMachines is Fer-
guson (1992a); more accessible references include Ferguson (1992b, 1995). The
definitive reference to InteRRaP is Miiller (1997), although Fischer et al. (1996)
is also a useful reference. Other examples of layered architectures include the
subsumption architecture (Brooks, 1986), and the 3T architecture (Bonasso et
al., 1996).

Brooks’s original paper on the subsumption architecture - the one that started
all the fuss - was published as Brooks (1986). The description and discussion
here is partly based on Ferber (1996). This original paper seems to be somewhat
less radical than many of his later ones, which include Brooks (1990, 1991b). The
version of the subsumption architecture used in this chapter is actually a simpli-
fication of that presented by Brooks. The subsumption architecture is probably
the best-known reactive architecture around - but there are many others. The col-
lection of papers edited by Maes (1990a) contains papers that describe many of
these, as does the collection by Agre and Rosenschein (1996). Other approaches
include:

- Nilsson’s teleo reactive programs (Nilsson, 1992);

- Schoppers’ universal plans - which are essentially decision trees that can
be used to efficiently determine an appropriate action in any situation
(Schoppers, 1987);

- Firby’s reactive action packages (Firby, 1987).

Kaelbling (1986) gives a good discussion of the issues associated with developing
resource-bounded rational agents, and proposes an agent architecture somewhat
similar to that developed by Brooks.

Ginsberg (1989) gives a critique of reactive agent architectures based on cached
plans; Etzioni (1993) gives a critique of the claim by Brooks that intelligent agents
must be situated ‘in the real world’. He points out that software environments
(such as computer operating systems and computer networks) can provide a chal-
lenging environment in which agents might work.

Class reading: Brooks (1986). A provocative, fascinating article, packed with
ideas. It is interesting to compare this with some of Brooks's later - arguably
more controversial - articles.

104 Reactive and Hybrid Agents

Exercises

(1) [Level 2.]

Develop a solution to the vacuum-world example described in Chapter 3 using Brooks’s
subsumption architecture. How does it compare with the logic-based example?

(2) [Level 2.]

Try developing a solution to the Mars explorer example using the logic-based approach
described in Chapter 3. How does it compare with the reactive solution?

(3) [Level 3.]

In the programming language of your choice, implement the Mars explorer example
using the subsumption architecture. (To do this, you may find it useful to implement a
simple subsumption architecture ‘shell’ for programming different behaviours.) Investi-
gate the performance of the two approaches described, and see if you can do better.

(4) [Level 3.]

Using the simulator implemented for the preceding question, see what happens as you
increase the number of agents. Eventually, you should see that overcrowding leads to a
sub-optimal sclution - agents spend too much time getting out of each other’s way to get
any work done. Try to get around this problem by allowing agents to pass samples to each
other, thus implementing chains. (See the description in Ferber (1996, p. 305).)

|

6

Multiagent
Interactions

So far in this book, we have been focusing on the problem of how to build an
individual agent. Except in passing, we have not examined the issues associated
in putting these agents together. But there is a popular slogan in the multiagent
systems community:

There’s no such thing as a single agent system.

The point of the slogan is that interacting systems, which used to be regarded as
rare and unusual beasts, are in fact the norm in the everyday computing world.
All but the most trivial of systems contains a number of sub-systems that must
interact with one another in order to successfully carry out their tasks. In this
chapter, 1 will start to change the emphasis of the book, from the problem of
‘how 1o build an agent’, to ‘how to build an agent society’. I begin by defining
what we mean by a multiagent system.

Figure 6.1 {from Jennings (2000)) illustrates the typical structure of a multiagent
system. The system contains a number of agents, which interact with one another
through communication. The agents are able to act in an environment; different
agents have different ‘spheres of influence’, in the sense that they will have control
over - or at least be able to influence - different parts of the environment. These
spheres of influence may coincide in some cases. The fact that these spheres
of influence may coincide may give rise to dependency relationships between the
agents. For example, two robotic agents may both be able to move through a door -
but they may not be able to do so simultaneously. Finally, agents will also typically
be linked by other relationships. Examples might be ‘power’ relationships, where
one agent is the ‘boss’ of another.

6.1

106 Multiagent Interactions

Environment

KEY
—————— organizational relationship
interaction N sphere of influence
O agent

Figure 6.1 Typical structure of a multiagent system.

The most important lesson of this chapter - and perhaps one of the most
important lessons of multiagent systems generally - is that when faced with what
appears te be a multiagent domain, it is critically important to understand the
type of interaction that takes place between the agents. To see what [mean by
this, let us start with some notation.

Utilities and Preferences

First, let us simplify things by assuming that we have just two agents; things tend
to be much more complicated when we have more than two. Call these agents i
and j, respectively. Each of the agents is assumed to be self-interested. That is,
each agent has its own preferences and desires about how the world should be.
For the moment, we will not be concerned with where these preferences come
from; just assume that they are the preferences of the agent’'s user or owner.
Next, we will assume that there is a set 2 = {w, w>,...} of ‘outcomes’ or ‘states’

Utilities and Preferences 107

that the agents have preferences over. To make this concrete, just think of these
as outcomes of a game that the two agents are playing.

We formally capture the preferences that the two agents have by means of
utility functions, one for each agent, which assign to every outcome a real number,
indicating how ‘good’ the outcome is for that agent. The larger the number the
better from the point of view of the agent with the utility function. Thus agent i’s
preferences will be captured by a function

w2 —-R
and agent j’s preferences will be captured by a function
U Q- R.

(Compare with the discussion in Chapter 2 on tasks for agents.) It is not difficult
to see that these utility function lead to a preference ordering over outcomes. For
example, if w and ' are both possible outcomes in 2, and u;(w) > u;(w’), then
outcome w is preferred by agent i at least as much as w’. We can introduce a bit
more notation to capture this preference ordering. We write

w = w
as an abbreviation for
ui(w) = u;(w').

Similarly, if u#;(w) > u;(w’), then outcome w is strictly preferred by agent i over
w’. We write

w > w'
ui(w) > ui(w’).

In other words,
w >; w' if and only if u;(w) > u;(w") and not u;(w) = u;(w’).

We can see that the relation >; really is an ordering, over (2, in that it has the
following properties.

Reflexivity: for all w € Q, we have that w >; w.
Transitivity: if w >; w’, and w’ >; W’ then w >; w”.

Comparability: for all w € Q and w’ € Q2 we have that either tw >; @' or ' >;

-

6.2

108 Multiagent Interactions

utility

money

Figure 6.2 The relationship between money and utility.

What is utility?

Undoubtedly the simplest way to think about utilities is as money; the more
money, the better. But resist the temptation to think that this is all that utili-
ties are. Utility functions are just a way of representing an agent’s preferences.
They do not simply equate to money.

To see what I mean by this, suppose (and this really is a supposition) thatI have
US$500 million in the bank, while you are absolutely penniless. A rich benefactor
appears, with one million dollars, which he generously wishes to donate to one of
us. If the benefactor gives the money to me, what will the increase in the utility of
my situation be? Well, I have more money, so there will clearly be some increase in
the utility of my situation. But there will not be much: after all, there is not much
that you can do with US$501 million that you cannot do with US$500 million.
In contrast, if the benefactor gave the money to you, the increase in your utility
would be enormous; you go from having no money at all to being a millionaire.
That is a big difference,

This works the other way as well. Suppose I am in debt to the tune of US$500
million; well, there is frankly not that much difference in utility between owing
US$500 million and owing US$499 million; they are both pretty bad. In contrast,
there is a very big difference between being US$1 million in debt and not being
in debt at all. A graph of the relationship between utility and money is shown in
Figure 6.2.

Multiagent Encounters

Now that we have our model of agent’s preferences, we need to introduce a model
of the environment in which these agents will act. The idea is that our two agents

Multiagent Encounters 109

will simultaneously choose an action to perform in the environment, and as a
result of the actions they select, an outcome in 2 will result. The actual outcome
that will result will depend on the particular combination of actions performed.
Thus both agents can influence the outcome. We will alsc assume that the agents
have no choice about whether to perform an action - they have to simply go ahead
and perform one. Further, it is assumed that they cannot see the action performed
by the other agent.

To make the analysis a bit easier, we will assume that each agent has just two
possible actions that it can perform. We will call these two actions ‘C’, for ‘coop-
erate’, and ‘D, for ‘defect’. (The rationale for this terminology will become clear
below.) Let Ac = {C,D} be the set of these actions. The way the environment
behaves is then determined by a function

T: Ac X — (2,
——

Ac
—
agent i’s action agent j's action
(This is essentially a state transformer function, as discussed in Chapter 2.) In
other words, on the basis of the action (either C or D) selected by agent i, and the
action (also either C or D) chosen by agent j an outcome will result.
Here is an example of an environment function:

T(D,D)=w, TD,C)=w>2, TIC,D)=w3, T(C,C)=wsy. (6.1)

This environment maps each combination of actions to a different outcome. This
environment is thus sensitive to the actions that each agent performs. At the other
extreme, we can consider an environment that maps each combination of actions
to the same outcome.

T(D,D) =w,;, 17D C)=w1, TC,D)=w;, TC,C)=w;. (6.2}

In this environment, it does not matter what the agents do: the outcome will be the
same. Neither agent has any influence in such a scenario. We can also consider an

environment that is only sensitive to the actions performed by one of the agents.
TD,D) =wi, T(D,C)=w, T(C,D)=wy, T(CC(C)=wo. (6.3)

In this environment, it does not matter what agent i does: the outcome depends
solely on the action performed by j. If j chooses to defect, then cutcome w; will
result; if j chooses to cooperate, then outcome w; will result.

The interesting story begins when we put an environment together with the
preferences that agents have. To see what | mean by this, suppose we have the
most general case, characterized by (6.1), where both agents are able to exert some
influence over the environment. Now let us suppose that the agents have utility
functions defined as follows:

ui(wr) =1, wui(wz) =1, uj(ws) =4, ui(wy) = 4,}
(6.4)

uj(wr) =1, uj(wz) =4, uj(ws) =1, uj(wy) = 4.

110 Multiagent Interactions

Since we know that every different combination of choices by the agents are
mapped to a different outcome, we can abuse notation somewhat by writing the
following:

u;(D,D) =1, ui(D,C) =1, ui{C,D) =4, ui(C,C) =4, 6.5)
uw;(D,Dy=1, wui{D,C)=4, u;(C,D)=1, uj(C,C)=4 (

We can then characterize agent i’s preferences over the possible outcomes in the
following way:
C,C = C,D»;D,C=;D,D.

Now, consider the following question.

If you were agent i in this scenario, what would you choose to do -
cooperate or defect?

In this case (I hope), the answer is pretty unambiguous. Agent i prefers all the out-
comes in which it cooperates over all the outcomes in which it defects. Agent i’s
choice is thus clear: it should cooperate. It does not matter what agent j chooses
to do.

In just the same way, agent j prefers all the outcomes in which it cooperates

Arnr all tha Arrtenrang ainth it Anfacsrte Nntiscn thiat im thic grnmarin nnt thhnr agnnt

wuvel all LllC ULILLUILLICD 111 VVlllkll ll UCIC\. L. INULILC Llial ifl lll_lb DLCLIC(IIU ucuuc1 GBC]JL
has to expend any effort worrying about what the other agent will do: the action
it should perform does not depend in any way on what the other does.

If both agents in this scenario act rationally, that is, they both choose to perform
the action that will lead to their preferred outcomes, then the ‘joint’ action selected
will be C, C: both agents will cooperate.

Now suppose that, for the same environment, the agents’ utility functions were
as follows:

ui(D,D) =4, ui(D,C) =4, ui(C,D) =1, ui(C,C) =1
(6.6)
uj(D,D)=4, uj(D,C)=1, uj(C,D)=4, uj(C,C)=1.J

Agent i's preferences over the possible outcomes are thus as follows:
DD=DC>C,D=x>=;C,C.

In this scenario, agent i can do no better than to defect. The agent prefers all
the outcomes in which it defects over all the outcomes in which it cooperates.
Similarly, agent j can do no better than defect: it also prefers all the cutcomes in
which it defects over all the outcomes in which it cooperates. Once again, the
agents do not need to engage in strategic thinking (worrying about what the
other agent will do): the best action to perform is entirely independent of the
other agent’s choice. I emphasize that in most multiagent scenarios, the choice
an agent should make is not so clear cut; indeed, most are much more diffi-
cult.

Dominant Strategies and Nash Equilibria 111

We can neatly summarize the previous interaction scenaric by making use of a
standard game-theoretic notation known as a payoff matrix:

i defects | i cooperates
. 4 1
j defects 4 4
. ' 4 1
J cooperates 1 1

The way to read such a payoff matrix is as follows. Each of the four cells in the
matrix corresponds to one of the four possible outcomes. For example, the top-
right cell corresponds to the outcome in which i cooperates and j defects; the
bottom-left cell corresponds to the outcome in which i defects and j cooperates.
The payoffs received by the two agents are written in the cell. The value in the
top right of each cell is the payoff received by player i (the column player), while
the value in the bottom left of each cell is the payoff received by agent j (the
row player). As payoff matrices are standard in the literature, and are a much
more succinct notation than the alternatives, we will use them as standard in the

remainder of this chapter.
Refore nroceeding to consider anv sp

~aa L pra UL RRRls ASaivana u;;]

informally discussed above.

Dominant Strategies and Nash Equilibria

Given a particular multiagent encounter involving two agents i and j, there is one
critically important question that both agents want answered: what should I do?
We have already seen some multiagent encounters, and informally argued what
the best possible outcome should be. In this section, we will define some of the
concepts that are used in answering this question.

The first concept we will introduce is that of dominance. To understand what
is meant by dominance, suppose we have two subsets of 2, which we refer to as
) and (2, respectively. We will say that €, dominates 2, for agent i if every
outcome in 2, is preferred by i over every outcome in 2. For example, suppose
that

. = {w1, w2, w3, wW4};
'bUlf'IWz?'ILUB?'ILUll,
= {w1, w2}; and

- 2 = {w3, wa}.

112 Multiagent Interactions

Then 2; strongly dominates (2, since w; >; w3, W] >; Wq, W >; w3, and
w> >; w4. However, (2, does not strongly dominate 2, since (for example), it is
not the case that w3 >; w;.

Formally, a set of outcomes ; strongly dominates set (2 if the following con-
dition is true:

Ywi: € 2, Vw» €2, wehave wy >; wo.

Now, in order to bring ourselves in line with the game-theory literature, we will

start referring to actions (members of the set Ac) as strategies. Given any par-
ticular strategy s for an agent i in a multiagent interaction scenario, there will
be a number of possible outcomes. Let us denote by s* the outcomes that may
arise by i playing strategy s. For example, referring to the example environment
in Equation (6.1), from agent i’'s point of view we have C* = {w3, w,}, while
D* = {w,,w>}.

Now, we will say a strategy s; dominates a strategy s, if the set of outcomes
possible by playing s; dominates the set possible by playing s», that is, if s dom-
inates sJ. Again, referring back to the example of (6.5), it should be clear that, for
agent i, cooperate strongly dominates defect. Indeed, as there are only two strate-
gies available, the cooperate strategy is dominant: itis not dominated by any other
strategy. The presence of a dominant strategy makes the decision about what to
do extremely easy: the agent guarantees its best outcome by performing the dom-
inant strategy. In following a dominant strategy, an agent guarantees itself the
best possible payoff.

Another way of looking at dominance is that if a strategy s is dominated by
another strategy s’, then a rational agent will not follow s (because it can guaran-
tee to do better with s). When considering what to do, this allows us to delete
dominated strategies from our consideration, simplifying the analysis consid-
erably. The idea is to iteratively consider each strategy s in turn, and if there
is another remaining strategy that strongly dominates it, then delete strategy s
from consideration. If we end up with a single strategy remaining, then this will be

the dominant strategy, and is clearly the rational choice. Unfortunately, for many
interaction scenarios, there will not he a crrnnolv dominant strategy; after delet-

2T a G LAV EE O aGa i Sy waalla T Yiii nalsu u A =) LA AipaRiIl ST QLY Qi

ing strongly dominated strategies, we may find more than one strategy remaining.
What to do then? Well, we can start to delete weakly dominated strategies. A strat-
egy s1 1s said to weakly dominate strategy s if every outcome s{ is preferred at
least as much as every outcome s5. The problem is that if a strategy is only weakly
dominated, then it is not necessarily irrational to use it; in deleting weakly domi-
nated strategies, we may therefore ‘throw away’ a strategy that would in fact have
been useful to use. We will not take this discussion further; see the Notes and
Further Reading section at the end of this chapter for pointers to the literature.
The next notion we shall discuss is one of the most important concepts in
+thhn ~caran tlhinamser Fitavmnatrzan [, P o S R WSy

LLIC gaulc LuCUly lllCldlLuc dllu 111 turn lb UIIC UJ. l.llC IMoSt uup(n Ldlll (,UllLCplb
in analysing multiagent systems. The notion is that of equilibrium, and, more

Competitive and Zero-Sum Interactions 113

specifically, Nash equilibrium. The intuition behind equilibrium is perhaps best
explained by example. Every time you drive a car, you need to decide which side
of the road to drive on. The choice is not a very hard one: if you are in the UK,
for example, you will probably choose to drive on the left; if you are in the US or
continental Europe, you will drive on the right. The reason the choice is not hard
is that it is a Nash equilibrium strategy. Assuming everyone else is driving on the
left, you can do no better than drive on the left also. From everyone else’s point
of view, assuming you are driving on the left then everyone else can do no better
than drive on the left also.
In general, we will say that two strategies s; and s, are in Nash equilibrium if:

(1) under the assumption that agent i plays s, agent j can do no better than
play s2; and

(2) under the assumption that agent j plays s, agent i can do no better than
play s;.

The mutual form of an equilibrium is important because it ‘locks the agents in’
to a pair of strategies. Neither agent has any incentive to deviate from a Nash
equilibrium. To see why, suppose s, 52 are a pair of strategies in Nash equilibrium
for agents i and j, respectively, and that agent i chooses to play some other
strategy, s3 say. Then by definition, i will do no better, and may possibly do worse
than it would have done by playing s;.

The presence of a Nash equilibrium pair of strategies in a game might appear
to be the definitive answer to the question of what to do in any given scenario.
Unfortunately, there are two important results in the game-theory literature which
serve to make life difficult:

(1) not every interaction scenario has a Nash equilibrium; and

(2) some interaction scenarios have more than one Nash equilibrium.

Despite these negative results, Nash equilibrium is an extremely important con-
cept, and plays an important role in the analysis of multiagent systems.

Competitive and Zero-Sum Interactions

Suppose we have some scenario in which an outcome w € is preferred by
agent i over an outcome w’ if, and only if, w’ is preferred over w by agent j.
Formally,

w >; w’ if and only if w’ >; w.

The preferences of the players are thus diametrically opposed to one another: one
agent can only improve its lot (i.e. get a more preferred outcome) at the expense of
the other. An interaction scenario that satisfies this property is said to be strictly
competitive, for hopefully obvious reasons.

)]

1

114 Multiagent Interactions

Zero-sum encounters are those in which, for a parti.cnlar outcome, the utilities

~a ERAV o LU Vizaloazy 2372 “

of the two agents sum to zero. Formally, a scenario is said to be zero sum if the
following condition is satisfied:

ui(w) +u;(w) =0 forall w e Q.

[t should be easy to see that any zero-sum scenario is strictly competitive, Zero-
sum encounters are important because they are the most ‘vicious’ types of
encounter conceivable, allowing for no possibility of cooperative behaviour. If
you allow your opponent positive utility, then this means that you get negative
utility - intuitively, you are worse off than you were before the interaction.
Games such as chess and chequers are the most obvious examples of strictly
competitive interactions. Indeed, any game in which the possible outcomes are
win or lose will be strictly competitive. Qutside these rather abstract settings,
however, it is hard to think of real-world examples of zero-sum encounters. War
might be cited as a zero-sum interaction between nations, but even in the most
extreme wars, there will usually be at least some common interest between the
participants (e.g. in ensuring that the planet survives). Perhaps games like chess -
which are a highly stylized form of interaction - are the only real-world examples

of zero-sum encounters.
For these reasons. some social sci

LA S AR QaVILSe; SsViaas UV\.. “- -]

ntists are scentical about whether zero-sum

f
entists are scep nether zero-sur
(

games exist in real-world scenarios (Zagare, 1984, p. 22). Interestmgly, however,
people interacting in many scenarios have a tendency to treat them as if they were
zero sum. Below, we will see that in some scenarios - where there is the possibility
of mutually beneficial cooperation - this type of behaviour can be damaging.

Tnnitagh nhoetenart ‘t‘lnr\”tvl Torirg mnw annlor thio thhanr Ao artrital malriagant

cIOUgIl DS act tiieor y. LEU US now apply’ {nis tneol y’ (O SOIIC aliudi Muitaglni
scenarios. First, let us consider what is perhaps the best-known scenario: the pris-
oner’s dilemma.

B A“,

T Tt PPN <o MzlA ~
1 115UILICL > L711C111IA

ne

Consider the following scenario.

Two men are collectively charged with a crime and held in separate
cells. They have no way of communicating with each other or making
any kind of agreement. The two men are told that:

(1) if one of them confesses to the crime and the other does not, the
confessor will be freed, and the other will be jailed for three years;
and

(2) if both confess to the crime, then each will be jailed for two years.

Both prisoners know that if neither confesses, then they will each be
jailed for one vyear.

The Prisoner’s Dilemma 115

We refer to confessing as defection, and not confessing as cooperating. Before
reading any further, stop and think about this scenario: if you were one of the
prisoners, what would you do? (Write down your answer somewhere, together
with your reasoning; after you have read the discussion below, return and see
how you fared.)

There are four possible outcomes to the prisoner’s dilemma, depending on
whether the agents cooperate or defect, and so the environment is of type (6.1).
Abstracting from the scenario above, we can write down the utility functions for
each agent in the following payoff matrix:

i defects | i cooperates
. 2 0
J defects) =
| cooperat > 3
J cooperates 0 3

Note that the numbers in the payoff mairix do not refer to years in prison. They
capture how good an outcome is for the agents - the shorter jail term, the better.
In other words, the utilities are

ui(D,Dy =2, uiD,C)=5, wi(C,D)=0, ui(C,C)=3,
ui(D,D)=2, uj(D,C)=0, u;(C,D)=5, u;(C,C)=3,

and the preferences are

D,C> C,C>iD,D>; C,D,
C,.D > C,C > D,D > D C.

What should a prisoner do? The answer is not as clear cut as the previous examples
we looked at. It is not the case a prisoner prefers all the outcomes in which it
cooperates over all the outcomes in which it defects. Similarly, it is not the case
that a prisoner prefers all the outcomes in which it defects over all the outcomes
in which it cooperates.

The ‘standard’ approach to this problem is to put yourself in the place of a
prisoner, i say, and reason as follows.

- Suppose I cooperate. Then if j cooperates, we will both get a payoff of 3.
But if j defects, then [will get a payoff of 0. So the best payoff I can be
guaranteed 10 get if [cooperate is 0.

- Suppose I defect. Then if j cooperates, then I get a payoff of 5, whereas if j
defects, then I will get a payoff of 2. So the best payoff I can be guaranteed
to get if I defect is 2.

- So, if I cooperate, the worst case is I will get a payoff of 0, whereas if I defect,
the worst case is that I will get 2.

116 Multiagent Interactions

+ 1 would prefer a guaranteed payoff of 2 to a guaranteed payoff of 0, so I
should defect.

Since the scenario is symmetric (i.e. both agents reason the same way), then the
outcome that will emerge - if both agents reason ‘rationally’ - is that both agents
will defect, giving them each a payoff off 2,

Notice that neither strategy strongly dominates in this scenario, so our first
route to finding a choice of strategy is not going to work. Turning to Nash equi-
libria, there is a single Nash equilibrium of D, D. Thus under the assumption that
i will play D, j can do no better than play D, and under the assumption that j will
play D, i can also do no better than play D.

Is this the best they can do? Naive intuition says not. Surely if they both coop-
erated, then they could do better - they would receive a payoff of 3. But if you
assume the other agent will cooperate, then the rational thing to do - the thing
that maximizes your utility - is to defect. The conclusion seems inescapable: the
rational thing to do in the prisoner’s dilemma is defect, even though this appears
to ‘waste’ some utility. (The fact that our naive intuition tells us that utility appears
to be wasted here, and that the agents could do better by cooperating, even though
the rational thing to do is to defect, is why this is referred to as a dilemma.)

The nrisoner's dilemma mav seem an ahstract hrnh]nm hut it turns out to he

4AEL pradvaa s AL LAaLaAR i Y Sl Lidl il Ay o i v EWRAANwLALy RAWAL 1L LuAR LIS

very common indeed. In the real worid, the prisoner’s dilemma appears in situa-
tions ranging from nuclear weapons treaty compliance to negotiating with one’s
children. Consider the problem of nuclear weapons treaty compliance. Two coun-
tries i and j have signed a treaty to dispose of their nuclear weapons. Each country
can then either cooperate (i.e. get rid of their weapons), or defect (i.e. keep their
weapons). But if you get rid of your weapons, you run the risk that the other
side keeps theirs, making them very well off while you suffer what is called the
‘sucker’s payoff’. In contrast, if you keep yours, then the possible outcomes are
that you will have nuclear weapons while the other country does not (a very good
outcome for you), or ejse at worst that you both retain your weapons. This may
not be the best possible outcome, but is certainly better than you giving up your
weapons while your opponent kept theirs, which is what you risk if your give up
your weapons.

Many people find the conclusion of this analysis - that the rational thing to
do in the prisoner’s dilemma is defect - deeply upsetting. For the result seems
to imply that cooperation can only arise as a result of irrational behaviour, and
that cooperative behaviour can be exploited by those who behave rationally. The
apparent conclusion is that nature really is ‘red in tooth and claw’. Particularly
for those who are inclined to a liberal view of the world, this is unsettling and
perhaps even distasteful. As civilized beings, we tend to pride ourselves on some-
how ‘rising above’ the other animals in the world, and believe that we are capable
of nobler behaviour: to argue in favour of such an analysis is therefore somehow
immoral, and even demeaning to the entire human race.

The Prisoner’s Dilemmma 117

Naturally enough, there have been several attempts to respond to this analy-
sis of the prisoner’s dilemma, in order to ‘recover’ cooperation (Binmore, 1992,
pPp. 355-382).

We are not all Machiavelli!

The first approach is to argue that we are not all such ‘hard-boiled’ individuals as
the prisoner’s dilemma (and more generally, this kind of game-theoretic analysis)
implies. We are not seeking to constantly maximize our own welfare, possibly
at the expense of others. Proponents of this kind of argument typically point to
real-world examples of altruism and spontaneous, mutually beneficial cooperative
behaviour in order to justify their claim.

There is some strength to this argument: we do not (or at least, most of us do
not) constantly deliberate about how to maximize our welfare without any con-
sideration for the welfare of our peers. Similarly, in many scenarios, we would be
happy to trust our peers to recognize the value of a cooperative outcome with-
out even mentioning it to them, being no more than mildly annoyed if we get the
‘sucker’s payoff’.

There are several counter responses to this. First, it is pointed out that many
real-world examples of spontaneous cooperative behaviour are not really the pris-
oner's dilemma. Frequently, there is some built-in mechanism that makes it in the
interests of participants to cooperate. For example, consider the problem of giv-
ing up your seat on the bus. We will frequently give up our seat on the bus to an
older person, mother with children, etc., apparently at some discomfort (i.e. loss
of utility) to ourselves. But it could be argued that in such scenarios, society has
ways of punishing non-cooperative behaviour: suffering the hard and unforgiv-
ing stares of fellow passengers when we do not give up our seat, or worse, being
accused in public of being uncouth!

Second, it is argued that many ‘counter-examples’ of cooperative behaviour aris-
ing do not stand up to inspection. For example, consider a public transport system,
which relies on everyone cooperating and honestly paying their fare every time
they travel, even though whether they have paid is not verified. The fact that such
a system works would appear to be evidence that relving on spontaneous cooper-
ation can work. But the fact that such a system works does not mean that it is not
exploited. It will be, and if there is no means of checking whether or not some-
one has paid their fare and punishing non-compliance, then all other things being
equal, those individuals that do exploit the system (defect) will be better off than
those that pay honestly (cooperate). Unpalatable, perhaps, but true nevertheless.

The other prisoner is my twin!

A second line of attack is to argue that two prisoner’s will ‘think alike’, and recog-
nize that cooperation is the best outcome. For example, suppose the two prisoners
are twins, unseparated since birth; then, it is argued, if their thought processes

iis Multiagent Interactions

are sufficiently aligned, they will both recognize the benefits of cooperation, and
behave accordingly. The answer to this is that it implies there are not actually two
prisoners playing the game. If | can make my twin select a course of action simply
by ‘thinking it’, then we are not playing the prisoner’s dilemma at ail.

This ‘fallacy of the twins’ argument often takes the form ‘what if everyone were
to behave like that’ (Rinmore, 1992, p. 311). The answer (as Yossarian pointed out

in Joseph Heller's Catch 22) is that if everyone else behaved like that, you would
be a damn fool to behave any other way.

People are not rational!

Some would argue - and game theorist Ken Binmore certainly did at the UKMAS
workshop in December 1998 - that we might indeed be happy to risk cooperation
as opposed to defection when faced with situations where the sucker's payoff
really does not matter very much. For example, paying a bus fare that amounts to
a few pennies does not really hurt us much, even if everybody eise is defecting and
hence exploiting the system. But, it is argued, when we are faced with situations
where the sucker’s payoff really hurts us - life or death sjtuations and the like - we

will choose the ‘rational’ course of action that maximizes our welfare, and defect.

The shadow of the future

there are quite natural variants of the prisoner’s dilemma in which cooperation is
the rational thing to do. One idea is to play the game more than once. In the iterated
prisoner’s dilemma, the ‘game’ of the prisoner’s dilemma is played a number of
times. Each play is referred to as a ‘round’. Critically, it is assumed that each agent
can see what the opponent did on the previous round: player i can see whether j
defected or not, and j can see whether i defected or not.

Now, for the sake of argument, assume that the agents will continue to play

the game forever: every round w1ll be followed by another round. Now, under
these assumptions, what is the rational thing to do? If you know that you will be
meeting the same opponent in future rounds, the incentive to defect appears to
be considerably diminished, for two reasons.

- If you defect now, your opponent can punish you by also defecting. Punish-
ment is not possible in the one-shot prisoner’s dilemma.

- If you ‘test the water’ by cooperating initially, and receive the sucker’s payoff
on the first round, then because you are playing the game indefinitely, this
loss of utility (one util) can be ‘amortized’ over the future rounds. When
taken into the context of an infinite (or at least very long) run, then the loss

f i+ ~f i+
of a single unit of utility will represent a small percentage of the overall

utility gained.

The Prisoner’s Dilemma 119

So, if you play the prisoner’'s dilemma game indefinitely, then cooperation is a
rational outcome (Binmore, 1992, p. 358). The ‘shadow of the future’ encourages
us to cooperate in the infinitely repeated prisoner’s dilemma game.

This seems to be very good news indeed, as truly one-shot games are compar-
atively scarce in real life. When we interact with someone, then there is often a
good chance that we will interact with them in the future, and rational cooperation
begins to look possible. However, there is a catch.

Suppose you agree to play the iterated prisoner’s dilemma a fixed number of
times (say 100). You need to decide (presumably in advance) what your strategy
for playing the game will be. Consider the last round (i.e. the 100th game). Now,
on this round, you know - as does your opponent - that you will not be interacting
again. In other words, the last round is in effect a one-shot prisoner’s dilemma
game. As we know from the analysis above, the rational thing to do in a one-
shot prisoner’s dilemma game is defect. Your opponent, as a rational agent, will
presumably reason likewise, and will also defect. On the 100th round, therefore,
you will both defect. But this means that the last ‘real’ round, is 99. But similar
reasoning leads us to the conclusion that this round will also be treated in effect
like a one-shot prisoner’s dilemma, and so on. Continuing this backwards induc-
tion leads inevitably to the conclusion that, in the iterated prisoner’s dilemma
with a fixed, predetermined, commonly known number of rounds, defection is
the dominant strategy, as in the one-shot version (Binmore, 1992, p. 354).

Whereas it seemed to be very good news that rational cooperation is possible in
the iterated prisoner’s dilemma with an infinite number of rounds, it seems to be
very bad news that this possibility appears to evaporate if we restrict ourselves
to repeating the game a predetermined, fixed number of times. Returning to the
real-world, we know that in reality, we will only interact with our opponents a
finite number of times (after all, one day the world will end). We appear to be
back where we started.

The story is actually better than it might at first appear, for several reasons.
The first is that actually playing the game an infinite number of times is not
necessary. As long as the ‘shadow of the future’ looms sufficiently large, then it
can encourage cooperation. So, rational cooperation can become possible if both
players know, with sufficient probability, that they will meet and play the game
again in the future.

The second reason is that, even though a cooperative agent can suffer when
playing against a defecting opponent, it can do well overall provided it gets suf-
ficient opportunity to interact with other cooperative agents. To understand how
this idea works, we will now turn to one of the best-known pieces of multiagent
systems research: Axelrod’s prisoner’s dilemma tournament.

Axelrod’s tournament

Robert Axelrod was (indeed, is) a political scientist interested in how coopera-
tion can arise in societies of self-interested agents. In 1980, he organized a pub-

120 Multiagent Interactions

lic tournament in which political scientists, psychologists, economists, and game
theoreticians were invited to submit a computer program to play the iterated pris-
oner’s dilemma. Each computer program had available to it the previous choices
made by its opponent, and simply selected either C or D on the basis of these.
Each computer program was played against each other for five games, each game
consisting of two hundred rounds. The ‘winner’ of the tournament was the pro-
gram that did best overall, i.e. best when considered against the whole range of
programs. The computer programs ranged from 152 lines of program code to just
five lines. Here are some examples of the kinds of strategy that were submitted.

ALL-D. This is the ‘hawk’ strategy, which encodes what a gam e-theoretic analy-
sis tells us is the ‘rational’ strategy in the finitely iterated prisoner’s dilemma:

always defect, no matter what your opponent has done.

RANDOM. This strategy is a control: it ignores what its opponent has done on
previous rounds, and selects either C or D at random, with equal probability of
either outcome.

TIT-FOR-TAT. This strategy is as follows:

(1) on the first round, cooperate;

(2) onround t > 1, do what your opponent did on round t — 1.

TIT-FOR-TAT was actually the simplest strategy entered, requiring only five lines
of Fortran code.

TESTER. This strategy was intended to exploit computer programs that did not
punish defection: as its name suggests, on the first round it tested its opponent
by defecting. If the opponent ever retaliated with defection, then it subsequently
played TIT-FOR-TAT. If the opponent did not defect, then it played a repeated
sequence of cooperating for two rounds, then defecting.

JOSS. Like TESTER, the JOSS strategy was intended to exploit ‘weak’ opponents.
It is essentially TIT-FOR-TAT, but 10% of the time, instead of cooperating, it will
defect.

Before proceeding, consider the following two questions.

(1) On the basis of what you know so far, and, in partlcula r, what you know of he
FaYa s arel FaFaYer] IF i - S

galie- theoretic results 1c1auug to the uuuc1y’ iterate p""‘ ner’
which strategy do you think would do best overall?

(2) If you were entering the competition, which strategy would you enter?

After the tournament was played, the result was that the overall winner was TIT-
FOR-TAT: the simplest strategy entered. At first sight, this result seems extraor-
dinary. It appears to be empirical proof that the game-theoretic analysis of the
iterated prisoner’s dilemma is wrong: cooperation is the rational thing to do, after
all! But the result, while significant, is more subtle (and possibly less encouraging)

|
|
|
|
|

The Prisoner’s Dilemma 121

than this. TIT-FOR-TAT won because the overall score was computed by taking
into account all the strategies that it played against. The result when TIT-FOR-
TAT was played against ALL-D was exactly as might be expected: ALL-D came
out on top. Many people have misinterpreted these results as meaning that TIT-
FOR-TAT is the optimal strategy in the iterated prisoner’s dilemma. You should
be careful not to interpret Axelrod’s results in this way. TIT-FOR-TAT was able to
succeed because it had the opportunity to play against other programs that were
also inclined to cooperate. Provided the environment in which TIT-FOR-TAT plays
contains sufficient opportunity to interact with other ‘like-minded’ strategies, TIT-
FOR-TAT can prosper. The TIT-FOR-TAT strategy will not prosper if it is forced to
interact with strategies that tend to defect.

Axelrod attempted to characterize the reasons for the success of TIT-FOR-TAT,
and came up with the following four rules for success in the iterated prisoner’s
dilemma.

(1) Do not be envious. In the prisoner’s dilemma, it is not necessary for you to
‘beat’ your opponent in order for you to do well.

(2) Do not be the first to defect. Axelrod refers to a program as ‘nice’ if it starts
by cooperating. He found that whether or not a rule was nice was the single best

nradicrtar nf crieracg im hi TP o anto Alanvls; o ricls 3 roetHno T

lJl CLllLlUL Ul SULLTCDHD 11l ILID lULllllCllll.CllLb 111€1c 1b LICCI.LI)/ allsK 111 DLCll liilg VVth
cooperation. But the loss of utility associated with receiving the sucker’s payoff
on the first round will be comparatively small compared with possible benefits
of mutual cooperation with another nice strategy.

(3) Reciprocate cooperation and defection, As Axelrod puts it, ‘TIT-FOR-TAT
represents a balance between punishing and being forgiving’ (Axelrod, 1984,
p. 119): the combination of punishing defection and rewarding cooperation
seems to encourage cooperation. Although TIT-FOR-TAT can be exploited on

the first round, it retaliates relentlessly for such non-cooperative behaviour.
Moreaver, TIT-FOR-TAT punishes with aynprl\; the came deoree of violence that

Vil uw Vi PPeeiiaSaatd Yvalaa © ian SQaiIl Ul e T Vi Vaualaailt el

it was the recipient of: in other words, it never ‘overreacts’ to defection. In addi-
tion, because TIT-FOR-TAT is forgiving (it rewards cooperation), it is possible
for cooperation to become established even following a poor start.

(4) Do not be too clever. As noted above, TIT-FOR-TAT was the simplest pro-
gram entered into Axelrod’s competition. Either surprisingly or not, depending
on your point of view, it fared significantly better than other programs that
attempted to make use of comparatively advanced programming technigues in
order to decide what to do. Axelrod suggests three reasons for this:

(a) the most complex entries attempted to develop a model of the behaviour of
the other agent while ignoring the fact that this agent was in turn watching
the original agent - they lacked a model of the reciprocal learning that
actually takes place;

6.6

122 Multiagent Interactions

(b) most complex entries over generalized when seeing their opponent defect,
and did not allow for the fact that cooperation was still possible in the
future - they were not forgiving;

(c) many complex entries exhibited behaviour that was too complex to be

understood - to their opponent, they may as well have been acting ran-
domly.

From the amount of space we have devoted to discussing it, you might assume

that the prisoner’s dilemma was the only type of multiagent interaction there is.
This is not the case.

Other Symmetric 2 x 2 Interactions

Recall the ordering of agent i's preferences in the prisoner’s dilemma:
D,C> C,C>DD>»;C,D.

This is just one of the possible orderings of outcomes that agents may have. If we
restrict our attention to interactions in which there are two agents, each agent has
two possible actions (C or D), and the scenario is symmetric, then there are 4! = 24
possible orderings of preferences, which for completeness I have summarized in
Table 6.1. (In the game-theory literature, these are referred to as symmetric 2 x 2
games.)

In many of these scenarios, what an agent should do is clear-cut. For example,
agent i should clearly cooperate in scenarios (1) and (2), as both of the outcomes
in which i cooperates are preferred over both of the outcomes in which i defects.
Similarly, in scenarios (23) and (24), agent i should clearly defect, as both out-
comes in which it defects are preferred over both outcomes in which it cooper-
ates. Scenario (14) is the prisoner’s dilemma, which we have already discussed at
length, which leaves us with two other interesting cases to examine: the stag hunt
and the game of chicken.

The stag hunt

The stag hunt is another example of a social dilemma. The name stag hunt arises
from a scenario put forward by the Swiss philosopher Jean-Jacques Rousseau in
his 1775 Discourse on Inequality. However, to explain the dilemma, I will use a
scenario that will perhaps be more relevant to readers at the beginning of the
tone, 1992, pp. 218, 219).

You and a friend decide it would be a great joke to show up on
the last day of school with some ridiculous haircut. Egged on by your
clique, you both swear you'll get the haircut.

Other Symmetric 2 x 2 Interactions 123

Table 6.1 The possible preferences that agent i can have in symmetric interaction sce-
narios where there are two agents, each of which has two available actions, C (cooperate)
and D (defect); recall that X, Y means the outcome in which agent i plays X and agent j
plays Y.

Scenario Preferences over outcomes Comment

1. C,C>;C,D>; D,C»>; D,D cooperation dominates
2. C,C>,C,D>;D,D»; D,C cooperation dominates
3. c,C>D,C>~;C,D>;D,D

4, C,C>D,C>;D,D>;C,D stag hunt

5. C,C>;D,D>;C,D>;D,C

6. C,C»>;D,D>; D,C>;C,D

7. C,D>;C,C>;D,C>;D,D

8. C,D>;C,C>;D,D>;D,C

9. C,D>;D,C»;C,C>;D,D

10. C,D>; D,C>;D,D>C,C

11. C,D>iD,D> CC> D,C

12. C,D >,’D,D>—1'D,C>iC,C

13. D,C>; C,C=;C,D>; D,D game of chicken

14. D,C»;C,C»>; D,D>; C,D prisoner’s dilemma
15. D,C» C,D>;C,C>;D,D

16. D,C>iC,D>—1’D,D >I'C,C

17. D,C»>;D,D» C,C»; C,D

18. D,C>; D, D> C,D>;C,C

19, D,D> C,C>;C,D>»; D,C

20, D,D> C,C>;D,C>; C,D

21. D,D~C, D> C,C»; D,C

22. D,D>;C,D>;DC>» CC

23. D,D>» D,C»;C,C>;C,D defection dominates
24. D,D> D,C>;C,D>; C,C defection dominates

A night of indecision follows. As you anticipate your parents’ and
teachers’ reactions...you start wondering if yvour friend is really going
to go through with the plan.

Not that you do not want the plan to succeed: the best possible
outcome would be for both of you to get the haircut.

The trouble is, it would be awful to be the only one to show up with
the haircut. That would be the worst possible outcome.

You're not above enjoying your friend’s embarrassment. If you
didn’t get the haircut, but the friend did, and looked like a real jerk,
that would be almost as good as if you both got the haircut.

enario is obviously v
t

ig ¢ close to the p
that in this scenario, mutua

ery ris
1 cooperation is the mos

124 Multiagent Interactions

than vou defecting while your opponent r‘@@pgra[g

Liifiii D ¥Yaizi A AU S

S ng
payoff matrix (plcklng rathe arbitrary payvoffs to give the preferences):

. Expressing the

'D
ag
oL
3
T
5
AL

i defects | i cooperates
. 1 0
j defects 1 5
| cooperates . 3

[t should be clear that there are two Nash equilibria in this game: mutual defec-
tion, or mutual cooperation. If you trust your opponent, and believe that he will
cooperate, then you can do no better than cooperate, and vice versa, your oppo-
nent can also do no better than cooperate. Conversely, if you believe your oppo-
nent will defect, then you can do no better than defect yourself, and vice versa.

Poundstone suggests that ‘mutiny’ scenarios are examples of the stag hunt:
‘We'd all be better off if we got rid of Captain Bligh, but we'll be hung as mutineers

e (i RSN B LR UEL RR HYL Ll UL QPG Daipiiy S VYLD aa B dat4sa QS iaivatziznonen S

if not enough of us go along’ (Poundstone, 1992, p. 220).

The game of chicken

The game of chicken (row 13 in
following preferences:

L1~ : ~
able 6.1) is characterized by agent i having the

D,C>;C,C>;C,D>;D,D.

As with the stag hunt, this game is also closely related to the prisoner’s dilemma.
The dlfference here is that mutual defection is agent i’s most feared outcome,
rather than i cooperating while j defects. The game of chicken gets its name
from a rather silly, macho ‘game’ that was supposedly popular amongst juvenile
delinquents in 1950s America; the game was immortalized by James Dean in the

il Rohol Withnat 2 Caico Tho miirnncoe oof tho oatne ic tn octahlich whan ic hravecet
i ARepe vwilriOul d Lduse. 111k Pul puoc Ul. e HALLIT 105 LU COWAVILOLL YWV 1D J1Aaviiol

out of two young thugs. The game is played by both players driving their cars at
high speed towards a cliff. The idea is that the least brave of the two (the ‘chicken’)
will be the first to drop out of the game by steering away from the cliff. The winner
is the one who lasts longest in the car. Of course, if neither player steers away,
then both cars fly off the cliff, taking their foolish passengers to a fiery death on
the rocks that undoubtedly lie below.

So, how should agent i play this game? It depends on how brave (or foolish) i
believes j is. If i believes that j is braver than i, then i would do best to steer away
from the cliff (i.e. cooperate), since it is unlikely that j will steer away from the
cliff. However, if i believes that j is less brave than i, then i should stay in the car;
because j is less brave, he will steer away first, allowing ¢ to win. The difficulty
arises when both agents mistakenly believe that the other is less brave; in this
case, both agents will stay in their car (i.e. defect), and the worst outcome arises.

Dependence Relations in Multiagent Systems 125

(pressed as a payoff matrix, the game of chicken is as foliows:

i defects | i cooperates
. 0 1
j defects 0 3
. ‘ 3 2
J cooperates | 5

It should be clear that the game of chicken has two Nash equilibria, corresponding
to the above-right and below-left cells. Thus if you believe that your opponent is
going to drive straight (i.e. defect), then you can do no better than to steer away
from the cliff, and vice versa. Similarly, if you believe your opponent is going to
steer away, then you can do no better than to drive straight.

Dependence Relations in Multiagent Systems

Before leaving the issue of interactions, I will briefly discuss another approach
to understanding how the properties of a multiagent system can be understood.
This approach, due to Sichman and colleagues, attempts to understand the depen-
dencies between agents (Sichman et al., 1994; Sichman and Demazeau, 1995). The
basic idea is that a dependence relation exists between two agents if one of the
agents requires the other in order to achieve one of its goals. There are a number
of possible dependency relations.

Independence. There is no dependency between the agents.
Unilateral. One agent depends on the other, but not vice versa.
Mutual. Both agents depend on each other with respect to the same goal.

Reciprocal dependence. The first agent depends on the other for some goal,
while the second also depends on the first for some goal (the two goals are not
necessarily the same). Note that mutual dependence implies reciprocal depen-
dence.

These relationships may be qualified by whether or not they are locally believed
or mutually believed. There is a locally believed dependence if one agent believes
the dependence exists, but does not believe that the other agent believes it exists.
A mutually believed dependence exists when the agent believes the dependence
exists, and also believes that the other agent is aware of it. Sichman and colleagues
implemented a social reasoning system called DepNet (Sichman et al,, 1994). Given
a description of a multiagent system, DepNet was capable of computing the rela-
tionships that existed between agents in the system.

126 Multiagent Interactions

Notes and Further Reading

Ken Binmare, in his lucid and entertaining introduction to game theory, Fun and
Games, d1scusses the philosophical implications of the prisoner’s dilemma at
length (Binmore, 1992, p. 310-316). This text is recommended as a readable -
albeit mathematically demanding - introduction to game theory, which provides
extensive pointers into the literature.

There are many other interesting aspects of Axelrod’s tournaments that I can
only briefly mention due to space restrictions. The first is that of noise. I mentioned
above that the iterated prisoner’s dilemma is predicated on the assumption that
the participating agents can see the move made by their opponent: they can see,
in other words, whether their opponent defects or cooperates. But suppose the
game allows for a certain probability that on any given round, an agent will mis-
interpret the actions of its opponent, and perceive cooperation to be defection
and vice versa. Suppose two agents are pla'y"mg the iterated prlsoner s dilemma
against one another, and both are playing TIT-FOR-TAT. Then both agents will
start by cooperating, and in the absence of noise, will continue to enjoy the fruits
of mutual cooperation. But if noise causes one of them to misinterpret defec-
tion as cooperation, then this agent will retaliate to the perceived defection with
defection. The other agent will retaliate in turn, and both agents will defect, then
retaliate, and so on, losing significant utility as a consequence. Interestingly, coop-
eration can be restored if further noise causes one of the agents to misinterpret
defection as cooperation - this will then cause the agents to begin cooperating
again! Axelrod (1984) is recommended as a point of departure for further read-
ing; Mor and Rosenschein (1995) provides pointers into recent prisoner’s dilemma
literature; a collection of Axelrod’s more recent essays was published as Axelrod
(1997). A non-mathematical introduction to game theory, with an emphasis on
the applications of game theory in the social sciences, is Zagare (1984).

Dependence Relations in Multiagent Systems 127

Exercises

{1) [Level 1.]

Consider the following sets of outcomes and preferences:

- Q= {w),ws, w3, ws, Ws, We};

© W >y W2 > W3 > W) > W; > Wy,

) = {wy,wal;
= {wy, wal;
- 3 = {w;};and

+ 24 = {wy, wet.

Which of these sets (if any) dominates the others? Where neither set dominates the other,

indicate this.

(2) [Level 2.]

Consider the following interaction scenarios:

i defects i cooperates
: 3 4
j defects 3 5
. : 1 2
J cooperates 1 4
i defects i cooperates
, -1 2
J defects 1 1
. ¢ 1 -1
J cooperates 2 1
i defects i cooperates
. 3 4
j defects 3 5
: N 1 2
J cooperates 1 4

Now, for each of these scenarios,

. begin by informally analysing the scenario to determine what the two agents should

do;

+ classify the preferences that agents have with respect to outcomes;

- determine which strategies are strongly or weakly dominated,;
- use the idea of deleting strongly dominated strategies to simplify the scenario where

appropriate;
- identify any Nash equilibria.

128 Multiagent Interactions

(3) [Class discussion.]

This is best done as a class exercise, in groups of three: play the prisoner’s dilemma.
Use one of the three as “umpire’, to keep track of progress and scores, and to stop any
outbreaks of violence. First try playing the one-shot game a few times, and then try the
iterated version, first for an agreed, predetermined number of times, and then allowing
the umpire to choose how many times to iterate without telling the players.

- Which strategies do best in the one-shot and iterated prisoner’s dilemma?
- Try playing people against strategies such as TIT-FOR-TAT, and ALL-D.

«+ Try getting people to define their strategy precisely in advance (by writing it down)},
and then see if you can determine their strategy while playing the game; distribute
their strategy, and see if it can be exploited.

(4) [Level 2]
For each of the scenarios in Table 6.1 that was not discussed in the text,

draw up a payoff matrix that characterizes the scenario (remembering that these
are symmetric interaction scenarios);

attempt to determine what an agent should do;

- identify, if possible, a real-world interaction situation that corresponds to the
abstract scenario.

An obvious problem, related to the issue of cooperation, is that of reaching agree-
ments in a society of self-interested agents. In the multiagent world that we all
inhabit every day, we are regularly required to interact with other individuals with
whom we may well not share common goals. In the most extreme scenario, as dis-
cussed in the preceding chapter, we may find ourselves in a zero-sum encounter.
In such an encounter, the only way we can profit is at the expense of our oppo-
nents. In general, however, most scenarios in which we find ourselves are not so
extreme - in most realistic scenarios, there is some potential for agents to reach
mutually beneficial agreement on matters of common interest. The ability to reach
agreements (without a third party dictating terms!) is a fundamental capability of
intelligent autonomous agents - without this capability, we would surely find it
impossible to function in society. The capabilities of negotiation and argumenta-
tion are central to the ability of an agent to reach agreement.

Negotiation scenarios do not occur in a vacuum: they will be governed by a
particular mechanism, or protocol. The protocol defines the ‘rules of encounter’
between agents (Rosenschein and Zlotkin, 1994). It is possible to design protocols
so that any particular negotiation history has certain desirable properties - this
is mechanism design, and is discussed in more detail below.

A second issue is, given a particular protocol, how can a particular strategy
be designed that individual agents can use while negotiating - an agent will aim
to use a strategy that maximizes its own individual welfare. A key issue here is
that, since we are interested in actually building agents that will be capable of

|
|
|
|
l

7.1

130 Reaching Agreements

negotiating on our behalf, it is not enough simply to have agents that get the best
outcome in theory - they must be able to obtain the best outcome in practice.

In the remainder of this chapter, I will discuss the process of reaching agree-
ments through negotiation and argumentation. I will start by considering the issue
of mechanism design - broadly, what properties we might want a negotiation or
argumentation protocol to have - and then go on to discuss auctions, negotiation
protocols and strategies, and finally argumentation.

Mechanism Design

As noted above, mechanism design is the design of protocols for governing multi-
agent interactions, such that these protocols have certain desirable properties.
When we design ‘conventional’ communication protocols, we typically aim to
design them so that (for example) they are provably free of deadlocks, live-
locks, and so on (Holzmann, 1991). In multiagent systems, we are still con-
cerned with such issues of course, but for negotiation protocols, the properties we
would like to prove are slightly different. Possible properties include, for example
(Sandholm, 1999, p. 204), the following.

Guaranteed success. A protocol guarantees success if it ensures that, eventually,
agreement is certain to be reached.

Maximizing social welfare. Intuitively, a protocol maximizes social welfare if it
ensures that any outcome maximizes the sum of the utilities of negotiation par-
ticipants. If the utility of an outcome for an agent was simply defined in terms
of the amount of money that agent received in the outcome, then a protocol that
maximized social welfare would maximize the total amount of money ‘paid out’.

Pareto efficiency. A negotiation outcome is said to be pareto efficient if there is
no other outcome that will make at least one agent better off without making
at least one other agent worse off. Intuitively, if a negotiation outcome is not
pareto efficient, then there is another outcome that will make at least one agent
happier while keeping everyone else at least as happy.

Individual rationality. A protocol is said to be individually rational if following
the protocol - ‘playing by the rules’ - is in the best interests of negotiation
participants. Individually rational protocols are essential because without them,
there is no incentive for agents to engage in negotiations.

Stability. A protocol is stable if it provides all agents with an incentive to behave
in a particular way. The best-known kind of stability is Nash equilibrium, as
discussed in the preceding chapter.

Simplicity. A ‘simple’ protocol is one that makes the appropriate strategy for
a negotiation participant ‘obvious’. That is, a protocol is simple if using it, a
participant can easily (tractably) determine the optimal strategy.

Auctions 131
Distribution, A protocol should ideally be designed to ensure that there isno 'sin-
gle point of failure’ (such as a single arbitrator) and, ideally, so as to minimize

communication between agents.

The fact that even quite simple negotiation protocols can be proven to have such
desirable properties accounts in no small part for the success of game-theoretic
techniques for negotiation (Kraus, 1997).

Auctions

Auctions used to be comparatively rare in everyday life; every now and then, one
would hear of astronomical sums paid at auction for a painting by Monet or Van
Gogh, but other than this, they did not enter the lives of the majority. The Internet
and Web fundamentally changed this. The Web made it possible for auctions with a
large, international audience to be carried out at very low cost. This in turn made
it possible for goods to be put up for auction which hitherto would have been
too uneconomical. Large businesses have sprung up around the idea of online
auctions, with eBay being perhaps the best-known example (EBAY, 2001).

One of the reasons why online auctions have become so popular is that auctions
are extremely simple interaction scenarios. This means that it is easy to automate
auctions; this makes them a good first choice for consideration as a way for agents
to reach agreements. Despite their simplicity, auctions present both a rich collec-
tion of problems for researchers, and a powerful tool that automated agents can

use far allacating onnde tacke and racmireac
CAOL LWL ull_}_utllls BUUMO Luol\o, (GREULY I WS LV 4 & ¥ B WL W)

Abstractly, an auction takes place between an agent known as the auctioneer
and a collection of agents known as the bidders. The goal of the auction is for the
auctioneer to allocate the good to one of the bidders. In most settings - and cer-
tainly most traditional auction settings -~ the auctioneer desires to maximize the
price at which the good is allocated, while bidders desire to minimize price. The
auctioneer will attempt to achieve his desire through the design of an appropriate
auction mechanism - the rules of encounter - while bidders attempt to achieve
their desires by using a strategy that will conform to the rules of encounter, but
that will also deliver an optimal result.

There are several factors that can affect both the protocol and the strategy that
agents use. The most important of these is whether the good for auction has a
private or a public/conmmon value. Consider an auction for a one dollar bill. How
much is this dollar bill worth to you? Assuming it is a ‘typical’ dollar bill, then
it should be worth exactly $1; if you paid $2 for it, vou would be $1 worse off
than you were. The same goes for anyone else involved in this auction. A typical
dollar bill thus has a common value: it is worth exactly the same to all bidders in
the auction. However, suppose you were a big fan of the Beatles, and the dollar
bill happened to be the last dollar bill that John Lennon spent. Then it may well
be that, for sentimental reasons, this dollar bill was worth considerably more to

d
J

i32 Reaching Agreemenis

you - you might be willing to pay $100 for it. To a fan of the Rolling Stones, with
no interest in or liking for the Beatles, however, the bill might not have the same
value. Someone with no interest in the Beatles whatsoever might value the one
doilar biil at exactiy $1i. In this case, the good for auction - the doilar bill - is said
to have a private value: each agent values it differently.

A third type of valuation is correlated value: in such a setting, an agent’s valu-
ation of the good depends partly on private factors, and partly on other agent’s
valuation of it. An example might be where an agent was bidding for a painting
that it liked, but wanted to keep open the option of later selling the painting. In
this case, the amount you would be willing to pay would depend partly on how

th + hht
much you liked it, but also partly on how much you believed other agents might

be willing to pay for it if you put it up for auction later.

Let us turn now to consider some of the dimensions along which auction pro-
tocols may vary. The first is that of winner determination: who gets the good that
the bidders are bidding for. In the auctions with which we are most familiar, the
answer to this question is probably self-evident: the agent that bids the most is
allocated the good. Such protocols are known as first-price auctions. This is not
the only possibility, however. A second nnthlhrv is to allocate the good to the

w2122 ol 4287 LS LU LU S8 LU § (O iv R U0 B LY a3 L QAL QLT AL

agent that bid the highest, but this agent pays only the amount of the second
highest bid. Such auctions are known as second-price auctions.

At first sight, it may seem bizarre that there are any settings in which a second-
price auction is desirable, as this implies that the auctioneer does not get as much
for the good as it could do. However, we shall see below that there are indeed somie
settings in which a second-price auction is desirable.

The second dimension along which auction protocols can vary is whether or
not the bids made by the agents are known to each other. If every agent can see
what every other agent is bidding (the terminology is that the bids are common
knowledge), then the auction is said to be open cry. If the agents are not able to
determine the bids made by other agents, then the auction is said to be a sealed-bid

A third dimension is the mechanism by which bidding proceeds. The simplest
possibility is to have a single round of bidding, after which the auctioneer allo-
cates the good to the winner. Such auctions are known as one shot. The second
possibility is that the price starts low (often at a reservation price) and successive
bids are for increasingly large amounts. Such auctions are known as ascending.
The alternative - descending - is for the auctioneer to start off with a high value,
and to decrease the price in successive rounds.

English auctions

English auctions are the most commonly known type of auction, made famous by
such auction houses as Sothebys. English auction are first-price, open cry, ascend-

ing auctions:

R |

Auctions 133

- the auctioneer starts off by suggesting a reservation price for the good (which
may be 0) - if no agent is willing to bid more than the reservation price, then
the good is allocated to the auctioneer for this amount;

+ bids are then invited from agents, who must bid more than the current high-
est bid - all agents can see the bids being made, and are able to participate
in the bidding process if they so desire;

- when no agent is willing to raise the bid, then the good is allocated to the
agent that has made the current highest bid, and the price they pay for the
good is the amount of this bid.

What strategy should an agent use to bid in English auctions? It turns out that
the dominant strategy is for an agent to successively bid a small amount more
than the current highest bid until the bid price reaches their current valuation,
and then to withdraw.

Simple though English auctions are, it turns out that they have some interesting
properties. One interesting feature of English auctions arises when there is uncer-
tainty about the true value of the good being auctioned. For example, suppose an
auctioneer is selling some land to agents that want to exploit it for its mineral
resources, and that there is limited geological information available about this
land. None of the agents thus knows exactly what the land is worth. Suppose now
that the agents engage in an English auction to obtain the land, each using the
dominant strategy described above. When the auction is over, should the winner
feel happy that they have obtained the land for less than or equal to their private
valuation? Or should they feel worried because no other agent valued the land
so highly? This situation, where the winner is the one who overvalues the good
on offer, is known as the winner’s curse. Its occurrence is not limited to English
auctions, but occurs most frequently in these.

Dutch auctions

Dutch auctions are examples of open-cry descending auctions:

- the auctioneer starts out offering the good at some artificially high value
(above the expected value of any bidder’s valuation of it);

- the auctioneer then continually lowers the offer price of the good by some
small value, until some agent makes a bid for the good which is equal to the
current offer price;

- the good is then allocated to the agent that made the offer.

Notice that Dutch auctions are also susceptible to the winner's curse. There is no
dominant strategy for Dutch auctions in general.

134 Reaching Agreements

First-price sealed-bid auctions

First-price sealed-bid auctions are examples of one-shot auctions, and are perhaps
the simplest of all the auction types we will consider. In such an auction, there
is a single round, in which bidders submit to the auctioneer a bid for the good;
there are no subsequent rounds, and the good is awarded to the agent that made
the highest bid. The winner pays the price of the highest bid. There are hence no
opportunities for agents to offer larger amounts for the good.

How should an agent act in first-price sealed-bid auctions? Suppose every agent
bids their true valuation; the good is then awarded to the agent that bid the highest
amount. But consider the amount bid by the second highest bidder. The winner
could have offered just a tiny fraction more than the second highest price, and
stillbeen awarded the good. Hence most of the difference between the highest and
second highest price is, in effect, money wasted as far as the winner is concerned.
The best strategy for an agent is therefore to bid less than its true valuation. How
much less will of course depend on what the other agents bid - there is no general
solution.

Vickrey auctions

The next type of auction is the most unusual and perhaps most counterintuitive
of all the auction types we shall consider. Vickrey auctions are second-price sealed-
bid auctions. This means that there is a single negotiation round, during which
each bidder submits a single bid; bidders do not get to see the bids made by other
agents. The good is awarded to the agent that made the highest bid; however
the price this agent pays is not the price of the highest bid, but the price of the
second highest bid. Thus if the highest bid was made by agent i, who bid $9, and
the second highest bid was by agent j, who bid $8, then agent i would win the
auction and be allocated the good, but agent i would only pay $8.

Why would one even consider using Vickrey auctions? The answer is that Vick-
rey auctions make truth telling the dominant strategy: a bidder’s dominant strat-
egy in a private value Vickrey auction is to bid his true valuation. Consider why
this is.

- Suppose that you bid more than your true valuation. In this case, you may
be awarded the good, but you run the risk of being awarded the good but
at more than the amount of your private valuation. If you win in such a
circumstance, then you make a loss (since you paid more than you believed
the good was worth).

+ Suppose you bid Iess than your true valuation. In this case, note that you
stand less chance of winning than if you had bid your true valuation. But,
even if you do win, the amount you pay will not have been affected by the
fact that you bid less than your true valuation, because you will pay the price
of the second highest bid.

Auctions 135

Thus the best thing to do in a Vickrey auction is to bid truthfully: to bid to your
private valuation - no more and no less.

Because they make truth telling the dominant strategy, Vickrey auctions have
received a lot of attention in the multiagent systems literature (see Sandholm
(1999, p. 213) for references). However, they are not widely used in human auc-
tions. There are several reasons for this, but perhaps the most important is that
humans frequently find the Vickrey mechanism hard to understand, because at
first sight it seems so counterintuitive. In terms of the desirable attributes that
we discussed above, it is not simple for humans to understand.

Note that Vickrey auctions make it possible for antisocial behaviour. Suppose
you want some good and your private valuation is $90, but you know that some
other agent wants it and values it at $100. As truth telling is the dominant strategy,
you can do no better than bid $90; your opponent bids $100, is awarded the good,
but pays only $90. Well, maybe you are not too happy about this: maybe you would
like to ‘punish’ your successful opponent. How can you do this? Suppose you bid
$99 instead of $90. Then you still lose the good to your opponent - but he pays $9
more than he would do if you had bid truthfully. To make this work, of course, you

have tn ha vary confident ahniit what voanr annonant will hid - vou do not want
AALA ¥ L. LA UL VL)’ LALLM AL LIl VL YYLiAan)’Uul Uyyull\‘lll ¥YL1ll WJARA }' LAV LAMNJL VY RAaaL

to bid $99 only to discover that your opponent bid $95, and you were left with a
good that cost $5 more than your private valuation. This kind of behaviour occurs
in commercial situations, where one company may not be able to compete directly
with another company, but uses their position to try to force the opposition into
bankruptcy.

Expected revenue

There are several issues that should be mentioned relating to the types of auctions
discussed above. The first is that of expected revenue. If you are an auctioneer,
then as mentioned above, your overriding consideration will in all likelihood be
to maximize your revenue: you want an auction protocol that will get you the
highest possible price for the good on offer. You may well not be concerned with
whether or not agents tell the truth, or whether they are afflicted by the winner’s
curse. [t may seem that some protocols - Vickrey’s mechanism in particular - do
not encourage this. So, which should the auctioneer choose?

For private value auctions, the answer depends partly on the attitude to risk of
both auctioneers and bidders (Sandholm, 1999, p. 214).

- For risk-neutral bidders, the expected revenue to the auctioneer is provably
identical in all four types of auctions discussed above (under certain simple
assumptions). That is, the auctioneer can expect on average to get the same
revenue for the good using all of these types of auction.

T

[s)
s

if

-averse bidders (i.e. hidders that would nrefer to

¥ic
LD FOC L/IUMUUTr O (1.0 HMIUUUI O LLIAL YYuwulu e

@Q
|-

~n

they paid slightly more for it than their private Valuatlon), Dutc

[l
=
Qo
o’
& W]

136 Reaching Agreements

first-price sealed-bid protocols lead to higher expected revenue for the auc-
tioneer. This is because in these protocols, a risk-averse agent can ‘insure’
himself by bidding slightly more for the good than would be offered by a
risk-neutral bidder.

. Risk-averse auctioneers, however, do better with Vickrey or English auctions.

Note that these results should be treated very carefully. For example, the first
result, relating to the revenue equivalence of auctions given risk-neutral bidders,
depends critically on the fact that bidders really do have private valuations. In
choosing an appropriate protocol, it is therefore critical to ensure that the prop-
erties of the auction scenario - and the bidders - are understood correctly.

Lies and collusion

An interesting question is the extent to which the protocols we have discussed
above are susceptible to lying and collusion by both bidders and auctioneer. Ide-
ally, as an auctioneer, we would like a protocol that was immune to collusion by
bidders, i.e. that made it against a bidder’s best interests to engage in collusion

with nther l"nr]r]arc Cimilarlv ac n natantial hidder in an anctioh we would like a
FYLULLL " lldv1 RJIvANAL L . ulllulul;)’ U IJUI.\-AJLAUL ALlAVAL L dl]l Ul Ui liuigy YY L Yyl daavy U

protocol that made honesty on the part of the auctioneer the dominant strategy.

None of the four auction types discussed above is immune to collusion. For any
of them, the ‘grand coalition’ of all agents involved in bidding for the good can
agree beforehand to collude to put forward artificially low bids for the good on
offer. When the good is obtained, the bidders can then obtain its true value (higher
than the artificially low price paid for it), and split the profits amongst themselves.
The most obvious way of preventing collusion is to modify the protocol so that
bidders cannot identify each other. Of course, this is not popular with bidders in
open-cry auctions, because bidders will want to be sure that the information they
receive about the bids placed by other agents is accurate.

With respect to the honesty or otherwise of the auctioneer, the main opportunity
for lying occurs in Vickrey auctions. The auctioneer can lie to the winner about
the price of the second highest bid, by overstating it and thus forcing the winner
to pay more than they should. One way around this is to ‘sign’ bids in some way
(e.g. through the use of a digital signature), so that the winner can independently
verify the value of the second highest bid. Another alternative is to use a trusted
third party to handle bids. In open-cry auction settings, there is no possibility
for lying by the auctioneer, because all agents can see all other bids; first-price
sealed-bid auctions are not susceptible because the winner will know how much
they offered.

Another possible opportunity for lying by the auctioneer is to place bogus bid-
ders, known as shills, in an attempt to artificially inflate the current bidding price.
Shills are only a potential problem in English auctions.

Negotiation 137

Counterspeculation

Before we leave auctions, there is at least one other issue worth mentioning: that of
counterspeculation. This is the process of a bidder engaging in an activity in order
to obtain information either about the true value of the good on offer, or about
the valuations of other bidders. Clearly, if counterspeculation was free (i.e. it did
not cost anything in terms of time or money) and accurate (i.e. counterspeculation
would accurately reduce an agent’s uncertainty either about the true value of the
good or the value placed on it by other bidders), then every agent would engage in
it at every opportunity. However, in most settings, counterspeculation is not free:
it may have a time cost and a monetary cost. The time cost will matter in auction
settings (e.g. English or Dutch) that depend heavily on the time at which a bid is
made. Similarly, investing money in counterspeculation will only be worth itif, as a
result, the bidder can expect to be no worse off than if it did not counterspeculate.
In deciding whether to speculate, there is clearly a tradeoff to be made, balancing
the potential gains of counterspeculation against the costs (money and time) that
it will entail. (It is worth mentioning that counterspeculation can be thought of as a
kind of meta-level reasoning, and the nature of these tradeoffs is thus very similar
to that of the tradeoffs discussed in practical reasoning agents as discussed in
earlier chapters.)

Negotiation

Auctions are a very useful techniques for allocating goods to agents. However,
they are too simple for many settings: they are only concerned with the allocation
of goods. For more general settings, where agents must reach agreements on mat-
ters of mutual interest, richer techniques for reaching agreements are required.
Negotiation is the generic name given to such techniques. In this section, we will
consider some negotiation techniques that have been proposed for use by artifi-
cial agents - we will focus on the work of Rosenschein and Zlotkin (1994). One
of the most important contributions of their work was to introduce a distinction
between different types of negotiation domain: in particular, they distinguished
between task-oriented domains and worth-oriented domains.

Before we start to discuss this work, however, it is worth saying a few words
about negotiation techniques in general. In general, any negotiation setting will
have four different components.

- A negotiation set, which represents the space of possible proposals that

agents can make.

+ A protocol, which defines the legal proposals that agents can make, as a
function of prior negotiation history.

- A collection of strategies, one for each agent, which determine what propos-

wrii iyl 1o, LAl atLll agt

als the agents will make. Usually, the strategy that an agent plays is private:

i38 Reaching Agreemenis

the fact that an agent is using a particular strategy is not generally visible to
other negotiation participants (although most negotiation settings are ‘open
cry’, in the sense that the actual proposals that are made are seen by all par-
ticipants).

Arule that determines when a deal has been struck, and what this agreement
deal is.

Negotiation usually proceeds in a series of rounds, with every agent making a
proposal at every round. The proposals that agents make are defined by their
strategy, must be drawn from the negotiation set, and must be legal as defined
by the protocol. If agreement is reached, as defined by the agreement rule, then
negotiation terminates with the agreement deal.

These four parameters lead to an extremely rich and complex environment for
analysis.

The first attribute that may complicate negotiation is where multiple issues are
involved. An example of a single-issue negotiation scenario might be where two

agents were negotiating only the price of a particular good for sale. In such a

scenario, the preferences of the agents are symmetric, in that a deal which is more

preferred from one agent’s point of view is guaranteed to be less preferred from
the other’s point of view, and vice versa. Such symmetric scenarios are simple to
analyse because it is always obvious what represents a concession: in order for
the seller to concede, he must lower the price of his proposal, while for the buyer
to concede, he must raise the price of his proposal. In muitiple-issue negotiation
scenarios, agents negotiate over not just the value of a single attribute, but over
the values of multiple attributes, which may be interrelated. For example, when
buying a car, price is not the only issue to be negotiated (although it may be
the dominant one). In addition, the buyer might be interested in the length of
the guarantee, the terms of after-sales service, the extras that might be included
such as air conditioning, stereos, and so on. In multiple-issue negotiations, it is

nciially miich lace nhviniie what ranracantc tmia ~rnnNeocoinmne 1t 1
LoLidily 1 LULL IV I U VIV UD yylidal lcylcoclll\) a LLuv LGII_CJ\)IULI- 1L

case that all attribute values must be either increased or decreased. (Salesmen in
general, and car salesmen in particular, often exploit this fact during negotiation
by making ‘concessions’ that are in fact no such thing.)

Multiple attributes also lead to an exponential growth in the space of possible
deals. i.et us take an exampie of a domain in which agents are negotiating over
the value of n Boolean variables, v1,..., vn. A deal in such a setting consists of
an assignment of either true or false to each variable v;. Obviously, there are 2"
possible deals in such a domain. This means that, in attempting to decide what
proposal to make next, it will be entirely unfeasible for an agent to explicitly con-
sider every possible deal in domains of moderate size. Most negotiation domains

are, of course, much more complex than this. For example, agents may need to
+1h

ic nnt cimnlv tha
13 11U Ollllyly [0 AW

n r\i—{-v- ilhattag ram hn am nnccikhla

nnogntintn nlhvntit tho vals e attributes can ll(lV I;!L lJU-)-)llJlC

livguuale apuue uic vat

ue es
values, leading to a set of m™ possible deals. Worse, the objects of negotiation

nf fi—vﬂlr\II{-nn whaoara
UL AULLLIPJULT D VWWIITI T LI

d

Negaotiation 139

may be individually very complex indeed. In real-world negotiation settings - such
as labour disputes or (to pick a rather extreme example) the kind of negotiation
that, at the time of writing, was still going on with respect to the political future
of Northern Ireland, there are not only many attributes, but the value of these
attributes may be laws, procedures, and the like.

The negotiation participants may even have difficulty reaching agreement on
what the attributes under negotiation actually are - a rather depressing real-world
example, again from Northern Ireland, is whether or not the decommissioning of
paramilitary weapons should be up for negotiation. At times, it seems that the
different sides in this long-standing dispute have simultaneously had different
beliefs about whether decommissioning was up for negotiation or not.

Another source of complexity in negotiation is the number of agents involved
in the process, and the way in which these agents interact. There are three obvious
possibilities.

One-to-one negotiation. In which one agent negotiates with just one other agent.
A particularly simple case of one-to-one negotiation is that where the agents
involved have symmetric preferences with respect to the possible deals. An
example from everyday life would be the type of negotiation we get involved
in when discussing terms with a car salesman. We will see examples of such
symmetric negotiation scenarios later.

Many-to-one negotiation. In this setting, a single agent negotiates with a number
of other agents. Auctions, as discussed above, are one example of many-to-one
negotiation. For the purposes of analysis, many-to-one negotiations can often
be treated as a number of concurrent one-to-one negotiations.

Many-to-many negotiation. In this setting, many agents negotiate with many
other agents simultaneously. In the worst case, where there are n agents
involved in negotiation in total, this means there can be up to n(n — 1)/2
negotiation threads. Clearly, from an analysis point of view, this makes such
negotiations hard to handle.

For these reasons, most attempts to automate the negotiation process have
focused on rather simple settings. Single-issue, symmetric, one-to-one negotia-
tion is the most commonly analysed, and it is on such settings that I will mainly
focus.

Task-oriented domains

The first type of negotiation domains we shall consider in detail are the task-
oriented domains of Rosenschein and Zlotkin (1994, pp. 29-52). Consider the fol-
lowing example.

140 Reaching Agreements

Imagine that you have three children, each of whom needs to be deliv-

ered to a different school each morning. Your neighbour has four chil-
dren, and also needs to take them to school. Delivery of each child

LT VL Y 1282 Qlol) I iioe LA LQAR RAARiAL o2 B LVLVE VI P TN Lo qLn 22 222

can be modelled as an indivisible task. You and your neighbour can
discuss the situation, and come to an agreement that it is better for
both of you (for example, by carrying the other’s child to a shared des-
tination, saving him the trip). There is no concern about being able to
achieve your task by yourself. The worst that can happen is that you
and your neighbour will not come to an agreement about setting up
a car pool, in which case you are no worse off than if you were alone.
You can only benefit (or do no worse) from your neighbour’s tasks.
Assume, though, that one of my children and one of my neighbours’
chiidren both go to the same school (that is, the cost of carrying out
these two deliveries, or two tasks, is the same as the cost of carrying
out one of them). It obviously makes sense for both children to be
taken together, and only my neighbour or I will need to make the trip
to carry out both tasks.

What kinds of agreement might we reach? We might decide that I will
take the children on even days each month, and my neighbour will
take them on odd days; perhaps, if there are other children involved,
we might have my neighbour always take those two specific children,
while [am responsible for the rest of the children.

(Rosenschein and Zlotkin, 19954, p. 29)

To formalize this kind of situation, Rosenschein and Zlotkin defined the notion
of a task-oriented domain (TOD). A task-oriented domain is a triple

(T,Ag,c),

where
- T is the (finite) set of all possible tasks;
« Ag=11,..., 7} is the (fini

« ¢ :p(T) — R* is a function which defines the cost of executing each subset
of tasks: the cost of executing any set of tasks is a positive real number.

The cost function must satisfy two constraints. First, it must be monotonic. Intu-
itively, this means that adding tasks never decreases the cost. Formally, this con-
straint is defined as follows:

If T\, T> < T are sets of tasks such that T; € T», then ¢(T}) < ¢c(T»).

The second constraint is that the cost of doing nothing is zero, i.e. c(&) =

Pl 2 Vala ¥ A ATy P S | e E M EIO W nrrAav b

An encourniter within a task-oriented domain \1 ﬂy, (,/ occurs when the dgenes
Ag are assigned tasks to perform from the set T. Intuitively, when an encounter

-———-

Negotiation 141

occurs, there is potential for the agents to reach a deal by reallocating the tasks
amongst themselves; as we saw in the informal car pool example above, by reallo-
cating the tasks, the agents can potentially do better than if they simply performed
their tasks themselves. Formally, an encounter in a TOD (T, Ag, ¢) is a collection
of tasks
(T1,..., Tn),

where, for all i, we have that i € Ag and T; € T. Notice that a TOD together
with an encounter in this TOD is a type of task environment, of the kind we saw
in Chapter 2. It defines both the characteristics of the environment in which the
agent must operate, together with a task (or rather, set of tasks), which the agent
must carry out in the environment.

Hereafter, we will restrict our attention to one-to-one negotiation scenarios, as
discussed above: we will assume the two agents in question are {1, 2}. Now, given
an encounter (T, T>), a deal will be very similar to an encounter: it will be an
allocation of the tasks T, U T to the agents 1 and 2. Formally, a pure deal is a pair
{D1,D2) where Dy U D, = T; UT>. The semantics of a deal (D,,D>) is that agent 1
is committed to performing tasks D; and agent 2 is committed to performing
tasks D-.

The cost to agent i of a deal &6 = (D, D>) is defined to be ¢(D;), and will be
denoted cost; (). The utility of a deal é to an agent i is the difference between the
cost of agent i doing the tasks T; that it was originally assigned in the encounter,
and the cost cost; (&) of the tasks it is assigned in §:

utilityi(8) = c(T;) ~ costi(d).

Thus the utility of a deal represents how much the agent has to gain from the deal;
if the utility is negative, then the agent is worse off than if it simply performed
the tasks it was originally allocated in the encounter.

What hannens if the acents fagil to reach acreement? In this ca
Y LA Llu P\—L‘-U 4L CLAN u&\—LJLU IVl.ll LW Lo uivin usl AVAUY B R VY § § B ALl Ll LU

perform the tasks (T, T2) that they were originally allocated. This is the intu-
ition behind the terminology that the conflict deal, denoted @, is the deal (T, T»)
consisting of the tasks originally allocated.

The notion of dominance, as discussed in the preceding chapter, can be easily
extended to deals. A deal §; is said to dominate deal d» (written 81 > &») if and
only if the following hold.

(1) Deal 8, is at least as good for every agent as d»:

~

Vie {l,2},utility;(6,) > utility;(3>).
(2) Deal 8, is better for some agent than d>:
Ji € {1, 2}, utility;(01) > utility;(62).

If deal &, dominates another deal &2, then it should be clear to all participants
that §, is better than §». That is, all ‘reasonable’ participants would prefer §, to

142 Reaching Agreements

utility for

agent {

deals on this line
from B to C are
Pareto optimal,
hence in the
negotiation set

this circle delimits the
space of all
possible deals

utility of conflict |
deal for {

conflict deal

utility for
‘ agent j

utility of conflict
deal for j

Figure 7.1 The negotiation set.

0». Deal &, is said to weakly dominate &, (written 6; > ;) if at least the first
condition holds.

A deal that is not dominated by any other deal is said to be pareto optimal.
Formally, a deal & is pareto optimal if there is no deal & such that 8" > d.If a
deal is pareto optimal, then there is no alternative deal that will improve the lot
of one agent except at some cost to another agent (who presumably would not be
happy about it!). If a deal is not pareto optimal, however, then the agents could
improve the lot of at least one agent, without making anyone else worse off.

A deal § is said to be individual rational if it weakly dominates the conflict deal.
If a deal is not individual rational, then at least one agent can do better by simply
performing the tasks it was originally allocated - hence it will prefer the conflict
deal. Formally, deal ¢ is individual rational if and only if § > ©.

We are now in a position to define the space of possible proposals that agents
can make. The negotiation set consists of the set of deals that are (i) individual
rational, and (ii) pareto optimal. The intuition behind the first constraint is that
there is no purpose in proposing a deal that is less preferable to some agent than
the conflict deal (as this agent would prefer conflict); the intuition behind the
second condition is that there is no point in making a proposal if an alternative
proposal could make some agent better off at nobody’s expense.

The intuition behind the negotiation set is illustrated in Figure 7.1. In this graph,

e ecnace nf all conceivahle dealcice nlatted aenointe an a2 oranh with the 11tilityv fn
AN ‘-’HU\-‘— AL VAL LRI LY UL AL A lJLU[L\.\.«l e AW PUAAL[O L1 WU 6‘ uk}l,l ¥YLLLL LLINL M(.I.LL(,

th
i on the y-axis, and utility to j on the x-axis. The shaded space enclosed by points

Negotiation 143

A, B, C, and D contains the space of all possible deals. (For convenience, I have
illustrated this space as a circle, although of course it need not be.) The conflict
deal is marked at point E. It follows that all deals to the left of the line B-D will
not be individual rational for agent j (because j could do better with the conflict
deal). For the same reason, all deals below line A-C will not be individual rational
for agent i. This means that the negotiation set contains deals in the shaded area
B-C-E. However, not all deals in this space will be pareto optimal. In fact, the
only pareto optimal deals that are also individual rational for both agents will lie
on the line B-C. Thus the deals that lie on this line are those in the negotiation
set. Typically, agent i will start negotiation by proposing the deal at point B, and
agent j will start by proposing the deal at point C.

The monotonic concession protocol

The protocol we will introduce for this scenario is known as the monotonic con-
cession protocol {Rosenschein and Zlotkin, 1994, pp. 40, 41). The rules of this
protocol are as follows.

- Negotiation proceeds in a series of rounds.

» On the first round, both agents simultaneously propose a deal from the
negotiation set.

- An agreement is reached if the two agents propose deals 6, and 62, respec-
tively, such that either (i) utility;(82) > utility;(81) or (i) utility2(0,) >
utility,(6»), i.e. if one of the agents finds that the deal proposed by the
other is at least as good or better than the proposal it made.

If agreement is reached, then the rule for determining the agreement deal is
as follows. If both agents’ offers match or exceed those of the other agent,
then one of the proposals is selected at random. If only one proposal exceeds
or matches the other’s proposal, then this is the agreement deal.

- If no agreement is reached, then negotiation proceeds to another round of
simultaneous proposals. In round u + 1, no agent is allowed to make a pro-
posal that is less preferred by the other agent than the deal it proposed at
time u.

- If neither agent makes a concession in some round u > 0, then negotiation
terminates, with the conflict deal.

It should be clear that this protocol is effectively verifiable: it is easy for both
parties to see that the rules of the protocol are being adhered to.

Using the monotonic concession protocol, negotiation is guaranteed to end
{(with or without agreement) after a finite number of rounds. Since the set of pos-
sible deals is finite, the agents cannot negotiate indefinitely: either the agents will
reach agreement, or a round will occur in which neither agent concedes. However,
the protocol does not guarantee that agreement will be reached quickly. Since the

m

144 Reaching Agreements

number of possible deals is O (2!71), it is conceivable that negotiation will continue
for a number of rounds exponential in the number of tasks to be allocated.

The Zeuthen strategy

So far, we have said nothing about how negotiation participants might or should
behave when using the monotonic concession protocol. On examining the proto-
col, it seems there are three key questions to be answered as follows.

- What should an agent’s first proposal be?
- On any given round, who should concede?
- If an agent concedes, then how much should it concede?

The first question is straightforward enough to answer: an agent’s first proposal
should be its most preferred deal.

With respect to the second question, the idea of the Zeuthen strategy is to
measure an agent’s willingness to risk conflict. Intuitively, an agent will be more
willing to risk conflict if the difference in utility between its current proposal and
the conflict deal is low.

In contrast, if the difference between the agent’s current proposal and the con-
flict deal is high, then the agent has more to lose from conflict and is therefore
less willing to risk conflict - and thus should be more willing to concede.

Agent i’s willingness to risk conflict at round ¢, denoted riskg, is measured in
the following way (Rosenschein and Zlotkin, 1994, p. 43):

utility i loses by conceding and accepting j’s offer
utility i loses by not conceding and causing conflict’

risk! =

The numerator on the right-hand side of this equation is defined to be the dif-
ference between the utility to i of its current proposal, and the utility to i of j’s
current proposal; the denominator is defined to be the utility of agent i’s current
proposal. Until an agreement is reached, the value of ris kf- will be a value between
0 and 1. Higher values of risk! (nearer to 1) indicate that i has less to lose from
conflict, and so is more willing to risk conflict. Conversely, lower values of risk§
(nearer to 0) indicate that i has more to lose from conflict, and so is less willing
to risk contflict.
Formally, we have

1 if utility;(6;) =0,
riski = {utility;(6;) — utility(6%) _
— otherwise.

T4k, 7S
L utLirit y;10

The idea of assigning risk the value 1 if utilityi(éf) = 0 is that in this case, the
utility to i of its current proposal is the same as from the conflict deal; in this
case, i is completely willing to risk conflict by not conceding.

Negotiation 145

So, the Zeuthen strategy proposes that the agent to concede on round t of
negotiation should be the one with the smaller value of risk.

The next question to answer is how much should be conceded? The simple
answer to this question is just enough. If an agent does not concede enough, then
on the next round, the balance of risk will indicate that it still has most to lose
from conflict, and so should concede again. This is clearly inefficient. On the other
hand, if an agent concedes too much, then it ‘wastes’ some of its utility. Thus an
agent should make the smallest concession necessary to change the balance of
risk - so that on the next round, the other agent will concede.

There is one final refinement that must be made to the strategy. Suppose that,
on the final round of negotiation, both agents have equal risk. Hence, according
to the strategy, both should concede. But, knowing this, one agent can ‘defect’
(cf. discussions in the preceding chapter) by not conceding, and so benefit from
the other. If both agents behave in this way, then conflict will arise, and no deal
will be struck. We extend the strategy by an agent ‘flipping a coin’ to decide who
should concede if ever an equal risk situation is reached on the last negotiation
step.

Now, given the protocol and the associated strategy, to what extent does it

satisfy the desirable criteria for mechanisms discussed at the opening of this
chapter? While the protocol does not guarantee success, it does guarantee termi-

RSP L 22240 TAAT FAVAVLUVL LRULO AV BRI AR SRR aY, AL VLY

nation; it does not guarantee to maximize social welfare, but it does guarantee
that if agreement is reached, then this agreement will be pareto optimal; it is indi-
vidual rational (if agreement is reached, then this agreement will be better for
both agents than the default, conflict deal); and clearly there is no single point of
failure - it does not require a central arbiter to monitor negotiation. With respect
to simplicity and stability, a few more words are necessary. As we noted above, the
space of possible deals may be exponential in the number of tasks allocated. For
example, in order to execute his strategy, an agent may need to carry out O (2!71)
computations of the cost function (Rosenschein and Zlotkin, 1994, p. 49). This is

Alaarl P Tat e fraoila Ly = atrxr racslictics mitrmibhar AfF racl-o

uﬁculy’ not going to be feasible in praciice for diy reaiistic numoer o1 tasks.

With respect to stability, we here note that the Zeuthen strategy (with the equal
risk rule) is in Nash equilibrium, as discussed in the previous chapter. Thus, under
the assumption that one agent is using the strategy the other can do no better
than use it himself.

This is of particular interest to the designer of automated agents. It
does away with any need for secrecy on the part of the programmer.
An agent’s strategy can be publicly known, and no other agent designer
can exploit the information by choosing a different strategy. In fact, it
is desirable that the strategy be known, to avoid inadvertent conflicts.

(Rosenschein and Zlotkin, 1994, p. 46)

An interesting issue arises when one considers that agents need not necessarily
be truthful when declaring their tasks in an encounter. By so doing, they can

7.3.2

146 Reaching Agreements

subvert the negotiation process. There are two obvious ways in which an agent
can be deceitful in such domains as follows.

Phantom and decoy tasks. Perhaps the most obvious way in which an agent can
deceive for personal advantage in task-oriented domains is by pretending to
have been allocated a task that it has not been allocated. These are called phan-
tom tasks. Returning to the car pool example, above, one might pretend that
some additional task was necessary by saying that one had to collect a relative
from a train station, or visit the doctor at the time when the children needed
to be delivered to school. In this way, the apparent structure of the encounter
is changed, so that outcome is in favour of the deceitful agent. The obvious
response to this is to ensure that the tasks an agent has been assigned to carry
out are verifiable by all negotiation participants. In some circumstances, it is
possible for an agent to produce an artificial task when asked for it. Detection
of such decoy tasks is essentially impossible, making it hard to be sure that
deception will not occur in such domains. Whether or not introducing artificial
tasks is beneficial to an agent will depend on the particular TOD in question.

Hidden tasks. Perhaps counterintuitively, it is possible for an agent to benefit
from deception by hiding tasks that it has to perform. Again with respect to
the car pool example, agent 1 might have two children to take to schools that
are close to one another. It takes one hour for the agent to visit both schools,
but only 45 minutes to visit just one. If the neighbour, agent 2, has to take a
child to one of these schools, then by hiding his task of going to one of these
schools, agent 1 can perhaps get agent 2 to take his child, thus improving his
overall utility slightly.

Before we leave task-oriented domains, there are some final comments worth
making. First, the attractiveness of the monotonic concession protocol and
Zeuthen strategy is obvious. They closely mirror the way in which human negoti-
ation seems to work - the assessment of risk in particular is appealing. The Nash
equilibrium status of the (extended) Zeuthen strategy is ailso attractive. However,
the computational complexity of the approach is a drawback. Moreover, exten-
sions to n > 2 agent negotiation scenarios are not cbvious - for the reasons
discussed earlier, the technique works best with symmetric preferences. Never-
theless, variations of the monotonic concession protocol are in wide-scale use,
and the simplicity of the protocol means that many variations on it have been
developed.

Worth-oriented domains

We saw in earlier chapters that there are different ways of defining the task that an
agent has to achieve. In task-oriented domains, the task(s) are explicitly defined
in the encounter: each agent is given a set of tasks to accomplish, associated
with which there is a cost. An agent attempts to minimize the overall cost of

Negotiation 147

accomplishing these tasks. Intuitively, this corresponds to the idea of telling an
agent what to do by explicitly giving to it a collection of programs that it should
execute. In this section, we will discuss a more general kind of domain, in which
the goals of an agent are specified by defining a worth function for the possible
states of the environment. The goal of the agent is thus implicitly to bring about
the state of the environment with the greatest value. How does an agent bring
about a goal? We will assume that the collection of agents have available to them
a set of joint plans. The plans are joint because executing one can require several
different agents. These plans transform one state of the environment to another.
Reaching agreement involves the agents negotiating not over a distribution of
tasks to agents, as in task-oriented domains, but over the collection of joint plans.
It is in an agent’s interest to reach agreement on the plan that brings about the
environment state with the greatest worth.

Formally, a worth-oriented domain (WOD) is a tuple (Rosenschein and Zlotkin,
1994, p. 55)

(E,Ag.J,c),
where
. E is the set of possible environment states;
« Ag = 1{1,...,n} is the set of possible agents;
- J is the set of possible joint plans; and

- ¢: Jx Ag — R is a cost function, which assigns to every plan j € J and
every agent i € Ag a real number which represents the cost ¢(j, i) to i of
executing the plan j.

An encounter in a WOD (E, Ag, J, c) is a tuple
(e, W),
where
- ¢ € E is the initial state of the environment; and

- W:ExAg — R is a worth function, which assigns to each environment
state ¢ € E and each agent i € Ag a real number W (e, i) which represents
the value, or worth, to agent i of state e.

I write plans using the notation j : e; ~ e»; the intuitive reading of this is that
the (joint) plan j can be executed in state ¢;, and when executed in this state, will
lead to state eo.

Suppose for the sake of argument that agent i operates alone in an environment
that is in initial state eg. What should this agent do? In this case, it does not need
to negotiate - it should simply pick the plan j.. such that L_p‘ can he executed

LA awiia 1% QL3RR 22222 EANE LS Y L 4822 pt 232 Saat TR

in state egp and, when executed, will bring about a state that maximizes the worth

7.4

148 Reaching Agreements

for agent i. Formally, jém will satisfy the following equation (Rosenschein and
Zlotkin, 1994, p. 156):

Jopt = arg max Wi, e) — C(j,1).
jieowee]

Operating alone, the utility that i obtains by executing the plan jépt represents
the best it can do. Turning to multiagent encounters, it may at first seem that
an agent can do no better than executing jop, but of course this is not true. An
agent can benefit from the presence of other agents, by being able to execute joint
plans - and hence bring about world states - that it would be unable to execute
alone. If there is no joint plan that improves on jépt for agent i, and there is no
interaction between different plans, then negotiation is not individual rational: i
may as well work on its own, and execute jépt. How might plans interact? Suppose
my individual optimal plan for tomorrow involves using the family car to drive
to the golf course; my wife’s individual optimal plan involves using the car to go
elsewhere. In this case, our individual plans interact with one another because
there is no way they can both be successfully executed. If plans interfere with one
another, then agents have no choice but to negotiate.

It may be fruitful to consider in more detail exactly what agents are negotiating
over in WODs. Unlike TODs, agents negotiating over WODs are not negotiating
over a single issue: they are negotiating over both the state that they wish to bring
about (which will have a different value for different agents), and over the means
by which they will reach this state.

Argumentation

The game-theoretic approaches to reaching agreement that we have seen so far
in this chapter have a number of advantages, perhaps the most important of
which are that we can prove some desirable properties of the negotiation protocols
we have considered. However, there are several disadvantages to such styles of
negotiation (Jennings et al., 2001) as follows.

Positions cannot be justified. When humans negotiate, they justify their negoti-
ation stances. For example, if you attempt to sell a car to me, you may justify
the price with respect to a list of some of the features that the car has - for
example, a particularly powerful engine. In turn, I may justify my proposal for
a lower price by pointing out that I intend to use the car for short inner-city
journeys, rendering a powerful engine less useful. More generally, negotiating
using a particular game-theoretic technique may make it very hard to under-
stand how an agreement was reached. This issue is particularly important if we
intend to delegate tasks such as buying and selling goods to agents. To see why,
suppose you delegate the task of buying a car to your agent: after some time,
the agent returns, having purchased a car using your credit card. Reasonably

l

Argumentation 149

enough, you want to know how agreement was reached: Why did the agent pay
this much for this car? But if the agent cannot explain how the agreement was
reached in terms that you can easily understand and relate to, then you may find
the agreement rather hard to accept. Notice that simply pointing to a sequence
of complex equations will not count as an explanation for most people; nor will
the claim that ‘the agreement was the best for you'. If agents are to act on our
behalf in such scenarios, then we will need to be able to trust and relate to the
decisions they make.

Positions cannot be changed. Game theory tends to assume that an agent’s utii-
ity function is fixed and immutable: it does not change as we negotiate. It could
be argued that from the point of view of an objective, external, omniscient
observer, this is in one sense true. However, from our subjective, personal point
of view, our preferences certainly do change when we negotiate. Returning to
the car-buying example, when I set out to buy a car, I may initially decide that I
want a car with an electric sun roof. However, if I subsequently read that elec-
tric sun roofs are unreliable and tend to leak, then this might well change my
preferences.

These limitations of game-theoretic negotiation have led to the emergence of
argumentation-based negotiation (Sycara, 1989b; Parsons et al., 1998). Put crudely,
argumentation in a multiagent context is a process by which one agent attempts
to convince another of the truth (or falsity) of some state of affairs. The process
involves agents putting forward arguments for and against propositions, together
with justifications for the acceptability of these arguments.

The philosopher Michael Gilbert suggests that if we consider argumentation
as it occurs between humans, we can identify at least four different modes of
argument (Gilbert, 1994) as follows.

(1) Logical mode. The logical mode of argumentation resembles mathematical
proof. It tends to be deductive in nature (‘if you accept that A and that A implies
B, then you must accept that B’). The logical mode is perhaps the paradigm
example of argumentation. It is the kind of argument that we generally expect
(or at least hope) to see in courts of law and scientific papers.

(2) Emotional mode. The emotional mode of argumentation occurs when appeals
are made to feelings, attitudes, and the like. An example is the ‘how would you
feel if it happened to you’ type of argument.

(3) Visceral mode. The visceral mode of argumentation is the physical, social
aspect of human argument. It occurs, for example, when one argumentation
participant stamps their feet to indicate the strength of their feeling.

(4) Kisceral mode. Finally, the kisceral mode of argumentation involves appeals
to the intuitive, mystical, or religious.

Of course, depending on the circumstances, we might not be inclined to accept
some of these modes of argument. In a court of law in most western societies, for

150 Reaching Agreements

example, the emotional and kisceral modes of argumentation are not permitted.
Of course, this does not stop lawyers trying to use them: one of the roles of a
judge is to rule such arguments unacceptable when they occur. Other societies,
in contrast, explicitly allow for appeals to be made to religious beliefs in legal
settings. Similarly, while we might not expect to see arguments based on emotion
accepted in a court of law, we might be happy to permit them when arguing with
our children or spouse.

Logic-based argumentation

The logical mode of argumentation might be regarded as the ‘purest’ or ‘most
rational’ kind of argument. In this subsection, I introduce a system of argumenta-
tion based upon that proposed by Fox and colleagues (Fox et al., 1992; Krause et
al., 1995). This system works by constructing a series of logical steps (arguments)
for and against propositions of interest. Because this closely mirrors the way
that human dialectic argumentation (Jowett, 1875) proceeds, this system forms
a promising basis for building a framework for dialectic argumentation by which
agents can negotiate (Parsons and Jennings, 1996).

In classical logic, an argument is a sequence of inferences leading to a conclu-
sion: we write A + @ to mean that there is a sequence of inferences from premises
A that will allow us to establish proposition . Consider the simple database A;
which expresses some very familiar information in a Prolog-like notation in which
variables are capitalized and ground terms and predicate names start with small
letters:

human(Socrates).

humani{X) = mortal{X).

The argument A; ~ wmortal(Socrates) may be correctly made from this
database because mortal{Socrates) follows from A; given the usual logical
axioms and rules of inference of classical logic. Thus a correct argument simply
vields a conclusion which in this case could be paraphrased ‘mortal{Socrates)
is true in the context of human(Socrates) and human(X) = mortal(X)"
In the system of argumentation we adopt here, this traditional form of reason-
ing is extended by explicitly recording those propositions that are used in the
derivation. This makes it possible to assess the strength of a given argument by
examining the propositions on which it is based.
The basic form of arguments is as follows:

Database + (Sentence, Grounds),

where

- Database is a (possibly inconsistent) set of logical formulae;

- Sentence is alogical formula known as the conclusion; and

i »!1!!
Sy

Rt o Wi il e it

Argumentation 151

« Grounds is a set of logical formulae such that

(1) Grounds < Database; and

(2) Sentence can be proved from Grounds.

The intuition is that Database is a set of formulae that is ‘agreed’ between the
agents participating in the argumentation process. This database provides some
common ground between the agents. Given this common ground, an agent makes
the argument (Sentence, Grounds) in support of the claim that Sentence is
true; the justification for this claim is provided by Grounds, which is a set of

formunlae such that Senternre can he nroved from it
AVTA BAAIRARRAYL, WAL LL LLAWLL L FLO L FEL L ULl WO lJ VL4 L1AVFILE LU

Formally, if A is a database, then an argument over A is a pair (@, I'), where @
is a formula known as the conclusion, and I' € A is a subset of A known as the
grounds, or support, such that T ~ @. We denote the set of all such arguments
over database A by A(A), and use Avg, Avg’, Arg,,... to stand for members of
A(A).

Typically an agent will be able to build several arguments for a given propo-
sition, some of which will be in favour of the proposition, and some of which
will be against the proposition (in which case they are for its negation). In order
to establish whether or not the set of arguments as a whole are in favour of the
proposition, it is desirable to provide some means of flattening the set of argu-
ments into some measure of how favoured the proposition is. One way of doing
this is to attach a numerical or symbolic weight to arguments and then have a
flattening function that combines these in a suitable way. However, it is also pos-
sible to use the structure of the arguments themselves to determine how good
they are.

We can identify two important classes of arguments as follows.

Non-trivial argument. An argument (g, I') is non-trivial if I is consistent.
Tautological argument. An argument (g,T'} is tautological if I = @.

The important idea of defeat between arguments is as follows.

Defeat. let (. 17) and (m- y be arouments from some database A. The arou-
Derfeal. Let (Q,11) ana \\Vé,t‘, pe arguments Irom some gatabase A, 1De argu
ment (@,) canbe defeated in one of two ways. Firstly, (g, [}) rebuts (p2,[7)

if @, attacks @-. Secondly, {(@,I1) undercuts (@2,) if @, attacks ¢ for some
y € Io.

In which attack is defined as follows.

Attack. For any two propositions @ and ¢, we say that @ attacks y if and only
if = -—y.

152 Reaching Agreements

Consider the following set of formulae, which extend the example of A, with
information in common currency at the time of Plato:
human{Heracles)
father{Heracles, Zeus)
father{Apollo, Zeus)
divine(X) = ~mortal{X)
father{X,Zeus) = divine(X)
—(father({X, Zeus) = divine(X})).

From this we can build the obvious argument, Arg, about Heracles,

(mortal{Heracles),
thuman{Heracles), human{X) = mortal(X)}),

as well as a rebutting argument Ar gy,

(—mortal{Heracles),
{father{Hevacles,Zeus), father(X,Zeus) = divine(X),
divine(X) = —mortal{X)}).

The second of these is undercut by Args:

(=(father{X,Zeus) = divine(X)),
{=(father(X,Zeus) = divine(X))}).

The next step is to define an ordering over argument types, which approxi-
mately corresponds to increasing acceptability. The idea is that, when engaged in
argumentation, we intuitively recognize that some types of argument are more
‘powerful’ than others. For example, given database A = {p = ¢, p}, the argu-
ments Arg, = (p v —p,J) and Arg> = (q,{p = q,p}) are both acceptable
members of A(A). However, it is generally accepted that Arg; - a tautological
argument - is stronger than Arg», for the simple reason that it is not possible
to construct a scenario in which the conclusion of Arg,; is false. Any agent that
accepted classical propositional logic would have to accept Arg, (but an agent
that only accepted intuitionistic propositional logic would not). In contrast, the
argument for the conclusion of Ar g, depends on two other propositions, both of
which could be questioned.

In fact, we can identify five classes of argument type, which we refer to as A
to As, respectively. In order of increasing acceptability, these are as follows.

A

1
i 8

The class of all arguments that may be
A» The class of all non-trivial arguments that may be made from A.

Az The class of all arguments that may be made from A for which there are no
rebutting arguments.

4_—

Argumentation 153

A4 The class of all arguments that may be made from A for which there are no
undercutting arguments.

As The class of all tautological arguments that may be made from A.

There is an order, <, over the acceptability classes:
A(A) £ Ax(A) X A3(A) X Ag(A) S As(4D),

meaning that arguments in higher numbered classes are more acceptable than
arguments in lower numbered classes. The intuition is that there is less reason
for l.uu.uuu.g that there is something wrong with them - because, for instance,
there is no argument which rebuts them. The idea that an undercut attack is less
damaging than a rebutting attack is based on the notion that an undercut allows
for another, undefeated, supporting argument for the same conclusion. This is
common in the argumentation literature (see, for example, Krause et al., 1995).

In the previous example, the argument
(divine(Heracles) v ~divine{Hevacles), D)

is in As, while Arg; and Arg, are mutually rebutting and thus in A, whereas
Ar gy,

(mmortal{apollo),
{father{apollo, Zeus), father (X, Zeus) = divine(X),
divine{X) » ~movtal(X)}),

isin A.. This logic-based model of arcumentation

A3 AL A4, 1S AUVEALTIAUO DL (UL Vi QL Hrassivi 2

ac heen uced in aroumentation-
S beer

i MOV 2da (L fyraddaaii e as

based negotiation systems (Parsons and Jennings, 1996; Parsons et al., 1998). The
basic idea is as follows. You are attempting to negotiate with a peer over who will
carry out a particular task. Then the idea is to argue for the other agent intending
to carry this out, i.e. vou attempt to convince the other agent of the acceptability
of the argument that it should intend to carry out the task for you.

e
-

Dialogues and dialogue systems for argumentation

Many authors are concerned with agents that argue with themselves, either to
resolve inconsistencies or else to determine which set of assumptions to adopt.
In contrast, we are interested in agents that are involved in a dialogue with other
agents. As we noted above, an agent engages in such a dialogue in order to con-
vince another agent of some state of affairs. In this section, we define the notion
of dialogue, and investigate the concept of winning an argument. Call the two
agents involved in argumentation 0 and 1.

Intuitively, a dialogue is a series of arguments, with the first made by agent 0, the
second by agent 1, the third by agent 0, and so on. Agent 0 engages in the dialogue
in order to convince agent 1 of the conclusion of the first argument made. Agent 1
attempts to defeat this argument, by either undercutting or rebutting it. Agent 0

T —

1001 Do rnladre s A vatnnuma rzas
F A L 4 REULFITYY AYTECTTICTTIL

must respond to the counter argument if it can, by presenting an argument that
defeats it, and so on. (For a concrete example of how this kind of argumentation
can be used to solve negotiation problems, see Parsons et al. (1998) and Amgoud
(1999).)

Each step of a dialogue is referred to as a move. A move is simply a pair
(Plaver, Arg), where Plaver € {0,1} is the agent making the argument, and
Arg € A(A) is the argument being made. I use m (with decorations: m, myq,...
and so on) to stand for moves.

Formally, a non-empty, finite sequence of moves

(mo, My, ..., M)
is a dialogue history if it satisfies the following conditions.
(1) Playery =0
(the first move is made by agent 0).

(2) Player, = 0if and only if u is even, Plaver, = 1 if and only if u is odd
(the agents take it in turns to make proposals).

(3) If Player, = Plaver, and u = v then Arg, = Argy
{agents are not allowed to make the same argument twice).
(4) Argy defeats Argy ;.
Consider the following dialogue in which agent O starts by making Arg, for r:

222 — {3 frr 1 = A 2 o LY
L) — Wy iV Uy — 1 5.

Agent 1 undercuts this with an attack on the connection between p and g,
my = (~(p =g, it,t = ~(p=qg)}),
and agent 0 counters with an attack on the premise t using Args,
my = (—t,{s,5 = ~t}).

A dialogue has ended if there are no further moves possible. The winner of a
dialogue that has ended is the last agent to move. If agent 0 was the last agent to
move, then this means that agent 1 had no argument available to defeat 0's last
argument. if agent 1 was the last agent to move, then agent 0 had no argument
available to defeat 1’s last argument. Viewed in this way, argument dialogues can
be seen as a game played between proposers and opponents of arguments.

Types of dialogue

Walton and Krabbe (1995, p. 66) suggest a typology of six different modes of dia-
logues, which are summarized in Table 7.1. The first (type 1) involves the ‘canoni-
cal’ form of argumentation, where one agent attempts to convince another of the

Argumentalion 155

Table 7.1 Walton and Krabbe’s dialogue types.

Type Initial situation Main goal Participants aim
I. Persuasion conflict of opinions resolve the issue persuade the other
II. Negotiation conflict of interests make a deal get the best
for oneself
[MI. Inquiry general ignorance growth of knowledge find a ‘proof’
IV. Deliberation need for action reach a decision influence outcome
V. Information personal ignorance spread knowledge gain or pass on
seeking personal knowledge
VI. Eristics conflict/ reaching an strike the
antagonism accommodation other party
VII. Mixed various various various

truth of something. Initially, agents involved in persuasion dialogues will have
conflicting opinions about some state of affairs. To use a classic, if somewhat
slightly morbid example, you may believe the murderer is Alice, while I believe
the murderer is Bob. We engage in a persuasion dialogue in an attempt to convince
one another of the truth of our positions.

In a persuasion dialogue, the elements at stake are primarily beliefs. In con-
trast, a negotiation (type 11} dialogue directly involves utility. It may involve (as in
Rosenschein and Zlotkin's TODs, discussed earlier in the chapter) attempting to
reach agreement on a division of labour between us.

An inquiry (type III) dialogue is one that is related to a matter of common inter-
est, where the object of the inquiry is a belief. A public inquest into some event
(such as a train crash) is perhaps the best-known example of an inquiry. It takes
place when a group of people have some mutual interest in determining some-
thing. Notice that the aim of an inquiry is simply to determine facts - what to
believe. If the aim of a dialogue is for a group to decide upon a course of action,
then the dialogue is a deliberation dialogue. An information-seeking (type V) dia-
logue is also related to an inquiry, but occurs when an agent attempts to find
out something for itself. An eristic (type VI) dialogue occurs when agents have
a conflict that they air in public. The aim of such a dialogue may be to reach an
accommodation, but need not be. Finally, type VII or mixed dialogues occur when
a number of different dialogue types are combined. Most committee meetings
are of this kind: different parts of the meeting involve negotiation, deliberation,
inquiry, and, frequently, eristic dialogues. Figure 7.2 shows how the type of a
dialogue may be determined (Walton and Krabbe, 1995, p. 81).

Abstract argumentation

There is another, more abstract way of looking at arguments than the view we have
adopted so far. In this view, we are not concerned with the internal structure of

156 Reaching Agreements

is there a confiict?

YES w

is resolution the goal? is there a common problem to be solved?
YE NO
YES NO
persuasion is settlement the goal? is this a theoretical problem? information seeking
YES / NO\I / YES NO\
negotiation eristics inquiry deliberation

Figure 7.2 Determining the type of a dialogue.

individual arguments, but rather with the overall structure of the argument. We
can model such an abstract argument system A as a pair (Dung, 1995):

A = (X, =),
where
+ X is a set of arguments (we are not concerned with exactly what members
of X are); and

+ — © X X X is a binary relation on the set of arguments, representing the
notion of attack.

I write x — y as a shorthand for {x, v) € —. The expression x — v may be read
as

- ‘argument x attacks argument y’;
- ‘x is a counter-example of yv’; or

‘x is an attacker of y’.

Notice that, for the purposes of abstract argument systems, we are not concerned
with the contents of the set X, nor are we concerned with ‘where the attack relation
comes from’. Instead, we simply look at the overall structure of the argument.

Given an abstract argument system, the obvious question is when an argument
in it is considered ‘safe’ or ‘acceptable’. Similarly important is the notion of a
set of arguments being a ‘defendable position’, where such a position intuitively
represents a set of arguments that are mutually defensive, and cannot be attacked.
Such a set of arguments is referred to as being admissible.

There are different ways of framing this notion, and I will present just one of
m (fram \/rooeurnlz nnr] Prall-an ')ﬂﬂﬂ n. 242 Given an abstract n

LAJ\.LL.!. (LA LsrLs LIANDNDRLL, LUUY, P TS NJLV VLI G 1 (e LW Jw RS

systemm A = (X, —), we have the followmg.

+ An argument x € X is attacked by a set of arguments Y < X if at least one
member of Y attacks x (i.e. if y — x for some y € Y).

Argumentation 157

Figure 7.3 An abstract argument system.

- An argument x € X is acceptable (or ‘in’) with respect to a set of arguments

. A
= A 5€Y 01 arguinielits 1 13 Lu?’i,uu. j¥ée i1 no arguin

Y < X if every attacker of x in Y is also attacked.

ta~l-o o
{dCKS 8

at some o
thought of as being

'v\V
Fi

cnt Af A o Vie ~n Frraaif o nro

entin
argument in Y. A conflict-free set of arguments may be
in some sense consistent.

A conflict-free set of arguments Y is admissible if each argument in Y is
acceptable with respectto Y.

Figure 7.3 (from Vreeswijk and Prakken, 2000, pp. 241, 242) illustrates an abstract
argument system. With respect to this example,

argument h has no attackers, and so is clearly acceptable (‘in’);

since h is in, and h attacks a, then a is not an acceptable argument - it is
‘out’;

similarly, since h is in, and h attacks p, then p is out; and

since p is out, and this is the only attacker of g, then g is in.

What of i and j, which attack each other? Well, at least one of them must be in,
and since they both attack n, then this implies that at least one argument attacks
n. Hence n has one undefeated attacker, and so n is out.

Implemented argumentation agents

Several agent systems have been developed which make use of argumentation-
based negotiation. Probably the first of these was Sycara’s PERSUADER system

158 Reaching Agreementls

profits (+)

\

sales (+)

production cost (=)) / \
/ ’ \quallty (+) prices (_-)
plant efficiency (+) materials cost (=) /labour cost (—\

employee satistaction (+) employment (=) economic concessions (=)
economic unecononlic automation (+) subcontract (+) wages (~) fringes (-}
concessions (+) CONCEss1Ions (+)
wages (+)

Figure 7.4 Argument structure in the PERSUADER system.

(Sycara, 1989a,b, 1990). PERSUADER operated in the domain of labour negotia-
tion, and involved three agents (a labour union, a company, and a mediator). It
modelled the iterative exchange of proposals and counter-proposals in order for
the parties to reach agreement. The negotiation involved multiple issues (such as
wages, pensions, seniority, and subcontracting).

Argumentation in PERSUADER makes use of a model of each agent’s beliefs. An
agent’s beliefs in PERSUADER capture an agent’s goals and the interrelationships
among them. An example of an agent’s beliefs (from Sycara, 1989b, p. 130) is
given in Figure 7.4. This captures the beliefs of a company, the top-level goal of
which is to maximize profit. So, for example, a decrease (—) in production costs
will lead to an increase (+) in profit; an increase in quality or a decrease in prices
will lead to an increase in sales, and so on. Sycara (1989b) gives an example of the
following argument, addressed to a labour union that has refused to a proposed
wage increase:

If the company is forced to grant higher wage increases, then it will
decrease employment.

To generate this argument, the system determines which goals (illustrated in
Figure 7.4) are violated by the union’'s refusal, and then looks for compensat-
ing actions. In this case, a compensating action might be to reduce employment,
either by subcontracting or increasing automation. Such a compensating action
can violate a goal that the union rates more highly than higher wages. Figure 7.5
illustrates a run of PERSUADER (from Sycara, 1989b, p. 131), showing how the
system generates the argument from the belief structure in Figure 7.4.

In general, PERSUADER can generate more than one possible argument for a
particular position. These arguments are presented in order of ‘severity’, with the
weakest type of argument first. The order of argument types (weakest first) is as
follows (Sycara, 1989b, p. 131):

Argumentation 159

Importance of wage-goall is 6 for unionl

Searching companyl goal-graph...

Increase in wage-goall by companyl will result in
increase in economic-concessions, labour-costl, production-costl

Increase in wage-goall by companyl will result in
decrease in profitsl

To compensate, companyl can decrease fringe-benefitsl,
decrease employmentl, increase plant-efficiencyl,
increase salesl

Only decrease fringe-benefitsl, decreases employmentl
violate goals of unionl

Importance of fringe-benefitsl is 4 for unionl

Importance of employmentl is 8 for unionl

Since importance of employmentl > importance of wage-goall

One possible argument found

Figure 7.5 PERSUADER generates an argument.

(1) appeal to universal principle;

(2) appeal to a theme;

(3) appeal to authority;

(4) appeal to ‘status quo’;

{5) appeal to ‘minor standards’;

(6) appeal to ‘prevailing practice’;

(7) appeal to precedents as counter-examples;
(8) threaten.

The idea is closely related to the way in which humans use arguments of different
‘strength’ in argumentation (Gilkinson et al., 1954).

Notes and Further Reading

Despite their obvious advantages, there are a number of problems associated with
the use of game theory when applied to negotiation problems.

- Game theory assumes that it is possible to characterize an agent’s prefer-
ences with respect to possible outcomes. Humans, however, find it extremely
hard to consistently define their preferences over outcomes - in general,
human preferences cannot be characterized even by a simple ordering over
outcomes, let alone by numeric utilities (Russell and Norvig, 1995, pp. 475-

480). In scenarios where preferences are obvious (such as the case of a
person buying a particular CD and attempting to minimize costs), game-
theoretic techniques may work well. With more complex (multi-issue) pref-
erences, it is much harder to use them.

160 Reaching Agreements

- Most game-theoretic negotiation techniques tend to assume the availability
of unlimited computational resources to find an optimal solution - they
have the characteristics of NP-hard problems. (A well-known example is the
problem of winner determination in combinatorial auctions.) In such cases,
approximations of game-theoretic solutions may be more appropriate.

In writing this chapter, I drew heavily upon Tuomas Sandholny’s very useful survey
of distributed rational decision making (Sandholm, 1999). Tuomas presents many
of the results and discussions in this chapter in a much more formal and rigorous
way than I have attempted to do, and provides extensive references and pointers
to further reading: his article is recommended for further reading. The negotiation
text also drew heavily upon Rosenschein and Zlotkin’s influential 1994 book Rules
of Encounter (Rosenschein and Zlotkin, 1994). This book is essential reading if
you wish to gain a more detailed understanding of game-theoretic negotiation
techniques. Sarit Kraus presents a short survey of the negotiation literature in
Kraus (1997), and an extensive advanced introduction to strategic negotiation in
Kraus (2001). Another useful short survey of work on negotiation as applied to
electronic commerce is Jennings et al. (2001).

Argumentation was originally studied by philosophers and logicians in an
attempt to understand the ‘informal logic’ that humans use to interact with one
another (van Eemeren et al, 1996; Walton and Krabbe, 1995). More recently,
argumentation has been found to have a number of applications in Al, partic-
ularly in decision making (Fox et al, 1992; Krause et al, 1995), the semantics
of logic programming (Dung, 1995; Dimpoulos et al., 1999), and defeasible rea-
soning (Loui, 1987; Pollock, 1992; Pollock, 1994). An excellent survey of work
on argumentation was published as Prakken and Vreeswijk (2001), although this
does not deal with the subject from the standpoint of multiagent systems. Build-
ing largely on the work of Sycara’s PERSUADER system, several other agents
capable of argumentation have been implemented. An attempt to formalize
some of the ideas in PERSUADER using logic and then to implement this for-
mal version was Kraus et al. (1998). A number of authors have proposed the
use of variations of Walton and Krabbe’s dialogue types for multiagent systems
(Reed, 1998; Amgoud, 1999; Amgoud et al., 2000).

Class reading: Kraus (1997). This article provides an overview of negotiation
techniques for multiagent systems. It provides a number of pointers into the
research literature, and will be particularly useful for mathematically oriented
students.

T e e A

Argumentation 161

Exercises

(1) [Class discussion.]

Pick real-world examples of negotiation with which you are familiar (buying a second-
hand car or house, for example). For these, identify what represents a ‘deal’. Is the deal
single attribute or multiple attribute? Is it a task-oriented domain or a worth-oriented
domain? Or neither? Is it two agent or n agent? What represents a concession in such a
domain? Is a particular protocol used when negotiating? What are the rules?

(2) [Level 1.]

why are shills not a potential problem in Dutch, Vickrey, and first-price sealed-bid
auctions?

(3) [Level 2.]
With respect to the argument

tha aranmantrg wn
LLIC dl /UILIVIELO VYL

[¢]
-
e
e}

8

Communication

Communication has long been recognized as a topic of central importance in
computer science, and many formalisms have been developed for representing
the properties of communicating concurrent systems (Hoare, 1978; Milner, 1989).
Such formalisms have tended to focus on a number of key issues that arise when
dealing with systems that can interact with one another.

Perhaps the characteristic problem in communicating concurrent systems
research is that of synchronizing multiple processes, which was widely stud-
ied throughout the 1970s and 1980s (Ben-Ari, 1990). Essentially, two processes
(cf. agents) need to be synchronized if there is a possibility that they can interfere
with one another in a destructive way. The classic example of such interference is
the ‘lost update’ scenario. In this scenario, we have two processes, p; and p», both
of which have access to some shared variable v. Process p; begins to update the
value of v, by first reading it, then modifying it (perhaps by simply incrementing
the value that it obtained), and finally saving this updated value in v. But between
p1 reading and again saving the value of v, process p» updates v, by saving some
value in it. When p, saves its modified value of v, the update performed by p-
is thus lost, which is almost certainly not what was intended. The lost update
problem is a very real issue in the design of programs that communicate through
shared data structures.

So, if we do not treat communication in such a ‘low-level’ way, then how is com-
munication treated by the agent community? In order to understand the answer,
it is helpful to first consider the way that communication is treated in the object-
oriented programming community, that is, communication as method invocation.
Suppose we have a Java system containing two objects, 0; and o7, and that o0; has
a publicly available method m;. Object 02 can communicate with o; by invok-
ing method m;. In Java, this would mean o0, executing an instruction that looks
something like o1.m1({arg), where arg is the argument that 0, wants to commu-
nicate to o0;. But consider: which object makes the decision about the execution of

8.1

8.1.1

164 Communication

method m,? Is it object 01 or object 0,? In this scenario, object 0y has no control
over the execution of m,: the decision about whether to execute m; lies entirely
with 0.

Now consider a similar scenario, but in an agent-oriented setting. We have two
agents i and j, where i has the capability to perform action «, which corresponds
loosely to a method. But there is no concept in the agent-oriented world of agent j
‘invoking a method’ on i. This is because i is an autonomous agent: it has control
over both its state and its behaviour. It cannot be taken for granted that agent i
will execute action « just because another agent j wants it to. Performing the
action o may not be in the best interests of agent i. The locus of control with
respect to the decision about whether to execute an action is thus very different
in agent and object systems.

In general, agents can neither force other agents to perform some action, nor
write data onto the internal state of other agents. This does not mean they can-
not communicate, however. What they can do is perform actions - communica-
tive actions - in an attempt to influence other agents appropriately. For example,
suppose I say to you ‘It is raining in London’, in a sincere way. Under normal cir-
cumstances, such a communication action is an attempt by me to modify your
beliefs. Of course, simply uttering the sentence ‘It is raining in London’ is not
usually enough to bring about this state of affairs, for all the reasons that were
discussed above. You have control over your own beliefs (desires, intentions).
You may believe that I am notoriously unreliable on the subject of the weather,
or even that | am a pathological liar. But in performing the communication action
of uttering ‘It is raining in London’, [am attempting to change your internal state.
Furthermore, since this utterance is an action that I perform, I am performing it
for some purpose - presumably because I intend that you believe it is raining.

Speech Acts

Speech act theory treats communication as action. It is predicated on the assump-
tion that speech actions are performed by agents just like other actions, in the
furtherance of their intentions.

I begin with an historical overview of speech act theory, focusing in particular
on attempts to develop formal theories of speech acts, where communications are
modelled as actions that alter the mental state of communication participants.

Austin

The theory of speech acts is generally recognized to have begun with the work
of the philosopher John Austin (Austin, 1962). He noted that a certain class of
natural language utterances - hereafter referred to as speech acts - had the char-
acteristics of actions, in the sense that they change the state of the world in a way

s
N

Speech Ac
analogous to physical actions. It may seem strange to think of utterances chang-
ing the world in the way that physical actions do. If I pick up a block from a table
(to use an overworked but traditional example), then the world has changed in an

obvious wav. But how doeg sneech change the world? Austin gave ag naradiem

AT Wy« LUl L1V FY v ORI LU/ il YYwaan, Saoudia v PRiQraigiis

examples declaring war and saying ‘I now pronounce you man and wife’. Stated
in the appropriate circumstances, these utterances clearly change the state of the
world in a very tangible way?.

Austin identified a number of performative verbs, which correspond to various

different tvnec nf cneech arte Fvamnloce of ciich narformative verhe are roauect
CALLL LA LAL L}'tl\.k) L Dtl_\._ll WL LT l_-AuLllkll_O AJL JuC1L PLLLULALLUKLV\. YLl o Ll Lo \/l/'lll\/t_)l.’

inform, and promise. In addition, Austin distinguished three different aspects of
speech acts: the locutionary act, or act of making an utterance (e.g. saying ‘Please
make some tea’), the illocutionary act, or action performed in saying something
(e.g. ‘He requested me to make some tea’), and perlocution, or effect of the act

oo ”n aont mo tn mala taa’)
L 6 A A 5\’[, lll\- AV ENSERYN L LW WY l

Austin referred to the cond1tions required for the successful completion of per-
formatives as felicity conditions. He recognized three important felicity conditions.

(1) There must be an accepted conventional procedure for the performative,
and the circumstances and persons must be as specified in the procedure.

(2) The procedure must be executed correctly and completely.

(3) The act must be sincere, and any uptake required must be completed, insofar
as is possible.

Searle

Austin’s work was extended by John Searle in his 1969 book Speech Acts
(Searle, 1969). Searle identified several properties that must hold for a speech
act performed between a hearer and a speaker to succeed. For example, consider
a request by SPEAKFR to HEARER to perform ACTION.

(1) Normal 1/0 conditions. Normal I/O conditions state that HEARER is able to
hear the request (thus must not be deaf, etc.), the act was performed in normal

r‘1'1~r‘11mnfﬂnr~o {r i a2 Fly Aar nlaxs fﬁ A\ ares
VLIV Lo Laliv o 1 10 111 d 1iiin o1 piay, i), T,

(2) Preparatory conditions. The preparatory conditions state what must be true
of the world in order that SPEAKER correctly choose the speech act. In this
case, HEARER must be able to perform ACTION, and SPEAKER must believe that
HEARER is able to perform ACTION. Also, it must not be obvious that HEARER
will do ACTION anyway.

INotice that when referring to the effects of communication, I am ignoring ‘pathological’ cases,
such as shouting while on a ski run and causing an avalanche. Similarly, | will ignore ‘microscopic’
effects (such as the minute changes in pressure or temperature in a room caused by speaking).

8.1.3

166 Communication

(3) Sincerity conditions. These conditions distinguish sincere performances of
the request; an insincere performance of the act might occur if SPEAKER did
not really want ACTION to be performed.

Searle also attempted a systematic classification of possible types of speech acts,
identifying the following five key classes.

(1) Representatives. A representative act commits the speaker to the truth of an
expressed proposition. The paradigm case is informing.

(2) Directives. A directive is an attempt on the part of the speaker to get the
hearer to do something. Paradigm case: requesting.

(3) Commissives. Commit the speaker to a course of action. Paradigm case:
promising.

(4) Expressives. Express some psychological state (gratitude for example). Para-
digm case: thanking.

(5) Declarations. Effect some changes in an institutional state of affairs. Paradigm
case: declaring war.

The plan-based theory of speech acts

In the late 1960s and early 1970s, a number of researchers in Al began to build
systems that could plan how to autonomously achieve goals (Allen et al., 1990).
Clearly, if such a system is required to interact with humans or other autonomous
agents, then such plans must include speech actions. This introduced the question
of how the properties of speech acts could be represented such that planning
systems could reason about them. Cohen and Perrault (1979) gave an account
of the semantics of speech acts by using techniques developed in Al planning
research (Fikes and Nilsson, 1971). The aim of their work was to develop a theory
of speech acts

...by modelling them in a planning system as operators defined...in
terms of speakers’ and hearers’ beliefs and goals. Thus speech acts are
treated in the same way as physical actions.

(Cohen and Perrault, 1979)

The formalism chosen by Cohen and Perrault was the STRIPS notation, in which
the properties of an action are characterized via preconditions and postconditions
(Fikes and Nilsson, 1971). The idea is very similar to Hoare logic (Hoare, 1969).
Cohen and Perrault demonstrated how the preconditions and postconditions of
speech acts such as request could be represented in a multimodal logic containing
operators for describing the beliefs, abilities, and wants of the participants in the
speech act.

=
o

Speech Acts 167

Consider the Request act. The aim of the Request act will be for a speaker
to get a hearer to perform some action. Figure 8.1 defines the Request act.
Two preconditions are stated: the ‘cando.pr’ (can-do preconditions) and ‘want. pr’
(want preconditions). The cando. pr states that for the successfui Cﬁmpwuun of
the Request, two conditions must hold. First, the speaker must believe that the
hearer of the Request is able to perform the action. Second, the speaker must
believe that the hearer also believes it has the ability to perform the action. The
want.pr states that in order for the Request to be successful, the speaker must
also believe it aCtL‘lauy wants the neq uest to be perlormEu If the preconultions of
the Request are fulfilled, then the Request will be successful: the result (defined
by the ‘effect’ part of the definition) will be that the hearer believes the speaker
believes it wants some action to be performed.

While the successful completion of the Request ensures that the hearer is aware
of the Dpca}\c1 s desires, it is not enougu in itself to guarantee that the desired
action is actually performed. This is because the definition of Request only mod-
els the illocutionary force of the act. It says nothing of the perlocutionary force.
Whatis required is a mediating act. Figure 8.1 gives a definition of CauseToW ant,

which is an example of such an act. By this definition, an agent will come to believe

itwante tn dn canmathing ifit haliovoge that anathar agoant halinovacg it wante ta dAn it
I waiils o Qo ou1ucuuu5 11 lL UCTIIT VYOO Lllal alivilivl agiil UCLICVCD 1L YYALILD LU U dL.

This definition could clearly be extended by adding more preconditions, perhaps
to do with beliefs about social relationships, power structures, etc.

The Inform act is as basic as Request. The aim of performing an In form
will be for a speaker to get a hearer to believe some statement. Like Request, the

Aafinitinn nf T £Faram vamiiirace an necanrintard madinting net tn madal thae narlams-
CALCLLIiuiviT U1 1 ILJ Ur e 1uYyjull oo ailt ClDDULlClLLL—l LIV A1A il ALl LU IHTVMLL LLIL Puliucu

tionary force of the act. The cando.pr of Inform states that the speaker must
believe @ is true. The effect of the act will simply be to make the hearer believe
that the speaker believes . The cando.pr of Convince simply states that the
hearer must believe that the speaker believes . The effect is simply to make the

ecarer believe @
tiwlshd LWRY 2

Nl VLI Y

Speech acts as rational action

While the plan -based theory of speech acts was a major step forward, it was rec-
ognized that a tneory of prECI‘l acts should be rooted in a more generai theory
of rational action. This observation led Cohen and Levesque to develop a theory
in which speech acts were modelled as actions performed by rational agents in
the furtherance of their intentions (Cohen and Levesque, 1990b). The foundation
upon which they built this model of rational action was their theory of intention,
described in Cohen and Levesque (1990a). The formal theory is summarized in
Chapter 12, but, for now, here is the Cohen-Levesque definition of requesting,

paraphrased in English.

Arequest is an attempt on the part of spkr, by doing e, to bring about a
state where, ideally (i) addr intends « (relative to the spkr still having

8.2

168 Communication

Figure 8.1 Definitions from Cohen and Perrault’s plan-based theory of speech acts

Request(S,H, &)

Preconditions Cando.pr (S BELIEVE (H CANDO ©)) A
(§ BELIEVE (H BELIEVE (H CANDO «)))

Want.pr (S BELIEVE (§ WANT requestinstance))
Effect (H BELIEVE (S BELIEVE (S WANT «)))

CauseToWant(A,, A>, ©)

Preconditions Cando.pr (A; BELIEVE (A» BELIEVE (A WANT «)))
Want.pr X
Effect (Ay BELIEVE (A1 WANT o))

Inform(S,H,p)

Preconditions Cando.pr (S BELIEVE)
Want.pr (S BELIEVE (S WANT informliInstance))

Convince(Ar, Az, @)

Preconditions Cando.pr (A; BELIEVE (A» BELIEVE @))
Want.pr X
Effect (A1 BELIEVE @)

that goal, and addr still being helpfully inclined to spkr), and (ii) addr
actually eventually does «, or at least brings about a state where addr
believes it is mutually believed that it wants the ideal situation.

(Cohen and Levesque, 1990b, p. 241)

Agent Communication Languages

As I noted earlier, speech act theories have directly informed and influenced a
number of languaces that have heen develoned anmﬁr‘n"v for agent communi-

ARl VA AALA/RMAHTS LAIGL LIGY (AL N TR AT AV S ~aadaN QALY ANl Liil A Rr2f222A

cation. In the early 1990s, the US-based DARPA- funded Knowledge Sharing Effort
(KSE) was formed, with the remit of

k.

-

Agent Communication Languages 169

[developing] protocols for the exchange of represented knowledge
between autonomous information systems,

JF =122

(Finin et al., 1993)

The KSE generated two main deliverables as follows.

- The Knowledge Query and Manipulation Language (KOML). KOML is an
‘outer’ language for agent communication. It defines an ‘envelope’ format
for messages, using which an agent can explicitly state the intended illocu-
tionary force of a message. KOML is not concerned with the content part of
messages (Patil et al., 1992; Mayfield et al., 1996).

- The Knowledge Interchange Format (KIF). KIF is a language explicitly in-
tended to allow the representation of knowledge about some particular
‘domain of discourse’. It was intended primarily (though not uniquely) to

0D Yrre ¥

form the content parts of KUMIL messages.

'I"IF

I will begin by describing the Knowledge Interchange Format - KIF (Genesereth
and Fikes, 1992). This language was originally developed with the intent of being
a common language for expressing properties of a particular domain. It was not

intan A Iin a o arr ey i el RN atel Avironlirao sarmea] Nermma ool

uucuutu lU uc da 1augua5t 111 W’lLlLU. 111 SHA B/ TD llltlllbtflvt:b WULU.U. Ut: CAPLTDOCU, ULEL
rather it was envisaged that the KIF would be used to express message content.
KIF is closely based on first-order logic (Enderton, 1972; Genesereth and Nilsson,
1987). (In fact, KIF looks very like first-order logic recast in a LISP-like notation;
to fully understand the details of this section, some understanding of first-order

£ .1 ™ PRGN R S

u’)glL is therefore h eipful.) Thus, for EXdIIlplt‘ Dy using KIF, itis pOSSIUlC for agents
to express

= I ATY O™
¢ proper
e

S in (e_g ‘Michael and Janine are mar-
he re latlonshlp of marriage exists between Michael and Janine),
properties of a domain (e.g. ‘everybody has a mother’).

P -

+ genera

In order to express these things, KIF assumes a basic, fixed logical apparatus,
which contains the usual connectives that one finds in first-order logic: the binary
Boolean connectives and, or, not, and so on, and the universal and existential
quantifiers forall and exists. In addition, KIF provides a basic vocabulary of
objects - in particular, numbers, characters, and strings. Some standard func-
tions and relations for these objects are also provided, for example the ‘less than’
relationship between numbers, and the ‘addition’ function. A LISP-like notation is
also provided for handling lists of objects. Using this basic apparatus, it is pos-
sible to define new objects, and the functional and other relationships between

8.2.2

170 Communication

these objects. At this point, some examples seem appropriate. The following KIF
expression asserts that the temperature of ml is 83 Celsius:

(= (temperature ml) (scalar 83 Celsius))

In this expression, = is equality: a relation between two objects in the domain;
temperature is a function that takes a single argument, an object in the domain
(in this case, m1), and scalar is a function that takes two arguments. The =relation

is provided as standard in KIF, but both the temperature and scalar functions
must he defined

ALIVATS LU RSL WAL LA WA

The second example shows how definitions can be used to introduced new
concepts for the domain, in terms of existing concepts. It says that an object
is a bachelor if this object is a man and is not married:

(defrelation bachelor (?x) :=

(and (man ?x)

(not (married ?x))))

In this example, ?x is a variable, rather like a parameter in a programming lan-
guage. There are two relations: man and married, each of which takes a single
argument. The := symbol means ‘is, by definition’.

The next example shows how relationships between individuals in the domain
can be stated - it says that any individual with the property of being a person also
has the property of being a mammal:

(defrelation person (?x) :=> (mammal ?7x))

Here, both person and mammal are relations that take a single argument.

KOML

KOML is a message-based language for agent communication. Thus KQML defines
a common format for messages. A KQML message may crudely be thought of
as an object (in the sense of object-oriented programming): each message has
a performative (which may be thought of as the class of the message), and a
number of parameters (attribute/value pairs, which may be thought of as instance
variables).

Here is an example KQML message:

(ask-one
rcontent (PRICE IBM ?price)
:receiver stock-server

[Ry I RN N
ianguage LPRULUU

;ontology NYSE-TICKS
)

The intuitive interpretation of this message is that the sender is asking about
the price of IBM stock. The performative is ask-one, which an agent will use to

Agent Communication Languages 171

Table 8.1 Parameters for KQOML messages.

Parameter Meaning
:content content of the message
:force whether the sender of the message

will ever deny the content of the message

:reply-with whether the sender expects a reply, and,
if so, an identifier for the reply

:in-reply-to reference to the : reply-with parameter
:sender sender of the message

:receiver intended recipient of the message

ask a question of another agent where exactly one reply is needed. The various
other components of this message represent its attributes. The most important of
these is the : content field, which specifies the message content. In this case, the
content simply asks for the price of IBM shares. The :receiver attribute speci-
fies the intended recipient of the message, the : Tanguage attribute specifies that
the language in which the content is expressed is called LPROLOG (the recipient
is assumed to ‘understand’ LPROLOG), and the final :ontology attribute defines
the terminology used in the message - we will hear more about ontologies later
in this chapter. The main parameters used in KOML messages are summarized
in Table 8.1; note that different performatives require different sets of parame-
ters.

Several different versions of KQML were proposed during the 1990s, with dif-
ferent collections of performatives in each. In Table 8.2, I summarize the ver-
sion of KOMIL performatives that appeared in Finin et al. (1993); this version
contains a total of 41 performatives. In this table, $ denotes the :sender of
the messages, R denotes the :receiver, and C denotes the content of the mes-
sage.

To more fully understand these performatives, it is necessary to understand
the notion of a virtual knowledge base (VKB) as it was used in KQML. The idea
was that agents using KQML to communicate may be implemented using differ-
ent programming languages and paradigms - and, in particular, any information
that agents have may be internally represented in many different ways. No agent
can assume that another agent will use the same internal representation; indeed,
no actual ‘representation’ may be present in an agent at all. Nevertheless, for the
purposes of communication, it makes sense for agents to treat other agents as if
they had some internal representation of knowledge. Thus agents attribute knowl-
edge to other agents; this attributed knowledge is known as the virtual knowledge
base.

172 Communication
Table 8.2 KOQML performatives.
Performative Meaning
achieve S wants R to make something true of their environment
advertise S claims to be suited to processing a performative
ask-about S wants all relevant sentences in R’s VKB
ask-all S wants all of R’s answers to a question C
ask-if S wants to know whether the answer to C is in R's VKB
ask-one S wants one of R’s answers to question C
break S wants R to break an established pipe
broadcast S wants R to send a performative over all connections
broker-all S wants R to collect all responses to a performative
broker-one S wants R to get help in responding to a performative
deny the embedded performative does not apply to § (anymore)
delete-all S wants R to remove all sentences matching C from its VKB
delete-one S wants R to remove one sentence matching C from its VKB
discard S will not want R’s remaining responses to a query
eos end of a stream response to an earlier query
error S considers R’s earlier message to be malformed
evaluate S wants R to evaluate (simplify) C
forward S wants R to forward a message to another agent
generator same as a standby of a stream-all
insert S asks R to add content to its VKB
monitor S wants updates to R's response to a stream-all
next S wants R’s next response to a previously streamed
performative
pipe S wants R to route all further performatives to another agent
ready S is ready to respond to R’s previously mentioned

recommend-all
e comimend-one
recruit-all
recruit-one
register
reply

rest

sorry
standby
stream-about

stream-all
subscribhe

S T

transport-address
unregister
untell

performative

S wants all names of agents who can respond to C

S wants the name of an agent who can respond toa C
S wants R to get all suitable agents to respond to C

S wants R to get one suitable agent to respond to C

S can deliver performatives to some named agent
communicates an expected reply

S wants R’s remaining responses to a previously
named performative

S cannot provide a more informative reply

S wants R to be ready to respond to a performative
multiple response version of ask-about

multiple response version of ask-all

S wants undates to R’s respnonse to a n

QLILS Wpia piist

S claims to R that C is in §’s VKB

S associates symbolic name with transport address
the deny of a register

S claims to R that C is not in §'s VKB

performative

Agent Communication Languages 173

Dialogue (a)
(evaluate
:sender A :receiver B
:Tanguage KIF :ontology motor
:reply-with gl :content (val
(reply
:sender B :receijver A
:Tanguage KIF :ontology motors
:in-reply-to gl :content (= (torgue ml) (scalar 12 kgf)))

s
(torque ml)))

Dialogue (b)
(stream-about

:sender A :receijver B

:language KIF :ontology motors

:reply-with ql :content ml)
(tell

:sender B :receiver A

:in-reply-to ql :content (= (torque ml) (scalar 12 kgf)))
(tell

:sender B :receiver A

:in-reply-to gl :content (= (status ml) normal))
(eos

:sender B :receiver A

:in-reply-to ql)

Figure 8.2 Example KOML Dialogues.

Example KQML dialogues

To illustrate the use of KQML, we will now consider some example KQML dia-
logues (these examples are adapted from Finin et al. (1993)). In the first dialogue
(Figure 8.2(a)), agent A sends to agent B a query, and subsequently gets a response
to this query. The query is the value of the torque onml1; agent A gives the query the
name ql so that B can later refer back to this query when it responds. Finally, the
tontology of the query is motors - as might be guessed, this ontology defines
a terminology relating to motors. The response that B sends indicates that the
torque of ml is equal to 12 kgf - a scalar value.

The second dialogue (Figure 8.2(b)} illustrates a stream of messages: agent A
asks agent B for everything it knows about ml. Agent B responds with two tell
messages, indicating what it knows about ml, and then sends an eos (end of
stream) message, indicating that it will send no more messages about ml. The
first te11 message indicates that the torque of ml is 12 kgf (as in dialogue (a));
the second tel1 message indicates that the status of m1 is normal. Note that there
is no content to the eocs message; eos is thus a kind of meta-message - a message
about messages.

174 Communication

Dialogue (¢)
(advertise
:sender A
:content
(subscribe
:language KQML :ontology K10
:content
(stream-about
:language KIF :ontology motors
:content ml)))

(subscribe
:sender B :receijver A
:reply-with sl
:content
(stream-about
:Tanguage KIF :ontology motors
:content ml))

(tell

:sender A :receiver B

:in-reply-to sl :content (= (torgue ml) (scalar 12 kgf)))
(tell

:sender A :receiver B
iin-reply-to sl :content (= (status ml) normal))

11111111

:sender A :receiver B
:in-reply-to sl :content (= (torque ml) (scalar 12 kgf)))

(tell
:sender A :receiver B
:in-reply-to sl :content (= (torque ml) (scalar 15 kgf)))

(eos
:sender A :receiver B
:in-reply-to sl)

Figure 8.3 Another KQML dialogue.

The third (and most complex) dialogue, shown in Figure 8.3, shows how KQML
messages themselves can be the content of KQML messages. The dialogue begins
when agent A advertises to agent B that it is willing to accept subscriptions relat-
ing to m1l. Agent B responds by subscribing to agent A with respect to m1. Agent A
then responds with sequence of messages about ml; as well as including tel1 mes-
sages, as we have already seen, the sequence includes an untel1 message, to the
effect that the torque of mlis no longer 12 kgf, followed by a tel1l message indi-
cating the new value of torque. The sequence ends with an end of stream message.

]1\

WS.

FIPA

[A PO B
W

Agent Communication Languages 175

The take-up of KQML by the multiagent systems community was significant, and
several KQML-based implementations were developed and distributed. Despite
this success, KQOML was subsequently criticized on a number of grounds as fol-

» The basic KQML performative set was rather fluid - it was never tightly con-

strained, and so different implementations of KQML were developed that
could not, in fact, interoperate.

- Transport mechanisms for KOML messages (i.e. ways of getting a message

from agent A to agent B) were never precisely defined, again making it hard
for different KQML-talking agents to interoperate.

- The semantics of KQML were never rigorously defined, in such a way that it

was possible to tell whether two agents claiming to be talking KQML were in
fact using the language ‘properly’. The ‘meaning’ of KQML performatives was
only defined using informal, English language descriptions, open to different
interpretations. (I discuss this issue in more detail later on in this chapter.)

- The language was missing an entire class of performatives - commissives, by

which one agent makes a commitment to another. As Cohen and Levesque

Wl cnn hn mantr il tiagoant cronarine cn1ild ho imanloal

puuu out, itis difficult to s€e Now Iany muit tdgCit scenarios could be Ht Sy
mented without commissives, which appear to be important if agents are to
coordinate their actions with one another.

+ The performative set for KQML was overly large and, it could be argued,

rather ad hoc.

These criticisms - amongst others - led to the development of a new, but rather
closely related language by the FIPA consortium.

The FIPA agent communication languages

In 1995, the Foundation for Intelligent Physical Agents (FIPA) began its work on
developing standards for agent systems. The centerpiece of this initiative was the
development of an ACL (FIPA, 1999). This ACL is superficially similar to KQML:
it defines an ‘outer’ language for messages, it defines 20 performatives (such as
inform) for defining the intended interpretation of messages, and it does not man-
date any specific language for message content. In addition, the concrete syntax
for FIPA ACL messages closely resembles that of KQML. Here is an example of a

ACL message (from FIPA, 1999, p. 10):

(inform
:sender agentl
:receiver agent2
:content (price good2 150)
: language s
:ontology hpl-auction

176 Comntunication

Table 8.3 Performatives provided by the FIPA communication language.

Passing Requesting Performing Error
Performative information information Negotiation actions handling

accept-proposal X

agree X
cancel X X
cfp P

confirm X

disconfirm X

failure X
inform X

inform-if X

inform-ref X

not-understood X
propagate X
propose X

proxy X
query-if X

query-ref X

refuse X
reject-proposal X

request X
request-when X
request-whenever X
subscribe X

As should be clear from this example, the FIPA communication language is similar
to KOML: the structure of messages is the same, and the message attribute fields
are also very similar. The relationship between the FIPA ACL and KQML is dis-

cussed in FIPA (1999, pp. 68, 69). The most important difference between the two
languages is in the collection of performatives they provide. The performatives
provided by the FIPA communication language are categorized in Table 8.3.

Informally, these performatives have the following meaning.

accept-proposal The accept-proposal performative allows an agent to state
that it accepts a proposal made by another agent.

agree Anaccept performative is used by one agent to indicate that it has acqui-
esced to a request made by another agent. It indicates that the sender of
the agree message intends to carry out the requested action.

i |

cancel A cancel performative is used by an agent to follow up to a previous
request message, and indicates that it no longer desires a particular action
to be carried out.

cfp A cfp (call for proposals) performative is used to initiate negotiation
between agents. The content attribute of a cfp message contains both an

Agent Communication Languages 177

action (e.g. ‘sell me a car’) and a condition (e.g. ‘the price of the car is less
than US$10 000’). Essentially, it says ‘here is an action that I wish to be car-
ried out, and here are the terms under which [want it to be carried out - send
me your proposals’. (We will see in the next chapter that the ¢ fp message is
a central component of task-sharing systems such as the Contract Net.)

confirm The confirmperformative allows the sender of the message to confirm
the truth of the content to the recipient, where, before sending the message,
the sender believes that the recipient is unsure about the truth or otherwise

of the content.

disconfirm Similar to confirm, but this performative indicates to a recipient
that is unsure as to whether or not the sender believes the content that the

content is in fact false.

failure This allows an agent to indicate to another agent that an attempt to
perform some action (typically, one that it was previously requested to

perform) failed.

inform Along with request, the inform performative is one of the two most
important performatives in the FIPA ACL. It is the basic mechanism for com-
municating information. The content of an inform performative is a state-
ment, and the idea is that the sender of the inform wants the recipient to
believe this content. Intuitively, the sender is also implicitly stating that it
believes the content of the message.

inform-if An inform-if implicitly says either that a particular statement is
true or that it is false. Typically, an inform-if performative forms the con-
tent part of a message. An agent will send a request message to another
agent, with the content part being an inform-1f message. The idea is that
the sender of the request is saying ‘tell me if the content of the inform-if

is either true or false’.

inform-ref The idea of inform-ref is somewhat similar to that of inform-1if:
the difference is that rather than asking whether or not an expression is true
or false, the agent asks for the value of an expression.

not-understood This performative is used by one agent to indicate to another
agent that it recognized that it performed some action, but did not un-
derstand why this action was performed. The most common use of not-
understood is for one agent to indicate to another agent that a mes-
sage that was just received was not understood. The content part of a
not-understood message consists of both an action (the one whose pur-
pose was not understood) and a statement, which gives some explanation of
why it was not understood. This performative is the central error-handling

mechanism in the FIPA ACL.

178 Communication

propagate The content attribute of a propagate message consists of two
things: another message, and an expression that denotes a set of agents.
The idea is that the recipient of the propagate message should send the
embedded message to the agent(s) denoted by this expression.

propose This performative allows an agent to make a proposal to another agent

£ P Py e AC O T YO ~ e O P N N L k&

101 dIﬂpiC in response toa (.Tp ITICSd A EC Uldl wdS pr L‘f\/lUlely SE€1nt ouUt

proxy The proxy message type allows the sender of the message to treat the
recipient of the message as a proxy for a set of agents. The content of a
proxy message will contain both an embedded message (one that it wants
forwarded to others) and a specification of the agents that it wants the mes-
sage forwarded to.

query-if This performative allows one agent to ask another whether or not
some specific statement is true or not. The content of the message will be
the statement that the sender wishes to enquire about.

query-ref This performative is used by one agent to determine a specific value
for an expression (cf. the evaluate performative in KQML).

refuse A refuse performative is used by one agent to state to another agent
that it will not perform some action. The message content will contain both
the action and a sentence that characterizes why the agent will not perform
the action.

reject-proposal Allows an agent to indicate to another that it does not accept
a proposal that was made as part of a negotiation process. The content
specifies both the prOposal that is being rejected, and a statement that chac-
+
L

ng tha ronenmn

far th [
erizes the reasons o is rejection

uliS I CJeLiluvily

request The second fundamental performative allows an agent to request
another agent to perform some action.

request-when The content of a request-when message will be both an action
and a statement; the idea is that the sender wants the recipient to carry
out the action when the statement is true (e.g. ‘sound the bell when the
temperature falls below 20 Celsius’).

request-whenever Similar to request-when, the idea is that the recipient
should perform the action whenever the statement is true.

subscribe Essentially as in KQML: the content will be a statement, and the
sender wants to be notified whenever something relating to the statement
changes.

Given that one of the most frequent and damning criticisms of KQML was the

l1ae1 f arl + h o + that the d 1
lack of an adequate semantics, it is perhaps not surprising that the developers

of the FIPA agent communication language felt it important to give a compre-
hensive formal semantics to their language. The approach adopted drew heavily

Agent Communication Languages 179

on Cohen and Levesque’s theory of speech acts as rational action (Cohen and
Levesque, 1990b), but in particular on Sadek’s enhancements to this work (Bretier
and Sadek, 1997). The semantics were given with respect to a formal language
called SL. This language allows one to represent beliefs, desires, and uncertain
beliefs of agents, as well as the actions that agents perform. The semantics of the
FIPA ACL map each ACL message to a formula of SL, which defines a constraint
that the sender of the message must satisty if it is to be considered as conforming
to the FIPA ACL standard. FIPA refers to this constraint as the feasibility condi-
tion. The semantics also map each message to an SL-formula that defines the
rational effect of the action - the ‘purpose’ of the message: what an agent will be
attempting to achieve in sending the message (cf. perlocutionary act). However,
in a society of autonomous agents, the rational effect of a message cannot (and
should not) be guaranteed. Hence conformance does not require the recipient
of a message to respect the rational effect part of the ACL semantics - only the
feasibility condition.

As I noted above, the two most important communication primitives in the
FIPA languages are inform and request. In fact, all other performatives in FIPA
are defined in terms of these performatives. Here is the semantics for inform
(FIPA, 1999, p. 25):

(i,inform(j, @)}
feasibility precondition: B;@ A —Bi(Bifj@ v Uif;@)
rational effect: B;@. (8.1)

The B, means ‘agent i believes @’; Bifig means that ‘agent { has a definite
opinion one way or the other about the truth or falsity of ¢’; and Uif; means
that agent i is ‘uncertain’ about . Thus an agent i sending an in form message
with content @ to agent j will be respecting the semantics of the FIPA ACL if it
believes @, and it is not the case that it believes of j either that j believes whether
@ is true or false, or that j is uncertain of the truth or falsity of . If the agent is
successful in performing the inform, then the recipient of the message - agent j -
will believe @.
The semantics of request are as follows?:

(i,request(j, «))
feasibility precondition: B;Agent(«, j) A ~BiljDone(x)
rational effect: Done(). (8.2)

The SL expression Agent(«, j) means that the agent of action « is j (i.e. j is the
agent who performs «); and Done(a) means that the action « has been done.
Thus agent i requesting agent j to perform action o means that agent i believes
that the agent of « is j (and so it is sending the message to the right agent), and

2In the interests of comprehension, I have simplified the semantics a little.

8.3

180 Communication

agent i believes that agent j does not currently intend that « is done. The rational
effect - what i wants to achieve by this - is that the action is done.

One key issue for this work is that of semantic conformance testing. The con-
formance testing problem can be summarized as follows (Wooldridge, 1998). We
are given an agent, and an agent communication language with some well-defined
semantics. The aim is to determine whether or not the agent respects the seman-
tics of the language whenever it communicates. Syntactic conformance testing
is of course easy - the difficult part is to see whether or not a particular agent
program respects the semantics of the language.

The importance of conformance testing has been recognized by the ACL com-
munity (FIPA, 1999, p. 1). However, to date, little research has been carried out
either on how verifiable communication languages might be developed, or on how
existing ACLs might be verified. One exception is (my) Wooldridge (1998), where
the issue of conformance testing is discussed from a formal point of view: I point
out that ACL semantics are generally developed in such a way as to express con-
straints on the senders of messages. For example, the constraint imposed by the
semantics of an ‘inform’ message might state that the sender believes the mes-
sage content. This constraint can be viewed as a specification. Veritying that an
agent respects the semantics of the agent communication language then reduces
to a conventional program verification problem: show that the agent sending the
message satisfies the specification given by the communication language seman-
tics. But to solve this verification problem, we would have to be able to talk about
the mental states of agents - what they believed, intended and so on. Given an
agent implemented in (say) Java, it is not clear how this might be done.

Ontologies for Agent Communication

[N I of on Al mian Tl
n that of ontologies. The

D L‘!
issue of ontologies arises for the following reason. If WO agents re t 0 communi-
cate about some domain, then it is necessary for them to agree on the terminology
that they use to describe this domain. For example, imagine an agent is buying
a particular engineering item (nut or bolt) from another agent: the buyer needs
to be able to unammguousry' Spt”:Chy to the seller the desired properties of the
item, such as its size. The agents thus need to be able to agree both on what ‘size’
means, and also what terms like ‘inch’ or ‘centimetre’ mean. An ontology is thus

a specification of a set of terms as follows.

e ey et A

One issue thatl have rather g lossed over until

An ontology is a formal definition of a body of knowledge. The most
typical type of ontology used in building agents involves a structural
component. Essentially a taxonomy of class and subclass relations cou-
pled with definitions of the relationships between these things.

(Jim Hendler)

Ontologies for Agent Communication 181
-
_ remote collaborators
Editor HTTP {authors/readers)
@—A Server NGFP remote applications
Translators
N— J
batch file transfer

stand alone application

Figure 8.4 Architecture of the Ontolingua server.

In fact, we have already seen an example of a language for defining ontologies:
KIF (Genesereth and Fikes, 1992). By using KIF, we can declaratively express
the properties of a domain and the relationships between the things in this
domain. As KIF was not primarily intended as a language for use by humans,
but for processing by computers, software tools were developed that allow a user
to develop KIF ontologies - of these, the best known is the Ontolingua server
(Farquhar et al., 1997). The Ontolingua server is a Web-based service that is
intended to provide a common platform in which ontologies developed by dif-
ferent groups can be shared, and perhaps a common view of these ontologies
achieved.

The structure of the Ontolingua server is illustrated in Figure 8.4. The cen-
tral component is a library of ontologies, expressed in the Ontolingua ontol-
ogy definition language (based on KIF). A server program provides access to
this library. The library may be accessed through the server in several differ-
ent ways: either by editing it directly (via a Web-based interface), or by pro-
grams that contact the server remotely via the NGFP interface. The Ontolingua
server was capable of automatically transforming ontologies expressed in one
format to a variety of others (e.g. the CORBA Intciface Definition Language -
IDL).

As I noted above, KIF is very closely based on first-order logic, which gives it
a clean, well-understood semantics, and in addition means that it is extremely
expressive (with sufficient ingenuity, pretty much any kind of knowledge can be
expressed in first-order logic). However, many other languages and tecols have
been developed for expressing ontologies. Perhaps the most important of these
at the time of writing is the Xtensible Markup Language (XML, 2001} and its
close relative, the DARPA Agent Markup Language (DAML, 2001). To understand
how XML and DAML came about, it is necessary to look at the history of the
Web. The Web essentially comprises two things: a protocol (HTTP), which pro-

182 Communication

vides a common set of rules for enabling Web servers and clients to commu-
nicate with one another, and a format for documents called (as I am sure you
know!) the Hypertext Markup Language (HTML). Now HTML essentially defines
a grammar for interspersing documents with markup commands. Most of these
markup commands relate to document layout, and thus give indications to a Web
browser of how to display a document: which parts of the document should be
treated as section headers, emphasized text, and so on. Of course, markup is not
restricted to layout information: programs, for example in the form of JavaScript
code, can also be attached. The grammar of HTML is defined by a Document
Type Declaration (DTD). A DTD can be thought of as being analogous to the for-
mal grammars used to define the syntax of programming languages. The HTML
DTD thus defines what constitutes a syntactically acceptable HTMI. document. A
DTD is in fact itself expressed in a formal language - the Standard Generalized
Markup Language (SGML, 2001). SGML is essentially a language for defining other
languages.

Now, to all intents and purposes, the HTML standard is fixed, in the sense that
you cannot arbitrarily intreduce tags and attributes into HTML documents that
were not defined in the HTML DTD. But this severely limits the usefulness of the
Web. To see what [mean by this, consider the following example. An e-commerce
company selling CDs wishes to put details of its prices on its Web page. Using
conventional HTML techniques, a Web page designer can only markup the docu-
ment with layout information (see, for example, Figure 8.5(a)). But this means that
a Web browser - or indeed any program that looks at documents on the Web - has
no way of knowing which parts of the document refer to the titles of CDs, which
refer to their prices, and so on. Using XML it is possible to define new markup
tags - and so, in essence, to extend HTML. To see the value of this, consider
Figure 8.5(b), which shows the same information as Figure 8.5(a), expressed using
new tags (catalogue, product, and so on) that were defined using XML. Note that
new tags such as these cannot be arbitrarily introduced into HTML documents:
they must be defined. The way they are defined is by writing an XML DTD: thus
XML, like SGML, is a language for defining languages. (In fact, XML is a subset of
SGML.)

[hope itis clear that a computer program would have a much easier time under-
standing the meaning of Figure 8.5(b) than Figure 8.5(a). In Figure 8.5(a), there is
nothing to help a program understand which part of the document refers to the
price of the product, which refers to the title of the product, and so on. In contrast,
Figure 8.5(b) makes all this explicit.

XML was developed to answer one of the longest standing critiques of the Web:
the lack of semantic markup. Using languages like XML, it becomes possible to
add information to Web pages in such a way that it becomes easy for computers
not simply to display it, but to process it in meaningful ways. This idea led Tim
Berners-Lee, widely credited as the inventor of the Web, to develop the idea of the
semantic Web.

R -

i
v 4]
[O%]

Coordination Languages

{a) Plain HTML

Music,
Madonna,
USD12
<p>

Get Ready,
New Order,
USD14
<p>

{b) XML

<catalogue>
<product type="CD''>
<title>Music</title>
<artist>Madonna</artist>
<price currency="USD">12</price>
</product>
<product type="CD">
<title>Get Ready</title>
<artist>New Order</artist>
<price currency="USD">14</price>
</product>
</catalogue>

Figure 8.5 Plain HTML versus XMI..

I have a dream for the Web [in which computers] become capable of
analysing all the data on the Web - the content, links, and transac-
tions between people and computers. A ‘Semantic Web’, which should
make this possible, has yet to emerge, but when it does, the day-to-day
mechanisms of trade, bureaucracy and our daily lives will be handled
by machines talking to machines. The ‘intelligent agents' people have
touted for ages will finally materialise.

(Berners-Lee, 1999, pp. 169, 170)

In an attempt to realize this vision, work has begun on several languages and
tools - notably the Darpa Agent Markup Language (DAML, 2001), which is based
on XML. A fragment of a DAML ontology and knowledge base (from the DAML
version of the CIA world fact book (DAML, 2001)) is shown in Figure 8.6.

Coordination Languages

One of the most important precursors to the development of multiagent systems
was the blackboard model (Engelmore and Morgan, 1988). Initially developed as

184 Communication

<rdf:Description rdf:ID="UNITED-KINGDOM">

<rdf:type rdf:resource="GEOREF"/>
<HAS-TOTAL -AREA>

(* 244820 Square-Kilometer)
</HAS-TOTAL-AREA>
<HAS-LAND-AREA>

(* 241590 Square-Kilometer)
</HAS-LAND-AREA>
<HAS-COMPARATIVE-AREA-DOC>

slightly smaller than Oregon
</HAS-COMPARATIVE-AREA-DOC>
<HAS-BIRTH-RATE>

13.18
</HAS-BIRTH-RATE>
<HAS-TOTAL -BORDER-LENGTH>

(* 360 Kilometer)
</HAS-TOTAL-BORDER-LENGTH>
<HAS-BUDGET-REVENUES>

(* 3.255E11 Us-Dollars)
</HAS-BUDGET-REVENUES>
<HAS-BUDGET-EXPENDITURES>

(* 4.009E11 Us-Dollars)
</HAS-BUDGET-EXPENDITURES>
<HAS-BUDGET-CAPITAL-EXPENDITURES>

(* 3.3E10 Us-Dollars)
</HAS-BUDGET-CAPITAL-EXPENDITURES>
<HAS-CLIMATE-DOC>

more than half of the days are overcast
</HAS-CLIMATE-DOC>
<HAS-COASTLINE-LENGTH>

(* 12429 Kilometer)
</HAS-COASTLINE-LENGTH>
<HAS-CONSTITUTION-DOC>

unwritten; partly statutes, partly common law
</HAS-CONSTITUTION-DOC>

</rdf:Description>

Figure 8.6 Some facts about the UK, expressed in DAML.

part of the Hearsay speech understanding project, the blackboard model proposes
that group problem solving proceeds by a group of ‘knowledge sources’ (agents)
observing a shared data structure known as a blackboard: problem solving pro-
ceeds as these knowledge sources contribute partial solutions to the problem.
In the 1980s, an interesting variation on the blackboard model was proposed
within the programming language community. This variation was called Linda
(Gelernter, 1985; Carriero and Gelernter, 1989).

Strictly speaking, Linda is not a programming language. It is the generic name
given to a collection of programming language constructs, which can be used to

Coordination Languages 185

implement blackboard-like systems. The core of the Linda model - corresponding
loosely to a blackboard - is the tuple space. A tuple space is a shared data structure,
the components of which are tagged tuples. Here is an example of a tagged tuple:

(llpersonll, l!‘mjwll, 35>'

A tuple may be thought of as a list of data elements. The first of these is the
tag of the tuple, which corresponds loosely to a class in object-oriented program-
ming. In the example above, the tag is ‘person’, suggesting that this tuple records
information about a person. The remainder of the elements in the luplt: are data
values.

Processes (agents) who can see the tuple space can access it via three instruc-
tions (Table 8.4). The out operation is the simplest: the expressions that are
parameters to the operation are evaluated in turn, and the tagged tuple that

gyl Armacitadd +l Tl P

LCDLULD lb ucpuaucu 111LU lllC lulJlC DPGLC 11ie IlI auu Uul. upCiauvliy dllUW da PIU'
cess to access the tuple space. The idea of the in operation is that the parameters
to it may either be expressions or parameters of the form ?v, where v is a variable
name. When an instruction

in("tag", fieldl, ..., fieldN)

is executed, then each of the expressions it contains is evaluated in turn. When
this is done, the process that is executing the instruction waits (blocks) until a
matching tuple is in the tuple space. For example, suppose that the tuple space
contained the single person tuple above, and that a process attempted to execute
the following instruction:

in("person”, "mjw", ?age).

Then this operation would succeed, and the variable age would subsequently have
the value 35. If, however, a process attempted to execute the instruction

in("person”, "sdp", ?age),

then the process would block until a tuple whose tag was "person” and whose
first data element was "sdp"” appeared in the tuple space. (If there is more than
one matching tuple in the tuple space, then one is selected at random.)

The rd operation is essentially the same as in except that it does not remove

the tuple from the tuple space - it simply copies the data elements into fields.
Despite its simplicity, Linda turns out be a very simple and intuitive language
for developing complex distributed applications that must be coordinated with

one another.

Notes and Further Reading

The problems associated with communicating concurrent systems have driven a
significant fraction of research into theoretical computer science since the early

186 Communication

Table 8.4 Operations for manipulating Linda tuple spaces.

Operation Meaning

out("tag"”, exprl, ..., exprN) evaluate exprl,..., exprN and
deposit resulting tuple in tuple space

in("tag", fieldl, ..., fieldN) wait until matching tuple occupies tuple space,
then remove it, copying its values into fields

rd("tag", fieldl, ..., fieldN) wait until matching tuple occupies tuple space,
then copy its values into fields

1980s. Two of the best-known formalisms developed in this period are Tony
Hoare’s Communicating Sequential Processes (CSPs) (Hoare, 1978}, and Robin Mil-
ner’s Calculus of Communicating Systems (CCS) (Milner, 1989). Temporal logic has
also been widely used for reasoning about concurrent systems - see, for example,
Pnueli (1986) for an overview. A good reference, which describes the key problems
in concurrent and distributed systems, is Ben-Ari (1990).

The plan-based theory of speech acts developed by Cohen and Perrault made
speech act theory accessible and directly usable to the artificial intelligence com-
munity (Cohen and Perrault, 1979). In the multiagent systems community, this
work is arguably the most influential single publication on the topic of speech
act-like communication. Many authors have built on its basic ideas. For example,
borrowing a formalism for representing the mental state of agents that was devel-
oped by Moore (1990), Douglas Appelt was able to implement a system that was
capable of planning to perform speech acts (Appelt, 1982, 1985).

Many other approaches to speech act semantics have appeared in the literature.
For example, Perrault (1990) described how Reiter’s default logic (Reiter, 1980)
could be used to reason about speech acts. Appelt gave a critique of Perrault’s
work (Appelt and Konolige, 1988, pp. 167, 168), and Konolige proposed a related
technique using hierarchic auto-epistemic logic (HAEL) (Konolige, 1988) for rea-
soning about speech acts. Galliers emphasized the links between speech acts and
AMG belief revision (Gardenfors, 1988): she noted that the changes in a hearer’s
state caused by a speech act could be understood as analogous to an agent revis-
ing its beliefs in the presence of new information (Galliers, 1991). Singh developed
a theory of speech acts (Singh, 1991¢, 1993) using his formal framework for rep-
resenting rational agents (Singh, 1990a,b, 1991a,b, 1994, 1998b; Singh and Asher,
1991). He introduced a predicate comm(i, j, m) to represent the fact that agent i
communicates message m to agent j, and then used this predicate to define the
semantics of assertive, directive, commissive, and permissive speech acts.

Dignum and Greaves (2000) is a collection of papers on agent communica-
tion languages. As I mentioned in the main text of the chapter, a number of
KQML implementations have been developed: well-known examples are InfoS-
leuth (Nodine and Unruh, 1998), KAoS (Bradshaw et al., 1997} and JATLite (Jeon et

Coordination Languages 187
al, 2000)). Several FIPA implementations have also been developed, of which the
Java-based Jade system is probably the best known (Poggi and Rimassa, 2001).

A critique of KIF was published as Ginsberg (1991), while a critique of KQML

anneare in (Cnhon and Tavoemia {1008 A onnd oganaral enirvavyu nf wnrle nn nninln-
ulJIJ\.-ul.lJ 11 SAJIRC AL QL L\,VL__JL.:'_M__ \LJ;JLJ,- Fan % SUUu SLILLL aiL Joul V\.y LFL YYAUJRLIN WUFLL JL1LIWUTIYy

gies (up to 1996) is Uschold and Gruninger (1996). There are many good online
references to XML, DAML and the like: a readable published reference is Decker et
al. (2000). The March/April 2001 issue of IEEF Intelligent Systems magazine con-
tained a useful collection of articles on the semantic web (Fensel and Musen, 2001),

agonte in tha comantic Wah (Hondlar 2001 and tha OIT]’J‘I"I(T'I]CI(\' far nntnlnoiac
agClies 1l the semantic web uaCnailr, cUv i), dig e Uil ianguage 10T ONTCiI081ES

on the semantic Web (Fensel et al., 2001).

Recently, a number of proposals have appeared for communication languages
with a verifiable semantics (Singh, 1998a; Pitt and Mamdani, 1999; Wooldridge,
1999). See Labrou et al. (1999) for a discussion of the state of the art in agent

communicatinn]ann‘nnn‘nc ae nf Dnr]w 1 OOO
NAJAAARAAAL LI CALINVL lullé 6 G VUL il

Coordination languages have been the subject of much interest by the theoret-
ical computer science community: a regular conference is now held on the sub-
ject, the proceedings of which were published as Ciancarini and Hankin (1996).
Interestingly, the Linda model has been implemented in the JavaSpaces package

{Fropoman et nl 1000 makino it nnccihlo tn use tho mndal with Tava /TINT evetamece
\L AL lpiall OO et e JJJ’, lllul_lll& Fe g IJUOOALIA_, LW LA LR HRAVFuA L FYLLLE Jul’u/ Jll i L)’ LU AL

(Oaks and Wong, 2000).

Class discussion: Cohen and Perrault (1979). A nice introduction to speech acts
and the semantics of speech acts, this paper was hugely influential, and although

it was written for a natural lanouace understandine audience, it is easy to make

[S I S v G QL Qo 1AL/ uigc vituti gudiuiiig Qi L y 1L L0 LlAG Y Lo aaalia

sense of.

188 Communication

Exercises

(1) [Class discussion.]

What are the potential advantages and disadvantages of the use of agent communication
languages such as KQML or FIPA, as compared with (say) method invocation in object-
oriented languages? It you are familiar with distributed object systems like the Java RMI
paradigm, then compare the benefits of the two.

(2) [Level 2.]

Using the ideas of Cohen and Perrault’s plan-based theory of speech acts, as well as the
semantics of FIPA's request and inform performatives, try to give a semantics to other
FIPA performatives.

In the three preceding chapters, we have looked at the basic theoretical principles
of multiagent encounters and the properties of such encounters. We have also
seen how agents might reach agreements in encounters with other agents, and
looked at languages that agents might use to communicate with one another.
So far, however, we have seen nothing of how agents can work together. In this
chapter, we rectify this. We will see how agents can be designed so that they can
work together effectively. As I noted in Chapter 1, the idea of computer systems
working together may not initially appear to be very novel: the term ‘cooperation’
is frequently used in the concurrent systems literature, to describe systems that
must interact with one another in order to carry out their assigned tasks. There are
two main distinctions between multiagent systems and ‘traditional’ distributed

systems as follows.

- Agents in a multiagent system may have been designed and implemented
Towry AP0 0w 2 D2 2 DT, ctal A0 s T Tl ey ale e o e oy o L
DY ULLICICIIU HIUIVIUUdLS, WILIL ULIIICI eIl E0dis>. 11IICY HICICrorc iidy UL >iidic
common goals, and so the encounters between agents in a multiagent system
more closely resemble games, where agents must act strategically in order

to achieve the outcome they most prefer.

- Because agents are assumed to be acting autonomously (and so making deci-
sions about what to do at run time, rather than having all decisions hard-
wired in at design time), they must be capable of dynamically coordinating
their activities and cooperating with others. In traditional distributed and
concurrent systems, coordination and cooperation are typically hardwired
in at design time.

9.1

190 Working Together

Working together involves several different kinds of activities, that we will inves-
tigate in much more detail throughout this chapter, in particular, the sharing both
of tasks and of information, and the dynamic (i.e. run-time) coordination of multi-
agent activities.

Cooperative Distributed Problem Solving

Work on cooperative distributed problem solving began with the work of Lesser
and colleagues on systems that contained agent-like entities, each of which with
distinct (but interrelated) expertise that they could bring to bear on problems that
the entire system is required to solve:

CDPS studies how a loosely-coupled network of problem solvers can
work together to solve problems that are beyond their individual capa-

bilities. Each problem-solving node in the network is capable of sophis-
ticated nrnh]pm Qrﬂ\nno and can work lndpnpndpnﬂv but the nrnh]me

faced by the nodes cannot be completed without cooperation. Coop-
eration is necessary because no single node has sufficient expertise,
resources, and information to solve a problem, and different nodes
might have expertise for solving different parts of the problem.

Historically, most work on cooperative problem solving has made the benev-
olence assumption: that the agents in a system implicitly share a common goal,
and thus that there is no potential for conflict between them. This assumption

imnlieg that agents can be decioned <o as to help out whenever nnnr‘]pd oveon if

ALRApIEIL G LAEGL BHLLILT LALL L UL diglitu ou Ao LU LIl va FYLELUILU VUL LiL i VL iL 11

it means that one or more agents must suffer in order to do so: intuitively, all
that matters is the overall system objectives, not those of the individual agents
within it. The benevolence assumption is generally acceptable if all the agents in
a system are designed or ‘owned’ by the same organization or individual. It is

n‘nnnrfﬁlnr to pmnham7p that the ;\hﬂﬂ'v to assume henevolence gronﬂu QImphﬁec

the designer’s task. If we can assume that all the agents need to worry about is
the overall utility of the system, then we can design the overall system so as to
optimize this.

In contrast to work on distributed problem solving, the more general area

of multiacent systems has focused on the issues associated with societies of

Al iC /AN Sinvaiid 1a{id 1w L3Je S GRogovalitioia Fyataa Swinac g

self-interested agents. Thus agents in a multiagent system (unlike those in typ-
ical distributed problem-solving systems), cannot be assumed to share a com-
mon goal, as they will often be designed by different individuals or organiza-

tions in order to represent their interests. One agent’s interests may therefore
conflict with those of others, just as in human societies. Degpite the nnrpnrm]

AR iRANLY YV ILIE RARRASL Taaioi iaveaaa{iin SRS IV LIO IR (G SRS L4Y

for conflicts of interest, the agents in a multiagent system w1ll ultlmately need
to cooperate in order to achieve their goals; again, just as in human societies.

Cooperative Distributed Problem Solving 191

Multiagent systems research is therefore concerned with the wider problems of
designing societies of autonomous agents, such as why and how agents cooperate
(Wooldridge and Jennings, 1994); how agents can recognize and resolve conflicts
(Adler et al, 1989; Galliers, 1988b; Galliers, 1990; Klein and Baskin, 1991; Lander
et al., 1991); how agents can negotiate or compromise in situations where they
are apparently at loggerheads (Ephrati and Rosenschein, 1993; Rosenschein and
Zlotkin, 1994); and so on.

It is also important to distinguish CDPS from parallel problem solving (Bond
and Gasser, 1988, p. 3). Parallel problem solving simply involves the exploitation
of parallelism in solving problems. Typically, in parallel problem solving, the com-
putational components are simply processors; a single node will be responsible
for decomposing the overall problem into sub-components, allocating these to
processors, and subsequently assembling the solution. The nodes are frequently
assumed to be homogeneous in the sense that they do not have distinct exper-
tise - they are simply processors to be exploited in solving the problem. Although
parallel problem solving was synonymous with CDPS in the early days of multi-
agent systems, the two fields are now regarded as quite separate. (However, it
goes without saying that a multiagent system will employ parallel architectures
and languages: the point is that the concerns of the two areas are rather different.)

Coherence and coordination

Having implemented an artificial agent society in order to solve some problem,
how does one assess the success (or otherwise) of the implementation? What
criteria can be used? The multiagent systems literature has proposed two types
of issues that need to be considered.

Coherence. Refers to ‘how well the [multiagent] system behaves as a unit, along
some dimension of evaluation’ (Bond and Gasser, 1988, p. 19). Coherence may be
measured in terms of solution quality, efficiency of resource usage, conceptual
clarity of operation, or how well system performance degrades in the presence
of uncertainty or failure; a discussion on the subject of when multiple agents
can be said to be acting coherently appears as (Wooldridge, 1994).

Coordination. In contrast, is ‘the degree...to which [the agents]...can avoid
‘extraneous’ activity [such as]...synchronizing and aligning their activities’
(Bond and Gasser, 1988, p. 19); in a perfectly coordinated system, agents will not
accidentally clobber each other’s sub-goals while attempting to achieve a com-
mon goal; they will not need to explicitly communicate, as they will be mutu-
ally predictable, perhaps by maintaining good internal models of each other.
The presence of conflict between agents, in the sense of agents destructively
interfering with one another (which requires time and effort to resolve), is an
indicator of poor coordination.

It is probably true to say that these problems have been the focus of more atten-
tion in multiagent systems research than any other issues (Durfee and Lesser,

9.2

192 Working Together

/7
/OT’ Y S

DRI
S~

. TN TN
\ / /\)/
(i) Problem (ii) Subproblem (iii) Answer
Decomposition solution synthesis

Figure 9.1 The three stages of CDPS.

1987; Durfee, 1988; Gasser and Hill, 1990; Goldman and Rosenschein, 1993; Jen-
nings, 1993a; Weil}, 1993).
The main issues to be addressed in CDPS include the following.

- How can a problem be divided into smaller tasks for distribution among
agents?

- How can a problem solution be effectively synthesized from sub-problem
results?

- How can the overall problem-solving activities of the agents be optimized
s0 as to produce a solution that maximizes the coherence metric?

- What techniques can be used to coordinate the activity of the agents, so
avoiding destructive (and thus unhelpful) interactions, and maximizing
effectiveness (by exploiting any positive interactions)?

In the remainder of this chapter, we shall see some techniques developed by the
multiagent systems community for addressing these concerns.

Task Sharing and Result Sharing

How do a group of agents work together to solve problems? Smith and Davis
(1980) suggested that the CDPS process can Cangulcaﬂy be viewed as a three-stage

VAUV dhagatdiitia Laalil wae A

activity (see Figure 9.1) as follows.

(1) Problem decomposition. In this stage, the overall problem to be solved is
decomposed into smaller sub-problems. The decomposition will typically be
hierarchical, so that sub-problems are then further decomposed into smaller

Task Sharing and Result Sharing 193

sub-problems, and so on, until the sub-problems are of an appropriate granu-
larity to be solved by individual agents. The different levels of decomposition
will often represent different levels of problem abstraction. For example, con-
sider a (real-world) example of cooperative problem solving, which occurs when
a government body asks whether a new hospital is needed in a particular region.
In order to answer this question, a number of smaller sub-problems need to be
solved, such as whether the existing hospitals can cope, what the likely demand
is for hospital beds in the future, and so on. The smallest level of abstraction
might involve asking individuals about their day-to-day experiences of the cur-
rent hospital provision. Each of these different levels in the problem-solving
hierarchy represents the problem at a progressively lower level of abstraction.

Notice that the grain size of sub-problems is important: one extreme view
of CDPS is that a decomposition continues until the sub-problems represent
‘atomic’ actions, which cannot be decomposed any further. This is essen-
tially what happens in the ACTOR paradigm, with new agents - ACTORs
being spawned for every sub-problem, until ACTORs embody individual pro-
gram instructions such as addition, subtraction, and so on (Agha, 1986). But
this approach introduces a number of problems. In particular, the overheads

;;; QKax

problems outweigh the benefits of a cooperative solution.

Another issue is how to perform the decomposition. One possibility is that
the problem is decomposed by one individual agent. However, this assumes
that this agent must have the appropriate expertise to do this - it must have
knowledge of the task structure, that is, how the task is ‘put together'. If other
agents have knowledge pertaining to the task structure, then they may be able
to assist in identifying a better decomposition. The decomposition itself may
therefore be better treated as a cooperative activity.

Yet another issue is that task decomposition cannot in general be done without
some knowiedge of the agents that will eventually solve problems. There is no
point in arriving at a particular decomposition that is impossible for a particular
collection of agents to solve,

(2) Sub-problem solution. In this stage, the sub-problems identified during prob-
lem decomposition are individually solved. This stage typically involves sharing
of information between agents: one agent can help another out if it has infor-
mation that may be useful to the other.

(3) Solution synthesis. In this stage, solutions to individual sub-problems are
integrated into an overall solution. As in problem decomposition, this stage may
be hierarchical, with partial solutions assembled at different levels of abstrac-

rtal soiut 15 O1
ron.

Note that the extent to which these stages are explicitly carried out in a particular
problem domain will depend very heavily on the domain itself; in some domains,
some of the stages may not be present at all.

9.2.1

194 Working Together

Task | <L(—Z><L =
Task 1.1 Task 1.2} |Task 1.3
(a) Task sharing (b) Result sharing

Figure 9.2 (a) Task sharing and (b) result sharing. In task sharing, a task is decomposed
into sub-problems that are allocated to agents, while in result sharing, agents supply each
other with relevant information, either proactively or on demand.

Given this general framework for CDPS, there are two specific cooperative
problem-solving activities that are likely to be present: task sharing and result
sharing (Smith and Davis, 1980) (see Figure 9.2).

Task sharing. Task sharing takes place when a problem is decomposed to smaller
sub-problems and allocated to different agents. Perhaps the key problem to be
solved in a task-sharing system is that of how tasks are to be allocated to indi-
vidual agents. If all agents are homogeneous in terms of their capabilities (cf. the
discussion on parallel problem solving, above), then task sharing is straightfor-
ward: any task can be allocated to any agent. However, in all but the most trivial
of cases, agents have very different capabilities. In cases where the agents are
really autonomous - and can hence decline to carry out tasks (in systems that
do not enjoy the benevolence assumption described above), then task alloca-
tion will involve agents reaching agreements with others, perhaps by using the
techniques described in Chapter 7.

Result sharing. Result sharing involves agents sharing information relevant to
their sub-problems. This information may be shared proactively (one agent
sends another agent some information because it believes the other will be
interested in it), or reactively {(an agent sends another information in response
to a request that was previously sent - cf. the subscribe performatives in the
agent communication languages discussed earlier).

In the sections that follow, I shall discuss task sharing and result sharing in more
detail.

Task sharing in the Contract Net

The Contract Net (CNET) protocol is a high-level protocol for achieving efficient
cooperation through task sharing in networks of communicating problem solvers
(Smith, 1977, 1980a,b; Smith and Davis, 1980). The basic metaphor used in the
CNET is, as the name of the protocol suggests, contracting - Smith took his inspi-
ration from the way that companies organize the process of putting contracts out
to tender (see Figure 9.3).

Task Sharing and Result Sharing

I have a problem ®

Ki *W i\;

(a) Recognizing (b) Task announcement
Ad the problem

) @
T -
;: (c) Bidding :: (d) Awarding the contract

Q
v

L, 2 Brotocol.
igure .o I CO

[A] node that generates a task advertises existence of that task to other
nodes in the net with a task announcement, then acts as the manager
of that task for its duration. In the absence of any information about
the specific capabilities of the other nodes in the net, the manager is
forced to issue a general broadcast to all other nodes. If, however, the
manager possesses some knowledge about which of the other nodes
in the net are likely candidates, then it can issue a limited broadcast to
just those candidates. Finally, if the manager knows exactly which of
the other nodes in the net is appropriate, then it can issue a point-to-
point announcement. As work on the problem progresses, many such
task announcements will be made by various managers.

Nodes in the net listen to the task announcements and evaluate
them with respect to their own specialized hardware and software
resources. When a task to which a node is suited is found, it submits
a bid. A bid indicates the capabilities of the bidder that are relevant to
the execution of the announced task. A manager may receive several
such bids in response to a single task announcement; based on the
information in the bids, it selects the most appropriate nodes to exe-
cute the task. The selection is communicated to the successful bidders
through an award message. These selected nodes assume responsibil-

195

196 Working Together

ity for execution of the task, and each is called a contractor for that
task.

After the task has been completed, the contractor sends a report to
the manager. (Smith, 1980b, pp. 60, 61)

[This] normal contract negotiation process can be simplified in
some instances, with a resulting enhancement in the efficiency of the
protocol. If a manager knows exactly which node is appropriate for
the execution of a task, a directed contract can be awarded. This dif-
fers from the announced contract in that no announcement is made
and no bids are submitted. Instead, an award is made directly. In such
cases, nodes awarded contracts must acknowledge receipt, and have
the option of refusal.

Finally, for tasks that amount to simple requests for information, a
contract may not be appropriate. In such cases, a request-response
sequence can be used without further embellishment. Such messages
(that aid in the distribution of data as opposed to control) are imple-
mented as request and information messages. The request message is
used to encode straightforward requests for information when con-
tracting is unnecessary. The information message is used both as a
response to a request message and a general data transfer message.

(Smith, 1980b, pp. 62, 63)

In addition to describing the various messages that agents may send, Smith
describes the procedures to be carried out on receipt of a message. Briefly, these
procedures are as follows (see Smith (1980b, pp. 96-102) for more details).

(1) Task announcement processing. On receipt of a task announcement, an
agent decides if it is eligible for the task. It does this by looking at the eligi-
bility specification contained in the announcement. If it is eligible, then details
of the task are stored, and the agent will subsequently bid for the task.

(2) Bid processing. Details of bids from would-be contractors are stored by
(would-be) managers until some deadline is reached. The manager then awards
the task to a single bidder.

(3) Award processing. Agents that bid for a task, but fail to be awarded it, simply
delete details of the task. The successful bidder must attempt to expedite the
task (which may mean generating new sub-tasks).

(4) Request and inform processing. These messages are the simplest to handle.
A request simply causes an inform message to be sent to the requestor, con-
taining the required information, but only if that information is immediately
available. (Otherwise, the requestee informs the requestor that the information

Result Sharing 197

is unknown.) An inform message causes its content to be added to the recipi-
ent’s database. It is assumed that at the conclusion of a task, a contractor will
send an information message to the manager, detailing the results of the expe-
dited task!.

Despite (or perhaps because of) its simplicity, the Contract Net has become the
most implemented and best-studied framework for distributed problem solving.

Result Sharing

In result sharing, problem solving proceeds by agents cooperatively exchanging
information as a solution is developed. Typically, these results will progress from
being the solution to small problems, which are progressively refined into larger,
more abstract solutions. Durfee {1999, p. 131) suggests that problem solvers can
improve group performance in result sharing in the following ways.

Confidence: independently derived solutions can be cross-checked, highlighting
possible errors, and increasing confidence in the overall solution.

Completeness: agents can share their local views to achieve a better overall global
view.

Precision: agents can share results to ensure that the precision of the overall
solution is increased.

Timeliness: even if one agent could solve a problem on its own, by sharing a
solution, the result could be derived more quickly.

Combining Task and Result Sharing

In the everyday cooperative working that we all engage in, we frequently combine
task sharing and result sharing. In this section, I will briefly give an overview of
how this was achieved in the FELINE system (Wooldridge et al., 1991). FELINE was
a cooperating expert system. The idea was to build an overall problem-solving
system as a collection of cooperating experts, each of which had expertise in
distinct but related areas. The system worked by these agents cooperating to
both share knowledge and distribute subtasks. Each agent in FELINE was in fact an
independent rule-based system: it had a working memory, or database, containing
information about the current state of problem solving; in addition, each agent
had a collection of rules, which encoded its domain knowledge.

Each agent in FELINE also maintained a data structure representing its beliefs
about itself and its environment. This data structure is called the environment
model (cf. the agents with symbolic representations discussed in Chapter 3). It

"This is done via a special report message type in the original CNET framework.

198 Working Together

contained an entry for the modelling agent and each agent that the modelling
agent might communicate with (its acquaintances). Each entry contained two
important attributes as follows.

Skills. This attribute is a set of identifiers denoting hypotheses which the agent
has the expertise to establish or deny. The skills of an agent will correspond
roughly to root nodes of the inference networks representing the agent’s
domain expertise.

Interests. This attribute is a set of identifiers denoting hypotheses for which the
agent requires the truth value. It may be that an agent actually has the expertise
to establish the truth value of its interests, but is nevertheless ‘interested’ in
them. The interests of an agent will correspond roughly to leaf nodes of the
inference networks representing the agent’s domain expertise.

Messages in FELINE were triples, consisting of a sender, receiver, and contents.
The contents field was also a triple, containing message type, attribute, and value.
Agents in FELINE communicated using three message types as follows (the system
predated the KQML and FIPA languages discussed in Chapter 8).

Request. If an agent sends a request, then the attribute field will contain an iden-
tifier denoting a hypothesis. It is assumed that the hypothesis is one which lies
within the domain of the intended recipient. A request is assumed to mean that
the sender wants the receiver to derive a truth value for the hypothesis.

Response. If an agent receives a request and manages to successfully derive a
truth value for the hypothesis, then it will send a response to the originator of
the request. The attribute field will contain the identifier denoting the hypoth-
esis; the value field will contain the associated truth value.

Inform. The attribute field of an inform message will contain an identifier denot-
ing a hypothesis. The value field will contain an associated truth value. An
inform message will be unsolicited; an agent sends one if it thinks the recipient
will be ‘interested’ in the hypothesis.

To understand how problem solving in FELINE worked, consider goal-driven
problem solving in a conventional rule-based system. Typically, goal-driven rea-
soning proceeds by attempting to establish the truth value of some hypothesis.
If the truth value is not known, then a recursive descent of the inference network
associated with the hypothesis is performed. Leaf nodes in the inference network
typically correspond to questions which are asked of the user, or data that is
acquired in some other way. Within FELINE, this scheme was augmented by the
following principle. When evaluating a leaf node, if it is not a question, then the
environment model was checked to see if any other agent has the node as a ‘skill’.
If there was some agent that listed the node as a skill, then a request was sent
to that agent, requesting the hypothesis. The sender of the request then waited
until a response was received; the response indicates the truth value of the node.

Handling Inconsistency 199

Typically, data-driven problem solving proceeds by taking a database of facts
(hypotheses and associated truth values), and a set of rules, and repeatedly gen-
erating a set of new facts. These new facts are then added to the database, and
the process begins again. If a hypothesis follows from a set of facts and a set
of rules, then this style of problem solving will eventually generate a result. In
FELINE, this scheme was augmented as follows. Whenever a new fact was gener-
ated by an agent, the environment model was consulted to see if any agent has
the hypothesis as an ‘interest’. If it did, then an ‘inform’ message was sent to the
appropriate agent, containing the hypothesis and truth value. Upon receipt of an
‘inform’ message, the recipient agent added the fact to its database and entered
a forward chaining cycle, to determine whether any further information could be
derived; this could lead to yet more information being sent to other agents. Simi-
lar schemes were implemented in (for example) the CoOpera system (Sommaruga

~1t =T 1 MO MY
et al., 1989).

L

Handling Inconsistency

that of inconsis-

One of the maijor problems that arises i

AL A S ST A SRRV N A WES S p R AN

tencies between different agents in the system. Agents may have inconsistencies
with respect to both their beliefs (the information they hold about the world),
and their goals/intentions (the things they want to achieve). As I indicated ear-

lier, inconsistencies between goals generally arise because agents are assumed to
be autonomous. and thus not share common obiectives. Inconsistencies between

DRSS A220 A0,y GRasta aakad aavvr Saalis iliiaaican S piia ARSI AN A

the beliefs that agents have can arise from several sources. First, the viewpoint
that agents have will typically be limited - no agent will ever be able to obtain
a complete picture of their environment. Also, the sensors that agents have may
be faulty, or the information sources that the agent has access to may in turn be
faulty.

In a system of moderate size, inconsistencies are inevitable: the question is how
to deal with them. Durfee et al. (1989a) suggest a number of possible approaches

to the problem as follows.

=1
)
=
=
g
)
=
=¥
’:"
»
:"
:‘..

- Do not allow it to occur - or at least ignore it. This is essentially the approach
of the Contract Net: task sharing is always driven by a manager agent, who
has the only view of the problem that matters.

- Resolve inconsistencies through negotiation (see Chapter 7). While this may
be desirable in theory, the communication and computational overheads
incurred suggest that it will rarely be possible in practice.

- Build systems that degrade gracefully in the presence of inconsistency.
The third approach is clearly the most desirable. Lesser and Corkill (1981) refer to

systems that can behave robustly in the presence of inconsistency as functionally
accurate/cooperative (FA/Q):

9.6

200

Working Together

[In FA/C systems]...nodes cooperatively exchange and integrate par-
tial, tentative, high-level results to construct a consistent and complete
solution. [An agent’s] problem-solving is structured so that its local
knowledge bases need not be compiete, consistent, and up-to-date in
order to make progress on its problem-solving tasks. Nodes do the
best they can with their current information, but their solutions to
their local sub-problems may be only partial, tentative, and incorrect.

(Durfee et al., 1989a, pp. 117, 118)

Lesser and Corkill (1981) suggested the following characteristics of FA/C systems
that tolerate inconsistent/incorrect information.

- Problem solving is not tightly constrained to a particular sequence of

events - it progresses opportunistically (i.e. not in a strict predetermined
order, but taking advantage of whatever opportunities arise) and incremen-
tally (i.e. by gradually piecing together solutions to sub-problems).

Agents communicate by exchanging high-level intermediate results, rather
than by exchanging raw data.

Uncertainty and inconsistency is implicitly resolved when partial results are
exchanged and compared with other partial solutions. Thus inconsistency
and uncertainty is resolved as problem solving progresses, rather than at
the beginning or end of problem solving.

The solution is not constrained to a single solution route: there are many
possible ways of arriving at a solution, so that if one fails, there are other
ways of achieving the same end. This makes the system robust against local-
ized failures and bottlenecks in problem solving.

Coordination

Perhaps the defining problem in cooperative working is that of coordination. The
coordination problem is that of managing inter-dependencies between the activ-
ities of agents: some coordination mechanism is essential if the activities that
agents can engage in can interact in any way. How might two activities interact?
Consider the following real-world examples.

- You and I both want to leave the room, and so we independently walk

towards the door, which can only fit one of us. I graciously permit you to
leave first.
In this example, our activities need to be coordinated because there is a

resource (the door) which we both wish to use, but which can only be used
by one person at a time.

Coorvdination
Coordinagtion

N
-
[t

consumable

/ resource

resource

non-consumable
resource

negative
/ relationships
incompatibility

multiagent plan
request

relationships
\ / (explicit)
positive

relationships

non-requested
(implicit)

Figure 9.4 Von Martial’s typology of coordination relationships.

- I intend to submit a grant proposal, but in order to do this, I need your
signature.

In this case, my activity of sending a grant proposal depends upon your activ-
ity of signing it off - I cannot carry out my activity until yours is completed.
In other words, my activity depends upon yours.

- 1 obtain a soft copy of a paper from a Web page. I know that this report
will be of interest to you as well. Knowing this, I proactively photocopy the
report, and give you a copy.

In this case, our activities do not strictly need to be coordinated - since the
report is freely available on a Web page, you could download and print your
own copy. But by proactively printing a copy, I save you time and hence,
intuitively, increase your utility.

von Martial (1990) suggested a typology for coordination relationships (see Fig-
ure 9.4). He suggested that, broadly, relationships between activities could be
either positive or negative.

Positive relationships ‘are all those relationships between two plans from which
some benefit can be derived, for one or both of the agents plans, by combining
them’ (von Martial, 1990, p. 111). Such relationships may be requested (I explic-
itly ask you for help with my activities) or non-requested (it so happens that by
working together we can achieve a solution that is better for at least one of us,
without making the other any worse off, cf. discussions of pareto optimality in

9.6.1

202 Working Together

the preceding chapters). von Martial (1990, p. 112) distinguishes three types of
non-requested relationship as follows.

The action equality relationship. We both plan to perform an identical action,
and by recognizing this, one of us can perform the action alone and so save the
other effort.

The consequence relationship. The actions in my plan have the side-effect of
achieving one of your goals, thus relieving you of the need to explicitly achieve
it.

The favour relationship. Some part of my plan has the side effect of contributing
to the achievement of one of your goals, perhaps by making it easier (e.g. by

achieving a precondition of one of the actions in it).

Coordination in multiagent systems is assumed to happen at run time, that is,
the agents themselves must be capable of recognizing these relationships and,
where necessary, managing them as part of their activities (von Martial, 1992).
This contrasts with the more conventional situation in computer science, where
a designer explicitly attempts to anticipate possible interactions in advance, and
designs the system so as to avoid negative interactions and exploit potential pos-
itive interactions.

In the sections that follow, I present some of the main approaches that have
been developed for dynamically coordinating activities.

Coordination through partial global planning

The Distributed Vehicle Monitoring Testhed (DVMT) was one of the earliest and

LA LR AN V.oDE LY R e A ¥ oY (ST R S WL vai¥i i g ¥ Al AL ‘A‘_ _“AAA_U‘ Glaiva

best-known testbeds for multiagent systems. The DVMT was a fully instrumented
testbed for developing distributed problem-solving networks (Lesser and Erman,
1980; Lesser and Corkill, 1988). The testbed was based around the domain of
distributed vehicle sensing and monitoring: the aim was to successfully track a
number of vehicles that pass within the range of a set of distributed sensors.
The main purpose of the testbed was to support experimentation into different
problem-solving strategies.

The distributed sensing domain is inherently data driven: new data about vehi-

cle movements appears and must be processed by the system. The main problem
with the domain was to process information as rapidly as possible, so that the

Saf LASN RANALLIGENL Y A0 aaaavaiiaiiail Qo i Gpriaa WMdaksat, S8 wiain L

system could come to conclusions about the paths of vehlcles in time for them to
be useful. To coordinate the activities of agents in the DVMT, Durfee developed
an approach known as partial global planning (Durfee and Lesser, 1987; Durfee,

1988, 1996).
The main principle of par al global planning is that cooperating agents
exchange information in order to reach common conclusions about the problem-

solving process. Planning is parnal because the system does not (indeed cannot)

Coordination 203

generate a plan for the entire problem. It is global because agents form non-local
plans by exchanging local plans and cooperating to achieve a non-local view of
problem solving.
Partial global planning involves three iterated stages.
(1) Each agent decides what its own goals are, and generates short-term plans
in order to achieve them.

(2) Agents exchange information to determine where plans and goals interact.

(3) Agents alter local plans in order to better coordinate their own activities.

In order to prevent incoherence during these processes, Durfee proposed the use
of a meta-level structure, which guided the cooperation process within the sys-
tem. The meta-level structure dictated which agents an agent should exchange
information with, and under what conditions it ought to do so.

The actions and interactions of a group of agents were incorporated into a data
structure known as a partial global plan. This data structure will be generated
cooperatively by agents exchanging information. It contained the following prin-
ciple attributes.

Objective. The objective is the larger goal that the system is working towards.

Activity maps. An activity map is a representation of what agents are actually
doing, and what results will be generated by their activities.

Solution construction graph. A solution construction graph is a representation
of how agents ought to interact, what information ought to be exchanged, and

2287 H—asiS Ha1 S A2 G e S L e L F T] (SFa LW B ROV Ay Qaila

when, in order for the system to successfully generate a result.

Keith Decker extended and refined the PGP coordination mechanisms in his TAMS
testbed (Decker, 1996); this led to what he called generalized partial global plan-
ning (GPGP - pronounced ‘gee pee gee pee’) (Decker and Lesser, 1995). GPGP makes
use of five techniques for coordinating activities as follows.

Updating non-local viewpoints. Agents have only local views of activity, and so
sharing information can help them achieve broader views. In his TAMS system,
Decker uses three variations of this policy: communicate no local information,
communicate all information, or an intermediate level.

Communicate results. Agents may communicate results in three different ways.
A minimal approach is where agents only communicate results that are essential
to satisfy obligations. Another approach involves sending all results. A third is
to send results to those with an interest in them.

Handling simple redundancy. Redundancy occurs when efforts are duplicated.
This may be deliberate - an agent may get more than one agent to work on a task
because it wants to ensure the task gets done. However, in general, redundan-
cies indicate wasted resources, and are therefore to be avoided. The solution
adopted in GPGP is as follows. When redundancy is detected, in the form of

9.6.2

204 Working Together

multiple agents working on identical tasks, one agent is selected at random to
carry out the task. The results are then broadcast to other interested agents.

Handling hard coordination relationships. ‘Hard’ coordination relationships are
essentially the ‘negative’ relationships of von Martial, as discussed above. Hard
coordination relationships are thus those that threaten to prevent activities
being successfully completed. Thus a hard relationship occurs when there is
a danger of the agents’ actions destructively interfering with one another, or
preventing each others actions being carried out. When such relationships are
encountered, the activities of agents are rescheduled to resolve the problem.

Handling soft coordination relationships. ‘Soft’ coordination relationships in-
clude the ‘positive’ relationships of von Martial. Thus these relationships
include those that are not ‘mission critical’, but which may improve overall
performance. When these are encountered, then rescheduling takes place, but
with a high degree of ‘negotiability’: if rescheduling is not found possible, then
the system does not worry about it too much.

Coordination through joint intentions

The second approach to coordination that I shall discuss is the use of human team-
work models. We saw in Chapter 4 how some researchers have built agents around
the concept of practical reasoning, and how central intentions are in this practical
reasoning process. Intentions also play a critical role in coordination: they pro-
vide both the stability and predictability that is necessary for social interaction,
and the flexibility and reactivity that is necessary to cope with a changing envi-
ronment. If you know that I am planning to write a book, for example, then this
gives you information that you can use to coordinate your activities with mine.
For example, it allows you to rule out the possibility of going on holiday with me,
or partying with me all night, because you know I will be working hard on the
book.

When humans work together as a team, mental states that are closely related to
intentions appear to play a similarly important role (Levesque et al., 1990; Cohen
and Levesque, 1991). It is important to be able to distinguish coordinated action
that is not cooperative from coordinated cooperative action. As an illustration of
this point, consider the following scenario (Searle, 1990).

A group of people are sitting in a park. As a result of a sudden down-
pour all of them run to a tree in the middle of the park because it is the
only available source of shelter. This may be coordinated behaviour,
but it is not cooperative action, as each person has the intention of
stopping themselves from becoming wet, and even if they are aware
of what others are doing and what their goals are, it does not affect
their intended action. This contrasts with the situation in which the
people are dancers, and the choreography calls for them to converge

Coordination 205

on a common point (the tree). In this case, the individuals are perform-
ing exactly the same actions as before, but because they each have the
aim of meeting at the central point as a consequence of the overall aim
of executing the dance, this is cooperative action.

How does having an individual intention towards a particular goal differ from
being part of a team, with some sort of collective intention towards the goal?
The distinction was first studied in Levesque et al. (1990), where it was observed
that being part of a team implies some sort of responsibility towards the other
members of the team. To illustrate this, suppose that you and I are together lifting
a heavy object as part of a team activity. Then clearly we both individually have
the intention to lift the object - but is there more to teamwork than this? Well,
suppose I come to believe that it is not going to be possible to lift it for some
reason. If [just have an individual goal to lift the object, then the rational thing
for me to do is simply drop the intention (and thus perhaps also the object).
But you would hardly be inclined to say I was cooperating with you if I did so.
Being part of a team implies that T show some responsibility towards you: that if
[discover the team effort is not going to work, then I should at least attempt to
make you aware of this.

Building on the work of Levesque et al. (1990), Jennings distinguished between
the commitment that underpins an intention and the associated convention
(Jennings, 1993a). A commitment is a pledge or a promise (for example, to have
lifted the object); a convention in contrast is a means of monitoring a commit-
ment - it specifies under what circumstances a commitment can be abandoned
and how an agent should behave both locally and towards others when one of
these conditions arises.

In more detail, one may commit either to a particular course of action, or, more
generally, to a state of affairs. Here, we are concerned only with commitments
that are future directed towards a state of affairs. Commitments have a number
of important properties (see Jennings (1993a) and Cohen and Levesque (1990a,
pp. 217-219) for a discussion), but the most important is that commitments per-
sist: having adopted a commitment, we do not expect an agent to drop it until,
for some reason, it becomes redundant. The conditions under which a commit-
ment can become redundant are specified in the associated convention - exam-
ples include the motivation for the goal no longer being present, the goal being
achieved, and the realization that the goal will never be achieved (Cohen and
Levesque, 1990a).

When a group of agents are engaged in a cooperative activity they must have a
joint commitment to the overall aim, as well as their individual commitments to
the specific tasks that they have been assigned. This joint commitment shares the
persistence property of the individual commitment; however, it differs in that its
state is distributed amongst the team members. An appropriate social convention
must also be in place. This social convention identifies the conditions under which
the joint commitment can be dropped, and also describes how an agent should

206 Working Together

behave towards its fellow team members. For example, if an agent drops its joint
commitment because it believes that the goal will never be attained, then it is part
of the notion of ‘cooperativeness’ that is inherent in joint action that it informs
all of its fellow team members of its change of state. In this context, social con-
ventions provide general guidelines, and a common frame of reference in which
agents can work. By adopting a convention, every agent knows what is expected
both of it, and of every other agent, as part of the collective working towards the
goal, and knows that every other agent has a similar set of expectations.

We can begin to define this kind of cooperation in the notion of a joint persistent
goal (JPG), as defined in Levesque et al. (1990). In a JPG, a group of agents have
a collective commitment to bringing about some goal @; the motivation for this
goal, i.e. the reason that the group has the commitment, is represented by .
Thus @ mlght be ‘move the heavy object’, whlle Y mlght be ‘Michael wants the

— ~F el a-,\,‘w ~ T

heavy object moved’. The mental state of the team of agents with this JPG might
be described as follows:

- initially, every agent does not believe that the goal @ is satisfied, but believes
@ is possible;

.+ every agent i then has a goal of @ until the termination condition is satisfied
(see below);

+ until the termination condition is satisfied, then

- if any agent i believes that the goal is achieved, then it will have a goal
that this becomes a mutual belief, and will retain this goal until the
termination condition is satisfied;

- if any agent i believes that the goal is impossible, then it will have a
goal that this becomes a mutual belief, and will retain this goal until
the termination condition is satisfied;

- if any agent i believes that the motivation ¢ for the goal is no longer

..... 2L AL YAl I I AL

present, then it will have a goal that this becomes a mutual belief, and
will retain this goal until the termination condition is satisfied;

- the termination condition is that it is mutually believed that either

- the goal @ is satisfied;
- the goal @ is impossible to achieve;
- the motivation/justification for the goal is no longer present.

Commitments and conventions in ARCHON

Jennings (1993a, 1995) investigated the use of commitments and such as JPGs in
the coordination of an industrial control system called ARCHON (Wittig, 1992; Jen-
nings et al., 1996a; Perriolat et al., 1996). He noted that commitments and conven-
tions could be encoded as rules in a rule-based system. This makes it possible to
explicitly encode coordination structures in the reasoning mechanism of an agent.

Coordination 207

interagent

N
communication manager . .
___________________________ comiInunication

cooperation & control layer

acquaintance
maodel

cooperation
maodule

{

situation
assessment

module \

information
store

task 1 task 2 task n

control module

Figure 9.5 ARCHON agent architecture.

The overall architecture of agents in ARCHON is illustrated in Figure 9.5. Agents
have three layers. The lowest layer is the control layer. This layer contains domain-
specific agent capabilities. The idea is that agents in ARCHON wrap legacy soft-
ware in agent-like capabilities. In the ARCHON case, these legacy systems were
stand-alone expert systems. The legacy systems were embedded within a control
module, which provided access to them via an API. ARCHON agents maintained
three different types of information, in the forms of an acquaintance model (cf. the
acquaintance models of the MACE system described later in this chapter), a self
model (which contains information about the agent's own skills and interests),
and, finally, a general-purpose information store, which contains other informa-
tion about the agent’s environment. The behaviour of the agent was determined
by three main control modules: the cooperation module, which was responsible for
the agent’s social ability; the situation assessment module, which was responsible
for determining when the need for new teamwork arose; and, finally, the commu-
nication manager, which was responsible for sending/receiving messages.

Some of the rules used for reassessing joint commitments and selecting actions
to repair failed teamwork are shown in Figure 9.6 (from Jennings, 1995). The
first four rules capture the conditions where the joint goal has been successfully
achieved, where the motivation for the joint goal is no longer present, and where
the current plan to achieve the joint goal has been invalidated in some way. The
following ‘select’ rules are used to determine a repair action.

208 Working Together

Match rules::

R1: if task t has finished executing and
t has produced desired outcome of joint action
then joint goal is satisfied.

R2: if receive information i and
1 1s related to triggering conditions
for joint goal G and
i invalidates beliefs for wanting G
then motivation for G is no longer present.

R3: if delay task tl1 and
tl is a component of common recipe R and
tl must be synchronized with t2 in R
then R 7is violated.

R4: if finished executing common recipe R and
avnaff' f" anrr7+c I'I‘F D N+ hy'ﬂl"llf'ﬂf" QHI'I
’.}\-\-LCM r | S wi AN IJUL ’Jl AL O CATIWA

alternative recipe exists
then R is invalid.

Select rules:

R1: if joint goal is satisfied
then abandon all associated local activities and
inform cooperation module

R2: if motivation for joint goal no longer present
then abandon all associated local activities and
TmFrarm rannamat1nn madiila
IFE RS i LUU'JC' AL IUif HIUWL 1T
R3: if common recipe R is violated and

R can be rescheduled

then suspend Tocal activities associated with R and
reset timings and descriptions associated with R and
inform cooperation module

R4: if common recipe R1 is invalid and
alternative recipe R2 exists
then abandon all local activities with R1 and
inform cooperation module that R1 is invalid and
propose R2 to cooperation module

Figure 9.6 Joint commitment rules in ARCHON.,

Milind Tambe developed a similar framework for teamwork called Steam

(Tambe, 1997) Agents in Steam are programmed using the Soar rule-based archi-
tecture (Newell et al, 1989, 1990). The cooperation component of Steam is

Coordindation 205

encoded in about 300 domain-independent rules, somewhat similar in principle
to Jennings’s teamwork rules, as shown above. However, the cooperation rules of
Steam are far more complex, allowing for sophisticated hierarchical team struc-

Hiiracg
UL U O,

The Steam framework was used in a number of application domains, including
military mission simulations, as well as the RoboCup simulated robotic soccer
domain.

A teamwork-based model of CDPS
Building on Jennings’s teamwork-based coordination model (Jennings, 1995), a

four-stage model of CDPS was presented in Wooldridge and Jennings (1994, 1999).
The four stages of the model are as follows.

(1) Recognition. CDPS begins when some agent in a multiagent community has
a goal, and recognizes the potential for cooperative action with respect to that
goal. Recognition may occur for several reasons. The paradigm case is that in
which the agent is unable to achieve the goal in isolation, but believes that coop-
erative action can achieve it. For example, an agent may have a goal which, to
achieve, requires information that is only accessible to another agent. Without
the cooperation of this other agent, the goal cannot be achieved. More pro-
saically, an agent with a goal to move a heavy object might simply not have the
strength to do this alone.

Alternatively, an agent may be able to achieve the goal on its own, but may
not want to. There may be several reasons for this. First, it may believe that in
working alone, it will clobber one of its other goals. For example, suppose I have
a goal of lifting a heavy object. I may have the capability of lifting the object,
but I might believe that in so doing, [would injure my back, thereby clobbering
my goal of being healthy. In this case, a cooperative solution - involving no
injury to my back - is preferable. More generally, an agent may believe that
a cooperative solution will in some way be better than a solution achieved by
action in isolation. For example, a solution might be obtained more quickly, or
may be more accurate as a result of cooperative action.

Believing that you either cannot achieve your goal in isolation, or that (for what-
ever reason) you would prefer not to work alone, is part of the potential for
cooperation. But it is not enough in itself to initiate the social process. For there
to be potential for cooperation with respect to an agent’s goal, the agent must

also believe there is some group of agents that can actually achieve the goal.

(2) Team formation. During this stage, the agent that recognized the potential for
cooperative action at stage (1) solicits assistance. If this stage is successful, then
it will end with a group of agents having some kind of nominal commitment to
collective action. This stage is essentially a collective deliberation stage (see the
discussion on deliberation in Walton and Krabbe’s dialogue types, discussed in

9.6.3

210 Working Together

Chapter 7). At the conclusion of this stage, the team will have agreed to the ends
to be achieved (i.e. to the principle of joint action), but not to the means (i.e. the
way in which this end will be achieved). Note that the agents are assumed to
be rational, in the sense that they will not form a team unless they implicitly
believe that the goal is achievable.

(3) Plan formation. We saw above that a group will not form a collective uniess
they believe they can actually achieve the desired goal. This, in turn, implies
there is at least one action known to the group that will take them ‘closer’ to
the goal. However, it is possible that there are many agents that know of actions
the group can perform in order to take them closer to the goal. Moreover, some
members of the collective may have objections to one or more of these actions.
It is therefore necessary for the collective to come to some agreement about
exactly which course of action they will follow. Such an agreement is reached
via negotiation or argumentation, of exactly the kind discussed in Chapter 7.

¥y

Cuted by the agents which maintain a Close kmt relatlonshlp throughout. This
relationship is defined by a convention, which every agent follows. The JPG
described above might be one possible convention.

Coordination by mutual modelling

Another approach to coordination, closely related to the models of human team-
work I discussed above, is that of coordination by mutual modelling. The idea is
as follows. Recall the simple coordination example I gave earlier: you and I are
both walking to the door, and there is not enough room for both of us - a col-
lision is imminent. What should we do? One option is for both of us to simply
stop walking. This possibility guarantees that no collision will occur, but it is in
some sense sub-optimal: while we stand and wait, there is an unused resource
(the door), which could fruitfully have been exploited by one of us. Another pos-
sibility is for both of us to put ourselves in the place of the other: to build a model
of other agents - their beliefs, intentions, and the like - and to coordinate our
activities around the predictions that this model makes. In this case, you might

believe that I am eager to please you, and therefore that I will likely allow you to
pass through the door first; on this basis, you can continue to walk to the door.

This approach to coordlnatlon was ﬁrst explicitly articulated in Genesereth et
al. (1986), where the approach was dubbed ‘cooperation without communication’.
The models that were proposed were essentially the game-theoretic models that

I discussed in Chapter 6. The idea was that if you assume that both you and the

other agents with which you interact share a common view of the scenario (in

AL LW § il ¥ FYaiiin iz FU SRS 4L W Siilii o (LVESEEEE LV Y SUCAAGE RS \aa

game-theory terms, you all know the payoff matrix), then you can do a game-
theoretic analysis to determine what is the rational thing for each player to do.

Coordination 211

Note that - as the name of the approach suggests - explicit communication is not
necessary in this scenario.

MACE

Les Gasser’s MACE system, developed in the mid-1980s, can, with some justifi-
cation, claim to be the first general experimental testbed for multiagent systems
(Gasser et al., 1987a,b). MACE is noteworthy for several reasons, but perhaps most
importantly because it brought together most of the components that have sub-
sequently become common in testbeds for developing multiagent systems. [men-
tion it in this section because of one critical component: the acquaintance models,
which are discussed in more detail below. Acquaintance models are representa-
tions of other agents: their abilities, interests, capabilities, and the like.

A MACE system contains five components:

- a collection of application agents, which are the basic computational units
in a MACE system (see below);

+ a collection of predefined system agents, which provide service to users
(e.g. user interfaces);

. a collection of facilities, available to all agents (e.g. a pattern matcher);

- a description database, which maintains agent descriptions, and produces
executable agents from those descriptions; and

- aset of kernels, one per physical machine, which handle communication and
message routing, etc.

Gasser et al. identified three aspects of agents: they contain knowledge, they
sense their environment, and they perform actions (Gasser et al.,, 1987b, p. 124).
Agents have two kinds of knowledge: specialized, local, domain knowledge, and
acquaintance knowledge - knowledge about other agents. An agent maintains the

following information about its acquaintances (Gasser et al., 1987b, pp. 126, 127).

Class. Agents are organized in structured groups called classes, which are iden-
tified by a class name.

Name. Each agent is assigned a name, unique to its class - an agent’'s address is
a (class,name) pair.

Roles. A role describes the part an agent plays in a class.

Skills. Skills are what an agent knows are the capabilities of the modelled agent.
Goals. Goals are what the agent knows the modelled agent wants to achieve.
Plans. Plans are an agent’s view of the way a modelled agent will achieve its goals.
Agents sense their environment primarily through receiving messages. An agent’s

ability to act is encoded in its engine. An engine is a LISP function, evaluated
by default once on every scheduling cycle. The only externally visible signs of

212 Working Together

((NAME plus-ks)
(IMPORT ENGINE FROM dbb-def)

(ACQUAINTANCES
(plus-ks
. model for plus-ks ...

)

(de-exp
[ROLE (ORG-MEMBER)]
[GOALS (... goal list ...)]
[SKILLS (... skill Tist ...)]
[PLANS (... plan list ...)]

)

(simple-plus
. acquaintance model for simple-plus ...
);

)
(INIT-CODE ¢ ... LISP code ...))

) ; end of plus-ks

Figure 9.7 Structure of MACE agents.

an agent’s activity are the messages it sends to other agents. Messages may be
directed to a single agent, a group of agents, or all agents; the interpretation of
messages is left to the programmer to define.

An example MACE agent is shown in Figure 9.7. The agent modelled in this
example is part of a simple calculator system implemented using the black-
board model. The agent being modelled here is called PLUS-KS. It is a knowledge
source which knows about how to perform the addition operation. The PLUS-KS
knowledge source is the ‘parent’ of two other agents; DE-EXP, an agent which
knows how to decompose simple expressions into their primitive components,
and SIMPLE-PLUS, an agent which knows how to add two numbers.

The definition frame for the PLUS-KS agent consists of a name for the agent - in
this case PLUS-KS - the engine, which defines what actions the agent may perform
(in this case the engine is imported, or inherited, from an agent called DBB-DEF),
and the acquaintances of the agent.

The acquaintances slot for PLUS-KS defines models for three agents. Firstly, the
agent models itself. This defines how the rest of the world will see PLUS-KS. Next,
the agents DE-EXP and SIMPLE-PLUS are modelled. Consider the model for the
agent DE-EXP. The role slot defines the relationship of the modelled agent to the
modeller. In this case, both DE-EXP and SIMPLE-PLUS are members of the class
defined by PLUS-KS. The GOALS slot defines what the modelling agent believes
the modelled agent wants to achieve. The SKILLS slot defines what resources the
modeller believes the modelled agent can provide. The PLANS slot defines how
the modeller believes the modelled agent will achieve its goals. The PLANS slot

e

O 0 o v S U

Coordination 213

consists of a list of skills, or operations, which the modelled agent will perform
in order to achieve its goals.
Gasser et al. described how MACE was used to construct blackboard ystems

PR cxra b i i . r | TR o

Comntract Net b)/blCHl dllLl d IlLlIIllJe[

al, 1987b, 1989, pp. 138-140).

Coordination by norms and social laws

In our everyday lives, we use a range of techniques for coordinating activities. One
of the most important is the use of norms and social laws (Lewis, 1969). Anorm is
simply an established, expected pattern of behaviour; the term social law carries
essentially the same meaning, but it is usually implied that social laws carry with
them some authority. Examples of norms in human society abound. For example,
in the UK, it is a norm to form a queue when waiting for a bus, and to allow those
who arrived first to enter the bus first. This norm is not enforced in any way: it is
simply expected behaviour: diverging from this norm will (usually) cause nothing
more than icy looks from others on the bus. Nevertheless, this norm provides a
template that can be used by all those around to regulate their own behaviour.

Conventions play a key role in the social process. They provide agents with
a template upon which to structure their action repertoire. They represent a
behavioural constraint, striking a balance between individual freedom on the one
hand, and the goal of the agent society on the other. As such, they also simplify an
agent’s decision-making process, by dictating courses of action to be followed in
certain situations. It is important to emphasize what a key role conventions play
in our everyday lives. As well as formalized conventions, which we all recognize as
such (an example being driving on the left- or right-hand side of the road), almost
every aspect of our social nature is dependent on convention. After all, language
itself is nothing more than a convention, which we use in order to coordinate our
activities with others.

One key issue in the understanding of conventions is to decide on the most
effective method by which they can come to exist within an agent society. There
are two main approaches as follows.

Offline design. In this approach, social laws are designed offline, and hardwired
into agents. Examples in the multiagent systems literature include Shoham and
Tennenholtz (1992b), Goldman and Rosenschein (1993) and Conte and Castel-
franchi (1993).

Emergence from within the system. This possibility is investigated in Shoham

and Toannanhanlr7 (1TQ0YaY ittn~l {10072 and Walbar and Wanldridao (1 OQQKNY
QLIV L CLLNCUIIVILL (1 JJod), DhUUN 1 J79) dllud YYaAalitTl allsl VVUU1u11u5C \LITITJI)

who experiment with a number of techniques by which a convention can
‘emerge’ from within a group of agents.

The first approach will often be simpler to implement, and might present the sys-
tem designer with a greater degree of control over system functionality. However,

214 Working Together

there are a number of disadvantages with this approach. First, it is not always
the case that all the characteristics of a system are known at design time. (This
is most obviously true of open systems such as the Internet.) In such systems,
the ability of agents to organize themselves would be advantageous. Secondly, in
complex systems, the goals of agents (or groups of agents) might be constantly
changing. To keep reprogramming agents in such circumstances would be costly
and inefficient. Finally, the more complex a system becomes, the less likely it is
that system designers will be able to design effective norms or social laws: the
dynamics of the system - the possible ‘trajectories’ that it can take - will be too
hard to predict. Here, flexibility within the agent society might result in greater
coherence.

Emergent norms and social laws

A Kkey issue, then, is how a norm or social law can emerge in a society of agents.
In particular, the question of how agents can come to reach a global agreement
on the use of social conventions by using only locally available information is of
critical importance. The convention must be global in the sense that all agents use
it. But each agent must decide on which convention to adopt based solely on its
own experiences, as recorded in its internal state: predefined inter-agent power
structures or authority relationships are not allowed.

This problem was perhaps first investigated in Shoham and Tennenholtz
(1992a), who considered the following scenario, which [will call the tee shirt game.

Consider a group of agents, each of which has two tee shirts: one red
and one blue. The agents - who have never met previously, and who
have no prior knowledge of each other - play a game, the goal of which
is for all the agents to end up wearing the same coloured tee shirt.
Initially, each agent wears a red or blue tee shirt selected randomly.
The game is played in a series of rounds. On each round, every agent is
paired up with exactly one other agent; pairs are selected at random.
Each pair gets to see the colour of the tee shirt the other is wearing -
no other information or communication between the agents is allowed.
After around is comp!lete, every agent is allowed to either stay wearing

o s IS o~ T

PR TR o] £ bt . J— P TN TR (U
LLIC >dIIIC COLOUTECU LEC ST U 1O SWdpP 0 UIE OUIeEl LOloul.

Notice that no global view is possible in this game: an agent can never ‘climb
the wall’ to see what every other agent is wearing. An agent must therefore base
its decision about whether to change tee shirts or stick with the one it is cur-
rently wearing using only its memory of the agents it has encountered on previous
rounds. The key problem is this: to design what Shoham and Tennenholtz (1992b)
refer to as a strategy update function, which represents an agent’s decision-making
process. A strategy update function is a function from the history that the agent
has observed so far, to a colour (red or blue). Note that the term ‘strategy’ here
may be a bit misleading - it simply refers to the colour of the tee shirt. The goal is

N
[
(¥ |

P Pt [.
coordaimnduon

to develop a strategy update function such that, when it is used by every agent in
the society, will bring the society to a global agreement as efficiently as possible.
In Shoham and Tennenholtz (1992b, 1997) and Walker and Wooldridge {1995),

frratogyv nnhdato 'FIIr\r"hr\r\o vora avahintad ne fFnallawe
il uLLs)‘ UPWAlc LUl uvililo VVC].C CVYAlIuaichul Qo LUVLLIUYY I,

Simple majority. This is the simplest form of update function. Agents will change
to an alternative strategy if so far they have observed more instances of it in
other agents than their present strategy. If more than one strategy has been
observed more than that currently adopted, the agent will choose the strategy
observed most often.

Simple majority with agent types. As simple majority, except that agents are
divided into two types. As well as observing each other’s strategies, agents in
these experiments can communicate with others whom they can ‘see’, and who

are of the gsame type. When thpv communicate, thpv pvr'hnngp memoaories, and

XA I3 LRI Y LNsiiiiaa v 1aiiia

each agent treats the other agent’s memory as if it were his own, thus being
able to take advantage of another agent’s experiences. In other words, agents
are particular about whom they confide in.

Simple majority with communication on success. This strategy updates a form
of communication based on a success threshold. When an individual agent has
reached a certain level of success with a particular strategy, he communicates
his memory of experiences with this successful strategy to all other agents that
he can ‘see’. Note, only the memory relating to the successful strategy is broad-
cast, not the whole memory. The intuition behind this update function is that an
agent will only communicate with another agent when it has something mean-
ingful to say. This prevents ‘noise’ communication.

Highest cumulative reward. For this update to work, an agent must be able to
see that using a particular strategy gives a particular payoff (cf. the discussion in
Chapter 6). The highest cumulative reward update rule then says that an agent
uses the strategy that it sees has resulted in the highest cumulative payoff to
date.

In addition, the impact of memory restarts on these strategies was investigated.
Intuitively, a memory restart means that an agent periodically ‘forgets’ everything
it has seen to date - its memory is emptied, and it starts as if from scratch again.
The intuition behind memory restarts is that it allows an agent to avoid being
over-committed to a particular strategy as a result of history: memory restarts
thus make an agent more ‘open to new ideas’.

The efficiency of convergence was measured by Shoham and Tennenholtz
(1992b) primarily by the time taken to convergence: how many rounds of the tee
shirt game need to be played before all agents converge on a particular strategy.
However, it was noted in Walker and Wooldridge (1995) that changing from one
strategy to another can be expensive. Consider a strategy such as using a partic-
ular kind of computer operating system. Changing from one to another has an

216 Working Together

associated cost, in terms of the time spent to learn it, and so we do not wish to
change too frequently. Another issue is that of stability. We do not usually want
our society to reach agreement on a particular strategy, only for it then to imme-
diately fall apart, with agents reveriing to different sirategies.

When evaluated in a series of experiments, all of the strategy update functions
described above led to the emergence of particular conventions within an agent
society. However, the most important results were associated with the highest

cumulative reward update function (Shoham and Tennenholtz, 1997, pp. 150,

151). It was shown that, for any vaiue € such that 0 < € < 1, there exists some
bounded value n such that a collection of agents using the highest cumulative
reward update function will reach agreement on a strategy in n rounds with proba-
bility 1 — €. Furthermore, it was shown that this strategy update function is stable
in the sense that, once reached, the agents would not diverge from the norm.
Finally, it was shown that the strategy on which agents reached agreement was
‘efficient’, in the sense that it gnarantees agents a payoff no worse than that they
would have received had they stuck with the strategy they initially chose.

Offline design of norms and social laws

The alternative to allowing conventions to emerge within a society is to design
them offline, before the multiagent system begins to execute. The offline design
of social laws is closely related to that of mechanism design, which I discussed
in Chapter 7 in the context of protocols for multiagent systems, and much of the
discussion from that chapter applies to the design of social laws.

There have been several studies of offline design of social laws, particularly
with respect to the computational complexity of the social law design problem
(Shoham and Tennenholtz, 1992b, 1996). To understand the way these problems
are formulated, recall the way in which agents were defined in Chapter 2, as func-
tions from runs (which end in environment states) to actions:

Ag:RF - Ac.
A constraint is then a pair
(E', o),
where

« E’ < E is a set of environment states; and

« o0 € Ac is an action.

The reading of a constraint {(E’, «) is that, if the environment is in some state
e € E’, then the action « is forbidden. A social law is then defined to be a set
sl of such constraints. An agent - or plan, in the terminology of Shoham and
Tennenholtz (1992b, p. 279) - is then said to be legal with respect to a social law
sl if it never attempts to perform an action that is forbidden by some constraint
in si.

Coordinaiion 217

The next question is to define what is meant by a useful social law. The answer
is to define a set F < E of focal states. The intuition here is that these are the
states that are always legal, in that an agent should always be able to 'visit’ the

focal states. To put it another way, whenever the environment is in some focal
state e € F, it should be possible for the agent to act so as to be able to guar-
antee that any other state ¢’ € F is brought about. A useful social law is then
one that does not constrain the actions of agents so as to make this impossi-

ble.

Given an environment Env = (E, T,ey) and a set of focal states F € E,
find a useful social law if one exists, or else announce that none exists.

In Shoham and Tennenholtz (1992b, 1996), it is proved that this problem is NP-
complete, and so is unlikely to be soluble by ‘normal’ computing techniques in
reasonable time. Some variations of the problem are discussed in Shoham and
Tennenholtz (1992b, 1996), and some cases where the problem becomes tractable
are examined. However, these tractable instances do not appear to correspond to
useful real-world cases.

Social laws in practice

Before leaving the subject of social laws, I will briefly discuss some examples of
social laws that have been evaluated both in theory and practice. These are traffic
laws (Shoham and Tennenholtz, 1996).

Imagine a two-dimensional grid world - rather like the Tileworld introduced in
Chapter 2 - populated by mobile robots. Only one robot is allowed to occupy a
grid point at any one time - more than one is a collision. The robots must collect
and transport items from one grid point to another. The goal is then to design a
social law that prevents collisions. However, to be useful in this setting, the social
law must not impede the movement of the robots to such an extent that they are
unable to get from a location where they collect an item to the delivery location. As
a first cut, consider a law which completely constrains the movements of robots,
so that they must all follow a single, completely predetermined path, leaving no
possibility of collision. Here is an example of such a social law, from Shoham and
Tennenholtz (1996, p. 602).

Each robot is required to move constantly. The direction of motion is
fixed as follows. On even rows each robot must move left, while in odd
rows itmust move right. It is required to move up when it is in the right-
most column. Finally, it is required to move down when it is on either
the leftmost column of even rows or on the second rightmost column
of odd rows. The movement is therefore in a ‘snake-like’ structure, and
defines a Hamiltonian cycle on the grid.

o]

~N

218 Working Together
It should be clear that, using this social law,

- the next move of an agent is uniquely determined: the law does not leave
any doubt about the next state to move to;

- an agent will always be able to get from its current location to its desired
location,

. to get from the current location to the desired location will require at most
O(n?) moves, where n is the size of the grid (to see this, simply consider
the dimensions of the grid).

Although it is effective, this social law is obviously not very efficient: surely there
are more ‘direct’ social laws which do not involve an agent moving around all the
points of the grid? Shoham and Tennenholtz (1996) give an example of one, which
superimposes a ‘road network’ on the grid structure, allowing robots to change
direction as they enter a road. They show that this social law guarantees to avoid
collisions, while permitting agents to achieve their goals much more efficiently
than the naive social law described above.

Multiagent Planning and Synchronization

An obvious issue in multiagent problem solving is that of planning the activities
of a group of agents. In Chapter 4, we saw how planning could be incorporated
as a component of a practical reasoning agent: what extensions or changes might
be needed to plan for a team of agents? Although it is broadly similar in nature to
‘conventional’ planning, of the type seen in Chapter 4, multiagent planning must
take into consideration the fact that the activities of agents can interfere with one
another - their activities must therefore be coordinated. There are broadly two
possibilities for multiagent planning as follows (Durfee, 1999, p. 139).

Centralized planning for distributed plans: a centralized planning system de-
velops a plan for a group of agents, in which the division and ordering of labour
is defined. This ‘master’ agent then distributes the plan to the ‘slaves’, who then
execute their part of the plan.

Tz [PR e i PR Sy o R, Aritralim A

LD tuuuu:u pmluuug gluup Ul dgtﬁlllb coopeidic W 101111 d cenvraiized plan.
Typically, the component agents will be ‘specialists’ in different aspects of the
overall plan, and will contribute to a part of it. However, the agents that form
the plan will not be the ones to execute it; their role is merely to generate the
plan.

Distributed planning for distributed plans: a group of agents cooperate to form
individual plans of action, dynamically coordinating their activities along the
way. The agents may be self-interested, and so, when potential coordination
problems arise, they may need to be resolved by negotiation of the type dis-
cussed in Chapter 7.

Multiagent Plannin

a and Svnchvonization 2190
anning and nchyronization 211

In general, centralized planning will be simpler than decentralized planning,
because the ‘master’ can take an overall view, and can dictate coordination rela-
tionships as required. The most difficult case to consider is the third. In this case,
there may never be a ‘global’ plan. Individual agents may only ever have pieces of
the plan which they are interested in.

Plan merging

Georgeff (1983) proposed an algorithm which allows a planner to take a set a plans
generated by singie agents, and from them generate a conflict free (but not neces-
sarily optimal) multiagent plan. Actions are specified by using a generalization of
the STRIPS notation (Chapter 4). In addition to the usual precondition-delete-add
lists for actions, Georgeff proposes using a during list. This list contains a set of
conditions which must hold while the action is being carried out. A plan is seen as
a set of states; an action is seen as a function which maps the set onto itseif. The
precondition of an action specifies the domain of the action; the add and delete
lists specify the range.

Given a set of single agent plans specified using the modified STRIPS notation,
generating a synchronized multiagent plan consists of three stages.

(1) Interaction analysis. Interaction analysis involves generating a description of
how single agent plans interact with one another. Some of these interactions will
be harmless; others will not. Georgeff used the notions of satisfiability, commu-
tativity, and precedence to describe goal interactions. Two actions are said to
be satisfiable if there is some sequence in which they may be executed without
invalidating the preconditions of one or both. Commutativity is a restricted case
of satisfiability: if two actions may be executed in parallel, then they are said
to be commutative. It follows that if two actions are commutative, then either
they do not interact, or any interactions are harmless. Precedence describes the
sequence in which actions may be executed; if action o has precedence over
action o, then the preconditions of a; are met by the postconditions of «;.
That is not to say that o must be executed before op; it is possible for two
actions to have precedence over each other.

Interaction analysis involves searching the plans of the agents to detect any
interactions between them.

(2) Safety analysis. Having determined the possible interactions between plans,
it now remains to see which of these interactions are unsafe. Georgeff defines
safeness for pairs of actions in terms of the precedence and commutativity of
the pair. Safety analysis involves two stages. First, all actions which are harmless
(i.e. where there is no interaction, or the actions commiite) are removed from
the plan. This is known as simplification. Georgeff shows that the validity of
the final plan is not affected by this process, as it is only boundary regions that
need to be considered. Secondly, the set of all harmful interactions is generated.

This stage also involves searching; a rule known as the commutativity theorem

220 Working Together

is applied to reduce the search space. All harmful interactions have then been
identified.

(3) Interaction resolution. In order to resolve conflicts in the simplified plan,
Georgeff treats unsafe plan interactions as critical sections; to resolve the con-
flicts, mutual exclusion of the critical sections must be guaranteed. To do this,
Georgeff used ideas from Hoare’s CSP paradigm to enforce mutual exclusion,
although simpler mechanisms (e.g. semaphores) may be used to achieve pre-
cisely the same result (Ben-Ari, 1993).

Stuart (1985) describes an implemented system which bears a superficial resem-

Whlnnro tn Conronff’ e alanrithm Tt talbag a0 got afiincvunchranioo A cinala ngant nlang

Plalive tu uculpoll D algul lllllll 1L LlanNTO a oL U.I. l.lllb)’ll\.lll. UlLlL.CLl DIIJSLC agclit 1.11(1110
and from them generates a synchronized multiagent plan. Like Georgeff’s algo-
rithm, Stuart’s system also guarantees a synchronized solution if one exists. Also,
the final plan is represented as a sequence of actions interspersed with CSP prim-
itives to guarantee mutual exclusion of critical sections (Hoare, 1978). Actions are
also represented using an extended STRIPS notation. There, however, the resem-
blance ends. The process of determining which interactions are possibly harmful
and resolving conflicts is done not by searching the plans, but by representing the
plan as a set of formulae of temporal logic, and attempting to derive a synchro-
nized plan using a temporal logic theorem prover. The idea is that temporal logic
is a language for describing sequences of states. As a plan is just a description of
exactly such a sequence of states, temporal logic could be used to describe plans.
Suppose two plans, 1) and 112, were represented by temporal logic formulae @
and >, respectively. Then if the conjunction of these two plans is satisfiable - if
there is some sequence of events that is compatible with the conjunction of the
formulae - then there is some way that the two plans could be concurrently exe-
cuted. The temporal logic used was very similar to that used in the Concurrent
MetateM language discussed in Chapter 3.

The algorithm to generate a synchronized plan consists of three stages.

(1) A set of sin
\LJ _ L

Pnueh 1992, 1995).

(2) The formulae are conjoined and fed into an LTL theorem prover. If the con-
joined formula is satisfiable, then the theorem prover will generate a set
of sequences of actions which satisfy these formulae. These sequences are
encoded in a graph structure. If the formula is not satisfiable, then the the-

orem prover will report this.

(3) The graph generated as output encodes all the possible synchronized exe-
cutions of the plans. A synchronized plan is then ‘read off’ from the graph
structure.

In general, this approach to multiagent synchronization is computationally expen-
sive, because the temporal theorem prover has to solve a PSPACE-complete prob-
lem.

Notes and Further Reading

Published in 1988, Bond and Gasser’s Readings in Distributed Artificial Intelligence
brings tnaerher most of the early classic papers on CDPS (Bond and Gasser, 1988).

Although some of the papers that make up this collection are perhaps now rather
dated, the survey article written by the editors as a preface to this collection
remains one of the most articulate and insightful introductions to the problems
and issues of CDPS to date. Victor Lesser and his group at the University of Mas-
sachusetts are credited with more or less inventing the field of CDPS, and most
innovations in this field to date have originated from members of this group over
the years. Two survey articles that originated from the work of Lesser’s group
provide overviews of the field: Durfee et al. (1989a,b). Another useful survey is
Decker et al. (1989).

The Contract Net has be uegely influential in the multiagent systems lit-

g o
TS ALRL AR L ALY ‘ e o] 7 M LLLAAL b o bl B
erature. It originally formed the basis of Smith’s doctoral thesis (published as
Smith (1980b)), and was further described in Smith (1980a) and Smith and Davis
(1980). Many variations on the Contract Net theme have been described, includ-

ing the effectiveness of a Contract Net with ‘consultants’, which have expertise
ahout the ahilities of agents (Tidhar and Rosenschein, 1992). and a anh1chr';|[pr]

AL LRIL GARILIVIL D WL QALVIIL0 | L IMIIGE QLI INWWVOLIIO VLIV ELly L gy Qi u [oiVS U ETu Rl LY

variation involving marginal cost calculations (Sandholm and Lesser, 1995). Sev-
eral formal specifications of the Contract Net have been developed, using basic
set theoretic/first-order logic constructs (Werner, 1989), temporal belief logics
(Wooldridge, 1992), and the Z specification language (d’Inverno and Luck, 1996).

In addition to the model of cooperative action discussed nhnvn a number of
ALANIANL L b’ AR WAV Y AVALLANIC L

other similar formal models of cooperative action have also been developed, the
best known of which is probably the Shared Plans model of Barbara Grosz and
Sarit Kraus (Grosz and Kraus, 1993, 1999); also worth mentioning is the work of
Tuomela and colleagues (Tuomela and Miller, 1988; Tuomela, 1991), Power (1984),

and Ran and callaagiioe Man ot n] 1007 Kinny ot nl 1007

ULIMVL NGV QLI _Ull\—uéu‘—\:’ 1waw ©io vl lJJL. 1\11111y L vt LI .

A number of researchers have Con51dered the development and exploitation
of norms and social laws in multiagent systems. Examples of the issues inves-
tigated include the control of aggression (Conte and Castelfranchi, 1993), the
role of social structure in the emergence of conventions (Kittock, 1993), group

hohavinnr (Findlar and Malvanbar 1002 and tho rarancidaratinn nf rammitmaoantcg
PULIAYIiUUL \L 1LIdICL alluvllvialyAllNal , 1 7.7,), QLI ULIC I AL VIHIDIVCNI AUVLL VI N VLLHLTUUTIC LI e

(Jennings, 1993a). In addition, researchers working in philosophy, sociology, and
economics have considered similar issues. A good example is the work of Lewis
(1969), who made some progress towards a (non-formal) theory of normative
behaviour.

222 Working Together

One issue that I have been forced to omit from this chapter due to space and
time limitations is the use of normative specifications in multiagent systems, and,
in particular, the use of deontic logic (Meyer and Wieringa, 1993). Deontic logic
is the logic of obligations and permissions. Originally developed within formal
philosophy, deontic logic was been taken up by researchers in computer science
in order to express the desirable properties of computer systems. Dignum (1999)
gives an overview of the use of deontic logic in multiagent systems, and also
discusses the general issue of norms and social laws.

Class reading: Durfee (1999). A detailed and precise introduction to distributed
problem solving and distributed planning, with many useful pointers into the
literature.

Multiagent Planning and Synchronization 223
cises
(1) [Level 2.]

Using the FIPA or KOML languages (see preceding chapter), describe how you would
implement the Contract Net protocol.
(2) iLevel 3.]

Implement the Contract Net protocol using Java {or your programming language of
choice). You might implement agents as threads, and have tasks as {for example) factoring

numbers. Have an agent that continually generates new tasks and allocates them to an
agent, which must distribute them to others.

(3) [Level 3.]

Download an FIPA or KQML system (such as Jade or JATLite - see preceding chapter),
and use it to re-implement your Contract Net system.

T N

1U

Methodologies

As multiagent systems become more established in the collective consciousness

nf tha nnmr\11fnv I Vail=32Ta TITITITM avihinrt ta onn ineraacing offart
UL LT Lulkipulcg DLLClth hU.l.lu.J.J.LU.ul.y, we lllj.sll.l. CAPULL WU oLC LIvITAollly LUl

devoted to devising methodologies to support the development of agent systems.
Such methodologies have been highly successful in the OO community: examples
include the methodologies of Booch, and Rumbaugh and colleagues (Booch, 1994;
Rumbaugh et al., 1991).

T thi T amtan nnnwn'nn, ~F i 1- that hao lhonn ~arrind A1t an thao
111 Llllb _llclpLCl 1 BLVC (11 UVCLVICY Ul ¥YWUIRK LUllldl l1lido PJCCLL LAallicuu uul ull uic
development of methodologies for multiagent systems. This work is, at the time

of writing, rather tentative - not much experience has yet been gained with
them. I begin by considering some of the domain attributes that indicate the
appropriateness of an agent-based solution. I then go on to describe various

Al nthndalnaging and Aicriioe oo ~F thhan alle agamriatard with
}_JlULULle].L(ll IILCLLIUMUIUEICD, Clll.u LllDLuDD SOme o1 LllC plllclllb doouLlialcu viull
agent-oriented development. I conclude by discussing the technology f mobile
agents.
1 Whon 1¢c n A nnnfinnnnr] Caliztinan Annrnnrinta?
[P 5 YY1l 11 109 QAll I"LBCIIL Dascu oouliuliuill nppl Upl LAULLC -

There are a number of factors which point to the appropriateness of an agent-
based approach (cf. Bond and Gasser, 1988; Jennings and Wooldridge, 1998b).

The environment is open, or at least highly dynamic, uncertain, or complex.
In such environments, systems capable of flexible autonomous action are often
the only solution.

Agents are a natural metaphor. Many environments (including most organiza-
tions, and any commercial or competitive environment) are naturally modelled

S O O AN A N

10.2

226 Methodologies

as societies of agents, either cooperating with each other to solve complex prob-

lems. or else comnetine with ane another. Sometimes ag in intellicent inter-

AN 2223y LaAOL NSRRI IIaE, Vatii Wail QUAURIEITE s CJVIERIL LTSy AG di1 JatCaaip/ il diaien

faces, the idea of an agent is seen as a natural metaphor: Maes (1994a) dis-
cusses agents as ‘expert assistants’, cooperating with the user to work on some
problem.

Distribution of data, control or expertise. In some environments, the distribu-
tion of either data, control, or expertise means that a centralized solution is
at best extremely difficult or at worst impossible. For example, distributed
database systems in which each database is under separate control do not
generally lend themselves to centralized solutions. Such systems may often
be conveniently modelled as multiagent systems, in which each database is a
semi-autonomous component.

Legacy systems. A problem increasingly faced by software developers is that
of legacy: software that is technologically obsolete but functionally essential
to an organization. Such software cannot generally be discarded, because of
the short-term cost of rewriting. And yet it is often required to interact with
other software components, which were never imagined by the original design-
ers. One solution to this problem is to wrap the legacy components, pro-
viding them with an ‘agent layer’ functionality, enabling them to communi-
cate and cooperate with other software components (Genesereth and Ketch-
pel, 1994).

Agent-Oriented Analysis and
Design Techniques

An analysis and design methodology is intended to assist first in gaining an under-
standing of a particular system, and, secondly, in designing it. Methodologies gen-
erally consist of a collection of models, and associated with these models, a set of
guidelines. The models are intended to formalize understanding of a system being
considered. Typically, the models start out as being tentative and rather abstract,
and as the analysis and design process continues, they become increasingly more
concrete, detailed, and closer to implementation.

Methodologies for the analysis and design of agent-based systems can be
broadly divided into two groups:

- those that take their inspiration from object-oriented development, and
either extend existing OO methodologies or adapt OO methodologies to
the purposes of AOSE (Burmeister, 1996; Kinny et al., 1996; Wooldridge et
al., 1999; Odell et al., 2001; Depke et al., 2001; Bauer et al., 2001; Kendall,
2001; Omicini, 2001; Wood and DeLoach, 2001); and

+ those that adapt knowledge engineering or other techniques (Brazier et al.,
1995; Luck et al., 1997; Iglesias et al., 1998; Collinot et al., 1996).

Agent-Oriented Analysis and Design Techniques 227

In the remainder of this section, I review some representative samples of this
work. As representatives of the first category, [survey the AAIl methodology of
Kinny et al. (1996), the Gaia methodology of Wooldridge et al. (1999), and sum-
marize work on adapting UML (Odell et al, 2001; Depke et al,, 2001; Bauer et
al,, 2001). As representatives of the second category, I survey the Cassiopeia
methodology of Collinot et al. (1996), the DESIRE framework of Brazier et al
(1995), and the use of Z for specifying agent systems (Luck et al., 1997; d'Inverno
and Luck, 2001).

Kinny et al.: the AAIl methodology

Throughout the 1990s, the Australian Al Institute (AAII) developed a range of
agent-based systems using their PRS-based belief-desire-intention technology
(Wooldridge, 2000b) and the Distributed Multiagent Reasoning System (DMARS)
(Rao and Georgeff, 1995). The AAIl methodology for agent-oriented analysis and
design was developed as a result of experience gained with these major appli-
cations. It draws primarily upon object-oriented methodologies, and enhances
them with some agent-based concepts. The methodology itself is aimed at the
construction of a set of models which, when fully elaborated, define an agent
system specification.

The AAIl methodology provides both internal and external models. The external
model presents a system-level view: the main components visible in this model are
agents themselves. The external model is thus primarily concerned with agents
and the relationships between them. It is not concerned with the internals of
agents: how they are constructed or what they do. In contrast, the internal model
is entirely concerned with the internals of agents: their beliefs, desires, and inten-
tions.

The external model is intended to define inheritance relationships between
agent classes, and to identify the instances of these classes that will appear
at run-time. It is itself composed of two further models: the agent model and
the interaction model. The agent model is then further divided into an agent
class model and an agent instance model. These two models define the agents
and agent classes that can appear, and relate these classes to one another
via inheritance, aggregation, and instantiation relations. Each agent class is
assumed to have at least three attributes: beliefs, desires, and intentions. The
analyst is able to define how these attributes are overridden during inheri-
tance. For example, it is assumed that by default, inherited intentions have less
priority than those in sub-classes. The analyst may tailor these properties as
desired.

Details of the internal model are not given, but it seems clear that develop-
ing an internal model corresponds fairly closely to implementing a PRS agent,
i.e. designing the agent’s belief, desire, and intention structures.

228 Methodologies

The AAII methodology is aimed at elaborating the models described above. It
may be summarized as follows.

(1) Identify the relevant roles in the application domain, and, on the basis of
these, develop an agent class hierarchy. An example role might be a weather
monitor, whereby agent i is required to make agent j aware of the prevailing
weather conditions every hour.

(2) Identify the responsibilities associated with each role, the services required
by and provided by the role, and then determine the goals associated with

each service. With resnect to the above example. the goals would be to find

L S VALC. FRaLIE VOV WY e QAU CAGIIipraty il BURLAS VYL ladla A22alA

out the current weather, and to make agent j aware of this information.

(3) For each goal, determine the plans that may be used to achieve it, and the
context conditions under which each planis appropriate. With respect to the
above example, a plan for the goal of making agent j aware of the weather
conditions might invoive sending a message to J.

(4) Determine the belief structure of the system - the information requirements
for each plan and gOal Wwith respect to the above example, we ﬁliglll propose
a unary predicate windspeed(x) to represent the fact that the current wind
speed is x. A plan to determine the current weather conditions would need

to be able to represent this information.

Note that the analysis process will be iterative, as in more traditional method-
ologies. The outcome will be a model that closely corresponds to the PRS agent
architecture As a result, the move from end-design to implementation using PRS

P P |

is rejatively simple.

Wooldridge et al.: Gaia

The Gaia! methodology is intended to allow an analyst to go systematically from
a statement of requirements to a design that is sufficiently detailed that it can be
implemented directly. Note that we view the requirements capture phase as being
independent of the paradigm used for analysis and design. In applying Gaia, the
analyst moves from abstract to increasingiy concrete concepts. Each successive
move introduces greater implementation bias, and shrinks the space of possible
systems that could be implemented to satisfy the original requirements state-
ment. (See Jones (1990, pp. 216-222) for a discussion of implementation bias.)
Gaia borrows some terminology and notation from object-oriented analysis and
design (specifically, FUSION (Coleman et ai., 1994)). However, it is not simply
a naive attempt to apply such methods to agent-oriented development. Rather,
it provides an agent-specific set of concepts through which a software engineer

can understand and model a complex system. In partlcular, Gaia encourages a

!The name comes from the Gaia hypethesis put forward by James Loveleck ¢ the effect that
all the organisms in the Earth’s biosphere can be viewed as acting together t gulate the Earth’s

environment.

Agent-Oriented Analysis and Design Techniques 229

Table 10.1 Abstract and concrete concepts in Gaia,

Abstract concepts Concrete concepts

Roles Agent types
Permissions Services
Responsibilities Acquaintances
Protocols

Activities

Liveness properties
Safety properties

developer to think of building agent-based systems as a process of organizational
design.

The main Gaian concepts can be divided into two categories: abstract and con-
crete (both of which are summarized in Table 10.1). Abstract entities are those
used during analysis to conceptualize the system, but which do not necessarily
have any direct realization within the system. Concrete entities, in contrast, are
used within the design process, and will typically have direct counterparts in the
run-time system.

The objective of the analysis stage is to develop an understanding of the system
and its structure (without reference to any implementation detail). In the Gaia
case, this understanding is captured in the system’s organization. An organization
is viewed as a collection of roles that stand in certain relationships to one another
and that take part in systematic, institutionalized patterns of interactions with
other roles.

The idea of a system as a society is useful when thinking about the next level in
the concept hierarchy: roles. It may seem strange to think of a computer system
as being defined by a set of roles, but the idea is quite natural when adopting an
organizational view of the world. Consider a human organization such as a typical
company. The company has roles such as ‘president’, ‘vice president’, and so on.
Note that in a concrete realization of a company, these roles will be instantiated
with actual individuals: there will be an individual who takes on the role of pres-
ident, an individual who takes on the role of vice president, and so on. However,
the instantiation is not necessarily static. Throughout the company’s lifetime,
many individuals may take on the role of company president, for example. Also,
there is not necessarily a one-to-one mapping between roles and individuals. It
is not unusual (particularly in small or informally defined organizations) for one
individual to take on many roles. For example, a single individual might take on
the role of ‘tea maker’, ‘mail fetcher’, and so on. Conversely, there may be many
individuals that take on a single role, e.g. ‘salesman’.

A role is defined by four attributes: responsibilities, permissions, activities, and
protocols. Responsibilities determine functionality and, as such, are perhaps the

230 Methodologies

key attribute associated with a role. An example responsibility associated with the
role of company president might be calling the shareholders meeting every year.
Responsibilities are divided into two types: liveness properties and safety prop-
erties (Pnueli, 1986). Liveness properties intuitively state that ‘something good
happens’. They describe those states of affairs that an agent must bring about,
given certain environmental conditions. In contrast, safety properties are invari-
ants. Intuitively, a safety property states that ‘nothing bad happens’ (i.e. that an
acceptable state of affairs is maintained across all states of execution). An example
might be ‘ensure the reactor temperature always remains in the range 0-100’.

In order to realize responsibilities, a role has a set of permissions. Permissions
are the ‘rights’ associated with a role. The permissions of a role thus identify
the resources that are available to that role in order to realize its responsibili-
ties. Permissions tend to be information resources. For example, a role might have
aSSOC].aLCU Wll[l 1L l[lt: (:ll)lllly io [Bdu d pdl ULLllclI 1U::IIl Ul 1[11()1111(1[1()11 or to uwuuy
another piece of information. A role can also have the ability to generate infor-
mation.

The activities of a role are computations associated with the role that may be
carried out by the agent without interacting with other agents. Activities are thus
‘private’ actions, in the sense of Shoham (1593).

Finally, a role is also identified with a number of protocols, which define the
way that it can interact with other roles. For example, a ‘seller’ role might have
the protocols ‘Dutch auction’ and ‘English auction’ associated with it; the Contract

Net protocol is associated with the roles ‘manager’ and ‘contractor’ (Smith, 1980b).

Odell et al.: agent UML

Over the past two decades, many different notations and associated methodolo-
gies have been developed within the object-oriented development community
(see, for example, Booch, 1994; Rumbaugh et ai., 1991; Coleman et al., 1994).
Despite many similarities between these notations and methods, there were never-
theless many fundamental inconsistencies and differences. The Unified Modelling
Language - UML - is an attempt by three of the main figures behind object-oriented
analysis and design (Grady Booch, James Rumbaugh and Ivar Jacobson) to develop
a single notation for modelling object-oriented systems (Booch et ai., 1998). It is
important to note that UML is not a methodology; it is, as its name suggests, a lan-
guage for documenting models of systems; associated with UML is a methodology
known as the Rational Unified Process (Booch et al., 1998, pp. 449-456).

The fact that UML is a de facto standard for object-oriented modelling promoted
its rapid take-up. When looking for agent-oriented modelling languages and tools,
many researchers felt that UML was the obvious place to start (Odell et al., 2001;
Depke et al., 2001; Bauer et al., 2001). The result has been a number of attempts to
adapt the UML notation for modelling agent systems. Odell and colleagues have
discussed several ways in which the UML notation might usefully be extended to

Agent-Oriented Analysis and Design Technigues 231

enable the modelling of agent systems (Odell et al., 2001; Bauer et al., 2001). The
proposed modifications include:

- support for expressing concurrent threads of interaction (e.g. broadcast
messages), thus enabling UML to model such well-known agent protocols
as the Contract Net (Chapter 9);

- anotion of ‘role’ that extends that provided in UML, and, in particular, allows
the modelling of an agent playing many roles.

Both the Object Management Group (OMG, 2001), and FIPA (see Chapter 8) are cur-
rently supporting the development of UML-based notations for modelling agent
systems, and there is therefore likely to be considerable work in this area.

Treur et al.: DESIRE

In an extensive series of papers (see, for example, Brazier et al, 1995; Dunin-
Keplicz and Treur, 1995), Treur and colleagues have described the DESIRE frame-
work. DESIRE is a framework for the design and formal specification of compo-
sitional systems. As well as providing a graphical notation for specifying such
compositional systems, DESIRE has associated with it a graphical editor and other
tools to support the development of agent systems.

Collinot et al.: Cassiopeia

In contrast to Gaia and the AAIl methodology, the Cassiopeia method proposed by
Collinot et al. is essentially bottom up in nature (Collinot et al., 1996). Essentially,
with the Cassiopeia method, one starts from the behaviours required to carry out
some task; this is rather similar to the behavioural view of agents put forward
by Brooks and colleagues (Brooks, 1999). Essentially, the methodology proposes
three steps:

(1) identify the elementary behaviours that are implied by the overall system
task;

(2) identify the relationships between elementary behaviours;

(3) identify the organizational behaviours of the system, for example, the way
in which agents form themselves into groups.

Collinot et al. illustrate the methodology by way of the design of a RoboCup soccer

tnam (ann Ralafias 20013
€alli (S€€ nODOLUp, cuul).

Luck and d’Inverno: agents in Z

Luck and d’'Inverno have developed an agent specification framework in the Z lan-
guage (Spivey, 1992), although the types of agents considered in this framework
are somewhat different from those discussed throughout most of this book (Luck
and d’'Inverno, 1995; Luck et al, 1997; d’Inverno and Luck, 2001). They define a

232 Methodologies

four-tiered hierarchy of the entities that can exist in an agent-based system. They
start with entities, which are inanimate objects - they have attributes (colour,
weight, position) but nothing else. They then define objects to be entities that
have capabilities (e.g. tables are entities that are capable of supporting things).
Agents are then defined to be objects that have goals, and are thus in some sense
active; finally, autonomous agents are defined to be agents with motivations. The
idea is that a chair could be viewed as taking on my goal of supporting me when
I am using it, and can hence be viewed as an agent for me. But we would not view
a chair as an autonomous agent, since it has no motivations (and cannot easily be
attributed them). Starting from this basic framework, Luck and d’Inverno go on
to examine the various relationships that might exist between agents of different
types. In Luck et al. (1997), they examine how an agent-based system specified
in their framework might be implemented. They found that there was a natural
relationship between their hierarchical agent specification framework and object-
oriented systems.

The formal definitions of agents and autonomous agents rely on inher-

iting the properties of lower-level components. In the Z notation, this
is achieved through schema inclusion. ... This is easilv modelled in C4++

R e T e e I AT S al0 20 LQAOY A VA A A e

by deriving one class from another. ... Thus we move from a principled
but abstract theoretical framework through a more detailed, yet still
formal, model of the system, down to an object-oriented implementa-
tion, preserving the hierarchical structure at each stage.

(Luck et al., 1997)

The Luck-d’Inverno formalism is attractive, particularly in the way that it cap-
tures the relationships that can exist between agents. The emphasis is placed on
the notion of agents acting for another, rather than on agents as rational systems,
as we discussed above. The types of agents that the approach allows us to develop
are thus inherently different from the ‘rational’ agents discussed above. So, for
example, the approach does not help us to construct agents that can interleave
proactive and reactive behaviour. This is largely a result of the chosen specifica-
tion language: Z. This language is inherently geared towards the specification of
operation-based, functional systems. The basic language has no mechanisms that
allow us to easily specify the ongoing behaviour of an agent-based system. There
are of course extensions to Z designed for this purpose.

Discussion

The predominant approach to developing methodologies for multiagent systems
is to adapt those developed for object-oriented analysis and design (Booch, 1994).
There are several disadvantages with such approaches. First, the kinds of decom-
position that object-oriented methods encourage is at odds with the kind of

decomposition that agent-oriented design encourages. [discussed the relation-
ship between agents and objects in Chapter 2: it should be clear from this dis-
cussion that agents and objects are very different beasts. While agent systems
implemented using object-oriented programming languages will typically contain
many objects, they will contain far fewer agents. A good agent-oriented design
methodology would encourage developers to achieve the correct decomposition
of entities into either agents or objects.

Another problem is that object-oriented methodologies simply do not allow us
to capture many aspects of agent systems; for example, it is hard to capture in
object models such notions as an agent proactively generating actions or dynam-
ically reacting to changes in their environment, still less how to effectively coop-
erate and negotiate with other self-interested agents. The extensions to UML pro-
posed in Odell et al. (2001), Depke et al. (2001) and Bauer et al. (2001) address
some, but by no means all of these deficiencies. At the heart of the problem is the
problem of the relationship between agents and objects, which has not yet been
satisfactorily resolved.

Pitfalls of Agent Development

I.3 g svelopme
In this section (summarized from Wooldridge and Jennings (1998)), I give an
overview of some of the main pitfalls awaiting the unwary multiagent system
‘ developer.

You oversell agent solutions, or fail to understand where agents may usefully
be applied. Agent technology is currently the subject of considerable atten-
tion in the computer science and Al communities, and many predictions have
been made about its long-term potential. However, one of the greatest current
sources of perceived failure in agent-development initiatives is simply the fact

that dovealnan Qi tha al Af "t Wwhilo ngoant toarh.
\.ll-u\. uchlUPch UVCLCDLLU.IG.LC lllc PULCIILIQI Ul QSCIIL Dyolclllo "VJ.]JJ.C uscxlt LC\-lJ-

nology represents a potentially novel and important new way of conceptualizing
and implementing software, it is important to understand its limitations. Agents
are ultimately just software, and agent solutions are subject to the same funda-
mental limitations as more conventional software solutions. In particular, agent
technology has not somehow solved the (very many) problems that have dogged
Al since its inception. Agent systems typically make use of Al techniques. In this
sense, they are an application of Al technology. But their ‘intelligent’ capabilities
are limited by the state of the art in this field. Artificial intelligence as a field has
suffered from over- optimistic claims about its potential It seems essential that

GBCILL LC\.hLlUlUBy UuUCH IIUL 1(111 1.)1 cy I.U llllb sSdiie pl UUll'_'l].l Il'_'d.llbllL CAPCL Ld.UUllD
of what agent technology can provide are thus important.

You get religious or dogmatic about agents. Although agents have been used in
a wide range of applications (see Chapter 11}), they are not a universal solu-
tion. There are many applications for which conventional software develop-

234 Methodologies

ment paradigms (such as object-oriented programming) are more appropriate.
Indeed, given the relative immaturity of agent technology and the small number
of deployed agent applications, there should be clear advantages to an agent-
based solution before such an approach is even contemplated.

You do not know why you want agents. This is a common problem for any new
technology that has been hyped as much as agents. Managers read optimistic
financial forecasts of the potential for agent technology and, not surprisingly,
they want part of this revenue. However, in many cases, managers who propose
an agent project do not actually have a clear idea about what ‘having agents’
will buy them. In short, they have no business model for agents - they have no
understanding of how agents can be used to enhance their existing products,
how they can enable them to generate new product lines, and so on.

vww warTrsme ez o DT ~

You want to build generic solutions to one-off problems. This is a pitfall to
which many software projects fall victim, but it seems especially prevalent in the
agent community. It typically manifests itself in the devising of an architecture
or testbed that supposedly enables a whole range of potential types of system
to be built, when what is really required is a bespoke design to tackle a single

o o lecatoas 221 s cmndaw Axralaas

}Jl UUll‘_‘lll 111 bllLll bllLi.d.uUllb d LlelUl].l uuul oUIU UV Wl.ll Ul‘_‘ l‘_'d.bltl lU UCV’CLULJ
and far more likely to satisfy the requirements of the application.

You believe that agents are a silver bullet. The holy grail of software engineering
is a ‘silver bullet’: a technique that will provide an order of magnitude improve-
ment in software development. Agent technology is a newly emerged, and as yet
essentially untested, software paradigm: but it is only a matter of time before
someone claims agents are a silver bullet. This would be dangerously naive.
As we pointed out above, there are good arguments in favour of the view that
agent technology will lead to improvements in the development of complex dis-
tributed software systems. But, as yet, these arguments are largely untested in
practice.

You forget you are developing software. At the time of writing, the develop-
ment of any agent system - however trivial - is essentially a process of exper-
imentation. Although I discussed a number of methodologies above, there are

nn trind and tmictad maoathnadanlaging availahla TInfartiinatrals haratica thho nrno
IV LIV dllud UUoltu lucuivuuvivuglco CI.VG.IJ.G.UI.C Uil I.u.uau:1y, DTl auoLT uic priv

cess is experimental, it encourages developers to forget that they are actually
developing software. The result is a foregone conclusion: the project flounders,
not because of agent-specific problems, but because basic software engineering
good practice was ignored.

You forget you are developing multi-threaded software. Multi-threaded sys-
tems have long beenrecognized as one of the most complex classes of computer
system to design and implement. By their very nature, multiagent systems tend
to be multi-threaded (both within an agent and certainly within the society of
agents). So, in building a multiagent system, it is vital not to ignore the lessons

Pitfalls of Agent Development 235

learned from the concurrent and distributed systems community - the problems
inherent in multi-threaded systems do not go away, just because you adopt an
agent-based approach.

Your design does not exploit concurrency. One of the most obvious features of
a poor multiagent design is that the amount of concurrent problem solving is
comparatively small or even in extreme cases non-existent. If there is only ever
a need for a single thread of control in a system, then the appropriateness of
an agent-based solution must seriously be questioned.

You decide you want your own agent architecture. Agent architectures are
essentially templates for building agents. When first attempting an agent
project, there is a great temptation to imagine that no existing agent archi-
tecture meets the requirements of your problem, and that it is therefore nec-
essary to design one from first principles. But designing an agent architecture
from scratch in this way is often a mistake: my recommendation is therefore
to study the various architectures described in the literature, and either license
one or else implement an ‘off-the-shelf’ design.

Your agents use too much Al. When one builds an agent application, there is an
understandable temptation to focus exclusively on the agent-specific, ‘intelli-
gence’ aspects of the application. The result is often an agent framework that
is too overburdened with experimental techniques (natural language interfaces,
planners, theorem provers, reason maintenance systems, etc.) to be usable.

You see agents everywhere. When one learns about multiagent systems for the
first time, there is a tendency to view everything as an agent. This is perceived
to be in some way conceptually pure. But if one adopts this viewpoint, then
one ends up with agents for everything, including agents for addition and sub-
traction. It is not difficult to see that naively viewing everything as an agent in
this way will be extremely inefficient: the overheads of managing agents and
inter-agent communication will rapidly outweigh the benefits of an agent-based
solution. Moreover, we do not believe it is useful to refer to very fine-grained
computational entities as agents.

You have too few agents. While some designers imagine a separate agent for
every possible task, others appear not to recognize the value of a multiagent
approach at all. They create a system that completely fails to exploit the power
offered by the agent paradigm, and develop a solution with a very small number
of agents doing all the work. Such solutions tend to fail the standard software
engineering test of cohesion, which requires that a software module should
have a single, coherent function. The result is rather as if one were to write an
object-oriented program by bundling all the functionality into a single class. It
can be done, but the result is not pretty.

You spend all your time implementing infrastructure. One of the greatest obs-
tacles to the wider use of agent technology is that there are no widely used

10.4

236 Methodologies

software platforms for developing multiagent systems. Such platforms would
provide all the basic infrastructure (for message handling, tracing and monitor-
ing, run-time management, and S0 on) required to create a multiagent system. As
a result, almost every multiagent system project that we have come across has
had a significant portion of available resources devoted to implementing this
infrastructure from scratch. During this implementation stage, valuable time
(and hence money) is often spent implementing libraries and software tools
that, in the end, do little more than exchange messages across a network. By
the time these libraries and tools have been implemented, there is frequently
little time, energy, or enthusiasm left to work either on the agents themselves,
or on the cooperative/social aspects of the system.

Your agents interact too freely or in an disorganized way. The dynamics of
multiagent systems are complex, and can be chaotic. Often, the only way to find
out what is likely to happen is to run the system repeatedly. If a system contains
many agents, then the dynamics can become too complex to manage effectively.
Another common misconception is that agent-based systems require no real
structure. While this may be true in certain cases, most agent systems require
considerably more system-level engineering than this. Some way of structuring
the society is typically needed to reduce the system’s complexity, to increase the
system’s efficiency, and to more accurately model the problem being tackled.

Mobile Agents

So far in this book I have avoided mention of an entire species of agent, which
has aroused much interest, particularly in the programming-language and object-
oriented-development community. Mobile agents are agents that are capable of
transmitting themselves - their program and their state - across a computer net-
work, and recommencing execution at a remote site. Mobile agents became known
largely through the pioneering work of General Magic, Inc., on their Telescript pro-
gramming language, although there are now mobile agent platforms available for
many languages and platforms (see Appendix A for some notes on the history of
mobile agents).

The original motivation behind mobile agents is simple enough. The idea was
that mobile agents would replace remote procedure calls as a way for processes
to communicate over a network - see Figure 10.1. With remote procedure calls,
the idea is that one process can invoke a procedure (method) on another process
which is remotely located. Suppose one process A invokes a method m on pro-
cess B with arguments args; the value returned by process B is to be assigned to
a variable v. Using a Java-like notation, A executes an instruction somewhat like
the following:

v=B.m(args)

Mobile Agents 237

Crucially, in remote procedure calls, communication is synchronous. That is, pro-
cess A blocks from the time that it starts executing the instruction uniil the time
that B returns a value. If B never returns a value - because the network fails, for
example - then A may remain indefinitely suspended, waiting for a reply that will
never come. The network connection between A and B may well also remain open,
and even though it is largely unused (no data is being sent for most of the time),
this may be costly.

The idea of mobile agents (Figure 10.1(b)) is to replace the remote procedure
call by sending out an agent to do the computation. Thus instead of invoking a
method, process A sends out a program - a mobile agent - to process B. This
program then interacts with process B. Since the agent shares the same address
space as B, these interactions can be carried out much more efficiently than if
the same interactions were carried out over a network. When the agent has com-
pleted its interactions, it returns to A with the required result. During the entire
operation, the only network time required is that to send the agent to B, and that
required to return the agent to A when it has completed its task. This is poten-
tially a much more efficient use of network resources than the remote procedure
call alternative described above. One of the original visions for Telescript was
that it might provide an efficient way of managing network resources on devices
such as hand-held/palmtop computers, which might be equipped with expensive,
limited-bandwidth Internet connections.

There are a number of technical issues that arise when considering mobile
agents.

Serialization. How is the agent serialized (i.e. encoded in a form suitable to be sent
across the network), and, in particular, what aspects of the agent are serialized -
the program, the data, or the program and its data?

Hosting and remote execution. When the agent arrives at its destination, how is
it executed, for example if the original host of the agent employs a different
operating system or processor to the destination host?

Security. When the agent from A is sent to the computer that hosts process B,
there is obvious potential for the agent to cause trouble. It could potentially do
this in a number of ways:

+ it might obtain sensitive information by reading filestore or RAM directly;

- it might deny service to other processes on the host machine, by either
occupying too much of the available processing resource (processor cycles
or memory) or else by causing the host machine to malfunction (for exam-
ple by writing over the machine’s RAM); and, finally,

- it might simply cause irritation and annoyance, for example by causing
many windows to pop up on the user’s GUIL.

238

(a)

(b)

Many different answers have been developed to address these issues. With respect
to the first issue - that of how to serialize and transmit an agent - there are several

Methodologies

Server Computer

client computer

client process

SEIvVer process

network

server computer

client computer

client process

agent

Server process

—
-l
—_—
-
—_—

network

Figure 10.1 Remote procedure calls (a) versus mobile agents (b).

possibilities.

- Both the agent and its state are transmitted, and the state includes the pro-
gram counter, i.e. the agent ‘remembers’ where it was before it was transmit-
ted across the network, and when it reaches its destination, it recommences
execution at the program instruction following that which caused it to be
transmitted. This is the kind of mobility employed in the Telescript language

(White, 1994, 1997).

The agent contains both a program and the values of variables, but not the
‘program counter’, so the agent can remember the values of all variables,
but not where it was when it transmitted itself across the network. This is
how Danny Lange’s Java-based Aglets framework works (Lange and Oshima,

1999).

€]

Mobile Agents 23

- The agent to be transmitted is essentially a script, without any associated
state (although state might be downloaded from the original host once the
agent has arrived at its destination).

The issue of security dominates discussions about mobile agents. The key diffi-
culty is that, in order for an agent to be able to do anything useful when it arrives
at aremote location, it must access and make use of the resources supplied by the
remote host. But providing access to these resources is inherently dangerous: it
lays open the possibility that the host will be abused in some way. Languages like
Java go some way to addressing these issues. For example, unlike languages such
as C or C++, the Java language does not have pointers. It is thus inherently difficult
(though notimpossible) for a Java process to access the memory of the machine on
which it is running. Java virtual machines also have a built in SecurityManager,
which defines the extent to which processes running on the virtual machine can
access various resources. However, it is very hard to ensure that (for example) a
process does not use more than a certain number of processor cycles.

Telescript

Telescript was a language-based environment for constructing multiagent sys-
tems developed in the early 1990s by General Magic, Inc. It was a commercial
product, developed with the then very new palm-top computing market in mind
(White, 1994, 1997).

There are two key concepts in Telescript technology: places and agents. Places
are virtual locations that are occupied by agents - a place may correspond to a sin-
gle machine, or a family of machines. Agents are the providers and consumers of
goods in the electronic marketplace applications that Telescript was developed to
support. Agents in Telescript are interpreted programs; the idea is rather similar
to the way that Java bytecodes are interpreted by the Java virtual machine.

Telescript agents are able to move from one place to another, in which case their
program and state are encoded and transmitted across a network to another place,
where execution recommences. In order to travel across the network, an agent
uses a ticket, which specifies the parameters of its journey:

- the time at which the journey will be completed.
Telescript agents communicate with one another in several different ways:

- if they occupy different places, then they can connect across a network;

- if they occupy the same location, then they can meet one another.

Telescript agents have an associated permit, which specifies what the agent can
do (e.g. limitations on travel), and what resources the agent can use. The most
important resources are

240 Methodologies

‘money’, measured in ‘teleclicks’ (which correspond to real money);
+ lifetime (measured in seconds);
+ size (measured in bytes).

Both Telescript agents and places are executed by an engine, which is essentially a
virtual machine in the style of Java. Just as operating systems can limit the access
provided to a process (e.g. in Unix, via access rights), so an engine limits the way

an agent can accaceg ite nn\nrnnmnnf Fnoinec continnally maonitor acent’e resource

CUEL UAVIIL CARL ALV LU0 Il CRIVILWVIIINIC I LIty CVLIULMITUGIL Y LUIUVINILUL GGV O 1L otag v

consumption, and kill agents that exceed their limit. In addition, engines provide
(C/C++) links to other applications via APIs.

Agents and places are programmed using the Telescript language. The Tele-
script language has the following characteristics.

- It is a pure object oriented language - everything is an object (somewhat
based on Smalltalk).

- It is interpreted, rather than compiled.

- It comes in two levels - high (the ‘visible’ language for programmers) and
low (a semi-compiled language for efficient execution, rather like Java byte-
codes).

. It contains a ‘process’ class, of which ‘agent’ and ‘place’ are sub-classes.

- It is persistent, meaning that, for example, if a host computer was switched
off and then on again, the state of the Telescript processes running on the
host would have been automatically recorded, and execution would recom-
mence automatically.

As noted in Appendix A, although Telescript was a pioneering language, which
attracted a lot of attention, it was rapidly overtaken by Java, and throughout the
late 1990s, a number of Java-based mobile agent frameworks appeared. The best
known of these was Danny Lange’s Aglets system.

Aglets - mobile agents in Java

Aglets is probably the best-known Java-based mobile agent platform. The core of
Aglets lies in Java's ability to dynamically load and make instances of classes at
run-time. An Aglet is an instance of a Java class that extends the Aglet class.
When implementing such a class, the user can override a number of important
methods provided by the Aglet class. The most important of these are

- the onCreation() method, which allows an Aglet to initialize itself; and

+ the run() method, which is executed when an Aglet arrives at a new desti-
nation.

Mobile Agents 241

The core of an Aglet - the bit that does the work - is the run() method. This
defines the behaviour of the Aglet. Inside a run() method, an Aglet can execute
the dispatch() method, in order to transmit itself to a remote destination. An
example of the use of the dispatch() method might be:

this.dispatch(new URL("atp://some.host.com/contextl™));

This instruction causes the Aglet executing it to be serialized (i.e. for its state
to be recorded), and then sent to the ‘context’ called contextl on the host
some,host.com. A context plays the role of a host in Telescript; a single host
machine can support many different Aglet contexts. In this instruction, atp is
the name of the protocol via which the agent is transferred (in fact, atp stands
for Agent Transfer Protocol). When the agent is received at the remote host, an
instance of the agent is created, the agent is initialized, its state is reconstructed
from the serialized state sent with the agent, and, finally, the run() method is
invoked. Notice that this is not the same as Telescript, where the agent recom-
mences execution at the program instruction following the go instruction that
caused the agent to be transmitted. This information is lost in Aglets (although the
user can record this information ‘manually’ in the state of the Aglet if required).

Agent Tcl and other scripting languages

The Tool Control Language (Tcl - pronounced ‘tickle’) and its companion Tk are
sometimes mentioned in connection with mobile agent systems. Tcl was primarily
intended as a standard command language {(OQusterhout, 1994). The idea is that
many applications provide control languages (databases, spreadsheets, etc.), but
every time a new application is developed, a new command language must be as
well. Tcl provides the facilities to easily implement your own command language.
Tk is an X Window based widget toolkit - it provides facilities for making GUI fea-
tures such as buttons, labels, text and graphic windows (much like other X widget
sets). Tk also provides powerful facilities for interprocess communication, via the
exchange of Tcl scripts. Tcl/Tk combined make an attractive and simple to use
GUI development tool; however, they have features that make them much more
interesting:

- Tclitis an interpreted language;

- Tclis extendable - it provides a core set of primitives, implemented in C/C++,
and allows the user to build on these as required;

+ Tcl/Tk can be embedded - the interpreter itself is available as C++ code,
which can be embedded in an application, and can itself be extended.

Tcl programs are called scripts. These scripts have many of the properties that
Unix shell scripts have:

- they are plain text programs, that contain control structures (iteration,
sequence, selection) and data structures (e.g. variables, lists, and arrays) just
like a normal programming language;

242 Methodologies

- they can be executed by a shell program (tc1sh or wish);

- they can call up various other programs and obtain results from these pro-
grams (cf. procedure calls).

As Tcl programs are interpreted, they are very much easier to prototype and debug
than compiled languages like C/C++ - they also provide more powerful control
constructs. The idea of a mobile agent comes in because it is easy to build applica-

tions where Tcl scripts are exchanged across a network, and executed on remote
machines. The (‘nf'o Tcl language provides mechanisms for limiting the access

[PV LELUNE Y B L R Y Avanv S xaavoaa{RianFiaad R A

provided to a script. As an example, Safe Tcl controls the access that a script has
to the GUI, by placing limits on the number of times a window can be modified
by a script.

In summary, Tcl/Tk provide a rich environment for building language-based
applications, particularly GUI-based ones. But they are not/were not intended as
agent programming environments. The core primitives may be used for building
agent programming environments - the source code is free, stable, well-designed,
and easily modified. The Agent Tcl framework is one attempt to do this (Gray,
1996; Kotz et al., 1997).

Notes and Further Reading

Two collections of papers on the subject of agent-oriented software engineering
are Ciancarini and Wooldridge (2001) and Wooldridge et al. (2002). Huhns (2001)
and Lind (2001) give motivations for agent-oriented software engineering. A sur-
vey of methodologies for agent-oriented software engineering can be found in
Iglesias et al. (1999).

A number of issues remain outstanding for the developer of agent-oriented
methodologies.

Sorting out the relationship of agents to other software paradigms - objects in
particular. It is not yet clear how the development of agent systems will coexist
with other software paradigms, such as object-oriented development.

Agent-oriented methodologies. Although a number of preliminary agent-ori-
ented analysis and design methodologies have been proposed, there is compar-
atively little consensus between these. In most cases, there is not even agree-
ment on the kinds of concepts the methodology should support. The waters
are muddied by the presence of UML as the predominant modelling language
for ohject-oriented systems (Booch et al., 1998): the kinds of concepts and nota-
tions supported by UML are not necessarn'y' those best suited to the development
of agent systems. Finding common ground between them - fitting agents into

‘conventional’ approaches to software development - needs some work.

Engineering for open systems. In open systems, it is essential to be capable of
reacting to unforeseen events, exploiting opportunities where these arise, and

Mobile Agents 243

dynamically reaching agreements with system components whose presence
could not be predicted at design time. However, it is difficult to know how to
specify such systems; still less how to implement them. In short, we need a
better understanding of how to engineer open systems.

Engineering for scalability. Finally, we need a better understanding of how to
safely and predictably engineer systems that comprise massive numbers of
agents dynamically interacting with one another in order to achieve their goals.
Such systems seem prone to problems such as unstable/chaotic behaviours,
feedback, and so on, and may fall prey to malicious behaviour such as viruses.

See Wooldridge and Jennings (1998) for a more detailed discussion of the pitfalls
that await the agent developer, and Webster (1995) for the book that inspired this
article.

There is a substantial literature on mobile agents; see, for example, Rothermel
and Popescu-Zeletin (1997) for a collection of papers on the subject; also worth
looking at are Knabe (1995), Merz et al. (1997), Kiniry and Zimmerman (1997),
Oshuga et al. (1997), Pham and Karmouch (1998), Breugst et al. (1999) and Brew-
ington et al. (1999). Security for mobile agent systems is discussed in Tschudin
(1999) and Yoshioka et al. (2001)

Class reading: Kinny and Georgeff (1997). This article describes arguably the
first agent-specific methodology. For a class familiar with OO methodologies, it
may be worth discussing the similarities, differences, and what changes might be
required to make this methodology really usable in practice.

244 Methodologies

Exercises

(1) [Class discussion.]

Enr rlacgog with gnme farmiliarit th n‘r\';r\r-f nriantad .-l,“m}nnmnnf- A
For classes with SOIMIC 1diliiiidlrity vvu.u UJTULCULITIHIICU UCTVOIUPIHLICIIL U

perhaps the critical issue in an analysis and design methodology. Discuss th dlfferences
in the decomposition achieved with OO techniques to those of an agent system. What is
the right ‘grain size’ for an agent? When we do analysis and design for agent systems,
what are the key attributes that we need to characterize an agent in terms of?

(2) [Class discussion.]

With respect to mobile agent systems, discuss those circumstances where a mobile
agent solution is essential - where you cannot imagine how it could be done without
mobility.

(3) [Level 2/3.]

Use GAIA or the AAIl methodology to do an analysis and design of a system with which
you are familiar (if you are stuck for one, read about the ADEPT system described in
Chapter 11). Compare it with an OO analysis and design approach.

(4) [Level 4.]

Extend the UML notation to incorporate agent facilities (such as communication in an
agent communication languages). How might you capture the fact that agents are self-
interested?

b
o

A
oy |

Agents have found application in many domains: in this chapter, I will describe
some of the most notable. Broadly speaking, applications of agents can be divided
into two main groups.

Distributed systems. In which agents become processing nodes in a distributed
system. The emphasis in such systems is on the ‘multi’ aspect of multiagent
systems.

Personal software assistants. In which agents play the role of proactive assis-
tants to users working with some application. The emphasis here is on ‘individ-
ual’ agents.

Agents for Workflow and Business Process
Management

Workflow and business process control systems are dan area of increasing impor-

faneca in ~n tow grinnrnern WaAarl-fl e fnrno thn mrnragcong

LAl T 111 LUJ.l.l]:JU.lCI OUICIIVT. VY Ull\llUVV Dyblclllb (11111 lU ClbllU.LllClLC Llll: PLuLEasts Uf
a business, ensuring that different business tasks are expedited by the appropri-
ate people at the right time, typically ensuring that a particular document flow
is maintained and managed within an organization. The ADEPT system is a cur-
rent example of an agent-based business process management system (Jennings
et al., 1996b). In ADEPT, a business organization is modelled as a society of nego-
tiating, service providing agents.

More specifically, the process was providing customers with a quote for
installing a network to deliver a particular type of telecommunications service.

This activity involves the following British Telecom (BT) departments: the Cus-

246 Applications

tomer Service Division (CSD), the Design Division (DD), the Surveyor Department
(SD), the Legal Division (LD), and the various organizations which provide the
outsourced service of vetting customers (VCs). The process is initiated by a cus-
tomer contacting the CSD with a set of requirements. in parallel to capturing
the requirements, the CSD gets the customer vetted. If the customer fails the
vetting procedure, the quote process terminates. Assuming the customer is sat-
isfactory, their requirements are mapped against the service portfolio. If they
can be met by an off-the-shelf item, then an immediate quote can be offered. In
the case of bespoke services, however, the process is more complex. CSD further
analyses the customer’s requirements and whilst this is occurring LD checks the
legality of the proposed service. If the desired service is illegal, the quote pro-
cess terminates. If the requested service is legal, the design phase can start. To
prepare a network design it is usually necessary to dispatch a surveyor to the
customer’s premises so that a detailed plan of the existing equipment can be
produced. On completion of the network design and costing, DD informs CSD
of the quote. CSD, in turn, informs the customer. The business process then
terminates.

From this high-level system description, a number of autonomous problem-
solving entities were identified. Thus, each department became an agent, and
each individual within a department became an agent. To achieve their individ-
ual objectives, agents needed to interact with one another. In this case, all inter-
actions took the form of negotiations about which services the agents would
provide to one another and under what terms and conditions. The nature of
these negotiations varied, depending on the context and the prevailing circum-
stances: interactions between BT internal agents were more cooperative than
those involving external organizations, and negotiations where time is plenti-
ful differed from those where time is short. In this context, negotiation involved
generating a series of proposals and counter-proposals. If negotiation was suc-
cessful, it resulted in a mutually agreeable contract. The agents were arranged
in various organizational structures: collections of agents were grouped together
as a single conceptual unit {e.g. the individual designers and lawyers in DD and
LD, respectively), authority relationships (e.g. the DD agent is the manager of the
SD agent), peers within the same organization (e.g. the CSD, LD, and DD agents)
and customer-subcontractor relationships (e.g. the CSD agent and the various
V(Cs).

The ADEPT application had a clear rationale for adopting an agent-based
solution. Centralized workflow systems are simply too unresponsive and are
unable to cope with unpredictable events. It was decided, therefore, to devolve
responsibility for managing the business process to software entities that could
respond more rapidly to changing circumstances. Since there will inevitably be
inter-dependencies between the various devolved functions, these software enti-
ties must interact to resolve their conflicts. Such a method of approach leaves
autonomous agents as the most natural means of modelling the solution. Further

arguments in favour of an agent-based solution are that agents provide a soft-
ware model that is ideally suited to the devolved nature of the proposed business
management system. Thus, the project’s goal was to devise an agent framework

that ~ra11ld ke 11eed tn hatild ageante far hitcinace mvarace agomant Nnta that
LLICIL LUMIUL O dOov U LYV DUlIuU ATl _lUl LUILIICOD PIVLCOD Luauastlucut INULC uiia

ADEPT was neither conceived nor implemented as a general-purpose agent frame-
work.

Rather than reimplementing communications from first principles, ADEPT was
built on top of a commercial CORBA platform (OMG, 2001). This platform pro-

vHdaAd tha lhhagcic ~Af lhanmAling H Tatamrnmranal +tha AMEDT oo
viaed uie 0d4dSsis O1 11auuuug ulblllUullUll Clllu JJCLCLUBCIICIL)/ 111 IJJC AL 1L oYD

tem. ADEPT agents also required the ability to undertake context-dependent
reasoning and so a widely used expert system shell was incorporated into the
agent architecture for this purpose. Development of either of these compo-
nents from scratch would have consumed large amounts of project resources
and would probably have resulted in a less robust and reliable solution. On
the negative side, ADEPT failed to exploit any of the available standards for
agent communication languages. This is a shortcoming that restricts the inter-
operation of the ADEPT system. In the same way that ADEPT exploited an off-
the-shelf communications framework, so it used an architecture that had been
developed in two previous projects (GRATE* (Jennings, 1993b) and ARCHON
(Jennings et al., 1996a)). This meant the analysis and design phases could be
shortened since an architecture (together with its specification) had already been
devised.

The business process domain has a large number of legacy components (espe-
cially databases and scheduling software). In this case, these were generally
wrapped up as resources or tasks within particular agents.

ADEPT agents embodied comparatively small amounts of Al technology. For
example, planning was handled by having partial plans stored in a plan library
(in the style of the Procedural Reasoning System (Georgeff and Lansky, 1987)).
The main areas in which Al techniques were used was in the way agents negoti-
ated with one another and the way that agents responded to their environment.
In the former case, each agent had a rich set of rules governing which negoti-
ation strategy it should adopt in which circumstances, how it should respond
to incoming negotiation proposals, and when it should change its negotiation
strategy. In the latter case, agents were required to respond to unanticipated
events in a dynamic and uncertain environment. To achieve their goals in such
circumstances they needed to be flexible about their individual and their social
behaviour.

ADEPT agents were relatively coarse grained in nature. They represented orga-
nizations, departments or individuals. Each such agent had a number of resources
under its control, and was capable of a range of problem-solving behaviours. This
led to a system design in which there were typically less than 10 agents at each
level of abstraction and in which primitive agents were still capable of fulfilling
some high-level goals.

=
Q.)
—
—_

!

11.2

11.3

248 Applications
Agents for Distributed Sensing

The classic application of multiagent technology was in distributed sensing
(Lesser and Erman, 1980; Durfee, 1988). The broad idea is to have a system
constructed as a network of spatially distributed sensors. The sensors may, for
example, be acoustic sensors on a battlefield, or radars distributed across some
airspace. The global goal of the system is to monitor and track all vehicles that
pass within range of the sensors. This task can be made simpler if the sensor
nodes in the network cooperate with one another, for example by exchanging
predictions about when a vehicle will pass from the region of one sensor to the
region of another. This apparently simple domain has yielded surprising rich-
ness as an environment for experimentation into multiagent systems: Lesser’s
well-known Distributed Vehicle Monitoring Testbed (DVMT) provided the proving
ground for many of today’s multiagent system development techniques (Lesser
and Erman, 1980).

Agents for Information Retrieval and
Management

The widespread provision of distributed, semi-structured information resources
such as the World Wide Web obviously presents enormous potential; but it also
presents a number of difficulties (such as ‘information overload’). Agents have
widely been proposed as a solution to these problems. An information agent is
an agent that has access to at least one and potentially many information sources,
and is able to collate and manipulate information obtained from these sources in
order to answer queries posed by users and other information agents (the net-
work of interoperating information sources are often referred to as intelligent
and cooperative information systems (Papazoglou et al., 1992)). The information
sources may be of many types, including, for example, traditional databases as
well as other information agents. Finding a solution to a query might involve an
agent accessing information sources over a network. A typical scenario is that of
a user who has heard about somebody at Stanford who has proposed something
called agent-oriented programming. The agent is asked to investigate, and, after a
careful search of various Web sites, returns with an appropriate technical report,
as well as the name and contact details of the researcher involved.

To see how agents can help in this task, consider the Web. What makes the Web
so effective is that

- it allows access to networked, widely distributed information resources;

+ it provides a uniform interface to multi-media resources including text,
images, sound, video, and so on;

Agents for Inf

- it is hypertext based, making it possible to link documents together in novel
or interesting ways; and

- perhaps mostimportantly, it has an extraordinarily simple and intuitive user
interface, which can be understood and used in seconds.

The reality of Web use at the beginning of the 21st century is, however, still some-
what beset by problems. These problems may be divided into two categories:
human and organizational.

Human factors

The most obvious difficulty from the point of view of human users of the World-
Wide Web is the ‘information overload’ problem (Maes, 1994a). People get over-
whelmed by the sheer amount of information available, making it hard for them
to filter out the junk and irrelevancies and focus on what is important, and aiso
to actively search for the right information. Search engines such as Google and
Yahoo attempt to alleviate this problem by indexing largely unstructured and
unmanaged information on the Web. While these tools are useful, they tend to
lack functionality: most search engines provide only simple search features, not
tailored to a user’s particular demands. In addition, current search engine func-
tionality is directed at textual (typically HTML) content - despite the fact that
one of the main selling features of the Web is its support for heterogeneous,
multi-media content. Finally, it is not at all certain that the brute-force indexing
techniques used by current search engines will scale to the size of the Internet in
the next century. So finding and managing information on the Internet is, despite
tools such as Google, still a problem.

In addition, people easily get bored or confused while browsing the Web. The
hypertext nature of the Web, while making it easy to link related documents
together, can also be disorienting - the ‘back’ and ‘forward’ buttons provided
by most browsers are better suited to linear structures than the highly connected
graph-like structures that underpin the Web. This can make it hard to understand
the topology of a collection of linked Web pages; indeed, such structures are inher-
ently difficult for humans to visualize and comprehend. In short, it is all too easy
to become lost in cyberspace. When searching for a particular item of information,
it is also easy for people to either miss or misunderstand things.

Finally, the Web was not really designed to be used in a methodical way. Most
Web pages attempt to be attractive and highly animated, in the hope that people
will find them interesting. But there is some tension between the goal of mak-
ing a Web page animated and diverting and the goal of conveying information.
Of course, it is possible for a well-designed Web page to effectively convey infor-
mation, but, sadly, most Web pages emphasize appearance, rather than content.
It is telling that the process of using the Web is known as ‘browsing’ rather than
‘reading’. Browsing is a useful activity in many circumstances, but is not generally
appropriate when attempting to answer a complex, important query.

250 Applications

Organizational factors

In addition, there are many organizational factors that make the Web difficult to
use, Perhaps most importantly, apart from the (very broad) HTML standard, there
are no standards for how a Web page should look.

Another problem is the cost of providing online content. Unless significant
information owners can see that they are making money from the provision of
their content, they will simply cease to provide it. How this money is to be made
is probably the dominant issue in the development of the Web today. 1 stress
that these are not criticisms of the Web - its designers could hardly have antici-
pated the uses to which it would be put, nor that they were developing one of the
most important computer systems to date. But these are all obstacles that need
to be overcome if the potential of the Internet/Web is to be realized. The ohvious
question is then: what more do we need?

In order to realize the potential of the Internet, and overcome the limitations
discussed above, it has been argued that we need tools that (Durfee et al., 1997)

- give a single coherent view of distributed, heterogeneous information
resources;

- give rich, personalized, user-oriented services, in order to overcome th
‘information overload’ problem - they must enable users to find informa-
tion they really want to find, and shield them from information they do not

want;

oy
C

. are scalable, distributed, and modular, to support the expected growth of
the Internet and Web;

- are adaptive and self-optimizing, to ensure that services are flexible and
efficient.

Personal information agents

Many researchers have argued that agents provide such a tool. Pattie Maes from
the MIT media lab is perhaps the best-known advocate of this work. She developed
a number of prototypical systems that could carry out some of these tasks. I will
here describe MAXIMS, an email assistant developed by Maes.

[MAXIMS] learns to prioritize, delete, forward, sort, and archive mail
messages on behalf of a user.

(Maes, 1994a)

MAXIMS works by ‘looking over the shoulder’ of a user, and learning about how
they deal with email. Each time a new event occurs (e.g. email arrives), MAXIMS
records the event in the form of

situation — action

pairs. A situation is characterized by the following attributes of an event:

- sender of email;
+ recipients;
- subject line

- keywords in message body and so on.

When a new situation occurs, MAXIMS matches it against previously recorded
rules. Using these rules, it then tries to predict what the user will do, and generates
a confidence level: a real number indicating how confident the agent is in its deci-
sion. The confidence level is matched against two preset real number thresholds:
a ‘tell me’ threshold and a ‘do it’ threshold. If the confidence of the agent in its
decision is less than the ‘tell me’ threshold, then the agent gets feedback from the
user on what to do. If the confidence of the agent in its decision is between the ‘tell
me’ and ‘do it’ thresholds, then the agent makes a suggestion to the user about
what to do. Finally, if the agent’s confidence is greater than the ‘do it’ threshold,
then the agent takes the initiative, and acts.

Rules can also be hard coded by users (e.g. ‘always delete mails from person
X’). MAXIMS has a simple ‘personality’ (an animated face on the user’s GUI), which
communicates its ‘mental state’ to the user: thus the icon smiles when it has made
a correct guess, frowns when it has made a mistake, and so on.

The NewT systemis a Usenet news filter (Maes, 1994a, pp. 38, 39). A NewT agent
is trained by giving it a series of examples, illustrating articles that the user would
and would not choose to read. The agent then begins to make suggestions to the
user, and is given feedback on its suggestions. NewT agents are not intended to
remove human choice, but to represent an extension of the human's wishes: the
aim is for the agent to be able to bring to the attention of the user articles of
the type that the user has shown a consistent interest in. Similar ideas have been
proposed by McGregor, who imagines prescient agents - intelligent administrative
assistants, that predict our actions, and carry out routine or repetitive adminis-
trative procedures on our behalf (McGregor, 1992).

Web agents

Etzioni and Weld (1995) identify the following specific types of Web-based agent
they believe are likely to emerge in the near future.

Tour guides. The idea here is to have agents that help to answer the question
‘where do I go next’ when browsing the Web. Such agents can learn about the
user’s preferences in the same way that MAXIMS does, and, rather than just

providing a single, uniform type of hyperlink, they actually indicate the likelv

Alaiiagy Siiig/y ity vuiiiilSaaaa AL ARy P aiadaNy Lad Qo tiadias Y 2saiai QR LA SR LY

interest of a link.

Indexing agents. Indexing agents will provide an extra layer of abstraction on top
of the services provided by search/indexing agents such as Google and InfoS-
eek. The idea is to use the raw information provided by such engines, together

N
¥}
NN

Appiications

personalization,

added value
/\ ‘ ’ high
MetaCrawler
Ahoy software
agents
/ \
AltaVista Lo) .
] indices, directories
Yahoo search engines, crawlers
raw WorldWideWeb content V
low

Figure 11.1 The Web information food chain.

with knowledge of the user’s goals, preferences, etc., to provide a personalized
service.

FAQ-finders. The idea here is to direct users to ‘Frequently Asked Questions’
(FAQs) documents in order to answer specific questions. Since FAQs tend to
be knowledge-intensive, structured documents, there is a lot of potential for
automated FAQ finders.

Expertise finders. Suppose I want to know about people interested in temporal
belief logics. Current Web search tools would simply take the three words ‘tem-
poral’, ‘belief’, ‘logic’, and search on them. This is not ideal: Google has no model
of what you mean by this search, or what you really want. Expertise finders ‘try
to understand the user’'s wants and the contents of information services’ in
order to provide a better information provision service.

Etzioni (1996) put forward a model of information agents that add value to the
underlying information infrastructure of the Web - the information food chain
(see Figure 11.1). At the lowest level in the Web information food chain is raw
content: the home pages of individuals and companies. The next level up the
food chain is the services that ‘consume’ this raw content. These services include
search engines such as Google, Lycos, and Yahoo.

These search engines maintain large databases of Web pages, indexed by
content. Apart from the technical difficulties associated with storing such large
databases and being able to process and retrieve their contents sufficiently
quickly to provide a useful online service, the search engines must also obtain
and index new or changed Web pages on a regular basis. Currently, this is

Agents for Information Retrieval and Management 253

done in one of two ways. The simplest is to have humans search for pages and
classify them manually. This has the advantage that the classifications obtained
in this way are likely to be meaningful and useful. But it has the very obvious
disadvantage that it is not necessarily thorough, and is costly in terms of human
resources. The second approach is to use simple software agents, often called
spiders, to systematically search the Web, following all links, and automatically
classifying content. The classification of content is typically done by removing
‘noise’ words from the page (‘the’, ‘and’, etc.), and then attempting to find those
words that have the most meaning.

All current search engines, however, suffer from the disadvantage that their
coverage is partial. Etzioni (1996) suggested that one way around this is to use
a meta search engine. This search engine works not by directly maintaining a
database of pages, but by querying a number of search engines in parallel. The
results from these search engines can then be collated and presented to the user.
The meta search engine thus ‘feeds’ off the other search engines. By allowing the
engine to run on the user’s machine, it becomes possible to personalize services -
to tailor them to the needs of individual users.

Multiagent information retrieval systems

The information resources - Web sites - in the kinds of applications I discussed
above are essentially passive. They simply deliver specific pages when requested.
A common approach is thus to make information resources more ‘intelligent’ by
wrapping them with agent capabilities. The structure of such a system is illus-
trated in Figure 11.2.

In this figure, there are a number of information repositories; these repositories
may be Web sites, databases, or any other form of store. Access to these reposi-
tories is provided by information agents. These agents, which typically communi-
cate using an agent communication language, are ‘experts’ about their associated
repository. As well as being able to provide access to the repository, they are
able to answer ‘meta-level’ queries about the content (‘do you know about X’?).
The agents will communicate with the repository using whatever native API the
repository provides - HTTP, in the case of Web repositories.

To address the issue of finding agents in an open environment like the Internet,
middle agents or brokers are used (Wiederhold, 1992: Kuokka and Harada, 1996).
Each agent typically advertises its capabilities to some broker. Brokers come in
several different types. They may be simply matchmakers or yellow page agents,
which match advertisements to requests for advertised capabilities. Alternatively,
they may be blackboard agents, which simply collect and make available requests.
Or they may do both of these (Decker et al., 1997). Different brokers may be
specialized in different areas of expertise. For example, in Figure 11.2, one broker
‘knows about’ repositories 1, 2, and 3; the other knows about 2, 3, and 4.

11.4

254 Appilications

user

user

broker
i///// agent

info
agent

info
agent

info ‘ \ J

info

[;j agent
agent
repository | % ? repository #
S

repository 2

repository 3

Figure 11.2 Typical architecture of a multiagent information system.

Brokered systems are able to cope more quickly with a rapidly fluctuating agent
population. Middle agents allow a system to operate robustly in the face of inter-
mittent communications and agent appearance and disappearance.

The overall behaviour of a system such as thatin Figure 11.2 is that a user issues
a query to an agent on their local machine. This agent may then contact informa-
tion agents directly, or it may go to a broker, which is skilled at the appropriate
type of request. The broker may then contact a number of information agents,
asking first whether they have the correct skills, and then issuing specific queries.
This kind of approach has been successfully used in digital library applications
(Wellman et al., 1996).

Agents for Electronic Commerce

The boom in interest in the Internet throughout the late 1990s went hand-in-hand
with an explosion of interest in electronic commerce (e-commerce) (Ovuam, 1994;
Guilfoyle et al., 1997). As it currently stands, the Web has a number of features
that limit its use as an ‘information market’. Many of these stem from the fact
that the Web has academic origins, and as such, it was designed for free, open
access. The Web was thus not designed to be used for commercial purposes, and
a number of issues limit its use for this purpose.

 for Electronic Commerce 255

Trust: in an online global marketplace, it is difficult for consumers to know which
vendors are reliable/secure and which are not, as they are faced with vendor
brands that they have not previously encountered.

Privacy and security: consumers (still) have major worries about the security of
their personal information when using e-commerce systems - mechanisms such
as secure HTTP (https) go some way to alleviating this problem, but it remains
a major issue.

Billing/revenue: no bhuilt-in

must be implemented over the basic Web structure; in addition, the Web was
not designed with any particular revenue model in mind.

billing mechanisms are provided by the Web - the

A S 23ef222O e = =7 —

Reliability: the Internet - and hence the Web - is unreliable, in that data and
connections are frequently lost, and it thus has unpredictable performance.
These limitations may be accepted by academic or home/hobby users, but they
represent a very real obstacle in the way of the wider commercial use of the
Web.

‘First-generation’ e-commerce systems (of which amazon.com was perhaps the
best known example) allowed a user to browse an online catalogue of products,
choose some, and then purchase these selected products using a credit card. How-
ever, agents make it possible for second-generation e-commerce systems, in which
many aspects of a consumer’s buying behaviour is automated.

There are many models that attempt to describe consumer buying behaviour.
Of these, one of the most popular postulates that consumers tend to engage in
the following six steps (Guttman et al., 1998, pp. 148, 149).

(1) Need identification. This stage characterizes the consumer becoming aware
of some need that is not satisfied.

(2) Product brokering. In this stage, a would-be consumer obtains information
relating to available products, in order to determine what product to buy.

(3) Merchant brokering. In this stage, the consumer decides who to buy from.
This stage will typically involve examining offers from a range of different mer-
chants.

(4) Negotiation. In this stage, the terms of the transaction are agreed between the
would-be consumer and the would-be merchant. In some markets (e.g. regular
retail markets), the negotiation stage is empty - the terms of agreement are
fixed and not negotiable. In other markets (e.g. the used car market), the terms
are negotiable.

(5) Purchase and delivery. In this stage, the transaction is actually carried out,
and the good delivered.

(6) Product service and evaluation. The post-purchase stage involves product
service, customer service, etc.

256 Applications

Table 11.1 Current agents for electronic commerce.

Persona Bargain Auction Téte-
Logic Firefly Finder Jango Kasbah Bot a-téte

Need identification X X X X
Product brokering X X X
Merchant brokering X X X X X
Negotiation X X X

Purchase & delivery
Service & evaluation

Agents have been widely promoted as being able to automate (or at least partially
automate) some of these stages, and hence assist the consumer to reach the best
deal possible (Noriega and Sierra, 1999). Table 11.1 (from Guttman et al., 1998)
summarizes the extent to which currently developed agents can help in each stage.

Comparison shopping agents

The simplest type of agent for e-commerce is the comparison shopping agent. The
idea is very similar to the meta search engines discussed above. Suppose you want
to purchase the CD ‘Music’ by Madonna. Then a comparison shopping agent will
search a number of online shops to find the best deal possible.

Such agents work well when the agent is required to compare goods with respect
to a single attribute - typically price. The obvious examples of such situations are
‘shrink wrapped’ goods such as CDs and books. However, they work less well when
there is more than one attribute to consider. An example might be the used-car
market, where in addition to considering price, the putative consumer would want
to consider the reputation of the merchant, the length and type of any guarantee,
and many other attributes.

The Jango system (Doorenbos et al., 1997)is a good example of a first-generation
e-commerce agent. The long-term goals of the Jango project were to

« help the user decide what to buy;

- find specifications and reviews of products;

- make recommendations to the user;

. perform comparison shopping for the best buy;
« monitor ‘what’s new’ lists; and

- watch for special offers and discounts.

A key obstacle that the developers of Jango encountered was simply that Web

pages are all different. Jango exploited several regularities in vendor Web sites in
order to make ‘intelligent guesses’ about their content.

Agents for Electronic Commerce 257

Navigation regularity. Web sites are designed by vendors so that products are
easy to find.

Corporate regularity. Web sites are usually designed so that pages have a similar
‘look’'n’feel’;

Vertical separation. Merchants use white space to separate products.
Internally, Jango has two key components:

- a component to learn vendor descriptions (i.e. learn about the structure of
vendor Web pages); and

+ a comparison shopping component, capable of comparing products across
different vendor sites.

In ‘second-generation’ agent mediated electronic commerce systems, it is pro-
posed that agents will be able to assist with the fourth stage of the purchasing
model set out above: negotiation. The idea is that a would-be consumer delegates
the authority to negotiate terms to a software agent. This agent then negotiates
with another agent (which may be a software agent or a person) in order to reach
an agreement.

There are many obvious hurdles to overcome with respect to this model: The
most important of these is trust. Consumers will not delegate the authority to
negotiate transactions to a software agent unless they trust the agent. In partic-
ular, they will need to trust that the agent (i) really understands what they want,
and (ii) that the agent is not going to be exploited (‘ripped off’) by another agent,
and end up with a poor agreement.

Comparison shopping agents are particularly interesting because it would seem
that, if the user is able to search the entire marketplace for goods at the best price,
then the overall effect is to force vendors to push prices as low as possible. Their
profit margins are inevitably squeezed, because otherwise potential purchasers
would go elsewhere to find their goods.

Auction bots

A highly active related area of work is auction bots: agents that can run, and
participate in, online auctions for goods. Auction bots make use of the kinds of
auction techniques discussed in Chapter 7. A well-known example is the Kasbah
system (Chavez and Maes, 1996). The aim of Kasbah was to develop a Web-based
system in which users could create agents to buy and sell goods on their behalf.
In Kasbah, a user can set three parameters for selling agents:

- desired date to sell the good by;
+ desired price to sell at; and

+ minimum price to sell] at.

11.5

258 Appilications

Selling agents in Kasbah start by offering the good at the desired price, and as the
deadline approaches, this price is systematically reduced to the minimum price
fixed by the seller. The user can specify the ‘decay’ function used to determine the
current offer price. uuuauy, three choices of uECa'y' function were offered: linear,
quadratic, and cubic decay. The user was always asked to confirm sales, giving
them the ultimate right of veto over the behaviour of the agent.

As with selling agents, various parameters could be fixed for buying agents: the
date to buy the item by, the desired price, and the maximum price. Again, the user
could SpeCh'y’ the gi"()'v‘vul function of price over time.

Agents in Kasbah operate in a marketplace. The marketplace manages a num-
ber of ongoing auctions. When a buyer or seller enters the marketplace, Kasbah
matches up requests for goods against goods on sale, and puts buyers and sellers
in touch with one another.

nnnnn thn nf an nanmlina nnnt

Thc L),_Iblllh)h F[.)hl'll/ll -"\5[ID GJJULIJCL CAdlllplC Ul all UILLILIIT dauu Gn S‘)/TS
(Rodriguez et al.,, 1997). Based on a real fishmarket that takes place in the town
of Blanes in northern Spain, the FM system provides similar facilities to Kasbah,
but is specifically modelled on the auction protocol used in Blanes.

Agents for Human-Computer Interfaces

Currently, when we interact with a computer via a user interface, we are making
use of an interaction paradigm known as direct manipulation. Put simply, this
means that a computer program (a word processor, for example) will only do
something if we explicitly tell it to, for example by clicking on an icon or selecting
an item from a menu. When we work with humans on a task, however, the inter-
action is more two-way: we work with them as peers, each of us carrying out parts
of the task and proactively helping each other as problem-solving progresses. In
essence, the idea behind interface agents is to make computer systems more like
proactive assistants. Thus, the goal is to have computer programs that in certain
circumstances could take the initiative, rather than wait for the user to spell out
exactly what they wanted to do. This leads to the view of computer programs as
cooperating with a user to achieve a task, rather than acting simply as servants.
A program capable of taking the initiative in this way would in effect be operat-
ing as a semi-autonomous agent. Such agents are sometimes referred to as expert
assistants or interface agents. Maes (1994b, p. 71) defines interface agents as

[Clomputer programs that employ artificial intelligence techniques in
order to provide assistance to a user dealing with a particular applica-

Hnn Tha maoatanhanric that af a morcnanal accictant whan ic rollabhnvat.
UL e 20T INCEpnalrn 15 Uial U1 a perstriidl US515darie Wil 15 (Uil OUric

ing with the user in the same work environment.

One of the key figures in the development of agent-based interfaces has heen
Nicholas Negroponte (director of MIT’s influential Media Lab). His vision of agents
at the interface was set out in his 1995 book Being Digital (Negroponte, 1995):

=
(=)}

=
\l

L __a_.

The agent answers the phone, recognizes the callers, disturbs you when
appropriate, and may even tell a white lie on vour behalf. The same
agent is well trained in timing, versed in finding opportune moments,

Y\fq rnor\nr‘l"F]ll {\‘F f']1l\[“7“("l"')("lﬂﬂ TF 7M1]’\':I‘TD DI\]’Y\D]"'\I\A‘? ‘AT]’ln lf“f\‘.\7(‘
u11u lLOPL_LL w1l vl lulUD)‘le,L AL On = v s 11)‘Ubl. 11V L OUILILUUL{)‘ YY11WU DNLIIVYY O

you well and shares much of your information, that person can act on
your behalf very effectively. If your secretary falls ill, it would make no
difference if the temping agency could send you Albert Einstein. This
issue is not about IQ. It is shared knowledge and the practice of using

it in vonr hoot intoracte Tilra am armyv raommandoar canding 2 geninit
10l YyUul UCoU LIHIICITOS. - - - LIKC all cuiliy commanager STty a Stlut

ahead. ..you will dispatch agents to collect information on your behalf.
Agents will dispatch agents. The process multiplies. But [this process]
started at the interface where you delegated your desires.

Agents for Virtual Environments

There is obvious potential for marrying agent technology with that of the cinema,
computer games, and virtual reality. The OZ project was initiated to develop:

..artistically interesting, highly interactive, simulated worlds. . .to give
users the experience of living in (not merely watching) dramatically rich
worlds that include moderately competent, emotional agents.

(Bates et al., 1992b, p. 1)

In order to construct such simulated worlds, one must first develop believable
agents: agents that ‘provide the illusion of life, thus permitting the audience’s
suspension of disbelief’ (Bates, 1994, p. 122). A key component of such agents
is emotion: agents should not be represented in a computer game or animated
film as the flat, featureless characters that appear in current computer games.
They need to show emotions; to act and react in a way that resonates in tune with
our empathy and understanding of human behaviour. The OZ group investigated
various architectures for emotion (Bates et al, 1992a), and have developed at least
one prototype implementation of their ideas (Bates, 1994).

Agents for Social Simulation

I noted in Chapter 1 that one of the visions behind multiagent systems technol-
ogy is that of using agents as an experimental tool in the social sciences (Gilbert
and Doran, 1994; Gilbert, 1995; Moss and Davidsson, 2001). Put crudely, the idea
is that agents can be used to simulate the behaviour of human societies. At its
simplest, individual agents can be used to represent individual people; alterna-
tively, individual agents can be used to represent organizations and similar such

entities.

260 Applications

Conte and Gilbert (1995, p. 4} suggest that multiagent simulation of social pro-
cesses can have the following benefits:

- computer simulation allows the observation of properties of a model that
may in principle be analytically derivable but have not yet been established;

+ possible alternatives to a phenomenon observed in nature may be found;

. properties that are difficult/awkward to observe in nature may be studied
at leisure in isolation, recorded, and then ‘replayed’ if necessary;

‘sociality’ can be modelled explicitly - agents can be built that have rep-
resentations of other agents, and the properties and implications of these
representations can be investigated.

Moss and Davidsson (2001, p. 1) succinctly states a case for multiagent simulation:

[For many systems,] behaviour cannot be predicted by statistical

or qualitative analysis. ... Analysing and designing...such systems
requires a different approach to software engineering and mechanism
design.

Moss goes on to give a general critique of approaches that focus on formal analy-
sis at the expense of accepting and attempting to deal with the ‘messiness’ that
is inherent in most multiagent systems of any complexity. It is probably fair to
say that his critique might be applied to many of the techniques described in
Chapter 7, particularly those that depend upon a ‘pure’ logical or game-theoretic
foundation. There is undoubtedly some strength to these arguments, which echo
cautionary comments made by some of the most vocal proponents of game theory
(Binmore, 1992, p. 196). In the remainder of this section, I will review one major
project in the area of social simulation, and point to some others.

The EOS project

The EOS project, undertaken at the University of Essex in the UK, is a good exam-
ple of a social simulation system (Doran, 1987; Doran et al.,, 1992; Doran and
Palmer, 1995). The aim of the EOS project was to investigate the causes of the

amorcgonroa nf cnrial ramnlavity in TTnnmar Palaanlithis Franca Raturoaan 15 NNN and
Vil goldlle Ul sulldl _UlllychlLy 111 UPPCL r s uluculltlll\. L 1LCAULIULC . UCLVVCCLI 4 JUuUy aliul

30000 vyears ago, at the height of the last ice age, there was a relatively rapid
growth in the complexity of societies that existed at this time. The evidence of
this social complexity came in the form of Doran and Palmer (1995)

- larger and more abundant archaeological sites;

- increased wealth, density, and stratigraphic complexity of archaeological
material in sites;

- more abundant and sophisticated cave art (the well-known caves at Lascaux
are an example);

[}
=)
P

Agents for Social Simuiation

Environment

' Agent o
input communication/
buffer perceived environment

T
cognitive

rules

social resource misc. workipg
model model memory

\ /

action communication/

rules action

A iy

Figure 11.3 Agents in EOS.

- increased stone, bone, and antler technology;

- abundance of ‘trade’ objects.

A key open question for archaeologists is what exactly caused this emergence
of complexity. In 1985, the archaeologist Paul Mellars proposed a model that
attempted to explain this complexity. The main points of Mellar’s model were that
the key factors leading to this growth in complexity were an exceptional wealth
and diversity of food resources, and a strong, stable, predictable concentration of
these resources.

In order to investigate this model, a multiagent experimental platform - the
EOS testbed - was developed. This testbed, implemented in the Prolog language
(Clocksin and Mellish, 1981), allows agents to be programmed as rule-based sys-
tems. The structure of an EOS agent is shown in Figure 11.3.

Each agent in EOS is endowed with a symbolic representation of its environ-
ment - its beliefs. Beliefs are composed of beliefs about other agents (the social
model), beliefs about resources in the environment (the resource model), and mis-
cellaneous other beliefs. To update its beliefs, an agent has a set of cognitive rules,
which map old beliefs to new ones. To decide what action to perform, agents have
action rules: action rules map beliefs to actions. (Compare with Shoham’s Agent0
system described in Chapter 3.) Both cognitive rules and action rules are executed
in a forward-chaining manner.

Agents in the EOS testbed inhabit a simulated two-dimensional environment,
some 10000 x 10000 cells in size (cf. the Tileworld described in Chapter 2.) Each
agent occupies a single cell, initially allocated at random. Agents have associated
with them skills (cf. the MACE system described in Chapter 9.) The idea is that
an agent will attempt to obtain resources (‘food’) which are situated in the envi-

262 Applications

ronment; resources come in different types, and only agents of certain types are
able to obtain certain resources. Agents have a number of ‘energy stores’, and
for each of these a ‘hunger level’. If the energy store associated with a particular
hunger level falls below the value of the hunger level, then the agent will attempt
to replenish it by consuming appropriate resources. Agents travel about the EOS
world in order to obtain resources, which are scattered about the world. Recall
that the Mellars model suggested that the availability of resources at predictable
locations and times was a key factor in the growth of the social complexity in the
Palaeolithic period. To reflect this, resources (intuitively corresponding to things
like a Reindeer herd or a fruit tree) were clustered, and the rules governing the
emergence and disappearance of resources reflects this.

The basic form of social structure that emerges in EOS does so because certain
resources have associated with them a skill profile. This profile defines, for every
type of skill or capability that agents may possess, how many agents with this
skill are required to obtain the resource. For example, a ‘fish’ resource might
require two ‘boat’ capabilities; and a ‘deer’ resource might require a single ‘spear’
capability.

In each experiment, a user may specify a number of parameters:

- the number of resource locations of each type and their distribution;

- the number of resource instances that each resource location comprises;
- the type of energy that each resource location can supply;

- the quantity of energy an instance of a particular resource can supply;

- the skill profiles for each resource; and

- the ‘renewal’ period, which elapses between a resource being consumed and
being replaced.

To form collaborations in order to obtain resources, agents use a variation of
Smith’s Contract Net protocol {(see Chapter 9): thus, when an agent finds a
resource, it can advertise this fact by sending out a broadcast announcement.
Agents can then bid to collaborate on obtaining a resource, and the successful
bidders then work together to obtain the resource.

A number of social phenomena were observed in running the EOS testbed, for
example: ‘overcrowding’, when too many agents attempt to obtain resources in
some locale; ‘clobbering’, when agents accidentally interfere with each other’s
goals; and semi-permanent groups arising. With respect to the emergence of deep
hierarchies of agents, it was determined that the growth of hierarchies depended
to a great extent on the perceptual capabilities of the group. If the group is not
equipped with adequate perceptual ability, then there is insufficient information
to cause a group to form. A second key aspect in the emergence of social structure
is the complexity of resources - how many skills it requires in order to obtain and
exploit a resource, If resources are too complex, then groups will not be able to
form to exploit them before they expire.

lll.S

Agents for X 263

An interesting aspect of the EOS project was that it highlighted the cognitive
aspects of muitiagent social simulation. That is, by using EOS, it was possibie
to see how the beliefs and aspirations of individuals in a society can influence
the possible trajectories of this society. One of the arguments in favour of this
style of multiagent societal simulation is that this kind of property is very hard
to model or understand using analytical techniques such as game or economic

theory (cf. the quote from Moss, above).

Policy modelling by multiagent simulation

Another application area for agents in social simulation is that of policy modelling
and development (Downing et al., 2001). Regulatory and other similar bodies put
forward policies, which are designed - or at least intended - to have some desired
effect. An example might be related to the issue of potential climate change caused
by the release of greenhouse gases (cf. Downing et al., 2001). A national govern-
ment, or an international body such as the EU, might desire to reduce the poten-
tially damaging effects of climate change, and put forward a policy designed to
limit it. A typical first-cut at such a policy might be to increase fuel taxes, the idea
being that this reduces overall fuel consumption, in turn reducing the release of
greenhouse gases. But policy makers must generally form their policies in igno-
rance of what the actual effect of their policies will be, and, in particular, the
actual effect may be something quite different to that intended. In the greenhouse
gas example, the effect of increasing fuel taxes might be to cause consumers to
switch to cheaper - dirtier - fuel types, at best causing no overall reduction in
the release of greenhouse gases, and potentially even leading to an increase. So,
it is proposed, multiagent simulation models might fruitfully be used to gain an
understanding of the effect of their nascent policies.

An example of such a system is the Freshwater Integrated Resource Man-
agement with Agents (FIRMA) project (Downing et al, 2001). This project is
specifically intended to understand the impact of governments exhorting water
consumers to exercise care and caution in water use during times of drought
(Downing et al., 2001, p. 206). (In case you were wondering, yes, droughts do
happen in the UK!) Downing et al. (2001) developed a multiagent simulation
model in which water consumers were represented by agents, and a ‘policy’ agent
issued exhortations to consume less at times of drought. The authors were able to
develop a simulation model that fairly closely resembled the observed behaviour
in human societies in similar circumstances; developing this model was an itera-
tive process of model reformulation followed by a review of the observed results
of the model with water utilities.

Agents for X

Agents have been proposed for many more application areas than I have the space
to discuss here. In this section, [will give a flavour of some of these.

264 Applications

Agents for industrial systems management. Perhaps the largest and proba-
bly best-known European multiagent system development project to date was
ARCHON (Wittig, 1992; Jennings and Wittig, 1992; Jennings et al, 1995). This
project developed and deployed multiagent technology in several industrial
domains. The most significant of these domains was a power distribution sys-
tem, which was installed and is currently operational in northern Spain. Agents in
ARCHON have two main parts: a domain component, which realizes the domain-
specific functionality of the agent; and a wrapper component, which provides
the agent functionality, enabling the system to plan its actions, and to repre-
sent and communicate with other agents. The ARCHON technology has sub-
sequently been deployed in several other domains, including particle accelera-
tor control. (ARCHON was the platform through which Jennings’s joint inten-
tion model of cooperation (Jennings, 1995), discussed in Chapter 9, was devel-
oped.)

Agents for Spacecraft Control. It is difficult to imagine a domain with harder
real-time constraints than that of in-flight diagnosis of faults on a spacecraft.
Yet one of the earliest applications of the PRS architecture was precisely this
(Georgeff and Lansky, 1987). In brief, the procedures that an astronaut would use
to diagnose faults in the Space Shuttle’s reaction control systems were directly
coded as PRS plans, and the PRS architecture was used to interpret these plans,
and provide reai-time advice to astronauts in the event of failure or maifunction
in this system.

Agents for Air-Traffic Control. Air-traffic control systems are among the old-
est application areas in multiagent systems (Steeb et al, 1988; Findler and Lo,
1986). A recent example is OASIS (Optimal Aircraft Sequencing using Intelligent
Scheduling), a system that is currently undergoing field trials at Sydney airport
in Australia (Ljunberg and Lucas, 1992). The specific aim of OASIS is to assist
an air-traffic controller in managing the flow of aircraft at an airport: it offers
estimates of aircraft arrival times, monitors aircraft progress against previously
derived estimates, informs the air-traffic controlier of any errors, and perhaps
most importantly finds the optimal sequence in which to land aircraft. OASIS
contains two types of agents: global agents, which perform generic domain func-
tions (for example, there is a ‘sequencer agent’, which is responsible for arranging
aircraft into a least-cost sequence); and aircraft agents, one for each aircraft in
the system airspace. The OASIS system was implemented using the PRS agent
architecture.

Notes and Further Reading

Jennings and Wooldridge (1998a) is a collection of papers on applications of agent
systems. Parunak (1999) gives a more recent overview of industrial applications.

Agents for X 265

Hayzelden and Bigham (1999) is a collection of articles loosely based around the
theme of agents for computer network applications; Klusch (1999) is a similar
collection centred around the topic of information agents.

Van Dyke Parunak (1987) describes the use of the Contract Net protocol
(Chapter 8) for manufacturing control in the YAMS (Yet Another Manufacturing
System). Mori et al. have used a multiagent approach to controlling a steel coil
processing plant (Mori et al., 1988), and Wooldridge et al. have described how
the process of determining an optimal production sequence for some factory can
naturally be viewed as a problem of negotiation between the various production
cells within the factory (Wooldridge et al., 1996).

A number of studies have been made of information agents, including a the-
oretical study of how agents are able to incorporate information from different
sources (Levy et al., 1994; Gruber, 1991), as well as a prototype system called IRA
(information retrieval agent) that is able to search for loosely specified articles
from a range of document repositories (Voorhees, 1994). Another important sys-
tem in this area was Carnot (Huhns et al., 1992), which allows preexisting and
heterogeneous database systems to work together to answer queries that are out-
side the scope of any of the individual databases.

There is much related work being done by the computer supported coopera-
tive work (CSCW) community. CSCW is informally defined by Baecker to be ‘com-
puter assisted coordinated activity such as problem solving and communication
carried out by a group of collaborating individuals’ (Baecker, 1993, p. 1). The pri-
mary emphasis of CSCW is on the development of (hardware and) software tools
to support collaborative human work - the term groupware has been coined to
describe such tools. Various authors have proposed the use of agent technology
in groupware. For example, in his participant systems proposal, Chang suggests
systems in which humans collaborate with not only other humans, but also with
artificial agents (Chang, 1987). We refer the interested reader to the collection of
papers edited by Baecker (1993) and the article by Greif (1994) for more details
on CSCW.

Noriega and Sierra (1999) is a collection of paper on agent-mediated electronic
commerce. Kephart and Greenwald (1999) investigates the dynamics of systems
in which buyers and sellers are agents.

Gilbert and Doran (1994), Gilbert and Conte (1995) and Moss and Davidsson
(2001) are collections of papers on the subject of simulating societies by means of
multiagent systems. Davidsson (2001) discusses the relationship between multi-
agent simulation and other types of simulation (e.g. object-oriented simulation
and discrete event models).

Class reading: Parunak (1999). This paper gives an overview of the use of agents
in industry from one of the pioneers of agent applications.

266 Appilications
Exercises

(1) [Level 1/Class Discussion.]

Manv of the svstemes dis
[L G N

11
TIRALY W1 Ul Oy 1110 dWiovuo

haps match up too well to the notion of an agent as I discussed itin Chapter 204
proactive, social). Does this matter? Do they still deserve to be called agents®

MAXIMS NewT Tanoo

g8 aed in thic o
\..\-LJ. -6 TLL ASX2ALY l.u AN YY L Jull&

‘\JA“-/
('D
oo
[
-
—_
<
n

2) [Level 4.]
Take an agent programming environment off the shelf (e.g. Jam (Huber 1999), Jack

(Busetta et ul 2000), J Jduc \roggl and Rimassa, 2001) or JATLite (Jeon et ut 2000)) and
using one of the methodologies described in the preceding chapter, use it to 1mp1ement a
major multiagent system. Document your experiences, and contrast them with the expe-
riences you would expect with conventional approaches to system development. Weigh
up the pros and cons, and use them to feed back into the multiagent research and devel-

opment literature.

Computer science is, as much as it is about anything, about developing formal
theories to specify and reason about computer systems. Many formalisms have
been developed in mainstream computer science to do this, and it comes as no
surprise to discover that the agents community has also developed many such
formalisms. In this chapter, I give an overview of some of the logics that have been
developed for reasoning about multiagent systems. The predominant approach
has been to use what are called modal logics to do this. The idea is to develop
logics that can be used to characterize the mental states of agents as they act and
interact. (See Chapter 2 for a discussion on the use of mental states for reasoning
about agents.)

Following an introduction to the need for modal logics for reasoning about
agents, I introduce the paradigm of normal modal logics with Kripke semantics,
as this approach is almost universally used. I then go on to discuss how these
logics can be used to reason about the knowledge that agents possess, and then
integrated theories of agency. 1 conclude by speculating on the way that these

formalisms might be used in the development of agent systems.

Please note: this chapter presupposes some understanding of the use
of logic and formal methods for specification and verification. It is
probably best avoided by those without such a background.

12.1

268 Logics for Multiagent Systems
Why Modal Logic?

Suppose one wishes to reason about mental states - beliefs and the like - in a log-
ical framework. Consider the following statement (after Genesereth and Nilsson,
1987, pp. 210, 211):

Janine believes Cronos is the father of Zeus. (12.1)

The best-known and most widely used logic in computer science is first-order
logic. So, can we represent this statement in first-order logic? A naive attempt to
translate (12.1) into first-order logic might result in the following:

Bel(Janine,Fathev(Zeus,Cronos)). (12.2)

Unfortunately, this naive translation does not work, for at least two reasons. The
first is syntactic: the second argument to the Bel predicate is a formula of first-
order logic, and is not, therefore, a term. So (12.2) is not a well-formed formula
of classical first-order logic.

The second problem is semantic. The constants Zeus and Jupiter, by any
reasonable interpretation, denote the same individual: the supreme deity of the
classical world. It is therefore acceptable to write, in first-order logic,

(Zeus = Jupiter). (12.3)

Given (12.2) and (12.3), the standard rules of first-order logic would allow the
derivation of the following:

Bel(Janine,Father (Jupiter,Cronos)). (12.4)

But intuition rejects this derivation as invalid: believing that the father of Zeus is
Cronos is not the same as believing that the father of Jupiter is Cronos.

So what is the problem? Why does first-order logic fail here? The problem is that
the intentional notions - such as belief and desire - are referentially opaque, in that
they set up opaque contexts, in which the standard substitution rules of first-order
logic do not apply. In classical (propositional or first-order) logic, the denotation,
or semantic value, of an expression is dependent solely on the denotations of its
sub-expressions. For example, the denotation of the propositional logic formula
p A q is a function of the truth-values of p and g. The operators of classical logic
are thus said to be truth functional.

In contrast, intentional notions such as belief are not truth functional. It is
surely not the case that the truth value of the sentence:

Janine believes p (12.5)

is dependent solely on the truth-value of p!. So substituting equivalents into
opaque contexts is not going to preserve meaning. This is what is meant by ref-
erential opacity. The existence of referentially opaque contexts has been known

!Note, however, that the sentence (12.5) is itself a proposition, in that its denotation is the value
true or false.

Why Modal Logic? 269

since the time of Frege. He suggested a distinction between sense and reference. In
ordinary formulae, the ‘reference’ of a term/formula (i.e. its denotation) is needed,
whereas in opaque contexts, the ‘sense’ of a formula is needed {see also Seel, 1989,
B- 3).

Clearly, classical logics are not suitable in their standard form for reasoning
about intentional notions: alternative formalisms are required. A vast enterprise
has sprung up devoted to developing such formalisms.

The field of formal methods for reasoning about intentional notions is widely
reckoned to have begun with the publication, in 1962, of Jaakko Hintikka’s
book Knowledge and Belief: An Introduction to the Logic of the Two Notions
(Hintikka, 1962). At that time, the subject was considered fairly esoteric, of inter-
est to comparatively few researchers in logic and the philosophy of mind. Since
then, however, it has become an important research area in its own right, with con-
tributions from researchers in Al, formal philosophy, linguistics and economics.
There is now an enormous literature on the subject, and with a major biannual
international conference devoted solely to theoretical aspects of reasoning about
knowledge, as well as the input from numerous other, less specialized confer-
ences, this literature is growing ever larger.

Despite the diversity of interests and applications, the number of basic tech-

niques in use is quite small. Recall, from the discussion above, that there are
two problems to be addressed in developing a logical formalism for intentional
notions: a syntactic one, and a semantic one. It follows that any formalism can be
characterized in terms of two independent attributes: its language of formulation,
and semantic model (Konolige, 1986, p. 83).

There are two fundamental approaches to the syntactic problem. The first is
to use a modal language, which containg non-truth-functional modal operators,
which are applied to formulae. An alternative approach involves the use of a
meta-language: a many-sorted first-order language containing terms which denote
formulae of some other object-language. Intentional notions can be represented
using a meta-language predicate, and given whatever axiomatization is deemed
appropriate. Both of these approaches have their advantages and disadvantages,
and will be discussed at length in the sequel.

As with the syntactic problem, there are two basic approaches to the seman-
tic problem. The first, best-known, and probably most widely used approach is to

adopt a possible-worlds semantics, where an agent’s beliefs, knowledge, goals, etc.,
are characterized as a set of so-called possible worlds, with an accessibility relation

RIS RSV VA RN v LGaa A PUSs AT YAILLL QRiL UMULALCS0es/tiee) 7 Cadness

holding between them. Possible-worlds semantics have an associated correspon-
dence theory which makes them an attractive mathematical tool to work with
(Chellas, 1980). However, they also have many associated difficulties, notably the
well-known logical omniscience problem, which implies that agents are perfect

reasoners. A number of minor variations on the possible-worlds theme have been

proposed, in an attempt to retain the correspondence theory, but without logical
omniscience.

12.2

270 Logics for Multiagent Systems

The most common alternative to the possible-worlds model for belief is to use
a sentential or interpreted symbolic structures approach. In this scheme, beliefs
are viewed as symbolic formulae explicitly represented in a data structure associ-
ated with an agent. An agent then believes @ if @ is present in the agent’s belief
structure. Despite its simplicity, the sentential model works well under certain
circumstances (Konolige, 1986).

The next part of this chapter contains detailed reviews of some of these for-

malisms. First, the idea of possible-worlds semantics is discussed, and then a

e ~m o Ve P, e~ A ~ e o e B] PR PR . SR

detailed analysis of normal modal logics is presented, along with some variants
on the possible-worlds theme.

Possible-Worlds Semantics for Modal Logics

The possible-worlds model for epistemic logics was originally proposed by Hin-
tikka (1962), and is now most commonly formulated in a normal modal logic using
the techniques developed by Kripke (1963). Hintikka’'s insight was to see that an
agent’s beliefs could be characterized in terms of a set of possible worlds, in the
following way. Consider an agent playing the card game Gin Rummy (this example
was adapted from Halpern (1987)). In this game, the more one knows about the
cards possessed by one’s opponents, the better one is able to play. And yet com-
plete knowledge of an opponent’s cards is generally impossible (if one excludes
cheating). The ability to play Gin Rummy well thus depends, at least in part, on the
ability to deduce what cards are held by an opponent, given the limited informa-
tion available. Now suppose our agent possessed the ace of spades. Assuming the
agent's sensory equipment was functioning normally, it would be rational of her
to believe that she possessed this card. Now suppose she were to try to deduce
what cards were held by her opponents. This could be done by first calculating
all the various different ways that the cards in the pack could possibly have been
distributed among the various players. (This is not being proposed as an actual
card-playing strategy, but for illustration!) For argument’s sake, suppose that each
possible configuration is described on a separate piece of paper. Once the process
was complete, our agent could then begin to systematically eliminate from this
large pile of paper all those configurations which were not possible, given what
she knows. For example, any configuration in which she did not possess the ace
of spades could be rejected immediately as impossible. Call each piece of paper
remaining after this process a world. Each world represents one state of affairs
considered possible, given what she knows. Hintikka coined the term epistemic
alternatives to describe the worlds possible given one’s beliefs. Something true
in all our agent’s epistemic alternatives could be said to be believed by the agent.
For example, it will be true in all our agent’s epistemic alternatives that she has
the ace of spades.

On a first reading, this technique seems a peculiarly roundabout way of charac-
terizing belief, but it has two advantages. First, it remains neutral on the subject

Normal Modal Logics 271

of the cognitive structure of agents. It certainly does not posit any internalized
collection of possible worlds. It is just a convenient way of characterizing belief.
Second, the mathematical theory associated with the formalization of possible
worlds is extremely appealing (see below).

The next step is to show how possible worlds may be incorporated into the
semantic framework of a logic. This is the subject of the next section.

Normal Modal Logics

Epistemic logics are usually formulated as normal modal logics using the seman-
tics developed by Kripke (1963). Before moving on to explicitly episternic logics,
this section describes normal modal logics in general.

Modal logics were originally developed by philosophers interested in the dis-
tinction between necessary truths and mere contingent truths. Intuitively, a nec-
essary truth is something that is true because it could not have been otherwise,
whereas a contingent truth is something that could, plausibly, have been other-
wise. For example, it is a fact that as I write, the Labour Party of Great Britain
holds a majority in the House of Commons. But although this is true, it is not a
necessary truth; it could quite easily have turned out that the Conservative Party
won a majority at the last general election. This fact is thus only a contingent
truth.

Contrast this with the following statement: the square root of 2 is not a rational
number. There seems no earthly way that this could be anything but true (given
the standard reading of the sentence). This latter fact is an example of a necessary
truth. Necessary truth is usually defined as something true in all possible worlds. It
is actually quite difficult to think of any necessary truths other than mathematical
laws.

To illustrate the principles of modal epistemic logics, I will define a simple
normal propositional modal logic. This logic is essentially classical propositional
logic, extended by the addition of two operators: ‘|]’ (necessarily), and ‘¢’ (pos-
sibly).

First, its syntax. Let Prop = {p, q, ...} be a countable set of atomic propositions.
The syntax of normal propositional modal logic is defined by the following rules.

(1) If p € Prop, then p is a formula.
(2) If @,y are formulae, then so are
true @ @ VY.
(3) If @ is a formula, then so are
e ¢o.

The operators ‘=’ (not) and ‘v’ (or) have their standard meaning; true is a logical
constant (sometimes called verum) that is always true. The remaining connectives

272 Logics for Multiagent Systems

(M,w) E true

M,w) & p where p € Prop, if and only if p € m(w)

(M,w)y & —@ if and only if (M, w) # @

(M,wy E @vy ifandonlyif (M,w)&= @or (M, w) =y

(M,w) = [Jp ifandonlyif Vw e W - if (w,w’) € R then (M, w’) = @
(M,w) = O ifandonlyif 3w’ e W - (w,w’) e Rand (M, w') = @

Figure 12.1 The semantics of normal modal logic.

of propositional logic can be defined as abbreviations in the usual way. The for-
mula [_]g is read ‘necessarily @', and the formula ¢ is read ‘possibly @’. Now
to the semantics of the language.

Normal modal logics are concerned with truth at worlds; models for such logics
therefore contain a set of worlds, W, and a binary relation, R, on W, saying which
worlds are considered possible relative to other worlds. Additionally, a valuation
function mr is required, saying what propositions are true at each world.

A model for a normal propositional modal logic is a triple (W, R, 1), where W
is a non-empty set of worlds, R € W x W, and

mT: W — 9(Prop)

is a valuation function, which says for each world w € W which atomic propo-
sitions are true in w. An alternative, equivalent technique would have been to
define 7T as follows:

m: W x Prop — [true,false},

though the rules defining the semantics of the language would then have to be
changed slightly.

The semantics of the language are given via the satisfaction relation, ‘=’, which
holds between pairs of the form (M, w) (where M is a model, and w is a reference
world), and formulae of the language. The semantic rules defining this relation
are given in Figure 12.1.

The definition of satisfaction for atomic propositions thus captures the idea of
truth in the ‘current’ world (which appears on the left of ‘=’). The semantic rules
for ‘true’, ‘“—’, and ‘v’ are standard. The rule for ‘[]’ captures the idea of truth in
all accessible worlds, and the rule for ‘¢’ captures the idea of truth in at least one
possible world.

Note that the two modal operators are duals of each other, in the sense that the
universal and existential quantifiers of first-order logic are duals:

[l & 0.

It would thus have been possible to take either one as primitive, and introduce
the other as a derived operator.

Normal Modal Logics 273

Correspondence theory

To understand the extraordinary properties of this simple logic, it is first neces-
sary to introduce validity and satisfiability. A formula is

- satisfiable if it is satisfied for some model/world pair;
« unsatisfiable if it is not satisfied by any model/world pair;

« true in a model if it is satisfied for every world in the model;

o rplsAd T1a ol
¢ Vil tri 4 Cidd

o0 -

it true in every model in the class;
- valid if it is true in the class of all models.

If @ is valid, we indicate this by writing = @. Notice that validity is essentially the
same as the notion of ‘tautology’ in classical propositional logic - all tautologies
are valid.

The two basic properties of this logic are as follows. First, the following axiom
schema is valid:

E L J(@e=y)= (Uep=> Ly
This axiom is called K, in honour of Kripke. The second property is as follows.

If =@, then = _|p.

Proofs of these properties are trivial, and are left as an exercise for the reader.
Now, since K is valid, it will be a theorem of any complete axiomatization of nor-
mal modal logic. Similarly, the second property will appear as a rule of inference
in any axiomatization of normal modal logic; it is generally called the necessita-
tion rule. These two properties turn out to be the most problematic features of
normal modal logics when they are used as logics of knowledge/belief (this point
will be examined later).

The most intriguing properties of normal modal logics follow from the prop-
erties of the accessibility relation, R, in models. To illustrate these properties,
consider the following axiom schema:

e = .

It turns out that this axiom is characteristic of the class of models with a reflexive
accessibility relation. (By characteristic, we mean that it is true in all and only
those models in the class.) There are a host of axioms which correspond to certain
properties of R: the study of the way that properties of R correspond to axioms
is called correspondence theory. In Table 12.1, 1 list some axioms along with their
characteristic property on R, and a first-order formula describing the property.

A system of logic can be thought of as a set of formulae valid in some class of
models; a member of the set is called a theorem of the logic (if @ is a theorem, this
is usually denoted by +). The notation KX, ...Z%, is often used to denote the
smallest normal modal logic containing axioms X1,...,2, (recall that any normal
modal logic will contain K; cf. Goldblatt (1987, p. 25)).

274 Logics for Multiagent Systems

Table 12.1 Some correspondence theory.

Condition First-order
Name Axiom on R characterization
T Pl = @ Reflexive Vw eW - (w,w)ecR
D Llp= 0@ Serial YVweWw-Jw ew . (w,w')eR

4 (e = [J[Jp Transitive VYw,w,w’ €W (w,w’)cRA
(w’,w”) ER . (w’wu) cR

5 Cp= 0@ Fuclidean Vw,w',w’' €W . (w,w')eERA
EY] 24

oA’y e R
y W J

i AN

For the axioms T, D, 4, and 5, it would seem that there ought to be 16 distinct
systems of logic (since 2% = 16). However, some of these systems turn out to
be equivalent (in that they contain the same theorems), and as a result there are
only 11 distinct systems. The relationships between these systems are described
in Figure 12.2 (after Konolige (1986, p. 99) and Chellas (1980, p. 132)). In this
diagram, an arc from A to B means that B is a strict superset of A: every theorem
of A is a theorem of B, but not vice versa; A = B means that A and B contain
precisely the same theorems.

Because some modal systems are so widely used, they have been given names:

KT isknownas T,

KT4 is known as 54,
KD45 is known as weak-S5,
KT5 is known as S5.

Normal modal logics as epistemic logics

To use the logic developed above as an epistemic logic, the formula [] is read
as ‘it is known that ¢’. The worlds in the model are interpreted as epistemic alter-
natives, the accessibility relation defines what the alternatives are from any given
world. The logic deals with the knowledge of a single agent. To deal with multi-
agent knowledge, one adds to a model structure an indexed set of accessibility
relations, one for each agent. A model is then a structure

(W!Rls"'jR]’IlTr)l

where R; is the knowledge accessibility relation of agent i. The simple language
defined above is extended by replacing the single modal operator ‘[_]’ by an
indexed set of unary modal operators {K;}, where i € {1,...,n}. The formula

Normal Modal Logics
K
K4 K5 KD KT=KDT
Y \ Y

K45 KD5 KD4 KT4 = KDT4

KT45

KD45 »KT5= KDT5
KDT45

Figure 12.2 The modal systems based on axioms T, D, 4 and 5.

275

K;@ is read ‘i knows that @’. The semantic rule for ‘[|’ is replaced by the follow-

T ey wralae
11g 1TUIC.

(M,w) £ K;@ if and only if vw' € W - if (w,w’) € R; then (M, w’} = .

Each operator K; thus has exactly the same properties as ‘[]’. Corresponding to
each of the modal systems X, above, a corresponding system 2, is defined, for
the multiagent logic. Thus K,, is the smallest multiagent epistemic logic and S5,

is the largest.

The next step is to consider how well normal modal logic serves as a logic of
knowledge/belief. Consider first the necessitation rule and axiom K, since any

normal modal system is committed to these.

The necessitation rule tells us that an agent knows all valid formulae. Amongst
other things, this means an agent knows all propositional tautologies. Since there
are an infinite number of these, an agent will have an infinite number of items
of knowledge: immediately, one is faced with a counterintuitive property of the

knowledge operator.

A A O A
/
AN

276 Logics for Multiagent Systems

Now consider the axiom K, which says that an agent’s knowledge is closed under

implication. Suppose @ is a loglcal consequence of the set® = {@,...,Pu}, then
in every world where all of & are true, @ must also be true, and hence

QLA APn @

[, Ne7 smarpcciratl mam slro O

must Ut: vd 1(.1 DY HECCSSILAUOILL, ULLS 10T IIlLllcl Wl].l dlbU Utf Ut!llt:\ftiu aﬂ“CE dail agEu
beliefs are closed under implication, whenever it believes each of &, it must also

believe @. Hence an agent’s knowledge is closed under logical consequence. This
also seems counterintuitive. For example, suppose, like every good logician, our
agent knows Peano’s axioms. It may well be that Fermat's last theorem follows
from Peano’s axioms - although, it took the labour of centuries to prove it. Yet if
our agent’s beliefs are closed under logical consequence, then our agent must
know it. So consequential closure, implied by necessitation and the K axiom,

seems an overstrong property for resource-bounded reasoners.

Logical omniscience

These two problems - that of knowing all valid formulae, and that of knowl-
edge/belief being closed under logical consequence - together constitute the
famous logical omniscience problem. This problem has some damaging corollar-
ies.

The first concerns consistency. Human believers are rarely consistent in the logi-
cal sense of the word; they will often have beliefs ¢ and ¢, where @ + —y, without
being aware of the implicit inconsistency. However, the ideal reasoners implied by
possible-worlds semantics cannot have such inconsistent beliefs without believ-
ing every formula of the logical language (because the consequential closure of
an inconsistent set of formulae is the set of all formulae). Konolige has argued
that logical consistency is much too strong a property for resource-bounded rea-
soners: he argues that a lesser property, that of being non-contradictory, is the
most one can reasonably demand (Konolige, 1986). Non-contradiction means that
an agent would not simultaneously believe @ and -, although the agent might
have logically inconsistent belief’s.

The second corollary is more subtle. Consider the following propositions (this
example is from Konolige (1986, p. 88)).

(1) Hamlet’s favourite colour is black.

(2) Hamlet's favourite colour is black and every planar map can be four
coloured.

The second conjunct of (2) is valid, and will thus be believed. This means that (1)
and (2) are }ogically equivalent' (2) is true just when (1) is. Since agents are ideal
reasoners, Lucy' will believe that the two propositions are 10gIC£‘ul'y’ eqmvalem This
is yet another counterintuitive property implied by possible-worlds semantics, as

‘equivalent propositions are not equivalent as beliefs’ (Konolige, 1986, p. 88). Yet

Normal Modal Logics 277

this is just what possible-worlds semantics implies. It has been suggested that
propositions are thus too coarse grained to serve as the objects of belief in this
way.

Axioms for knowledge and belief

Let us now consider the appropriateness of the axioms D, T,, 4, and 5, for
logics of knowledge/belief.
The axiom D,, says that an agent’s beliefs are non-contradictory; it can be rewrit-
ten in the following form:
Kip = —-Ki~,

which is read ‘if i knows ¢, then i does not know —¢’. This axiom seems a rea-
sonable property of knowledge/belief. '

The axiom T, is often called the knowledge axiom, since it says that what is
known is true. It is usually accepted as the axiom that distinguishes knowledge
from belief; it seems reasonable that one could believe something that is false,
but one would hesitate to say that one could know something false. Knowledge
is thus often defined as true belief: i knows @ if i believes ¢ and @ is true. So
defined, knowledge satisfies T;,.

Axiom 4, is called the positive introspection axiom. Introspection is the pro-
cess of examining one’s own beliefs, and is discussed in detail in Konolige (1986,
Chapter 5). The positive introspection axiom says that an agent knows what it
knows. Similarly, axiom 5, is the negative introspection axiom, which says that
an agent is aware of what it does not know. Positive and negative introspection
together imply that an agent has perfect knowledge about what it does and does
not know (cf. Konolige, 1986, Equation (5.11), p. 79). Whether or not the two types
of introspection are appropriate properties for knowledge/belief is the subject of
some debate. However, it is generally accepted that positive introspection is a less
demanding property than negative introspection, and is thus a more reasonable
property for resource-bounded reasoners.

Given the comments above, the modal system S5,, is often chosen as a logic of
knowledge, and weak-S5,, is often chosen as a logic of belief.

Discussion

To sum up, the basic possible-worlds approach described above has the following
disadvantages as a multiagent epistemic logic:

- agents believe all valid formulae;

. equivalent propositions are identical beliefs; and

. if agents are inconsistent, then they believe everything.

To which many people would add the following:

12.4

278 Logics for Multiagent Systems

[TThe ontology of possible worlds and accessibility relations. . .is frank-
ly mysterious to most practically minded people, and in particular has
nothing to say about agent architecture.

(Seel, 1989)

Despite these serious disadvantages, possible worlds are still the semantics of
choice for many researchers, and a number of variations on the basic possible-
worlds theme have been proposed to get around some of the difficulties - see
Wooldridge and Jennings (1995) for a survey.

Epistemic Logic for Multiagent Systems

Most people, confronted with possible-worlds semantics for the first time, are -
initially at least - uncomfortable with the idea:

[The notion] of one possible world being accessible to another has at
first sight a certain air of fantasy or science fiction about it.

(Hughes and Cresswell, 1968, p. 77)

The problem seems to be with the ontological status of possible worlds: do
they really exist? If so, where are they? How do they map onto an agent’s phys-
ical architecture? If these questions cannot be answered, then one would be
reluctant to treat epistemic alternatives as anything other than a theoretical
nicety.

Some researchers have proposed grounding epistemic alternatives: giving them
a precise meaning in the real world, thus overcoming any confusion about their
status. This section describes grounded possible worlds, and will focus on the
distributed systems approach; the formal treatment is adapted from Fagin et al.
(1995).

Using a logic of knowledge to analyse a distributed system may seem strange.
However, as Halpern points out, when informally reasoning about a distributed
system, one often makes statements such as: ‘processor 1 cannot send a packet
to processor 2 until it knows that processor 2 received the previous one’ (Halpern,
1987). A logic of knowledge formalizes such reasoning.

The starting point for our study is to define a simple model of distributed sys-
tems. A system contains an environment, which may be in any of a set E of envi-
ronment states, and a set of n processes {1,...,n}, each of which may be in any
of a set L of ‘local’ states. At any time, a system may therefore be in any of a set
G of global states:

G=ExLx---xL.
\ﬁ—_—-‘
n times

Next, a run of a system is a function which assigns to each time point a global
state: time points are isomorphic to the natural numbers (and time is thus discrete,

Epistemic Logic for Multiagent Systems 279

bounded in the past, and infinite in the future). Note that this is essentially the
same notion of runs that was introduced in Chapter 2, but I have formulated it
slightly differently. A run r is thus a function

r:N - G.
A point is a run together with a time:
Point = Run x N.

A point implicitly identifies a global state. Points will serve as worlds in the logic
of knowledge to be developed. A systemn is a set of runs.
Now, suppose s and s” are two global states.

s={e,li,...,ln),
st = 1,).

We now define a relation ~; on states, for each process i,
s ~; s ifand onlyif (I; = I)).

Note that ~; will be an equivalence relation. The terminology is thatif s ~; s’, then
s and s’ are indistinguishable to i, since the local state of i is the same in each
global state. Intuitively, the local state of a process represents the information
that the process has, and if two global states are indistinguishable, then it has the
same information in each.

The crucial point here is that since a processes [sic] [choice of]
actions...are a function of its local state, if two points are indis-
tinguishable to processor i, then processor i will perform the same
actions in each state.

(Halpern, 1987, pp. 46, 47)

(Again, this is the same notion of indistinguishability that I introduced in Chap-
ter 2, except that there it was with respect to the notion of percepts.)

The next step is to define a language for reasoning about such systems. The
language is that of the multiagent epistemic logic defined earlier (i.e. classical
propositional logic enriched by the addition of a set of unary modal operators Kj,
fori € {1,...,n}). The semantics of the language are presented via the satisfac-
tion relation, ‘&’, which holds between triples of the form

(M, r,u)
and formulae of the language. Here, {r, u) is a point, and M is a structure

(R, 1T),

12.5

280 Logics for Multiagent Systems

where R is a system (cf. the set of runs discussed in Chapter 2), and
m: Point — p(Prop)

returns the set of atomic propositions true at a point. The structure (R, 1) is
called an interpreted system. The only non-standard semantic rules are for propo-
sitions and modal formulae:

(M, v, u) = p where p € Prop, if and only if p € 7 ({r,u}),

(M,rv,u) = K;@ ifandonlyif (M,v",u') =@ forallv' e R
and #’ € N such that v (u) ~; ¥’ (u').

Note that since ~; is an equivalence relation (i.e. it is reflexive, symmetric, and
transitive), this logic will have the properties of the system S5, discussed above.
In what sense does the second rule capture the idea of a processes knowledge?
The idea is that if ¥(u) ~; ¥'(u’), then for all i knows, it could be in either run
¥, time u, or run v’, time u’; the process does not have enough information to
be able to distinguish the two states. The information/knowledge it does have are
the things true in all its indistinguishable states.

In this model, knowledge is an external notion. We do not imagine
a processor scratching its head wondering whether or not it knows
a fact . Rather, a programmer reasoning about a particular proto-
col would say, from the outside, that the processor knew @ because
in all global states [indistinguishable] from its current state (intu-
itively, all the states the processor could be in, for all it knows), @
is true.

(Halpern, 1986, p. 6)

Pro-attitudes: Goals and Desires

An obvious approach to developing a logic of goals or desires is to adapt possible-
worlds semantics - see, for example, Cohen and Levesque (1990a) and Wooldridge
(1994). In this view, each goal-accessible world represents one way the world might
be if the agent’s goals were realized. However, this approach falls prey to the side
effect problem, in that it predicts that agents have a goal of the logical conse-
quences of their goals (cf. the logical omniscience problem, discussed above).
This is not a desirable property: one might have a goal of going to the dentist,
with the necessary consequence of suffering pain, without having a goal of suf-
fering pain. The problem is discussed (in the context of intentions) in Bratman
(1990). The basic possible-worlds model has been adapted by some researchers
in an attempt to overcome this problem (Wainer, 1994). Other, related semantics
for goals have been proposed (Doyle et al., 1991; Kiss and Reichgelt, 1992; Rao
and Georgeff, 1991h).

12.6

Common and Distributed knowledge 281

Common and Distributed knowledge

In addition to reasoning about what one agent knows or believes, it is often useful
to be able to reason about ‘cultural’ knowledge: the things that everyone knows,
and that everyone knows that everyone knows, etc. This kind of knowledge
is called common knowledge. The famous ‘muddy children’ puzzle - a classic
problem in epistemic reasoning - is an example of the kind of problem that is
efficiently dealt with via reasoning about common knowledge (see Fagin et al.
(1995) for a statement of the problem).

The starting point for common knowledge is to develop an operator for things
that ‘everyone knows’. A unary modal operator E is added to the modal language
discussed above; the formulae E@ is read ‘everyone knows @’. It can be defined
as an abbreviation:

Ep=Kip A --- AKp@.

The E operator does not satisfactorily capture the idea of common knowledge.
For this, another derived operator C is required; C is defined, ultimately, in terms
of E. It is first necessary to introduce the derived operator EX; the formula EXp
is read ‘everyone knows @ to degree k’. It is defined as follows:

E'¢ ZEg@,
EXlg 2 E(E*).
The common knowledge operator can then be defined as an abbreviation:
COZEQ AE’Qn---nEk@pA- ..

Thus common knowledge is the infinite conjunction: everyone knows, and
everyone knows that everyone knows, and so on.

[t is interesting to ask when common knowledge can arise in a system. A classic
problem in distributed systems folklore is the coordinated attack problem.

Two divisions of an army, each commanded by a general, are camped
on two hilltops overlooking a valley. In the valley awaits the enemy.
It is clear that if both divisions attack the enemy simultaneously they
will win the battle, while if only one division attacks, it will be defeated.
As a result, neither general will attack unless he is absolutely sure that
the other will attack with him. In particular, a general will not attack
if he receives no messages. The commanding general of the first divi-
sion wishes to coordinate a simultaneous attack (at some time the next
day). The generals can communicate only by means of messengers. Nor-
mally, it takes a messenger one hour to get from one encampment to
the other. However, it is possible that he will get lost in the dark or,
worse vet, be captured by the enemy. Fortunately, on this particular
night, everything goes smoothly. How long will it take them to coordi-
nate an attack?

282 Logics for Multiagent Systems

Suppose a messenger sent by general A reaches General B with a mes-
sage saying “attack at dawn.” Should General B attack? Although the
message was in fact delivered, General A has no way of knowing that
it was delivered. A must therefore consider it possible that B did not
receive the message (in which case B would definitely not attack). Hence
A will not attack given his current state of knowledge. Knowing this,
and not willing to risk attacking alone, B cannot attack solely based
on receiving A’s message. Of course, B can try to improve matters by
sending the messenger back to A with an acknowledgment. When A
receives this acknowledgment, can he then attack? A here is in a simi-
lar position to the one B was in when he received the original message.
This time B does not know that the acknowledgment was delivered.

(Fagin et al.,, 1995, p. 176).

Intuitively, the two generals are trying to bring about a state where it is common
knowledge between them that the message to attack was delivered. Each succes-
sive round of communication, even if successful, only adds one level to the depth
of nested belief. No amount of communication is sufficient to bring about the infi-
nite nesting that common knowledge requires. As it turns out, if communication
delivery is not guaranteed, then common knowledge can never arise in such a
scenario. Ultimately, this is because, no matter how many messages and acknowl-
edgments are sent, at least one of the generals will always be uncertain about
whether or not the last message was received.

One might ask about whether infinite nesting of common knowledge is required.
Could the two generals agree between themselves beforehand to attack after, say,
only two acknowledgments? Assuming that they could meet beforehand to come
to such an agreement, then this would be feasible. But the point is that whoever
sent the last acknowledgment would be uncertain as to whether this was received,
and would hence be attacking while unsure as to whether it was a coordinated
attack or a doomed solo effort.

A related issue to common knowledge is that of distributed, or implicit, knowl-
edge. Suppose there is an omniscient observer of some group of agents, with the
ability to ‘read’ each agent’s beliefs/knowledge. Then this agent would be able
to pool the collective knowledge of the group of agents, and would generally be
able to deduce more than any one agent in the group. For example, suppose, in a
group of two agents, agent 1 only knew ¢, and agent 2 only knew @ = y/. Then
there would be distributed knowledge of y, even though no agent explicitly knew
y. Distributed knowledge cannot be reduced to any of the operators introduced
so far: it must be given its own definition. The distributed knowledge operator D
has the following semantic rule:

(M,w) & D@ if and only if (M, w’) = @ for all w’
such that (w,w’) € (Ry n--- N Ry).

B ———— T
:ﬂ

This rule might seem strange at first, since it uses set intersection rather than
set union, which is at odds with a naijve perception of how distributed knowledge
works. However, a restriction on possible worlds generally means an increase in
knowledge.

Distributed knowledge is potentially a useful concept in cooperative problem-
solving systems, where knowledge about a problem is distributed among a group
of problem-solving agents, which must try to deduce a solution through cooper-
ative interaction.

The various group knowledge operators form a hierarchy:

Cq;:EkQD:b---:E(p::'Kiq;quo.

See Fagin et al. (1995) for further discussion of these operators and their prop-
erties.

Integrated Theories of Agency

All of the formalisms considered so far have focused on just one aspect of agency.
However, it is to be expected that a realistic agent theory will be represented in
a logical framework that combines these various components. Additionally, we
expect an agent logic to be capable of representing the dynamic aspects of agency.
A complete agent theory, expressed in a logic with these properties, must define
how the attributes of agency are related. For example, it will need to show how an
agent’s information and pro-attitudes are related; how an agent’s cognitive state
changes over time; how the environment affects an agent’s cognitive state; and
how an agent’s information and pro-attitudes lead it to perform actions. Giving
a good account of these relationships is the most significant problem faced by
agent theorists.

An all-embracing agent theory is some time off, and yet significant steps have
been taken towards it. In the following subsection, I survey the work of Cohen and
Levesque on intention logics - one of the most infiuential agent theories developed
to date.

Cohen and Levesque’s intention logic
One of the best known, and most sophisticated, attempts to show how the various

components of an agent’s cognitive make-up could be combined to form a logic
of rational agency is due to Cohen and Levesque (1990a). Cohen and Levesque’s
formalism was originally used to develop a theory of intention (as in ‘T intended
to..."), which the authors required as a prerequisite for a theory of speech acts
(see the next chapter for a summary, and Cohen and Levesque (1990b) for full
details). However, the logic has subsequently proved to be so useful for speci-
fying and reasoning about the properties of agents that it has been used in an
analysis of conflict and cooperation in multiagent dialogue {Galliers, 1988a,b), as
well as several studies in the theoretical foundations of cooperative problem solv-

ing (Levesque et al., 1990; Jennings, 1992a,b). This section will focus on the use

284 Logics for Multiagent Systems

of the logic in developing a theory of intention. The first step is to lay out the

criteria that a theonrv of intention muct caticfv

LEILCA T LTl @ LIIU VL Y VL BAALC AR LIVIL 1oL QoL Y .

When building intelligent agents - particularly agents that must interact with
humans - it is important that a rational balance is achieved between the beliefs,
goals, and intentions of the agents.

For example, the following are desirable properties of intention: an
autonomous agent should act on its intentions, not in spite of them;
adopt intentions it believes are feasible and forego those believed to be
infeasible; keep (or commit to) intentions, but not forever; discharge
those intentions believed to have been satisfied: alter intentions when
relevant beliefs change; and adopt subsidiary intentions during plan
formation.

(Cohen and Levesque, 1990a, p. 214)

Recall the properties of intentions, as discussed in Chapter 4.

(1) Intentions pose problems for agents, who need to determine ways of achiev-
ing them.

(2) Intentions provide a ‘filter’ for adopting other intentions, which must not
conflict.

(3) Agents track the success of their intentions, and are inclined to try again if
their attempts fail.

(4) Agents believe their intentions are possible.
(5) Agents do not believe they will not bring about their intentions.

(6) Under certain circumstances, agents believe they will bring about their inten-
tions.

(7) Agents need not intend all the expected side effects of their intentions.

Given these criteria, Cohen and Levesque adopt a two-tiered approach to the prob-
lem of formalizing a theory of intention. First, they construct the logic of rational
agency, ‘being careful to sort out the relationships among the basic modal opera-
tors’ (Cohen and Levesque, 1990a, p. 221). On top of this framework, they intro-
duce a number of derived constructs, which constitute a ‘partial theory of rational
action’ (Cohen and Levesque, 1990a, p. 221); intention is one of these constructs.
Syntactically, the logic of rational agency is a many-sorted, first-order, multi-
modal logic with equality, containing four primary modalities (see Table 12.2).
The semantics of Bel and Goal are given via possible worlds, in the usual way:
each agent is assigned a belief accessibility relation, and a goal accessibility rela-
tion. The belief accessibility relation is Euclidean, transitive, and serial, giving a
belief logic of KD45. The goal relation is serial, giving a conative logic KD. It is
assumed that each agent’s goal relation is a subset of its belief relation, implying
that an agent will not have a goal of something it believes will not happen. Worlds

Integrated Theories of Agency 285

Table 12.2 Atomic modalities in Cohen and Levesque's logic.

Operator Meaning

(Bel i @) agent i believes @

(Goal i) agent i has goal of @
(Happens «¢) action o will happen next
(Done &) action « has just happened

in the formalism are a discrete sequence of events, stretching infinitely into past
and future.

The two basic temporal operators, Happens and Done, are augmented by some
operators for describing the structure of event sequences, in the style of dynamic
logic (Harel, 1979). The two most important of these constructors are ‘;" and ‘?":

o; o’ denotes o followed by «,
@? denotes a ‘test action’ .

The standard future time operators of temporal logic, ‘[]’ (always), and ‘¢’
(sometime), can be defined as abbreviations, along with a ‘strict’ sometime oper-
ator, Later:

Oo=3x - (Happens x; &7?),
Lz =0,
(Later p) = —p A Op.

A temporal precedence operator, (Before p q) can also be derived, and holds if p
holds before g. An important assumption is that all goals are eventually dropped:

¢ —(Goal x (Later p)).

The first major derived construct is a persistent goal:

(P-Goali p) = (Goal i (Later p)) A
(Beli —p) A
Before

((Bel i p) v (Beli []-p))
-(Goal i (Later p))

So, an agent has a persistent goal of p if

(1) it has a goal that p eventually becomes true, and believes that p is not cur-
rently true; and

(2) before it drops the goal, one of the following conditions must hold:

(a) the agent believes the goal has been satisfied;
(b) the agent believes the goal will never be satisfied.

286 Logics for Multiagent Systems

It is a small step from persistent goals to a first definition of intention, as in
‘intending to act’. Note that ‘intending that something becomes true’ is similar,
but requires a slightly different definition (see Cohen and Levesque, 1990a). An
agent i intends to perform action « if it has a persistent goal to have brought
about a state where it had just believed it was about to perform «, and then did
:
(Intix) = (P-Goali
[Done i (Bel i (Happens «))?; «]
)

Cohen and Levesque go on to show how such a definition meets many of Bratman’s
criteria for a theory of intention (outlined above). In particular, by basing the def-
inition of intention on the notion of a persistent goal, Cohen and Levesque are
able to avoid overcommitment or undercommitment. An agent will only drop an
intention if it believes that the intention has either been achieved, or is unachiev-
able.

Modelling speech acts

We saw in Chapter 8 how speech acts form the basis of communication in most
multiagent systems. Using their logic of intention, Cohen and Levesque developed
a theory which arguably represents the state of the art in the logical analysis of
speech acts (Cohen and Levesque, 1990b). Their work proceeds from two basic
premises.

(1) Illocutionary force recognition is unnecessary.

What speakers and hearers have to do is only recognize each
other’s intentions (based on mutual beliefs). We do not require
that those intentions include intentions that the hearer recognize
precisely what illocutionary act(s) were being performed.

(Cohen and Levesque, 1990b, p. 223)

(2) Illocutionary acts are complex event types, and not primitives.

Given this latter point, one must find some way of describing the actions that are
performed. Cohen and Levesque’s solution is to use their logic of rational action,
which provides a number of primitive event types, which can be put together into
more complex event types, using dynamic-logic-style constructions. Illocutionary
acts are then defined as complex event types.

Their approach is perhaps best illustrated by giving their definition of a request.
Some preliminary definitions are required. First, alternating belief:

(A-Beln x vy p) = (Bel x (Bel y (Belx ---(Belx p)---).
\ - J e —’

»n times n times

Tntoavatod Thonvioc nf Aaonevy Q7
‘lll(rﬂl MELLCM L IV I l.l, ﬂg(—llL’ [y oy
And the related concept of mutual belief:
(M-Bel x y p) = Vn- (ABelnx y p).
Naoavt an atipmamt ic Aofinnd A Aoy antinn avnragcainm _ honen thho 11an »f
LNLCAL, all udatcrrip/c 1o ucuucu ClD a CULLLPICA dlliull CTAPITHO1IUILL 1ICIICC ULIIT UotT Ul
curly brackets, to distinguish it from a predicate or modal operator:
(Bel x —p) A
{Attempt x e p q} = | (Goal x (Happens x e;p?)) A |7e
(Int x ¢; n'?\
L - J
In English:

An attempt is a complex action that agents perform when they do
something (e) desiring to bring about some effect (p) but with intent

Cohen and Levesque, 1990b, p. 240)

The idea is that p represents the ultimate goal that the agent is aiming for by
doing e; the proposmon q represents what it takes to at least make an ‘honest

At o N s A0 L o7 3OO0 TO oy gt |

E€noi't 1o d(.lllt:\v’t: J 28 ﬂ th:ll[lll[U[l Ul H(:'ip,'bt”’l(fbo iS NNOwW pl esefea

(Helpful x v) 2 Ve- [(Bel x (Goal ¥ 0(Done x €))) A }

—(Goal x []~ (Done x ¢))
= (Goal x ¢(Done x ¢)).

In English:

[Clonsider an agent [x] to be helpful to another agent [y] if, for any
action [¢] he adopts the other agent’s goal that he eventually do that
action, whenever such a goal would not conflict with his own.

The definition of requests can now be given (note again the use of curly brackets:
requests are complex event types, not predicates or operators):

{Request spkr addr e ot} = {Attempt spkr e @
(M-Bel addr spkr (Goal spkr @))
}

where @ is

¢(Done addr o) A
(Int addr «
(Goal spkr ¢(Done addr «)) A
[(Helpful addy spkr) }
).

12.8

12.8.1

288 Logics for Multiagent Systems

In English:

Arequest is an attempt on the part of s pkr, by doing ¢, to bring about a
state where, ideally (i) addr intends « (relative to the spk still having
that goal, and addr still being helpfully inclined to spkr), and (i) addr
actually eventually does «, or at least brings about a state where addr
believes it is mutually believed that it wants the ideal situation.

By this definition, there is no primitive request act:
[A] speaker is viewed as having performed a request if he executes any

sequence of actions that produces the needed effects.
(Cohen and Levesque, 1990b, p. 246)

In short, any event, of whatever complexity, that satisfies this definition, can be
counted a request. Cohen and Levesque show that if a request takes place, it is
possible to infer that many of Searle’s preconditions for the act must have held
(Cohen and Levesque, 1990b, pp. 246-251).

Using Cohen and Levesque’s work as a starting point, Galliers has developed a
more general framework for multiagent dialogue, which acknowledges the possi-
bility for conflict (Galliers, 1988b).

Formal Methods in Agent-Oriented
Software Engineering

The next question to address is what role logics of agency might actually play in
the development of agent systems. Broadly speaking, formal methods play three
roles in software engineering:

« in the specification of systems;
« for directly programming systems; and
- in the verification of systems.

In the subsections that follow, we consider each of these roles in turn. Note that
these subsections presuppose some familiarity with formal methods, and logic in
particular.

Formal methods in specification
In this section, we consider the problem of specifying an agent system. What are

the requirements for an agent specification framework? What sort of properties
must it be capable of representing?

Formal Methods in Agent-Oriented Software Engineering 289

Comparatively few seriocus attempts have been made to specify real agent sys-
tems using such logics - see, for example, Fisher and Wooldridge (1997) for one
such attempt.

A specification expressed in such a logic would be a formula . The idea is that
such a specification would express the desirable behaviour of a system. To see how
this might work, consider the following, intended to form part of a specification
of a process control system:

if
i believes valve 32 is open
then
i should intend that j should believe valve 32 is open.

Expressed in a Cohen-Levesque type logic, this statement becomes the formula:
(Bel i Open(valve32)) = (Inti (Bel j Open(valve32))).

[t should be intuitively clear how a system specification might be constructed
using such formulae, to define the intended behaviour of a system.

One of the main desirable features of a software specification language is that
it should not dictate how a specification will be satisfied by an implementation.
The specification above has exactly this property: it does not dictate how agent i
should go about making j aware that valve 32 is open. We simply expect i to
behave as a rational agent given such an intention (Wooldridge, 2000b).

There are a number of problems with the use of such languages for specification.
The most worrying of these is with respect to their semantics. The semantics
for the modal connectives (for beliefs, desires, and intentions) are given in the
normal modal logic tradition of possible worlds (Chellas, 1980). So, for example,
an agent’s beliefs in some state are characterized by a set of different states, each
of which represents one possibility for how the world could actually be, given
the information available to the agent. In much the same way, an agent’s desires
in some state are characterized by a set of states that are consistent with the
agent’s desires. Intentions are represented similarly. There are several advantages
to the possible-worlds model: it is well studied and well understood, and the
associated mathematics of correspondence theory is extremely elegant. These
attractive features make possible worlds the semantics of choice for almost every
researcher in formal agent theory. However, there are also a number of serious
drawbacks to possible-worlds semantics. First, possible-worlds semantics imply
that agents are logically perfect reasoners (in that their deductive capabilities are
sound and complete), and they have infinite resources available for reasoning. No
real agent, artificial or otherwise, has these properties.

Second, possible-worlds semantics are generally ungrounded. That is, there is
usually no precise relationship between the abstract accessibility relations that
are used to characterize an agent’s state, and any concrete computational model.
As we shall see in later sections, this makes it difficult to go from a formal speci-

12.8.2

260 T nexvro Frn AMrezltz 2201t Crrotforuac
= JuU LUglLD 'U' IVIMII.!uyCII(Yy

fication of a system in terms of beliefs, desires, and so on, to a concrete computa-
tional system. Similarly, given a concrete computational system, there is generally

no way to determine what the beliefs, desires, and intentions of that system are.
If temporal modal logics such as these are to be taken seriously as specification

ThaAlips s Qe AAAVLGL AV S Swai i Q3 iSO LA ShaaeoL)y QS

languages, then this is a significant problem.

Formal methods in implementation

Specification is not (usually!) the end of the story in software development. Once
given a specification, we must implement a system that is correct with respect to
this specification. The next issue we consider is the move from abstract specifi-
cation to concrete computational model. There are at least three possibilities for
achieving this transformation:

(1) manually refine the specification into an executable form via some principled
but informal refinement process (as is the norm in most current software

development);
(2) directly execute or animate the abstract specification; or
(3) translate or compile the specification into a concrete computatlonal form

1IQinom an tranalatinn tnrh»micin (~f tha cvnth
uolily aill aulUlllallL l.l alloliauiull lCLluuun \Ll. L1 oYyl

cussed in Chapter 2).

In the subsections that follow, we shall investigate each of these possibilities in
turn.

At the time of writing, most software developers use structured but informal
techniques to transform specifications into concrete implementations. Probably
the most common techniques in widespread use are based on the idea of top-
down refinement. In this approach, an abstract system specification is refined
into a number of smaller, iess abstract subsystem specifications, which together
satisfy the original specification. If these subsystems are still too abstract to be
implemented directly, then they are also refined. The process recurses until the
derived subsystems are simple enough to be directly implemented. Throughout,
we are obliged to demonstrate that each step represents a true refinement of the
more abstract specification that preceded it. This demonstration may take the
form of a formal proof, if our specification is presented in, say, Z (Spivey, 1992)
or VDM (Jones, 1990). More usually, justification is by informal argument. Object-
oriented analysis and design techniques, which also tend to be structured but
informal, are also increasingly playing a role in the development of systems (see,
for example, Booch, 1994).

For functional systems, which simply compute a function of some input and
then terminate, the refinement process is well understood, and comparatively
straightforward. Such systems can be specified in terms of preconditions and
postconditions (e.g. using Hoare logic (Hoare, 1969)). Refinement calculi exist,

Fvan -~ E‘ nnnnnnnnnn 291
which enable the system developer to take a precondition and postcondition spec-
ification, and from it systematically derive an implementation through the use of
proof rules (Morgan, 1994). Part of the reason for this comparative simplicity is

that there ig often an eacilv ninderctandable rpl:\hnnthn bhetween the nrecondi-

il wiivi o WEALLLL Q11 VGoay wiivitiowliiauadissat L aliviviioian B LYY L aa Al pra N wsaalas

tions and postconditions that characterize an operation and the program struc-
tures required to implement it.

For agent systems, which fall into the category of Pnuelian reactive systems (see
the discussion in Chapter 2), refinement is not so straightforward. This is because

such systemsg muct he gnecified in termeg of their nnnnlnn hehaviour - thev cannot

DuLAldr Oy Ouriiid 1aa s A8 RISACA S ILULU AP PRI AU DS Tu LTS S A s ialA Vi (A [eRBP NIV AR

be specified simply in terms of preconditions and postcondltlons. In contrast to
precondition and postcondition formalisms, it is not so easy to determine what
program structures are required to realize such specifications. As a consequence,

researchers have only just begun to investigate refinement and design technique
for agent-based systems

21T ATV JY S i S,

Directly executing agent specifications

One major disadvantage with manual refinement methods is that they introduce
the possibility of error. If no proofs are provided, to demonstrate that each refine-
ment step is indeed a true refinement, then the correctness of the implementa-
tion process depends upon little more than the intuitions of the developer. This
is clearly an undesirable state of affairs for applications in which correctness is
a major issue. One possible way of circumventing this problem, which has been
widely investigated in mainstream computer science, is to get rid of the refine-
ment process altogether, and directly execute the specification.

It might seem that suggesting the direct execution of complex agent specifica-
tion languages is naive - it is exactly the kind of suggestion that detractors of
logic-based Al hate. One should therefore be very careful about what claims or
proposals one makes. However, in certain circumstances, the direct execution of
agent specification languages is possible.

What does it mean, to execute a formula @ of logic L7 It means generating a
logical model, M, for ¢, such that M & @ (Fisher, 1996). If this could be done
without interference from the environment - if the agent had complete control
over its environment - then execution would reduce to constructive theorem-
proving, where we show that @ is satisfiable by building a model for @. In reality,
of course, agents are not interference free: they must iteratively construct a model
in the presence of input from the environment. Execution can then be seen as a
two-way iterative process:

- environment makes something true;

- agent responds by doing something, i.e. making something else true in the
model;

- environment responds, making something else true;
. etc.

292 Logics for Multiagent Systems

Execution of logical languages and theorem-proving are thus closely related. This
tells us that the execution of sufficiently rich (quantified) languages is not possible
(since any language equal in expressive power to first-order logic is undecidable).

Auseful way to think about execution is as if the agent is playing a game against
the environment. The specification represents the goal of the game: the agent must
keep the goal satisfied, while the environment tries to prevent the agent from
doing so. The game is played by agent and environment taking turns to build a
little more of the model. If the specification ever becomes false in the (partial)
model, then the agent loses. In real reactive systems, the game is never over:
the agent must continue to play forever. Of course, some specifications (logically
inconsistent ones) cannot ever be satisfied. A winning strategy for building models
from (satisfiable) agent specifications in the presence of arbitrary input from the
environment is an execution algorithm for the logic.

Automatic synthesis from agent specifications

An alternative to direct execution is compilation. In this scheme, we take our
abstract specification, and transform it into a concrete computational model via
some automatic synthesis process. The main perceived advantages of compila-
tion over direct execution are in run-time efficiency. Direct execution of an agent
specification, as in Concurrent MetateM, above, typically involves manipulating a
symbolic representation of the specification at run time. This manipulation gen-
erally corresponds to reasoning of some form, which is computationally costly
(and, in many cases, simply impracticable for systems that must operate in any-
thing like real time). In contrast, compilation approaches aim to reduce abstract
symbolic specifications to a much simpler computational model, which requires
no symbolic representation. The ‘reasoning’ work is thus done offline, at compile-
time; execution of the compiled system can then be done with little or no run-time
symbolic reasoning. As a result, execution is much faster. The advantages of com-
pilation over direct execution are thus those of compilation over interpretation in
mainstream programming.

Compilation approaches usually depend upon the close relationship between
models for temporal/modal logic (which are typically labelled graphs of some
kind) and automata-like finite-state machines. Crudely, the idea is to take a spec-
ification @, and do a constructive proof of the implementability of ¢, wherein we
show that the specification is satisfiable by systematically attempting to build a
model for it. If the construction process succeeds, then the specification is satisfi-
able, and we have a model to prove it. Otherwise, the specification is unsatisfiable.
If we have a model, then we ‘read off” the automaton that implements ¢ from its
corresponding model. The most common approach to constructive proof is the
semantic tableaux method of Smullyan (1968).

In mainstream computer science, the compilation approach to automatic pro-
gram synthesis has been investigated by a number of researchers. Perhaps the

Formal Methods in Agent-Oriented Software Engineering 293

closest to our view is the work of Pnueli and Rosner (1989) on the automatic syn-
thesis of reactive systems from branching time temporal logic specifications. The
goal of their work is to generate reactive systems, which share many of the prop-
erties of our agents (the main difference being that reactive systems are not gen-
erally required to be capable of rational decision making in the way we described
above). To do this, they specify a reactive system in terms of a first-order branch-
ing time temporal logic formula Vx 3y A@(x, y): the predicate ¢ characterizes
the relationship between inputs to the system (x) and outputs (y). Inputs may
be thought of as sequences of environment states, and outputs as corresponding
sequences of actions. The A is the universal path quantifier. The specification is
intended to express the fact that in all possible futures, the desired relationship
@ holds between the inputs to the system, x, and its outputs, y. The synthesis
process itself is rather complex: it involves generating a Rabin tree automaton,
and then checking this automaton for emptiness. Pnueli and Rosner show that
the time complexity of the synthesis process is double exponential in the size of
the specification, i.e. 0(227"), where ¢ is a constant and n = || is the size of
the specification ¢. The size of the synthesized program (the number of states it
contains) is of the same complexity.

The Pnueli-Rosner technique is rather similar to (and in fact depends upon)
techniques developed by Wolper, Vardi, and colleagues for synthesizing Bichi
automata from linear temporal logic specifications (Vardi and Wolper, 1994).
Bluichi automata are those that can recognize w-regular expressions: regular
expressions that may contain infinite repetition. A standard result in temporal
logic theory is that a formula ¢ of linear time temporal logic is satisfiable if and
only if there exists a Buchi automaton that accepts just the sequences that satisfy
@. Intuitively, this is because the sequences over which linear time temporal logic
is interpreted can be viewed as w-regular expressions. This result yields a deci-
sion procedure for linear time temporal logic: to determine whether a formula ¢
is satisfiable, construct an automaton that accepts just the (infinite) sequences
that correspond to models of @; if the set of such sequences is empty, then @ is
unsatisfiable.

Similar automatic synthesis techniques have also been deployed to develop con-
current system skeletons from temporal logic specifications. Manna and Wolper
present an algorithm that takes as input a linear time temporal logic specification
of the synchronization part of a concurrent system, and generates as output a pro-
gram skeleton (based upon Hoare’s CSP formalism (Hoare, 1978)) that realizes the
specification (Manna and Wolper, 1984). The idea is that the functionality of a con-
current system can generally be divided into two parts: a functional part, which
actually performs the required computation in the program, and a synchroniza-
tion part, which ensures that the system components cooperate in the correct
way. For example, the synchronization part will be responsible for any mutual
exclusion that is required. The synthesis algorithm (like the synthesis algorithm
for Buchi automata, above) is based on Wolper’s tableau proof method for tem-

12.8.3

294 Logics for Multiagent Systems

poral logic (Wolper, 1985). Very similar work is reported by Clarke and Emerson
(1981): they synthesize synchronization skeletons from branching time temporal
logic (CTL) specifications.

Perhaps the best-known example of this approach to agent development is the
situated automata paradigm of Rosenschein and Kaelbling (1996), discussed in
Chapter 5.

Verification

Once we have developed a concrete system, we need to show that this system is
correct with respect to our original specification. This process is known as verifi-
cation, and it is particularly important if we have introduced any informality into
the development process. For example, any manual refinement, done without a
formal proof of refinement correctness, creates the possibility of a faulty transfor-
mation from specification to implementation. Verification is the process of con-
vincing ourselves that the transformation was sound. We can divide approaches
to the verification of systems into two broad classes: (1) axiomatic, and (2) seman-
tic (model checking). In the subsections that follow, we shall look at the way in
which these two approaches have evidenced themselves in agent-based systems.

Deductive verification

Axiomatic approaches to program verification were the first to enter the main-
stream of computer science, with the work of Hoare in the late 1960s (Hoare,
1969). Axiomatic verification requires that we can take our concrete program,
and from this program systematically derive a logical theory that represents the
behaviour of the program. Call this the program theory. If the program theory
is expressed in the same logical language as the original specification, then veri-
fication reduces to a proof problem: show that the specification is a theorem of
(equivalently, is a logical consequence of) the program theory.

The development of a program theory is made feasible by axiomatizing the
programming language in which the system is implemented. For example, Hoare
logic gives us more or less an axiom for every statement type in a simple Pascal-
like language. Once given the axiomatization, the program theory can be derived
from the program text in a systematic way.

Perhaps the most relevant work from mainstream computer science is the
specification and verification of reactive systems using temporal logic, in the
way pioneered by Pnueli, Manna, and colleagues (see, for example, Manna and
Pnueli, 1995). The idea is that the computations of reactive systems are infinite
sequences, which correspond to models for linear temporal logic. Temporal logic
can be used both to develop a system specification, and to axiomatize a program-
ming language. This axiomatization can then be used to systematically derive
the theory of a program from the program text. Both the specification and the

Formal Methods in Agent-Oriented Software Engineering 295

program theory will then be encoded in temporal logic, and verification hence
becomes a proof problem in temporal logic.

Comparatively little work has been carried out within the agent-based systems
community on axiomatizing multiagent environments. I shall review just one
approach.

In Wooldridge (1992), an axiomatic approach to the verification of multiagent
systems was proposed. Essentially, the idea was to use a temporal belief logic to
axiomatize the properties of two multiagent programming languages. Given such
an axiomatization, a program theory representing the properties of the system
could be systematically derived in the way indicated above.

A temporal belief logic was used for two reasons. First, a temporal compo-
nent was required because, as we observed above, we need to capture the ongo-
ing behaviour of a multiagent system. A belief component was used because the
agents we wish to verify are each symbolic Al systems in their own right. That is,
each agent is a symbolic reasoning system, which includes a representation of its
environment and desired behaviour. A belief component in the logic allows us to
capture the symbolic representations present within each agent.

The two multiagent programming languages that were axiomatized in the tem-
poral belief logic were Shoham’s AGENTO (Shoham, 1993), and Fisher’s Concurrent
MetateM (see above). The basic approach was as follows.

(1) First, a simple abstract model was developed of symbolic Al agents. This
model captures the fact that agents are symbolic reasoning systems, capable

f\'F r‘r\mm11h'ir")i-1'nh Tl‘\ﬂ mnr‘]nl {Ti‘f{_‘l(‘ arn aNrrnant I\'F 1’\(\()\7 agoanto m‘i" T f‘h mnaoon
VI VULV QRUIN I LI BRIV BLVLD QLI LUV ULLIL UL L1 YY us_u.h) 1111611[\,11u].6

state, and what a computation of such a system might look like.

(2) The histories traced out in the execution of such a system were used as the
semantic basis for a temporal belief logic. This logic allows us to express
properties of agents modelled at stage (1).

(3) The temporal belief logic was used to axiomatize the properties of a multi-
agent programming language. This axiomatization was then used to develop
the program theory of a multiagent system.

(4) The proof theory of the temporal belief logic was used to veri

E A LAARRAL Y Lii% 2227802 =T

of the system (cf. Fagin et al, 1995).

Note that this approach relies on the operation of agents being sufficiently sim-
ple that their properties can be axiomatized in the logic. It works for Shoham’s
AGENTO and Fisher’'s Concurrent MetateM largely because these languages have
a simple semantics, closely related to rule-based systems, which in turn have a
simple logical semantics. For more complex agents, an axiomatization is not so
straightforward. Also, capturing the semantics of concurrent execution of agents
is not easy (it is, of course, an area of ongoing research in computer science gen-
erally).

296 Logics for Multiagent Systems

Model checking

Ultimately, axiomatic verification reduces to a proof problem. Axiomatic ap-
proaches to verification are thus inherently limited by the difficulty of this proof
problem. Proofs are hard enough, even in classical logic; the addition of temporal
and modal connectives to a logic makes the problem considerably harder. For this
reason, more efficient approaches to verification have been sought. One particu-
larly successful approach is that of model checking (Clarke et al., 2000). As the
name suggests, whereas axiomatic approaches generally rely on syntactic proof,
model-checking approaches are based on the semantics of the specification lan-
guage.

The model-checking problem, in abstract, is quite simple: given a formula @
of language I, and a model M for I, determine whether or not ¢ is valid in M,
i.e. whether or not M = @. Verification by model checking has been studied in
connection with temporal logic (Clarke et al., 2000). The technique once again
relies upon the close relationship between models for temporal logic and finite-
state machines. Suppose that @ is the specification for some system, and 1 is a
program that claims to implement . Then, to determine whether or not m truly
implements @, we proceed as follows:

- take 17, and from it generate a model M that corresponds to 1, in the sense
that M;; encodes all the possible computations of r;

« determine whether or not M = @, i.e. whether the specification formula ¢
is valid in My; the program 1t satisfies the specification @ just in case the
answer is ‘yes’.

The main advantage of model checking over axiomatic verification is in complex-
ity: model checking using the branching time temporal logic CTL (Clarke and Emer-
son, 1981) can be done in time O (|@| x|M|), where | @] is the size of the formula to
be checked, and |M| is the size of the model against which @ is to be checked - the
number of states it contains.

In Rao and Georgeff (1993), the authors present an algorithm for model-
checking BDI systems. More precisely, they give an algorithm for taking a logical
model for their (propositional) BDI logic, and a formula of the language, and deter-
mining whether the formula is valid in the model. The technique is closely based
on model-checking algorithms for normal modal logics (Clarke et al., 2000). They
show that despite the inclusion of three extra modalities (for beliefs, desires, and
intentions) into the CTL branching time framework, the algorithm is still guite
efficient, running in polynomial time. So the second step of the two-stage model-
checking process described above can still be done efficiently. Similar algorithms
have been reported for BDI-like logics in Benerecetti et al. (1999).

The main problem with model-checking approaches for BDI is that it is not clear
how the first step might be realized for BDI logics. Where does the logical model
characterizing an agent actually come from? Can it be derived from an arbitrary

program 717, as in mainstream computer science? To do this, we would need to

Formal Methods in Agent-Oriented Software Engineering 297

take a program implemented in, say, Pascal, and from it derive the belief-, desire-,
and intention-accessibility relations that are used to give a semantics to the BDI
component of the logic. Because, as we noted earlier, there is no clear relationship
between the BDI logic and the concrete computational models used to implement
agents, it is not clear how such a model could be derived.

Notes and Further Reading

The definitive modern reference to modal logic is Blackburn et al. (2001). Writ-
ten by three of the best people in the field, this is an astonishingly thorough
and authoritative work, unlikely to be surpassed for some time to come. The
only caveat is that it is emphatically not for the mathematically faint-hearted. For
an older (but very readable) introduction to modal logic, see Chellas (1980); an
even older, though more wide-ranging introduction, may be found in Hughes and
Cresswell (1968).

As for the use of modal logics to model knowledge and belief, the definitive
work is Fagin et al. (1995). This book, written by the ‘gang of four’, is a joy to read.
Clear, detailed, and rigorous, it is (for my money) one of the most important books
in the multiagent systems canon. Another useful book, which has perhaps been
overshadowed slightly by Fagin et al. (1995) is Meyer and van der Hoek (1995).

Another useful reference to logics of knowledge and belief is Halpern and
Moses (1992), which includes complexity results and proof procedures. Related
work on modelling knowledge has been done by the distributed systems com-
munity, who give the worlds in possible-worlds semantics a precise interpreta-
tion; for an introduction and further references, see Halpern (1987) and Fagin
et al. (1992). Overviews of formalisms for modelling belief and knowledge
may be found in Halpern (1986), Konolige (1986), Reichgelt (1989), Wooldridge
(1992) and Fagin et al. (1995). A variant on the possible-worlds framework,
called the recursive modelling method, is described in Gmytrasiewicz and Durfee
(1993). Situation semantics, developed in the early 1980s, represent a fundamen-
tally new approach to modelling the world and cognitive systems (Barwise and
Perry, 1983; Devlin, 1991).

Logics which integrate time with mental states are discussed in Kraus and Leh-
mann (1988), Halpern and Vardi (1989}, Wooldridge and Fisher (1994), Wooldridge
et al. (1998) and Dixon et al. (1998); the last of these presents a tableau-based proof
method for a temporal belief logic. Two other important references for temporal
aspects are Shoham (1988) and Shoham (1989). Thomas developed some logics
for representing agent theories as part of her framework for agent programming
languages; see Thomas et al. (1991) and Thomas (1993). For an introduction to
temporal logics and related topics, see Goldblatt (1987) and Emerson (1990).

An informal discussion of intention may be found in Bratman (1987), or more
briefly in Bratman (1990). Further work on modelling intention may be found in
Grosz and Sidner (1990), Sadek (1992), Goldman and Lang (1991), Konolige and

298 Logics for Multiagent Systems

Pollack (1993), Bell (1995) and Dongha (1995). A critique of Cohen and Levesque’s
theory of intention is presented in Singh (1992). Related works, focusing less on
single-agent attitudes, and more on social aspects, are Levesque et al. (1990), Jen-
nings (1993a), Wooldridge (1994) and Wooldridge and jennings (1994).

Although I have not discussed formalisms for reasoning about action here, we
suggested above that an agent logic would need to incorporate some mechanism
for representing agent’s actions. Our reason for avoiding the topic is simply that
the field is so big, it deserves a whole review in its own right. Good starting points
for Al treatments of action are Allen (1984) and Allen et al. (1990, 1991). Other
treatments of action in agent logics are based on formalisms borrowed from main-
stream computer science, notably dynamic logic (originally developed to reason
about computer programs) (Harel, 1984; Harel et al, 2000). The logic of seeing
to it that has been discussed in the formal philosophy literature, but has yet
to impact on multiagent systems (Belnap and Perloff, 1988; Perloff, 1991; Bel-
nap, 1991, Segerberg, 1989).

See Wooldridge (1997) for a discussion on the possibility of using logic to engi-
neer agent-based systems. Since this article was published, several other authors
have proposed the use of agents in software engineering (see, for example, Jen-
nings, 1999).

With respect to the possibility of directly executing agent specifications, a num-
ber of problems suggest themselves. The first is that of finding a concrete com-
putational interpretation for the agent specification language in question. To
see what we mean by this, consider models for the agent specification language
in Concurrent MetateM. These are very simple: essentially just linear discrete
sequences of states. Temporal logic is (among other things) simply a language
for expressing constraints that must hold between successive states. Execution
in Concurrent MetateM is thus a process of generating constraints as past-time
antecedents are satisfied, and then trying to build a next state that satisfies these
constraints. Constraints are expressed in temporal logic, which implies that they
may only be in certain, regular forms. Because of this, it is possible to devise an
algorithm that is guaranteed to build a next state if it is possible to do so. Such an
algorithm is described in Barringer et al. (1989). The agent specification language
upon which Concurrent MetateM is based thus has a concrete computational
model, and a comparatively simple execution algorithm. Contrast this state of
affairs with languages like that of Cohen and Levesque (1990a), where we have not
only a temporal dimension to the logic, but also modalities for referring to beliefs,
desires, and so on. In general, models for these logics have ungrounded semantics.
That is, the semantic structures that underpin these logics (typically accessibil-
ity relations for each of the modal operators) have no concrete computational
interpretation. As a result, it is not clear how such agent specification languages
might be executed. Another obvious problem is that execution techniques based
on theorem-proving are inherently limited when applied to sufficiently expressive
(first-order) languages, as first-order logic is undecidable. However, complexity is

Formal Methods in Agent-Oriented Software Engineering 299

a problem even in the propositional case. For ‘vanilla’ propositional logic, the
decision problem for satisfiability is NP-complete (Fagin et al., 1995, p. 72); richer
logics, or course, have more complex decision problems.

Despite these problems, the undoubted attractions of direct execution have led
to a number of attempts to devise executable logic-based agent languages. Rao
proposed an executable subset of BDI logic in his AgentSpeak(L) language (Rao,
1996a). Building on this work, Hindriks and colleagues developed the 3APL agent
programming language (Hindriks et al., 1998; Hindriks et al., 1999). Lespérance,
Reiter, Levesque, and colleagues developed the Golog language throughout the lat-
ter half of the 1990s as an executable subset of the situation calculus (Lésperance
et al., 1996; Levesque et al., 1996). Fagin and colleagues have proposed knowledge-
based programs as a paradigm for executing logical formulae which contain epis-
temic modalities (Fagin et al., 1995, 1997). Although considerable work has been
carried out on the properties of knowledge-based programs, comparatively lit-
tle research to date has addressed the problem of how such programs might be
actually executed.

Turning to automatic synthesis, the techniques described above have been
developed primarily for propositional specification languages. If we attempt to
extend these techniques to more expressive, first-order specification languages,
then we again find ourselves coming up against the undecidability of quanti-
fied logic. Even in the propositional case, the theoretical complexity of theorem-
proving for modal and temporal logics is likely to limit the effectiveness of compi-
lation techniques: given an agent specification of size 1000, a synthesis algorithm
that runs in exponential time when used offline is no more useful than an execu-
tion algorithm that runs in exponential time on-line. Kupferman and Vardi (1997)
is a recent article on automatic synthesis from temporal logic specifications.

Another problem with respect to synthesis techniques is that they typically
result in finite-state, automata-like machines, which are less powerful than Turing
machines. In particular, the systems generated by the processes outlined above
cannot modify their behaviour at run-time. In short, they cannot learn. While for
many applications this is acceptable - even desirable - for equally many others, it
is not. In expert assistant agents, of the type described in Maes (1994a), learning
is pretty much the raison d’'étre. Attempts to address this issue are described in
Kaelbling (1993).

Turning to verification, axiomatic approaches suffer from two main problems.
First, the temporal verification of reactive systems relies upon a simple model of
concurrency, where the actions that programs perform are assumed to be atomic.
We cannot make this assumption when we move from programs to agents. The
actions we think of agents as performing will generally be much more coarse-
grained. As a result, we need a more realistic model of concurrency. One possibil-
ity, investigated in Wooldridge (1995), is to model agent execution cycles as inter-
vals over the real numbers, in the style of the temporal logic of reals (Barringer
et al., 1986). The second problem is the difficulty of the proof problem for agent

300 Logics for Multiagent Systems

specification languages. The theoretical com roof for many of these
logics is quite daunting.

Hindriks and colleagues have used Plotkin’s structured operational semantics
to axiomatize their 3APL language (Hindriks et al., 1998, 1999).

With respect to model-checking approaches, the main problem, as we indicated
above, is again the issue of ungrounded semantics for agent specification lan-
guages. If we cannot take an arbitrary program and say, for this program, what its
beliefs, desires, and intentions are, then it is not clear how we might verify that
this program satisfied a specification expressed in terms of such constructs.

Formalisms for reasoning about agents have come a long way since Hintikka’s
pioneering work on logics of knowledge and belief (Hintikka, 1962). Within Al, per-

haps the main emphasis of subsequent work has been on attempting to develop
formalisms that capture the relationship between the various elements that com-
prise an agent’s cognitive state; the paradigm example of this work is the well-
known theory of intention developed by Cohen and Levesque (1990a). Despite the
very real progress that has been made, there still remain many fairlv fundamental
problems and issues outstanding.

On a technical level, we can identify a number of issues that remain open. First,
the problems associated with possible-worlds semantics (notably, logical omni-
science) cannot be regarded as solved. As we observed above, possible worlds

remain the semantice of choice for manv researchers. and vet thev do not in ocen-

A RARGRALL WAL SRS VR Laaval L s va 1aQany 1 UOT AT Oy Qi YU wal Y v aafUu aaa fia

eral represent a realistic model of agents with limited resources - and of course
all real agents are resource-bounded. One solution is to ground possible-worlds
semantics, giving them a precise interpretation in terms of the world. This was
the approach taken in Rosenschein and Kaelbling's situated automata paradigm,

and can be very successful. However, it is not clear how such a grounding could

be given to pro-attitudes such as desires or intentions (although some attempts
have been made (Singh, 1990a; Wooldridge, 1992; Werner, 1990)). There is obvi-
ously much work remaining to be done on formalisms for knowledge and belief,
in particular in the area of modelling resource-bounded reasoners.

With respect to logics that combine different attitudes, perhaps the most im

tant problems still outstanding relate to intention. In particular, the relationship
between intention and action has not been formally represented in a satisfactory
way. The problem seems to be that having an intention to act makes it more likely
that an agent will act, but does not generally guarantee it. While it seems straight-

+ thar +n T + +1 fary 1A+ 1TQ0Qc)Y ¥
forward to build systems that appear to have intentions (Wooldridge, 1995), it

seems much harder to capture this relationship formally. Other problems that
have not yet really been addressed in the literature include the management
of multiple, possibly conflicting intentions, and the formation, scheduling, and
reconsideration of intentions.
Thn mmingctinm nf avanelss shinrl /\m'n;sﬁnf‘-nyﬁ AF arriea #n rlharan_
1ne YUToilull Ol CAdLLlY WrlicCri LU Foiridiior: O atuiiu uca I.D chuucu U Uilal au

terize an agent is also the subject of some debate. As we observed above, a cur-
rently popular approach is to use a combination of beliefs, desires, and intentions

iplexity of p

~+
3
>
2]
1

Formal Methods in Agent-Oriented Software Engineering 301

(hence BDI architectures (Rao and Georgeff, 1991b)). However, there are alterna-
tives: Shoham, for example, suggests that the notion of choice is more funda-
mental (Shoham, 1990). Comparatively little work has yet been done on formally
comparing the suitability of these various combinations. One might draw a par-
alle] with the use of temporal logics in mainstream computer science, where the
expressiveness of specification languages is by now a well-understood research
area (Emerson and Halpern, 1986). Perhaps the obvious requirement for the short
term is experimentation with real agent specifications, in order to gain a better
understanding of the relative merits of different formalisms.

More generally, the kinds of logics used in agent theory tend to be rather elabo-
rate, typically containing many modalities which interact with each other in subtle
ways. Very little work has yet been carried out on the theory underlying such logics
(perhaps the only notable exception is Catach (1988)). Until the general principles
and limitations of such multi-modal logics become understood, we might expect
that progress with using such logics will be slow. One area in which work is likely
to be done in the near future is theorem-proving techniques for multi-modal log-
ics.

Finally, there is often some confusion about the role played by a theory of
agency. The view we take is that such theories represent specifications for agents.
The advantage of treating agent theories as specifications, and agent logics as
specification languages, is that the problems and issues we then face are familiar
from the discipline of software engineering. How useful or expressive is the spec-
ification language? How concise are agent specifications? How does one refine or
otherwise transform a specification into an implementation? However, the view
of agent theories as specifications is not shared by all researchers. Some intend
their agent theories to be used as knowledge representation formalisms, which
raises the difficult problem of algorithms to reason with such theories. Still oth-
ers intend their work to formalize a concept of interest in cognitive science or
philosophy (this is, of course, what Hintikka intended in his early work on logics
of knowledge of belief). What is clear is that it is important to be precise about
the role one expects an agent theory to play.

Class reading: Rao and Georgeff (1992). This paper is not too formal, but is
focused on the issue of when a particular agent implementation can be said to
implement a particular theory of agency.

302 Logics for Multiagent Systems

Exercises

(1) [Level 1.]

Consider the attitudes of believing, desiring, intending, hoping, and fearing. For each
of the following.

(a) Discuss the appropriateness of the axioms K, T, D, 4, and 5 for these attitudes.

(b) Discuss the interrelationships between these attitudes. For example, if B;p means
‘1 believes @’ and I; means ‘i intends ', then should I;¢p = B;® hold? What
about I;@ = B;—@ or [;p = —B;~@ and so on? Systematically draw up a table of
these possible relationships, and informally argue for/against them - discuss the
circumstances under which they might be acceptable.

(¢) Add temporal modalities into the framework (as in Cohen and Levesque’s formal-
ism), and carry out the same exercise.

(2) [Level 2.]
Formally, prove the correspondences in Table 12.1.

(3) [Level 3.]

I argued that formalisms such as Cohen and Levesque’s might be used as specification
languages. Using their formalism (or that in Wooldridge (2000b)), develop a specification
of a system with which you are familiar (in case you are stuck, look at the ADEPT system
in the preceding chapter).

We often naively assume that technologies and academic disciplines somehow
spontaneously emerge from nowhere, fully formed and well-defined. Of course,
nothing could be further from the truth. They tend to emerge in a rather haphaz-
ard fashion, and are shaped as much as anything by the personalities, prejudices,
and fashions of the time. The multiagent systems field is no exception to this
rule. Indeed, the number of other disciplines that have contributed to the multi-
agent systems field is so large that the story is even murkier than is normally the
case. In this section, therefore, I will attempt to give a potted history of the field,
identifying some of the milestones and key players.

nnnnn +thioc arminanAds
LLLLS dleCIILUA lb

subjective, The interpretation of events is my own, and as I was not
personally present for many of the events described, I have sometimes
had to construct a (semi)coherent history from the literature. It follows
that not everyone will agree with my version of events. Il welcome com-

nAdnavaIe tay tal NIt 1f

Ve | avhirlh T 111 - 1“ ~
lllclllb dafida auggca LJ.UllD, Wi 1 Wil efidaedvour o axKe G aCCouli i

there is ever a second edition.

A history of intelligent agent research

We could spend a month debating exactly when the multiagent systems field was
born; as with the computing and artificial intelligence fields, we could identify
many agent related ideas that emerged prior to the 20th century. But we can say
with some certainty that the agents field (although not necessarily the multiagent
systems field) was alive following the now famous 1956 Dartmouth workshop
at which John McCarthy coined the term ‘artificial intelligence’. The notion of an
‘agent’ is clearly evident in the early Al literature. For example, consider the Turing
test, put forward by Alan Turing as a way of settling the argument about whether
machines could ever be considered to be intelligent. The idea of the test is that a
person interrogates some entity via a monitor. The person is free to put forward
any questions or statements whatsoever, and after five minutes is required to

304 Appendix A

decide whether or not the entity at the other end is either another person or
a machine. If such a test cannot distinguish a particular program from a person,
then, Turing argued, the program must be considered intelligent to all intents and
purposes. Clearly, we can think of the program at the other end of the teletype as
an agent - the program is required to respond, in real time, to statements made
by the person, and the rules of the test prohibit interference with the program. It
exhibits some autonomy, in other words.

Although the idea of an agent was clearly present in the early days of Al, there
was comparatively little development in the idea of agents as holistic entities
(i.e. integrated systems capable of independent autonomous action) until the mid-
1980s; below, we will see why this happened.

Between about 1969 and 1985, research into systems capable of independent
action was carried out primarily within the Al planning community, and was dom-
inated by what I will call the ‘reasoning and planning’ paradigm. Al planning (see
Chapter 3) is essentially automatic programming: a planning algorithm takes as
input a description of a goal to be achieved, a description of how the world cur-
rently is, and a description of a number of available actions and their effects. The
algorithm then outputs a plan - essentially, a program - which describes how the
available actions can be executed so as to bring about the desired goal. The best-
known, and most influential, planning algorithm was the STRIPS system (Fikes
and Nilsson, 1971). STRIPS was so influential for several reasons. First, it devel-
oped a particular notation for describing actions and their effects that remains
to this day the foundation for most action representation notations. Second, it
emphasized the use of formal, logic-based notations for representing both the
properties of the world and the actions available. Finally, STRIPS was actually
used in an autonomous robot called Shakey at Stanford Research Institute.

The period between the development of STRIPS and the mid-1980s might be
thought of as the ‘classic’ period in Al planning. There was a great deal of progress
in developing planning algorithms, and understanding the requirements for rep-
resentation formalisms for the world and actions. At the risk of over generalizing,
this work can be characterized by two features, both of which were pioneered in
the STRIPS system:

- the use of explicit, symbolic representations of the world;

. an increasing emphasis on the use of formal, typically logic-based represen-
tations, and, associated with this work, an increasing emphasis on deductive
decision making (i.e. decision making as logical proof).

Rodney Brooks recalls the title of a seminar series in the early 1980s: From Pixels
to Predicates, which for him neatly summed up the spirit of the age (Brooks, 1999,
p. ix). By the mid-1980s, however, some researchers were having doubts about the
assumptions on which this work was based, and were beginning to voice concerns
about the direction in which research on the design of agents was going.

Appendix A 305

I noted above that the idea of ‘integrated’ or ‘whole’ agents, as opposed to
agent behaviours (such as learning and planning) did not greatly evolve between
the emergence of Al and the mid-1980s. The reason for this lack of progress is
as follows. In the early days of Al, there was a great deal of scepticism about
computers being able to exhibit ‘intelligent’ behaviour. A common form of argu-
ment was that ‘computers will never be able to X', where X = solve problems,
learn, communicate in natural language, and so on (see Russell and Norvig (1995,
p. 823) for a discussion). A natural response to these kinds of arguments by those
interested in Al was to build systems that could exhibit behaviour X. These early
systems that could plan, learn, communicate in natural language, and so on, led
to the emergence of a number of sub-disciplines in Al: the planning, learning, and
natural language communication communities, for example, all have their own
conferences, workshops, and literature. And all these communities evolved from
the groundbreaking work done on these types of behaviour in the early days of
Al

But critically, there were few attempts to actually integrate these kinds of
behaviours into whole systems - agents. Instead, researchers focused on building
better planning algorithms, better learning algorithms, and so on. By and large,
they did not address the probiem of how such aigorithms might be placed in
the context of a ‘whole’ agent. As a consequence, by the mid-1980s (as we will
see below), significant progress had been made in each of these component dis-
ciplines, but there was a dearth of experience with respect to building agents
from these components. Worse, some researchers began to argue that, because
no consideration had been given to how these components might be integrated
to build an agent, the component technologies had evolved in such a way that the
integration and use of these components in realistic systems was, for all practical
purposes, impossible: most component techniques had been evaluated on prob-
lems that were some distance from being as complex as real-world problems.

The upshot of all this was that, some researchers argued, ‘vertical decomposi-
tion’ of an agent into the different functional components was based on the flawed
assumption that the components could be easily integrated to produce an agent.

In addition, it was argued that ‘Artificial intelligence research has foundered
on the issue of representation’ (Brooks, 1991b)l. The problems associated with
building an agent that decides what to do by manipulating a symbolic (particu-
larly logic-based) representation of the world were simply too deep to make the
approach viable. The conclusion that many researchers came to was that a com-
pletely new approach was required.

The result was an entirely new approach to building agents, variously referred
to as ‘behavioural Al', ‘reactive AT’, or simply ‘the new AI'. Rodney Brooks was
perhaps the most vocal member of this community, and came to be seen as the
champion of the movement. The workers in this area were not united by any com-

1To many researchers who do ‘good old fashioned AL, the title of this paper - Intelligence without
representation - is provocative, if not actually heretical.

306 Appendix A

mon approaches, but certain themes did recur in this work. Recurring themes were
the rejection of architectures based on symbolic representations, an emphasis on
a closer coupling between the agent’s environment and the action it performs,
and the idea that intelligent behaviour can be seen to emerge from the interaction
of a number of much simpler behaviours.

The term ‘furore’ might reasonably be used to describe the response from the
symbolic and logical reasoning communities to the emergence of behavioural AL
Some researchers seemed to feel that behavioural Al was a direct challenge to the
beliefs and assumptions that had shaped their entire academic careers. Not sur-
prisingly, they were not predisposed simply to abandon their ideas and research
programs.

I do not believe there was (or is) a clear cut ‘right’ or ‘wrong’ in this debate.
With the benefit of hindsight, it seems clear that much symbolic Al research had
wandered into the realms of abstract theory, and did not connect in any realistic
way with the reality of building and deploying agents in realistic scenarios. It also
seems clear that the decomposition of Al into components such as planning and
learning, without any emphasis on synthesizing these components into an inte-
grated architecture, was perhaps not the best strategy for Al as a discipline. But
it also seems that some claims made by members of the behavioural community
were extreme, and in many cases suffered from the over-optimism that Al itself
suffered from in its early days.

The practical implications of all this were threefold.

» The first was that the behavioural Al community to a certain extent split
off from the mainstream Al community. Taking inspiration from biological
metaphors, many of the researchers in behavioural Al began working in a
community that is today known as ‘artificial life’ (alife).

- The second was that mainstream Al began to recognize the importance of
integrating the components of intelligent behaviour into agents, and, from
the mid-1980s to the present day, the area of agent architectures has grown
steadily in importance.

+ The third was that within Al, the value of testing and deploying agents in
realistic scenarios (as opposed to simple, contrived, obviously unrealistic
scenarios) was recognized. This led to the emergence of such scenarios as
the RoboCup robotic soccer challenge, in which the aim is to build agents
that can actually play a game of soccer against a team of robotic opponents
(RoboCup, 2001).

So, by the mid-1980s, the area of agent architectures was becoming established
as a specific research area within Al itself.

Most researchers in the agent community accept that neither a purely logicist
or reasoning approach nor a purely hehavioural approach is the best route to
building agents capable of intelligent autonomous action. Intelligent autonomous

Appendix A 307

action seems to imply the capability for both reasoning and reactive behaviour.
As Innes Ferguson succinctly put it (Ferguson, 1992a, p. 31):

Itis both desirable and feasible to combine suitably designed delibera-
tive and non-deliberative control functions to obtain effective, robust,
and flexible behaviour from autonomous, task-achieving agents oper-

i i el oy ArirriTaas s b o

dUrng ifn compiex environinernts.

This recognition led to the development of a range of hybrid architectures, which
attempt to combine elements of both behavioural and deliberative systems. At
the time of writing, hybrid approaches dominate in the literature.

A history of multiagent systems research

Research in multiagent systems progressed quite independently of research into
individual agents until about the early 1990s. It is interesting to note that although
the notion of an agent as an isolated system was evident in the early Al literature,

the notion of a multiagent system did not begin to gain prominence until the

;;;;;;;;;;;; Mo 5% o2 RVERRES S

early 1980s. Some attention was certainly given to interaction between artificial
agents and humans, in the form of research on natural language understanding
and generation. (The Turing test, after all, is predicated on the development of

other computer systems with such abilities.) But almost no consideration was
given to interactions among artificial agents

as RS S22 G RANSLIS QAN 2AsS TaLi A0 Qi

To understand how multiagent systems research emerged, it is necessary to go
back to the work of Alan Newell and Herb Simon on production systems (Russell
and Norvig, 1995, pp. 297, 298). A production system is essentially a collection of
‘pattern — action’ rules, together with a working memory of facts. The produc-
tion system works by forward chaining through the rules: continually matching
the left-hand side of rules against working memory, and performing the action of
a rule that fires. The action may involve adding or removing facts from working
memory. A key problem with standard production systems is that the system’s
knowledge is unstructured: all the rules are collected together into a single amor-
phous set. This can make it hard to understand and structure the behaviour of the
production system. The need for structured knowledge led to the earliest work
that was recognizably multiagent systems: blackboard systems (Engelmore and
Morgan, 1988). A blackboard system is characterized by two main attributes (see
Figure A.1):

- a collection of independent entities known as knowledge sources, each of
which has some specialized knowledge, typically encoded in the form of
rules; and

- a shared data structure known as a blackboard, which knowledge sources
use to communicate,

Knowledge sources in blackboard systems are capable of reading and writing to
the blackboard data structure, and problem solving proceeds by the knowledge

308 Appendix A

~__

blackboard

T

T
SN N /N

knowledge knowledge knowledge
source | source 2 source H

Figure A.1 A blackboard architecture: a number o

knowledge about a problem, and communicate by rea

structure known as a blackboard.

sources each monitoring the blackboard and writing to it when they can contribute
partial problem solutions. The blackboard metaphor was neatly described by Alan
Newell long before the blackboard model became widely known:

Metaphorically we can think of a set of workers, all looking at the same
blackboard: each is able to read everything that is on it, and to judge
when he has something worthwhile to add to it. This conception is...a
set of demons, each independently looking at the total situation and

EETY “'ln L N O RSy Fas =

Dlllll‘_‘l\lllg il Proporuaoil to Wlld.L UJ.C)/ hlelw llLb U.l.tll natuares

(Newell, 1962)
(quoted from Engelmore and Morgan (1988, p. 16)).

Th fircet :n’ld probablwh ct-].znr\urn blacl" nard Swstem w

Aix gy G Lo U DNLIVYY L,

y
for speech understanding, developed in the early 1970s under the supervision of
Reddy et al. (1973). One of Reddy’s co-workers on the Hearsay project was Vic-
tor (‘Vic’) Lesser, who moved to the University of Massachusetts at Amherst in
1977. Lesser had worked on multiprocessing computer systems in the 1960s,

and was well aware of the potential value of parallelism. He recognized that the

Triiva YAO yYval QYT L Wl wuaL pulciiudl vauouao U IO Lo L. 11C TV L USIIIAV LLIQL s

blackboard model, with its multiple knowledge sources each contributing partial
solutions to the overall problem, provided a natural metaphor for problem solving

Appendix A 309

that exploited parallelism (Fennell and Lesser, 1977). But the blackboard model is
essentially a shared data structure architecture; in order for knowledge sources
to communicate in a classical blackboard architecture, they need to write to this
shared data structure, which implies that there can only ever be a single thread of
control writing to the blackboard at any given time. This limits the parallelism pos-
sible in the classical blackboard model, as the shared data structure (and the need
to synchronize access to this data structure) introduces a bottleneck in problem
solving. The next step was to introduce ‘true’ parallelism into the architecture, by
allowing muitiple blackboard systems to communicate by message passing: Lesser
and Erman did this in the late 1970s, still working within the Hearsay problem
domain of speech understanding (Lesser and Erman, 1980).

Blackboard systems were highly influential in the early days of multiagent sys-
tems, but are no longer a major area of research activity. The definitive reference
(1980), Haves-Roth (1985) and Corkill et al. (1987).

At about the same time as Lesser and colleagues were beginning to build par-
allel blackboard systems, Doug Lenat proposed the BEINGS model of problem
solving (Lenat, 1975). This model of problem solving is very similar to the black-
board model, the metaphor being that of a number of experts cooperating to solve
problems by asking and answering questions. The beings in Lenat’s system were
not autonomous agents - they were more closely related to knowledge sources
in the blackboard model - but the metaphors of cooperation and distribution are
clearly evident.

Throughout the 1970s, several other researchers developed prototypical multi-
agent systems. The first was Carl Hewitt, who proposed the ACTOR model of
computation. Hewitt obtained his PhD from MIT in 1971 for his work on a system
called PLANNER (Hewitt, 1971). This system made use of data structures called
schemata, which somewhat resemble the knowledge sources in blackboard archi-
tectures. After his PhD work, Hewitt was made aware of work on the Smalitalk sys-
tem underway at Xerox Palo Alto Research Center (Xerox PARC) (Goldberg, 1984).
Smalltalk is widely recognized as the first real object-oriented programming lan-
guage. Smalltalk made liberal use of the metaphor of message passing to describe
how objects communicated with one another?. Takirg inspiration from Smalltalk,
Hewitt proposed the ACTOR model, in which computation itseif is viewed pri-
marily as message passing. The ACTOR model was described as early as 1973
(Hewitt, 1973), but the best-known and most widely cited expression of the ACTOR
model was a 1977 article published in Artificial Intelligence journal (Hewitt, 1977).
The ACTOR model was Hewitt’s expression of some radical views about the future
direction of computation, and with the benefit of hindsight, it is remarkable just
how far ahead of his time Hewitt was. He recognized that the future of comput-

2The notion of objects communicating by message passing was a key idea in early object-oriented
programming systems, but has been somewhat obscured in languages such as C++ and Java. Message
passing in Smalltalk was essentially method invocation.

310 Appendix A

ing itself was inexorably tied to distributed, open systems (Hewitt, 1985), and that
traditional models of computation were not well suited for modelling or under-
standing such distributed computation. The ACTOR paradigm was his attempt to
develop a model of computation that more accurately reflected the direction in
which computer science was going.

An ACTOR is a computational system with the following properties.

- ACTORs are social - they are able to send messages to other ACTORs.

- ACTORs are reactive - they carry out computation in response to a message
received from another ACTOR. (ACTORs are thus message driven.)

Intuitively, an actor can be considered as consisting of

- a mail address which names the ACTOR;

+a behaviour, which specifies what the ACTOR will do upon receipt of a mes-
sage.

The possible components of an ACTOR’s behaviour are

- sending messages to itself or other ACTORs;
.+ Creating more actors;

- specifying a replacement behaviour.
Intuitively, the way an ACTOR works is quite simple:

- upon receipt of a message, the message is matched against the ACTOR’s
behaviour (script);

- upon a match, the corresponding action is executed, which may involve
sending more messages, creating more ACTORs, or replacing the ACTOR
by another.

An example ACTOR, which computes the factorial of its argument, is shown in
Figure A.2 (from Agha, 1986). Receipt of a message containing a non-zero integer
n by Factorial will result in the following behaviour:

- create an ACTOR whose behaviour will be to multiply n by an integer it
receives and send the reply to the mail address to which the factorial of n
was to be sent;

- send itself the ‘request’ to evaluate the factorial of n-1 and send the value
to the customer it created.

The creation of ACTORs in this example mirrors the recursive procedures for
computing factorials in more conventional programming languages.

The ACTOR paradigm greatly influenced work on concurrent object languages
(Agha et al, 1993). Particularly strong communities working on concurrent object
languages emerged in France (led by Jacques Ferber and colleagues (Ferber and

Appendix A 311

1. Rec-Factorial with acquaintances self

2. let communication be an integer n and a customer u

3. become Rec-factorial

4. 1if n=0

5. then

6. send [1] to customer

7. else

8. let c=Rec-Customer with acquaintances n and u
9. {send [n-1, mail address of c] to self}

10. Rec-Customer with acquaintances integer n and customer u
12. let communication be an integer k
13. {send [n * k] to u}

Figure A.2 An ACTOR for computing factorials.

Carle, 1991)) and Japan (led by Akinora Yonezawa, Mario Tokoro and colleagues
(Yonezawa and Tokoro, 1997; Yonezawa, 1990; Sueyoshi and Tokoro, 1991)).

In the late 1970s at Stanford University in California, a doctoral student called
Reid Smith was completing his PhD on a system called the Contract Net, in which
a number of agents (‘problem solving nodes’ in Smith’s parlance) solved problems
by delegating sub-problems to other agents (Smith, 1977, 1980a,b). As the name
suggests, the key metaphor is that of sub-contracting in human organizations.
The Contract Net remains to this day one of the most influential multiagent sys-
tems developed. It introduced several key concepts into the multiagent systems
literature, including the economics metaphor and the negotiation metaphor.

Smith’s thesis was published in 1980, a year also notable for the emergence of
the first academic forum for research specifically devoted to the new paradigm of
multiagent systems. Randy Davis from MIT organized the first workshop on what
was then called ‘Distributed Artificial Intelligence’ (DAI) (Davis, 1980). Throughout
the 1980s, the DAI workshops, held more or less annually in the USA, became the
main focus of activity for the new community. The 1985 workshop, organized
by Michael Genesereth and Matt Ginsberg of Stanford University, was particularly
important as the proceedings were published as the first real book on the field: the
‘green book’, edited by Michael Huhns (Huhns, 1987). The proceedings of the 1988
workshop, held at Lake Arrowhead in California, were published two years later
as the ‘second green book’ (Gasser and Huhns, 1989). Another key publication at
this time was Bond and Gasser’s 1988 collection Readings in Distributed Artificial
Intelligence (Bond and Gasser, 1988). This volume brought together many of the
key papers of the field. It was prefaced with a detailed and insightful survey article,
which attempted to summarize the key problems and issues facing the field; the
survey remains relevant even at the time of writing.

Until about the mid-1980s the emphasis was on ‘parallelism in problem solv-
ing’, or distributed problem solving as it became known. In other words, the main
type of issue being addressed was ‘given a problem, how can we exploit multiple

312 Appendix A

processor architectures to solve this problem’. In the mid-1980s, a Stanford Uni-
versity PhD student called Jeff Rosenschein fundamentally changed the emphasis
of the field, by recognizing that distributed problem-solving systems implicitly
assumed ‘common interest’ among the agents in the system. He realized that
while such systems are undoubtedly important, they represent a special case of
a much more general class of systems, in which agents are assumed to be self-
interested. In his 1985 paper Deals Among Rational Agents, he coined the term
‘benevolent agent’ to describe agents that could be assumed to help out wherever
asked (Rosenschein and Genesereth, 1985). As well as making the critically impor-
tant distinction between self-interested and benevolent agents, this paper is also
significant for a second reason: it was the first paper to make use of techniques
from game theory to analyse interactions among artificial agents.

The mid-1980s also saw the development of the first general-purpose testbed
for experimentation with agent systems. The MACE system (an acronym of ‘multi-
agent computing environment’) was developed under the supervision of Les
Gasser at the University of Southern California (Gasser et al., 1987a,b). MACE
provided many features that have subsequently become standard in multiagent
systems; for example, it pioneered the provision of acquaintance models by which
agents could have representations of the capabilities and plans of their peers.

Somewhat surprisingly, those active in the field at the time report that interest
in DAI actually waned throughout the latter half of the 1980s. The reasons for
this are unclear; it may well be that this reduction of interest was simply a result
of some of the key figures from the early days of the field moving into new jobs
and new areas of work. But the seeds sown with the establishment of a regular
workshop and the publication of three key books led to an international flowering
of interest in DAL In the late 1980s, the European Commission funded a research
project entitled ARCHON (‘Architecture for Cooperating Heterogeneous Online
Systems’), which was originally focused on the problem of getting a number of
distinct ‘expert systems’ to pool their expertise in solving problems and diagnos-
ing faults in several industrial domains (Wittig, 1992; Jennings et al., 1996a; Per-
riolat et al., 1996). ARCHON was a large project (14 partners across 9 European
countries!), and subsequently became recognized as one of the first real industrial
applications of agent systems.

At about the same time, the European Commission also funded the MAGMA
project (loosely derived from ‘Modelling an Autonomous Agent in a Multiagent
World’). As part of this project, the participants decided to organize a workshop
with the same name; it was held in Cambridge, UK, in 1989, and was so success-
ful that the MAAMAW workshops became an annual event. Through the early
1990s, led by Yves Demazeau, MAAMAW was the main European forum for agent
research (Demazeau and Muller, 1990). In Japan, the MACC workshops were also
established as a regional forum for agent research.

Interest in agent systems grew very rapidly in the first half of the 1990s. There
were several reasons for this. The first, and probably most important reason

Appendix A 313

was the spread of the Internet, which through the 1990s changed from being
a tool unknown outside academia to something in everyday use for commerce
and leisure across the globe. In many ways, 1994 seems to have been a mile-
stone year for agents. The first is that 1994 was the year that the Web emerged;
the Mosaic browser only began to reach a truly wide audience in 1994 (Berners-
Lee, 1999). The Web provided an easy-to-use front end for the Internet, enabling
people with very limited IT training to productively use the Internet for the first
time. The explosive growth of the Internet was perhaps the most vivid illustra-
tion possible that the future of computing lay in distributed, networked systems,
and that in order to exploit the potential of such distributed systems, new mod-
els of computation were required. By the summer of 1994 it was becoming clear
that the Internet would be a major proving ground for agent technology (perhaps
even the ‘killer application’), although the full extent of this interest was not yet
apparent.

As well as the emergence of the Web, 1994 saw the publication in July of a spe-
cial issue of Communications of the ACM that was devoted to intelligent agents.
CACM is one of the best-known publications in the computing world, and ACM
is arguably its foremost professional body; the publication of a special issue of
CACM on agents was therefore some kind of recognition by the computing world
that agents were worth knowing about. Many of the articles in this special issue
described a new type of agent system, that acted as a kind of ‘expert assistant’
to a user working with a particular class of application. The vision of agents as
intelligent assistants was perhaps articulated most clearly by Pattie Maes from
MIT’s Media Lab, who described a number of prototype systems to realize the
vision (Maes, 1994a). Such user interface agents rapidly caught the imagination of
a wider community, and, in particular, the commercial possibilities of such tech-
nologies was self-evident. A number of agent startup companijes were founded
to commercialize this technology, including Pattie Maes’s company FireFly (sub-
sequently sold to Microsoft), and Oren Etzioni’s company NetBot (subsequently
sold to the Web portal company Excite).

With the growth of the Internet in the late 1990s came electronic commerce
(e-commerce), and the rapid international expansion of ‘dot com’ companies. It
was quickly realized that e-commerce represents a natural - and potentially very
lucrative - application domain for multiagent systems. The idea is that agents
can partially automate many of the stages of electronic commerce, from finding a
product to buy, through to actually negotiating the terms of agreement (Noriega
and Sierra, 1999). This area of agent-mediated electronic commerce became per-
haps the largest single application area for agent technology by the turn of the
century, and gave an enormous impetus (commercial, as well as scientific) to the
areas of negotiation and auctions in agent systems. Researchers such as Sarit
Kraus, Carles Sierra, Tuomas Sandholm, Moshe Tennenholtz, and Makoto Yokoo
investigated the theoretical foundations of agent-mediated electronic commerce
(building to a great extent on the pioneering work of Jeff Rosenschein and col-

314 Appendix A

leagues on game-theoretic models) and began to investigate how such techniques
could be applied in real systems.

The emergence of agents on and for the Internet gave rise to a new, asso-
ciated software technology, somewhat distinct from the ‘mainstream’ of agent
research and development. In the summer of 1994, a California-based com-
pany called General Magic was creating intense interest in the idea of mobile
agents - programs that could transmit themselves across an electronic net-
work and recommence execution at a remote site (White, 1997). At the time,
General Magic were distributing a widely read white paper that described Tele-
script - a programming language intended to realize the vision of mobile agents
(White, 1994). In the event, it was not Telescript, but another programming
language that caught the imagination of the Internet community: Java. When
Netscape incorporated a Java virtual machine into their Navigator browser, they
made it possible for browsers to download and execute small programs called
applets. Applets transformed the Web from being a large but essentially static
collection of linked documents to being an active and dynamic system of inter-
working components. The potential to the computer science community was
obvious, and this gave Java an enormous impetus, both as a way of animat-
ing the Internet, but also as a powerful, well-designed object-oriented program-
ming language in its own right. Although they are not agents in the sense that
I use the term in this book, applets give a hint of what might be possible in the
future.

A number of mobile agent frameworks were rapidly developed and released
as Java packages, and interest in Telescript waned. As [write this history in the
summer of 2000, Java is the programming language of choice not just for agent
systems, but also, it seems, for most other applications in computing. Java was
never intended to be an ‘agent programming language’ (although it can of course
be used for programming agents), but since it was first released, the language has
been progressively extended to give it ever more agent-like features. A good exam-
ple is the JINI framework, which allows objects to advertise their services and, in
a simple way, to cooperate with one another in a similar way to that proposed by
the agent community (Oaks and Wong, 2000).

By the mid-1990s, the level of industrial interest in agent systems was such that
standardization became a major issue, and some researchers began to suspect that
the lack of recognized international standards was an impediment to the wider
take-up of agent technology. The early 1990s had already seen some activity in
this area, in the form of the US-based Knowledge Sharing Effort, within which two
influential languages for agent communication were developed: KQML and KIF
(Patil et al., 1992). However, these languages were never formally standardized,
which led to great difficulties for agent developers that actually wanted to use
them in open settings. As a result, in 1995, the FIPA movement began its work on
standards for agent systems (FIPA, 2001). The centrepiece of the FIPA initiative
was a language for agent communication. By the end of the decade, many major IT

315

and telecommunications companies had become involved in the FIPA movement,
and a set of prototypical standards had been developed. At the time of writing,
the major initiative underway is to deploy these languages in real settings, and -
hopefully - demonstrate their value to agent developers.

Another body of work that arose in the mid-1990s, led by Rosaria Conte, Jim
Doran, and Nigel Gilbert, was the use of multiagent systems for modelling natu-
ral societies (Gilbert and Doran, 1994; Gilbert and Conte, 1995). The Simulating
Societies (SimSoc) workshop, first held in 1993, brought together researchers who
were interested in using multiagent systems to gain insights into the behaviour
of human societies.

Finally, in the late 1990s, researchers in multiagent systems began to seek
increasingly realistic domains in which to develop systems. This led, perhaps
indirectly, to the RoboCup initiative (RoboCup, 2001; Kitano, 1998). The RoboCup
challenge is simple: to demonstrate, within 50 years, a team of soccer-playing
robots that can beat a World Cup-strength team of human soccer players. The
rationale for RoboCup is that successfully playing soccer demands a range of dif-
ferent skills, such as real-time dynamic coordination using limited communica-
tion bandwidth. (From a robotics point of view, RoboCup also presents profound
challenges - today’s autonomous robots come nowhere near the dexterity or flex-
ibility of human soccer players.) Interest in RoboCup had exploded by the turn of
the century, with hundreds of teams from across the world attending the regu-
lar RoboCup tournaments. In 2000, RoboCup launched a new initiative, entitled
RoboCup Rescue. In RoboCup rescue, the goal is to build robots that can cooperate
to carry out search and rescue missions in a scenario based on the earthquake
that hit the city of Kobe, Japan, in the mid-1990s. Miniature robots designed by a
team working on the RoboCup Rescue scenario were used to search in the ruins of
the World Trade Center in New York, following the devastating terrorist attacks
of 11 September 2001.

Afterwor

' ' i

I began this book by pointing to some trends that have so far marked the short
history of computer science: ubiquity, interconnection, intelligence, delegation,
and human-orientation. I claimed that these trends naturally led to the emergence
of the multiagent systems paradigm. I hope that after reading this book, you will
agree with this claim.

After opening this book by talking about the history of computing, you may
expect me to close it by talking about its future. But prediction, as Nils Bohr
famously remarked, is hard - particularly predicting the future. Rather than mak-
ing specific predictions about the future of computing, I will therefore restrict my
observations to some hopefully rather uncontentious (and safe) points. The most
important of these is simply that these trends will continue. Computer systems
will continue to be ever more ubiquitous and interconnected; we will continue to
delegate ever more tasks to computers, and these tasks will be increasingly com-
plex, requiring ever more intelligence to successfully carry them out; and, finally,
the way in which we interact with computers will increasingly resemble the way
in which we interact with each other.

Douglas Adams, author of the well-known Hitch Hiker's Guide to the Galaxy
books, was also, in the final years of his life, a commentator on the computer
industry. In a radio programme broadcast by the BBC shortly before his death, he
predicted that, eventually, computers and processor power will become as cheap
and common as grains of sand. Imagine such a world: in which every device cre-
ated by humans is equipped with processor power, and is capable of interacting
with any other device, or any person, anywhere in the world. Outlandish - pre-
posterous - as it may seem, this future follows directly from the trends that I
discussed above. Now imagine the potential in this vision. Those of us old enough
to have worked with computers before 1993 will recall the sense of awe as we
realized what might be possible with the Web. But this pales into insignificance
next to the possibilities of this, as yet distant future Internet.

Note that the plumbing for this future - the processors and the network connec-
tions to link them - is the easy part. The difficult part - the real challenge - is the
software to realize its potential. I do not know exactly what software technologies
will be deployed to make this future happen. But it seems to me - and to many
other researchers - that multiagent systems are the best candidate we currently
have. It does not matter whether we call them agents or not; in 20 years, the term

318 Afterword

may not be used. The key thing is that the problems being addressed by the agent
community are exactly the problems that I believe will need to be solved to realize
the potential.

References

Adler, M. R. et al. (1989) Conflict resolution strategies for nonhierarchical distributed
agents. In Distributed Artificial Intelligence (eds L. Gasser and M. Huhns), Volume 2,

pp 1'20 1[:) Pitman Tandn nd Maroan Kanfr Carn Matan (A

4 LLA1EQALL,y l_AUll\.«lUll ull\-l 1¥Y1UL 5(,111 1\uu1111u1111, nJull AVICLL LWy i,

Agha, G. (1986) ACTORS: a Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA.

Agha, G., Wegner, P. and Yonezawa, A. (eds) (1993) Research Directions in Concurrent
Object-Oriented Programming. MIT Press, Cambridge, MA.

Agre, P. and Chapman, D. (1987} PENGI: an implementation of a theory of activity. In
Proceedings of the 6th National Conference on Artificial Intelligence (AAAI-87), Seattle,
WA, pp. 268-272.

Agre, P, E. and Rosenschein, S, J. (eds) (1996) Computational Theories of Interaction and
Agency. MIT Press, Cambridge, MA.

Allen, J. F. (1984) Towards a general theory of action and time. Artificial Intelligence, 23(2),
123-154.

Allen, J. F., Hendler, J. and Tate, A. (eds) (1990} Readings in Planning. Morgan Kaufmann,
San Mateo, CA.

Allen, J. F., Kautz, H., Pelavin, R. and Tenenberg, J. (1991) Reasoning about Plans. Morgan
Kaufmann, San Mateo, CA.

Amgoud, L. (1999) Contribution a l’intégration des préferences dans le raisonnement argu-
rneruuul PhD luéSiS I'Université Paul .)d[)duu Toulouse. \111 rlt:uLu)

Amgoud, L., Maudet, N. and Parsons, S. (2000) Modelling dialogues using argumentation.
In Proceedings of the 4th International Conference on Multi-Agent Systems (ICMAS-2000),
Boston, MA, pp. 31-38,

Appelt, D. E. (1982) Planning natural language utterances. In Proceedings of the 2nd
National Conference on Artificial Intelligence (AAAI-82), Pittsburgh, PA, pp. 59-62.

Appelt, D. E. (1985) Planning English Sentences. Cambridge University Press, Cambridge.

Appelt, D. E. and Konolige, K. (1988) A nonmonotonic logic for reasoning about speech acts
and belief revision. In Nonmonotonic Reasoning. Proceedings of the 2nd International
Workshop (eds M. Reinfrank, J. de Kleer, M. L. Ginsberg and E. Sandewall), LNAI Volume
346, pp 164-175. Springer, Berlin.

Austin, J. L. (1962) How To Do Thmnc With Words, Qxford Universi ty v Press, Oxford.

L] AT, PR W4V 3. AAaaNSE L5 ¥ ¥ 4

Axelrod, R. (1984) The Evolution of Cooperanon. Basic Books, New York.

Axelrod, R. (1997) The Complexity of Cooperation. Princeton University Press, Princeton,
NJ.

Baecker, R. M. (ed.) (1993} Readings in Groupware and Computer-Supported Cooperative
Work. Morgan Kaufmann, San Mateo, CA.

320 References

Barringer, H. et al. (1989) METATEM: a framework for programming in temporal logic.
In REX Workshop on Stepwise Refinement of Distributed Systems: Models, Formalisms,
Correctness, LNCS Volume 430, pp. 94-129. Springer, Berlin.

Barringer, H., Kuiper, R. and Pnueli, A. (1986) A really abstract concurrent model and its
temporal logic. In Proceedings of the 13th ACM Symposium on the Principles of Program-
ming Languages, pp. 173-183.

Barwise, J. and Perry, J. (1983) Situations and Attitudes. MIT Press, Cambridge, MA.

Bates, J. (1994) The role of emotion in believable agents. Communications of the ACM,
37(7), 122-125.

Bates,], Brvan Loyall, A. and Scott Reilly, W. {1992a) An architectur

e , em
and soc1al behawour. Technical report CMU-CS-92-144, School of Co mputer Science,
Carnegie-Mellon University, Pittsburgh, PA.

Bates, J., Brvan Loyall, A. and Scott Reilly, W. (1992b) Integrating reactivity, goals and
emotion in a broad agent. Technical report CMU-CS-92-142, School of Computer Science,
Carnegie-Mellon University, Pittsburgh PA.

Raltar I Aialla D nA MNAAIT 7 Aaogant TIART . o
Lvauct, D, lVILl.].lCL J r., aliq uucu, J- \LUUL} ARTIIL Ulvll., QA

otion

11
11 yi 15 J. 1
agent software systems, In Agent-Oriented Software Engineering. Proceedings of th
First International Workshop AOSE-2000 (eds P. Ciancarini and M. Wooldridge), LNCS
Volume 1957, pp. 91-104. Springer, Berlin.

Bell, J. (1995} Changing attitudes. In Intelligent Agents: Theories, Architectures and Lan-
guages (eds M. Wooldridge and N. R. Jennings), LNAI Volume 890, pp. 40-55. Springer,
Berlin.

Belnap, N. (1991) Backwards and forwards in the modal logic of agency. Philosophy and
Phenomenological Research, 51(4), 777-807.

Belnap, N. and Perloff, M. (1988) Seeing to it that: a canonical form for agentives. Theoria,
54, 175-199.

Ben-Ari, M, (1990) Principles of Concurrent and Distributed Programming. Prentice-Hall,
Englewood Cliffs, NJ.

Ben-Ari, M. (1993) Mathematical Logic for Computer Science. Prentice-Hall, Englewood
Cliffs, NJ.

Benerecetti, M., Giunchiglia, F. and Serafini, L. {1999) A model checking algorithm for
multiagent systems. In Intelligent Agents, V (eds J. P. Miiller, M. P. Singh and A. S. Rao},
LNAI Volume 1555. Springer, Berlin.

Berners-Lee, T. (1999) Weaving the Web. QOrion Business, London.

Binmore, K. (1992) Fun and Games: a Text on Game Theory. D. C. Heath and Company,
Lexington, MA.,

Blackburn, P., de Rijke, M. and Venema, Y. (2001) Modal Logic. Cambridge University Press,
Cambridge.

Blythe, J. (1999) An overview of lapnln under uncertainty. In Artificial Intelligence Today

L L Vi S I)) ALl UVELDVIT iid iy iile ‘-vv

(eds M. Wooldridge and M. Veloso), LNAI Volume 1600, pp. 85-110. Springer, Berlin.
Bonasso, R. P., Kortenkamp, D., Miller, D. P. and Slack, M. (1996) Experiences with an
architecture for intelligent, reactive agents. In Intelligent Agents, II (eds M. Wooldridge,
J. P. Miller and M. Tambe}, LNAI Volume 1037, pp. 187-202. Springer, Berlin.
Bond, A. H. and Gasser, L. (eds} (1988) Readings in Distributed Artificial Intelligence. Morgan

PR

l\dUlludllll Dd_u iVldLLU Lf"\

Booch, G. (1994) Object-Oriented Analysis and Design, 2nd edition. Addison-Wesley, Read-
ing, MA,

Booch, G., Rumbaugh, J. and Jacobson, 1. (1998) The Unified Modeling Language User Guide.
Addison-Wesley, Reading, MA.

Bradshaw, J. (ed.} (1997) Software Agents. MIT Press, Cambridge, MA.

References 321

Bradshaw, J., Dutfield, S., Benoit, P. and Wooley, J. D. (1997) KAoS: towards an industrial
strength open agent architecture. In Software Agents (ed.]J. Bradshaw), pp. 375-418.
MIT Press, Cambridge, MA.

Bratman, M. E. (1987) Intention, Plans and Practical Reason. Harvard University Press, Cam-
bridge, MA.

Bratman, M. E. (1990) What is intention? In Intentions in Communication (eds P. R. Cohen,
J. L. Morgan and M. E. Pollack), pp. 15-32. MIT Press, Cambridge, MA.

Bratman, M. E., [srael, D. J. and Pollack, M. E. (1988) Plans and resource-bounded practical
reasoning. Computational Intelligence, 4, 349-355.

Brazier, F. et al. (1995) Formal specification of multi-agent systems: a real-world case. In
Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-95), San
Francisco, CA, pp. 25-32.

Bretier, P. and Sadek, D. (1997) A rational agent as the kernel of a cooperative spoken
dialogue system: implementing a logical theory of interaction. In Intelligent Agents, I1II
(eds J. P. Miiller, M. Wooldridge and N. R. Jennings), LNAI Volume 1193, pp. 189-204.
Springer, Berlin.

Breugst, M. et al. (1999) Grasshopper: an agent platform for mobile agent-based services
in fixed and mobile telecommunications environments. In Software Agents for Future
Communication Systems (eds A. L. G. Hayzelden and J. Bigham), pp. 326-357. Springer,
Berlin.

Brewington, B. et al. (1999) Mobile agents for distributed information retrieval. In Intelli-
gent Information Agents (ed. M. Klusch), pp. 355-395. Springer, Berlin.

Brooks, R. A. (1986) A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1), 14-23.

Brooks, R. A. (1990) Elephants don't play chess. In Designing Autonomous Agents (ed.
P. Maes), pp. 3-15. MIT Press, Cambridge, MA.

Brooks, R. A. (1991a) Intelligence without reason. In Proceedings of the 12th International
Joint Conference on Artificial Intelligence (IJCAI-91), Sydney, Australia, pp. 569-595.
Brooks, R. A. (1991Db) Intelligence without representation. Artificial Intelligence, 47, 139-

159.

Brooks, R. A. (1999) Cambrian Intelligence. MIT Press, Cambridge, MA.

Burmeister, B. (1996) Models and methodologies for agent-oriented analysis and design. In
Working Notes of the KI'96 Workshop on Agent-Oriented Programming and Distributed
Systemis (ed. K. Fischer), DFKI Document D-96-06. DFKI.

Busetta, P. et al. (2000) Structuring BDI agents in functional clusters. In Intelligent Agents,
VI. Proceedings of the 6th International Workshop on Agent Theories, Architectures and
Languages, ATAL-99 (eds N. Jennings and Y. Lespérance), LNAI Volume 1757. Lecture
notes in Artificial Intelligence, pp. 277-289. Springer, Berlin.

Bylander, T. (1994) The computational complexity of propositional STRIPS planning. Arti-
ficial Intelligence, 69(1-2), 165-204.

Cammarata, S., McArthur, D. and Steeb, R. (1983) Strategies of cooperation in distributed
problem solving. In Proceedings of the 8th International Joint Conference on Artificial
Intelligence (IJCAI-83), Karlsruhe, Federal Republic of Germany, pp. 767-770.

Carriero, N. and Gelernter, D. (1989) Linda in context. Conmmunications of the ACM, 32(4),
444-458.

Castelfranchi, C. (1990) Social power. In Decentralized Al - Proceedings of the 1st European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-89) (eds
Y. Demazeau and J.-P. Miiller), pp. 49-62. Elsevier, Amsterdam.

References

%]
N
N

Castelfranchi, C., Miceli, M. and Cesta, A. (1992) Dependence relations among autonomous
agents. In Decentralized Al 3- Proceedings of the 3rd European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World (MAAMAW-91) (eds E. Werner and
Y. Demazeau), pp. 215-231. Elsevier;, Amsterdam.

Catach, L. (1988) Normal multimodal logics. In Proceedings of the 7th National Conference
on Artificial Intelligence (AAAI-88) St. Paul, MN, pp. 491-495.

Chang, E. (1987) Participant systems. In Distributed Artificial Intelligence (ed. M. Huhns),
pp. 311-340. Pitman, London and Morgan Kaufmann, San Mateo, CA.

Chapman, D. and Agre, P. (1986) Abstract reasoning as emergent from concrete activity.
In Reasoning About Actione and Plance - Proreodinge of the 1986 Workshon (eds M. P.

1id INCUASUTLLALY AU UL JALUUTL) Wilu £l LruloTuiiiyy v wic 400 FYUTROTIUL (LU0 LYl o

Georgeff and A. L. Lansky), pp. 411-424. Morgan Kaufmann, San Mateo, CA.

Chavez, A. and Maes, P. (1996) Kasbah: an agent marketplace for buying and selling goods.
In Proceedings of the 1st International Conference on the Practical Application of Intelli-
gent Agents and Multi-Agent Technology (PAAM-96), London, UK, pp. 75-90.

Chellas, B. (1980) Modal Logic an Introduction. Cambridge University Press, Cambridge

Ciancarini, P. and Hankin, C. (eds) (1996) Coordination Languages and Models - Proceed-
ings of Coordination '96, LNCS Volume 1061. Springer, Berlin.

Ciancarini, P. and Wooldridge, M. (eds) (2001) Agent-Oriented Software Engineering - Pro-
ceedings of the 1st International Workshop AOSE-2000, LNCS Volume 1957. Springer,
Berlin.

Clarke, E. M. and Emerson, E. A. (1981) Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Logics of Programs - Proceedings 1981,
LNCS Volume 131 (ed. D. Kozen), pp. 52-71. Springer, Berlin.

Clarke, E. M., Grumberg, O. and Peled, D. A. (2000) Model Checking. MIT Press, Cambridge,
MA.

Clocksin, W. F. and Mellish, C. S. (1981) Programming in Prolog. Springer, Berlin.

Cohen, P. R. and Levesque, H. J. (1990a) Intention is choice with commitment. Artificial
Intelligence, 42, 213-261.

Cohen, P. R. and Levesque, H. J. (1990b) Rational interaction as the basis for communi-
cation. In Intentions in Communication (eds P. R. Cohen, J. Morgan and M. E. Pollack),
pp. 221-256. MIT Press, Cambridge, MA.

Cohen, P. R. and Levesque, H. J. (1991) Teamwork. Nous, 25(4), 487-512.

Cohen, P. R. and Levesque, H. J. (1995) Communicative actions for artificial agents. In
Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-95), San
Francisco, CA, pp. 65-72.

Cohen, P. R. and Perrault, C. R. (1979) Elements of a plan based theory of speech acts.
Cognitive Science, 3, 177-212.

Coleman, D. et al. (1994) Object-Oriented Development: the FUSION Method. Prentice-Hall
International, Hemel Hempstead, UK.

Collinot, A., Drogoul, A. and Benhamou P. (1996) Agent oriented design of a soccer robhot
team. In Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS-
96), pp- 41-47, Kyoto, Japan.

Connah, D. and Wavish, P. (1990) An experiment in cooperation. In Decentralized Al -
Proceedings of the 1st European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW-88) (eds Y. Demazeau and J.-P. Miiller), pp. 197-214. Elsevier,
Amsterdam.

Conte, R. and Castelfranchi, C. (1993) Simulative understanding of norm functionalities
in social groups. In Simulating Societies-93: Pre-proceedings of the 1993 International
Symposium on Approaches to Simulating Social Phenomena and Social Processes, Certosa

di Pontignano, Siena, Italy.

| 3 P P 2992
REJETENLED> o Ve |

Conte, R. and Gilbert, N. (1995) Computer simulation for social theory. In Artificial Soci-
eties: The Computer Simulation of Social Life (eds N. Gilbert and R. Conte), pp. 1-15. UCL
Press, London.

Corkill, D. D., Gallagher, K. Q. and Johnson, P. M. (1987) Achieving flexibility, efficiency and
generality in blackboard architectures. In Proceedings of the 6th National Conference on
Artificial Intelligence (AAAI-87), pp. 18-23. Seattle, WA.

DAML (2001) The DARPA agent markup language. See http://www.daml.org/.

Davidsson, P. (2001) Multi agent based simulation: beyond social simulation. In Multi-
Agent-Based Simulation, LNAI Volume 1979, pp. 97-107. Springer, Berlin.

Davis, R. (1980) Report on the workshop on Distributed AlL. ACM SIGART Newsletter, 73,
42-52.

Decker, K. S. (19596) TAMS: A framework for environment centred analysis and design of
coordination algorithms. In Foundations of Distributed Artificial Intelligence (eds G. M. P.
O’Hare and N. R. Jennings), pp. 429-447. John Wiley and Sons, Chichester.

Decker, K. and Lesser, V. (1995) Designing a family of coordination algorithms. In Proceed-
ings of the 1st International Conference on Multi-Agent Systems (ICMAS-95), pp. 73-80.
San Francisco, CA.

Decker, K. S., Durfee, E. H. and Lesser, V. R. (1989) Evaluating research in cooperative
distributed problem solving. In Distributed Artificial Intelligence (eds L. Gasser and
M. Huhns), Volume II, pp. 487-519. Pitman, London and Morgan Kaufmann, San Mateo,
CA.

Decker, K., Sycara, K. and Williamson, M. (1997) Middle-agents for the Internet. In Pro-
ceedings of the 15th International joint Conference on Artificial Intelligence (I[JCAI-97),
Nagova, Japan.

Decker, S., (2000) The semantic Web: the roles of XML and RDF. IEEE Internet Computing,
4(5), 63-74.

Demazeaun, Y. and Miiller, 1.-P. (eds) (1990) Decentralized AI - Proceedings of the 1st Euro-

LR UL T S RN B AV 5 [E VALY S Ll e U L2210 L.047

pean Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-89).
Elsevier, Amsterdam.

Dennett, D. C. (1978) Brainstorms. MIT Press, Cambridge, MA.

Dennett, D. C. (1987) The Intentional Stance. MIT Press, Cambridge, MA.

Dennett, D. C. (1996) Kinds of Minds. London: Phoenix.

Depke, R., Heckel, R. and Kuester, J. M. (2001) Requirement specification and design
of agent-hased systems with graph transformation, roles and uml. In Agent-Oriented
Software Engineering - Proceedings of the 1st International Workshop AOSE-2000 (eds
P. Ciancarini and M. Wooldridge), LNCS Volume 1957, pp. 105-120. Springer, Berlin.

Devlin, K. (1991) Logic and Information. Cambridge University Press, Cambridge.

Dignum, F. (1999 Autonomous agents with norms. Artificial Intelligence and Law, 7, 69-
79.

Dignum, F. and Greaves, M. (eds) (2000) Issues in Agent Communication, LNAI Vol-
ume 1916. Springer, Berlin.

Dimpoulos, Y., Nebel, B. and Toni, F. (1999) Preferred arguments are harder to compute

than stable extensions. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI-99), pp. 36-41. Stockholm, Sweden.

d’Inverno, M. and Luck, M. (1996) Formalising the contract net as a goal-directed system.
In Agents Breaking Away - Proceedings of the 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, MAAMAW-96 (LNAI 1038) (eds J. van de
Velde and W. Perram), pp. 72-85. Springer, Berlin.

d'Inverno, M. and Luck, M. (2001) Understanding Agent Systems. Springer, Berlin.

324 References

d’Inverno, M. et al. (1997) A formal specification of dMARS. In Intelligent Agents, IV (eds
A. Rao, M. P. Singh and M.]J. Wooldridge), LNAI Volume 1365, pp. 155-176. Springer,
Berlin.

Dixon, C., Fisher, M. and Wooldridge, M. (1998) Resolution for temporal logics of knowl-
edge. Journal of Logic and Computation, 8(3), 345-372.

Dongha, P. (1995) Toward a formal model of commitment for resource-bounded agents. In
Intelligent Agents: Theories, Architectures and Languages (eds M. Wooldridge and N. R.
Jennings), LNAI Volume 890, pp. 86-101. Springer, Berlin.

Doorenbos, R., Etzioni, O. and Weld, D. (1997) A scaleable comparison-shopping agent for
the world wide web. In Proceedings of the 1st International Conference on Autonomous
Agents (Agents 97), Marina del Rey, CA, pp. 39-48.

Doran, J. (1987) Distributed artificial intelligence and the modelling of socio-cultural sys-
tems. In Intelligent Systems in a Human Context (eds L. A. Murray and J. T. E. Richardson),
pp- 71-91. Oxford University Press, Oxford.

Doran, J. and Palmer, M. (1995) The EOS project: integrating two models of paeleolithic
social change. In Artificial Societies: the Computer Simulation of Social Life (eds N. Gilbert
and R. Conte), pp. 103-125. UCL Press, London.

Doran, J. et al. (1992) The EOS project. In Simulating Societies-92: Pre-proceedings of
the 1992 International Symposium on Approaches to Simulating Social Phenomena and
Social Processes, Department of Sociology, University of Surrey.

Downing, T. E., Moss, S. and Pahl-Wostl, C. (2001) Understanding climate policy using
participatory agent-based social simulation. In Multi-Agent-Based Simulation, LNAI Vol-
ume 1979, pp. 198-213. Springer, Berlin.

Dovle, J., Shoham, Y. and Wellman, M. P. (1991) A logic of relative desire. In Methodologies
for Intelligent Systems - Sixth International Symposium, ISMIS-91 (eds Z. W. Ras and
M. Zemankova), LNAI Volume 542, pp. 16-31. Springer, Berlin.

Dung, P. M. (1995) On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77,321-357.

Dunin-Keplicz, B. and Treur, J. (1995) Compositional formal specification of multi-
agent systems. In Intelligent Agents: Theories, Architectures and Languages (eds M.
Wooldridge and N. R. Jennings), LNAI Volume 890, pp. 102-117. Springer, Berlin.

Durfee, E. H. (1988) Coordination of Distributed Problem Solvers. Kluwer Academic, Boston,
MA.

Durfee, E. H. (1996) Planning in distributed artificial intelligence. In Foundations of Dis-
tributed Artificial Intelligence (eds G. M. P. O’Hare and N. R. Jennings), pp. 231-245. John
Wiley and Sons, Chichester.

Durfee, E. H. (1999) Distributed problem solving and planning. In Multiagent Systems (ed.
G. Weil), pp. 121-164. MIT Press, Cambridge, MA.

Durfee, E. H. and Lesser, V. R. (1987) Using partial global plans to coordinate distributed
problem solvers. In Proceedings of the 10th International Joint Conference on Artificial
Intelligence (IJCAI-87), Milan, Italy, pp. 875-883.

Durfee, E. H., Kiskis, D. L. and Birmingham, W. P. (1997) The agent architecture of the
University of Michigan digital library. IEEE Proceedings on Software Engineering, 144(1),
61-71.

Durfee, E. H., Lesser, V. R. and Corkill, D. D. (1989a) Cooperative distributed problem
solving. In Handbook of Artificial Intelligence (eds E. A. Feigenbaum, A. Barr and P. R.
Cohen), Volume IV, pp. 83-147. Addison-Wesley, Reading, MA.

Durfee, E. H., Lesser, V. R. and Corkill, D. D. (1989b) Trends in cooperative distributed
problem solving. IEEE Transactions on Knowledge and Data Engineering, 1(1), 63-83.

References 325

EBAY (2001) The eBay online marketplace. See http://www.ebay.com/.

Eliasmith, C. (1999) Dictionary of the philosophy of mind. Online athttp://www.artsci.
wustl.edu/ "philos/MindDict/

Emerson, E. A. (1990) Temporal and modal logic. In Handbook of Theoretical Computer
Science. Volume B: Formal Models and Semantics (ed. J. van Leeuwen), pp. 996-1072.
Elsevier, Amsterdam.

Emerson, E. A. and Halpern, J. Y. (1986) ‘Sometimes’ and ‘not never’ revisited: on branching
time versus linear time temporal logic. Journal of the ACM, 33(1), 151-178.

Enderton, H. B. (1972) A Mathematical Introduction to Logic. Academic Press, London.

Engelmore, R. and Morgan, T. (eds) (1988) Blackboard Systems. Addison-Wesley, Reading,
MA.

Ephrati, E. and Rosenschein, J. S. (1993) Multi-agent planning as a dynamic search for
social consensus. In Proceedings of the 13th International Joint Conference on Artificial
Intelligence (IJCAI-93), Chambéry, France, pp. 423-429.

Erman, L. D. et al. (1980) The Hearsay-lI speech-understanding system: integrating knowl-
edge to resolve uncertainty. Computing Surveys, 12(2), 213-253.

Etzioni, O. (1993) Intelligence without robots. AI Magazine, 14(4).

Etzioni, O. (1996) Moving up the information food chain: deploying softbots on the World
Wide Web. In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-
96), Portland, OR, pp. 4-8.

Etzioni, O. and Weld, D. S. (1995) Intelligent agents on the Internet: fact, fiction and fore-
cast. IEEE Expert, 10(4), 44-49.

Fagin, R. et al. (1995) Reasoning About Knowledge. MIT Press, Cambridge, MA.

Fagin, R. et al. (1997) Knowledge-based programs. Distributed Computing, 10(4), 199-225.

Fagin, R., Halpern, J. Y. and Vardi, M. Y. (1992) What can machines know? On the properties
of knowledge in distributed systems. Journal of the ACM, 39(2), 328-376.

Farquhar, A., Fikes, R. and Rice, J. (1997) The Ontolingua server: a tool for collaborative
ontology construction. International Journal of Human-Computer Studies, 46, 707-727.

Fennell, R. D. and Lesser, V. R. (1977) Parallelism in Artificial Intelligence problem solving:
a case study of Hearsay Il. IEEE Transactions on Computers, C 26(2), 98-111. (Also pub-
lished in Readings in Distributed Artificial Intelligence (eds A. H. Bond and L. Gasser),
pp. 106-119. Morgan Kaufmann, 1988.)

Fensel, D. and Musen, M. A. (2001) The semantic Web. IEEE Intelligent Systems, 16(2), 24-25.

Fensel, D. et al. (2001) The semantic Web. IEEE Intelligent Systems, 16(2), 24-25.

Ferber,]J. (1996) Reactive distributed artificial intelligence. In Foundations of Distributed
Artificial Intelligence (eds G. M. P. O’Hare and N. R. Jennings), pp. 287-317. John Wiley
and Sons, Chichester.

Ferber, J. (1999) Multi-Agent Systems. Addison-Wesley, Reading, MA.

Ferber, J. and Carle, P. (1991) Actors and agents as reflective concurrent objects: a MERING
IV perspective. IEEE Transactions on Systems, Man and Cybernetics.

Ferguson, L. A. (1992a) TouringMachines: an Architecture for Dynamic, Rational, Mobile
Agents. PhD thesis, Clare Hall, University of Cambridge, UK. (Also available as technical
report no. 273, University of Cambridge Computer Laboratory.)

Ferguson, I. A. (1992b) Towards an architecture for adaptive, rational, mobile agents. In De-
centralized Al 3 - Proceedings of the 3rd European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW-91) (eds E. Werner and Y. Demazeau), pp. 249-
262. Elsevier, Amsterdam.

Ferguson, 1. A. (1995) Integrated control and coordinated behaviour: a case for agent mod-
els. In Intelligent Agents: Theories, Architectures and Languages (eds M. Wooldridge and
N. R. Jennings), LNAI Volume 890, pp. 203-218. Springer, Berlin.

326 References

Fikes, R. E. and Nilsson, N. (1971) STRIPS: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189-208.

Findler, N. V. and Lo, R. (1986) An examination of Distributed Planning in the world of air
traffic control. Journal of Parallel and Distributed Computing, 3.

Findler, N. and Malyankar, R. (1993) Alliances and social norms in societies of non-
homogenous, interacting agents. In Simulating Societies-93: Pre-proceedings of the 1993
International Symposium on Approaches to Simulating Social Phenomena and Social Pro-
cesses, Certosa di Pontignano, Siena, Italy.

Finin, T. et al. (1993) Specification of the KQML agent communication language. DARPA
knowledge sharing initiative external interfaces working group.

FIPA (1999) Specification part 2 - agent communication language. The text refers to the
specification dated 16 April 1999.

FIPA (2001) The foundation for intelligent physical agents. See http://www.fipa.org/.

Firby, J. A. (1987) An investigation into reactive plannmg in complex domains. In Proceed-
ings of the 10th International Joint Conference on Artificial Intelligence (IJCAI-87), Milan,
Italy, pp. 202-206.

Fischer, K., Miiller, J. P. and Pischel, M. (1996) A pragmatic BDI architecture. In Intelligent
Agents, II (eds M. Wooldridge, J. P. Miiller and M. Tambe), LNAI Volume 1037, pp. 203-

Crnrmnoar

71 R Pawrli
LG opLlIgll L)Clllll.

Fisher, M. (1994) A survey of Concurrent MetateM-the language and its applications. In
Temporal Logic - Proceedings of the 1st International Conference (eds D. M. Gabbay and
H. J. Ohlbach), LNAI Volume 827, pp. 480-505. Springer, Berlin.

Fisher, M. (1995) Representing and executing agent-based systems. In Intelligent Agents:
Theories, Architectures and Languages (eds M. Wooldridge and N. R. Jennings), LNAI
Volume 830, pp. 307-323. Springer, Berlin.

Fisher, M. (1996) An introduction to executable temporal logic. The Knowledge Engineering
Review, 11(1), 43-56.

Fisher, M. and Wooldridge, M. (1997) On the formal specification and verification of multi-
agent systems. International Journal of Cooperative Information Systems, 6(1), 37-65.
Fox, J., Krause, P. and Ambler, S. (1992) Arguments, contradictions and practical reason-
ing. In Proceedings of the 10th European Conference on Artificial Intelligence (ECAI-92),

Vienna, Austria, pp. 623-627.

Francez, N. (1986) Fairness. Springer, Berlin.

Franklin, S. and Graesser, A. (1997) Is it an agent, or just a program? In Intelligent Agents,
HI (eds J. P. Miiller, M. Wooldridge and N. R. Jennings), LNAI Volume 1193, pp. 21-36.
Springer, Berlin.

Freeman, E., Hupfer, S. and Arnold, K. (1999) JavaSpaces Principles, Patterns and Practice.
Addison-Wesley, Reading, MA.

Gabbay, D. (1989) Declarative past and imperative future. In Proceedings of the Colloquium
on Temporal Logic in Specification (eds B. Baniegbal, H. Barringer and A. Pnueli), LNCS
Volume 398, pp. 402-450. Springer, Berlin.

Galliers, J. R. (19883\ A strategic framework for multi-agent cooper ,nve _-lalog 1e. In P
ceedings of the 8th European Conference on Artificial Intelligence (ECAI-88), pp. 415-420.
Munich, Germany.

Galliers, J. R. (1988b) A Theoretical Framework for Computer Models of Cooperative Dia-
logue, Acknowledging Multi-Agent Conflict. PhD thesis, The Open University, UK.

Galliers, J. R. (1990) The positive role of conflict in cooperative multi-agent systems. In

o vy Y] TA/ Al ol AAA A1y Ty
Decentralized Al - Proceedings of the First European Workshop on Modelling Autonomous

Agentls in a Multi-Agent World (MAAMAW-89) (eds Y. Demazeau and J.-P. Miiller), pp. 33-
48. Elsevier, Amsterdam.

Galliers, J. R. (1991) Cooperative interaction as strategic belief revision. In CKBS-90 -
Proceedings of the International Working Conference on Cooperating Knowledge Based
Systems (ed. S. M. Deen), pp. 148-163. Springer, Berlin.

Gardenfors, P. (1988) Knowledge in Flux. MIT Press, Cambridge, MA.

Garey, M. R, and Johnson, D. S. (18/79) Computers and Intractapility: a Guide to the fheory
of Np-Completeness. W. H. Freeman, New York.

Gasser, L. and Briot, J. P. (1992) Object-based concurrent programming and DAI. In Dis-
tributed Artificial Intelligence: Theory and Praxis (eds N. M. Avouris and L. Gasser),
pp- 81-108. Kluwer Academic, Boston, MA.

Gasser, L. and Hill Jr, R. W. 1990 Coordinated problem solvers. Annual Review of Computer
Science, 4, 203-253.

Gasser, L. and Huhns, M. (eds) (1989) Distributed Artificial Intelligence, Volume II. Pitman,
London and Morgan Kaufmann, San Mateo, CA.

Gasser, L., Braganza, C. and Herman, N. (1987a) Implementing distributed Al systems
using MACE. In Proceedings of the 3rd IEEE Conference on Al Applications, pp. 315-320.

Gasser, L., Braganza, C. and Hermann, N. (1987b) MACE: a flexible testbed for distributed
Al research. In Distributed Artificial Intelligence (ed. M. Huhns), pp. 119-152. Pitman,
London and Morgan Kaufmann, San Mateo, CA.

Gasser, L. et al. (1989) Representing and using organizational knowledge in DAI systems.
In Distributed Artificial Intelligence (eds L. Gasser and M. Huhns), Volume II, pp. 55-78.
Pitman, L.ondon and Morgan Kaufmann, San Mateo, CA.

Gelernter, D. (1985) Generative communication in Linda. ACM Transactions on Program-
ming Languages and Systems, 7(1), 80-112.

Genesereth, M. R. and Fikes, R. E. (1992) Knowledge Interchange Format, Version 3.0 Ref-
erence Manual. Technical report logic-92-1, Computer Science Department, Stanford
University.

Genesereth, M. R. and Ketchpel, S. P. (1994) Software agents. Communications of the ACM,
37(7), 48-53.

Genesereth, M. R. and Nilsson, N. (1987) Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, San Mateo, CA.

Genesereth, M. R., Ginsberg, M. and Rosenschein, J. S. (1986) Cooperation without commu-
nication. In Proceedings of the 5th National Conference on Artificial Intelligence (AAAI-
86), Philadelphia, PA, pp. 51-57.

Georgeff, M. P. (1983) Communication and interaction in multi-agent planning. In Proceed-
ings of the 3rd National Conference on Artificial Intelligence (AAAI-83), Washington, DC,
pp. 125-129.

Georgeff, M, P. and Ingrand, F. F. (1989) Decision-making in an embedded reasoning sys-
tem. In Proceedings of the 11th International Joint Conference on Artificial Intelligence

(IJCAI-89), Detroit, MI, pp. 972-978.
Georgeff M, P. and T;mql(v A_ L (1987) Reactive reasoning a

of the 6th National Conference on Artificial Intelligence
682.

Georgeff, M. P. and Rao, A. S. (1996) A profile of the Australian Al Institute. IEEE Expert,
11(6), 89-92.

Georgeff, M. et al. (1999) The belief-desire-intention model of agency. In Intelligent Agents,
VvV (fode T D MizHar M D Cinagh and A € Rany TNAT VAallimmao IJJS

¥ AL J. L. L‘lull\.l, i¥l. L o Jlllsll QLI he WS I\UU], RV Vi W VUlhlllL
Berlin.

Gilbert, M. (1994) Multi-modal argumentation. Philosophy of the Social Sciences, 24(2), 159~
177.

Gilbert, N. (1995) Emergence in social simulation. In Artificial Societies: the Computer Sim-
ulation of Social Life (eds N. Gilbert and R. Conte), pp. 144-156. UCL Press, London.

)
3
)
Q.

1 nnmg In
attle

and pnla
AAAI-87), S

Ocn:

n
nn 1-10 $nrinoor
y Hl-’- i AL/ UHALILB\-L,

Formanze rn

Gilbert, N. and Conte, R. (eds) (1995) Artificial Societies: the Computer Simulation of Social
Life. GUCL Press, London.

Gilbert, N. and Doran, J. (eds) (1994) Simulating Societies. UCL Press, London.

Gilkinson, H., Paulson, S. F. and Sikkink, D. E. (1954) Effects of order and authority in
argumentative speech. Quarterly Journal of Speech, 40, 183-192.

Ginsberg, M. L. (1989) Universal planning: an (almost) universally bad idea. AI Magazine,
10(4), 40-44.

Ginsberg, M. L.. (1991) Knowledge interchange format: the KIF of death. AI Magazine, 12(3),
57-63.

Gmytrasiewicz, P. and Durfee, E. H. (1993) Elements of a utilitarian theory of knowledge
and action. In Proceedings of the 13th International Joint Conference on Artificial Intel-
ligence (IJCAI-93), Chambéry, France, pp. 396-402.

Goldberg, A. (1984) SMALLTALK-80: the Interactive Programming Language. Addison-
Wesley, Reading, MA.

Goldblatt, R. (1987) Logics of Time and Computation (CSLI Lecture Notes number 7). Cen-
ter for the Study of Language and Information, Ventura Hall, Stanford, CA 94305. (Dis-
tributed by Chicago University Press.)

Goldman, C. V. and Rosenschein, J. S. (1993) Emergent coordination through the use of
cooperative state-changing rules. In Proceedings of the 12th International Workshop on
Distributed Artificial Intelligence (IWDAI-93), Hidden Valley, PA, pp. 171-186.

Goldman, R. P. and Lang, R. R. (1991) Intentions in time. Technical report TUTR 93-101,
Tulane University.

Gray, R. S. (1996) Agent Tcl: a flexible and secure mobile agent system. In Proceedings of
the 4th Annual Tcl/Tk Workshop, Monterrey, CA, pp. 9-23.

Greif, 1. (1994) Desktop agents in group-enabled products. Communications of the ACM,
37(7), 100-105.

Grosz, B. and Kraus, S. (1993) Collaborative plans for group activities. In Proceedings of
the 13th International Joint Conference on Artificial Intelligence (IJCAI-93), Chambeéry,
France, pp. 367-373.

Grosz, B. J. and Kraus, S. (1999) The evolution of SharedPlans. In Foundations of Rational
Agency (eds M. Wooldridge and A. Rao), pp. 227-262. Kluwer Academic, Boston, MA.
Grosz, B. J. and Sidner, C. L. (1990) Plans for discourse. In Intentions in Communication

(eds P. R. Cohen, J. Morgan and M. E. Pollack), pp. 417-444. MIT Press, Cambridge, MA.

Gruber, T. R. (1991) The role of common ontology in achieving sharable, reusable knowl-
edge bascs. In Proceedings of Knowledge Representation and Reasoning (KR & R-91) (eds
R. Fikes and E. Sandewall). Morgan Kaufmann, San Mateo, CA.

Guilfoyle, C., Jeffcoate, J. and Stark, H. (1997) Agents on the Web: Catalyst for E-Commerce.
Ovum Ltd, London.

Guttman, R. H., Moukas, A. G. and Maes, P. (1998) Agent-mediated electronic commerce:
a enirveyv The Knowledas Eviainpoying Roview 12(2Y 147- 159.

T oUWl VLY. L1 RUNIUWVICUYC LILguniC i iy INCYEIC Y, A\ gy L7Xd

Haddadi, A. (1996) Communication and Cooperanon in Agent Systems, LNAI Volume 1056.
Springer, Berlin.

Halpern, J. Y. (1986) Reasoning about knowledge: an overview. In Proceedings of the 1986
Conference on Theoretical Aspects of Reasoning About Knowledge (ed.]. Y. Halpern),
pp. 1-18. Morgan Kaufmann, San Mateo, CA.

alnorm T V (1027 Tiging roagcnning ahnttt naw
llu].l_l_lll., J 1. \1LJO7) UDllls lcaaullllls ARJUVIULL DNLIUYY

Annual Review of Computer Science, 2, 37-68.

Halpern, J. Y. and Moses, Y. (1992) A guide to completeness and complexity for modal
logics of knowledge and belief. Artificial Intelligence, 54, 319-379.

Halpern, J. Y. and Vardi, M. Y. (1989) The complexity of reasoning about knowledge and
time. I. Lower bounds. Journal of Computer and System Sciences, 38, 195-237.

References 329

Harel, D. (1979) First-Order Dynamic Logic, LNCS Volume 68. Springer, Berlin.

Harel, D. (1984) Dynamic logic. InHandbook of Philosophical Logic. Il. Extensions of Classical
Logic (eds D. Gabbay and F. Guenther), pp. 437-604. D. Reidel, Dordrecht. (Synthese
Library, Volume 164.)

Harel, D., Kozen, D. and Tiuryn, J. (2000) Dynamic Logic. MIT Press, Cambridge, MA.

Haugeneder, H., Steiner, D. and McCabe, F. G. (1994) IMAGINE: a framework for building
multi-agent systems. In Proceedings of the 1994 International Working Conference on
Cooperating Knowledge Based Systems (CKBS-94), DAKE Centre, University of Keele, UK
(ed. S. M. Deen), pp. 31-64.

Hayes-Roth, B. (1985) A blackboard architecture for control. Artificial Intelligence, 26, 251-
321.

Hayes-Roth, F., Waterman, D. A. and Lenat, D. B. (eds) (1983) Building Expert Systems.
Addison-Wesley, Reading, MA.

Hayzelden, A. L. G. and Bigham, J. (eds) (1999) Software Agents for Future Communication
Systems. Springer, Berlin.

Hendler, J. (2001) Agents and the semantic Web. IEEE Intelligent Systems, 16(2), 30-37.

Hewitt, C. (1971) Description and Theoretical Analysis (Using Schemata) of PLANNER: a
Language for Proving Theorems and Manipulating Models in a Robot. PhD thesis, Arti-
ficial Intelligence Laboratory, Massachusetts Institute of Technology.

Hewitt, C. (1973) A universal modular ACTOR formalism for Al In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence (IJCAI-7 3), Stanford, CA, pp. 235-
245,

Hewitt, C. (1977) Viewing control structures as patterns of passing messages. Artificial
Intelligence, 8(3), 323-364.

Hewitt, C. (1985) The challenge of open systems. Byte, 10(4), 223-242.

Hewitt, C. E. (1986) Offices are open systems. ACM Transactions on Office Information
Systems, 4(3), 271-287.

Hindriks, K. V., de Boer, F. S., van der Hoek, W. and Meyer, J.-]J. C. (1998) Formal semantics
for an abstract agent programming language. In Intelligent Agents, IV (eds M. P. Singh,
A. Rao and M.]J. Wooldridge), LNAI Volume 1365, pp. 215-230. Springer, Berlin.

Hindriks, K. V. et al. (1999) Control structures of rule-based agent languages. In Intelligent
Agents, V (eds J. P. Muller, M. P. Singh and A. S. Rao), LNAI Volume 1555. Springer, Berlin.

Hintikka, J. (1962) Knowledge and Belief. Cornell University Press, [thaca, NY.

Hoare, C. A. R. (1969) An axiomatic basis for computer programming. Communications of
the ACM, 12(10), 576-583.

Hoare, C. A. R. (1978) Communicating sequential processes. Communications of the ACM,
21, 666-677.

Holzmann, G. (1991) Design and Validation of Computer Protocols. Prentice-Hall Interna-
tional, Hemel Hempstead, UK.

Huber, M. (1999) Jam: a BDI-theoretic mobile agent architecture. In Proceedings of the 3rd
International Conference on Autonomous Agents (Agents 99), Seattle, WA, pp. 236-243.

Hughes, G. E. and Cresswell, M. J. (1968) Introduction to Modal Logic. Methuen and Co.,
Ltd.

Huhns, M. (ed.) (1987) Distributed Artificial Intelligence. Pitman, London and Morgan Kauf-
mann, San Mateo, CA.

Huhns, M. N. (2001) Interaction-oriented programming. In Agent-Oriented Software Engi-
neering - Proceedings of the 1st International Workshop AOSE-2000 (eds P. Ciancarini
and M. Wooldridge), LNCS Volume 1957, pp. 29-44. Springer, Berlin.

Huhns, M. and Singh, M. P. (eds) (1998) Readings in Agents. Morgan Kaufmann, San Mateo,
CA.

330 References

Huhns, M. N. et al. (1992) Integrating enterprise information models in Carnot. In Proceed-
inas of the International (“nnfaranr‘o on Inra”manr and Cooperative I Tnfnrmnfmn Svstems,

Hge Uy LS AR 3 L S W ¥4

Rotterdam, pp. 32-42.

Iglesias, C. et al. (1998) Analysis and design of multiagent systems using MAS-Com-
monKADS. In Intelligent Agents, IV (eds M. P. Singh, A. Rao and M.]J. Wooldridge), LNAI
Volume 1365, pp. 313-326. Springer, Berlin.

Iglesias, C. A., Garijo, M. and Gonzalez, J. C. (1999) A survey of agent-oriented method-
ologies. In Intelligent Agents, V (eds J. P. Muller, M. P. Singh and A. S. Rao), LNAI Vol-
ume 1555. Springer, Berlin.

Jackson, P. (1986) Introduction to Expert Systems. Addison-Wesley, Reading, MA.

Jennings, N. R. (1992a) On being responsible. In Decentralized Al 3 - Proceedings of the 3rd
European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-
91) (eds E. Werner and Y. Demazeau), pp. 93-102. Elsevier, Amsterdam.

Jennings, N. R. (1992b) Towards a cooperation knowledge level for collaborative problem
solving. In Proceedings of the 10th European Conference on Artificial Intelligence (ECAI-
92), Vienna, Austria, pp. 224-228.

Jennings, N. R. (1993a) Commitments and conventions: the foundation of coordination in
multi-agent systems. The Knowledge Engineering Review, 8(3), 223-250.

Jennings, N. R. (1993b) Specification and implementation of a belief desire joint-intention
architecture for collaborative problem solving. Journal of Intelligent and Cooperative
Information Systems, 2(3), 289-318.

Jennings, N. R. (1995) Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence, 75(2), 195-240.

Jennings, N. R. (1999) Agent-based computing: promise and perils. In Proceedings of the
16th International Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm, Swe-
den, pp. 1429-1436.

Jennings, N. R. (2000) On agent-base software engineering. Artificial Intelligence, 117,277~
296.

Jennings, N. R. and Wittig, T. (1992) ARCHON: theory and practice. In Distributed Artificial
Intelligence: Theory and Praxis (eds N. Avouris and L. Gasser), pp. 179-195. ECSC, EEC,
EAEC.

Jennings, N. R. and Wooldridge, M. (eds) (1998a) Agent Technology: Foundations, Applica-
tions and Markets. Springer, Berlin.

Jennings, N. R. and Wooldridge, M. (1998b) Applications of intelligent agents. In Agent
Technology: Foundations, Applications and Markets (eds N. R. Jennings and M. Wool-
dridge), pp. 3-28. Springer, Berlin.

Jennings, N. R., Corera, J. M. and Laresgoiti, I. (1995) Developing industrial multi-agent sys-
tems. In Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-
95), San Francisco, CA, pp. 423-430.

Jennings, N. R. et al. (1996a) Using ARCHON to develop real-world DAI applications for
electricity transportation management and particle acceleration control. IEEE Expert,
11(6), 60-88.

Jennings, N. R. et al. (1996b) Agent-based business process management. International
Journal of Cooperative Information Systems, 5(2-3), 105-130.

Jennings, N. R., Sycara, K. and Wooldridge, M. (1998) A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, 1(1), 7-38.

Jennings, N. R. et al. (2001) Automated negotiation: prospects, methods and challenges.
International Journal of Group Decision and Negotiation, 10(2), 199-215

S M LAL LA Ia L YOS ARGy A JIT LA .

Jeon, H., Petrie, C. and Cutkosky, M. R. (2000) JATLite: a Java agent infrastructure with
message routing. IEEE Internet Computing, 4(2), 87-96.

Jones, C. B. (1990) Systematic Software Development using VDM, 2nd edition. Prentice-Hall,
Englewood Cliffs, NJ.

Jowett, B. (1875) The Dialogues of Plato, 2nd edition. Oxford University Press, Oxford.

Jung, C. G. (1999) Emergent mental attitudes in layered agents. In Intelligent Agents, V
(eds J. P. Miiller, M. P. Singh and A. S. Rao), LNAI Volume 1555. Springer, Berlin.

Kaelbling, L. P. (1986) An architecture for intelligent reactive systems. In Reasoning About
Actions and Plans - Proceedings of the 1986 Workshop (eds M. P. Georgeff and A. L.
Lansky), pp. 395-410. Morgan Kaufmann, San Mateo, CA.

Kaelbling, L. P. (1991) A situated automata approach to the design of embedded agents.
SIGART Bulletin, 2(4), 85-88.

Kaelbling, L. P. (1993) Learning in Embedded Systems. MIT Press, Cambridge, MA.

Kaelbling, L. P. and Rosenschein, S. J. (1990) Action and planning in embedded agents. In
Designing Autonomous Agents (ed. P. Maes), pp. 35-48. MIT Press, Cambridge, MA.

Kaelbling, L. P., Littman, M. L. and Cassandra, A. R. (1998) Planning and acting in partially
observable stochastic domains. Artiﬁ'cial Intelligence 101, 99-134.

Kondall T A (O0NNT1Y Agant on Frunra anginaaring wi th wAala Aadallin ont - MNyvionto
AENGdi, L. A \(_UUL} ngcut SULLYYALT l:uguu:!:xlug with roie moaeuiig. In nycru Urlente

Software Engineering - Proceedings of the 1st International Workshop AOSE-2000 (eds
P. Ciancarini and M. Wooldridge), LNCS Volume 1957, pp. 163-170. Springer, Berlin.

Kephart, J. O. and Greenwald, A. R. (1999) Shopbot economics. In Proceedings of the 1st
Workshop on Game Theoretic and Decision Theoretic Agents (eds S. Parsons and M. J.
Wooldridge), pp. 43-55.

Kiniry, J. and Zimmerman, D. (1997) A hands-on look at Java mobile agents. IEEE Internet
Computing, 1(4), 21-33.

Kinny, D. and Georgeff, M. (1991) Commitment and effectiveness of situated agents. In
Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-
91), Svdney, Australia, pp. 82-88.

Kinny, D. and Georgeff, M. (1997) Modelling and design of multi-agent systems. In Intelli-
gent Agents, III (eds J. P. Miiller, M. Wooldridge and N. R. Jennings), LNAI Volume 1193,
pp. 1-20. Springer, Berlin.

Kinny, D., Georgeff, M. and Rao, A. (1996) A methodology and modelling technique for
systems of BDI agents. In Agents Breaking Away: Proceedings of the 7th European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World (eds W. Van de Velde and

T W Darram} TNAT Valiima 102Q Ce_ 717 Crnrinmganr Darli
J. W. Perram), LNAI Volume LUD0, PP. 00—/ 1. opxulg,l:L DEIIII.

Kinny, D., Ljungberg, M., Rao, A. S, Sonenberg, E., Tidhar, G. and Werner, E. (1992) Planned
team activity. In Artificial Social Systems - Selected Papers from the 4th FEuropean
Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW-92 (eds
C. Castelfranchi and E. Werner), LNAI Volume 830, pp. 226-256. Springer, Berlin.

Kiss, G. and Reichgelt, H. (1992) Towards a semantics of desires. In Decentralized Al 3 -
Proceedings of the 3rd European Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW-91) (eds E. Werner and Y. Demazeau), pp. 115-128. Elsevier,
Amsterdam.

Kitano, H. (ed.) (1998) RoboCup-97: Robot Soccer World Cup I, LNAI Volume 1395. Springer,
Berlin.

Kittock, J. E. (1993) Emergent conventions and the structure of multi-agent systems. In
Proceedings of the 1993 Santa Fe Institute Complex Systems Summer School.

Klein, M. and Baskin, A. B. (1991) A computational model for conflict resolution in cooper-
ative design systems. In CKBS-90 - Proceedings of the International Working Conference
on Cooperating Knowledge Based Systems (ed. S. M. Deen), pp. 201-222. Springer, Berlin.

Klusch, M. (ed.) (1999) Intelligent Information Agents. Springer, Berlin.

Sl.

332 References

Knabe, F. C. (1995) Language Support for Mobile Agents. PhD thesis, School of Computer
Science, Carnegie-Mellon University, Pitisburgh, PA. (Also published at technical report
CMU-CS-95-223.)

Konolige, K. (1986) A Deduction Model of Belief. Pitman, London and Morgan Kaufmann,
San Mateo, CA.

Konolige, K. (1988) Hierarchic autoepistemic theories for nonmonotonic reasoning: pre-
liminary report. In Nonmonotonic Reasoning - Proceedings of the Second International
Workshop (eds M. Reinfrank et al.), LNAI Volume 346, pp. 42-59. Springer, Berlin.

Konolige, K. and Pollack, M. E. (1993) A representationalist theory of intention. In Pro-
ceedings of the 13th International joint Conference on Artificial Intelligence (IJCAI-93),
pp- 390-395, Chambéry, France.

Kotz, D. et al. (1997) Agent Tcl: targeting the needs of mobile computers. IEEE Internet
Computing, 1(4), 58-67.

Kraus, S. (1997) Negotiation and cooperation in multi-agent environments. Artificial Intel-
ligence, 94(1-2), 79-98.

Kraus, S. (2001) Strategic Negotiation in Multiagent Environments. MIT Press, Cambridge,
MA.

Kraus, S. and Lehmann, D. (1988) Knowledge, belief and time. Theoretical Computer Sci-
ence, 58, 155-174.

Kraus, S., Sycara, K. and Evenchik, A. (1998) Reaching agreements through argumentation:
a logical model and implementation. Artificial Intelligence, 104, 1-69.

Krause, P. et al. (1995) A logic of argumentation for reasoning under uncertainty. Compu-
tational Intelligence, 11, 113-131.

Kripke, S. (1963) Semantical analysis of modal logic. Zeitschrift fiir Mathematische Logik
und Grundlagen der Mathematik, 9, 67-96.

Kuokka, D. R. and Harada, L. P. (1996) Issues and extensions for information matchmaking
protocols. International Journal of Cooperative Information Systems, 5(2-3), 251-274.
Kupferman, O. and Vardi, M. Y. (1997) Synthesis with incomplete informatio. In Proceed-

ings of the 2nd International Conference on Temporal Logic, Manchester, UK, pp. 91-106.

Labrou, Y., Finin, T. and Peng, Y. (1999) Agent communication languages: the current
landscape. IEEE Intelligent Systems, 14(2), 45-52.

Lander, S., Lesser, V. R. and Connell, M. E. (1991) Conflict resolution strategies for cooper-
ating expert agents. In CKBS-90 - Proceedings of the International Working Conference
on Cooperating Knowledge Based Systems (ed. S. M. Deen), pp. 183-200. Springer, Berlin.

Lange, D. B. and Oshima, M. (1999) Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, Reading, MA,

Langton, C. (ed.) (1989) Artificial Life. Santa Fe Institute Studies in the Sciences of Com-
plexity. Addison-Wesley, Reading, MA.

Lenat, D. B. (1975) BEINGS: knowledge as interacting experts. In Proceedings of the 4th
International Joint Conference on Artificial Intelligence (IJCAI-75), Stanford, CA, pp. 126-
133.

Lesperance, Y. et al. (1996) Foundations of a logical approach to agent programming. In
Intelligent Agents, I (eds M. Wooldridge, J. P, Miiller and M. Tambe), LNAI Volume 1037,
pp. 331-346. Springer, Berlin.

Lesser, V. R. and Corkill, D. D. (1981) Functionally accurate, cooperative distributed sys-
tems. IEEE Transactions on Systems, Man and Cybernetics, 11(1), 81-96.

Lesser, V. R. and Corkill, D. D. (1988) The distributed vehicle monitoring testbed: a tool

for investigating distributed problem solving networks. In Blackboard Systeris (eds
R Fnoolmoro and T Maroan) nn IT2_2IRA Addicnn_-Waclay Raading MA

Ave LAl iiliuvil v Wil 1. MUl Al), PR U0 JUUS MAAUIOUILTT Y L OUU Y, I\Luu1115| A¥1i N

Lesser, V. R. and Erman, L. D. (1980) Distributed interpretation: a model and experiment.
IEEE Transactions on Computers, C29(12), 1144-1163.

Levesque, H. J., Cohen, P. R. and Nunes,]J. H. T. (1990) On acting together. In Proceedings of
the 8th National Conference on Artificial Intelligence (AAAI-90), Boston, MA, pp. 94-99.

Levesque, H. et al. {1996) Golog: a logic programming language for dynamic domains.
Journal of Logic Programming, 31, 59-84.

Levy, A. Y., Sagiv, Y. and Srivastava, D. {(1994) Towards efficient information gathering
agents. In Software Agents - Papers from the 1994 Spring Symposium (ed. O. Etzioni),
technical report §5-94-03, pp. 64-70. AAAI Press.

Lewis, D. (1969) Convention - a Philosophical Study. Harvard University Press, Cambridge,
MA.

Lifschitz, V. (1986) On the semantics of STRIPS. In Reasoning About Actions and Plans
- Proceedings of the 1986 Workshop (eds M. P. Georgeff and A. L. Lansky), pp. 1-10.
Morgan Kaufmann, San Mateo, CA.

Lind, J. (2001) Issues in agent-oriented software engineering. In Agent-Oriented Software
Engineering - Proceedings of the 1st International Workshop AOSE-2000 (eds P. Ciancar-
ini and M. Wooldridge), LNCS Volume 1957, pp. 45-58. Springer, Berlin.

Ljunberg, M. and Lucas, A. (1992) The OASIS air traffic management system. In Proceedings
of the 2nd Pacific Rim International Conference on Al (PRICAI-92), Seoul, Korea.

Loui, R. (1987) Defeat among arguments: a system of defeasible inference. Computational
Intelligence, 3(2), 100-106.

Luck, M. and d’'Inverno, M. {1995) A formal framework for agency and autonomy. In Pro-
ceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-95), San
Francisco, CA, pp. 254-260.

Luck, M., Griffiths, N. and d’Inverno, M. (1997) From agent theory to agent construction: a
case study. In Intelligent Agents, III (eds]. P. Miiller, M. Wooldridge and N. R. Jennings),
LNAI Volume 1193, pp- 49-64. Springer, Berlin.

McCarthy, J. (1978) Ascribing mental qualities to machines. Technical report, Stanford
University Al Lab., Stanford, CA 94305.

McCarthy, J. and Hayes, P.]J. (1969) Some philosophical problems from the standpoint of
artificial intelligence. In Machine Intelligence 4 (eds B. Meltzer and D. Michie), pp. 463-
502. Edinburgh University Press, Edinburgh.

McGregor, S. L. (1992) Prescient agents. In Proceedings of Groupware-92 (ed. D. Coleman),
pp. 228-230.

Maes, P. (1989) The dynamics of action selection. In Proceedings of the 11th International
Joint Conference on Artificial Intelligence (IJCAI-89), Detroit, MI, pp. 991-997.

Maes, P. (ed.) (1990a) Designing Autonomous Agents. MIT Press, Cambridge, MA.

Maes, P. (1990b) Situated agents can have goals. In Designing Autonomous Agents (ed.
P. Maes), pp. 49-70. MIT Press, Cambridge, MA.

Maes, P. (1991) The agent network architecture (ANA). SIGART Bulietin, 2(4), 115-120.

Maes, P. (1994a) Agents that reduce work and information overload. Communications of
the ACM, 37(7), 31-40.

Maes, P. (1994b) Social interface agents: acquiring competence by learning from users
and other agents. In Software Agents - Papers from the 1994 Spring Symposium (ed.
0. Etzioni), technical report §5-94-03, pp. 71-78. AAAI Press.

Magee, J. and Kramer, J. (1999) Concurrency. John Wiley and Sons, Chichester.

Manna, Z. and Pnueli, A. (1992) The Temporal Logic of Reactive and Concurrent Systems.
Springer, Berlin.

Manna, Z. and Pnueli, A. (1995) Temporal Verification of Reactive Systems - Safety.
Springer, Berlin.

Manna, Z. and Wolper, P. (1984) Synthesis of communicating processes from temporal
logic specifications. ACM Transactions on Programming Languages and Systems, 6(1),
68-93.

334 References

Mayfield, J., Labrou, Y. and Finin, T. (1996) Evaluating KQML as an agent communication
language. In Intelligent Agents, II (eds M. Wooldridge, I. P. Miiller and M. Tambe), LNAI

[= A At ikt = hag | e i I

Volume 1037, pp. 347-360. Springer, Berlin.

Merz, M., Lieberman, B. and Lamersdorf, W. (1997) Using mobile agents to support inter-
organizational workflow management. Applied Artificial Intelligence, 11(6), 551-572.
Meyer, J.-]. C. and van der Hoek, W. (1995) Epistemic Logic for AI and Computer Science.

Cambridge University Press, Cambridge.
Meyer,]J.-]J. C. and Wieringa, R. J. (eds) (1993) Deontic Logic in Computer Science - Normative
System Specification. John Wiley and Sons, Chichester.
Milner, R. (1989) Communication and Concurrency. Prentice-Hall, Englewood Cliffs, NJ.
Mitchell, M. (1996} An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.
Moore, R, C. (1990) A formal theory of knowledge and action. In Readings in Planning (eds
J. F. Allen, J. Hendler and A. Tate), pp. 480-519. Morgan Kaufmann, San Mateo, CA.

Mnr‘ Y. and Dnenner*hcnn T C (19095 Time and the nriconsr’e r‘]ﬂamma In Proceedinas of

Mor, Y. and Rosenschein S. (1995) Time and the prisoner’s dilemma. In Proceedings oj
the 1st International Conference on Multi-Agent Systems (ICMAS-95), San Francisco, CA,
pp. 276-282.

Mora, M. et al. (1999) BDI models and systems: reducing the gap. In Intelligent Agents, V
(eds J. P. Miiller, M. P. Singh and A. S. Rao), LNAI Volume 1555. Springer, Berlin.

Morgan, C. (1994) Programming from Specifications (2nd edition). Prentice-Hall Interna-
tional, Hemel Hempstead, UK.

Mori, K., Torikoshi, H., Nakai, K. and Masuda, T. (1988) Computer control system for iron
and steel plants. Hitachi Review, 37(4), 251-258.

Moss, S. and Davidsson, P. (eds) (2001) Multi-Agent-Based Simulation, LNAI Volume 1979.
Springer, Berlin.

Mullen, T. and Wellman, M. P. (1995) A simple computational market for network informa-
tion services. In Proceedings of the 1st International Conference on Muliti-Agent Systems
(ICMAS-95), San Francisco, CA, pp. 283-289.

Mullen, T. and Wellman, M. P. (1996) Some issues in the design of market-oriented agents.
In Intelligent Agents, Il (eds M. Wooldridge, J. P. Milller and M. Tambe), LNAI Vol-
ume 1037, pp. 283-298. Springer, Berlin.

Muller, J. (1997) A cooperation model for autonomous agents. In Intelligent Agents, Il
(eds J. P. Miiller, M. Wooldridge and N. R. Jennings), LNAI Volume 1193, pp. 245-260.
Springer, Berlin.

Miiller, J. P. (1999) The right agent (architecture) to do the right thing. In Intelligent Agents,
V (eds J. P. Miiller, M. P. Singh and A. S. Rao), LNAI Volume 1555. Springer, Berlin.

Muller, J. P., Pischel, M. and Thiel, M. (1995) Modelling reactive behaviour in vertically
layered agent architectures. In Intelligent Agents: Theories, Architectures and Languages
(eds M. Wooldridge and N. R. Jennings}, LNAI Volume 890, pp. 261-276. Springer, Berlin.

Miiller, J. P., Wooldridge, M. and Jennings, N. R. (eds) (1997) Intelligent Agents, III, INAI
Volume 1193. Springer, Berlin.

Muscettola, N. et al. (1998) Remote agents: to boldly go where no Al system has gone
before. Artificial Intelligence, 103, 5-47.

NEC (2001) Citeseer: The NECI scientific literature digital library. See http://citeseer.
nj.nec.com/.

Negroponte, N. (1995) Being Digital. Hodder and Stoughton, London.

Neumann, J. V. and Morgenstern, O. (1944) Theory of Games and Economic Behaviour.
Princeton University Press, Princeton, NJ.

Newell, A. (1962) Some problems of the basic organisation in problem solving programs.
In Proceedings of the 2nd Conference on Self-Organizing Systems (eds M. C. Yovits, G. T

vLeed o Le U AT LS Lu S . A S § vilad

Jacobi and G. D. Goldstein), pp. 393-423. Spartan Books, Washington, DC.
Newell, A. (1982) The knowledge level. Artificial Intelligence, 18(1), 87-127.

References 335

Newell, A. (1990) Unified Theories of Cognition. Harvard University Press, Cambridge, MA.

Newell, A., Rosenbloom, P.]J. and Laird, J. E. (1989) Symbolic architectures for cognition.
In Foundations of Cognitive Science (ed. M. L. Posner). MIT Press, Cambridge, MA.

NeXT Computer Inc. (1993) Object-Oriented Programming and the Objective C Language.
Addison-Wesley, Reading, MA.

Nilsson, N. J. (1992) Towards agent programs with circuit semantics. Technical report
STAN-CS-92-1412, Computer Science Department, Stanford University, Stanford, CA
94305.

Nodine, M. and Unruh, A. (1998) Facilitating open communication in agent systems: the
InfoSleuth infrastructure. In Intelligent Agents, IV (eds M. P. Singh, A. Rao and M. J.
Wooldridge), LNAI Volume 1365, pp. 281-296. Springer, Berlin.

Noriega, P. and Sierra, C. {(eds) (1999) Agent Mediated Electronic Commerce, LNAI Vol-
ume 1571. Springer, Berlin.

Norman, T. J. and Long, D. (1995) Goal creation in motivated agents. In Intelligent Agents:
Theories, Architectures and Languages (eds M. Wooldridge and N. R. Jennings), LNAI
Volume 890, pp. 277-290. Springer, Berlin,

Oaks, S. and Wong, H. (2000} Jini in a Nutshell. O'Reilly and Associates, Inc.

Odell, J., Parunak, H. V. D. and Bauer, B. (2001) Representing agent interaction proto-
cols in UML. In Agent-Oriented Software Engineering - Proceedings of the First Interna-
tional Workshop AOSE-2000 (eds P. Ciancarini and M. Wooldridge), LNCS Volume 1957,
pp. 121-140. Springer, Berlin.

OMG (2001) The Object Management Group. See http://www,omg.org/.

Omicini, A. (2001) SODA: societies and infrastructures in the analysis and design of
agent-based systems. In Agent-Oriented Software Engineering - Proceedings of the First
International Workshop AOSE-2000 (eds P. Ciancarini and M. Wooldridge), LNCS Vol-
ume 1957, pp. 185-194. Springer, Berlin.

Oshuga, A. et al. (1997) Plangent: an approach to making mobile agents intelligent. IEEE
Internet Computing, 1(4), 50-57.

Ousterhout, J. K. (1994) Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA.

Ovum (1994) Intelligent agents: the new revolution in software.

Papadimitriou, C. H. (1994) Computational Complexity. Addison-Wesley, Reading, MA.

Papazoglou, M. P., Laufman, S. C. and Sellis, T. K. {1992) An organizational framework
for cooperating intelligent information systems. Journal of Intelligent and Cooperative
Information Systems, 1(1), 169-202.

Parsons, S. and Jennings, N. R. (1996) Negotiation through argumentation - a prelimi-
nary report. In Proceedings of the 2nd International Conference on Multi-Agent Systems
(ICMAS-96), Kyvoto, Japan, pp. 267-274.

Parsons, S., Sierra, C. A. and Jennings, N. R. (1998) Agents thal reason and negotiate by
arguing. Journal of Logic and Computation, 8(3), 261-292.

Parunak, H. V. D. (1999) Industrial and practical applications of DAL In Multi-Agent Systems
{ed. G. Weil), pp. 377-421. MIT Press, Cambridge, MA.

Patil, R. S. et al. (1992) The DARPA knowledge sharing effort: progress report. In Proceed-
ings of Knowledge Representation and Reasoning (KR&R-92) (eds C. Rich, W. Swartout
and B. Nebel), pp. 777-788.

Perloff, M. (1991) STIT and the language of agency. Synthese, 86, 379-408.

Perrault, C. R. (1990) An application of default logic to speech acts theory. In Intentions in
Communication (eds P. R. Cohen, J. Morgan and M. E. Pollack), pp. 161-186. MIT Press,
Cambridge, MA.

Perriolat, F., Skarek, P., Varga, L. Z. and Jennings, N. R. (1996) Using archon: particle accel-
erator control. IEEE Expert, 11(6), 80-86.

Pham, V. A. and Karmouch, A. (1998) Mobile software agents: an overview. IEEE Commu-
nications Magazine, pp. 26-37.

Pitt, J. and Mamdani, E. H. (1999) A protocol-based semantics for an agent communica-
tion language. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI-99), Stockholm, Sweden.

Pnueli, A. (1986) Specification and development of reactive systems. In Information Pro-
cessing 86, pp. 845-858. Elsevier, Amsterdam.

Pnueli, A. and Rosner, R. (1989) On the synthesis of a reactive module. In Proceedings of the
16th ACM Symposium on the Principles of Programming Languages (POPL), pp. 179-190.

Prooi A nd Dimagea 7 (MINNT1Y AdAding ovtrangi illa cvmnrhranizatinn ranahilitinoe +n thae
L UREL, . Clll\.,l Dliasady \J. (VUL AUdUllly CALC1131U1C \)yllLlu uLiizZ.auivii LQPq.Ulllllk—U LW Liio

agent model of a FIPA-compliant agent platform. In Agent-Oriented Software Engineer-
ing - Proceedings of the First International Workshop AOSE-2000 (eds P. Ciancarini and
M. Wooldridge), LNCS Volume 1957, pp. 307-322. Springer, Berlin.

Pollack, M. E. {1990) Plans as complex mental attitudes. In Intentions in Communication
{eds P. R. Cohen, J. Morgan and M. E. Pollack), pp. 77-104. MIT Press, Cambridge, MA.

Pollack, M. E. (1992) The uses of plans. Artificial Intelligence, 57(1), 43-68.

Pollack, M. E. and Ringuette, M. (1990} Introducing the Tileworld: experimentally evalu-
ating agent architectures. In Proceedings of the 8th National Conference on Artificial
Intelligence (AAAI-90), Boston, MA, pp. 183-189.

Pollock, J. L. (1992) How to reason defeasibly. Artificial Intelligence, 57, 1-42.

Pollock 1.1 (1994) Justification and defeat Arhﬁqnl Intelligence, 67, 377-407.

R A % A 12 TTT) JraS it Guaisin Quaa LT a T4, Y OriL o,

Poundstone, W. (1992) Prisoner’s Dilemma. Oxford University Press, Oxford.

Power, R. (1984) Mutual intention. Journal for the Theory of Social Behaviour, 14, 85-102.

Prakken, H. and Vreeswijk, G. (2001) Logics for defeasible argumentation. In Handbook
of Philosophical Logic (eds D. Gabbay and F. Guenther), 2nd edition. Kluwer Academic,
Boston, MA.

Rao, A. S. (1996a) AgentSpeak(L): BDI agents speak out in a logical computable language.
In Agents Breaking Away: Proceedings of the 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (eds W. Van de Velde and J. W. Perram),
LNAI Volume 1038, pp. 42-55. Springer, Berlin.

Rao, A. S. (1996b) Decision procedures for propositional linear-time Belief-Desire-Inten-
tion logics. In Intelligent Agents, I (eds M. Wooldridge, J. P. Miiller and M. Tambe), LNAI
Volume 1037, pp. 33-48. Springer, Berlin.

Rao, A. S. and Georgeff, M. P. (1991a) Asymmetry thesis and side-effect problems in linear
time and branching time intention logics. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence (IJCAI-91), Svdney, Australia, pp. 498-504.

Rao, A, S. and Georgeff, M. P. (1991b) Modeling rational agents within a BDl-architecture.
In Proceedings of Knowledge Representation and Reasoning (KR&R-91) (eds R. Fikes and
E. Sandewall), pp. 473-484. Morgan Kaufmann, San Mateo, CA.

Rao, A. S. and Georgeff, M. P. (1992) An abstract architecture for rational agents. In Proceed-
ings of Knowledge Representation and Reasoning (KR&R-92) (eds C. Rich, W. Swartout
and B. Nebel), pp. 439-449.

Rao, A. S. and Georgeff, M. P. (1993) A model-theoretic approach to the verification of
situated reasoning systems. In Proceedings of the 13th International Joint Conference
on Artificial Intelligence (IJCAI-93), Chambéry, France, pp. 318-324.

Rao, A. S. and Georgeff, M. P. (1995) Formal models and decision procedures for multi-
agent systems. Technical note 61, Australian Al Institute, level 6, 171 La Trobe Street,
Melbourne, Australia.

References 337

Rao, A. S., Georgeff, M. P. and Sonenberg, E. A. (1992) Social plans: a preliminary
report. In Decentralized Al 3 - Proceedings of the 3rd European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World (MAAMAW-91) (eds E. Werner and
Y. Demazeau), pp. 57-76. Elsevier, Amsterdam.

Reddy, D. R. et al. (1973) The Hearsay speech understanding system: and example of the
recognition process. In Proceedings of the 3rd International joint Conference on Artificial
Intelligence (IJCAI-73), Stanford, CA, pp. 185-193.

Reed, C. (1998) Dialogue frames in agent communication. In Proceedings of the 3rd Inter-
national Conference on Multi-Agent Systems (ICMAS-98), Paris, France, pp. 246-253.
Reichgelt, H. (1989) A comparison of first-order and modal logics of time. In Logic Based
Knowledge Representation (eds P. Jackson, H. Reichgelt and F. van Harmelen), pp. 143-

176. MIT Press, Cambridge, MA.

Reiter, R. (1980) A logic for default reasoning. Artificial Intelligence, 13, 81-132.

RoboCup (2001) The robot world cup initiative. See http://www.RoboCup.org/.

Rodriguez, J. et al. (1997) FM96.5: A Java-based electronic marketplace. In Proceedings of
the 2nd International Conference on the Practical Application of Intelligent Agents and
Multi-Agent Technology (PAAM-97), London, UK, pp. 207-224.

Rosenschein, J. S. and Genesereth, M. R. (1985) Deals among rational agents. In Proceedings
of the 9th International Joint Conference on Artificial Intelligence ([JCAI-85), Los Angeles,
CA, pp. 91-99.

Rosenschein, J. S. and Zlotkin, G. (1994) Rules of Encounter: Designing Conventions for
Automated Negotiation among Computers. MIT Press, Cambridge, MA.

Rosenschein, S. {1985) Formal theories of knowledge in Al and robotics. New Generation
Computing, 3(4), 345-357.

Rosenschein, S. and Kaelbling, L. P. (1986) The synthesis of digital machines with provable
epistemic properties. In Proceedings of the 1986 Conference on Theoretical Aspects of
Reasoning About Knowledge (ed.]. Y. Halpern), pp. 83-98. Morgan Kaufmann, San Mateo,
CA.

Rosenschein, S. J. and Kaelbling, L. P. (1996) A situated view of representation and control.
In Computational Theories of Interaction and Agency (eds P. E. Agre and S. J. Rosen-
schein), pp. 515-540. MIT Press, Cambridge, MA.

Rothermel, K. and Popescu-Zeletin, R. (eds) (1997) Mobile Agents, LNCS Volume 1219.
Springer, Berlin.

Rumbaugh, J. et al. (1991) Object-Oriented Modeling and Design, Prentice-Hall, Englewood
Cliifs, NJ.

Russell, S. and Norvig, P. (1995) Artificial Intelligence: a Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ.

Russell, S. and Subramanian, D. (1995) Provably bounded-optimal agents. journal of Al
Research, 2, 575-609.

Russell, S. J. and Wefald, E. (1991) Do the Right Thing-Studies in Limited Rationality. MIT
Press, Cambridge, MA.

Sadek, M. D. (1992) A study in the logic of intention. In Proceedings of Knowledge Repre-
sentation and Reasoning (KR&R-92), pp. 462-473.

Sandholm, T. (1999) Distributed rational decision making. In Mulitiagent Systems (ed.
G. Weil), pp. 201-258. MIT Press, Cambridge, MA.

Sandholm, T. and Lesser, V. (1995) Issues in automated negotiation and electronic com-
merce: Extending the contract net framework. In Proceedings of the 1st International
Conference on Multi-Agent Systems (ICMAS-95), San Francisco, CA, pp. 328-335.

Schoppers, M. J. {1987) Universal plans for reactive robots in unpredictable environments.
In Proceedings of the 10th International joint Conference on Artificial Intelligence (IJCAI-
87), Milan, Italy, pp. 1039-1046.

338 References

Schut, M. and Wooldridge, M. (2000) Intention reconsideration in complex environments.
In Proceedings of the 4th International Conference on Autonomous Agents (Agents 2000),
Barcelona, Spain, pp. 209-216.

Searle, J. R. (1969) Speech Acts: an Essay in the Philosophy of Language. Cambridge Uni-
versity Press, Cambridge.

Searle, J. R. (1990) Collective intentions and actions. In Intentions in Communication (eds
P. R. Cohen, J. Morgan and M. E. Pollack), pp. 401-416. MIT Press, Cambridge, MA.

Seel, N. (1989) Agent Theories and Architectures. PhD thesis, Surrey University, Guildford,
UK.

Segerberg, K. (1989) Bringing it about. Journal of Philosophical Logic, 18, 327-347.

SGML (2001) The standard generalised markup language. See http://www.sgml.org/.

Shoham, Y. (1988) Reasoning About Change: Time and Causation from the Standpoint of
Artificial Intelligence. MIT Press, Cambridge, MA.

Shoham, Y. (1989) Time for action: on the relation between time, knowledge and action.
In Proceedings of the 11th International jJoint Conference on Artificial Intelligence (IJCAI-
89), Detroit, MI, pp. 954-959.

Shoham, Y. (1990) Agent-oriented programming. Technical report STAN-CS-1335-90, Com-
puter Science Department, Stanford University, Stanford, CA 94305.

Shoham, Y. (1993) Agent-oriented programming. Artificial Intelligence, 60(1), 51-92.

Shoham, Y. and Tennenholtz, M. (1992a) Emergent conventions in multi-agent systems.
In Proceedings of Knowledge Representation and Reasoning (KR&R-92) (eds C. Rich,
W. Swartout and B. Nebel), pp. 225-231.

Shoham, Y. and Tennenholtz, M. (1992b) On the synthesis of useful social laws for artificial
agent societies. In Proceedings of the 10th National Conference on Artificial Intelligence
(AAAI-92), San Diego, CA.

Shoham, Y. and Tennenholtz, M. (1996) On social laws for artificial agent societies: off-
line design. In Computational Theories of Interaction and Agency (eds P. E. Agre and
S. J. Rosenschein), pp. 597-618. MIT Press, Cambridge, MA.

Shoham, Y. and Tennenholtz, M. (1997) On the emergence of social conventions: mod-
elling, analysis and simulations. Artificial Intelligence, 94(1-2), 139-166.

Sichman, J. and Demazeau, Y. (1995) Exploiting social reasoning to deal with agency level
inconsistency. In Proceedings of the 1st International Conference on Multi-Agent Systems
(ICMAS-95), San Francisco, CA, pp. 352-359.

Sichman, J. S. et al. (1994) A social reasoning mechanism based on dependence networks.
In Proceedings of the 11th European Conference on Artificial Intelligence (ECAI-94), Ams-
terdam, pp. 188-192,

Simon, H. A. (1981) The Sciences of the Artificial, 2nd edition. MIT Press, Cambridge, MA.

Singh, M. P. (1990a) Group intentions. In Proceedings of the 10th International Workshop
on Distributed Artificial Intelligence (IWDAI-90).

Singh, M. P. (1990b) Towards a theory of situated know-how. In Proceedings of the 9th
Furopean Conference on Artificial Intelligence (ECAI-90), Stockholm, Sweden, pp. 604-
609.

Singh, M. P. (1991a) Group ability and structure. In Decentralized Al 2 - Proceedings of the
Second European Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW-90) (eds Y. Demazeau and].-P. Miiller), pp. 127-146. Elsevier, Amsterdam.

Singh, M. P. (1991b) Social and psychological commitments in multiagent systems. [n AAAI
Fall Symposium on Knowledge and Action at Social and Organizational Levels, pp. 104-
106.

Singh, M. P. {1991¢) Towards a formal theory of communication for multi-agent systems.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-
91), Sydney, Australia, pp. 69-74.

References 339

Singh, M. P. (1992) A critical examination of the Cohen-Levesque theory of intention. In
Proceedings of the 10th European Conference on Artificial Intelligence (ECAI-92), Vienna,
Austria, pp. 364-368.

Singh, M. P. (1993) A semantics for speech acts. Annals of Mathematics and Artificial Intel-
ligence, 8(1-11), 47-71.

Singh, M. P. (1994) Multiagent Systems: a Theoretical Framework for Intentions, Know-How
and Communications, LNAI Volume 799. Springer, Berlin.

Singh, M. {1998a) Agent communication languages: rethinking the principles. IEEE Com-
puter, pp- 40-49.

Singh, M. P. (1998b) The intentions of teams: team structure, endodeixis and exodeixis.
In Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-98),
Brighton, UK, pp. 303-307.

Singh, M. P. and Asher, N. M. (1991) Towards a formal theory of intentions. In Logics in Al
- Proceedings of the European Workshop JELIA-90 (ed J. van Eijck), LNAI Volume 478,
pp- 472-486. Springer, Berlin.

Smith, R. G. (1977) The CONTRACT NET: a formalism for the control of distributed prob-
lem solving. In Proceedings of the 5th International joint Conference on Artificial Intelli-
gence (IJCAI-77), Cambridge, MA.

Smith, R. G. (1980a) The contract net protocol. IEEE Transactions on Computers, C 29(12).

Smith, R. G. (1980b) A Framework for Distributed Problem Solving. UMI Research Press.

Smith, R. G. and Davis, R. (1980) Frameworks for cooperation in distributed problem solv-
ing. IEEE Transactions on Systems, Man and Cybernetics, 11(1).

Smullyan, R. M. (1968) First-Order Logic. Springer, Berlin.

Sommaruga, L., Avouris, N. and Van Liedekerke, M. (1989) The evolution of the CooperA
platform. In Foundations of Distributed Artificial Intelligence (eds G. M. P. O’Hare and
N. R. Jennings), pp. 365-400. John Wiley and Sons, Chichester.

Spivey, M. (1992) The Z Notation, 2nd edition. Prentice-Hall International, Hemel Hemp-
stead, UK.

Steeb, R. et al. (1988) Distributed intelligence for air fleet control. In Readings in Distributed
Artificial Intelligence (eds A. H. Bond and L. Gasser), pp. 90-101. Morgan Kaufmann, San
Mateo, CA.

Steels, L. (1990) Cooperation between distributed agents through self organization. In
Decentralized Al - Proceedings of the 1st European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW-89) (eds Y. Demazeau and J.-P. Miller),
pp. 175-196. Elsevier, Amsterdam.

Stich, S. P. (1983) From Folk Psychology to Cognitive Science. MIT Press, Cambridge, MA.

Stone, P. {2000) Layered Learning in Multiagent Systems: a Winning Approach to Robotic
Soccer. MIT Press, Cambridge, MA.

Stuart, C. J. (1985) An implementation of a multi-agent plan synchroniser using a tem-
poral logic theorem prover. In Proceedings of the 9th International Joint Conference on
Artificial Intelligence (IJCAI-85), Los Angeles, CA, pp. 1031-1033.

Sueyoshi, T. and Tokoro, M. (1991) Dynamic modelling of agents for coordination.
In Decentralized Al 2 - Proceedings of the 2nd European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW-90) (eds Y. Demazeau and J.-P.
Miiller), pp. 161-180. Elsevier, Amsterdam.

Sycara, K. P. (1989a) Argumentation: planning other agents’ plans. In Proceedings of
the 11th International joint Conference on Artificial Intelligence (I[JCAI-89), Detroit, M1,

pp. 517-523.
Sycara, K. P. (1989b) Multiage

Omis .In Distributed Artificial Intelli-
gence (eds L. Gasser and M. Huhns), Volume I, pp. 119-138. Pitman, London and Morgan
Kaufmann, San Mateo, CA.

founmno

2AN Do
DIV NEJETCriL ey

A
4

Sycara, K. P. (1990) Persuasive argumentation in negotiation. Theory and Decision, 28,
203-242.

Tambe, M. (1997) Towards flexible teamwork. Journal of Al Research, 7, 83-124.

Thomas, S. R. (1993) PLACA, an Agent Oriented Programming Language. PhD thesis, Com-
puter Science Department, Stanford University, Stanford, CA 94305. (Available as tech-
nical report STAN-(CS-93-1487.)

Thomas, S. R. {1995) The PLACA agent programming language. In Intelligent Agents: The-
ories, Architectures and Languages (eds M. Wooldridge and N. R. Jennings), LNAI Vol-
ume 890, pp. 355-369. Springer, Berlin.

Thomas, S. R. et al. (1991) Preliminary thoughts on an agent description language. Inter-
national Journal of Intelligent Systems, 6, 497-508.

Tidhar, G. and Rosenschein, J. (1992) A contract net with consultants. In Proceedings of the
10th European Conference on Artificial Intelligence (ECAI-92), Vienna, Austria, pp. 219-
223.

Tschudin, C. F. (1999) Mobile agent security. In Intelligent Information Agents (ed.
M. Klusch), pp. 431-445. Springer, Berlin.

Tuomela, R. (1991) We will do it: an analysis of group intentions. Philosophy and Phe-
nomenoclogical Research, 51(2), 249-277.

Tuomela, R. and Miller, K. (1988) We-intentions. Philosophical Studies, 53, 367-389.

Turing, A. M. (1963) Computing machinery and intelligence. In Computers and Thought
(ed. E. A. Feigenbaum). McGraw-Hill.

Uschold, M. and Gruninger, M. (1996) Ontologies: p
Knowledge Engineering Review, 11(2), 93-136.

Van Dyke Parunak, H. (1987) Manufacturing experience with the contract net. In Dis-
tributed Artificial Intelligence (ed. M. Huhns), pp. 285-310. Pitman, London and Morgan
Kaufmann, San Mateo, CA.

van Eemeren, F. H. et al. (1996) Fundamentals of Argumentation Theory: a Handbook of
Historical Backgrounds and Contemporary Developments. Lawrence Erlbaum Associates,
Mahwah, NJ.

Vardi, M. Y. and Wolper, P. (1994) Reasoning about infinite computations. Information and
Computation, 115(1), 1-37.

Vere, S. and Bickmore, T. (1990) A basic agent. Computational Intelligence, 6, 41-60.

von Martial, F. (1990) Interactions among autonomous planning agents. In Decentralized
Al - Proceedings of the First Furopean Workshop on Modelling Autonomous Agents in
a Multi-Agent World (MAAMAW-89) (eds Y. Demazeau and J.-P. Miller), pp. 105-120.
Elsevier, Amsterdam.

von Martial, F. (1992) Coordinating Plans of Autonomous Agents, LNAI Volume 610.
Springer, Berlin.

Voorhees, E. M. (1994) Software agents for information retrieval. In Software Agents -
Papers from the 1994 Spring Symposium (ed. O. Etzioni), technical report 55-94-03,
pp. 126-129, AAAI Press.

Vreeswijk, G. A. W. and Prakken, H. (2000) Credulous and sceptical argument games for
preferred semantics. In Logics in Artificial Intelligence - Proceedings of the 7th European
Workshop, JELIA 2000 (eds M. Ojeda-Aciego et al.), LNAI Volume 1919, pp. 239-253.

Springer, Berlin

Wainer, J. (1994) Yet another semantics of goals and goal priorities. In Proceedings of the
11th European Conference on Artificial Intelligence (ECAI-94), Amsterdam, pp. 269-273.

Walker, A. and Wooldridge, M. (1995) Understanding the emergence of conventions in
multi-agent systems. In Proceedings of the 1st International Conference on Multi-Agent
Svstems (ICMAS-95), San Francisco, CA, pp- 384-390.

References 341

Walton, D. N. and Krabbe, E. C. W. (1995) Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning. State University of New York Press, Albany, NY.

Webster, B. F. (1995) Pitfalis of Object-Oriented Development. M & T Books, New York.

WeilS, G. (1993) Learning to coordinate actions in multi-agent systems. In Proceedings of
the 13th International Joint Conference on Artificial Intelligence (IJCAI-93), Chambéry,
France, pp. 311-316.

weib, G. (ed.) (1997) Distributed Artificial Intelligence Meets Machine Learning, LNAI Vol-
ume 1221. Springer, Berlin.

Weib, G. (ed.) (1999) Multi-Agent Systems. MIT Press, Cambridge, MA.

Weify, G. and Sen, S. (eds) (1996) Adaption and Learning in Multi-Agent Systems, LNAI
Volume 1042, Springer, Berlin.

Wellman, M. P. (1993) A market-oriented programming environment and its applications
to multicommodity flow problems. journal of AI Research, 1, 1-22.

Wellman, M. P., Birmingham, W. P. and Durfee, E. H. (1996) The digital library as a com-
munity of information agents. IEEE Expert, 11(3), 10-11.

Werner, E. (1989) Cooperating agents: a unified theory of communication and social struc-
ture. In Distributed Artificial Intelligence (eds L. Gasser and M. Huhns), Volume II, pp. 3-
36. Pitman, London and Morgan Kaufmann, San Mateo, CA.

Wprnm" E. f1 QO”\ ‘/U'h::f can ngantc r]r\ fngaﬂ'\ar a semantics o of co- Operatl‘]_ ubﬂ}t

Ceedmgs of the 9th European Conference on Artificial Intelligence (ECAI-90),
Sweden, pp. 694-701.

White, J. E. (1994) Telescript technology: the foundation for the electronic marketplace.
White paper, General Magic, Inc., 2465 Latham Street, Mountain View, CA 94040.

White, J. E. (1997) Mobhile agents. In Software Agents (ed.]. Bradshaw), pp. 437-473. MIT
I’U:bb Lafﬂﬂflugﬁ 1\’11-\

Wiederhold, G. (1992) Mediators in the architecture of future information systems. IEEE
Transactions on Computers, 25(3), 38-49,

wittig, T. (ed.) (1992) ARCHON: an Architecture for Multi-Agent Systems. Ellis Horwood,
Chichester.

Wolper, P. (1985) The tableau method for temporal logic: an overview. Logigue et Analyse,
110-111.

Wood, M. and DeLoach, S. A. (2001) An overview of the multiagent systems engineering
methodology. In Agent-Oriented Software Engineering ~ Proceedings of the 1st Interna-
tional Workshop AOSE-2000 (eds P. Ciancarini and M. Wooldridge), LNCS Volume 1957,
pp. 207-222. Springer, Berlin.

Wooldridge, M. (1992) The Logical Modelling of Computational Multi-Agent Systems. PhD
thesis, Department of Computation, UMIST, Manchester, UK.

Wooldridge, M. (1994) Coherent social action. In Proceedings of the 11th European Con-
ference on Artificial Intelligence (ECAI-94), Amsterdam, pp. 279-283.

Wooldridge, M. (1995) This is MYWORLD: the logic of an agent-oriented testbed for DAL In
Intelligent Agents: Theories, Architectures and Languages (eds M. Wooldridge and N. R.
Jennings), LNAI Volume 890, pp. 160-178. Springer, Berlin.

Wooldridge, M. (1997) Agent- based software engineering. IEEE Proceedings on Software
Engineering, 144(1), 26-37.

Wooldridge, M. (1998) Verifiable semantics for agent communication languages. In Pro-
ceedings of the 3rd International Conference on Multi-Agent Systems (ICMAS-98), Paris,
France, pp. 349-365.

Wooldridoa M (1900 Varifyvin

Ty \JULMLLM&L PAS \LJJJ} V\,lllylllg H
Proceedings of the 16th National Conference on Artificial Intelllgence (AAAI-99), Orlando
FL, pp. 52-57.

Pro-

i1 £ 1

In
ockholm,

nt o mimier

DA > PO oS
bl V4 REJETEN(CES

Wooldridge, M. (2000a) The computational complexity of agent design problems. In Pro-
ceedings of the 4th International Conference on Multi-Agent Systems (ICMAS-2000),
Boston, MA, pp. 341-348.

Wooldridge, M. (2000b) Reasoning about Rational Agents. MIT Press, Cambridge, MA,

Wooldridge, M. and Dunne, P. E. (2000) Optimistic and disjunctive agent design prob-
lems. In Intelligent Agents, VII: Proceedings of the Seventh International Workshop on
Agent Theories, Architectures and Languages, ATAL-2000 (eds C. Castelfranchi and
Y. Lespérance), LNAI Volume 1986, pp. 1-14. Springer, Berlin.

Wooldridge, M. and Fisher, M. (1994) A decision procedure for a temporal belief logic. In
Temporal Logic - Proceedings of the 1st International Conference (eds D. M. Gabbay and
H. J. Ohlbach), LNAI Volume 827, pp. 317-331. Springer, Berlin.

Wooldridge, M. and Jennings, N. R. (1994) Formalizing the cooperative problem solving
process. In Proceedings of the 13th International Workshop on Distributed Artificial Intel-
ligence (IWDAI-94), Lake Quinalt, WA, pp. 403-417. Reprinted in Huhns and Singh (1998).

Wooldridge, M. and Jennings, N. R. (1995) Intelligent agents: theory and practice. The
Knowledge Engineering Review, 10(2), 115-152.

Wooldridge, M. and Jennings, N. R. (1998) Pitfalls of agent-oriented development. In Pro-
ceedings of the 2nd International Conference on Autonomous Agents (Agents 98), Min-
neapolis/St. Paul, MN, pp. 385-391.

Wooldridge, M. and Jennings, N. R. (1999) The cooperative problem solving process. Jour-
nal of Logic and Computation, 9(4), 563-592.

Wooldridge, M. and Parsons, S. D. (1999) Intention c, nsideration reconsidered. In Intelli-
gent Agents, V (eds]. P. Miiller, M. P. Singh and A. S. Rao), LNAI Volume 1555, pp. 63-80.
Springer, Berlin.

Wooldridge, M., Bussmann, S. and Klosterberg, M. (1996) Production sequencing as nego-
tiation. In Proceedings of the 1st International Conference on the Practical Application

of Intelligent Agents and Multi-Agent Technology (PAAM-96), London, UK, pp. 709-726.
Waooldridee M Dixon. C. and Ficher M. {1998} A tableau-based nronf meathod for temnaoral

ooldridge, M., Dixon, C. and Fisher, M. (1998) A tableau-based proof method for temporal
logics of knowledge and belief. Journal of Applied Non-Classical Logics, 8(3), 225-258.

Wooldridge, M., Jennings, N. R. and Kinny, D. (1999) A methodology for agent-oriented
analysis and design. In Proceedings of the 3rd International Conference on Autonomous
Agents (Agents 99), Seattle, WA, pp. 69-76.

Wooldridge M., O’Hare, G. M. P. and Elks, R. (1991) FELINE - a case study in the design and

~f A Tin Da- nAi tha 11+h Lriravanapoan
uuplculcuLauuu 01 d CO- \JLJCICUJ]J.B CALJCJ.I. Dyblclll 11 7 ULEEM[IlgD U’ lllt: LAl LUHrupeidii

Conference on Expert Systems and Their Applications, Avignon, France.

Wooldridge, M., Weil, G. and Ciancarini, P. (eds) (2002) Agent-Oriented Software Engineer-
ing II - Proceedings of the 2nd International Workshop, AOSE-2001, LNCS Volume 2222.
Springer, Berlin.

XML (2001) The Xtensible Markup Language See ht tp://www.xml.org/.

T A I e N aYeYa)Y AT - PR VP, serd ~zaa R T"I" Thamin v v £ mpm
I UllCLCle AL (CU,) L1LTTY) ADLL. an UUJ(:'(.I Urle”l Lum.urreru ._)y&“i!” IVII1 FICHSS, Ldlll-
bridge, MA.

Yonezawa, A. and Tokoro, M. (eds) (1997) Object-Oriented Concurrent Programming. MIT
Press, Cambridge, MA.

Yoshioka, N. et al. (2001) Safety and security in mobile agents. In Agent-Oriented Software
Engineering - Proceedings of the First International Workshop AOSE-2000 (eds P. Cian-
carini and M. Wooldridge), LNCS Volume 1957, pp. 223-235. Springer, Beriin.

Zagare, F. C. (1984) Game Theory: Concepts and Applications. Sage Publications, Beverly

Hills, CA.

2 x 2 interactions 123
‘4’ axiom of modal logic 274
‘5" axiom of modal logic 274

abstract architectures 31
abstract argumentation 155
abstraction tools 30
acceptable arguments 157
accessibility relation 272
accessible environments 18
achievement tasks 41
action descriptor 73

action equality coordination relationships

202
active objects 26
Actors paradigm 193, 309
Adept system 247
admissible arguments 157
Agent(system 54-56
agent 32
agent communication languages 168
agent-oriented programming 54
Agent TCL language 240
Agent UML methodology 230
Aglets system 240
Agre, P, 95
antisocial behaviour in auctions 135
applets 314
Archon system 27, 206-207, 312
argumentation 129
argumentation 149
abstract 155
argumentation-based negotiation 149
argument classes 152
artificial intelligence (Al) 9
artificial life xv
Asimov, I, 7
asymmetry thesis 69

Index

attack between arguments 151

attacker arguments 156

attempts 287

auction bots 257

auctions 131

Austin, J. 164

autonomous actionl >

autonomy 15

award processing 195

Axelrod, R. 118
tournament 118

Bates, J. 259

BDI architecture 86
behavioural agents 89
benevolence 190
Berners-lee, T. 183

bid processing 195
blackboard systems 307
blind commitment 77
blocks world 71-73
bounded optimal agents 39
broker agents 253
Brooks, R. 90, 305

calculative rationality 53
Cassiopeia methodology 231
Citeseer system xvii

Cohen, P, 166, 211
coherence 191

Collinot, a. 231

collusion 136

commissive speech acts 166
commitment 76-77

¢ <

T AA e B
294 nuex

commitments 205

common knowledge 281

common value auctions 131
comparison shopping agents 256
completeness of synthesis 43
Concurrent MetateM system 56-60
conflict deal 141

conflict-free arguments 157
conformance testing and agent

commimication 175

consequence coordination relationships
202

Conte, R. 260, 315

contract net protocol 194-196, 311

control systems 16

conventions 205

cooperating expert system 197

cooperation without communication 210

cooperative distributed problem solving
190

coordinated attack problem 281

coordination 191, 200

coordination languages 183

coordination relationships 201

Corba IDL language 181

correlated value auctions 131
correshondence rhanrv 260 273

LRSS S JSAL AR B UL S § Lw D) § (SRS hw)

counterspeculation 1 3 7

DAML language 181

‘D' axiom of modal logic 274
Decker, K. 203

deciarative speech acts 166
decoy tasks 146

deduction rules 51-52
deductive verification 294
defeat between arguments 151
delegation 1

deliberation over intentions 65, 66
deliberation dialogues 155
Demazeau, Y. 312

Dennett, D. 28

dependence relations 125
Desire system 230

determinism of environments 16
dialogues 153

d’Inverno, M. 231

directive speech acts 166
discrete environments 18, 20

distributed
knowledge 281
planning 218
sensing 248
systems 1

dominant
deal 141
strategies 111

Doran, J. 315

NCT NACA ornnara mranha ©
L/21 INAOIMA spjavc i 00¢ o

Dutch auctions 133
DVMT system 6, 202
dynamic environments 18
dynamism 19

Ebay electronic marketplace 131
economic encounters 9
efficiency of convergence 215
electronic commerce agents 254
emergent social laws 213

matinnal mada of argnman
Llll\}lll)].lcll ALV UL Al 5\.1111 i

encapsulation 25
English auctions 132
environments 17
EOS project 8, 260
epistemic

alternatives 270

logic 274
eristic dialogues 155
Etzioni, O. 251, 313
executable

specifications 291

temporal logic 59
expected revenue 135
expertise finders 252
expert systems and agents 7
expressive speech acts 166

¢°]
s

fairness 22

fallacy of the twins 117

FAQ-finder agents 252

favour coordination relationships 202
feasibility precondition 175

Feline system 197
FIPA 314

agent communication language 175, 314

agent communication language,
semantics of 175

Firby, J. 103

Firma project 263

first-order intentional systems 28

first-price sealed bid auctions 134

Fox, J. 150

functionally accurate/cooperative systems
(FA/C) 199-200

functional systems 20

Gaia methodology 228
game of chicken 124
game theory 10-11
Gasser, L. 211, 311
Genesereth, M. 311
Georgeff, M. P. 79, 227
Gilbert, M. 149
Gilbert, N. 260, 315
Ginsberg, M. 311
grounded semantics 279
Guttman, R. 255

Halpern, J. 279

hard coordination relationships 204
Hewitt, C, 309

hidden tasks 146

highest cumulative reward update rule 215
Hintikka, J. 269

Homer architecture 80

horizontal layered architectures 98
Huhns, M. 311

human-oriented interfaces 1

hybrid agents 97

inaccessible environments 18
inconsistency handling 199
indexing agents 251
individual rational deal 14?2
information

food chain 252

gathering 19

management agents 248

seeking dialogues 155
inform processing 195
inquiry dialogues 155
integrated theories of agency 283
intelligence 1
intelligent agents 23
intentional stance 28
intentional systems 28

Index 345

intention 67-69

logic 283

reconsideration 78-79
interaction

analysis 219

resolution 219
interconnection 1
interests in Feline system 197
InteRRap architecture 101
iterated prisoner’s dilemma 118

Jam system 84

Jango system 256

Java language 314

Jennings, N. R. 205

Jini system 314

joint intentions 204

joint persistent goal (JPG) 206

Kaelbling, L. P. 95

Kashah system 257

‘K’ axiom of modal logic 273

KIF (Knowledge Interchange Format) 169

Kinny, D. 79, 227

kisceral mode of argumentation 149

Knowledge Interchange Format (KIF) 169

knowledge level 61

Knowledge Query and Manipulation
Language (KQML) 170, 314
parameters of 171
problems with 175

Krabbe, E. 155

Kraus, S. 313

Kripke semantics 267

learning xv

legacy software 207

Lenat, D. 309

Lesser, V. 248, 308

Levesque, H. 283

Linda language 184

Lisp programming language 169
logical mode of argumentation 149
logical omniscience 276
logic-based argumentation 150
Luck, M. 231

MAAMAW workshops 312
Mace system 211, 312

346 Index

macro-level 3
Maes, P. 96, 250, 258
maintenance tasks 41
Markov decision problems xv
Maxims system 250
McCarthy, J. 28, 303
means-ends reasoning 65, 66, 70-75
mechanism design 130
meta-level plans 83
methodologies 225
micro-level 3
middle agents 253
mobile agents 236, 314
mobility xv
modal

logics 267

systems 275
model checking 296
monotonic concession protocol 143
Moss, S. 260
mutual modelling 210
Mycin expert system 27

NASA 5
Nash equilibrium 111
necessitation rule 273
need identification in commerce 255
negative coordination relationships 201
negotiation 129
dialogues 155
protocol 137
set 137, 142
strategy 137
Negroponte, N. 258
Newell, A. 307
Newt system 250
Nilsson, N, 103
non-determinism of environments 16
non-local viewpoints 203
non-requested coordination relationships
201
non-trivial argument 151
normal I/0 conditions in speech acts165
norms 213
Norvig, P. 9

Qasis, air-traffic control system 6
objects and agents 25
Odell, J. 230

offline design of social laws 213
Ontolingua system 181
ontologies 180

opaque contexts 268

open-cry descending auctions 133
open-minded commitment 77
optimal agents 39

0z project 259

parallel problem solving 190
partial global planning 202
payoff matrix 111
Pengi architecture 94
perception 33
personal digital assistants 6
personal information agents 250
Persuader system 156-158
persuasion dialogues 155
P-goal (persistent goal) 285
phantom tasks 146
Piaget, J. 29
pitfalls of agent development 233
plan-based theory of speech acts 166
plan

formation 210

libraries 75

merging 219
policy modelling agents 263
Pollack, M. 86
positive coordination relationships 201
possible worlds semantics 270
practical reasoning 65
Prakken, H. 156
predicate task specifications 40
preferences 106
preparatory conditions in speech acts 165
prisoner’s dilemma 114
privacy and security in e-commerce 255
private

methods 25

value auctions 131
proactiveness 23
pro-attitudes 67, 180
problem decomposition 192
procedural reasoning system (PRS) 82

product brokering in e-commerce 255
production sysiems 307
public methods 25
purely reactive
agents 33

systems 24

rational effect 175
reactive agents, limitations of 97
reactive systems 20
reactivity 23
real-time environments 22
recursive modelling method 297
Reddy, R. 308
referential transparency 268
refinement 290
reflexive relations 274
remote procedure calls 236
representation & reasoning 48
representative speech acts 166
requested coordination relationships 201
request processing 195
result sharing 194, 197
risk-averse

auctioneers 136

bidders in auctions 135
risk-neutral bidders in auctions 135
Robocup tournament 315
Rosenschein, J. 139, 311-312
Rosenschein, S. 95
runs 31, 32
Russell, S. 9

safety analysis 219

Sandholm, T. 313

scripting agents 240

Searle, J. 165

second-price sealed bid auction 134
security in mobile agents 237
self-interested agents 190

semantics of normal modal logic 272
semantic web 182-183

serialization 237 =

shills in auctions 136

Shoham, Y. 28, 54, 214

Sierra, C. 313

Simon, H. 307

simple majority update rule 215
sincerity conditions in speech acts 166

Index 347

single-minded commitment 77
situated
automata 95
systems 15
situation-action rules 90
situation calculus 61
skills in feline system 197
Smith, R. 194
Smith, R. 311
social ability 4, 23, 24
social laws 213
social sciences 11
soft coordination relationships 204
software demons 17
software engineering, agents for 7
solution
construction graph 203
synthesis 193
soundness of synthesis 43
Spanish fishmarket system 258
specification 289
speech acts 164, 286
sphere of influence 106
stag hunt 122
state-based agents 35
state transformer function 31
static environments 18
Steels, L. 92
strategy update function 214
strictly competitive encounters 114
Strips system 304
notation 72
sub-problem solution 193
subsumption architecture 91
Sycara, K. 157
symbolic Al 47
synchronization between processes 163
synthesis of agents 42, 292
system of logic 273

Tambe, M. 208
task announcement in contract net 195
task environment 40, 141
task-oriented domains 139
task
sharing 192, 194
specification 36
tautological argument 151
‘T’ axiom of modal logic 274

348 Index

team

action 210

formation 209
tee shirt game 214
Telescript language 239, 314
temporal logic 58-59
Tennenholtz, M. 214, 313
theorem provers 49
Tileworld system 37
tit-for-tat strategy 120

success of 121
tour guide agents 251
Touring machines architecture 99
traffic laws 216
transduction problem 48
Treur, J. 230
trust 255
truthful bidding in auctions 135
types of dialogue 154

ubiquity 1

undercutting in arguments 151
useful social laws 216-217
Usenet news agents 250

utility functions 37, 107

verification 294

vertically layered architectures 98
Vickrey auctions 134

virtual knowledge base 171

visceral mode of argumentation 149
von Martial, F. 201

Vreeswijk, G. 156

Walton, D. 155

Weld, D. 251, 313

willingness to risk conflict 144
winners curse 133

workflow management agents 245
world trade center, attacks on 315
worth-oriented domains 146

xbiff program 17
XML language 181

Yokoo, M. 313
zero sum encounters 114

Zeuthen strategy 144
Z specification language

An Introduction to

MultiAgent

Systems

MICHAEL WOOLDRIDGE

Multiagent systems represent a new way of
conceptualising and implementing distributed software.
An Introduction to MultiAgent Systems is the
first modern textbook on this important topic. It provides
a comprehensive introduction to intelligent agents and
multiagent systems, and assumes no specialist
knowledge. It introduces the idea of agents as software
systems that can act autonomously, and leads you
through a detailed discussion of:

® ways that agents can be built

® how agents can reach agreements

® the languages that agents can use to
communicate with one-another

® co-operation and co-ordination in agent systems

® the applications of agent technology

Designed and written specifically for undergraduates
and computing professionals, the book is supported by
extensive online teaching resources, including a complete
set of lecture slides. lllustrated with many informal
examples, and packed with more than 500 references,
An Introduction to MultiAgent Systems is a
must-read.

For further information, please visit:
http://www.csc.liv.ac.uk/~mjw/pubs/imas/
http://www.wiley.com/

“... a coherent and wonderfully
lucid introduction to the field of
agent based computing ...
Mike Wooldridge has done an
excellent job of distilling the
theory and the practice of
multiagent systems for future
generations of students.”

Nick Jennings, University of Southampton

ABOUT THE AUTHOR
Michael Wooldridge is a Professor
of Computer Science at the University
of Liverpool. He obtained his PhD in
1992 for work in the theory of
multiagent systems, and has, since
then, been an active in multiagent
systems research.

ISBN 0-471-49691-X

9 %78047 1I|49691 5|

K)WILEY

wiley.com

	Cover
	Contents
	Preface
	Introduction
	Intelligent Agents
	Deductive Reasoning Agents
	Practical Reasoning Agents
	Reactive and Hybrid Agents
	Multiagent Interactions
	Reaching Agreements
	Communication
	Working Together
	Methodologies
	Applications
	Logics for Multiagent Systems
	Appendix A - A History Lesson
	Afterword
	References
	Index
	BackCover

