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Preface

Purpose — The study of multiagent systems began in the field of distributed
artificial intelligence (DAI) about 20 years ago. Today these systems are not simply
a research topic, but are also beginning to become an important subject of academic
teaching and industrial and commercial application. While there are several high-
quality collections of articles on multiagent systems and DAI in print, most of
these are proceedings of conferences and workshops. What is urgently needed is a
book that offers a comprehensive and up-to-date introduction and is suitable as a
textbook for the field. The purpose of this volume is to fulfill this need.

Features — The book offers a number of features that make it especially useful to
readers:

= Scope. It is designed as an introductory text and a textbook that covers the
whole range of multiagent systems. The book reflects the state of the art in this
field, and treats basic themes (Part I) as well as several closely related themes
(Part IT) in detail.

"= Theory. It gives a clear and careful presentation of the key concepts, methods,
and algorithms that form the core of the field. Many illustrations and examples
are provided.

" Practice. The emphasis is not only on theory, but also on practice. In particular,
the book includes a number of thought-provoking exercises of varying degrees
of difficulty at the end of each chapter that allow the reader to gain practical
experience.

= Glossary. It contains an extensive glossary that provides the reader with compact
explanations of relevant terminology used in the field.

= Fxpertise. Its chapters have been written by leading and outstanding authorities.
This guarantees that the book is built on a very broad and diverse basis of
knowledge and experience.

It is worth saying a little more about the last-mentioned feature. It is clear that
a book prepared by just a few authors, as textbooks usually are, is likely to be
more coherent than a book in which many authors are involved. But as the reader
will see, the contributors to Multiagent Systems have invested considerable effort
in ensuring the coherence of this book (and, in so doing, they practiced some of the
basic issues—cooperation and negotiation—described in their chapters).
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Readership — The book is primarily intended to meet the interests of the following
audiences:

" Professors and students who require an up-to-date, in-depth source of material
for their courses on multiagent systems and DAI. Below it is described how the
book can be used as the basis of a number of different courses.

" Researchers in the field who wish to branch out beyond the area in which they are
specialized to better understand the field as a whole, to investigate relationships
between their own work and work by others, and to obtain valuable stimuli for
their future research activities.

®  Software practitioners and professionals from industry who want to find out
whether and how the technologies available in the field can be usefully applied
in their working domains.

Owing to the potential impact of multiagent systems on a variety of disciplines,
this book can also serve as a repository and primary reference volume for com-
puter scientists, sociologists, economists, management and organization scientists,
engineers, psychologists, and philosophers.

How to Use This Book — The book can be used for teaching as well as self-
study. The chapters and consequently the overall book are designed to be self-
contained and understandable without additional material. Of course, there are
many relationships between the chapters, but in principle they can be treated
independently and read in any sequence. I recommended, however, to start with
Chapters 1 and 2.

This book can be used as a text for a graduate or advanced undergraduate course.
A one-quarter course should concentrate on the first three chapters of Part I of
the book; with whatever time remains, further chapters of Part I, or parts of
them, could be covered. A course based on Part I could comfortably occupy a full
semester. A course fully covering Part I, Part II, and some separate material could
take an entire year. The book is also useful as a supplementary text for a general
AT course; for instance, within such a course the considerations on “classical” Al
topics like problem solving and search could be enriched by Chapter 3 and Chapter
4, respectively. Moreover, most chapters could be also used as the starting material
for speciality courses and seminars; for instance, Chapter 5, Chapter 6, and Chapter
7 could be used for courses devoted to distributed decision making, distributed
machine learning, and computational organization theory, respectively. Although it
is obvious, I finally want to mention that Chapter 8 should be part of courses with
an emphasis on theory, while Chapter 9 should be part of courses with a focus on
applications.

The exercises allow the reader to further deepen her or his knowledge, and course
instructors might use them for putting more emphasis on practical aspects. Some
exercises are fairly simple and are intended to make sure that the material provided
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in the chapters is mastered. Others are much more difficult and may serve as a
subject of class discussions or advanced team work.

Throughout the book numerous references to the source literature are provided.
They enable interested students to further pursue specific aspects, and they support
professors in choosing additional course material.

The chapters can be understood without specific prior knowledge. However, a
background in computer science and mathematics/logic definitely would be helpful
in using all parts of the book most efficiently.

One Final Word — When working through this book, the reader is asked to keep
in mind that multiagent systems and DAT constitute a young and dynamic field of
interdisciplinary nature whose defining boundaries are not yet fully clear. It is my
particular hope that this book contributes to the search for sharper boundaries by
spurring further research, teaching, and application in this fascinating field.

Acknowledgments — This book would not have happened without the help of
many people. I am most greateful to the authors for participating in this challenging
project. They contributed significantly to this book not only by preparing and
coordinating their texts—the chapters, the chapter descriptions included in the
Prologue, and the index and glossary entries—but also by providing many useful
comments and suggestions on how the book’s overall quality could be further
improved. It was the authors’ enthusiasm and encouragement that often made my
editorial work easier. Particular thanks are due to Mike Wooldridge and Munindar
Singh for reading a draft of the Prologue.

At The MIT Press, I am grateful to Robert Prior for providing expert assistance
and support during this project whenever necessary.

I give my warmest thanks to my wife, Tina, for her tolerance and patience at the
many evenings and weekends I worked on this book.

Over the course of this project I have been financially supported by DFG (German
National Science Foundation) under grant Wel718/6-1.

Of course, despite the authors’ influencing comments and suggestions, responsi-
bility for the conception of this book and the final selection of the chapter themes
ultimately lies with me.

Gerhard Weif§



Prologue

Multiagent Systems and Distributed Artificial Intelligence

Since its inception in the mid to late 1970s distributed artificial intelligence (DAI)
evolved and diversified rapidly. Today it is an established and promising research
and application field which brings together and draws on results, concepts, and
ideas from many disciplines, including artificial intelligence (AI), computer science,
sociology, economics, organization and management science, and philosophy. Its
broad scope and multi-disciplinary nature make it difficult to precisely characterize
DAT in a few words. The following definition is intended to serve as a starting point
for exploring this arena and as a constant point of reference for reading through
this book:

DAI is the study, construction, and application of multiagent systems,

that is, systems in which several interacting, intelligent agents pursue

some set of goals or perform some set of tasks.

An agent is a computational entity such as a software program or a robot that can
be viewed as perceiving and acting upon its environment and that is autonomous in
that its behavior at least partially depends on its own experience. As an intelligent
entity, an agent operates flexibly and rationally in a variety of environmental
circumstances given its perceptual and effectual equipment. Behavioral flexibility
and rationality are achieved by an agent on the basis of key processes such as
problem solving, planning, decision making, and learning. As an interacting entity,
an agent can be affected in its activities by other agents and perhaps by humans.
A key pattern of interaction in multiagent systems is goal- and task-oriented
coordination, both in cooperative and in competitive situations. In the case of
cooperation several agents try to combine their efforts to accomplish as a group
what the individuals cannot, and in the case of competition several agents try to
get, what only some of them can have. The long-term goal of DAI is to develop
mechanisms and methods that enable agents to interact as well as humans (or even
better), and to understand interaction among intelligent entities whether they are
computational, human, or both. This goal raises a number of challenging issues that
all are centered around the elementary question of when and how to interact with
whom.

Two main reasons to deal with DAI can be identified, and these two reasons are
the primary driving forces behind the growth of this field in recent years. The first
is that multiagent systems have the capacity to play a key role in current and future
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computer science and its application. Modern computing platforms and information
environments are distributed, large, open, and heterogeneous. Computers are no
longer stand-alone systems, but have became tightly connected both with each
other and their users. The increasing complexity of computer and information
systems goes together with an increasing complexity of their applications. These
often exceed the level of conventional, centralized computing because they require,
for instance, the processing of huge amounts of data, or of data that arises at
geographically distinct locations. To cope with such applications, computers have to
act more as “individuals” or agents, rather than just “parts.” The technologies that
DAT promises to provide are among those that are urgently needed for managing
high-level interaction in and intricate applications for modern computing and
information processing systems.

The second reason is that multiagent systems have the capacity to play an
important role in developing and analyzing models and theories of interactivity in
human societies. Humans interact in various ways and at many levels: for instance,
they observe and model one another, they request and provide information, they
negotiate and discuss, they develop shared views of their environment, they detect
and resolve conflicts, and they form and dissolve organizational structures such
as teams, committees, and economies. Many interactive processes among humans
are still poorly understood, although they are an integrated part of our everyday
life. DAT technologies enable us to explore their sociological and psychological
foundations.

Intelligent Agents that Interact

To make the above considerations more concrete, a closer look has to be taken on
multiagent systems and thus on “interacting, intelligent agents”:

B “Agents” are autonomous, computational entities that can be viewed as per-
ceiving their environment through sensors and acting upon their environment
through effectors. To say that agents are computational entities simply means
that they physically exist in the form of programs that run on computing de-
vices. To say that they are autonomous means that to some extent they have
control over their behavior and can act without the intervention of humans and
other systems. Agents pursue goals or carry out tasks in order to meet their
design objectives, and in general these goals and tasks can be supplementary as
well as conflicting.

= “Intelligent” indicates that the agents pursue their goals and execute their
tasks such that they optimize some given performance measures. To say that
agents are intelligent does not mean that they are omniscient or omnipotent,
nor does it mean that they never fail. Rather, it means that they operate
flexibly and rationally in a variety of environmental circumstances, given the
information they have and their perceptual and effectual capabilities. A major
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focus of DAT therefore is on processes such as problem solving, planning, search,
decision making, and learning that make it possible for agents to show flexibility
and rationality in their behavior, and on the realization of such processes in
multiagent scenarios.

“Interacting” indicates that the agents may be affected by other agents or
perhaps by humans in pursuing their goals and executing their tasks. Interaction
can take place indirectly through the environment in which they are embedded
(e.g., by observing one another or by carrying out an action that modifies the
environmental state) or directly through a shared language (e.g., by providing
information in which other agents are interested or which confuses other agents).
DAT primarily focuses on coordination as a form of interaction that is particularly
important with respect to goal attainment and task completion. The purpose
of coordination is to achieve or avoid states of affairs that are considered as
desirable or undesirable by one or several agents. To coordinate their goals and
tasks, agents have to explicitly take dependencies among their activities into
consideration. Two basic, contrasting patterns of coordination are cooperation
and competition. In the case of cooperation, several agents work together and
draw on the broad collection of their knowledge and capabilities to achieve a
common goal. Against that, in the case of competition, several agents work
against each other because their goals are conflicting. Cooperating agents try
to accomplish as a team what the individuals cannot, and so fail or succeed
together. Competitive agents try to maximize their own benefit at the expense
of others, and so the success of one implies the failure of others.

It has to be stressed that there is no universally accepted definition of agency or
of intelligence, and the above explanations are just intended to show how these
terms are generally understood and what is generally considered as essential for an
entity to be an intelligent agent. The concept of an intelligent agent that interacts

allows various degrees of degradation, and is perhaps best viewed as a “guideline”

for designing and analyzing systems rather than an “instruction” that allows no

variation, or a precise “criterion” that always allows one to determine whether an

object does or does not fulfill it. A useful catalog of agent theories and systems
is provided in [45]. Another popular text on agents is [38, Chapter 2]. A recent
overview of key themes in agent research is given in [22].

In [25] the following major characteristics of multiagent systems are identified:
each agent has just incomplete information and is restricted in its capabilities;
system control is distributed;

data is decentralized; and

computation is asynchronous.

Multiagent systems can differ in the agents themselves, the interactions among the
agents, and the environments in which the agents act. The following table gives
an overview of some attributes of multiagent systems, together with their potential
range (an extensive overview is offered in [22]):
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attribute range
number from two upward
uniformity homogeneous ... heterogeneous
goals contradicting ... complementary
agents - . - -
architecture reactive ... deliberative
abilities (sensors, )
.. simple ... advanced
effectors, cognition)
frequency low ... high
persistence short-term ... long-term
level signal-passing ... knowledge-intensive
interaction pattern (flow of ) ) )
decentralized ... hierarchical
data and control)
variability fixed ... changeable
purpose competitive ... cooperative
predictability forseeable ... unforseeable
accessibility o o
.- unlimited ... limited
and knowability
environment | dynamics fixed ... variable
diversity poor ... rich
availability of .
restricted ... ample
resources

Traditionally two primary types of DAI systems have been distinguished [2]: mul-
tiagent systems in which several agents coordinate their knowledge and activities
and reason about the processes of coordination; and distributed problem solving
systems in which the work of solving a particular problem is divided among a num-
ber of nodes that divide and share knowledge about the problem and the developing
solution. Whereas initially the emphasis of work on multiagent systems was on be-
havior coordination, the emphasis of work on distributed problem solving systems
was on task decomposition and solution synthesis. The modern concept of multi-
agent systems as described above covers both types of systems. For that reason,
and in accordance with contemporary usage, in this book no explicit distinction
is made between multiagent systems and distributed problem solving systems, and
the terms multiagent system and DAI system are used synonymously.

The role that the concept of a multiagent system plays in DAI is comparable
to the role that the concept of an individual agent plays in traditional Al (see,
e.g., [33, 36, 38]). Broadly construed, both DAI and traditional AI deal with
computational aspects of intelligence, but they do so from different points of view
and under different assumptions. Where traditional AI concentrates on agents as
“intelligent stand-alone systems” and on intelligence as a property of systems that
act in isolation, DAI concentrates on agents as “intelligent connected systems” and
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on intelligence as a property of systems that interact. Where traditional AT focuses
on “cognitive processes” within individuals, DAT focuses on “social processes” in
groups of individuals. Where traditional AT considers systems having a single locus
of internal reasoning and control and requiring just minimal help from others to act
successfully, DAT considers systems in which reasoning and control is distributed
and successful activity is a joint effort. And where traditional AT uses psychology
and behaviorism for ideas, inspiration, and metaphor, DAI uses sociology and
economics. In this way, DAT is not so much a specialization of traditional AI, but
a generalization of it.

Challenging Issues

To build a multiagent system in which the agents “do what they should do” turns
out to be particularly difficult in the light of the basic system characteristics
mentioned above. The only way to cope with these characteristics is to enable
the agents to interact appropriately, and thus the elementary question faced by
DATI is When and how should which agents interact—cooperate and compete—to
successfully meet their design objectives? Based on the common distinction between
the “micro” or agent level and the “macro” or group level (e.g., see [31]), in principle
one can follow two different routes to answer this question:

= Dbottom up: to search for specific agent-level capabilities that result in appropriate
interaction at the overall group level; or

= top down: to search for specific group-level rules—called conventions, norms,
and so on—that appropriately constrain the interaction repertoire at the level
of the individual agents.

(The question how agent-level—individual—activity and group-level—societal—
rules and structures are related to each other is known as the micro-macro problem
in sociology.) No matter which route is chosen, this question raises several chal-
lenging, intertwined issues (items 1 to 5 were first mentioned in [2], and item 6 and
items 7 and 8 were additionally formulated in [31] and [25], respectively):

1.  How to enable agents to decompose their goals and tasks, to allocate sub-goals
and sub-tasks to other agents, and to synthesize partial results and solutions.

2. How to enable agents to communicate. What communication languages and
protocols to use.

3. How to enable agents to represent and reason about the actions, plans, and
knowledge of other agents in order to appropriately interact with them.

4. How to enable agents to represent and reason about the state of their inter-
action processes. How to enable them to find out whether they have achieved
progress in their coordination efforts, and how to enable them to improve the
state of their coordination and to act coherently.
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10.

11.

12.

How to enable agents to recognize and reconcile disparate viewpoints and
conflicts. How to syntheze views and results.

How to engineer and constrain practical multiagent systems. How to design
technology platforms and development methodologies for DAT.

How to effectively balance local computation and communication.

How to avoid or mitigate harmful (e.g., chaotic or oscillatory) overall system
behavior.

How to enable agents to negotiate and contract. What negotiation and contract
protocols should they use.

How to enable agents to form and dissolve organizational structures—teams,
alliances, and so on—that are suited for attaining their goals and completing
their tasks.

How to formally describe multiagent systems and the interactions among

agents. How to make sure that they are correctly specified.

How to realize “intelligent processes” such as problem solving, planning,
decision making, and learning in multiagent contexts. How to enable agents to
collectively carry out such processes in a coherent way.

To provide solutions to these issues is the core request of DAL

Applications

Many existing and potential industrial and commercial applications for DAT and
multiagent systems are described in the literature (e.g., see [23, 24] and also [26]).
Basically following [25] (here the readers find a number of pointers to specific work),
examples of such applications are:

Electronic commerce and electronic markets, where “buyer” and “seller”

purchase and sell goods on behalf of their users.

agents

Real-time monitoring and management of telecommunication networks, where
agents are responsible, e.g., for call forwarding and signal switching and trans-
mission.

Modelling and optimization of in-house, in-town, national- or world-wide trans-
portation systems, where agents represent, e.g., the transportation vehicles or
the goods or customers to be transported.

Information handling in information environments like the Internet, where mul-
tiple agents are responsible, e.g., for information filtering and gathering.
Improving the flow of urban or air traffic, where agents are responsible for
appropriately interpreting data arising at different sensor stations.

Automated meeting scheduling, where agents act on behalf of their users to fix
meeting details like location, time, and agenda.
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Optimization of industrial manufacturing and production processes like shop-
floor scheduling or supply chain management, where agents represent, e.g.,
different workcells or whole enterprises.

Analysis of business processes within or between enterprises, where agents
represent the people or the distinct departments involved in these processes
in different stages and at different levels.

Electronic entertainment and interactive, virtual reality-based computer games,
where, e.g., animated agents equipped with different characters play against each
other or against humans.

Design and re-engineering of information- and control-flow patterns in large-scale
natural, technical, and hybrid organizations, where agents represent the entities
responsible for these patterns.

Investigation of social aspects of intelligence and simulation of complex social
phenomena such as the evolution of roles, norms, and organzational structures,
where agents take on the role of the members of the natural societies under
consideration.

What these applications have in common is that they show one or several of the
following features [2]:

Inherent Distribution — They are inherently distributed in the sense that the
data and information to be processed

o arise at geographically different locations (“spatial distribution”);
o arise at different times (“temporal distribution”);

= are structured into clusters whose access and use requires familiarity with
different ontologies and languages (“semantic distribution”); and/or

s are structured into clusters whose access and use requires different perceptual,
effectual, and cognitive capabilities (“functional distribution”).

Inherent Complezity — They are inherently complex in the sense that they are
too large to be solved by a single, centralized system because of limitations
available at a given level of hardware or software technology. To enlarge a
centralized system such that it meets the requirements of inherently complex
applications usually is very difficult, time-consuming, and costly. Moreover, such
an enlargement often results in solutions that are brittle and that become useless
as soon as the application requirements change only slightly.

Solving inherently distributed and complex applications in a centralized way is ob-
viously not only counter-intuitive, but often not even possible at all. The alternative
is to distribute the solution process across multiple entities capable of intelligent
coordination—and DAT aims at developing technologies and methodologies for re-
alizing this alternative in a very natural way [15].
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Rationales for Multiagent Systems

The two major reasons that cause people to study multiagent systems are:

Technological and Application Needs — Multiagent systems offer a promising and
innovative way to understand, manage, and use distributed, large-scale, dynamic,
open, and heterogeneous computing and information systems. The Internet is the
most prominent example of such systems; other examples are multi-database sys-
tems and in-house information systems. Computers and computer applications
play an increasingly important and influencing part in our everyday life, as they
become more powerful and more tightly connected both with each other through
long-range and local-area networks and with humans through user-interfaces.
These systems are too complex to be completely characterized and precisely de-
scribed. As their control becomes more and more decentralized, their components
act more and more like “individuals” that deserve attributes like autonomous,
rational, intelligent, and so forth rather than just as “parts.” DAI does not only
aim at providing know-how for building sophisticated interactive systems from
scratch, but also for interconnecting existing legacy systems such that they co-
herently act as a whole. Moreover, like no other discipline, DAT aims at providing
solutions to inherently distributed and inherently complex applications. As we
saw above, these applications are hard to solve with centralized computing tech-
nology. Many real world applications, if not most, fall into this class, and they are
present in many domains such as scheduling, manufacturing, control, diagnosis,
and logistics.

Natural View of Intelligent Systems — Multiagent systems offer a natural way to
view and characterize intelligent systems. Intelligence and interaction are deeply
and inevitably coupled, and multiagent systems reflect this insight. Natural
intelligent systems, like humans, do not function in isolation. Instead, they are
at the very least a part of the environment in which they and other intelligent
systems operate. Humans interact in various ways and at various levels, and
most of what humans have achieved is a result of interaction. DAI can provide
insights and understanding about poorly understood interactions among natural,
intelligent beings, as they organize themselves into various groups, committees,
societies, and economies in order to achieve improvement.

In addition, multiagent systems, as distributed systems, have the capacity to offer

several desirable properties [2]:

Speed-up and Efficiency — Agents can operate asynchronously and in parallel,
and this can result in an increased overall speed (provided that the overhead of
necessary coordination does not outweigh this gain).

Robustness and Reliability — The failure of one or several agents does not neces-
sarily make the overall system useless, because other agents already available in
the system may take over their part.
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Scalability and Flezibility — The system can be adopted to an increased problem
size by adding new agents, and this does not necessarily affect the operationality
of the other agents.

Costs — It may be much more cost-effective than a centralized system, since it
could be composed of simple subsystems of low unit cost.

Development and Reusability — Individual agents can be developed separately
by specialists (either from scratch or on the basis of already available hardware
and/or software facilities), the overall system can be tested and maintained
more easily, and it may be possible to reconfigure and reuse agents in different
application scenarios.

The available computer and network technology forms a sound platform for real-

izing these systems. In particular, recent developments in object-oriented program-
ming, parallel and distributed computing, and mobile computing, as well as ongo-
ing progress in programming and computing standardization efforts such as KSE
(e.g., http://www.cs.umbc.edu/kse/), FIPA (e.g., http://drogo.cselt.stet.it/fipa/),
and CORBA (e.g., http://www.rhein-neckar.de/~cetus/oo_corba.html and http://
industry.ebi.ac.uk/ corba/) are expected to further improve the possibilities of im-
plementing and applying DAT techniques and methods.

A Guide to This Book

The Chapters

The book is divided into two parts. Part I contains nine chapters, each treating a
core theme in the field of multiagent systems and DAT:

Chapter 1 concentrates on agents—the “micro” level referred to above.

Chapter 2 expands the considerations of Chapter 1 by focusing on systems
of agents and the computational infrastructure required for interaction—the
“macro” level referred to above.

Chapters 3 to 6 address elementary “intelligent activities” and their realization
in multiagent systems, namely,

= problem solving and planning,
s search,

s decision making, and

s learning.

Chapter 7 shows how processes of organizing, as they occur among agents and
humans, can be computationally modelled.
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= Chapter 8 describes formal methods for studying and constructing agents and
multiagent systems.

= Chapter 9 concentrates on applications of agent and multiagent system technol-
ogy.

Part IT includes chapters on closely related, selected themes from computer science
and software engineering:

= Chapter 10 focuses on groupware and computer supported cooperative work.
= Chapter 11 concentrates on distributed decision support systems.
®  Chapter 12 discusses various issues of concurrent programming.

®  Chapter 13 describes distributed control algorithms.

The relevance of these themes for the field can be easily seen. Agents in a multiagent
system often have to coordinate their activities, and so there is a need for technolo-
gies that support them in acting coherently as a group; additionally, groupware
and computer supported cooperative work constitute an important application do-
main for multiagent systems. Agents in a multiagent system often have to jointly
make decisions, and so there is a need for technologies that support them in their
distributed decision processes; moreover, distributed decision making is another
obvious application domain for multiagent systems. There is a need for powerful
concurrent, programming techniques that allow to efficiently implement multiagent
systems as parallel and distributed systems. And finally, there is an obvious need
for mechanisms and methods that enable agents to control their distributed com-
putations.

In the following, the individual chapters and their themes are motivated in more
detail.

Chapter 1, “Intelligent Agents” by Michael Wooldridge — This chapter
aims to introduce the reader to the basic issues surrounding the design and im-
plementation of intelligent agents. It begins by motivating the idea of an agent,
presents a definition of agents and intelligent agents, and then discusses the rela-
tionship between agents and other software paradigms (in particular, objects and
expert systems). The chapter then goes on to discuss four major approaches to
building agents. First, logic based architectures are reviewed. In logic based archi-
tectures, decision-making is viewed as logical deduction: the process of deciding
which action to perform is reduced to a theorem proving problem. Such architec-
tures have the advantage of semantic clarity, and in addition allow us to bring to
bear all the apparatus of logic and theorem proving that has been developed in
AT and computer science over the years. However, such architectures suffer from a
number of drawbacks, not the least of which being that purely logical architectures
do not seem well suited to domains that are subject to real time constraints. Sec-
ond, reactive architectures are discussed. The characteristic of such architectures
is that they eschew symbolic representations and reasoning in favour of a closer
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relationship between agent perception and action. Such architectures are more eco-
nomical in computational terms, making them well-suited to episodic environments
that require real-time performance. However, the process of engineering such ar-
chitectures is not well understood. Third, belief-desire-intention architectures are
discussed. In such architectures, decision making is viewed as practical reasoning
from beliefs about how the world is and will be to the options available to an agent,
and finally to intentions and actions. The process is somewhat similar to the kind
of “folk reasoning” that humans use every day in deciding what to do. Belief-desire-
intention architectures also have an attractive formalization, discussed elsewhere in
this book. Fourth, layered agent architectures are reviewed. In such architectures,
decision making is partitioned into a number of different decision making layers,
each dealing with the agent’s environment at a different level of abstraction. Lay-
ered agent architectures provide a natural way of decomposing agent functionality,
and are currently a popular approach to agent design. In particular, the horizon-
tally layered TOURINGMACHINES architecture and the wvertically layered INTERRAP
architecture are discussed. Finally, some prototypical agent programming languages
are reviewed: Shoham’s AGENTO language, and Fisher’s Concurrent METATEM lan-
guage.

Chapter 2, “Multiagent Systems and Societies of Agents” by Michael
N. Huhns and Larry M. Stephens — Agents operate and exist in some
environment, which typically is both computational and physical. The environment
might be open or closed, and it might or might not contain other agents. Although
there are situations where an agent can operate usefully by itself, the increasing
interconnection and networking of computers is making such situations rare. In
Chapter 2, environments in which agents can operate effectively and interact with
each other productively are analyzed, described, and designed.

The environments provide a computational infrastructure for such interactions
to take place. The infrastructure includes communication protocols, which enable
agents to exchange and understand messages, and interaction protocols, which en-
able agents to have conversations—structured exchanges of messages. For example,
a communication protocol might specify that the messages for a particular course
of action to be exchanged between two agents are of the types Propose, Accept, Re-
ject, and Counterpropose. Based on these message types, two agents might use the
following interaction protocol for negotiation: Agentl proposes a course of action
to Agent2; Agent2 evaluates the proposal and sends a counterproposal to Agentl;
Agentl accepts the counterproposal.

Interaction protocols enable agents to coordinate their activities, which can then
be performed more efficiently. The degree of coordination is the extent to which they
avoid extraneous activity by reducing resource contention, avoiding livelock and
deadlock, and maintaining applicable safety conditions. Cooperation is coordination
among nonantagonistic agents, while negotiation is coordination among competitive
or simply self-interested agents. Chapter 2 describes protocols for coordination,
cooperation, and negotiation.
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Chapter 2 also shows how environments in which large numbers of agents exist
must have different interaction protocols, based on social commitments, laws, and
conventions.

Chapter 3, “Distributed Problem Solving and Planning” by Edmund
H. Durfee — The interaction protocols introduced in Chapter 2 provide a means
for agents to communicate about working together to solve problems, including
coordination problems. Chapter 3 focuses on strategies for using protocols and
reasoning capabilities to realize the benefits of cooperation. Distributed problem
solving focuses on techniques for exploiting the distributed computational power
and expertise in a MAS to accomplish large complex tasks. Of particular interest
are strategies for moving tasks or results among agents to realize the benefits of
cooperative problem solving. One main thread of work is the development of task-
passing techniques to decide where to allocate subtasks to exploit the available
capabilities of agents when large tasks initially arrive at a few agents. A second
main thread of work is the study of result-sharing strategies to decide how agents
that might be working on pieces of larger task can discover the relationships among
their activities and coordinate them.

Coordinating problem-solving activities can involve anticipating the activities
being undertaken by various agents and modifying those plans to make them
more coordinated. Solving this planning problem is thus both a means to an
end (distributed problem solving) and a distributed problem to be solved in its
own right. The specific requirements and representations of planning problems,
however, allow us to identify techniques that are particularly suited for distributed
planning. We distinguish between the planning process and the execution of plans,
and recognize that either, or both, of these can be distributed. We can then consider
techniques for each. An interesting issue arises as to whether the coordination
process should precede or succeed the planning processes of the agents; different
decisions lead to different flavors of distributed planning, and a perspective is
presented that allows these approaches to be seen as extremes of a more general
process. It is also considered how throwing execution into the mix of planning
and coordination can complicate matters, and algorithms for interleaving planning,
coordination, and execution for dynamic applications are presented.

Chapter 4, “Search Algorithms for Agents” by Makoto Yokoo and Toru
Ishida — This chapter deals with search algorithms for agents. Search is an umbrella
term for various problem solving techniques in AI, where the sequence of actions
required for solving a problem cannot be known a priori but must be determined by
a trial-and-error exploration of alternatives. Search problems are divided into three
classes: (i) path-finding problems, where the objective is to find a path from an
initial state to a goal state, (ii) constraint satisfaction problems, where the objec-
tive is to find a combination of variable values that satisfies the given constraints,
and (iii) two-player games such as chess and checkers. While two-player games
deal with situations in which two competitive agents exist, most algorithms for the
other two classes (constraint satisfaction and path-finding) were originally devel-
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oped for single-agent problem solving. Various asynchronous search algorithms for
these two classes are described. These algorithms are useful for cooperative problem
solving by multiple agents each with limited rationality, since in these algorithms,
a problem can be solved by accumulating local computations for each agent, and
the execution order of these local computations can be arbitrary or highly flexi-
ble. More specifically, with respect constraint satisfaction problems the following
asynchronous search algorithms are presented: the filtering algorithm, the hyper-
resolution-based consistency algorithm, the asynchronous backtracking algorithm,
and the asynchronous weak-commitment search algorithm. With respect to path-
finding problems, first asynchronous dynamic programming as the basis for other
algorithms is introduced. Then the Learning Real-time A* algorithm, the Real-time
A* algorithm, the Moving Target Search algorithm, Real-time Bidirectional Search
algorithms, and real-time multiagent search algorithms as special cases of asyn-
chronous dynamic programming are described. With respect to two-player games,
the basic minimax procedure and the alpha-beta pruning method to speed up the
minimax procedure are presented.

Chapter 5, “Distributed Rational Decision Making” by Tuomas W.
Sandholm — Multiagent systems consisting of self-interested agents are becoming
increasingly important. One reason for this is the technology push of a growing
standardized communication infrastructure over which separately designed agents
belonging to different organizations can interact in an open environment in real-
time and safely carry out transactions. The second reason is strong application pull
for computer support for negotiation at the operative decision making level. For
example, we are witnessing the advent of small transaction electronic commerce on
the Internet for purchasing goods, information, and communication bandwidth.
There is also an industrial trend toward virtual enterprises: dynamic alliances
of small, agile enterprises which together can take advantage of economies of
scale when available—e.g., respond to more diverse orders than individual agents
can—but do not suffer from diseconomies of scale. Automated negotiation can
save labor time of human negotiators, but in addition, other savings are possible
because computational agents can be more effective at finding beneficial short-term
contracts than humans are in strategically and combinatorially complex settings.

This chapter discusses methods for making socially desirable decisions among
rational agents that only care of their own good, and may act insincerely to promote
it. The techniques covered include

= vyoting,

= auctions,

®  bargaining,

= market mechanisms,
®  contracting, and

®m  coalition formation.
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The chapter cites results from microeconomics—especially game theory—but it is
not a general overview of those topics. Instead it deals relatively deeply with some of
the topics which are particularly relevant to the design of computational multiagent
systems. Special emphasis is placed on the implications of limited computation
on the classic results. This is one area where game theory and computer science
fruitfully blend within the field of DAL

Chapter 6, “Learning in Multiagent Systems” by Sandip Sen and Ger-
hard Weiss — Multiagent systems typically are of considerable complexity with
respect to both their structure and their function. For most application tasks, and
even in environments that appear to be more or less simple at a first glance, it is
extremely difficult or even impossible to correctly specify the behavioral repertoires
and concrete activities of multiagent sytems at design time. This would require, for
instance, that it is known in advance which environmental requirements will emerge
in the future, which agents will be available at the time of emergence, and how the
available agents have to interact in response to these requirements. Obviously, of-
ten the only feasible way to cope with this kind of problems is to endow the agents
themselves with the ability to learn appropriate activity and interaction patterns.
This chapter focuses on important aspects of learning in multiagent systems.

The chapter starts with a more general characterization of learning in multiagent
systems. This includes an identification of principle categories of this kind of
learning, an overview of differencing features that help to structure the broad variety
of forms of learning that may occur in multiagent systems, and (from the point of
view of multiagent systems) a description of the basic learning problem known as the
credit-assignment problem. Then several typical learning approaches are described
and illustrated. These approaches are ordered according to their main focus:

® learning and activity coordination;
® Jearning about and from other agents; and

® learning and communication.

The chapter also offers a brief guide to relevant related work from machine learning,
psychology, and economics, and shows potential directions of future research.

Chapter 7, “Computational Organization Theory” by Kathleen M. Car-
ley and Les Gasser — Chapter 7 provides an overview of the emergent field of
Computational Organization Theory (COT). Researchers in COT use mathemat-
ical and computational models to theorize about and analyze organizations and
the processes of organizing. Research in this area blends some of the traditional
concerns of Al and distributed computing with work by organizational and social
theorists, to develop a more comprehensive understanding. In most of this work, or-
ganizations are characterized as multiagent systems in which agents are embedded
in particular social roles, have particular cognitive capabilities, and are engaged in
specific organizationally-relevant tasks. Using computationally intensive techniques
and empirical data, researchers are examining how organizations composed of peo-
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ple, artificial agents (such as webbots, robots, or other information technologies),
or both, should be coordinated and how work should be distributed within and
across such systems. Much of the work in this area focuses on issues of represen-
tation, organizational design, knowledge sharing, learning, and adaptivity. Some
issues currently being addressed include:

= What is the nature of coordination and how can it be made most effective?

= How do organizations of people and organizations of automated agents differ?
Should they be coordinated in similar ways?

= How socially intelligent do artifical agents need to be to communicate effectively
with people during a team decision task?

and so on. In general, the aim of research in this area is to build new concepts,
theories, and knowledge about organizing and organization in the abstract, to
develop tools and procedures for the validation and analysis of computational
organizational models, and to reflect these computational abstractions back to
actual organizational practice through both tools and knowledge. This chapter
reviews the dominant approaches and models in this area, potential toolkits, new
findings, directions, and trends.

Chapter 8, “Formal Methods in DAI” by Munindar P. Singh, Anand
S. Rao, and Michael P. Georgeff — As DAI moves into larger and more
critical applications, it is becoming increasingly important to develop techniques
to ensure that DAI systems behave appropriately. Safety and assurance can be
addressed by development methodologies, as in traditional software engineering.
But for methodologies to be effective in improving safety and correctness, they
must be founded upon rigorous characterizations of the architecture and behavior
of the given class of systems. In the case of DAI, this means that we develop formal
bases for the abstractions and constructions that arise in the study of agents and
multiagent systems.

Chapter 8 studies precisely such formalizations. It begins with background ma-
terial on some logics that are commonly used in traditional computer science, espe-
cially in the verification of concurrent programs. It presents DAlI-specific enhance-
ments to these logics, covering the concepts of knowledge, beliefs, desires, goals,
intentions, and know-how. Such cognitive concepts have long been informally stud-
ied in the context of agents, because they offer high-level specifications of the agents’
design and behavior that are independent, of most implementation details. In order
to give a flavor of how the formal techniques might be applied, this chapter also
describes how the above concepts may be realized in a practical interpreter.

Next, this chapter discusses a range of additional phenomena, such as coordina-
tion, teamwork, interagent communications, and social primitives. In conjunction
with concepts such as joint and group intentions, which lift single-agent primitives
to multiagent systems, these topics provide the essential conceptual basis for mul-
tiagent systems.



16

Prologue

The chapter concludes with a discussion of tools and systems that either di-
rectly implement the associated DAI-specific formal theories, are inspired by those
theories, or bring in traditional formal approaches.

Chapter 9, “Industrial and Practical Applications of DAI” by H. Van
Dyke Parunak — Successful application of agents (as of any technology) must
reconcile two perspectives. The researcher (exemplified in Chapters 1 to 8) focuses
on a particular capability (e.g., communication, planning, learning), and seeks
practical problems to demonstrate the usefulness of this capability (and justify
further funding). The industrial practitioner has a practical problem to solve, and
cares much more about the speed and cost-effectiveness of the solution than about
its elegance or sophistication. Chapter 9 attempts to bridge these perspectives. To
the agent researcher, it offers an overview of the kinds of problems that industrialists
face, and some examples of agent technologies that have made their way into
practical application. To the industrialist, it explains why agents are not just the
latest technical fad, but a natural match to the characteristics of a broad class of real
problems. Chapter 9 emphasizes agent applications in manufacturing and physical
control because good examples are available, the problems of interfacing agents
to the environment are more challenging than in all-electronic domains, and the
evidence of success or failure is clearer when a system must directly confront the laws
of physics. The chapter begins by describing the main industrial motivations for
choosing an agent architecture for a particular problem. It then explains the concept
of a system life cycle, which is widely used in industry to manage the progress of a
project toward its intended results. The life cycle serves as an organizing framework
for two sets of case studies. The first shows where in the life cycle agent-based
systems are used, while the second discusses the design and construction of an
agent-based system in terms of the life cycle. The chapter includes a review of some
development tools that will hasten deployment of agent technology in industry.

Chapter 10, “Groupware and Computer Supported Cooperative Work”
by Clarence Ellis and Jacques Wainer — The explosive growth of internet, in-
tranet, and related technologies is leading to an explosive growth of the interest in
groupware. Within our society, we see technologies that appear to greatly advance
the conditions for human life (e.g., water purification technology), and others that
seem to be questionable in their societal effects (e.g., television technology). Con-
vergence of computer and communications technologies makes the world a “global
village.” Groupware is an emerging technology that promises to conceptually bring
people together. Whether people are in the same conference room or scattered
around the world, groupware can potentially help them to coordinate, collaborate,
and cooperate.

Chapter 10 provides an introduction to groupware and computer supported coop-
erative work. Groupware is defined as computing and communications technology-
based systems that assist groups of participants, and help to support a shared
environment. Computer supported cooperative work is defined as the study of how
groups work, and how technology to enhance group interaction and collaboration
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can be implemented.

The chapter, which primarily emphasizes technical issues of groupware, offers
a taxonomy of groupware that is based on four aspects. The first aspect, keeper,
groups functionalities that are related to storage and access of shared data; the
second aspect, coordinator, is related to the ordering and synchronization of indi-
vidual activities that make up the group process; the third aspect, communicator,
groups functionalities related to unconstrained and explicit communication among
the participants; and the fourth aspect, team-agents, refers to intelligent or semi-
intelligent software components that perform specialized functions and contribute
as participants to the dynamics of the group. Most current groupware systems
have functionalities that are covered by the first three aspects. However, the most
promising aspect is the fourth one—and because this aspect is most closely related
to DAI, particular attention is paid to it throughout the chapter.

Chapter 11, “Distributed Models for Decision Support” by Jose Cuena
and Sascha Ossowski — Decision support systems (DSS) assist the responsible
persons in generating action plans in order to influence the behavior of natural
or artificial systems in a desired direction. Knowledge-based DSSs have shown
to perform well in a variety of different domains, as they allow for a meaningful
dialogue with the control personnel. Still, the growing complexity of todays decision
support problems makes the design process of such systems increasingly difficult
and cost intensive.

This chapter introduces the notion of distributed knowledge-based DSSs. Setting
out from concepts described in Part 1 of this book, an agent-based decision support
architecture is proposed. On the basis of this architecture, the possibilities of a
distributed, agent-based approach to DSS design are discussed by means of three
case studies taken from literature:

= Environmental Emergency Management — The objective of Environmental Emer-
gency Management is to minimize the negative impact of natural disasters or
industrial accidents. The architecture of a multiagent DSS is presented, in which
each agent corresponds to a preestablished organizational entity. An example of
the operation of this system is given within the frame of a flood management
scenario.

= Energy Management — Energy Management aims to maintain high quality supply
of electrical energy despite damages to transport and distribution networks
caused by wind, icing, lightning etc. A multiagent decision support architecture
for this task is described, that integrates both preexisting and purposefully
designed agents. In an example, it is shown how these agents cooperate to
perform fault diagnosis and service restauration in a distributed fashion.

= Road Traffic Management — Road Traffic Management is concerned with the
smooth flow of traffic in a road network along the different rush hour demands
and despite events such as accidents or road works. A multiagent architecture
is presented, where each traffic agent is responsible for specific parts of the road
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network. An example illustrates how the interaction between these agents leads
to the coordinated proposals of traffic control actions.

Chapter 12, “Concurrent Programming for DAI” by Gul A. Agha and
Nadeem Jamali — As processors and networks have become faster and cheaper,
parallelism and distribution to achieve performance gains has become more attrac-
tive. This chapter describes the Actor model of concurrent computation and extends
it to define mobile agents. Mobile agents may travel over a network of processors
in search for resources that they need to achieve their goals.

An economic model is useful as a basis on which hosts could be provided incentives
to allow agents to migrate and also to limit the resources that the agents consume.
The chapter defines agents that are allocated limited units of a global currency
which they can expend on purchasing physical resources needed for carrying out
their activities on different hosts.

Reasoning about concurrent systems has traditionally been a challenging task.
The chapter discusses ways of modifying semantics of Actor systems to support
mobility and control of resource consumption. The semantics of Agent systems
provides guidelines for designing systems of agents, for supporting non-intrusive
monitoring of the system, allows the systematic use computational reflection,
and enables agents to develop proofs of safe execution which may be offered to
prospective hosts.

The dynamicity and uncertainty in the behavior of ensembles of agents poses
challenging problems. The chapter describes how the context in which agents exe-
cute, and in which their interactions are mediated, may be dynamically customized.
Programming constructs for naming in open systems and scalable communication
are also described. The chapter also includes a number of programming examples
and a discussion of open issues.

Chapter 13, “Distributed Control Algorithms for AI” by Gerard Tel —
This chapter discusses a number of elementary problems in distributed computing
and a couple of well-known algorithmic “building blocks,” which are used as
procedures in distributed applications. The chapter is not intended to be complete,
as an enumeration of the many known distributed algorithms would be pointless
and endless. The chapter is even not intended to touch all relevant sub-areas and
problems studied in distributed computing, because they are not all relevant to
DAL Rather than an algorithm catalogue, the chapter aims to be an eye-opener for
the possibilities of the distributed computing model, an introduction to designing
and reasoning about the algorithms, and a pointer to some literature.

The chapter introduces the distributed model and illustrates the various possi-
bilities and difficulties with algorithms to compute spanning trees in a network. It
is shown how the communication and time complexities of the algorithms are eval-
uated. Then a more complicated, but relevant control problem is studied, namely
termination detection. This study reveals how intricate it is to make information
about a distributed global state available to a node locally. Termination detection
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occurs in distributed applications of all areas and is not specific for DAI.

Application of some distributed control techniques is exemplified in the later
sections in distributed computations for AI problems. A distributed implementa-
tion of Arc Consistency and Constraint Satisfaction is discussed, and it is shown
how termination detection and distributed evaluation of functions play a role. The
chapter finally presents a distributed graph algorithm, illustrating another termina-
tion detection principle, and providing an example of broadcast/convergecast and
controller movement.

The Exercises

To enable the reader to gain practice in multiagent systems and DAI, a number of
exercises of varying levels of difficulty are provided at the end of each chapter. The
following rating system is applied to roughly indicate the amount of effort required
for solving the exercises:

1. [Level 1] Exercises of Level 1 are solvable within a day (e.g., simple test of
comprehension or a small program).

2. [Level 2] Solving exercises of Level 2 can take days or weeks (e.g., writting
a fairly complex program). Usually the chapters provide all the information
necessary for solving Level-1 and Level-2 exercises.

3. [Level 3] Exercises of Level 3 are even harder and their solution can take
several weeks or months. Many of these exercises are related to “hot” topics
of current research.

4. [Level 4] Exercises of Level 4 concern open research questions and could be
topics of PhD theses. Solving Level-3 and Level-4 exercises typically requires
to read further literature and/or to conduct extensive experiments.

It is recommend to do the Level-1 and Level-2 exercises, and to attack at least
some of the exercises of Levels 3 and 4. Carefully working through Level-1 and
Level-2 exercises will reward a reader with a real understanding of the material of
the chapters, and solving Level-3 and Level-4 exercises will turn a reader into a real
expert!

The Glossary

The glossary at the end of the book is the result of a joint effort of the chapter
authors. It provides compact explanations of a number of terms used in the field of
multiagent systems and DAI. This glossary is neither intended to be complete nor
to offer “definitions” in the strict sense of this word. Instead, the focus is on key
terms and on their common usage. The primary purpose of the glossary is to make
it easier for the readers to get acquainted with basic terminology.



20 Prologue

A Few Pointers to Further Readings

The number of publications on multiagent systems and DAT has grown rapidly in
the past decade. The reader not familiar with the field and the available literature
may find the following, by no means complete, list of pointers useful as an initial
point of orientation:

Introductory texts, surveys, and overviews:

There are several general texts on multiagent systems and DAI (e.g., [2, 8, 20,
22, 25, 31, 40]), distributed problem solving (e.g., [10, 11, 17]), and agents (e.g.,
[5, 22, 45]).

Collections:

A detailed treatment of many key aspects of DAI is provided in [34]. A recent
compendium that covers both agent and multiagent themes is [23]. A “classic”
collection of DAI articles is [3]. Journal special issues on DAI and multiagent
systems are, e.g., [9, 16, 46]. There is a number of proceedings of conferences
and workshops on multiagent systems and DAI. For instance, the “International
Conference on Multi-Agent Systems (ICMAS)” series resulted in three proceed-
ings [12, 18, 30] that broadly cover the whole range of multiagent systems. The
AAAT-sponsored “Workshop on DAT” series led to two other “classic” collections
of DAI papers [19, 21]. The papers presented at the “European Workshop on
Modelling Agents in a Multi-Agent World (MAAMAW)” series are published
in [1, 7, 6, 13, 14, 35, 42, 43]. There are several conference and workshop se-
ries on agents. Among them are, for instance, the “International Conference on
Autonomous Agents (Agents)” series [37, 41], the “International Workshop on
Agent Theories, Architectures, and Languages (ATAL)” series [32, 39, 44, 47],
and the “Cooperative Information Agents (CIA)” series [27, 28].
Bibliographies:

A useful list of pointers to published material on DAI and related areas is
provided in [29]. A subject-indexed bibliography that comprehensively covers
early DAT publications is [4].

The first journal in the field is Autonomous Agents and Multi-Agent Systems
(Kluwer Academic Publishers).

Pointers to papers that deal with specific aspects of multiagent systems are exten-
sively included in the individual chapters.
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1 Intelligent Agents

Michael Wooldridge

1.1 Introduction

Computers are not very good at knowing what to do: every action a computer
performs must be explicitly anticipated, planned for, and coded by a programmer. If
a computer program ever encounters a situation that its designer did not anticipate,
then the result is not usually pretty—a system crash at best, multiple loss of life
at worst. This mundane fact is at the heart of our relationship with computers. It
is so self-evident to the computer literate that it is rarely mentioned. And yet it
comes as a complete surprise to those encountering computers for the first time.

For the most part, we are happy to accept computers as obedient, literal,
unimaginative servants. For many applications (such as payroll processing), it is
entirely acceptable. However, for an increasingly large number of applications, we
require systems that can decide for themselves what they need to do in order
to satisfy their design objectives. Such computer systems are known as agents.
Agents that must operate robustly in rapidly changing, unpredictable, or open
environments, where there is a significant possibility that actions can fail are known
as intelligent agents, or sometimes autonomous agents. Here are examples of recent
application areas for intelligent agents:

= When a space probe makes its long flight from Earth to the outer planets, a
ground crew is usually required to continually track its progress, and decide how
to deal with unexpected eventualities. This is costly and, if decisions are required
quickly, it is simply not practicable. For these reasons, organisations like NASA
are seriously investigating the possibility of making probes more autonomous—
giving them richer decision making capabilities and responsibilities.

®  Searching the Internet for the answer to a specific query can be a long and tedious
process. So, why not allow a computer program—an agent—do searches for us?
The agent would typically be given a query that would require synthesising
pieces of information from various different Internet information sources. Failure
would occur when a particular resource was unavailable, (perhaps due to network
failure), or where results could not be obtained.

This chapter is about intelligent agents. Specifically, it aims to give you a thorough
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introduction to the main issues associated with the design and implementation of
intelligent agents. After reading it, you will understand:

= why agents are believed to be an important new way of conceptualising and
implementing certain types of software application;

= what intelligent agents are (and are not), and how agents relate to other software
paradigms—in particular, expert systems and object-oriented programming;

= the main approaches that have been advocated for designing and implementing
intelligent agents, the issues surrounding these approaches, their relative merits,
and the challenges that face the agent implementor;

= the characteristics of the main programming languages available for building
agents today.

The chapter is structured as follows. First, section 1.2 describes what is meant by
the term agent. Section 1.3, presents some abstract architectures for agents. That is,
some general models and properties of agents are discussed without regard to how
they might be implemented. Section 1.4, discusses concrete architectures for agents.
The various major design routes that one can follow in implementing an agent
system are outlined in this section. In particular, logic-based architectures, reactive
architectures, belief-desire-intention architectures, and finally, layered architectures
for intelligent agents are described in detail. Finally, section 1.5 introduces some
prototypical programming languages for agent systems.

Comments on Notation

This chapter makes use of simple mathematical notation in order to make ideas
precise. The formalism used is that of discrete maths: a basic grounding in sets and
first-order logic should be quite sufficient to make sense of the various definitions
presented. In addition: if S is an arbitrary set, then p(S) is the powerset of S, and
S* is the set of sequences of elements of S; the symbol — is used for logical negation
(so —p is read “not p”); A is used for conjunction (so p A q is read “p and ¢”); V is
used for disjunction (so pV ¢ is read “p or ¢”); and finally, = is used for material
implication (so p = ¢ is read “p implies ¢”).

1.2

What Are Agents?

An obvious way to open this chapter would be by presenting a definition of the term
agent. After all, this is a book about multiagent systems—surely we must all agree
on what an agent is? Surprisingly, there is no such agreement: there is no universally
accepted definition of the term agent, and indeed there is a good deal of ongoing
debate and controversy on this very subject. Essentially, while there is a general
consensus that autonomy is central to the notion of agency, there is little agreement
beyond this. Part of the difficulty is that various attributes associated with agency
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AGENT

sensor ,
input action

output

ENVIRONMENT

Figure 1.1 An agent in its environment. The agent takes sensory input from
the environment, and produces as output actions that affect it. The interaction is
usually an ongoing, non-terminating one.

are of differing importance for different domains. Thus, for some applications, the
ability of agents to learn from their experiences is of paramount importance; for
other applications, learning is not only unimportant, it is undesirable.

Nevertheless, some sort of definition is important—otherwise, there is a danger
that the term will lose all meaning (cf. “user friendly”). The definition presented
here is adapted from [71]: An agent is a computer system that is situated in some
environment, and that is capable of autonomous action in this environment in order
to meet its design objectives.

There are several points to note about this definition. First, the definition refers
to “agents” and not “intelligent agents.” The distinction is deliberate: it is discussed
in more detail below. Second, the definition does not say anything about what type
of environment an agent occupies. Again, this is deliberate: agents can occupy many
different types of environment, as we shall see below. Third, we have not defined
autonomy. Like agency itself, autonomy is a somewhat tricky concept to tie down
precisely. In this chapter, it is used to mean that agents are able to act without
the intervention of humans or other systems: they have control both over their own
internal state, and over their behavior. In section 1.2.3, we will contrast agents with
the objects of object-oriented programming, and we will elaborate this point there.
In particular, we will see how agents embody a much stronger sense of autonomy
than objects do.

Figure 1.1 gives an abstract, top-level view of an agent. In this diagram, we can
see the action output generated by the agent in order to affect its environment. In
most domains of reasonable complexity, an agent will not have complete control over
its environment. It will have at best partial control, in that it can influence it. From
the point of view of the agent, this means that the same action performed twice in
apparently identical circumstances might appear to have entirely different effects,
and in particular, it may fail to have the desired effect. Thus agents in all but the
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most trivial of environments must be prepared for the possibility of failure. We can
sum this situation up formally by saying that environments are non-deterministic.

Normally, an agent will have a repertoire of actions available to it. This set of
possible actions represents the agents effectoric capability: its ability to modify its
environments. Note that not all actions can be performed in all situations. For
example, an action “lift table” is only applicable in situations where the weight
of the table is sufficiently small that the agent can lift it. Similarly, the action
“purchase a Ferrari” will fail if insufficient funds area available to do so. Actions
therefore have pre-conditions associated with them, which define the possible
situations in which they can be applied.

The key problem facing an agent is that of deciding which of its actions it
should perform in order to best satisfy its design objectives. Agent architectures,
of which we shall see several examples later in this chapter, are really software
architectures for decision making systems that are embedded in an environment.
The complexity of the decision-making process can be affected by a number
of different environmental properties. Russell and Norvig suggest the following
classification of environment properties [59, p46]:

= Accessible vs inaccessible.
An accessible environment is one in which the agent can obtain complete, ac-
curate, up-to-date information about the environment’s state. Most moderately
complex environments (including, for example, the everyday physical world and
the Internet) are inaccessible. The more accessible an environment is, the simpler
it is to build agents to operate in it.

" Deterministic vs non-deterministic.
As we have already mentioned, a deterministic environment is one in which any
action has a single guaranteed effect—there is no uncertainty about the state
that will result from performing an action. The physical world can to all intents
and purposes be regarded as non-deterministic. Non-deterministic environments
present greater problems for the agent designer.

®»  [Episodic vs non-episodic.
In an episodic environment, the performance of an agent is dependent on a
number of discrete episodes, with no link between the performance of an agent
in different scenarios. An example of an episodic environment would be a mail
sorting system [60]. Episodic environments are simpler from the agent developer’s
perspective because the agent can decide what action to perform based only on
the current episode—it need not reason about the interactions between this and
future episodes.

= Static vs dynamic.
A static environment is one that can be assumed to remain unchanged except
by the performance of actions by the agent. A dynamic environment is one that
has other processes operating on it, and which hence changes in ways beyond
the agent’s control. The physical world is a highly dynamic environment.
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Discrete vs continuous.

An environment is discrete if there are a fixed, finite number of actions and
percepts in it. Russell and Norvig give a chess game as an example of a discrete
environment, and taxi driving as an example of a continuous one.

As Russell and Norvig observe [59, p46], if an environment is sufficiently complex,
then the fact that it is actually deterministic is not much help: to all intents and
purposes, it may as well be non-deterministic. The most complex general class

of environments are those that are inaccessible, non-deterministic, non-episodic,

dynamic, and continuous.

1.2.1 Examples of Agents

At this point, it is worth pausing to consider some examples of agents (though not,
as yet, intelligent agents):

Any control system can be viewed as an agent. A simple (and overused) example
of such a system is a thermostat. Thermostats have a sensor for detecting room
temperature. This sensor is directly embedded within the environment (i.e., the
room), and it produces as output one of two signals: one that indicates that the
temperature is too low, another which indicates that the temperature is OK. The
actions available to the thermostat are “heating on” or “heating off”. The action
“heating on” will generally have the effect of raising the room temperature, but
this cannot be a guaranteed effect—if the door to the room is open, for example,
switching on the heater may have no effect. The (extremely simple) decision
making component of the thermostat implements (usually in electro-mechanical
hardware) the following rules:

too cold — heating on
temperature OK  —  heating off

More complex environment control systems, of course, have considerably richer
decision structures. Examples include autonomous space probes, fly-by-wire
aircraft, nuclear reactor control systems, and so on.

Most software daemons, (such as background processes in the UNIX operating
system), which monitor a software environment and perform actions to modify
it, can be viewed as agents. An example is the X Windows program xbiff. This
utility continually monitors a user’s incoming email, and indicates via a GUI
icon whether or not they have unread messages. Whereas our thermostat agent
in the previous example inhabited a physical environment—the physical world—
the xbiff program inhabits a software environment. It obtains information
about this environment by carrying out software functions (by executing system
programs such as 1s, for example), and the actions it performs are software
actions (changing an icon on the screen, or executing a program). The decision
making component is just as simple as our thermostat example.
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To summarize, agents are simply computer systems that are capable of autonomous
action in some environment in order to meet their design objectives. An agent will
typically sense its environment (by physical sensors in the case of agents situated
in part of the real world, or by software sensors in the case of software agents),
and will have available a repertoire of actions that can be executed to modify the
environment, which may appear to respond non-deterministically to the execution
of these actions.

1.2.2 Intelligent Agents

We are not used to thinking of thermostats or UNIX daemons as agents, and certainly
not as intelligent agents. So, when do we consider an agent to be intelligent? The
question, like the question what is intelligence? itself, is not an easy one to answer.
But for the purposes of this chapter, an intelligent agent is one that is capable of
flexible autonomous action in order to meet its design objectives, where flexibility
means three things [71]:

" reactivity: intelligent agents are able to perceive their environment, and respond
in a timely fashion to changes that occur in it in order to satisfy their design
objectives;

= pro-activeness: intelligent agents are able to exhibit goal-directed behavior by
taking the initiative in order to satisfy their design objectives;

= social ability: intelligent agents are capable of interacting with other agents (and
possibly humans) in order to satisfy their design objectives.

These properties are more demanding than they might at first appear. To see why,
let us consider them in turn. First, consider pro-activeness: goal directed behavior.
It is not hard to build a system that exhibits goal directed behavior—we do it every
time we write a procedure in PASCAL, a function in C, or a method in JAVA. When
we write such a procedure, we describe it in terms of the assumptions on which it
relies (formally, its pre-condition) and the effect it has if the assumptions are valid
(its post-condition). The effects of the procedure are its goal: what the author of
the software intends the procedure to achieve. If the pre-condition holds when the
procedure is invoked, then we expect that the procedure will execute correctly: that
it will terminate, and that upon termination, the post-condition will be true, i.e.,
the goal will be achieved. This is goal directed behavior: the procedure is simply
a plan or recipe for achieving the goal. This programming model is fine for many
environments. For example, its works well when we consider functional systems—
those that simply take some input z, and produce as output some some function
f(x) of this input. Compilers are a classic example of functional systems.

But for non-functional systems, this simple model of goal directed programming
is not acceptable, as it makes some important limiting assumptions. In particular, it
assumes that the environment does not change while the procedure is executing. If
the environment does change, and in particular, if the assumptions (pre-condition)
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underlying the procedure become false while the procedure is executing, then the
behavior of the procedure may not be defined—often, it will simply crash. Also, it
is assumed that the goal, that is, the reason for executing the procedure, remains
valid at least until the procedure terminates. If the goal does not remain valid, then
there is simply no reason to continue executing the procedure.

In many environments, neither of these assumptions are valid. In particular, in
domains that are too complex for an agent to observe completely, that are multi-
agent (i.e., they are populated with more than one agent that can change the
environment), or where there is uncertainty in the environment, these assumptions
are not reasonable. In such environments, blindly executing a procedure without
regard to whether the assumptions underpinning the procedure are valid is a poor
strategy. In such dynamic environments, an agent must be reactive, in just the way
that we described above. That is, it must be responsive to events that occur in its
environment, where these events affect either the agent’s goals or the assumptions
which underpin the procedures that the agent is executing in order to achieve its
goals.

As we have seen, building purely goal directed systems is not hard. As we shall
see later in this chapter, building purely reactive systems—ones that continually
respond to their environment—is also not difficult. However, what turns out to be
hard is building a system that achieves an effective balance between goal-directed
and reactive behavior. We want agents that will attempt to achieve their goals
systematically, perhaps by making use of complex procedure-like patterns of action.
But we don’t want our agents to continue blindly executing these procedures in an
attempt to achieve a goal either when it is clear that the procedure will not work,
or when the goal is for some reason no longer valid. In such circumstances, we want
our agent to be able to react to the new situation, in time for the reaction to be of
some use. However, we do not want our agent to be continually reacting, and hence
never focussing on a goal long enough to actually achieve it.

On reflection, it should come as little surprise that achieving a good balance
between goal directed and reactive behavior is hard. After all, it is comparatively
rare to find humans that do this very well. How many of us have had a manager
who stayed blindly focussed on some project long after the relevance of the project
was passed, or it was clear that the project plan was doomed to failure? Similarly,
how many have encountered managers who seem unable to stay focussed at all,
who flit from one project to another without ever managing to pursue a goal long
enough to achieve anything? This problem—of effectively integrating goal-directed
and reactive behavior—is one of the key problems facing the agent designer. As we
shall see, a great many proposals have been made for how to build agents that can
do this—but the problem is essentially still open.

Finally, let us say something about social ability, the final component of flexible
autonomous action as defined here. In one sense, social ability is trivial: every
day, millions of computers across the world routinely exchange information with
both humans and other computers. But the ability to exchange bit streams is
not really social ability. Consider that in the human world, comparatively few of



24

Intelligent Agents

our meaningful goals can be achieved without the cooperation of other people,
who cannot be assumed to share our goals—in other words, they are themselves
autonomous, with their own agenda to pursue. To achieve our goals in such
situations, we must negotiate and cooperate with others. We may be required to
understand and reason about the goals of others, and to perform actions (such as
paying them money) that we would not otherwise choose to perform, in order
to get them to cooperate with us, and achieve our goals. This type of social
ability is much more complex, and much less well understood, than simply the
ability to exchange binary information. Social ability in general (and topics such
as negotiation and cooperation in particular) are dealt with elsewhere in this book,
and will not therefore be considered here. In this chapter, we will be concerned with
the decision making of individual intelligent agents in environments which may be
dynamic, unpredictable, and uncertain, but do not contain other agents.

1.2.3 Agents and Objects

Object-oriented programmers often fail to see anything novel or new in the idea of
agents. When one stops to consider the relative properties of agents and objects,
this is perhaps not surprising. Objects are defined as computational entities that
encapsulate some state, are able to perform actions, or methods on this state, and
communicate by message passing.

While there are obvious similarities, there are also significant differences between
agents and objects. The first is in the degree to which agents and objects are
autonomous. Recall that the defining characteristic of object-oriented programming
is the principle of encapsulation—the idea that objects can have control over their
own internal state. In programming languages like JAVA, we can declare instance
variables (and methods) to be private, meaning they are only accessible from
within the object. (We can of course also declare them public, meaning that they
can be accessed from anywhere, and indeed we must do this for methods so that
they can be used by other objects. But the use of public instance variables is
usually considered poor programming style.) In this way, an object can be thought
of as exhibiting autonomy over its state: it has control over it. But an object does
not exhibit control over it’s behavior. That is, if a method m is made available for
other objects to invoke, then they can do so whenever they wish—once an object
has made a method public, then it subsequently has no control over whether or
not that method is executed. Of course, an object must make methods available to
other objects, or else we would be unable to build a system out of them. This is not
normally an issue, because if we build a system, then we design the objects that go
in it, and they can thus be assumed to share a “common goal”. But in many types
of multiagent system, (in particular, those that contain agents built by different
organisations or individuals), no such common goal can be assumed. It cannot be
for granted that an agent ¢ will execute an action (method) a just because another
agent j wants it to—a may not be in the best interests of i. We thus do not think of
agents as invoking methods upon one-another, but rather as requesting actions to
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be performed. If j requests ¢ to perform a, then ¢ may perform the action or it may
not. The locus of control with respect to the decision about whether to execute an
action is thus different in agent and object systems. In the object-oriented case, the
decision lies with the object that invokes the method. In the agent case, the decision
lies with the agent that receives the request. This distinction between objects and
agents has been nicely summarized in the following slogan: Objects do it for free;
agents do it for money.

Note that there is nothing to stop us implementing agents using object-oriented
techniques. For example, we can build some kind of decision making about whether
to execute a method into the method itself, and in this way achieve a stronger
kind of autonomy for our objects. The point is that autonomy of this kind is not a
component of the basic object-oriented model.

The second important distinction between object and agent systems is with
respect to the notion of flexible (reactive, pro-active, social) autonomous behavior.
The standard object model has nothing whatsoever to say about how to build
systems that integrate these types of behavior. Again, one could object that we can
build object-oriented programs that do integrate these types of behavior. But this
argument misses the point, which is that the standard object-oriented programming
model has nothing to do with these types of behavior.

The third important distinction between the standard object model and our
view of agent systems is that agents are each considered to have their own thread
of control—in the standard object model, there is a single thread of control in
the system. Of course, a lot of work has recently been devoted to concurrency
in object-oriented programming. For example, the JAVA language provides built-
in constructs for multi-threaded programming. There are also many programming
languages available (most of them admittedly prototypes) that were specifically
designed to allow concurrent object-based programming. But such languages do
not capture the idea we have of agents as autonomous entities. Perhaps the closest
that the object-oriented community comes is in the idea of active objects:

An active object is one that encompasses its own thread of control [...]. Active
objects are generally autonomous, meaning that they can exhibit some behavior
without being operated upon by another object. Passive objects, on the other hand,
can only undergo a state change when explicitly acted upon. [5, p91]

Thus active objects are essentially agents that do not necessarily have the ability
to exhibit flexible autonomous behavior.

To summarize, the traditional view of an object and our view of an agent have
at least three distinctions:

= agents embody stronger notion of autonomy than objects, and in particular,
they decide for themselves whether or not to perform an action on request from
another agent;

= agents are capable of flexible (reactive, pro-active, social) behavior, and the
standard object model has nothing to say about such types of behavior;
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= a multiagent system is inherently multi-threaded, in that each agent is assumed
to have at least one thread of control.

1.2.4 Agents and Expert Systems

Expert systems were the most important AT technology of the 1980s [31]. An expert
system is one that is capable of solving problems or giving advice in some knowledge-
rich domain [32]. A classic example of an expert system is MYCIN, which was
intended to assist physicians in the treatment of blood infections in humans. MYCIN
worked by a process of interacting with a user in order to present the system with
a number of (symbolically represented) facts, which the system then used to derive
some conclusion. MYCIN acted very much as a consultant: it did not operate directly
on humans, or indeed any other environment. Thus perhaps the most important
distinction between agents and expert systems is that expert systems like MYCIN are
inherently disembodied. By this, we mean that they do not interact directly with any
environment: they get their information not via sensors, but through a user acting as
middle man. In the same way, they do not act on any environment, but rather give
feedback or advice to a third party. In addition, we do not generally require expert
systems to be capable of co-operating with other agents. Despite these differences,
some expert systems, (particularly those that perform real-time control tasks), look
very much like agents. A good example is the ARCHON system [33].

Sources and Further Reading

A view of artificial intelligence as the process of agent design is presented in [59],
and in particular, Chapter 2 of [59] presents much useful material. The definition
of agents presented here is based on [71], which also contains an extensive review
of agent architectures and programming languages. In addition, [71] contains a de-
tailed survey of agent theories—formalisms for reasoning about intelligent, rational
agents, which is outside the scope of this chapter. This question of “what is an
agent” is one that continues to generate some debate; a collection of answers may
be found in [48]. The relationship between agents and objects has not been widely
discussed in the literature, but see [24]. Other readable introductions to the idea of
intelligent agents include [34] and [13].

1.3 Abstract Architectures for Intelligent Agents

We can easily formalize the abstract view of agents presented so far. First, we will
assume that the state of the agent’s environment can be characterized as a set
S = {s1,82,...} of environment states. At any given instant, the environment is
assumed to be in one of these states. The effectoric capability of an agent is assumed
to be represented by a set A = {ay,as,...} of actions. Then abstractly, an agent
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can be viewed as a function
action : S* - A

which maps sequences of environment states to actions. We will refer to an agent
modelled by a function of this form as a standard agent. The intuition is that an
agent decides what action to perform on the basis of its history—its experiences to
date. These experiences are represented as a sequence of environment states—those
that the agent has thus far encountered.

The (non-deterministic) behavior of an an environment can be modelled as a
function

env:SxA— p(S)

which takes the current state of the environment s € S and an action a € A
(performed by the agent), and maps them to a set of environment states env(s, a)—
those that could result from performing action a in state s. If all the sets in the
range of env are all singletons, (i.e., if the result of performing any action in any
state is a set containing a single member), then the environment is deterministic,
and its behavior can be accurately predicted.

We can represent the interaction of agent and environment as a history. A history
h is a sequence:
hso —2 51 Ly 59 2 55 2 .. D g, L
where sg is the initial state of the environment (i.e., its state when the agent starts
executing), a, is the u’th action that the agent chose to perform, and s, is the u’th
environment state (which is one of the possible results of executing action a,_1 in
state s,_1). If action : S* — A is an agent, env : S x A — p(5) is an environment,
and s is the initial state of the environment, then the sequence

ao ai a2 as Ay —1 [
h:sp—>8 —> 8y —>83 —> -+ —> Sy —> -+~

will represent a possible history of the agent in the environment iff the following
two conditions hold:

Yu € IN, a, = action((So,S1,---,Su))
and
Vu € IN such that u > 0, s, € env(sy—1,au—1)-

The characteristic behavior of an agent action : S* — A in an environment
env : S x A — p(5) is the set of all the histories that satisfy these properties.
If some property ¢ holds of all these histories, this property can be regarded as
an invariant property of the agent in the environment. For example, if our agent
is a nuclear reactor controller, (i.e., the environment is a nuclear reactor), and
in all possible histories of the controller/reactor, the reactor does not blow up,
then this can be regarded as a (desirable) invariant property. We will denote by
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hist(agent, environment) the set of all histories of agent in environment. Two
agents ag; and ag> are said to be behaviorally equivalent with respect to environ-
ment env iff hist(ag:, env) = hist(aga, env), and simply behaviorally equivalent iff
they are behaviorally equivalent with respect to all environments.

In general, we are interested in agents whose interaction with their environment
does not end, i.e., they are non-terminating. In such cases, the histories that we
consider will be infinite.

1.3.1 Purely Reactive Agents

Certain types of agents decide what to do without reference to their history. They
base their decision making entirely on the present, with no reference at all to the
past. We will call such agents purely reactive, since they simply respond directly
to their environment. Formally, the behavior of a purely reactive agent can be
represented by a function

action : S — A.

It should be easy to see that for every purely reactive agent, there is an equivalent
standard agent; the reverse, however, is not generally the case.

Our thermostat agent is an example of a purely reactive agent. Assume, without
loss of generality, that the thermostat’s environment can be in one of two states—
either too cold, or temperature OK. Then the thermostat’s action function is simply

heater off if s = temperature OK

heater on otherwise.

action(s) = {

1.3.2 Perception

Viewing agents at this abstract level makes for a pleasantly simply analysis.
However, it does not help us to construct them, since it gives us no clues about
how to design the decision function action. For this reason, we will now begin
to refine our abstract model of agents, by breaking it down into sub-systems in
exactly the way that one does in standard software engineering. As we refine our
view of agents, we find ourselves making design choices that mostly relate to the
subsystems that go to make up an agent—what data and control structures will be
present. An agent architecture is essentially a map of the internals of an agent—its
data structures, the operations that may be performed on these data structures,
and the control flow between these data structures. Later in this chapter, we will
discuss a number of different types of agent architecture, with very different views
on the data structures and algorithms that will be present within an agent. In
the remainder of this section, however, we will survey some fairly high-level design
decisions. The first of these is the separation of an agent’s decision function into
perception and action subsystems: see Figure 1.2.



1.3 Abstract Architectures for Intelligent Agents 39

(= (=)

AGENT

ENVIRONMENT

Figure 1.2 Perception and action subsystems.

The idea is that the function see captures the agent’s ability to observe its
environment, whereas the action function represents the agent’s decision making
process. The see function might be implemented in hardware in the case of an
agent situated in the physical world: for example, it might be a video camera or
an infra-red sensor on a mobile robot. For a software agent, the sensors might be
system commands that obtain information about the software environment, such as
1s, finger, or suchlike. The output of the see function is a percept—a perceptual
input. Let P be a (non-empty) set of percepts. Then see is a function

see: S — P
which maps environment states to percepts, and action is now a function
action : P* — A

which maps sequences of percepts to actions.

These simple definitions allow us to explore some interesting properties of agents
and perception. Suppose that we have two environment states, s; € S and s5 € S,
such that s1 # s2, but see(s1) = see(s2). Then two different environment states are
mapped to the same percept, and hence the agent would receive the same perceptual
information from different environment states. As far as the agent is concerned,
therefore, s; and s, are indistinguishable. To make this example concrete, let us
return to the thermostat example. Let z represent the statement

“the room temperature is OK”
and let y represent the statement
“John Major is Prime Minister.”

If these are the only two facts about our environment that we are concerned with,
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then the set S of environment states contains exactly four elements:

S= {{"ZE, _'y}7 {"ZE, y}’ {Jf, _'y}7 {ZE, y}}
N e e
s1 S 53 Sa
Thus in state s1, the room temperature is not OK, and John Major is not Prime
Minister; in state so, the room temperature is not OK, and John Major is Prime
Minister. Now, our thermostat is sensitive only to temperatures in the room. This
room temperature is not causally related to whether or not John Major is Prime
Minister. Thus the states where John Major is and is not Prime Minister are literally
indistinguishable to the thermostat. Formally, the see function for the thermostat
would have two percepts in its range, p; and po, indicating that the temperature is
too cold or OK respectively. The see function for the thermostat would behave as
follows:

p1 if s =8y or s = s9
see(s) = ]
po if s =s3 0r s =s4.

Given two environment states s € S and s’ € S, let us write s = s if
see(s) = see(s'). It is not hard to see that = is an equivalence relation over
environment states, which partitions S into mutually indistinguishable sets of
states. Intuitively, the coarser these equivalence classes are, the less effective is
the agent’s perception. If | = | = |S|, (i.e., the number of distinct percepts is equal
to the number of different environment states), then the agent can distinguish every
state—the agent has perfect perception in the environment; it is omniscient. At the
other extreme, if | = | = 1, then the agent’s perceptual ability is non-existent—it
cannot distinguish between any different states. In this case, as far as the agent is
concerned, all environment states are identical.

1.3.3 Agents with State

We have so far been modelling an agent’s decision function action as from sequences
of environment states or percepts to actions. This allows us to represent agents
whose decision making is influenced by history. However, this is a somewhat
unintuitive representation, and we shall now replace it by an equivalent, but
somewhat more natural scheme. The idea is that we now consider agents that
maintain state—see Figure 1.3.

These agents have some internal data structure, which is typically used to record
information about the environment state and history. Let I be the set of all internal
states of the agent. An agent’s decision making process is then based, at least in
part, on this information. The perception function see for a state-based agent is
unchanged, mapping environment states to percepts as before:

see: S — P
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Figure 1.3 Agents that maintain state.

The action-selection function action is now defined a mapping
action : I — A

from internal states to actions. An additional function next is introduced, which
maps an internal state and percept to an internal state:

next : I x P — 1T

The behavior of a state-based agent can be summarized as follows. The agent
starts in some initial internal state ig. It then observes its environment state s,
and generates a percept see(s). The internal state of the agent is then updated
via the next function, becoming set to next(ip, see(s)). The action selected by the
agent is then action(nezxt(ip, see(s))). This action is then performed, and the agent
enters another cycle, perceiving the world via see, updating its state via next, and
choosing an action to perform via action.

It is worth observing that state-based agents as defined here are in fact no
more powerful than the standard agents we introduced earlier. In fact, they are
identical in their expressive power—every state-based agent can be transformed
into a standard agent that is behaviorally equivalent.

Sources and Further Reading

The abstract model of agents presented here is based on that given in [25, Chapter
13], and also makes use of some ideas from [61, 60]. The properties of perception
as discussed in this section lead to knowledge theory, a formal analysis of the
information implicit within the state of computer processes, which has had a
profound effect in theoretical computer science. The definitive reference is [14],
and an introductory survey is [29].
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1.4 Concrete Architectures for Intelligent Agents

Thus far, we have considered agents only in the abstract. So while we have examined
the properties of agents that do and do not maintain state, we have not stopped
to consider what this state might look like. Similarly, we have modelled an agent’s
decision making as an abstract function action, which somehow manages to indicate
which action to perform—but we have not discussed how this function might be
implemented. In this section, we will rectify this omission. We will consider four
classes of agents:

" Jogic based agents—in which decision making is realized through logical deduc-
tion;

= reactive agents—in which decision making is implemented in some form of direct
mapping from situation to action;

" Delief-desire-intention agents—in which decision making depends upon the ma-
nipulation of data structures representing the beliefs, desires, and intentions of
the agent; and finally,

® Jayered architectures—in which decision making is realized via various software
layers, each of which is more-or-less explicitly reasoning about the environment
at different levels of abstraction.

In each of these cases, we are moving away from the abstract view of agents, and
beginning to make quite specific commitments about the internal structure and
operation of agents. Each section explains the nature of these commitments, the
assumptions upon which the architectures depend, and the relative advantages and
disadvantages of each.

1.4.1 Logic-Based Architectures

The “traditional” approach to building artificially intelligent systems, (known as
symbolic AI) suggests that intelligent behavior can be generated in a system by
giving that system a symbolic representation of its environment and its desired
behavior, and syntactically manipulating this representation. In this section, we
focus on the apotheosis of this tradition, in which these symbolic representations are
logical formulae, and the syntactic manipulation corresponds to logical deduction,
or theorem proving.

The idea of agents as theorem provers is seductive. Suppose we have some theory
of agency—some theory that explains how an intelligent agent should behave.
This theory might explain, for example, how an agent generates goals so as to
satisfy its design objective, how it interleaves goal-directed and reactive behavior
in order to achieve these goals, and so on. Then this theory ¢ can be considered
as a specification for how an agent should behave. The traditional approach to
implementing a system that will satisfy this specification would involve refining the
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specification through a series of progressively more concrete stages, until finally an
implementation was reached. In the view of agents as theorem provers, however, no
such refinement takes place. Instead, ¢ is viewed as an executable specification: it
is directly executed in order to produce the agent’s behavior.

To see how such an idea might work, we shall develop a simple model of logic-
based agents, which we shall call deliberate agents. In such agents, the internal state
is assumed to be a database of formulae of classical first-order predicate logic. For
example, the agent’s database might contain formulae such as:

Open(valve221)
Temperature(reactord726,321)
Pressure(tank776, 28)

It is not difficult to see how formulae such as these can be used to represent the
properties of some environment. The database is the information that the agent
has about its environment. An agent’s database plays a somewhat analogous role to
that of belief in humans. Thus a person might have a belief that valve 221 is open—
the agent might have the predicate Open(valve221) in its database. Of course, just
like humans, agents can be wrong. Thus I might believe that valve 221 is open when
it is in fact closed; the fact that an agent has Open(valve221) in its database does
not mean that valve 221 (or indeed any valve) is open. The agent’s sensors may
be faulty, its reasoning may be faulty, the information may be out of date, or the
interpretation of the formula Open(valve221) intended by the agent’s designer may
be something entirely different.

Let L be the set of sentences of classical first-order logic, and let D = p(L) be
the set of L databases, i.e., the set of sets of L-formulae. The internal state of an
agent is then an element of D. We write A, Ay, ... for members of D. The internal
state of an agent is then simply a member of the set D. An agent’s decision making
process is modelled through a set of deduction rules, p. These are simply rules of
inference for the logic. We write A -, ¢ if the formula ¢ can be proved from the
database A using only the deduction rules p. An agents perception function see
remains unchanged:

see: S — P.
Similarly, our next function has the form
next : D x P — D

It thus maps a database and a percept to a new database. However, an agent’s
action selection function, which has the signature

action : D — A

is defined in terms of its deduction rules. The pseudo-code definition of this function
is as follows.
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1 function action(A : D) : A

2 begin

3 for each a € A do

4. if A+, Do(a) then
5. return a

6 end-if

7 end-for

8 for each a € A do

9 if A/, =Do(a) then
10. return a

11. end-if

12. end-for

13. return null

14. end function action

The idea is that the agent programmer will encode the deduction rules p and
database A in such a way that if a formula Do(a) can be derived, where a is a
term that denotes an action, then a is the best action to perform. Thus, in the first
part of the function (lines (3)—(7)), the agent takes each of its possible actions a in
turn, and attempts to prove the form the formula Do(a) from its database (passed
as a parameter to the function) using its deduction rules p. If the agent succeeds
in proving Do(a), then a is returned as the action to be performed.

What happens if the agent fails to prove Do(a), for all actions a € A? In this case,
it attempts to find an action that is consistent with the rules and database, i.e.,
one that is not explicitly forbidden. In lines (8)—(12), therefore, the agent attempts
to find an action a € A such that —Do(a) cannot be derived from its database
using its deduction rules. If it can find such an action, then this is returned as the
action to be performed. If, however, the agent fails to find an action that is at least
consistent, then it returns a special action null (or noop), indicating that no action
has been selected.

In this way, the agent’s behavior is determined by the agent’s deduction rules
(its “program”) and its current database (representing the information the agent
has about its environment).

To illustrate these ideas, let us consider a small example (based on the vacuum
cleaning world example of [59, p51]). The idea is that we have a small robotic agent
that will clean up a house. The robot is equipped with a sensor that will tell it
whether it is over any dirt, and a vacuum cleaner that can be used to suck up dirt.
In addition, the robot always has a definite orientation (one of north, south, east,
or west). In addition to being able to suck up dirt, the agent can move forward one
“step” or turn right 90°. The agent moves around a room, which is divided grid-like
into a number of equally sized squares (conveniently corresponding to the unit of
movement of the agent). We will assume that our agent does nothing but clean—it
never leaves the room, and further, we will assume in the interests of simplicity
that the room is a 3 x 3 grid, and the agent always starts in grid square (0,0) facing
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Figure 1.4 Vacuum world

north.

To summarize, our agent can receive a percept dirt (signifying that there is dirt
beneath it), or null (indicating no special information). It can perform any one of
three possible actions: forward, suck, or turn. The goal is to traverse the room
continually searching for and removing dirt. See Figure 1.4 for an illustration of the
vacuum world.

First, note that we make use of three simple domain predicates in this exercise:

In(z,y) agent is at (x,y)
Dirt(z,y) there is dirt at (x,y)
Facing(d) the agent is facing direction d

Now we specify our next function. This function must look at the perceptual
information obtained from the environment (either dirt or null), and generate a
new database which includes this information. But in addition, it must remove old
or irrelevant information, and also, it must try to figure out the new location and
orientation of the agent. We will therefore specify the next function in several parts.
First, let us write old(A) to denote the set of “old” information in a database, which
we want the update function next to remove:

old(A) = {P(t1,...,tn) | P € {In, Dirt, Facing} and P(ty,...,t,) € A}

Next, we require a function new, which gives the set of new predicates to add to
the database. This function has the signature

new:D x P — D

The definition of this function is not difficult, but it is rather lengthy, and so we
will leave it as an exercise. (It must generate the predicates In(...), describing the
new position of the agent, Facing(...) describing the orientation of the agent, and
Dirt(...) if dirt has been detected at the new position.) Given the new and old
functions, the next function is defined as follows:

next(A,p) = (A \ old(A)) Unew(A, p)
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Now we can move on to the rules that govern our agent’s behavior. The deduction
rules have the form

o) —(...)

where ¢ and ¢ are predicates over some arbitrary list of constants and variables.
The idea being that if ¢ matches against the agent’s database, then ¢ can be
concluded, with any variables in ¢ instantiated.

The first rule deals with the basic cleaning action of the agent: this rule will take
priority over all other possible behaviors of the agent (such as navigation).

In(z,y) A Dirt(z,y) — Do(suck) (1.1)

Hence if the agent is at location (x,y) and it perceives dirt, then the prescribed
action will be to suck up dirt. Otherwise, the basic action of the agent will be to
traverse the world. Taking advantage of the simplicity of our environment, we will
hardwire the basic navigation algorithm, so that the robot will always move from
(0,0) to (0,1) to (0,2) and then to (1,2), (1,1) and so on. Once the agent reaches
(2,2), it must head back to (0,0). The rules dealing with the traversal up to (0,2)
are very simple.

In(0,0) A Facing(north) A =Dirt(0,0) — Do(forward) (1.2)
In(0,1) A Facing(north) A ~Dirt(0,1) — Do( forward) (1.3)
In(0,2) A Facing(north) A =Dirt(0,2) — Do(turn) (1.4)

In(0,2) A Facing(east) — Do( forward) (1.5)

Notice that in each rule, we must explicitly check whether the antecedent of rule
(1.1) fires. This is to ensure that we only ever prescribe one action via the Do(...)
predicate. Similar rules can easily be generated that will get the agent to (2,2), and
once at (2,2) back to (0,0). It is not difficult to see that these rules, together with
the next function, will generate the required behavior of our agent.

At this point, it is worth stepping back and examining the pragmatics of the
logic-based approach to building agents. Probably the most important point to
make is that a literal, naive attempt to build agents in this way would be more or
less entirely impractical. To see why, suppose we have designed out agent’s rule set
p such that for any database A, if we can prove Do(a) then a is an optimal action—
that is, a is the best action that could be performed when the environment is as
described in A. Then imagine we start running our agent. At time #;, the agent has
generated some database Aj, and begins to apply its rules p in order to find which
action to perform. Some time later, at time ¢, it manages to establish Ay -, Do(a)
for some a € A, and so a is the optimal action that the agent could perform at time
t1. But if the environment has changed between t; and ¢, then there is no guarantee
that a will still be optimal. It could be far from optimal, particularly if much time
has elapsed between t; and t5. If to —¢; is infinitesimal—that is, if decision making is
effectively instantaneous—then we could safely disregard this problem. But in fact,
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we know that reasoning of the kind our logic-based agents use will be anything but
instantaneous. (If our agent uses classical first-order predicate logic to represent
the environment, and its rules are sound and complete, then there is no guarantee
that the decision making procedure will even terminate.) An agent is said to enjoy
the property of calculative rationality if and only if its decision making apparatus
will suggest an action that was optimal when the decision making process began.
Calculative rationality is clearly not acceptable in environments that change faster
than the agent can make decisions—we shall return to this point later.

One might argue that this problem is an artifact of the pure logic-based approach
adopted here. There is an element of truth in this. By moving away from strictly
logical representation languages and complete sets of deduction rules, one can build
agents that enjoy respectable performance. But one also loses what is arguably
the greatest advantage that the logical approach brings: a simple, elegant logical
semantics.

There are several other problems associated with the logical approach to agency.
First, the see function of an agent, (its perception component), maps its environ-
ment to a percept. In the case of a logic-based agent, this percept is likely to be
symbolic—typically, a set of formulae in the agent’s representation language. But
for many environments, it is not obvious how the mapping from environment to
symbolic percept might be realized. For example, the problem of transforming an
image to a set of declarative statements representing that image has been the object
of study in AI for decades, and is still essentially open. Another problem is that
actually representing properties of dynamic, real-world environments is extremely
hard. As an example, representing and reasoning about temporal information—how
a situation changes over time—turns out to be extraordinarily difficult. Finally, as
the simple vacuum world example illustrates, representing even rather simple pro-
cedural knowledge (i.e., knowledge about “what to do”) in traditional logic can be
rather unintuitive and cumbersome.

To summarize, in logic-based approaches to building agents, decision making is
viewed as deduction. An agent’s “program”—that is, its decision making strategy—
is encoded as a logical theory, and the process of selecting an action reduces to a
problem of proof. Logic-based approaches are elegant, and have a clean (logical)
semantics—wherein lies much of their long-lived appeal. But logic-based approaches
have many disadvantages. In particular, the inherent computational complexity
of theorem proving makes it questionable whether agents as theorem provers
can operate effectively in time-constrained environments. Decision making in such
agents is predicated on the assumption of calculative rationality—the assumption
that the world will not change in any significant way while the agent is deciding
what to do, and that an action which is rational when decision making begins
will be rational when it concludes. The problems associated with representing
and reasoning about complex, dynamic, possibly physical environments are also
essentially unsolved.
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Sources and Further Reading

My presentation of logic based agents is based largely on the discussion of deliberate
agents presented in [25, Chapter 13], which represents the logic-centric view of Al
and agents very well. The discussion is also partly based on [38]. A number of more-
or-less “pure” logical approaches to agent programming have been developed. Well-
known examples include the CONGOLOG system of Lespérance and colleagues [39]
(which is based on the situation calculus [45]) and the METATEM and Concurrent
METATEM programming languages developed by Fisher and colleagues [3, 21] (in
which agents are programmed by giving them temporal logic specifications of the
behavior they should exhibit). Concurrent METATEM is discussed as a case study
in section 1.5. Note that these architectures (and the discussion above) assume
that if one adopts a logical approach to agent-building, then this means agents
are essentially theorem provers, employing explicit symbolic reasoning (theorem
proving) in order to make decisions. But just because we find logic a useful tool
for conceptualising or specifying agents, this does not mean that we must view
decision-making as logical manipulation. An alternative is to compile the logical
specification of an agent into a form more amenable to efficient decision making.
The difference is rather like the distinction between interpreted and compiled
programming languages. The best-known example of this work is the situated
automata paradigm of Leslie Kaelbling and Stanley Rosenschein [58]. A review
of the role of logic in intelligent agents may be found in [70]. Finally, for a detailed
discussion of calculative rationality and the way that it has affected thinking in AT,
see [60].

1.4.2 Reactive Architectures

The seemingly intractable problems with symbolic/logical approaches to building
agents led some researchers to question, and ultimately reject, the assumptions
upon which such approaches are based. These researchers have argued that minor
changes to the symbolic approach, such as weakening the logical representation
language, will not be sufficient to build agents that can operate in time-constrained
environments: nothing less than a whole new approach is required. In the mid-
to-late 1980s, these researchers began to investigate alternatives to the symbolic
AT paradigm. It is difficult to neatly characterize these different approaches, since
their advocates are united mainly by a rejection of symbolic AI, rather than by a
common manifesto. However, certain themes do recur:

= the rejection of symbolic representations, and of decision making based on
syntactic manipulation of such representations;
® the idea that intelligent, rational behavior is seen as innately linked to the

environment an agent occupies—intelligent behavior is not disembodied, but
is a product of the interaction the agent maintains with its environment;
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= the idea that intelligent behavior emerges from the interaction of various simpler
behaviors.

Alternative approaches to agency are sometime referred to as behavioral (since a
common theme is that of developing and combining individual behaviors), situ-
ated (since a common theme is that of agents actually situated in some environ-
ment, rather than being disembodied from it), and finally—the term used in this
chapter—reactive (because such systems are often perceived as simply reacting to
an environment, without reasoning about it). This section presents a survey of the
subsumption architecture, which is arguably the best-known reactive agent archi-
tecture. It was developed by Rodney Brooks—one of the most vocal and influential
critics of the symbolic approach to agency to have emerged in recent years.

There are two defining characteristics of the subsumption architecture. The first
is that an agent’s decision-making is realized through a set of task accomplishing
behaviors; each behavior may be though of as an individual action function, as we
defined above, which continually takes perceptual input and maps it to an action
to perform. Each of these behavior modules is intended to achieve some particular
task. In Brooks’ implementation, the behavior modules are finite state machines.
An important point to note is that these task accomplishing modules are assumed
to include no complex symbolic representations, and are assumed to do no symbolic
reasoning at all. In many implementations, these behaviors are implemented as rules
of the form

situation —» action

which simple map perceptual input directly to actions.

The second defining characteristic of the subsumption architecture is that many
behaviors can “fire” simultaneously. There must obviously be a mechanism to choose
between the different actions selected by these multiple actions. Brooks proposed
arranging the modules into a subsumption hierarchy, with the behaviors arranged
into layers. Lower layers in the hierarchy are able to inhibit higher layers: the lower
a layer is, the higher is its priority. The idea is that higher layers represent more
abstract behaviors. For example, one might desire a behavior in a mobile robot for
the behavior “avoid obstacles”. It makes sense to give obstacle avoidance a high
priority—hence this behavior will typically be encoded in a low-level layer, which
has high priority. To illustrate the subsumption architecture in more detail, we will
now present a simple formal model of it, and illustrate how it works by means of a
short example. We then discuss its relative advantages and shortcomings, and point
at other similar reactive architectures.

The see function, which represents the agent’s perceptual ability, is assumed to
remain unchanged. However, in implemented subsumption architecture systems,
there is assumed to be quite tight coupling between perception and action—raw
sensor input is not processed or transformed much, and there is certainly no attempt
to transform images to symbolic representations.
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The decision function action is realized through a set of behaviors, together with
an inhibition relation holding between these behaviors. A behavior is a pair (¢, a),
where ¢ C P is a set of percepts called the condition, and a € A is an action. A
behavior (¢,a) will fire when the environment is in state s € S iff see(s) € c¢. Let
Beh = {(c,a) | ¢ C P and a € A} be the set of all such rules.

Associated with an agent’s set of behavior rules R C Beh is a binary inhibition
relation on the set of behaviors: < C R x R. This relation is assumed to be a total
ordering on R (i.e., it is transitive, irreflexive, and antisymmetric). We write by < bo
if (b1, b2) €<, and read this as “by inhibits by”, that is, by is lower in the hierarchy
than bs, and will hence get priority over bs. The action function is then defined as
follows:

1. function action(p: P) : A

2. var fired : p(R)

3. var selected : A

4. begin

5. fired :={(c,a) | (¢c,a) € Rand p € ¢}
6. for each (¢, a) € fired do

7. if =(3(c',a’) € fired such that (¢',a’) < (¢,a)) then
8. return a

9. end-if

10. end-for

11. return null

12.  end function action

Thus action selection begins by first computing the set fired of all behaviors
that fire (5). Then, each behavior (¢, a) that fires is checked, to determine whether
there is some other higher priority behavior that fires. If not, then the action part
of the behavior, a, is returned as the selected action (8). If no behavior fires, then
the distinguished action null will be returned, indicating that no action has been
chosen.

Given that one of our main concerns with logic-based decision making was its
theoretical complexity, it is worth pausing to examine how well our simple behavior-
based system performs. The overall time complexity of the subsumption action
function is no worse than O(n?), where n is the larger of the number of behaviors or
number of percepts. Thus, even with the naive algorithm above, decision making is
tractable. In practice, we can do considerably better than this: the decision making
logic can be encoded into hardware, giving constant decision time. For modern
hardware, this means that an agent can be guaranteed to select an action within
nano-seconds. Perhaps more than anything else, this computational simplicity is
the strength of the subsumption architecture.

To illustrate how the subsumption architecture in more detail, we will show how
subsumption architecture agents were built for the following scenario (this example
is adapted from [66]):
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The objective is to explore a distant planet, more concretely, to collect samples of
a particular type of precious rock. The location of the rock samples is not known in
advance, but they are typically clustered in certain spots. A number of autonomous
vehicles are available that can drive around the planet collecting samples and later
reenter the a mothership spacecraft to go back to earth. There is no detailed map of
the planet available, although it is known that the terrain is full of obstacles—hills,
valleys, etc.—which prevent the vehicles from exchanging any communication.

The problem we are faced with is that of building an agent control architecture for
each vehicle, so that they will cooperate to collect rock samples from the planet
surface as efficiently as possible. Luc Steels argues that logic-based agents, of the
type we described above, are “entirely unrealistic” for this problem [66]. Instead,
he proposes a solution using the subsumption architecture.

The solution makes use of two mechanisms introduced by Steels: The first is a
gradient field. In order that agents can know in which direction the mothership lies,
the mothership generates a radio signal. Now this signal will obviously weaken as
distance to the source increases—to find the direction of the mothership, an agent
need therefore only travel “up the gradient” of signal strength. The signal need not
carry any information—it need only exist.

The second mechanism enables agents to communicate with one another. The
characteristics of the terrain prevent direct communication (such as message pass-
ing), so Steels adopted an indirect communication method. The idea is that agents
will carry “radioactive crumbs”, which can be dropped, picked up, and detected by
passing robots. Thus if an agent drops some of these crumbs in a particular loca-
tion, then later, another agent happening upon this location will be able to detect
them. This simple mechanism enables a quite sophisticated form of cooperation.

The behavior of an individual agent is then built up from a number of behaviors,
as we indicated above. First, we will see how agents can be programmed to
individually collect samples. We will then see how agents can be programmed to
generate a cooperative solution.

For individual (non-cooperative) agents, the lowest-level behavior, (and hence
the behavior with the highest “priority”) is obstacle avoidance. This behavior can
can be represented in the rule:

if detect an obstacle then change direction. (1.6)

The second behavior ensures that any samples carried by agents are dropped back
at the mother-ship.

if carrying samples and at the base then drop samples (17
if carrying samples and not at the base then travel up gradient. (1.8)

Behavior (1.8) ensures that agents carrying samples will return to the mother-ship
(by heading towards the origin of the gradient field). The next behavior ensures
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that agents will collect samples they find.
if detect a sample then pick sample up. (1.9)

The final behavior ensures that an agent with “nothing better to do” will explore
randomly.

if true then move randomly. (1.10)

The pre-condition of this rule is thus assumed to always fire. These behaviors are
arranged into the following hierarchy:

(1.6) < (1.7) < (1.8) < (1.9) < (1.10)

The subsumption hierarchy for this example ensures that, for example, an agent
will always turn if any obstacles are detected; if the agent is at the mother-ship
and is carrying samples, then it will always drop them if it is not in any immediate
danger of crashing, and so on. The “top level” behavior—a random walk—will only
every be carried out if the agent has nothing more urgent to do. It is not difficult
to see how this simple set of behaviors will solve the problem: agents will search for
samples (ultimately by searching randomly), and when they find them, will return
them to the mother-ship.

If the samples are distributed across the terrain entirely at random, then equip-
ping a large number of robots with these very simple behaviors will work extremely
well. But we know from the problem specification, above, that this is not the case:
the samples tend to be located in clusters. In this case, it makes sense to have agents
cooperate with one-another in order to find the samples. Thus when one agent finds
a large sample, it would be helpful for it to communicate this to the other agents,
so they can help it collect the rocks. Unfortunately, we also know from the problem
specification that direct communication is impossible. Steels developed a simple
solution to this problem, partly inspired by the foraging behavior of ants. The idea
revolves around an agent creating a “trail” of radioactive crumbs whenever it finds
a rock sample. The trail will be created when the agent returns the rock samples
to the mother ship. If at some later point, another agent comes across this trail,
then it need only follow it down the gradient field to locate the source of the rock
samples. Some small refinements improve the efficiency of this ingenious scheme
still further. First, as an agent follows a trail to the rock sample source, it picks
up some of the crumbs it finds, hence making the trail fainter. Secondly, the trail
is only laid by agents returning to the mothership. Hence if an agent follows the
trail out to the source of the nominal rock sample only to find that it contains no
samples, it will reduce the trail on the way out, and will not return with samples
to reinforce it. After a few agents have followed the trail to find no sample at the
end of it, the trail will in fact have been removed.

The modified behaviors for this example are as follows. Obstacle avoidance, (1.6),
remains unchanged. However, the two rules determining what to do if carrying a
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sample are modified as follows.
if carrying samples and at the base then drop samples (1.11)

if carrying samples and not at the base L1

then drop 2 crumbs and travel up gradient. (1.12)
The behavior (1.12) requires an agent to drop crumbs when returning to base with
a sample, thus either reinforcing or creating a trail. The “pick up sample” behavior,
(1.9), remains unchanged. However, an additional behavior is required for dealing
with crumbs.

if sense crumbs then pick up 1 crumb and travel down gradient (1.13)

Finally, the random movement behavior, (1.10), remains unchanged. These behavior
are then arranged into the following subsumption hierarchy.

(1.6) < (1.11) < (1.12) < (1.9) < (1.13) < (1.10)

Steels shows how this simple adjustment achieves near-optimal performance in
many situations. Moreover, the solution is cheap (the computing power required
by each agent is minimal) and robust (the loss of a single agent will not affect the
overall system significantly).

In summary, there are obvious advantages to reactive approaches such as that
Brooks’ subsumption architecture: simplicity, economy, computational tractability,
robustness against failure, and elegance all make such architectures appealing. But
there are some fundamental, unsolved problems, not just with the subsumption
architecture, but with other purely reactive architectures:

= Jf agents do not employ models of their environment, then they must have
sufficient information available in their local environment for them to determine
an acceptable action.

= Since purely reactive agents make decisions based on local information, (i.e.,
information about the agents current state), it is difficult to see how such decision
making could take into account non-local information—it must inherently take
a “short term” view.

= Tt is difficult to see how purely reactive agents can be designed that learn from
experience, and improve their performance over time.

= A major selling point of purely reactive systems is that overall behavior emerges
from the interaction of the component behaviors when the agent is placed in
its environment. But the very term “emerges” suggests that the relationship
between individual behaviors, environment, and overall behavior is not under-
standable. This necessarily makes it very hard to engineer agents to fulfill specific
tasks. Ultimately, there is no principled methodology for building such agents:
one must use a laborious process of experimentation, trial, and error to engineer
an agent.
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= While effective agents can be generated with small numbers of behaviors (typi-
cally less that ten layers), it is much harder to build agents that contain many
layers. The dynamics of the interactions between the different behaviors become
too complex to understand.

Various solutions to these problems have been proposed. One of the most popular
of these is the idea of evolving agents to perform certain tasks. This area of work
has largely broken away from the mainstream Al tradition in which work on, for
example, logic-based agents is carried out, and is documented primarily in the
artificial life (alife) literature.

Sources and Further Reading

Brooks’ original paper on the subsumption architecture—the one that started all
the fuss—was published as [8]. The description and discussion here is partly based
on [15]. This original paper seems to be somewhat less radical than many of his
later ones, which include [9, 11, 10]. The version of the subsumption architecture
used in this chapter is actually a simplification of that presented by Brooks.
The subsumption architecture is probably the best-known reactive architecture
around—but there are many others. The collection of papers edited by Pattie
Maes [41] contains papers that describe many of these, as does the collection by
Agre and Rosenschein [2]. Other approaches include:

= the agent network architecture developed by Pattie Maes [40, 42, 43];

= Nilsson’s teleo reactive programs [49];

= Rosenchein and Kaelbling’s situated automata approach, which is particularly
interesting in that it shows how agents can be specified in an abstract, logi-
cal framework, and compiled into equivalent, but computationally very simple
machines [57, 36, 35, 58];

= Agre and Chapman’s PENGI system [1];

®  Schoppers’ universal plans—which are essentially decision trees that can be used
to efficiently determine an appropriate action in any situation [62];

= Firby’s reactive action packages [19].

Kaelbling [34] gives a good discussion of the issues associated with developing
resource-bounded rational agents, and proposes an agent architecture somewhat
similar to that developed by Brooks.

1.4.3 Belief-Desire-Intention Architectures

In this section, we shall discuss belief-desire-intention (BDI) architectures. These ar-
chitectures have their roots in the philosophical tradition of understanding practical
reasoning—the process of deciding, moment by moment, which action to perform
in the furtherance of our goals.
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Practical reasoning involves two important processes: deciding what goals we
want to achieve, and how we are going to achieve these goals. The former process is
known as deliberation, the latter as means-ends reasoning. To gain an understanding
of the BDI model, it is worth considering a simple example of practical reasoning.
When you leave university with a first degree, you are faced with a decision to
make—about what to do with your life. The decision process typically begins by
trying to understand what the options available to you are. For example, if you
gain a good first degree, then one option is that of becoming an academic. (If you
fail to obtain a good degree, this option is not available to you.) Another option is
entering industry. After generating this set of alternatives, you must choose between
them, and commit to some. These chosen options become intentions, which then
determine the agent’s actions. Intentions then feed back into the agent’s future
practical reasoning. For example, if I decide I want to be an academic, then I
should commit to this objective, and devote time and effort to bringing it about.

Intentions play a crucial role in the practical reasoning process. Perhaps the most
obvious property of intentions is that they tend to lead to action. If I truly have
an intention to become an academic, then you would expect me to act on that
intention—to try to achieve it. For example, you might expect me to apply to
various PhD programs. You would expect to make a reasonable attempt to achieve
the intention. Thus you would expect me to carry our some course of action that
I believed would best satisfy the intention. Moreover, if a course of action fails to
achieve the intention, then you would expect me to try again—you would not expect
me to simply give up. For example, if my first application for a PhD programme is
rejected, then you might expect me to apply to alternative universities.

In addition, once I have adopted an intention, then the very fact of having this
intention will constrain my future practical reasoning. For example, while I hold
some particular intention, I will not entertain options that are inconsistent with
that intention. Intending to become an academic, for example, would preclude the
option of partying every night: the two are mutually exclusive.

Next, intentions persist. If I adopt an intention to become an academic, then I
should persist with this intention and attempt to achieve it. For if I immediately
drop my intentions without devoting resources to achieving them, then I will never
achieve anything. However, I should not persist with my intention for too long—if it
becomes clear to me that I will never become an academic, then it is only rational
to drop my intention to do so. Similarly, if the reason for having an intention goes
away, then it is rational of me to drop the intention. For example, if I adopted the
intention to become an academic because I believed it would be an easy life, but
then discover that I would be expected to actually teach, then the justification for
the intention is no longer present, and I should drop the intention.

Finally, intentions are closely related to beliefs about the future. For example, if
I intend to become an academic, then I should believe that I will indeed become
an academic. For if I truly believe that I will never be an academic, it would be
non-sensical of me to have an intention to become one. Thus if T intend to become
an academic, I should at least believe that there is a good chance I will indeed
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become one.
From this discussion, we can see that intentions play a number of important roles
in practical reasoning:

= [ntentions drive means-ends reasoning.
If T have formed an intention to become an academic, then I will attempt to
achieve the intention, which involves, amongst other things, deciding how to
achieve it, for example, by applying for a PhD programme. Moreover, if one
particular course of action fails to achieve an intention, then I will typically
attempt others. Thus if I fail to gain a PhD place at one university, I might try
another university.

®  [Intentions constrain future deliberation.
If I intend to become an academic, then I will not entertain options that are
inconsistent with this intention. For example, a rational agent would not consider
being rich as an option while simultaneously intending to be an academic. (While
the two are not actually mutually exclusive, the probability of simultaneously
achieving both is infinitesimal.)

®  [ntentions persist.
I will not usually give up on my intentions without good reason—they will
persist, typically until either I believe I have successfully achieved them, I believe
I cannot achieve them, or else because the purpose for the intention is no longer
present.

®  Intentions influence beliefs upon which future practical reasoning is based.
If T adopt the intention to become an academic, then I can plan for the future on
the assumption that I will be an academic. For if [ intend to be an academic while
simultaneously believing that I will never be one, then I am being irrational.

A key problem in the design of practical reasoning agents is that of of achieving
a good balance between these different concerns. Specifically, it seems clear that
an agent should at times drop some intentions (because it comes to believe that
either they will never be achieved, they are achieved, or else because the reason
for having the intention is no longer present). It follows that, from time to time,
it is worth an agent stopping to reconsider its intentions. But reconsideration has
a cost—in terms of both time and computational resources. But this presents us
with a dilemma:

= an agent that does not stop to reconsider sufficiently often will continue attempt-
ing to achieve its intentions even after it is clear that they cannot be achieved,
or that there is no longer any reason for achieving them;

® an agent that constantly reconsiders its attentions may spend insufficient time
actually working to achieve them, and hence runs the risk of never actually
achieving them.

This dilemma is essentially the problem of balancing pro-active (goal directed) and
reactive (event driven) behavior, that we introduced in section 1.2.2.
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There is clearly a tradeoff to be struck between the degree of commitment and
reconsideration at work here. The nature of this tradeoff was examined by David
Kinny and Michael Georgeff, in a number of experiments carried out with a BDI
agent framework called dMARS [37]. They investigate how bold agents (those that
never stop to reconsider) and cautious agents (those that are constantly stopping
to reconsider) perform in a variety of different environments. The most important
parameter in these experiments was the rate of world change, ~v. The key results of
Kinny and Georgeff were as follows.

m If v is low, (i.e., the environment does not change quickly), then bold agents
do well compared to cautious ones, because cautious ones waste time recon-
sidering their commitments while bold agents are busy working towards—and
achieving—their goals.

® If~is high, (i.e., the environment changes frequently), then cautious agents tend
to outperform bold agents, because they are able to recognize when intentions
are doomed, and also to take advantage of serendipitous situations and new
opportunities.

The lesson is that different types of environment require different types of decision
strategies. In static, unchanging environment, purely pro-active, goal directed
behavior is adequate. But in more dynamic environments, the ability to react to
changes by modififying intentions becomes more important.

The process of practical reasoning in a BDI agent is summarized in Figure 1.5.
As this Figure illustrates, there are seven main components to a BDI agent:

® 3 set of current beliefs, representing information the agent has about its current
environment;

m g belief revision function, (brf), which takes a perceptual input and the agent’s
current beliefs, and on the basis of these, determines a new set of beliefs;

= an option generation function, (options), which determines the options available
to the agent (its desires), on the basis of its current beliefs about its environment
and its current intentions;

® 3 set of current options, representing possible courses of actions available to the
agent;
= a filter function (filter), which represents the agent’s deliberation process, and

which determines the agent’s intentions on the basis of its current beliefs, desires,
and intentions;

® 3 set of current intentions, representing the agent’s current focus—those states
of affairs that it has committed to trying to bring about;

® an action selection function (execute), which determines an action to perform

on the basis of current intentions.

It is straightforward to formally define these components. First, let Bel be the set
of all possible beliefs, Des be the set of all possible desires, and Int be the set of
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Figure 1.5 Schematic diagram of a generic belief-desire-intention architecture.

all possible intentions. For the purposes of this chapter, the content of these sets
is not important. (Often, beliefs, desires, and intentions are represented as logical
formulae, perhaps of first-order logic.) Whatever the content of these sets, its is
worth noting that they should have some notion of consistency defined upon them,
so that one can answer the question of, for example, whether having an intention
to achieve z is consistent with the belief that y. Representing beliefs, desires, and
intentions as logical formulae permits us to cast such questions as questions as
questions of determining whether logical formulae are consistent—a well known
and well-understood problem. The state of a BDI agent at any given moment is,
unsurprisingly, a triple (B, D, I), where B C Bel, D C Des, and I C Int.
An agent’s belief revision function is a mapping

brf : p(Bel) x P — p(Bel)

which on the basis of the current percept and current beliefs determines a new set
of beliefs. Belief revision is out of the scope of this chapter (and indeed this book),
and so we shall say no more about it here.
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The option generation function, options, maps a set of beliefs and a set of
intentions to a set of desires.

options : p(Bel) x p(Int) — p(Des)

This function plays several roles. First, it must be responsible for the agent’s means-
ends reasoning—the process of deciding how to achieve intentions. Thus, once an
agent has formed an intention to x, it must subsequently consider options to achieve
x. These options will be more concrete—less abstract—than z. As some of these
options then become intentions themselves, they will also feedback into option gen-
eration, resulting in yet more concrete options being generated. We can thus think
of a BDI agent’s option generation process as one of recursively elaborating a hier-
archical plan structure, considering and committing to progressively more specific
intentions, until finally it reaches the intentions that correspond to immediately
executable actions.

While the main purpose of the options function is thus means-ends reasoning,
it must in addition satisfy several other constraints. First, it must be consistent:
any options generated must be consistent with both the agent’s current beliefs and
current intentions. Secondly, it must be opportunistic, in that it should recognize
when environmental circumstances change advantageously, to offer the agent new
ways of achieving intentions, or the possibility of achieving intentions that were
otherwise unachievable.

A BDI agent’s deliberation process (deciding what to do) is represented in the
filter function,

filter : p(Bel) x p(Des) x p(Int) — p(Int)

which updates the agent’s intentions on the basis of its previously-held intentions
and current beliefs and desires. This function must fulfill two roles. First, it must
drop any intentions that are no longer achievable, or for which the expected cost
of achieving them exceeds the expected gain associated with successfully achieving
them. Second, it should retain intentions that are not achieved, and that are still
expected to have a positive overall benefit. Finally, it should adopt new intentions,
either to achieve existing intentions, or to exploit new opportunities.

Notice that we do not expect this function to introduce intentions from nowhere.
Thus filter should satisfy the following constraint:

VB € p(Bel),¥YD € p(Des),VI € p(Int), filter(B,D,I) C IUD.

In other words, current intentions are either previously held intentions or newly
adopted options.

The execute function is assumed to simply return any executable intentions—one
that corresponds to a directly executable action:

execute : p(Int) — A
The agent decision function, action of a BDI agent is then a function
action : P — A

and is defined by the following pseudo-code.
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function action(p : P) : A
begin
B:=brf(B,p)
D := options(D, I)
I := filter(B,D,I)
return execute(l)
end function action

Nook~wbdbH=

Note that representing an agent’s intentions as a set (i.e., as an unstructured
collection) is generally too simplistic in practice. A simple alternative is to associate
a priority with each intention, indicating its relative importance. Another natural
idea is to represent intentions as a stack. An intention is pushed on to the stack
when it is adopted, and popped when it is either achieved or else not achievable.
More abstract intentions will tend to be at the bottom of the stack, with more
concrete intentions towards the top.

To summarize, BDI architectures are practical reasoning architectures, in which
the process of deciding what to do resembles the kind of practical reasoning that
we appear to use in our everyday lives. The basic components of a BDI architecture
are data structures representing the beliefs, desires, and intentions of the agent,
and functions that represent its deliberation (deciding what intentions to have—
i.e., deciding what to do) and means-ends reasoning (deciding how to do it).
Intentions play a central role in the BDI model: they provide stability for decision
making, and act to focus the agent’s practical reasoning. A major issue in BDI
architectures is the problem of striking a balance between being committed to and
overcommitted to one’s intentions: the deliberation process must be finely tuned
to its environment, ensuring that in more dynamic, highly unpredictable domains,
it reconsiders its intentions relatively frequently—in more static environments, less
frequent reconsideration is necessary.

The BDI model is attractive for several reasons. First, it is intuitive—we all
recognize the processes of deciding what to do and then how to do it, and we
all have an informal understanding of the notions of belief, desire, and intention.
Second, it gives us a clear functional decomposition, which indicates what sorts of
subsystems might be required to build an agent. But the main difficulty, as ever, is
knowing how to efficiently implement these functions.

Sources and Further Reading

Belief-desire-intention architectures originated in the work of the Rational Agency
project at Stanford Research Institute in the mid 1980s. The origins of the model
lie in the theory of human practical reasoning developed by the philosopher Michael
Bratman [6], which focusses particularly on the role of intentions in practical
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reasoning. The conceptual framework of the BDI model is described in [7], which
also describes a specific BDI agent architecture called 1RMA. The description of
the BDI model given here (and in particular Figure 1.5) is adapted from [7]. One
of the interesting aspects of the BDI model is that it has been used in one of
the most successful agent architectures to date. The Procedural Resoning System
(PRs), originally developed by Michael Georgeff and Amy Lansky [26], has been
used to build some of the most exacting agent applications to date, including fault
diagnosis for the reaction control system of the space shuttle, and an air traffic
management system at Sydney airport in Australia—overviews of these systems
are described in [27]. In the PRS, an agent is equipped with a library of plans which
are used to perform means-ends reasoning. Deliberation is achieved by the use of
meta-level plans, which are able to modify an agent’s intention structure at run-
time, in order to change the focus of the agent’s practical reasoning. Beliefs in the
PRS are represented as PROLOG-like facts—essentially, as atoms of first-order logic.

The BDI model is also interesting because a great deal of effort has been devoted
to formalising it. In particular, Anand Rao and Michael Georgeff have developed a
range of BDI logics, which they use to axiomatize properties of BDI-based practical
reasoning agents [52, 56, 53, 54, 55, 51]. These models have been extended by others
to deal with, for example, communication between agents [28].

1.4.4 Layered Architectures

Given the requirement that an agent be capable of reactive and pro-active behavior,
an obvious decomposition involves creating separate subsystems to deal with these
different types of behaviors. This idea leads naturally to a class of architectures in
which the various subsystems are arranged into a hierarchy of interacting layers.
In this section, we will consider some general aspects of layered architectures,
and then go on to consider two examples of such architectures: INTERRAP and
TOURINGMACHINES.

Typically, there will be at least two layers, to deal with reactive and pro-active
behaviors respectively. In principle, there is no reason why there should not be many
more layers. However many layers there are, a useful typology for such architectures
is by the information and control flows within them. Broadly speaking, we can
identify two types of control flow within layered architectures (see Figure 1.6):

" Horizontal layering.
In horizontally layered architectures (Figure 1.6(a)), the software layers are each
directly connected to the sensory input and action output. In effect, each layer
itself acts like an agent, producing suggestions as to what action to perform.

" Vertical layering.
In vertically layered architectures (Figure 1.6(b) and 1.6(c)), sensory input and
action output are each dealt with by at most one layer each.

The great advantage of horizontally layered architectures is their conceptual sim-
plicity: if we need an agent to exhibit n different types of behavior, then we imple-
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Figure 1.6 Information and control flows in three types of layered agent architec-
ture (Source: [47, p263]).

ment n different layers. However, because the layers are each in effect competing
with one-another to generate action suggestions, there is a danger that the overall
behavior of the agent will not be coherent. In order to ensure that horizontally lay-
ered architectures are consistent, they generally include a mediator function, which
makes decisions about which layer has “control” of the agent at any given time.
The need for such central control is problematic: it means that the designer must
potentially consider all possible interactions between layers. If there are n layers in
the architecture, and each layer is capable of suggesting m possible actions, then
this means there are m™ such interactions to be considered. This is clearly difficult
from a design point of view in any but the most simple system. The introduction
of a central control system also introduces a bottleneck into the agent’s decision
making.

These problems are partly alleviated in a vertically layered architecture. We can
subdivide vertically layered architectures into one pass architectures (Figure 1.6(b))
and two pass architectures (Figure 1.6(c)). In one-pass architectures, control flows
sequentially through each layer, until the final layer generates action output. In two-
pass architectures, information flows up the architecture (the first pass) and control
then flows back down. There are some interesting similarities between the idea of
two-pass vertically layered architectures and the way that organisations work, with
information flowing up to the highest levels of the organisation, and commands
then flowing down. In both one pass and two pass vertically layered architectures,
the complexity of interactions between layers is reduced: since there are n — 1
interfaces between n layers, then if each layer is capable of suggesting m actions,
there are at most m?(n — 1) interactions to be considered between layers. This is
clearly much simpler than the horizontally layered case. However, this simplicity
comes at the cost of some flexibility: in order for a vertically layered architecture to
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Figure 1.7 TouRINGMACHINES: a horizontally layered agent architecture

make a decision, control must pass between each different layer. This is not fault
tolerant: failures in any one layer are likely to have serious consequences for agent
performance.

In the remainder of this section, we will consider two examples of layered
architectures: Innes Ferguson’s TOURINGMACHINES, and Jorg Miiller’'s INTERRAP.
The former is an example of a horizontally layered architecture; the latter is a (two
pass) vertically layered architecture.

TouringMachines

The TOURINGMACHINES architecture is illustrated in Figure 1.7. As this Figure
shows, TOURINGMACHINES consists of three activity producing layers. That is,
each layer continually produces “suggestions” for what actions the agent should
perform. The reactive layer provides a more-or-less immediate response to changes
that occur in the environment. It is implemented as a set of situation-action rules,
like the behaviors in Brooks’ subsumption architecture (section 1.4.2). These rules
map sensor input directly to effector output. The original demonstration scenario
for TOURINGMACHINES was that of autonomous vehicles driving between locations
through streets populated by other similar agents. In this scenario, reactive rules
typically deal with functions like obstacle avoidance. For example, here is an
example of a reactive rule for avoiding the kerb (from [16, p59]):

rule-1: kerb-avoidance
if
is-in-front (Kerb, Observer) and
speed (Observer) > 0 and
separation(Kerb, Observer) < KerbThreshHold
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then
change-orientation(KerbAvoidanceAngle)

Here change-orientation(...) is the action suggested if the rule fires. The rules
can only make references to the agent’s current state—they cannot do any explicit
reasoning about the world, and on the right hand side of rules are actions, not
predicates. Thus if this rule fired, it would not result in any central environment
model being updated, but would just result in an action being suggested by the
reactive layer.

The TOURINGMACHINES planning layer achieves the agent’s pro-active behavior.
Specifically, the planning layer is responsible for the “day-to-day” running of the
agent—under normal circumstances, the planning layer will be responsible for decid-
ing what the agent does. However, the planning layer does not do “first-principles”
planning. That is, it does not attempt to generate plans from scratch. Rather, the
planning layer employs a library of plan “skeletons” called schemas. These skele-
tons are in essence hierarchically structured plans, which the TOURINGMACHINES
planning layer elaborates at run time in order to decide what to do. So, in order
to achieve a goal, the planning layer attempts to find a schema in its library which
matches that goal. This schema will contain sub-goals, which the planning layer
elaborates by attempting to find other schemas in its plan library that match these
sub-goals.

The modeling layer represents the various entities in the world (including the
agent itself, as well as other agents). The modeling layer thus predicts conflicts
between agents, and generates new goals to be achieved in order to resolve these
conflicts. These new goals are then posted down to the planning layer, which makes
use of its plan library in order to determine how to satisfy them.

The three control layers are embedded within a control subsystem, which is
effectively responsible for deciding which of the layers should have control over the
agent. This control subsystem is implemented as a set of control rules. Control rules
can either suppress sensor information between the control rules and the control
layers, or else censor action outputs from the control layers. Here is an example
censor rule [18, p207]:

censor-rule-1:
if
entity(obstacle-6) in perception-buffer
then
remove-sensory-record(layer-R, entity(obstacle-6))

This rule prevents the reactive layer from ever knowing about whether obstacle-6
has been perceived. The intuition is that although the reactive layer will in general
be the most appropriate layer for dealing with obstacle avoidance, there are certain
obstacles for which other layers are more appropriate. This rule ensures that the
reactive layer never comes to know about these obstacles.
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Figure 1.8 INTERRAP—a vertically layered two-pass agent architecture.

InteRRaP

INTERRAP is an example of a vertically layered two-pass agent architecture—see
Figure 1.8.

As Figure 1.8 shows, INTERRAP contains three control layers, as in TOURINGMA-
CHINES. Moreover, the purpose of each INTERRAP layer appears to be rather similar
to the purpose of each corresponding TOURINGMACHINES layer. Thus the lowest (be-
havior based) layer deals with reactive behavior; the middle (local planning) layer
deals with everyday planning to achieve the agent’s goals, and the uppermost (coop-
erative planning) layer deals with social interactions. Each layer has associated with
it a knowledge base, i.e., a representation of the world appropriate for that layer.
These different knowledge bases represent the agent and its environment at different
levels of abstraction. Thus the highest level knowledge base represents the plans and
actions of other agents in the environment; the middle-level knowledge base repre-
sents the plans and actions of the agent itself; and the lowest level knowledge base
represents “raw” information about the environment. The explicit introduction of
these knowledge bases distinguishes TOURINGMACHINES from INTERRAP.

The way the different layers in INTERRAP conspire to produce behavior is also
quite different from TOURINGMACHINES. The main difference is in the way the layers
interract with the environment. In TOURINGMACHINES, each layer was directly
coupled to perceptual input and action output. This necessitated the introduction
of a supervisory control framework, to deal with conflicts or problems between
layers. In INTERRAP, layers interact with each other to achieve the same end. The
two main types of interaction between layers are bottom-up activation and top-
down ezxecution. Bottom-up activation occurs when a lower layer passes control to
a higher layer because it is not competent to deal with the current situation. Top-
down execution occurs when a higher layer makes use of the facilities provided by
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a lower layer to achieve one of its goals. The basic flow of control in INTERRAP
begins when perceptual input arrives at the lowest layer in the achitecture. If the
reactive layer can deal with this input, then it will do so; otherwise, bottom-up
activation will occur, and control will be passed to the local planning layer. If
the local planning layer can handle the situation, then it will do so, typically by
making use of top-down execution. Otherwise, it will use bottom-up activation to
pass control to the highest layer. In this way, control in INTERRAP will flow from
the lowest layer to higher layers of the architecture, and then back down again.

The internals of each layer are not important for the purposes of this chapter.
However, it is worth noting that each layer implements two general functions. The
first of these is a situation recognition and goal activation function. This function
acts rather like the options function in a BDI architecture (see section 1.4.3).
It maps a knowledge base (one of the three layers) and current goals to a new
set of goals. The second function is responsible for planning and scheduling—it is
responsible for selecting which plans to execute, based on the current plans, goals,
and knowledge base of that layer.

Layered architectures are currently the most popular general class of agent
architecture available. Layering represents a natural decomposition of functionality:
it is easy to see how reactive, pro-active, social behavior can be generated by the
reactive, pro-active, and social layers in an architecture. The main problem with
layered architectures is that while they are arguably a pragmatic solution, they
lack the conceptual and semantic clarity of unlayered approaches. In particular,
while logic-based approaches have a clear logical semantics, it is difficult to see how
such a semantics could be devised for a layered architecture. Another issue is that
of interactions between layers. If each layer is an independent activity producing
process (as in TOURINGMACHINES), then it is necessary to consider all possible ways
that the layers can interact with one another. This problem is partly alleviated in
two-pass vertically layered architecture such as INTERRAP.

Sources and Further Reading

The introductory discussion of layered architectures given here draws heavily
upon [47, pp262-264]. The best reference to TOURINGMACHINES is [16]; more
accessible references include [17, 18]. The definitive reference to INTERRAP is [46],
although [20] is also a useful reference. Other examples of layered architectures
include the subsumption architecture [8] (see also section 1.4.2), and the 3T
architecture [4].

1.5 Agent Programming Languages

As agent technology becomes more established, we might expect to see a variety
of software tools become available for the design and construction of agent-based
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systems; the need for software support tools in this area was identified as long ago
as the mid-1980s [23]. In this section, we will discuss two of the better-known agent
programming languages, focussing in particular on Yoav Shoham’s AGENTO system.

1.5.1 Agent-Oriented Programming

Yoav Shoham has proposed a “new programming paradigm, based on a societal
view of computation” which he calls agent-oriented programming. The key idea
which informs AOP is that of directly programming agents in terms of mentalistic
notions (such as belief, desire, and intention) that agent theorists have developed
to represent the properties of agents. The motivation behind the proposal is
that humans use such concepts as an abstraction mechanism for representing the
properties of complex systems. In the same way that we use these mentalistic
notions to describe and explain the behavior of humans, so it might be useful
to use them to program machines.

The first implementation of the agent-oriented programming paradigm was the
AGENTO programming language. In this language, an agent is specified in terms of a
set of capabilities (things the agent can do), a set of initial beliefs (playing the role
of beliefs in BDI architectures), a set of initial commitments (playing a role similar
to that of intentions in BDI architectures), and a set of commitment rules. The key
component, which determines how the agent acts, is the commitment rule set. Each
commitment rule contains a message condition, a mental condition, and an action.
In order to determine whether such a rule fires, the message condition is matched
against the messages the agent has received; the mental condition is matched against
the beliefs of the agent. If the rule fires, then the agent becomes committed to the
action. Actions may be private, corresponding to an internally executed subroutine,
or communicative, i.e., sending messages. Messages are constrained to be one of
three types: “requests” or “unrequests” to perform or refrain from actions, and
“inform” messages, which pass on information—Shoham indicates that he took his
inspiration for these message types from speech act theory [63, 12]. Request and
unrequest messages typically result in the agent’s commitments being modified;
inform messages result in a change to the agent’s beliefs.

Here is an example of an AGENTO commitment rule:

COMMIT(
( agent, REQUEST, DO(time, action)
), ;;; msg condition
( B,

[now, Friend agent] AND
CAN(self, action) AND
NOT [time, CMT(self, anyaction)]
), ;;; mental condition
self,
DO(time, action) )
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Figure 1.9 The flow of control in AGENT-0.

This rule may be paraphrased as follows:
if I receive a message from agent which requests me to do action at time, and I
believe that:
" qgent is currently a friend;
[ can do the action;
" ot time, I am not committed to doing any other action,

then commit to doing action at time.
The operation of an agent can be described by the following loop (see Figure 1.9):

1. Read all current messages, updating beliefs—and hence commitments—where
necessary;

2. Execute all commitments for the current cycle where the capability condition
of the associated action is satisfied;

3. Goto (1).

It should be clear how more complex agent behaviors can be designed and built
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in AGENTO. However, it is important to note that this language is essentially a
prototype, not intended for building anything like large-scale production systems.
But it does at least give a feel for how such systems might be built.

1.5.2 Concurrent METATEM

The Concurrent METATEM language developed by Fisher is based on the direct
execution of logical formulae [21]. A Concurrent METATEM system contains a
number of concurrently executing agents, each of which is able to communicate with
its peers via asynchronous broadcast message passing. Each agent is programmed
by giving it a temporal logic specification of the behavior that it is intended the
agent, should exhibit. An agent’s specification is executed directly to generate its
behavior. Execution of the agent program corresponds to iteratively building a
logical model for the temporal agent specification. It is possible to prove that the
procedure used to execute an agent specification is correct, in that if it is possible
to satisfy the specification, then the agent will do so [3].

The logical semantics of Concurrent METATEM are closely related to the seman-
tics of temporal logic itself. This means that, amongst other things, the specification
and verification of Concurrent METATEM systems is a realistic proposition [22].

An agent program in Concurrent METATEM has the form A; P; = Fj, where
P; is a temporal logic formula referring only to the present or past, and Fj is a
temporal logic formula referring to the present or future. The P; = F; formulae are
known as rules. The basic idea for executing such a program may be summed up
in the following slogan:

on the basis of the past do the future.

Thus each rule is continually matched against an internal, recorded history, and if a
match is found, then the rule fires. If a rule fires, then any variables in the future time
part are instantiated, and the future time part then becomes a commitment that
the agent will subsequently attempt to satisfy. Satisfying a commitment typically
means making some predicate true within the agent. Here is a simple example of a
Concurrent METATEM agent definition:

re(ask)[give] :

Qask(z) = Ogive(r)

(mask(z) Z (give(x) A ~ask(z)) = —give(x)

give(x) A give(y) = (z = y)
The agent in this example is a controller for a resource that is infinitely renewable,
but which may only be possessed by one agent at any given time. The controller
must therefore enforce mutual exclusion over this resource. The first line of the
program defines the interface to the agent: its name is rc¢ (for resource controller),

and it will accept ask messages and send give messages. The following three lines
constitute the agent program itself. The predicate ask(xz) means that agent z has
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asked for the resource. The predicate give(x) means that the resource controller
has given the resource to agent z. The resource controller is assumed to be the
only agent able to “give” the resource. However, many agents may ask for the
resource simultaneously. The three rules that define this agent’s behavior may be
summarized as follows:

Rule 1: if someone has just asked for the resource, then eventually give them the
resource;

Rule 2: don’t give unless someone has asked since you last gave; and

Rule 3: if you give to two people, then they must be the same person (i.e., don’t
give to more than one person at a time).

Concurrent METATEM is a good illustration of how a quite pure approach to logic-
based agent programming can work, even with a quite expressive logic.

Sources and Further Reading

The main references to AGENTO are [64, 65]. Michael Fisher’s Concurrent METATEM
language is described in [21]; the execution algorithm that underpins it is described
in [3]. Since Shoham’s proposal, a number of languages have been proposed which
claim to be agent-oriented. Examples include Becky Thomas’s Planning Commu-
nicating Agents (PLACA) language [67, 68], MAIL [30], and Anand Rao’s AGENTS-
PEAK(L) language [50]. APRIL is a language that is intended to be used for building
multiagent systems, although it is not “agent-oriented” in the sense that Shoham de-
scribes [44]. The TELESCRIPT programming language, developed by General Magic,
Inc., was the first mobile agent programming language [69]. That is, it explicitly
supports the idea of agents as processes that have the ability to autonomously move
themselves across a computer network and recommence executing at a remote site.
Since TELESCRIPT was announced, a number of mobile agent extensions to the JAVA
programming language have been developed.

1.6 Conclusions

I hope that after reading this chapter, you understand what agents are and why
they are considered to be an important area of research and development. The
requirement for systems that can operate autonomously is very common. The
requirement for systems capable of flexible autonomous action, in the sense that I
have described in this chapter, is similarly common. This leads me to conclude that
intelligent agents have the potential to play a significant role in the future of software
engineering. Intelligent agent research is about the theory, design, construction, and
application of such systems. This chapter has focussed on the design of intelligent
agents. It has presented a high-level, abstract view of intelligent agents, and
described the sort of properties that one would expect such an agent to enjoy. It went
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on to show how this view of an agent could be refined into various different types
of agent architecture—purely logical agents, purely reactive/behavioral agents, BDI
agents, and layered agent architectures.

1.7 Exercises

1. [Level 1] Give other examples of agents (not necessarily intelligent) that you
know of. For each, define as precisely as possible:

(a) the environment that the agent occupies (physical, software, ...), the
states that this environment can be in, and whether the environment is:
accessible or inaccessible; deterministic or non-deterministic; episodic or
non-episodic; static or dynamic; discrete or continuous.

(b) the action repertoire available to the agent, and any pre-conditions asso-
ciated with these actions;

(c) the goal, or design objectives of the agent—what it is intended to achieve.
2. [Level 1] Prove that

(a) for every purely reactive agent, these is a behaviorally equivalent standard
agent.

(b) there exist standard agents that have no behaviorally equivalent purely
reactive agent.

3. [Level 1] Prove that state-based agents are equivalent in expressive power to
standard agents, i.e., that for every state-based agent there is a behaviorally
equivalent standard agent and vice versa.

4. [Level 2] The following few questions refer to the vacuum world example
described in section 1.4.1.
Give the full definition (using pseudo-code if desired) of the new function,
which defines the predicates to add to the agent’s database.

5. [Level 2] Complete the vacuum world example, by filling in the missing rules.
How intuitive do you think the solution is? How elegant is it? How compact is
it?

6. [Level 2] Try using your favourite (imperative) programming language to code
a solution to the basic vacuum world example. How do you think it compares to
the logical solution? What does this tell you about trying to encode essentially
procedural knowledge (i.e., knowledge about what action to perform) as purely
logical rules?

7. [Level 2] If you are familiar with PROLOG, try encoding the vacuum world
example in this language and running it with randomly placed dirt. Make
use of the assert and retract meta-level predicates provided by PROLOG
to simplify your system (allowing the program itself to achieve much of the
operation of the next function).
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10.

11.

12.

13.

14.

15.

16.

[Level 2] Develop a solution to the vacuum world example using the behavior-
based approach described in section 1.4.2. How does it compare to the logic-
based example?

[Level 2] Try scaling the vacuum world up to a 10 x 10 grid size. Approximately
how many rules would you need to encode this enlarged example, using the
approach presented above? Try to generalize the rules, encoding a more general
decision making mechanism.

[Level 3] Suppose that the vacuum world could also contain obstacles, which
the agent needs to avoid. (Imagine it is equipped with a sensor to detect
such obstacles.) Try to adapt the example to deal with obstacle detection and
avoidance. Again, compare a logic-based solution to one implemented in a
traditional (imperative) programming language.

[Level 3] Suppose the agent’s sphere of perception in the vacuum world is
enlarged, so that it can see the whole of its world, and see exactly where the dirt
lay. In this case, it would be possible to generate an optimal decision-making
algorithm—one which cleared up the dirt in the smallest time possible. Try and
think of such general algorithms, and try to code them both in first-order logic
and a more traditional programming language. Investigate the effectiveness of
these algorithms when there is the possibility of noise in the perceptual input
the agent receives, (i.e., there is a non-zero probability that the perceptual
information is wrong), and try to develop decision-making algorithms that are
robust in the presence of such noise. How do such algorithms perform as the
level of perception is reduced?

[Level 2] Try developing a solution to the Mars explorer example from sec-
tion 1.4.2 using the logic-based approach. How does it compare to the reactive
solution?

[Level 3] In the programming language of your choice, implement the Mars
explorer example using the subsumption architecture. (To do this, you may
find it useful to implement a simple subsumption architecture “shell” for
programming different behaviors.) Investigate the performance of the two
approaches described, and see if you can do better.

[Level 3] Using the simulator implemented for the preceding question, see what
happens as you increase the number of agents. Eventually, you should see that
overcrowding leads to a sub-optimal solution—agents spend too much time
getting out of each other’s way to get any work done. Try to get around this
problem by allowing agents to pass samples to each other, thus implementing
chains. (See the description in [15, p305].)

[Level 4] Read about traditional control theory, and compare the problems
and techniques of control theory to what are trying to accomplish in building
intelligent agents. How are the techniques and problems of traditional control
theory similar to those of intelligent agent work, and how do they differ?

[Level 4] One advantage of the logic-based approach to building agents is that
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the logic-based architecture is generic: first-order logic turns out to extremely
powerful and useful for expressing a range of different properties. Thus it
turns out to be possible to use the logic-based architecture to encode a range
of other architectures. For this exercise, you should attempt to use first-order
logic to encode the different architectures (reactive, BDI, layered) described in
this chapter. (You will probably need to read the original references to be able
to do this.) Once completed, you will have a logical theory of the architecture,
that will serve both as a formal specification of the architecture, and also as
a precise mathematical model of it, amenable to proof. Once you have your
logically-specified architecture, try to animate it, by mapping your logical
theory of it into, say the PROLOG programming language. What compromises
do you have to make? Does it seem worthwhile trying to directly program the
system in logic, or would it be simpler to implement your system in a more
pragmatic programming language (such as JAVA)?
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2 Multiagent Systems and
Societies of Agents

Michael N. Huhns and Larry M. Stephens

2.1 Introduction

Agents operate and exist in some environment, which typically is both computa-
tional and physical. The environment might be open or closed, and it might or
might not contain other agents. Although there are situations where an agent can
operate usefully by itself, the increasing interconnection and networking of com-
puters is making such situations rare, and in the usual state of affairs the agent
interacts with other agents. Whereas the previous chapter defined the structure and
characteristics of an individual agent, the focus of this chapter is on systems with
multiple agents. At times, the number of agents may be too numerous to deal with
them individually, and it is then more convenient to deal with them collectively, as
a society of agents.

In this chapter, we will learn how to analyze, describe, and design environments
in which agents can operate effectively and interact with each other productively.
The environments will provide a computational infrastructure for such interactions
to take place. The infrastructure will include protocols for agents to communicate
and protocols for agents to interact.

Communication protocols enable agents to exchange and understand messages.
Interaction protocols enable agents to have conversations, which for our purposes
are structured exchanges of messages. As a concrete example of these, a communi-
cation protocol might specify that the following types of messages can be exchanged
between two agents:

= Propose a course of action

= Accept a course of action

= Reject a course of action

= Retract a course of action

= Disagree with a proposed course of action

= Counterpropose a course of action

Based on these message types, the following conversation—an instance of an
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interaction protocol for negotiation—can occur between Agentl and Agent2:

= Agentl proposes a course of action to Agent2
Agent2 evaluates the proposal and

= sends acceptance to Agentl
or

= gsends counterproposal to Agentl
or

= sends disagreement to Agentl
or

= sends rejection to Agentl

This chapter describes several protocols for communication and interaction
among both large and small groups of agents.

2.1.1 Motivations

But why should we be interested in distributed systems of agents? Indeed, cen-
tralized solutions are generally more efficient: anything that can be computed in a
distributed system can be moved to a single computer and optimized to be at least
as efficient. However, distributed computations are sometimes easier to understand
and easier to develop, especially when the problem being solved is itself distributed.
Distribution can lead to computational algorithms that might not have been discov-
ered with a centralized approach. There are also times when a centralized approach
is impossible, because the systems and data belong to independent organizations
that want to keep their information private and secure for competitive reasons.

The information involved is necessarily distributed, and it resides in information
systems that are large and complex in several senses: (1) they can be geographically
distributed, (2) they can have many components, (3) they can have a huge content,
both in the number of concepts and in the amount of data about each concept,
and (4) they can have a broad scope, i.e., coverage of a major portion of a
significant domain. Also, the components of the systems are typically distributed
and heterogeneous. The topology of these systems is dynamic and their content is
changing so rapidly that it is difficult for a user or an application program to obtain
correct information, or for the enterprise to maintain consistent information.

There are four major techniques for dealing with the size and complexity of
these enterprise information systems: modularity, distribution, abstraction, and
intelligence, i.e., being smarter about how you seek and modify information. The
use of intelligent, distributed modules combines all four of these techniques, yielding
a distributed artificial intelligence (DAI) approach [25, 18].

In accord with this approach, computational agents need to be distributed
and embedded throughout the enterprise. The agents could function as intelligent
application programs, active information resources, “wrappers” that surround and
buffer conventional components, and on-line network services. The agents would be
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knowledgeable about information resources that are local to them, and cooperate
to provide global access to, and better management of, the information. For
the practical reason that the systems are too large and dynamic (i.e., open) for
global solutions to be formulated and implemented, the agents need to execute
autonomously and be developed independently.

The rationale for interconnecting computational agents and expert systems is to
enable them to cooperate in solving problems, to share expertise, to work in parallel
on common problems, to be developed and implemented modularly, to be fault
tolerant through redundancy, to represent multiple viewpoints and the knowledge
of multiple experts, and to be reusable.

The possibility of an agent interacting with other agents in the future, in
unanticipated ways, causes its developer to think about and construct it differently.
For example, the developer might consider “What exactly does my agent know?”
and “How can another agent access and use the knowledge my agent has?” This
might lead to an agent’s knowledge being represented declaratively, rather than
being buried in procedural code.

Multiagent systems are the best way to characterize or design distributed comput-
ing systems. Information processing is ubiquitous. There are computer processors
seemingly everywhere, embedded in all aspects of our environment. Your kitchen
likely has many, in such places as the microwave oven, toaster, and coffee maker,
and this number does not consider the electrical power system, which probably uses
hundreds in getting electricity to the kitchen. The large number of processors and
the myriad ways in which they interact makes distributed computing systems the
dominant computational paradigm today.

When the processors in the kitchen are intelligent enough to be considered
agents, then it becomes convenient to think of them in anthropomorphic terms.
For example, “the toaster knows when the toast is done,” and “the coffee pot
knows when the coffee is ready.” When these systems are interconnected so they
can interact, then they should also know that the coffee and toast should be ready at
approximately the same time. In these terms, your kitchen becomes more than just a
collection of processors—a distributed computing system—it becomes a multiagent
system.

Much of traditional AT has been concerned with how an agent can be constructed
to function intelligently, with a single locus of internal reasoning and control
implemented in a Von Neumann architecture. But intelligent systems do not
function in isolation—they are at the very least a part of the environment in which
they operate, and the environment typically contains other such intelligent systems.
Thus, it makes sense to view such systems in societal terms.

2.1.2 Characteristics of Multiagent Environments

1.  Multiagent environments provide an infrastructure specifying communication
and interaction protocols.
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Multiagent environments are typically open and have no centralized designer.
3. Multiagent environments contain agents that are autonomous and distributed,

and may be self-interested or cooperative.

A multiagent execution environment includes a number of concerns, which are
enumerated as possible characteristics in Table 2.1.

Property | Range of values

Design Autonomy Platform /Interaction Protocol
/Language/Internal Architecture

Communication Infrastructure | Shared memory (blackboard) or Message-based
Connected or Connection-less (email)
Point-to-Point, Multicast, or Broadcast

Push or Pull

Synchronous or Asynchronous

Directory Service White pages, Yellow pages
Message Protocol KQML

HTTP and HTML

OLE, CORBA, DSOM

Mediation Services Ontology-based? Transactions?
Security Services Timestamps/Authentication
Remittance Services Billing/Currency

Operations Support Archiving/Redundancy

/Restoration/Accounting

Table 2.1 Characteristics of multiagent environments.

Property Definition

Knowable To what extent is the environment known to the agent

Predictable To what extent can it be predicted by the agent

Controllable | To what extent can the agent modify the environment

Historical Do future states depend on the entire history, or only the current state

Teleological | Are parts of it purposeful, i.e., are there other agents

Real-time Can the environment change while the agent is deliberating

Table 2.2 Environment-agent characteristics.

Table 2.2 lists some key properties of an environment with respect to a specific
agent that inhabits it. These generalize the presentation in [38].
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2.2 Agent Communications

We first provide a basic definition for an agent, which we need in order to describe
the languages and protocols needed by multiagent systems. Fundamentally, an agent
is an active object with the ability to perceive, reason, and act. We assume that
an agent has explicitly represented knowledge and a mechanism for operating on
or drawing inferences from its knowledge. We also assume that an agent has the
ability to communicate. This ability is part perception (the receiving of messages)
and part action (the sending of messages). In a purely computer-based agent, these
may be the agent’s only perceptual and acting abilities.

2.2.1 Coordination

Agents communicate in order to achieve better the goals of themselves or of the
society /system in which they exist. Note that the goals might or might not be known
to the agents explicitly, depending on whether or not the agents are goal-based.
Communication can enable the agents to coordinate their actions and behavior,
resulting in systems that are more coherent.

Coordination is a property of a system of agents performing some activity in
a shared environment. The degree of coordination is the extent to which they
avoid extraneous activity by reducing resource contention, avoiding livelock and
deadlock, and maintaining applicable safety conditions. Cooperation is coordination
among nonantagonistic agents, while negotiation is coordination among competitive
or simply self-interested agents. Typically, to cooperate successfully, each agent
must maintain a model of the other agents, and also develop a model of future
interactions. This presupposes sociability.

Coordination

Cooperation Competition

Planning Negotiation

Distributed Planning Centralized Planning

Figure 2.1 A taxonomy of some of the different ways in which agents can
coordinate their behavior and activities.
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Coherence is how well a system behaves as a unit. A problem for a multiagent
system is how it can maintain global coherence without explicit global control.
In this case, the agents must be able on their own to determine goals they share
with other agents, determine common tasks, avoid unnecessary conflicts, and pool
knowledge and evidence. It is helpful if there is some form of organization among
the agents. Also, social commitments can be a means to achieving coherence, which
is addressed in Section 2.4.

Section 2.3.7 discusses another means, based on economic principles of markets.
In this regard, Simon [40] argues eloquently that although markets are excellent
for clearing all goods, i.e., finding a price at which everything is sold, they are less
effective in computing optimal allocations of resources. Organizational structures
are essential for that purpose. It is believed that coherence and optimality are
intimately related.

2.2.2 Dimensions of Meaning

There are three aspects to the formal study of communication: syntax (how the
symbols of comunication are structured), semantics (what the symbols denote),
and pragmatics (how the symbols are interpreted). Meaning is a combination of
semantics and pragmatics. Agents communicate in order to understand and be
understood, so it is important to consider the different dimensions of meaning that
are associated with communication [42].

Descriptive vs. Prescriptive. Some messages describe phenomena, while others
prescribe behavior. Descriptions are important for human comprehension, but are
difficult for agents to mimic. Appropriately, then, most agent communication lan-
guages are designed for the exchange of information about activities and behavior.

Personal vs. Conventional Meaning. An agent might have its own meaning for
a message, but this might differ from the meaning conventionally accepted by the
other agents with which the agent communicates. To the greatest extent possible,
multiagent systems should opt for conventional meanings, especially since these
systems are typically open environments in which new agents might be introduced
at any time.

Subjective vs. Objective Meaning Similar to conventional meaning, where
meaning is determined external to an agent, a message often has an explicit effect
on the environment, which can be perceived objectively. The effect might be differ-
ent than that understood internally, i.e., subjectively, by the sender or receiver of
the message.

Speaker’s vs. Hearer’s vs. Society’s Perspective Independent of the conven-
tional or objective meaning of a message, the message can be expressed according
to the viewpoint of the speaker or hearer or other observers.

Semantics vs. Pragmatics The pragmatics of a communication are concerned
with how the communicators use the communication. This includes considerations
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of the mental states of the communicators and the environment in which they exist,
considerations that are external to the syntax and semantics of the communication.

Contextuality Messages cannot be understood in isolation, but must be inter-
preted in terms of the mental states of the agents, the present state of the environ-
ment, and the environment’s history: how it arrived at its present state. Interpre-
tations are directly affected by previous messages and actions of the agents.

Coverage Smaller languages are more manageable, but they must be large enough
so that an agent can convey the meanings it intends.

Identity When a communication occurs among agents, its meaning is dependent
on the identities and roles of the agents involved, and on how the involved agents
are specified. A message might be sent to a particular agent, or to just any agent
satisfying a specified criterion.

Cardinality A message sent privately to one agent would be understood differently
than the same message broadcast publicly.

2.2.3 Message Types

It is important for agents of different capabilities to be able to communicate.
Communication must therefore be defined at several levels, with communication
at the lowest level used for communication with the least capable agent. In order
to be of interest to each other, the agents must be able to participate in a dialogue.
Their role in this dialogue may be either active, passive, or both, allowing them
to function as a master, slave, or peer, respectively. In keeping with the above
definition for and assumptions about an agent, we assume that an agent can send
and receive messages through a communication network. The messages can be of
several types, as defined next.

There are two basic message types: assertions and queries. Every agent, whether
active or passive, must have the ability to accept information. In its simplest form,
this information is communicated to the agent from an external source by means of
an assertion. In order to assume a passive role in a dialog, an agent must additionally
be able to answer questions, i.e., it must be able to 1) accept a query from an
external source and 2) send a reply to the source by making an assertion. Note that
from the standpoint of the communication network, there is no distinction between
an unsolicited assertion and an assertion made in reply to a query.

In order to assume an active role in a dialog, an agent must be able to issue queries
and make assertions. With these capabilities, the agent then can potentially control
another agent by causing it to respond to the query or to accept the information
asserted. This means of control can be extended to the control of subagents, such
as neural networks and databases.

An agent functioning as a peer with another agent can assume both active and
passive roles in a dialog. It must be able to make and accept both assertions and
queries. A summary of the capabilities needed by different classes of agents is shown
in Table 2.3.
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Basic Agent

Passive Agent

Active Agent

Peer Agent

Receives assertions

Receives queries
Sends assertions

Sends queries

Table 2.3 Agent capabilities.

Communicative Action

Illocutionary Force

Expected Result

Assertion
Query
Reply
Request
Explanation
Command
Permission
Refusal
Offer/Bid
Acceptance
Agreement
Proposal
Confirmation
Retraction

Denial

Inform
Question
Inform
Request
Inform
Request
Inform
Inform

Inform

Inform

Acceptance
Reply
Acceptance

Agreement
Acceptance

Acceptance

Acceptance

Offer/Bid

Table 2.4 Interagent message types.

Other types of messages, derived from work on speech-act theory [43], are listed

in Table 2.4.

2.2.4 Communication Levels

Communication protocols are typically specified at several levels. The lowest level
of the protocol specifies the method of interconnection; the middle level specifies
the format, or syntax, of the information being transfered; the top level specifies
the meaning, or semantics, of the information. The semantics refers not only to the

substance of the message, but also to the type of the message.

There are both binary and n-ary communication protocols. A binary protocol
involves a single sender and a single receiver, whereas an n-ary protocol involves a
single sender and multiple receivers (sometimes called broadcast or multicast). A

protocol is specified by a data structure with the following five fields:

1. sender
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receiver(s)
language in the protocol

encoding and decoding functions

RN

actions to be taken by the receiver(s).
2.2.5 Speech Acts

Spoken human communication is used as the model for communication among
computational agents. A popular basis for analyzing human communication is
speech act theory [1, 39]. Speech act theory views human natural language as
actions, such as requests, suggestions, commitments, and replies. For example, when
you request something, you are not simply making a statement, but creating the
request itself. When a jury declares a defendant guilty, there is an action taken: the
defendant’s social status is changed.
A speech act has three aspects:

1. Locution, the physical utterance by the speaker
2. Tllocution, the intended meaning of the utterance by the speaker

3. Perlocution, the action that results from the locution.

For example, John might say to Mary, “Please close the window.” This act consists
of the physical sounds generated by John (or the character sequences typed by
John), John’s intent for the message as a request or a command, and if all goes
well, the window being shut.

In communication among humans, the intent of the message is not always easily
identified. For example, “I am cold,” can be viewed as an assertion, a request
for a sweater, or a demand for an increase in room temperature. However, for
communication among agents, we want to insure that there is no doubt about the
type of message.

Speech act theory uses the term performative to identify the illocutionary force
of this special class of utterance. Example performative verbs include promise,
report, convince, insist, tell, request, and demand. Illocutionary force can be broadly
classified as assertives (statements of fact), directives (commands in a master-
slave structure), commissives (commitments), declaratives (statements of fact), and
expressives (expressions of emotion).

Performatives are usually represented in the stylized syntatic form “I hereby
tell...” or “I hereby request...” Because performatives have the special property
that “saying it makes it so,” not all verbs are performatives. For example, stating
that “I hereby solve this problem” does not create the solution. Although the term
speech is used in this discussion, speech acts have to do with communication in
forms other than the spoken word.

In summary, speech act theory helps define the type of message by using the
concept, of the illocutionary force, which constrains the semantics of the communi-
cation act itself. The sender’s intended communication act is clearly defined, and

9
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the receiver has no doubt as to the type of message sent. This constraint simplifies
the design of our software agents.

The message contained within the protocol may be ambiguous, may have no
simple response, or may require decomposition and the assistance of other agents;
however, the communication protocol itself should clearly identify the type of
message being sent.

2.2.6 Knowledge Query and Manipulation Language (KQML)

A fundamental decision for the interaction of agents is to separate the seman-
tics of the communication protocol (which must be domain independent) from the
semantics of the enclosed message (which may depend on the domain). The com-
munication protocol must be universally shared by all agents. It should be concise
and have only a limited number of primitive communication acts.

The knowledge query and manipulation language (KQML) is a protocol for
exchanging information and knowledge, as illustrated in Figure 2.2. The elegance
of KQML is that all information for understanding the content of the message is
included in the communication itself. The basic protocol is defined by the following
structure:

(KQML-performative
:sender <word>
receiver  <word>
:language <word>
:ontology  <word>

:content <expression>

The syntax is Lisp-like; however, the arguments—identified by keywords preceded

9 = 8

KQML KOML

Application

Agent Agent Program

Figure 2.2 KQML is a protocol for communications among both agents and
application programs.
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by a colon—may be given in any order. The KQML-performatives are modeled on
speech act performatives. Thus, the semantics of KQML performatives is domain
independent, while the semanatics of the message is defined by the fields : content
(the message itself), :language (the langauge in which the message is expressed),
and :ontology (the vocabulary of the “words” in the message). In effect, KQML
“wraps” a message in a structure that can be understood by any agent. (To
understand the message itself, the recipient must understand the language and
have access to the ontology.)

The terms :content, :language, and :ontology delineate the semantics of
the message. Other arguments, including :sender, :receiver, :reply-with, and
:in-reply-to, are parameters of the message passing. KQML assumes asyn-
chronous communications; the fields :reply-with from a sender and : in-reply-to
from a responding agent link an outgoing message with an expected response.

KQML is part of a broad research effort to develop a methodology for distributing
information among different systems [35]. One part of the effort involves defining
the Knowledge Interchange Format (KIF), a formal syntax for representing knowl-
edge. Described in the next section, KIF is largely based on first-order predicate
calculus. Another part of the effort is defining ontologies that define the common
concepts, attributes, and relationships for different subsets of world knowledge. The
definitions of the ontology terms give meaning to expressions represented in KIF.
For example, in a Blocks-World ontology, if the concept of a wooden block of a
given size is represented by the unary predicate Block, then the fact that block A
is on top of block B could be communicated as follows:

(tell
:sender Agentl
‘receiver Agent2
:language: KIF
:ontology:  Blocks-World
:content (AND (Block A) (Block B) (On A B))

The language in a KQML message is not restricted to KIF; other languages such
as PROLOG, LISP, SQL, or any other defined agent communication language can
be used.

KQML-speaking agents appear to each other as clients and servers. Their com-
munications can be either synchronous or asynchronous, as illustrated in Figure
2.3. For a synchronous communication, a sending agent waits for a reply. For an
asynchronous communication, the sending agent continues with its reasoning or
acting, which would then be interrupted when replies arrive at a later time.

Interestingly, KQML messages can be “nested” in that the content of a KQML
message may be another KQML message, which is self contained. For example,
if Agentl cannot communicate directly with Agent2 (but can communicate with
Agent3), Agentl might ask Agent3 to forward a message to Agent2:
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Client query Server

-

replyy

Synchronous: a blocking query waits for an expected reply

query
Client next Server
reply
next
< reply

Server maintains state; replies sent individually when requested

_ subscribe >
Client < reply Server
< reply
< reply

Asynchronous: a nonblocking subscribe results in replies

Figure 2.3 Synchronous and asynchronous communications among agents that
understand KQML.
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(forward
from
:to
:sender
receiver
:language
:ontology
:content

Agentl
Agent2
Agentl
Agent3
KQML
kqml-ontology
(tell

91

:sender
receiver
:language
:ontology:
:content

Agentl

Agent2

KIF

Blocks-World

(On (Block A) (Block B))))

In a forwarded KQML message, the value of the :from field becomes the value
in the :sender field of the :content message, and the value of the :to field in the
forward becomes the value of the :receiver field.

The KQML performatives may be organized into seven basic categories:

®  Basic query performatives (evaluate, ask-one, ask-all, ...)

= Multiresponse query performatives (stream-in, stream-all, ...)

®  Response performatives (reply, sorry, ...)

= Generic informational performatives (tell, achieve, cancel, untell, unachieve, ...)

®  Generator performatives (standby, ready, next, rest, ...)

= Capability-definition performatives (advertise, subscribe, monitor, ...)

= Networking performatives (register, unregister, forward, broadcast, ...)

The advertise performative is used by a :sender agent to inform a :receiver
about the :sender’s capabilities:

(advertise
:sender
receiver
:language
:ontology
:content

Agent2

Agentl

KQML

kgml-ontology

(ask-all
:sender
‘receiver
:in-reply-to
:language
:ontology:

:content

Agentl
Agent2

id1

Prolog
Blocks-World
“on(X,Y)"))
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Now Agentl may query Agent2:

(ask-all
:sender Agentl
‘receiver Agent?2
:in-reply-to  id1
reply-with  id2
:language: Prolog
:ontology: Blocks-World
:content “on(X,Y)”

Agent2 could respond with matching assertions from its knowledge base:

(tell
:sender Agent2
:receiver Agentl
:in-reply-to  id2
:language: Prolog
:ontology: Blocks-World
:content “lon(a,b),on(c,d)]”

Issues:

The sender and receiver must understand the agent communication language
being used; the ontology must be created and be accesssible to the agents who are
communicating.

KQML must operate within a communication infrastructure that allows agents
to locate each other. The infrastructure is not part of the KQML specification, and
implemented systems use custom-made utility programs called routers or facilators
to perform this function. In the advertise example above, if Agent2 sent the message
to a facilator agent, then other agents could query the facilitator to find out about
Agent2’s capabilities.

KQML is still a work in progress and its semantics have not been completely de-
fined. Labrou and Finin [31] have recently proposed a new KQML specification that
refines the original draft [15]. However, there is yet no offical KQML specification
that agent builders can rely on.

2.2.7 Knowledge Interchange Format (KIF)

Agents need descriptions of real-world things. The descriptions could be expressed
in natural languages, such as English and Japanese, which are capable of describing
a wide variety of things and situations. However, the meaning of a natural language
statement is often subject to different interpretations.
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Symbolic logic is a general mathematical tool for describing things. Rather simple
logics (e.g., the first order predicate calculus) have been found to be capable of de-
scribing almost anything of interest or utility to people and other intelligent agents.
These things include simple concrete facts, definitions, abstractions, inference rules,
constraints, and even metaknowledge (knowledge about knowledge).

KIF, a particular logic language, has been proposed as a standard to use to
describe things within expert systems, databases, intelligent agents, etc. It is
readable by both computer systems and people. Moreover, it was specifically
designed to serve as an “interlingua,” or mediator in the translation of other
languages. For example, there is a translation program that can map a STEP/PDES
expression about products into an equivalent KIF expression and vice versa. If there
were a translation program for mapping between the healthcare language HL7 and
KIF, then there would be a way to translate between STEP/PDES and HL7 (to
exchange information about healthcare products) using KIF as an intermediate
representation.

KIF is a prefix version of first order predicate calculus with extensions to support
nonmonotonic reasoning and definitions. The language description includes both
a specification for its syntax and one for its semantics. KIF provides for the
expression of simple data. For example, the sentences shown below encode 3 tuples
in a personnel database (arguments stand for employee ID number, department
assignment, and salary, respectively):

(salary 015-46-3946 widgets 72000)
(salary 026-40-9152 grommets 36000)
(salary 415-32-4707 fidgets 42000)

More complicated information can be expressed through the use of complex
terms. For example, the following sentence states that one chip is larger than
another:

(> (% (width chipl) (length chipl))
(* (width chip2) (length chip2)))

KIF includes a variety of logical operators to assist in the encoding of logical
information, such as negation, disjunction, rules, and quantified formulas. The
expression shown below is an example of a complex sentence in KIF. It asserts
that the number obtained by raising any real-number ?x to an even power 7n is
positive:

(=> (and (real-number ?x)
(even—-number 7n))
(> (expt ?x 7n) 0))

KIF provides for the encoding of knowledge about knowledge, using the back-
quote (‘) and comma (,) operators and related vocabulary. For example, the follow-
ing sentence asserts that agent Joe is interested in receiving triples in the salary
relation. The use of commas signals that the variables should not be taken literally.
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Without the commas, this sentence
(interested joe ‘(salary ,?x ,7y ,7z))

would say that agent joe is interested in the sentence (salary 7x 7y 7z) instead
of its instances.

KIF can also be used to describe procedures, i.e., to write programs or scripts
for agents to follow. Given the prefix syntax of KIF, such programs resemble Lisp
or Scheme. The following is an example of a three-step procedure written in KIF.
The first step ensures that there is a fresh line on the standard output stream; the
second step prints “Hello!” to the standard output stream; the final step adds a
carriage return to the output.

(progn (fresh-line t)
(print "Hello!")
(fresh-line t))

The semantics of the KIF core (KIF without rules and definitions) is similar to
that of first-order logic. There is an extension to handle nonstandard operators
(like backquote and comma), and there is a restriction that models must satisfy
various axiom schemata (to give meaning to the basic vocabulary in the format).
Despite these extensions and restrictions, the core language retains the fundamental
characteristics of first-order logic, including compactness and the semi-decidability
of logical entailment.

2.2.8 Ontologies

An ontology is a specification of the objects, concepts, and relationships in an
area of interest. In the Blocks-World example above, the term Block represents a
concept and the term On represents a relationship. Concepts can be represented in
first-order logic as unary predicates; higher-arity predicates represent relationships.
To express the idea that a block is a physical object, we might use the first-order
expression

Vx (Block x) = (PhysicalObject x)

There are other, more general representations. Instead of (Block A), the expres-
sion (instanceOf A Block) could be used. Both A and Block are now objects in
the universe of discourse, and new relationships instanceOf and subclass0Of are
introduced:

(class Block)

(class PhysicalObject)

(subclass0f Block PhysicalObject)

Vx,y,z (instance0f x y) A (subclassOf y z) = (instance0f x z)
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The last sentence is a rule that expresses the notion of a type hierarchy.

An ontology is more than a taxonomy of classes (or types); the ontology must
describe the relationships. The classes and relationships must be represented in
the ontology; the instances of classes need not be represented. For example, there
is no need to represent A in the ontology for either (Block A) or (instance0f
A Block). An ontology is analogous to a database schema, not the contents of a
database itself.

Implicit in this discussion is that an agent must represent its knowledge in the
vocabulary of a specified ontology. Since agents are constructed by people, the effect
is that the agent’s creator must use a specified ontology to represent the agent’s
knowledge. All agents that share the same ontology for knowledge representation
have an understanding of the “words” in the agent communication language.

Many agents have knowledge bases in which relationships are defined in more
detail than just a character string. For example, the domain and range of a binary
relationship can be specified;

(domain On PhysicalObject)
(range On PhysicalObject)

These restrictions limit the values allowed in using a relationship. (On A B) is
permitted since both A and B are instances of PhysicalObject via transitive closure
of subclass0f; (On A Dreaml) would be prohibited assuming that Dream1 is not
of type PhysicalObject.

Ountology editors, such as those developed at Stanford [14] and the University of
South Carolina [32], are typically frame-based knowledge-representation systems
that allow users to define ontologies and their components: classes, instances,
relationships, and functions. Figure 2.4 shows an example of such an ontology.
Ontology editors offer a variety of features, such as the ability to translate ontologies
into several representation languages or the ability for distributed groups to develop
ontologies jointly over the Internet.

2.2.9 Other Communication Protocols

The above protocols for interagent communication in no way preclude other means
by which computational agents can interact, communicate, and be interconnected.
For example, one agent may be able to view a second agent with a camera, and use
the resulting images to coordinate its own actions with those of the second agent.

Once communication protocols are defined and agreed upon by a set of agents,
higher level protocols can be readily implemented. The next section describes some
of these.
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Figure 2.4 Example ontology for a simple business, showing classes and their
subclasses, relationships, and instances (indicated by a dashed line).

2.3 Agent Interaction Protocols

The previous section describes mechanisms for agents to communicate single mes-
sages. Interaction protocols govern the exchange of a series of messages among
agents—a conversation. Several interaction protocols have been devised for sys-
tems of agents. In cases where the agents have conflicting goals or are simply self-
interested, the objective of the protocols is to maximize the payoffs (utilities) of
the agents [37]. In cases where the agents have similar goals or common problems,
as in distributed problem solving (DPS), the objective of the protocols is to main-
tain globally coherent performance of the agents without violating autonomy, i.e.,
without explicit global control [11]. For the latter cases, important aspects include
how to

®  determine shared goals
= determine common tasks

® avoid unnecessary conflicts

= pool knowledge and evidence.
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2.3.1 Coordination Protocols

In an environment with limited resources, agents must coordinate their activities
with each other to further their own interests or satisfy group goals. The actions
of multiple agents need to be coordinated because there are dependencies between
agents’ actions, there is a need to meet global constraints, and no one agent has
sufficient competence, resources or information to achieve system goals. Examples
of coordination include supplying timely information to other agents, ensuring the
actions of agents are synchronized, and avoiding redundant problem solving.

To produce coordinated systems, most DAT research has concentrated on tech-
niques for distributing both control and data. Distributed control means that agents
have a degree of autonomy in generating new actions and in deciding which goals to
pursue next. The disadvantage of distributing control and data is that knowledge
of the system’s overall state is dispersed throughout the system and each agent has
only a partial and imprecise perspective. There is an increased degree of uncertainty
about each agent’s actions, so it is more difficult to attain coherent global behavior.

The actions of agents in solving goals can be expressed as search through a
classical AND/OR goal graph. The goal graph includes a representation of the
dependencies between the goals and the resources needed to solve the primitive goals
(leaf nodes of the graph). Indirect dependencies can exist between goals through
shared resources.

Formulating a multiagent system in this manner allows the activities requiring
coordination to be clearly identified. Such activities include: (1) defining the goal
graph, including identification and classification of dependencies; (2) assigning
particular regions of the graph to appropriate agents; (3) controlling decisions about
which areas of the graph to explore; (4) traversing the graph; and (5) ensuring that
successful traversal is reported. Some of the activities may be collaborative, while
some may be carried out by an agent acting in isolation. Determining the approach
for each of the phases is a matter of system design.

While the distributed goal search formalism has been used frequently to charac-
terize both global and local problems, the key agent structures are commitment and
convention [29]. Commitments are viewed as pledges to undertake a specified course
of action, while conventions provide a means of managing commitments in chang-
ing circumstances. Commitments provide a degree of predictability so that agents
can take the future activities of others into consideration when dealing with intera-
gent dependencies, global constraints, or resource utilization conflicts. As situations
change, agents must evaluate whether existing commitments are still valid. Con-
ventions constrain the conditions under which commitments should be reassessed
and specify the associated actions that should then be undertaken: either retain,
rectify or abandon the commitments.

If its circumstances do not change, an agent will endeavor to honor its commit-
ments. This obligation constrains the agent’s subsequent decisions about making
new commitments, since it knows that sufficient resources must be reserved to honor
its existing ones. For this reason, an agent’s commitments should be both internally
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consistent and consistent with its beliefs.

Conventions help an agent manage its commitments, but they do not specify how
the agent should behave towards others if it alters or modifies its commitments.
However for goals that are dependent, it is essential that the relevant agents be
informed of any substantial change that affects them. A convention of this type is a
social one. If communication resources are limited, the following social convention
might be appropriate:

LIMITED-BANDWIDTH SOCIAL CONVENTION

INVOKE WHEN
Local commitment dropped
Local commitment satisfied

ACTIONS
RULE1: IF Local commitment satisfied
THEN inform all related commitments

Rule2: IF local commitments dropped because unattainable or
motivation not present
THEN inform all strongly related commitments

Rule3: IF local commitments dropped because unattainable or
motivation not present
AND communication resources not overburdened
THEN inform all weakly related commitments

When agents decide to pursue a joint action, they jointly commit themselves to
a common goal, which they expect will bring about the desired state of affairs.
The minimum information that a team of cooperating agents should share is (1)
the status of their commitment to the shared objective, and (2) the status of their
commitment to the given team framework. If an agent’s beliefs about either of
these issues change, then the semantics of joint commitments requires that all team
members be informed. As many joint actions depend upon the participation of
an entire team, a change of commitment by one participant can jeopardize the
team’s efforts. Hence, if an agent comes to believe that a team member is no longer
jointly committed, it also needs to reassess its own position with respect to the joint
action. These three basic assumptions are encoded in a convention that represents
the minimum requirement for joint commitments, as shown below.

BASIC JOINT-ACTION CONVENTION
INVOKE WHEN

Status of commitment to joint action changes
Status of commitment to attaining joint action in present
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team context changes
Status of joint commitment of a team member changes

ACTIONS
Rulel: IF Status of commitment to joint action changes
OR
IF Status of commitment to present team
context changes
THEN inform all other team member of these changes

Rule2: IF Status of joint commitment of a team member changes
THEN Determine whether joint commitment still viable

Commitments and conventions are the cornerstones of coordination: commit-
ments provide the necessary structure for predictable interactions, and social con-
ventions provide the necessary degree of mutual support.

2.3.2 Cooperation Protocols

A basic strategy shared by many of the protocols for cooperation is to decompose
and then distribute tasks. Such a divide-and-conquer approach can reduce the com-
plexity of a task: smaller subtasks require less capable agents and fewer resources.
However, the system must decide among alternative decompositions, if available,
and the decomposition process must consider the resources and capabilities of the
agents. Also, there might be interactions among the subtasks and conflicts among
the agents.

Task decomposition can be done by the system designer, whereby decomposition
is programmed during implementation, or by the agents using hierarchical planning,
or it might be inherent in the representation of the problem, as in an AND-
OR graph. Task decomposition might be done spatially, based on the layout of
information sources or decision points, or functionally, according to the expertise
of available agents.

Once tasks are decomposed, they can be distributed according to the following
criteria [13]:

= Avoid overloading critical resources

= Assign tasks to agents with matching capabilities

= Make an agent with a wide view assign tasks to other agents

= Assign overlapping responsibilities to agents to achieve coherence

= Assign highly interdependent tasks to agents in spatial or semantic proximity.
This minimizes communication and synchronization costs

= Reassign tasks if necessary for completing urgent tasks.
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Spatial decomposition by information source or decision point:

Agent 1 Agent3

Agent 2

Functional decomposition by expertise:
/ Pediatrician

Neurologist / > Internist
~ /  \

Cardiologist Psychologist

Figure 2.5 Two commonly used methods for distributing tasks among cooperative
agents.

The following mechanisms are commonly used to distribute tasks:
= Market mechanisms: tasks are matched to agents by generalized agreement or
mutual selection (analogous to pricing commodities)
= Contract net: announce, bid, and award cycles
= Multiagent planning: planning agents have the responsibility for task assignment
= QOrganizational structure: agents have fixed responsibilities for particular tasks.

Figure 2.5 illustrates two of the methods of task distribution. Details of additional
methods are described in the sections that follow.

2.3.3 Contract Net
Of the above mechanisms, the best known and most widely applied is the contract

net protocol [44, 9]. The contract net protocol is an interaction protocol for coop-
erative problem solving among agents. It is modeled on the contracting mechanism
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used by businesses to govern the exchange of goods and services. The contract net
provides a solution for the so-called connection problem: finding an appropriate
agent to work on a given task. Figure 2.6 illustrates the basic steps in this protocol.

An agent wanting a task solved is called the manager; agents that might be able
to solve the task are called potential contractors. From a manager’s perspective,
the process is

= Announce a task that needs to be performed
= Receive and evaluate bids from potential contractors
= Award a contract to a suitable contractor

= Receive and synthesize results.
From a contractor’s perspective, the process is

" Receive task announcements

= Evaluate my capability to respond

®  Respond (decline, bid)

= Perform the task if my bid is accepted

= Report my results.

The roles of agents are not specified in advance. Any agent can act as a manager
by making task announcements; any agent can act as a contractor by responding
to task announcements. This flexibility allows for further task decomposition: a
contractor for a specific task may act as a manager by soliciting the help of other
agents in solving parts of that task. The resulting manager-contractor links form a
control hierarchy for task sharing and result synthesis.

The contract net offers the advantages of graceful performance degradation. If a
contractor is unable to provide a satisfactory solution, the manager can seek other
potential contractors for the task.

The structure of a task announcement includes slots for addressee, eligibility
specification, task abstraction, bid specification, and expiration time. The tasks may
be addressed to one or more potential contractors who must meet the criteria of
the eligibility specification. The task abstraction, a brief description of the task,
is used by contractors to rank tasks from several task announcements. The bid
specification tells potential contractors what information must be provided with
the bid; returned bid specifications give the manager a basis for comparing bids
from different potential contractors. The expiration time is a deadline for receiving
bids.

Each potential contractor evaluates unexpired task announcements to determine
if it is eligible to offer a bid. The contractor then chooses the most attractive task
(based on some criteria) and offers a bid to the corresponding manager.

A manager receives and evaluates bids for each task announcement. Any bid
deemed satisfactory may be accepted before the expiration time of the task an-
nouncement. The manager notifies the contractor of bid acceptance with an an-
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A manager announces the existence of tasks via a (possibly selective)
multicast

Agents evaluate the announcement. Some of these agents submit bids

The manager awards a contract to the most appropriate agent

The manager and contractor communicate privately as necessary

Figure 2.6 The basic steps in the contract net, an important generic protocol for
interactions among cooperative agents.



2.3 Agent Interaction Protocols 103

nounced award message. (A limitation of the contract net protocol is that a task
might be awarded to a contractor with limited capability if a better qualified con-
tractor is busy at award time. Another limitation is that a manager is under no
obligation to inform potential contractors that an award has already been made.)

A manager may not receive bids for several reasons: (1) all potential contractors
are busy with other tasks, (2) a potential contractor is idle but ranks the proposed
task below other tasks under consideration, (3) no contractors, even if idle, are
capable of working on the task. To handle these cases, a manager may request
immediate response bids to which contractors respond with messages such as eligible
but busy, ineligible, or uninterested (task ranked too low for contractor to bid). The
manager can then make adjustments in its task plan. For example, the manager
can wait until a busy potential contractor is free.

The contract net provides for directed contracts to be issued without negotiation.
The selected contractor responds with an acceptance or refusal. This capability can
simplify the protocol and improve effiency for certain tasks.

2.3.4 Blackboard Systems

Blackboard-based problem solving is often presented using the following metaphor:

“Imagine a group of human or agent specialists seated next to a large blackboard.
The specialists are working cooperatively to solve a problem, using the blackboard
as the workplace for developing the solution. Problem solving begins when the
problem and initial data are written onto the blackboard. The specialists watch the
blackboard, looking for an opportunity to apply their expertise to the developing
solution. When a specialist finds sufficient information to make a contribution, he
records the contribution on the blackboard. This additional information may enable
other specialists to apply their expertise. This process of adding contributions to
the blackboard continues until the problem has been solved.”

This metaphor captures a number of the important characteristics of blackboard
systems, each of which is described below.

Independence of expertise. The specialists (called knowledges sources or KSs)
are not trained to work solely with that specific group of specialists. Each is
an expert on some aspects of the problem and can contribute to the solution
independently of the particular mix of other specialists in the room.

Diversity in problem-solving techniques. In blackboard systems, the internal
representation and inferencing machinery used by each KS are hidden from direct
view.

Flexible representation of blackboard information. The blackboard model
does not place any prior restrictions on what information can be placed on the
blackboard.

Common interaction language. KSs in blackboard systems must be able to cor-
rectly interpret the information recorded on the blackboard by other KSs. In prac-
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tice, there is a tradeoff between the representational expressiveness of a specialized
representation shared by only a few KSs and a fully general representation under-
stood by all KSs.

Event-based activation. KSs in blackboard systems are triggered in response to
blackboard and external events. Blackboard events include the addition of new
information to the blackboard, a change in existing information, or the removal of
existing information. Rather than having each KS scan the blackboard, each KS
informs the blackboard system about the kind of events in which it is interested.
The blackboard system records this information and directly considers the KS for
activation whenever that kind of event occurs.

Need for control. A control component that is separate from the individual KSs
is responsible for managing the course of problem solving. The control component
can be viewed as a specialist in directing problem solving, by considering the
overall benefit of the contributions that would be made by triggered KSs. When
the currently executing KS activation completes, the control component selects the
most appropriate pending KS activation for execution.

When a KS is triggered, the KS uses its expertise to evaluate the quality and
importance of its contribution. Each triggered KS informs the control component of
the quality and costs associated with its contribution, without actually performing
the work to compute the contribution. The control component uses these estimates
to decide how to proceed.

Incremental solution generation. KSs contribute to the solution as appropri-
ate, sometimes refining, sometimes contradicting, and sometimes initiating a new
line of reasoning.

Figure 2.7 shows the architecture of a basic blackboard system.
2.3.5 Negotiation

A frequent form of interaction that occurs among agents with different goals is
termed negotiation. Negotiation is a process by which a joint decision is reached
by two or more agents, each trying to reach an individual goal or objective. The
agents first communicate their positions, which might conflict, and then try to move
towards agreement, by making concessions or searching for alternatives.

The major features of negotiation are (1) the language used by the participating
agents, (2) the protocol followed by the agents as they negotiate, and (3) the decision
process that each agent uses to determine its positions, concessions, and criteria for
agreement.

Many groups have developed systems and techniques for negotiation. These
can be either environment-centered or agent-centered. Developers of environment-
centered techniques focus on the following problem: “How can the rules of the
environment be designed so that the agents in it, regardless of their origin, capabil-
ities, or intentions, will interact productively and fairly?” The resultant negotiation
mechanism should ideally have the following attributes:
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Efficiency: the agents should not waste resources in coming to an agreement.

Stability: no agent should have an incentive to deviate from agreed-upon strate-
gies.

Simplicity: the negotiation mechanism should impose low computational and
bandwidth demands on the agents.

Distribution: the mechanism should not require a central decision maker.

Symmetry: the mechanism should not be biased against any agent for arbitrary
or inappropriate reasons.

An articulate and entertaining treatment of these concepts is found in [36]. In par-
ticular, three types of environments have been identified: worth-oriented domains,
state-oriented domains, and task-oriented domains.

A task-oriented domain is one where agents have a set of tasks to achieve, all
resources needed to achieve the tasks are available, and the agents can achieve
the tasks without help or interference from each other. However, the agents can
benefit by sharing some of the tasks. An example is the “Internet downloading
domain,” where each agent is given a list of documents that it must access over
the Internet. There is a cost associated with downloading, which each agent would
like to minimize. If a document is common to several agents, then they can save

Executing Library
Blackboard Activated [€— of
KS KSs
Events
Control Pending
Components| P KS
Activations

Figure 2.7 The architecture of a basic blackboard system, showing the black-
board, knowledge sources or agents, and control components.
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downloading cost by accessing the document once and then sharing it.

The environment might provide the following simple negotiation mechanism
and constraints: (1) each agent declares the documents it wants, (2) documents
found to be common to two or more agents are assigned to agents based on
the toss of a coin, (3) agents pay for the documents they download, and (4)
agents are granted access to the documents they download, as well as any in their
common sets. This mechanism is simple, symmetric, distributed, and efficient (no
document is downloaded twice). To determine stability, the agents’ strategies must
be considered.

An optimal strategy is for an agent to declare the true set of documents that it
needs, regardless of what strategy the other agents adopt or the documents they
need. Because there is no incentive for an agent to diverge from this strategy, it is
stable.

Developers of agent-centered negotiation mechanisms focus on the following
problem: “Given an environment in which my agent must operate, what is the best
strategy for it to follow?” Most such negotiation strategies have been developed for
specific problems, so few general principles of negotiation have emerged. However,
there are two general approaches, each based on an assumption about the particular
type of agents involved.

For the first approach, speech-act classifiers together with a possible world se-
mantics are used to formalize negotiation protocols and their components. This
clarifies the conditions of satisfaction for different kinds of messages. To provide a
flavor of this approach, we show in the following example how the commitments
that an agent might make as part of a negotiation are formalized [21]:

Va(z # y) A
=(Precommit, y v ¢) A (Goal y Eventually(Achieves y ¢)) A (Willing y ¢)
<= (Intend y Eventually(Achieves y ¢))

This rule states that an agent forms and maintains its commitment to achieve ¢
individually iff (1) it has not precommitted itself to another agent to adopt and
achieve ¢, (2) it has a goal to achieve ¢ individually, and (3) it is willing to achieve ¢
individually. The chapter on “Formal Methods in DAI” provides more information
on such descriptions.

The second approach is based on an assumption that the agents are economically
rational. Further, the set of agents must be small, they must have a common lan-
guage and common problem abstraction, and they must reach a common solution.
Under these assumptions, Rosenschein and Zlotkin [37] developed a unified negoti-
ation protocol. Agents that follow this protocol create a deal, that is, a joint plan
between the agents that would satisfy all of their goals. The wutility of a deal for
an agent is the amount he is willing to pay minus the cost of the deal. Each agent
wants to maximize its own utility. The agents discuss a negotiation set, which is
the set of all deals that have a positive utility for every agent.
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In formal terms, a task-oriented domain under this approach becomes a tuple
<T, A, ¢>

where T is the set of tasks, A is the set of agents, and ¢(X) is a monotonic function
for the cost of executing the tasks X. A deal is a redistribution of tasks. The utility
of deal d for agent k is

Uk(d) = c(T) — c(dk)

The conflict deal D occurs when the agents cannot reach a deal. A deal d is
individually rational if d > D. Deal d is pareto optimal if there is no deal
d" > d. The set of all deals that are individually rational and pareto optimal
is the negotiation set, N.S. There are three possible situations:

1. conflict: the negotiation set is empty

2. compromise: agents prefer to be alone, but since they are not, they will agree
to a negotiated deal

3. cooperative: all deals in the negotiation set are preferred by both agents over
achieving their goals alone.

When there is a conflict, then the agents will not benefit by negotiating—they
are better off acting alone. Alternatively, they can “flip a coin” to decide which
agent gets to satisfy its goals. Negotiation is the best alternative in the other two
cases.

Since the agents have some execution autonomy, they can in principle deceive
or mislead each other. Therefore, an interesting research problem is to develop
protocols or societies in which the effects of deception and misinformation can be
constrained. Another aspect of the research problem is to develop protocols under
which it is rational for agents to be honest with each other.

The connections of the economic approaches with human-oriented negotiation
and argumentation have not yet been fully worked out.

2.3.6 Multiagent Belief Maintenance

A multiagent truth-maintenance system can serve as a detailed example of a high-
level interaction among agents. A truth-maintenance system (TMS) [10] is designed
to ensure the integrity of an agent’s knowledge, which should be stable, well-
founded, and logically consistent. Depending on how beliefs, justifications, and
data are represented, a stable state of a knowledge base is one in which 1) each
datum that has a valid justification is believed, and 2) each datum that lacks a
valid justification is disbelieved. A well-founded knowledge base permits no set of
its beliefs to be mutually dependent. A logically consistent knowledge base is one
that is stable at the time that consistency is determined and in which no logical
contradiction exists. A consistent knowledge base is one in which no datum is both
believed and disbelieved (or neither), or in which no datum and its negation are both
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believed. Other desirable properties for a knowledge base are that it be complete,
concise, accurate, and efficient.

A single-agent TMS attempts to maintain well-founded stable states of a knowl-
edge base by adjusting which data are believed and which are disbelieved. However,
it is important for a group of agents to be able to assess and maintain the integrity
of communicated information, as well as of their own knowledge. A multiagent TMS
can provide this integrity [27].

We consider a modified justification-based TMS, in which every datum has a
set of justifications and an associated status of INTERNAL (believed, because of a
valid local justification), EXTERNAL (believed, because another agent asserted it),
or OUT (disbelieved). Consider a network of many agents, each with a partially-
independent system of beliefs. The agents interact by communicating data, either
unsolicited or in response to a query. For well-foundedness, a communicated datum
must be INTERNAL to at least one of the agents that believes it and either INTERNAL
or EXTERNAL to the rest.

The support status of a communicated datum is jointly maintained by several
agents. Hence, a single agent is generally not free to change the status on its own
accord. It must coordinate with the other agents so that they are all consistent on
the status of the datum.

The multiagent TMS is invoked by the addition or removal of a justification, and
obeys the following principles:

= Belief changes should be resolved with as few agents as possible.

= Belief changes should be resolved by changing as few beliefs as possible.
When invoked, it does the following three things:

1. Unlabels some data, including the newly justified datum and, presumably, its
consequences. This unlabeled data set might be confined to a single agent or
it might span several agents. If a communicated datum is unlabeled in some
agent, it must be unlabeled in all the agents that share it.

Chooses labelings for all the unlabeled shared data, as defined above.

3. Initiates labeling by each of the affected agents with respect to the require-
ments imposed by the shared data. If any of the affected agents fails to label
successfully, it then backtracks. It either chooses different labelings for the
shared data (step 2), or unlabels a different set of data (step 1).

Consider the justification network in Figure 2.8. There are two agents, Agent 1
and Agent 2, and they share the communicated datum T. Assume that the initial
labeling shown in the diagram is perturbed by the addition of a new justification for
Q. Agent 1 initially unlabels just the changed datum and private data downstream,
P and Q, but there is no consistent relabeling. Hence, Agent 1 unlabels all shared
data downstream of P and Q, and all private data downstream from there: P,
Q, both Ts, and U. Again labeling fails. Since there is no further shared data
downstream, Agent 1 and Agent 2 unlabel upstream and privately downstream
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Figure 2.8 A multiagent TMS network before a new justification for datum Q
(shown dashed) is added; this invokes the multiagent TMS algorithm and results
in a relabeling of the network.

from there: P, Q, Ts, U, R, and S. Now labeling succeeds, with S and U IN and
everything else OUT, as shown in Figure 2.9. Had labeling failed, unlabel would not
be able to unlabel more data, and would report that the network is inconsistent.

2.3.7 Market Mechanisms

Most of the protocols and mechanisms described earlier in this chapter require
agents to communicate with each other directly, so are appropriate for small
numbers of agents only. Other mechanisms for coordination are needed when there
are a large or unknown number of agents. One mechanism is based on voting, where
agents choose from a set of alternatives, and then adopt the alternative receiving
the most votes. This mechanism is simple, equitable, and distributed, but it requires
significant amounts of communication and organization, and is most useful when
there are just a few well defined issues to be decided.
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Figure 2.9 The resultant stable labeling of the justification network that is
produced by the multiagent TMS algorithm.

Computational economies, based on market mechanisms, are another approach
[47]. These are effective for coordinating the activities of many agents with minimal
direct communication among the agents. The research challenge is to build compu-
tational economies to solve specific problems of distributed resource allocation.

Everything of interest to an agent is described by current prices—the preferences
or abilities of others are irrelevant except insofar as they (automatically) affect
the prices. There are two types of agents, consumers, who exchange goods, and
producers, who transform some goods into other goods. Agents bid for goods at
various prices, but all exchanges occur at current market prices. All agents bid so
as to maximize either their profits or their utility.

To cast a problem in terms of a computational market, one needs to specify

= the goods being traded

®  the consumer agents that are trading the goods
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= the producer agents, with their technologies for transforming some goods into
others

= the bidding and trading behaviors of the agents.

Since the markets for goods are interconnected, the price of one good will
affect the supply and demand of others. The market will reach a competitive
equilibrium such that (1) consumers bid to maximize their utility, subject to their
budget constraints, (2) producers bid to maximize their profits, subject to their
technological capability, and (3) net demand is zero for all goods.

The important property is that an equilibrium corresponds—in some sense
optimally—to an allocation of resources and dictates the activities and consump-
tions of the agents. In general, equilibria need not exist or be unique, but under
certain conditions, such as when the effect of an individual on the market is assumed
negligible, they can be guaranteed to exist uniquely.

In an open market, agents are free to choose their own strategy, and they do not
have to behave rationally. Economic rationality assumes that the agent’s preferences
are given along with knowledge of the effects of the agent’s actions. From these, the
rational action for an agent is the one that maximizes its preferences.

Economic rationality has the charm of being a simple, “least common denomi-
nator” approach—if you can reduce everything to money, you can talk about max-
imizing it. But to apply it well requires a careful selection of the target problem.

One of the oldest applications of economic rationality is in decision-theoretic
planning, which models the costs and effects of actions quantitatively and proba-
bilistically. For many applications, where the probabilities can be estimated reliably,
this leads to highly effective plans of actions [24, 22].

The need to maximize preferences essentially requires that there be a scalar
representation for all the true preferences of an agent. In other words, all of the
preferences must be reduced to a single scalar that can be compared effectively
with other scalars. This is often difficult unless one can carefully circumscribe the
application domain. Otherwise, one ends up essentially recreating all of the other
concepts under a veneer of rationality. For example, if we would like an agent to
be governed by its past commitments, not just the most attractive choice at the
present time, then we can develop a utility function that gives additional weight to
past commitments. This approach may work in principle, but, in practice, it only
serves to hide the structure of commitments in the utility function that one chooses.
The next section describes social commitments more fully.

2.4 Societies of Agents

Much of traditional AT has been concerned with how an agent can be constructed
to function intelligently, with a single locus of internal reasoning and control
implemented in a Von Neumann architecture. But intelligent systems do not
function in isolation—they are at the very least a part of the environment in which
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they operate, and the environment typically contains other such intelligent systems.
Thus, it makes sense to view such systems in societal terms.

There are promising opportunities engendered by the combination of increasingly
large information environments, such as the national information infrastructure
and the intelligent vehicle highway system, and recent advances in multiagent
systems. Planned information environments are too large, complex, dynamic, and
open to be managed centrally or via predefined techniques—the only feasible
alternative is for computational intelligence to be embedded at many and sundry
places in such environments to provide distributed control. Each locus of embedded
intelligence is best thought of as an autonomous agent that finds, conveys, or
manages information. Because of the nature of the environments, the agents must
be long-lived (they should be able to execute unattended for long periods of
time), adaptive (they should be able to explore and learn about their environment,
including each other), and social (they should interact and coordinate to achieve
their own goals, and the goals of their society; they should rely on other agents to
know things so they do not have to know everything).

Techniques for managing societies of autonomous computational agents are useful
not only for large open information environments, but also for large open physical
environments. For example, such techniques can yield new efficiencies in defense
logistics: by considering each item of materiel to be an intelligent entity whose goal
is to reach a destination, a distribution system could manage more complicated
schedules and surmount unforeseen difficulties.

A group of agents can form a small society in which they play different roles.
The group defines the roles, and the roles define the commitments associated with
them. When an agent joins a group, he joins in one or more roles, and acquires
the commitments of that role. Agents join a group autonomously, but are then
constrained by the commitments for the roles they adopt. The groups define the
social context in which the agents interact.

Social agency involves abstractions from sociology and organizational theory
to model societies of agents. Since agents are often best studied as members of
multiagent systems, this view of agency is important and gaining recognition.
Sociability is essential to cooperation, which itself is essential for moving beyond the
somewhat rigid client-server paradigm of today to a true peer-to-peer distributed
and flexible paradigm that modern applications call for, and where agent technology
finds its greatest payoffs.

Although mental primitives, such as beliefs, desires, and intentions, are appropri-
ate for a number of applications and situations, they are not suitable in themselves
for understanding all aspects of social interactions. Further, economic models of
agency, although quite general in principle, are typically limited in practice. This
is because the value functions that are tractable essentially reduce an agent to a
selfish agent. [7] argue that a self-interested agent need not be selfish, because it
may have other interests than its immediate personal gain. This is certainly true
in many cases when describing humans, and is likely to be a richer assumption for
modeling artificial agents in settings that are appropriately complex.
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Social commitments are the commitments of an agent to another agent. These
must be carefully distinguished from internal commitments. Social commitments
have been studied by a number of researchers, including [17, 28]. There are a
number of definitions in the literature, which add components such as witnesses
[5] or contexts [41]. Social commitments are a flexible means through which the
behavior of autonomous agents is constrained. An important concept is that of
social dependence, defined as

(Social Dependence x y a p) = (Goal x p) A
=(CanDo z a) A
(CanDo y a) A
((DoneBy y a) = Eventually p)

that is, agent x depends on agent y with regard to act a for realizing state p, when
pis a goal of x and x is unable to realize p while y is able to do so.

Social dependence can be voluntary when the agents adopt the roles that bind
them to certain commitments. However, it is an objective relationship, in that
it holds independently of the agents’ awareness of it. Of course, there may be
consequences that occur when the agents become aware of it, such as z might try
to influence y to pursue p.

Social dependencies may be compound. For example, mutual dependence occurs
when z and y depend on each other for realizing a common goal p, which can be
achieved by a plan including at least two different actions, such that x depends on
y doing a, and y depends on z doing a,, as

p((Social Dependence x y a, p) A (Social Dependence y x a, p))

Cooperation is a form of such mutual dependence.
Reciprocal dependence occurs when x and y depend on each other for realizing
different goals, p, for = and p, for y, as

Ip.3Ip, ((Social Dependence x y a, p,) A (Social Dependence y x a, py))

Social exchange is a form of such reciprocal dependence.
With this as a basis, a group of agents form a cooperative team when
= All agents share a common goal.

= Each agent is required to do its share to achieve the common goal by the group
itself or a subgroup.

= Each agent adopts a request to do its share.

Beyond social dependencies, social laws may govern the behaviors of large numbers
of agents in a society. See [34] for a treatment of this concept.
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2.5 Conclusions

This chapter described elements of a computational environment that are needed
for the interaction of multiple software agents. The elements enable agents to
communicate, cooperate, and negotiate while they act in the interests of themselves

or their society.

Further research is needed to develop the basis and techniques for societies of

autonomous computational agents that execute in open environments for indefi-

nite periods. This research will rely on the ability of agents to acquire and use

representations of each other. This is what is needed for negotiation, cooperation,
coordination, and multiagent learning. What should be the contents of these rep-
resentations? Subsequent chapters of this textbook provide the answers.

2.6 Exercises

[Level 1] What are some of the advantages and disadvantages of synchronous
versus asynchronous communications among agents?

[Level 1] Imagine that two agents are negotiating a contract. In the course
of the negotiation, they engage in the following speech acts: propose, counter-
propose, accept, reject, retract, explain, ask-for-clarification, agree, disagree.
Draw a state diagram for the negotiation protocol followed by each agent.
[Level 3] Consider an environment having one broker agent with which many
information agents can advertise. When an information agent advertises, it
provides the broker with a list of predicate calculus expressions summarizing
its knowledge. To find information agents who are knowledgeable about certain
topics, a query agent supplies predicate calculus expressions to the broker and
asks for pointers to the relevant information agents. The broker then returns
a list of all relevant information agents.

(a) List the KQML message that would be sent when query agent Q1 asks
broker agent B1 for pointers to information agents knowledgeable about
the predicate calculus expression weight (Automobile 7x). Hint: the fol-
lowing is an example KQML message for an information agent advertising
with a broker:

(advertise
:content weight (Automobile ?7z)
:language Predicate-Calculus
:ontology Transportation-Domain
:sender info-agent-3
:receiver broker-1)

(b) The Transportation-Domain ontology is common to all agents. Draw a
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state transition diagram for each agent. Be sure that every speech act
sent and received serves as a “condition” for a state transition. State any
simplifying assumptions used.
[Level 1] What is the difference between the concepts coherence and coordi-
nation?

[Level 1] Give an advantage and disadvantage of the use of the contract net
protocol.

[Level 2] Formalize the following protocol for the contract net in KQML.
Clearly state which parts must be in the : content part of the communications.
“One agent, the Manager, has a task that it wants to be solved. The Man-
ager announces the task by broadcasting the task description in a task-
announcement message to the other agents, the potential contractors. When
contractors receives a task announcement, they evaluate it and some of them
respond with a bid message, containing an estimate of their ability and a cost.
The manager evaluates the bids, chooses the best one, and sends an award
message to the winning contractor.”

[Level 2] List the sequence of KQML performatives that must the generated
by agents A, B, and C in solving the following problem: “Agent A wants to
find out the cost of football tickets. Agent A does not know the cost, but
Agent A knows that Agent B exists. Agent B does not know the cost either,
but Agent B knows that Agent C exists. Agent C knows the cost.” Assume
that the agents are cooperative and truthful.

[Level 2] Describe how three agents might negotiate to find a common tele-
phone line for a conference call. Assume that Agent A has telephones lines 1,
2, 3; Agent B, 1, 3; and Agent C, 2, 3.

The negotiation proceeds pair-wise: two agents at a time. The agents negotiate
in order: A, B, C, A, B, C, A,... Also, alternate lines are chosen in the order
specified above for each agent.

Initially,

Agent A proposes line 1 to Agent B, and Agent B accepts it.

Agent B proposes line 1 to Agent C, but Agent C rejects it.

Complete the process until all agents have picked a common line.

[Level 3] “Multiagent Truth Maintenance:” A single agent who knows P and
P = Q would have its knowledge labeled as follows:
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10.

11.

factl: P

status: (IN)

shared with:  (NIL)

justification: (PREMISE)
rulel: P = Q

status: (IN)

shared with:  (NIL)

justification: (PREMISE)
fact2: Q

status: (IN)

shared with:  (NIL)

justification:  (factl, rulel)
If the agent shares factl with another agent, factl’s status changes to IN-
TERNAL, and the agent receiving the knowledge labels its new fact as having
status EXTERNAL.
Now consider the following situation in which the knowledge is initially local
to each agent:

Agent A Agent B Agent C
factl: P rulel: P = Q | factl: R
rulel: S = V | rule2: R = Q

rule3: R = S

ruled: Q = W

(a) Suppose that Agent A shares factl with Agent B, who uses forward
chaining to make all possible conclusions from his knowledge. Show
the effect of Agent A sharing factl on the status, shared with, and
justification fields for all data in each agent.

(b) Now suppose Agent C shares factl with Agent B. Show the effect of
sharing this knowledge on the status, shared with, and justification
fields for all data in each agent.

(¢) Now suppose that Agent A retracts factl by making factl have status
OUT. Show the changes that would occur to the status, shared with,
and justification fields for all data in each agent.

[Level 1] In the discussion of the unified negotiation protocol, it is stated that
the agents might decide to “flip a coin” when the negotiation set is empty.
Under what conditions might this be beneficial to the agents.

[Level 4] Tmagine a two-dimensional domain consisting of packages and desti-
nations (Figure 2.10). In this domain, robots must move the packages to the
correct destinations. Robots can carry only one package at a time, and they
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Figure 2.10 A domain where robots must move packages to their destinations.

are not allowed to travel through a package—they must maneuver around it.
There is a cost associated with moving a package, but not with picking it up
or setting it down. If a robot encounters a package when it is already carrying
another, it can either move the package out of the way, or it can go around
it. Moving it has a higher cost, but it might be beneficial to itself or other
robots in the future to have the package out of the way. Assume that a robot
is rewarded according to the amount that it moves a package closer to its des-
tination. Develop a computer simulation of this domain, and try to establish
answers to the following questions:

(a) Will the robots develop any social conventions regarding which direction
they move packages that are obstacles?

(b) Under what conditions will “roadways” (paths without obstacles) form
for the robots to travel on?

(c) Destination points will likely become congested with robots attempting
to drop off their packages. Gridlock might even occur. Will the robots
become specialized in their operation, where some robots bring packages
near the destinations and other robots move them from the drop-off points
to the final destinations?

(d) If the robots communicate information about their intentions regarding
the packages they are moving, will other robots be able to take advantage
of the information?

Suggestions: choose a grid of size NxN containing P packages, R robots, and D
destinations, where initial values for the parameters are N=100, P=>50, R=8,
and D=3. Assume that a robot and a package each take up one square of the
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12.

grid. Assume that a robot can move to any of its 8 adjoining squares, or stay
where it is, in each time interval.

[Level 1] The initial state in a Block’s World is On(B,C), On(D,A), Table(A),
and Table(C). The desired goal state is On(A,B), On(B,C), Table(C), and
Table(D). Agentl can manipulate only blocks A and B; Agent2 can manipulate
only blocks C and D. In solving this problem, the action MoveToTable(agent,
block) can be used to place block D on the table. Express the movement of
block D to the table in terms of the social dependence formula in this chapter.
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3 Distributed Problem Solving and Planning

Edmund H. Durfee

3.1 Introduction

Distributed problem solving is the name applied to a subfield of distributed artificial
intelligence (AI) in which the emphasis is on getting agents to work together well
to solve problems that require collective effort. Due to an inherent distribution
of resources such as knowledge, capability, information, and expertise among the
agents, an agent in a distributed problem-solving system is unable to accomplish
its own tasks alone, or at least can accomplish its tasks better (more quickly,
completely, precisely, or certainly) when working with others.

Solving distributed problems well demands both group coherence (that is, agents
need to want to work together) and competence (that is, agents need to know
how to work together well). As the reader by now recognizes, group coherence is
hard to realize among individually-motivated agents (see Chapters 2 and 5, for
example). In distributed problem solving, we typically assume a fair degree of
coherence is already present: the agents have been designed to work together; or the
payoffs to self-interested agents are only accrued through collective efforts; or social
engineering has introduced disincentives for agent individualism; etc. Distributed
problem solving thus concentrates on competence; as anyone who has played on a
team, worked on a group project, or performed in an orchestra can tell you, simply
having the desire to work together by no means ensures a competent collective
outcome!

Distributed problem solving presumes the existence of problems that need to be
solved and expectations about what constitute solutions. For example, a problem
to solve might be for a team of (computational) agents to design an artifact (say, a
car). The solution they formulate must satisfy overall requirements (it should have
four wheels, the engine should fit within the engine compartment and be powerful
enough to move the car, etc.), and must exist in a particular form (a specification
document for the assembly plant). The teamed agents formulate solutions by each
tackling (one or more) subproblems and synthesizing these subproblem solutions
into overall solutions.

Sometimes the problem the agents are solving is to construct a plan. And of-
ten, even if the agents are solving other kinds of problems, they also have to solve
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Figure 3.1 Tower of Hanoi (ToH).

planning problems as well. That is, how the agents should plan to work together—
decompose problems into subproblems, allocate these subproblems, exchange sub-
problem solutions, and synthesize overall solutions—is itself a problem the agents
need to solve. Distributed planning is thus tightly intertwined with distributed
problem solving, being both a problem in itself and a means to solving a problem.

In this chapter, we will build on the topics of the previous chapters to describe
the concepts and algorithms that comprise the foundations of distributed problem
solving and planning. The reader is already familiar with protocols of interaction;
here we describe how those protocols are used in the context of distributed problem
solving and planning. The reader is also assumed to be familiar with traditional AT
search techniques; since problem solving and planning are usually accomplished
through search, we make liberal use of the relevant concepts. The subsequent
chapter delves more formally into distributed search specifically.

The remainder of the chapter is structured as follows. We begin by introducing
some representative example problems, as well as overviewing a variety of other
applications of the techniques to be described. Working from these motivating
examples, we work our way up through a series of algorithms and concepts as
we introduce increasingly complicated requirements into the kinds of problems to
solve, including planning problems.

3.2 Example Problems

There are several motivations for distributed problem solving and distributed plan-
ning. One obvious motivation is that using distributed resources concurrently can
allow a speedup of problem solving thanks to parallelism. The possible improve-
ments due to parallelism depend, of course, on the degree of parallelism inherent
in a problem.

One problem that permits a large amount of parallelism during planning is a
classic toy problem from the AT literature: the Tower of Hanoi (ToH) problem
(see Figure 3.1). As the reader will recall from an introductory AI course, ToH
consists of 3 pegs and n disks of graduated sizes. The starting situation has all of
the disks on one peg, largest at bottom to smallest at top. The goal is to move the
disks from the start peg to another specified peg, moving only one disk at a time,
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without ever placing a larger disk on top of a smaller disk. The problem, then, is
to find a sequence of moves that will achieve the goal state.

A second motivation for distributed problem solving and planning is that exper-
tise or other problem-solving capabilities can be inherently distributed. For exam-
ple, in concurrent engineering, a problem could involve designing and manufacturing
an artifact (such as a car) by allowing specialized agents to individually formulate
components and processes, and combining these into a collective solution. Or, su-
pervisory systems for air-traffic control, factory automation, or crisis management
can involve an interplay between separate pieces for event monitoring, situation
assessment, diagnosis, prioritization, and response generation. In these kinds of
systems, the problem is to employ diverse capabilities to solve problems that are
not only large (the ToH can itself be arbitrarily large) but also multi-faceted.

As a simple example of distributed capability, we will use the example of dis-
tributed sensor network establishment for monitoring a large area for vehicle
movements. In this kind of problem, the overall task of monitoring cannot be done
in a central location since the large area cannot be sensed from any single location.
The establishment problem is thus to decompose the larger monitoring task into
subtasks that can be allocated appropriately to geographically distributed agents.

A third motivation is related to the second, and that is that beliefs or other data
can be distributed. For example, following the successful solution of the distributed
sensor network establishment problem just described, the problem of actually doing
the distributed vehicle monitoring could in principle be centralized: each of the
distributed sensor agents could transmit raw data to a central site to be interpreted
into a global view. This centralized strategy, however, could involve tremendous
amounts of unnecessary communication compared to allowing the separate sensor
agents to formulate local interpretations that could then be transmitted selectively.

Finally, a fourth motivation is that the results of problem solving or planning
might need to be distributed to be acted on by multiple agents. For example, in a
task involving the delivery of objects between locations, distributed delivery
agents can act in parallel (see Figure 3.2). The formation of the plans that
they execute could be done at a centralized site (a dispatcher) or could involve
distributed problem- solving among them. Moreover, during the execution of their
plans, features of the environment that were not known at planning time, or
that unexpectedly change, can trigger changes in what the agents should do.
Again, all such decisions could be routed through a central coordinator, but for
a variety of reasons (exploiting parallelism, sporadic coordinator availability, slow
communication channels, etc.) it could be preferable for the agents to modify their
plans unilaterally or with limited communication among them.

In the above, we have identified several of the motivations for distributed problem
solving and planning, and have enumerated examples of the kinds of applications
for which these techniques make sense. In the rest of this chapter, we will refer back
to several of these kinds of application problems, specifically:
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= Tower of Hanoi (ToH)

= Distributed Sensor Network Establishment (DSNE)
= Distributed Vehicle Monitoring (DVM)

= Distributed Delivery (DD)

3.3 Task Sharing

The first class of distributed problem-solving strategies that we will consider have
been called “task sharing” or “task passing” strategies in the literature. The idea
is simple. When an agent has many tasks to do, it should enlist the help of agents
with few or no tasks. The main steps in task sharing are:

1. Task decomposition: Generate the set of tasks to potentially be passed to
others. This could generally involve decomposing large tasks into subtasks that
could be tackled by different agents.

2. Task allocation: Assign subtasks to appropriate agents.

3. Task accomplishment: The appropriate agents each accomplish their sub-
tasks, which could include further decomposition and subsubtask assignment,
recursively to the point that an agent can accomplish the task it is handed
alone.

4. Result synthesis: When an agent accomplishes its subtask, it passes the
result to the appropriate agent (usually the original agent, since it knows the
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decomposition decisions and thus is most likely to know how to compose the
results into an overall solution).

Note that, depending on the circumstances, different steps might be more or less
difficult. For example, sometimes an overburdened agent begins with a bundle of
separate tasks, so decomposition is unnecessary; sometimes the agent can pass tasks
off to any of a number of identical agents, so allocation is trivial; and sometimes
accomplishing the tasks does not yield any results that need to be synthesized in
any complex way.

3.3.1 Task Sharing in the ToH Problem

To get a feel for the possibilities of task sharing, we start with the very simple ToH
problem. Consider the task-sharing steps when it comes to this problem:

1. Task decomposition: Means-ends analysis (see Figure 3.3), where moving the
largest disk that is not at its destination peg is considered the most important
difference, leads to a recursive decomposition: solve the problem of getting to
the state where the largest disk can be moved, and get from the state after it
is moved to the goal state. These subproblems can be further decomposed into
problems of moving the second largest disk to the middle peg to get it out of
the way, so the state where that can be done needs to be reached, etc.

2. Task allocation: If we assume an indefinite number of identical idle agents
capable of solving (pieces of) the ToH problem, then allocation reduces to just
assigning a task randomly to one of these agents.

3. Task accomplishment: In general, an agent can use means-ends analysis to
find the most significant difference between the start and goal states that
it is responsible for, and will decompose the problem based on these. If the
decomposed problems are such that the start and goal states are the same
(that is, where the most significant difference is also the only difference), then
the recursive decomposition terminates.

4.  Result synthesis: When an agent has solved its problem, it passes the solution
back on up. When an agent has received solutions to all of the subproblems
it passed down, it can compose these into a more comprehensive sequence of
moves, and then pass this up as its solution.

ToH represents an ideal case of the possibilities of distributed problem solving due
to the hierarchical nature of the problem. In general, for a problem like ToH, the
search space is exponential in size. If we assume a branching factor of b (meaning
that from a state, there are b alternative states that can be reached by moving some
disk to some peg), and assuming that in the best case it will take n disk movements
to go from the start state to the end state, then the search complexity is b”.
Thanks to the hierarchical structure of the problem, the means-ends heuristic can
reduce this complexity dramatically. Let us assume that ultimately the hierarchy
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Figure 3.3 Means-ends decomposition for ToH.

divides the problem of size n into problems each of size k, yielding n/k subproblems,
each of which requires f(k) time to solve. These solutions are fed to the next level
up in the hierarchy such that k are given to each of the agents at this level. Each
of these n/k* agents has to synthesize k results, again requiring f(k) time. This
aggregation process continues up the hierarchy, such that at the next-to-topmost
level, n/k'~! agents are combining k results from below in the hierarchy with [
levels. The topmost agent then combines these n/k!~! results together, requiring
f(n/k'=1) time. The total expenditure is thus:

F/E) 4+ (n/E1 - f(R) + (n/k2 - f(R) + o+ (n/k - f(K))
Since k is a constant, and we can choose [ = log, n, the equation can be reduced

to O([(k! — 1)/(k — 1)]f(k)) which can be simplified simply to O(n) [23, 23]. More
importantly, if each level of the hierarchy has agents that solve their subproblems in
parallel, then the time needed below the top of the hierarchy (assuming negligible
distribution and communication time) is simply f(k) for each level, so (I — 1) f(k).
This is added to the top agent’s calculation f(n/k!~'). Again, since k (and hence
f(k)) is constant, and I = log;, n, this reduces simply to O(log n). This means that
through decomposition and parallel problem solving, the exponential ToH problem
can be reduced to logarithmic time complexity [33].

What the ToH problem illustrates is the potential for improved parallelism due
to distributed problem solving in the ideally decomposable case. Unfortunately, few
problems satisfy the assumptions in this analysis of ToH, including;:

1. There is no backtracking back upward in the abstraction hierarchy, meaning
that each distributed subproblem is solvable independently and the solution
of one does not affect the solution of others. We will consider the effects of
relaxing this assumption in Subection 3.3.4.

2. The solution found hierarchically approximates (is linear in length to) the
solution that would be found using brute-force centralized search. This depends
on having hierarchical abstraction spaces that do not exclude good solutions
as a consequence of reducing complexity.



3.8 Task Sharing

127

3. The number of abstraction levels grows with the problem size. While doing
this is easy for ToH, often the number of levels is fixed by the domain rather
than the specific problem instance.

4.  The ratio between levels is the base of the logarithm, k. Again, this depends
on how the abstraction space is constructed.

5.  The problems can be decomposed into equal-sized subproblems. This is very
difficult in domains where problems are decomposed into qualitatively different
pieces, requiring different expertise. We consider the effects of relaxing this
assumption in Subsection 3.3.2.

6. There are at least as many agents as there are “leaf” subproblems. Clearly,
this will be difficult to scale!

7. The processes of decomposing problems, distributing subproblems, and collect-
ing results takes negligible time. We consider some of the effects of relaxing
this assumption at various places in this chapter.

3.3.2 Task Sharing in Heterogeneous Systems

One of the powerful motivations for distributed problem solving is that it is
difficult to build artifacts (or train humans) to be competent in every possible
task. Moreover, even if it feasible to build (or train) an omni-capable agent, it is
often overkill because, at any given time, most of those capabilities will go to waste.
The strategy in human systems, and adopted in many distributed problem-solving
systems, is to bring together on demand combinations of specialists in different
areas to combine their expertise to solve problems that are beyond their individual
capabilities.

In the ToH example, the subproblems required identical capabilities, and so the
decisions about where to send tasks was extremely simple. When agents can have
different capabilities, and different subproblems require different capabilities, then
the assignment of subproblems to agents is not so simple.

Conceptually, it is possible for an agent to have a table that identifies the
capabilities of agents, so that it can simply select an appropriate agent and send
the subproblem off, but usually the decisions need to be based on more dynamic
information. For example, if several candidate agents are capable of solving a
subproblem, but some are already committed to other subproblems, how is this
discovered? One way is to use the Contract Net protocol (Chapter 2) with directed
contracts or focused addressing: the agent (in Contract-Net terms, the manager)
announces a subproblem to a specific agent (in the case of directed contracts) or
a focused subset of other agents (in focused addressing) based on the table of
capabilities, and requests that returned bids describe acceptance/availability. The
manager can then award the subproblem to the directed contractor if it accepts, or
to one of the available contractors in the focused addressing set. However, if none of
the agents are available, the manager has several options, described in the following
paragraphs.
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In the kind of open environment for which Contract Net was envisioned, it is unlikely
that a manager will be acquainted with all of the possible contractors in its world.
Thus, while directed contracts and focused addressing might be reasonable first tries
(to minimize communication in the network), a manager might want to update its
knowledge of eligible contractors by broadcasting its announcement to reach agents
that it is currently unaware of as well. This is the most commonly considered
mode of operation for Contract Net. Directed contracts and focused addressing can
be thought of as caching results of such broadcasts, but since the cached results
can become outdated, many implementations of Contract Net do not include this
function. It is interesting to note, however, that this kind of “capabilities database”
has found renewed favor in knowledge sharing efforts such as KQML (Chapter 2),
where some agents explicitly adopt the task of keeping track of what other agents
purport to be good at.

Retry

One very simple strategy is to retry the announcement periodically, assuming that
eventually a contractor will free up. The retry interval then becomes an important
parameter: if retries happen too slowly, then many inefficiencies can arise as agents
do not utilize each other well; but if retries happen to quickly, the network can get
bogged down with messages. One strategy for overcoming such a situation is to turn
the protocol on its head. Rather than announcing tasks and collecting bids, which
implies that usually there are several bidders for each task, instead the protocol
can be used by potential contractors to announce availability, and managers can
respond to the announcements by bidding their pending tasks! It is possible to
have a system alternate between the task and availability announcement strategies
depending on where the bottlenecks are in the system at various times [41].

Announcement Revision

Part of the announcement message that a manager sends is the eligibility specifi-
cation for potential contractors. When no (satisfactory) contractors respond to an
announcement, it could be that the manager was being too exclusive in whom it
would entertain bids from. Thus, the manager could engage in iterative revision of
its announcement, relaxing eligibility requirements until it begins to receive bids.
An interesting aspect of this relaxation process is that the eligibility specifica-
tions could well reflect preferences over different classes of contractors — or, more
specifically, over the quality of services that different contractors provide. In con-
cert with other methods of handling a lack of bids (described above), a manager
will be deciding the relative importance of having a preferred contractor eventu-
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ally pursue the subproblem compared to finding a suboptimal contractor sooner.
In many cases, these preferences and tradeoffs between them can be captured using
economic representations. By describing parts of its marginal utility curve, for ex-
ample, a manager can provide tradeoff information to an auction, which can then
apply principled algorithms to optimize the allocation of capabilities (see Chap-
ter 5).

Alternative Decompositions

The manager can try decomposing the overall problem differently such that con-
tractors are available for the alternative subproblems. In general, the relationship
between problem decomposition and subproblem allocation is extremely complex
and has not received sufficient attention. Sometimes a manager should first de-
termine the space of alternative contractors to focus problem decomposition, while
other times the space of decompositions can be very restrictive. Moreover, decisions
about the number of problems to decompose into and the granularity of those sub-
problems will depend on other features of the application environment, including
communication delays. We say no more about these issues here, other than to stress
the research opportunities in this area.

3.3.3 Task Sharing for DSNE

Smith and Davis (and others since) have explored the use of the Contract Net
protocol for a variety of problems, including the Distributed Sensor Net Establish-
ment (DSNE) problem [4]. To give the reader a flavor of this approach, we briefly
summarize the stages of this application.

At the outset, it is assumed that a particular agent is given the task of monitoring
a wide geographic area. This agent has expertise in how to perform the overall
task, but is incapable of sensing all of the area from its own locality. Therefore,
the first step is that an agent recognizes that it can perform its task better (or
at all) if it enlists the help of other agents. Given this recognition, it then needs
to create subtasks to offload to other agents. In the DSNE problem, it can use its
representation of the structure of the task to identify that it needs sensing done (and
sensed data returned) from remote areas. Given this decomposition, it then uses
the protocol to match these sensing subtasks with available agents. It announces
(either directed, focused, or broadcast) a subtask; we leave out the details of the
message fields since they were given in Chapter 2.

The important aspects of the announcement for our purposes here are the
eligibility specification, the task abstraction, and the bid specification. To be eligible
for this task requires that the bidding agent have a sensor position within the
required sensing area identified and that it have the desired sensing capabilities.
Agents that meet these requirements can then analyze the task abstraction (what,
at an abstract level, is the task being asked of the bidders) and can determine the
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degree to which it is willing and able to perform the task, from its perspective.
Based on this analysis, an eligible agent can bid on the task, where the content of
a bid is dictated by the bid specification.

The agent with the task receives back zero or more bids. If it gets back no bids,
then it faces the options previously described: it can give up, try again, broaden
the eligibility requirements to increase the pool of potential bidders, or decompose
the task differently to target a different pool of bidders. If it gets back bids, it could
be that none are acceptable to it, and it is as if it got none back. If one or more
is acceptable, then it can award the sensing subtask to one (or possible several) of
the bidding agents. Note that, because the agent with the task has a choice over
what it announces and what bids it accepts, and an eligible agent has a choice over
whether it wants to bid and what content to put into its bid, no agent is forced to
be part of a contract. The agents engage in a rudimentary form of negotiation, and
form teams through mutual selection.

3.3.4 Task Sharing for Interdependent Tasks

For problems like ToH, tasks can be accomplished independently; the sequence of
actions to get from the start state to an intermediate state can be found completely
separately from the sequence to get from that intermediate state to the goal
state. Thus, the subtasks can be accomplished in any order (or concurrently), and
synthesis need only wait to complete until they are all done.

In some cases, contracted tasks are not independent. In a concurrent engineering
application, for example, process planning subtasks usually need to wait until
product design tasks have progressed beyond a certain point. For relatively clearcut
subtask relationships, a manager for the subtasks can coordinate their execution by
initiating a subtask based on the progress of another, or by relaying interim results
for one subtask to contractors of related subtasks.

More generally, however, aspects of subtask relationships might only become
apparent during the course of problem solving, rather than being dictated ahead of
time by the problem decomposition. For example, when using a distributed sensor
network to perform vehicle monitoring, the runtime relationships between what
is being monitored in different areas is as variable as the possible movements
of vehicles through the areas. While a task-sharing strategy, exemplified in the
Contract Net protocol, can establish a distributed sensor network, it does not
provide a sufficient basis for using the network. Or, put more correctly, when task
sharing is used to allocate classes of tasks among agents, then if different instances
of those tasks have different interrelationships, discovering and exploiting those
relationships requires the generation and sharing of tentative results.
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3.4 Result Sharing

A problem-solving task is accomplished within the context of the problem solver, so
the results of the task if performed by one problem solver could well differ from the
results of the same task being performed by another problem solver. For example,
students in a class are often given the same task (homework problem), but their
independently derived solutions will not (better not!) be identical.

By sharing results, problem solvers can improve group performance in combina-
tions of the following ways:

1. Confidence: Independently derived results for the same task can be used to
corroborate each other, yielding a collective result that has a higher confidence
of being correct. For example, when studying for an exam, students might sep-
arately work out an exercise and then compare answers to increase confidence
in their solutions.

2. Completeness: Each agent formulates results for whichever subtasks it can
(or has been contracted to) accomplish, and these results altogether cover a
more complete portion of the overall task. For example, in distributed vehicle
monitoring, a more complete map of vehicle movements is possible when agents
share their local maps.

3.  Precision: To refine its own solution, an agent needs to know more about the
solutions that others have formulated. For example, in a concurrent engineering
application, each agent might separately come up with specifications for part
of an artifact, but by sharing these the specifications can be further honed to
fit together more precisely.

4. Timeliness: Even if an agent could in principle solve a large task alone, solving
subtasks in parallel can yield an overall solution faster.

Accruing the benefits of result sharing obviously means that agents need to share
results. But making this work is harder than you might think! First of all, agents
need to know what to do with shared results: how should an agent assimilate results
shared from others in with its own results? Second, given that assimilation might
be non-trivial, that communicating large volumes of results can be costly, and that
managing many assimilated results incurs overhead, agents should attempt to be
as selective as possible about what they exchange. In the remainder of this section,
we look at these issues.

3.4.1 Functionally Accurate Cooperation

In task-passing applications like ToH, the separate problem-solving agents are com-
pletely accurate in their computations (they have all information and a complete
specification for their subtasks) and operate independently. In contrast, agents do-
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ing Distributed Vehicle Monitoring (DVM) lack information about what is happen-
ing elsewhere that could impact their calculations. As a result, these agents need to
cooperate to solve their subtasks, and might formulate tentative results along the
way that turn out to be unnecessary. This style of collective problem solving has
been termed functionally-accurate (it gets the answer eventually, but with possibly
many false starts) and cooperative (it requires iterative exchange) [28].

Functionally-accurate cooperation has been used extensively in distributed prob-
lem solving for tasks such as interpretation and design, where agents only discover
the details of how their subproblem results interrelate through tentative formu-
lation and iterative exchange. For this method to work well, participating agents
need to treat the partial results they have formulated and received as tentative, and
therefore might have to entertain and contrast several competing partial hypothe-
ses at once. A variety of agent architectures can support this need; in particular,
blackboard architectures (Chapter 2) have often been employed as semi-structured
repositories for storing multiple competing hypotheses.

Exchanging tentative partial solutions can impact completeness, precision, and
confidence. When agents can synthesize partial solutions into larger (possibly
still partial) solutions, more of the overall problem is covered by the solution.
When an agent uses a result from another to refine its own solutions, precision is
increased. And when an agent combines confidence measures of two (corroborating
or competing) partial solutions, the confidence it has in the solutions changes. In
general, most distributed problem-solving systems assume similar representations
of partial solutions (and their certainty measures) which makes combining them
straightforward, although some researchers have considered challenges in crossing
between representations, such as combining different uncertainty measurements
[47].

In functionally accurate cooperation, the iterative exchange of partial results is
expected to lead, eventually, to some agent having enough information to keep
moving the overall problem solving forward. Given enough information exchange,
therefore, the overall problem will be solved. Of course, without being tempered
by some control decisions, this style of cooperative problem solving could incur
dramatic amounts of communication overhead and wasted computation. For exam-
ple, if agents share too many results, a phenomenon called distraction can arise:
it turns out that they can begin to all gravitate toward doing the same problem-
solving actions (synthesizing the same partial results into more complete solutions).
That is, they all begin exploring the same part of the search space (Chapter 4). For
this reason, limiting communication is usually a good idea, as is giving agents some
degree of skepticism in how they assimilate and react to information from others.
We address these issues next.
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3.4.2 Shared Repositories and Negotiated Search

One strategy for reducing potential flurry of multicast messages is to instead
concentrate tentative partial results in a single, shared repository. The blackboard
architecture, for example, allows cooperating knowledge sources to exchange results
and build off of them by communicating through a common, structured blackboard
(Chapter 2).

This strategy has been adopted in a variety of distributed problem-solving
approaches, including those for design applications [25, 45]. In essence, using a
shared repository can support search through alternative designs, where agents
with different design criteria can revise and critique the alternatives. In many ways,
this is a distributed constraint satisfaction problem (Chapter 4), but it differs from
traditional formulations in a few respects.

Two important differences are: agents are not assumed to know whose constraints
might be affected by their design choices, and agents can relax constraints in a pinch.
The first difference motivates the use of a shared repository, since agents would not
know whom to notify of their decisions (as is assumed in typical DCSP formulations
as in Chapter 4). The second difference motivates the need for heuristics to control
the distributed search, since at any given time agents might need to choose between
improving some solutions, rejecting some solutions, or relaxing expectations (thus
making some solutions that were previously considered as rejected now acceptable).

For example, agents engaged in negotiated search [25] have at their disposal a
variety of operators for progressing the distributed problem-solving effort: initiate-
solution (propose a new starting point for a solution); extend-solution (revise
an already existing partial solution); critique-solution (provide feedback on the
viability of an already existing partial solution); and relaz-solution-requirement
(change local requirements for solution acceptability). At any given time, an agent
needs to decide which of these operators to apply, and where. While a systematic
exploration of the space can be considered (Chapter 4), the problem domains for
negotiated search are typically complex enough that heuristic guidance is preferred.
Heuristic measures for when to invoke operators (such as invoking the relaz-
solution-requirement operator when lack of progress is detected) and on what (such
as relaxing requirements corresponding to the most constrained component) are
generally application-specific.

3.4.3 Distributed Constrained Heuristic Search

Constraint, satisfaction problems in distributed environments also arise due to
contention for resources. Rather than assuming a shared repository for tentative
partial solutions, a search strategy that has been gainfully employed for distributed
resource allocation problems has been to associate an “agent” with each resource,
and have that agent process the contending demands for the resource. One form that
this strategy takes is so-called market-oriented programming [44] where associated
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with resources are auctions that support the search for equilibria in which resources
are allocated efficiently. Market mechanisms are covered in detail in Chapter 5.

A second form that this strategy takes is to allow resources to compute their
aggregate demands, which then the competing agents can take into account as they
attack their constraint-satisfaction problem. For example, distributed constrained
heuristic search (DCHS) uses aggregate demand to inform a heuristic search for
solving a distributed constraint satisfaction problem [43]. The idea is that more
informed search decisions decrease wasted backtracking effort, and that constraint
satisfaction heuristics such as variable and value ordering can be gainfully employed
in a distributed environment.

DCHS works as follows (Figure 3.4):

1. An agent begins with a problem state comprised of a problem topology (the
tasks to do and their relationships including constraints).

2. An agent propagates constraints within its state; it backtracks if an inconsis-
tency is detected. Otherwise, it determines what resources it requires for what
time intervals and computes a demand profile for those resources.

3. If the system is just beginning, or if the demand profiles differ from previous
profiles, an agent sends the profile(s) to the resource(s).

4. A resource computes aggregate demand and informs the agents making the
demands.

5. An agent uses the aggregate demands to order its variables (resource-and-
time-interval pairs) and order the activities that it might assign to the highest-
demand pair. It identifies a preferred resource/time-interval/activity assign-
ment.

6. An agent requests that the resource reserve the interval for it.

The resource in turn grants the reservation if possible and updates the resource
schedule. Otherwise the request is denied.

8. An agent processes the response from the resource. If the reservation is granted,
the agent goes to step 2 (to propagate the effects of concretely scheduling
the activity). If the reservation is not granted, the agent attempts another
reservation, going to step 6.

This view of the search strategy, while simplified, highlights the use of resources
being contended for to focus communication, and of an exchange of information
that tends to decrease the amount of backtracking. That is, by giving agents an
opportunity to settle the “difficult” contention issues first, much useless work is
avoided in settling the easier issues and then discovering that these fail to allow the
hard issues to be settled.
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Figure 3.4 DCHS steps.

3.4.4 Organizational Structuring

When a shared repository cannot be supported or when problem-solving is not tan-
tamount to resource scheduling, an alternative strategy for reducing communication
is to exploit the task decomposition structure, to the extent that it is known. In a
distributed design problem, for example, it makes sense to have designers working
on components that must “connect” speak with each other more frequently than
they speak with designers working on more remote parts of the design (of course,
physical proximity might be only one heuristic!). Or, in a DVM task, agents mon-
itoring neighboring parts of the space should communicate when their maps show
activity at or near their mutual boundary. The notion is that agents have general
roles to play in the collective effort, and by using knowledge of these roles the agents
can make better interaction decisions.

This notion can be explicitly manifested in an organizational structure, which
defines roles, responsibilities, and preferences for the agents within a cooperative
society, and thus in turn defines control and communication patterns between them.
From a global view, the organizational structure associates with each agent the
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types of tasks that it can do, and usually some prioritization over the types such
that an agent that currently could do any of a number of tasks can identify the most
important tasks as part of its organizational role. Allowing prioritization allows the
structure to permit overlapping responsibilities (to increase the chances of success
despite the loss of some of the agents) while still differentiating agents based on
their primary roles.

Since each agent has responsibilities, it is important that an agent be informed of
partial results that could influence how it carries out its responsibilities. More im-
portantly, agents need not be told of results that could not affect their actions, and
this can be determined based on the organizational structure. Thus, an organiza-
tional structure provides the basis for deciding who might potentially be interested
in a partial result. It also can dictate the degree to which an agent should believe
and act on (versus remain skeptical about) a received result.

While an organizational structure needs to be coherent from an overall perspec-
tive, it is important to note that, as in human organizations, an agent only needs
to be aware of its local portion of the structure: what it is supposed to be doing
(and how to decide what to do when it has choices), who to send what kinds of
information to, who to accept what kinds of information from and how strongly
to react to that information, etc. For practical purposes, therefore, organizational
structures are usually implemented in terms of stored pattern-response rules: when
a partial result that matches the pattern is generated/received, then the response
actions are taken (to transmit the partial result to a particular agent, or to act on
it locally, or to decrement its importance, etc.). Note that a single partial result
could trigger multiple actions.

Finally, we have briefly mentioned that an organizational structure can be
founded upon the problem decomposition structure, such as for the DSNE problem
where agents would be made aware of which other agents are responsible for
neighboring areas so that partial results that matched the overlapping regions of
interest would be shared. The design of organizational structures for multi- agent
systems, however, is generally a complex search problem in its own right. The
search can be conducted in a bottom-up distributed manner, where boundaries
between the roles of agents can be determined as the problem instance is initialized
[5] or as problem solving progresses [19, 35], where adjustments to the structure
can be based on reacting to performance inefficiencies of the current structure. In
some cases, the organizational structure can be equated to a priority order for a
distributed constraint satisfaction problem, and the agents are trying to discover
an effective ordering to converge on a solution efficiently (see Chapter 4).

Alternatively, organizational structuring can be viewed as a top-down design
problem, where the space of alternative designs can be selectively explored and
candidate designs can be evaluated prior to their implementation [3, 34, 40]. The
use of computational techniques to study, and prescribe, organizational structures
is covered in Chapter 7.
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3.4.5 Communication Strategies

Organization structures, or similar knowledge, can provide static guidelines about
who is generally interested in what results. But this ignores timing issues. When
deciding whether to send a result, an agent really wants to know whether the
potential recipient is likely to be interested in the result now (or soon). Sending
a result that is potentially useful but that turns out to not be at best clutters up
the memory of the recipient, and at worst can distract the recipient away from the
useful work that it otherwise would have done. On the other hand, refraining from
sending a result for fear of these negative consequences can lead to delays in the
pursuit of worthwhile results and even to the failure of the system to converge on
reasonable solutions at all because some links in the solution chain were broken.

When cluttering memory is not terrible and when distracting garden paths are
short, then the communication strategy can simply be to send all partial results.
On the other hand, when it is likely that an exchange of a partial result will lead
a subset of agents into redundant exploration of a part of the solution space, it is
better to refrain, and only send a partial result when the agent that generated it has
completed everything that it can do with it locally. For example, in a distributed
theorem-proving problem, an agent might work forward through a number of
resolutions toward the sentence to prove, and might transmit the final resolvent
that it has formed when it could progress no further.

Between the extremes of sending everything and sending only locally complete
results are a variety of gradations [7], including sending a small partial result early
on (to potentially spur the recipient into pursuing useful related results earlier).
For example, in the DVM problem, agents in neighboring regions need to agree
when they map vehicles from one region to the other. Rather than waiting until it
forms its own local map before telling its neighbor, an agent can send a preliminary
piece of its map near the boundary early on, to stimulate its neighbor into forming
a complementary map (or determining that no such map is possible and that the
first agent is working down a worthless interpretation path).

So far, we have concentrated on how agents decide when and with whom to
voluntarily share results. But the decision could clearly be reversed: agents could
only send results when requested. Just like the choice between announcing tasks
versus announcing availability in the Contract Net depends on which is more scarce,
the same holds true in result sharing. When the space of possible interesting results
is large compared to the actual results that are generated, then communicating
results makes sense. But when the space of results formed is large and only few
are really needed by others, then sending requests (or more generally, goals) to
others makes more sense. This strategy has been explored in the DVM problem [3],
as well as in distributed theorem proving [15, 31]. For example, in DARES [31],
when a theorem proving agent would fail to make progress, it would request to
import clauses from other such agents, where the set of desired literals would be
heuristically chosen (Figure 3.5).
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Figure 3.5 DARES agent control flow.

It is also important to consider the delays in iterative exchange compared to a
blind inundation of information. A request followed by a reply incurs two commu-
nication delays, compared to the voluntary sharing of an unrequested result. But
sharing too many unrequested results can introduce substantial overhead. Clearly,
there is a tradeoff between reducing information exchanged by iterative messaging
versus reducing delay in having the needed information reach its destination by
sending many messages at the same time. Sen, for example, has looked at this in
the context of distributed meeting scheduling [38]. Our experience as human meet-
ing schedulers tells us that finding a meeting time could involve a series of proposals
of specific times until one is acceptable, or it could involve having the participants
send all of their available times at the outset. Most typically, however, practical
considerations leave us somewhere between these extremes, sending several options
at each iteration.

Finally, the communication strategies outlined have assumed that messages are
assured of getting through. If messages get lost, then results (or requests for results)
will not get through. But since agents do not necessarily expect messages from each
other, a potential recipient will be unable to determine whether or not messages
have been lost. One solution to this is to require that messages be acknowledged, and
that an agent sending a message will periodically repeat the message (sometimes
called “murmuring”) until it gets an acknowledgment [29]. Or, a less obtrusive but
more uncertain method is for the sending agent to predict how the message will
affect the recipient, and to assume the message made it through when the predicted
change of behavior is observed (see discussion of plan recognition in Subsection 7.4).

3.4.6 Task Structures
Up to this point, we have made intuitive appeals to why agents might need to

communicate results. The TAEMS work of Decker and Lesser has investigated this
question much more concretely [6]. In their model, an agent’s local problem solving
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can have non-local effects on the activity of other agents. Perhaps it is supplying
a result that another agent must have to enable its problem-solving tasks. Or the
result might facilitate the activities of the recipient, allowing it to generate better
results and/or generate results faster. The opposites of these (inhibit and hinder,
respectively) are among the other possible relationships.

By representing the problem decomposition structure explicitly, and capturing
within it these kinds of task relationships, we can employ a variety of coordination
mechanisms. For example, an agent that provides an enabling result to another
can use the task structure representation to detect this relationship, and can then
bias its processing to provide this result earlier. In fact, it can use models of task
quality versus time curves to make commitments to the recipient as to when it will
generate a result with sufficiently high quality. In situations where there are complex
networks of non-local task interrelationships, decisions of this kind of course get
more difficult. Ultimately, relatively static organizational structures, relationships,
and communication strategies can only go so far. Going farther means that the
problem-solving agents need to analyze their current situation and construct plans
for how they should interact to solve their problems.

3.5 Distributed Planning

In many respects, distributed planning can be thought of simply as a specialization
of distributed problem solving, where the problem being solved is to design a plan.
But because of the particular features of planning problems, it is generally useful
to consider techniques that are particularly suited to planning.

Distributed planning is something of an ambiguous term, because it is unclear
exactly what is “distributed.” It could be that the operative issue is that, as a
consequence of planning, a plan is formulated that can be distributed among a
variety of execution systems. Alternatively, the operative issue could be that the
planning process should be distributed, whether or not the resulting plan(s) can be.
Or perhaps both issues are of interest. In this section, we consider both distributed
plans and distributed plan formation as options; we of course skip over the case
where neither holds (since that is traditional centralized planning) and consider
where one or both of these distributions exists.

3.5.1 Centralized Planning for Distributed Plans

Plans that are to be executed in a distributed fashion can nonetheless be formulated
in a centralized manner. For example, a partial order planner can generate plans
where there need not be a strict ordering between some actions, and in fact where
those actions can be executed in parallel. A centralized coordinator agent with
such a plan can break it into separate threads, possibly with some synchronization
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actions. These separate plan pieces can be passed (using task-passing technology)
to agents that can execute them. If followed suitably, and under assumptions of
correctness of knowledge and predictability of the world, the agents operating in
parallel achieve a state of the world consistent with the goals of the plan.

Let us consider this process more algorithmically. It involves:

1.  Given a goal description, a set of operators, and an initial state description,
generate a partial order plan. When possible, bias the search to find a plan in
which the steps have few ordering constraints among them.

2. Decompose the plan into subplans such that ordering relationships between
steps tend to be concentrated within subplans and minimized across subplans.
[26].
Insert synchronization (typically, communication) actions into subplans.

Allocate subplans to agents using task-passing mechanisms. If failure, return
to previous steps (decompose differently, or generate a different partial order
plan, ...). If success, insert remaining bindings into subplans (such as binding
names of agents to send synchronization messages to).

5. Initiate plan execution, and optionally monitor progress (synthesize feedback
from agents to ensure complete execution, for example).

Notice that this algorithm is just a specialization of the decompose-allocate-
execute-synthesize algorithm used in task passing. The specific issues of decomposi-
tion and allocation that are involved in planning give it a special flavor. Essentially,
the objective is to find, of all the possible plans that accomplish the goal, the plan
that can be decomposed and distributed most effectively. But since the availability
of agents for the subplans is not easy to determine without first having devised the
subplans, it is not certain that the most decomposable and distributable plan can
be allocated in any current context.

Moreover, the communication infrastructure can have a big impact on the degree
to which plans should be decomposed and distributed. As an extreme, if the
distributed plans require synchronization and if the communication channels are
slow or undependable, then it might be better to form a more efficient centralized
plan. The monetary and/or time costs of distributing and synchronizing plans
should thus be taken into account. In practical terms, what this usually means is
that there is some minimal subplan size smaller than which it does not make sense
to decompose a plan. In loosely-coupled networks, this leads to systems with fewer
agents each accomplishing larger tasks, while in tightly-connected (or even shared-
memory) systems the degree of decomposition and parallelism can be increased.

3.5.2 Distributed Planning for Centralized Plans

Formulating a complex plan might require collaboration among a variety of co-
operative planning specialists, just like generating the solution to any complex
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problem would. Thus, for complex planning in fields such as manufacturing and
logistics, the process of planning could well be distributed among numerous agents,
each of which contributes pieces to the plan, until an overarching plan is created.

Parallels to task-sharing and result-sharing problem solving are appropriate in
this context. The overall problem-formulation task can be thought of as being de-
composed and distributed among various planning specialists, each of which might
then proceed to generate its portion of the plan. For some types of problems, the
interactions among the planning specialists might be through the exchange of a
partially-specified plan. For example, this model has been used in the manufac-
turing domain, where a general-purpose planner has been coupled with specialist
planners for geometric reasoning and fixturing [21]. In this application, the geo-
metric specialist considers the shape of a part to be machined, and generates an
abstract plan as an ordering over the geometric features to put into the part. The
general-purpose planner then uses these ordering constraints to plan machining
operations, and the augmented plan is passed on to the fixture specialist, which
ensures that the operations can be carried out in order (that the part can be held
for each operation, given that as each operation is done the shape of the part can
become increasingly irregular). If any of these planners cannot perform its plan-
ning subtask with the partially- constructed plan, they can backtrack and try other
choices (See Chapter 4 on DCSPs). Similar techniques have been used for planning
in domains such as mission planning for unmanned vehicles [7] and for logistics
planning [46].

The more asynchronous activity on the part of planning problem-solvers that
is characteristic of most distributed problem-solving systems can also be achieved
through the use of result sharing. Rather than pass around a single plan that
is elaborated and passed on (or discovered to be a deadend and passed back),
a result-sharing approach would have each of the planning agents generate a
partial plan in parallel and then share and merge these to converge on a complete
plan in a negotiated search mode. For example, in the domain of communication
networks, localized agents can tentatively allocate network connections to particular
circuits and share these tentative allocations with neighbors [2]. When inconsistent
allocations are noticed, some agents try other allocations, and the process continues
until a consistent set of allocations have been found. In this example, result-sharing
amounts to a distributed constraint satisfaction search, with the usual concerns of
completeness and termination (See Chapter 4 on DCSPs).

3.5.3 Distributed Planning for Distributed Plans

The most challenging version of distributed planning is when both the planning
process and its results are intended to be distributed. In this case, it might be
unnecessary to ever have a multi-agent plan represented in its entirety anywhere
in the system, and yet the distributed pieces of the plan should be compatible,
which at a minimum means that the agents should not conflict with each other
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when executing the plans, and preferably should help each other achieve their plans
when it would be rational to do so (e.g. when a helping agent is no worse off for its
efforts).

The literature on this kind of distributed planning is relatively rich and varied.
In this chapter, we will hit a few of the many possible techniques that can be useful.

Plan Merging

We begin by considering the problem of having multiple agents formulate plans
for themselves as individuals, and then having to ensure that their separate plans
can be executed without conflict. Assume that the assignment of goals to agents
has been done, either through task-sharing techniques, or because of the inherent
distributivity of the application domain (such as in a distributed delivery (DD)
task, where different agents are contacted by users to provide a delivery service).
Now the challenge is to identify and resolve potential conflicts.

We begin by considering a centralized plan coordination approach. Let us say that
an agent collects together these individual plans. It then has to analyze the plans to
discover what sequences of actions might lead to conflicts, and to modify the plans
to remove the conflicts. In general, the former problem amounts to a reachability
analysis — given a set of possible initial states, and a set of action sequences that
can be executed asynchronously, enumerate all possible states of the world that can
be reached. Of these, then, find the subset of worlds to avoid, and insert constraints
on the sequences to eliminate them.

In general, enumerating the reachable state space can be intractable, so strategies
for keeping this search reasonable are needed. From the planning literature, many
assumptions about the limited effects of actions and minimal interdependence
between agents’ goals can be used to reduce the search. We will look at one way of
doing this, adapted from Georgeff [16] next.

As is traditional, assume that the agents know the possible initial states of the
world, and each agent builds a totally-ordered plan using any planning technology.
The plan is comprised of actions a; through a,, such that a; is applicable to any
of the initial states, and a; is applicable in all states that could arise after action
a;—1. The state arising after a,, satisfies the agent’s goal.

We represent an action as a STRIPS operator, with preconditions that must
hold for the action to take place, effects that the action has (where features of the
world not mentioned in the effects are assumed unaffected), and “during” conditions
to indicate changes to the world that occur only during the action. The STRIPS
assumption simplifies the analysis for interactions by allowing us to avoid having to
search through all possible interleavings of actions; it is enough to identify specific
actions that interact with other specific actions, since the effects of any sequence is
just the combined effects of the sequence’s actions.

The merging method thus proceeds as follows. Given the plans of several agents
(where each is assume to be a correct individual plan), the method begins by
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analyzing for interactions between pairs of actions to be taken by different agents.
Arbitrarily, let us say we are considering the actions a; and b; are the next to be
executed by agents A and B, respectively, having arrived at this point through the
asynchronous execution of plans by A and B. Actions a; and b; can be executed
in parallel if the preconditions, during conditions, and effects of each are satisfiable
at the same time as any of those conditions of the other action. If this is the case,
then the actions can commute, and are essentially independent. If this is not the
case, then it might still be possible for both actions to be taken but in a stricter
order. If the situation before either action is taken, modified by the effects of a;,
can satisfy the preconditions of b;, then a; can precede b;. It is also possible for b;
to precede a;. If neither can precede the other, then the actions conflict.

From the interaction analysis, the set of unsafe situations can be identified.
Clearly, it is unsafe to begin both a; and b; if they do not commute. It is also unsafe
to begin a; before b; unless a; has precedence over b;. Finally, we can propagate
these unsafe interactions to neighboring situations:

= the situation of beginning a; and b; is unsafe if either of its successor situations
is unsafe;

®  the situation of beginning a; and ending b; is unsafe if the situation of ending
a; and ending b; is unsafe;

= the situation of ending a; and ending b; is unsafe if both of its successor states
are unsafe.

To keep this safety analysis tractable, actions that commute with all others can
be dropped from consideration. Given a loosely-coupled multiagent system, where
agents mostly bring their own resources and capabilities to bear and thus have few
opportunities to conflict, dropping commuting actions would reduce the agents’
plans to relatively short sequences. From these simplified sequences, then, the
process can find the space of unsafe interactions by considering the (exponential)
number of interleavings. And, finally, given the discovered unsafe interactions,
synchronization actions can be added to the plans to force some agents to suspend
activities during regions of their plans that could conflict with others’ ongoing
actions, until those others release the waiting agents.

Plan synchronization need not be accomplished strictly through communication
only. Using messages as signals allows agents to synchronize based on the comple-
tion of events rather than reaching specific time points. But many applications have
temporal features for goals. Manufacturing systems might have deadlines for fabri-
cating an artifact, or delivery systems might have deadlines for dropping off objects.
For these kinds of applications, where temporal predictions for individual tasks are
fundamentally important, the formulation of distributed plans can be based on
scheduling activities during fixed time intervals. Thus, in these kinds of systems,
the individual planners can formulate a desired schedule of activities assuming inde-
pendence, and then plan coordination requires that the agents search for revisions
to their schedules to find non-conflicting times for their activities (which can be ac-
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complished by DCHS (see 3.4.3)). More importantly, different tasks that the agents
pursue might be related in a precedence ordering (e.g. a particular article needs to
be dropped off before another one can be picked up). Satisfying these constraints,
along with deadlines and resource limitation constraints, turns the search for a
workable collective schedule into a distributed constraint satisfaction problem (see
Chapter 4).

A host of approaches to dealing with more complex forms of this problem exist,
but are beyond the scope of this chapter. We give the flavor of a few of these
to illustrate some of the possibilities. When there are uncertainties about the time
needs of tasks, or of the possibility of arrival of new tasks, the distributed scheduling
problem requires mechanisms to maximize expected performance and to make
forecasts about future activities [30]. When there might not be feasible schedules
to satisfy all agents, issues arise about how agents should decide which plans to
combine to maximize their global performance [12]. More complex representations
of reactive plans and techniques for coordinating them based on model-checking
and Petri-net-based mechanisms have also been explored [20, 27, 37].

Iterative Plan Formation

Plan merging is a powerful technique for increasing parallelism in the planning
process as well as during execution. The synchronization and scheduling algorithms
outlined above can be carried out in centralized and decentralized ways, where
the flow is generally that of (1) assign goals to agents; (2) agents formulate local
plans; (3) local plans are exchanged and combined; (4) messaging and/or timing
commitments are imposed to resolve negative plan interactions. The parallels
between this method of planning and the task-sharing style of distributed problem-
solving should be obvious. But just as we discovered in distributed problem solving,
not all problems are like the Tower of Hanoi; sometimes, local decisions are
dependent on the decisions of others. This raises the question of the degree to
which local plans should be formulated with an eye on the coordination issues,
rather than as if the agent could work alone.

One way of tempering proposed local plans based on global constraints is to
require agents to search through larger spaces of plans rather than each proposing
a single specific plan. Thus, each agent might construct the set of all feasible plans
for accomplishing its own goals. The distributed planning process then consists of
a search through how subsets of agents’ plans can fit together.

Ephrati and Rosenschein [11] have developed a plan combination search
approach for doing this kind of search, where the emphasis is on beginning with
encompassing sets of possible plans and refining these to converge on a nearly
optimal subset. They avoid commitment to sequences of actions by specifying sets
of propositions that hold as a result of action sequences instead. The agents engage
in the search by proposing, given a particular set of propositions about the world,
the changes to that set that they each can make with a single action from their



3.5  Distributed Planning 145

plans. These are all considered so as to generate candidate next sets of propositions
about the world, and these candidates can be ranked using an A* heuristic (where
each agent can use its plans to estimate the cost from the candidate to completing
its own goals). The best candidate is chosen and the process repeats, until no agent
wants to propose any changes (each has accomplished its goal).

Note that, depending on the more global movement of the plan, an agent will
be narrowing down the plan it expects to use to accomplish its own private goals.
Thus, agents are simultaneously searching for which local plan to use as well as for
synchronization constraints on their actions (since in many cases the optimal step
forward in the set of achieved propositions might omit the possible contributions
of an agent, meaning that the agent should not perform an action at the time).

An alternative to this approach instead exploits the hierarchical structure of a
plan space to perform distributed hierarchical planning. By now, hierarchical
planning is well-established in the AT literature. It has substantial advantages (as
exemplified in the ToH problem) in that some interactions can be worked out
in more abstract plan spaces, thereby pruning away large portions of the more
detailed spaces. In the distributed planning literature, the advantages of hierarchical
planning were first investigated by Corkill.

Corkill’s work considered a distributed version of Sacerdoti’s NOAH system. He
added a “decompose plan” critic that would look for conjunctive goals to distribute.
Thus, in a blocks-world problem (the infamous Sussman’s Anomaly, for instance),
the initial plan refinement of (AND (ON A B) (ON B C)) leads to a plan network
with two concurrent paths, one for each of the conjuncts. The decompose-plan
critic gives a copy of the plan network to a second agent, where each of the two
agents now represents the goal it is to achieve as well as a parallel node in the
network that represents a model of the other agent’s plan. Then the agents proceed
refine their abstract plans to successively detailed levels. As an agent does so, it
can communicate with the other one about the changes that it expects to make to
the world state, so that each can separately detect conflicts. For example, when an
agent learns that the other is going to make block B not clear (it does not know
the details of how) it can determine that this will interfere with stacking B on C,
and can ask the first agent to WAIT on the action that causes that change until
it has received permission to go on. This process can continue until a synchronized
set of detailed plans are formed.

A variation on the hierarchical distributed planning approach is to allow each
agent to represent its local planned behaviors at multiple levels of abstraction, any
of which can suffice to resolve all conflicts. In this hierarchical behavior-space
search approach to distributed planning, the outer loop of the protocol identifies
a particular level of abstraction to work with, and whether conflicts should be
resolved at this level or passed to more detailed levels. The inner loop of the protocol
conducts what can be thought of as a distributed constraint satisfaction search to
resolve the conflicts. Because the plans at various abstraction levels dictate the
behaviors of agents to a particular degree, this approach has been characterized
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1. Initialize the current-abstraction-level to the most abstract level.

2. Agents exchange descriptions of the plans and goals of interest at the
current level.

3. Remove plans with no potential conflicts. If the set is empty, then done;
otherwise determine whether to resolve conflicts at the current level or at
a deeper level.

4. If conflicts are to be resolved at a deeper level, set the current level to the
next deeper level and set the plans/goals of interest to the refinements of
the plans with potential conflicts. Go to step 2.

5. If conflicts are to be resolved at this level:
(a) Agents form a total order. Top agent is the current superior.
(b) Current superior sends down its plan to the others.

(¢) Other agents change their plans to work properly with those of the
current superior. Before confirming with the current superior, an
agent also doublechecks that its plan changes do not conflict with
previous superiors.

(d) Once no further changes are needed among the plans of the inferior
agents, the current superior becomes a previous superior and the
next agent in the total order becomes the superior. Return to step
(b). If there is no next agent, then the protocol terminates and the
agents have coordinated their plans.

Algorithm 3.1 Hierarchical behavior-space search algorithm.

as search through hierarchical behavior space [9]. The algorithm is presented in
Algorithm 3.1. Provided that there are finite abstraction levels and that agents are
restricted in the changes to their plans that they can make such that they cannot get
into cyclic plan generation patterns, the above protocol is assured to terminate. A
challenge lies in the outer loop, in terms of deciding whether to resolve at an abstract
level or to go deeper. The advantage of resolving a conflict at an abstract level is that
it reduces the amount of search, and thus yields coordinated plans with less time
and messaging. The disadvantage is that the coordination constraints at an abstract
level might impose unnecessary limits on more detailed actions. At more detailed
levels, the precise interaction problems can be recognized and resolved, while at
abstract levels more inefficient coordination solutions might work. The tradeoffs
between long-term, simple, but possibly inefficient coordination decisions versus
more responsive but complex runtime coordination decisions is invariably domain-
dependent. The goal is to have mechanisms that support the broad spectrum of
possibilities.

As a concrete example of this approach, consider the DD problem of two delivery
robots making repeated deliveries between two rooms as in Figure 3.6 (left side).
Since R1 always delivers between the upper locations, and R2 between the lower
ones, the robots could each inform the other about where they might be into the
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Figure 3.6 An organizational solution.

indefinite future (between the locations, passing through the closest door). Their
long-term delivery behaviors potentially conflict over that door, so the robots can
choose either to search in greater detail around the door, or to eliminate the conflict
at the abstract behavior level. The latter leads to a strategy for coordinating that
statically assigns the doors. This leads to the permanent allocation of spatial regions
shown in Figure 3.6 (right side), where R2 is always running around the long way.
This “organizational” solution avoids any need for further coordination, but it can
be inefficient, especially when R1 is not using its door, since R2 is still taking
the long route. If they choose to examine their behaviors in more detail, they can
find other solutions. If they consider a particular delivery, for example, R1 and R2
might consider their time/space needs, and identify that pushing their activities
apart in space or time would suffice (Figure 3.7, top). With temporal resolution,
R2 waits until R1 is done before beginning to move through the central door. Or
the robots could use information from this more abstract level to further focus
communication on exchanging more detailed information about the trouble spots.
They could resolve the potential conflict at an intermediate level of abstraction;
temporal resolution has R2 begin once R1 has cleared the door (Figure 3.7, middle).
Or they could communicate more details (Figure 3.7, bottom), where now R2 moves
at the same time as R1, and stops just before the door to let R1 pass through
first. Clearly, this last instance of coordination is crispest, but it is also the most
expensive to arrive at and the least tolerant of failure, since the robots have less
distance between them in general, so less room to avoid collisions if they deviate
from planned paths.

Of course, there are even more strategies for coordination even in a simple domain
such as the distributed delivery task. One interesting strategy is for the robots to
move up a level to see their tasks as part of a single, team task. By doing so, they
can recognize alternative decompositions. For example, rather than decompose by



148 Distributed Problem Solving and Planning

Resolve by E

t
t
| V
Resolve by
time
Communicate t
more details
t
Resolve by
y
t
Resolve by
time
Communicate
more details
= L]
R1 R1
= (=]
RO —_—
Resolve by R2
time

Figure 3.7 Alternative levels of abstraction.

items to deliver, they could decompose by spatial areas, leading to a solution where
one robot picks up items at the source locations and drops them off at the doorway,
and the other picks up at the doorway and delivers to the final destinations. By
seeing themselves as part of one team, the agents can coordinate to their mutual
benefit (they can cooperate) by searching through an enlarged behavior space.
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Negotiation in Distributed Planning

In the above, we considered how agents can determine that conflicts exist between
their plans and how to impose constraints on (usually when they take) their actions
to avoid conflict. Sometimes, determining which agent should wait for another is
fairly random and arbitrary. Exceptions, however, exist. A large amount of work
in negotiation (see Chapter 2) is concerned with these issues, so we only touch on
them briefly here.

Sometimes the selection of the agent that should revise its local plans is based on
models of the possibilities open to the agents. For example, Steeb and Cammarata,
in the air-traffic control domain, were concerned with which of the various aircraft
should alter direction to decrease potentially dangerous congestion. Their agents
exchanged descriptions indicating their flexibility, and the agent that had the most
other options was asked to change its plan, in an early distributed AT application
of the least-constrained agent heuristic (see Subsection 3.4.3 and Chapter 4 on
DCSPs).

Of course, these and other negotiation mechanisms for resolving goals presume
that agents are honest about the importance of their goals and their options
for how to achieve them. Issues of how to encourage self-interested agents to be
honest are covered elsewhere in this book (see Chapter 5). However, clearly agents
have self-interest in looking for opportunities to work to their mutual benefit by
accomplishing goals that each other need. However, although the space of possible
conflicts between agents is large, the space of possible cooperative activities can
be even larger, and introduces a variety of utility assessments. That is, while
it can be argued that agents that have conflicts always should resolve them
(since the system might collapse if conflicts are manifested), the case for potential
cooperative actions is not so strong. Usually, cooperation is “better,” but the degree
to which agents benefit might not outweigh the efforts they expend in finding
cooperative opportunities. Thus, work on distributed planning that focuses on
planning for mutually beneficial actions even though they were not strictly necessary
has been limited to several forays into studies within well-defined boundaries. For
example, partial global planning (see Subsection 3.7.3) emphasized a search for
generating partial solutions near partial solution boundaries with other agents,
so as to provide them with useful focusing information early on (see Subsection
3.4.5 on communication strategies). The work of von Martial [32] concentrated on
strategies that agents can use to exploit “favor relations” among their goals, such
as accomplishing a goal for another agent while pursuing its own goal.

3.6 Distributed Plan Representations

Distributed problem solving, encompassing distributed planning, generally relies
heavily on agents being able to communicate about tasks, solutions, goals, plans,
and so on. Of course, much work has gone into low-level networking protocols for
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interprocess communication in computer science generally, which forms the founda-
tion upon which the particular communication mechanisms for multiagent systems
build. At a much higher level, general-purpose protocols for agent interaction have
been developed over the years, ranging from the Contract Net protocol which we
have already seen to a broader variety of languages based on speech acts, such as
KQML and agent-oriented programming (see Chapter 2). With speech-act-based
languages, sending a message can be seen as invoking a behavior at the recipient.
For example, sending a message of the type “query” might be expected to evoke
in the recipient a good-faith effort to generate an answer followed by sending a
message of the type “response” back to the sender.

This is all well and good, but what should the query itself look like? And the
response? Different kinds of information might be asked about, and talked about,
very differently. For this reason, a high-level speech-act-based language usually
leaves the definition of the “content” of a message up to the designer. For any
application domain, therefore, one or more relevant content languages need to be
defined such that agents can understand not only the intent behind a message, but
also the content of the message. In general, the definition of content languages is
difficult and open-ended. By restricting our considerations to distributed planning,
however, there is some hope in developing characteristics of a sharable planning
language.

A planning content language needs to satisfy all of the constituencies that would
use the plan. If we think of a plan as being comprised of a variety of fields (different
kinds of related information), then different combinations of agents will need to
access and modify different combinations of fields. In exchanging a plan, the agents
need to be able to find the information they need so as to take the actions that
they are expected to take in interpreting, modifying, or executing the plan. They
also need to know how to change the plan in ways that will be interpreted correctly
by other agents and lead to desirable effects.

To date, there are few standards for specifying plans for computer-based agents.
Some conventions certainly exist (such as the “STRIPS operator” format [14]), but
these are usually useful only within a narrow context. In most distributed planning
systems, it is assumed that the agents use identical representations and are built
to interpret them in the same ways.

One effort for formulating a more general description of a plan has been under-
taken by SRI, in the development of their Cypress system [46]. In a nutshell, Cypress
combined existing systems for plan generation and for plan execution. These ex-
isting systems were initially written to be stand-alone; Cypress needed to define a
language that the two systems could use to exchange plans, despite the fact that
what each system did with plans was very different. In their formalism, an ACT
is composed of the following fields:

= Name — a unique label

®  Cue — goals which the ACT is capable of achieving
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= Precondition — features of the world state that need to hold for the ACT to be
applicable

® Setting — world-state features that are bound to ACT variables
= Resources — resources required by the ACT during execution

= Properties — other properties associated with the ACT

= Comment — documentation information

= Plot — specification of the procedure (partially-ordered sequences of goals/actions)
to be executed

Of course, each of these fields in turn needs a content language that can be
understood by the relevant agents.

Other efforts have sought planning languages grounded in temporal logics and
operational formalisms such as Petri Nets and Graphcet [20, 27, 37]. By appealing
to a representation with a well-understood operational interpretation, the planning
agents are freed from having to use identical internal representations so long as
their interpretations are consistent with the operational semantics.

3.7 Distributed Planning and Execution

Of course, distributed planning does not occur in a vacuum. The product of
distributed planning needs to be executed. The relationships between planning
and execution are an important topic in Al in general, and the added complexity
of coordinating plans only compounds the challenges. In this section, we consider
strategies for combining coordination, planning, and execution.

3.7.1 Post-Planning Coordination

The distributed planning approach based on plan merging essentially sequentialized
the processes in terms of allowing agents to plan, then coordinating the plans, and
then executing them. This is reasonable approach given that the agents individually
build plans that are likely to be able to be coordinated, and that the coordinated
result is likely to executed successfully. If, during execution, one (or more) plans for
agents fail to progress as expected, the coordinated plan set is in danger of failing
as a whole.

As in classical planning systems, there are several routes of recourse to this
problem. One is contingency planning. Each agent formulates not only its
expected plan, but also alternative (branches of) plans to respond to possible
contingencies that can arise at execution time. These larger plans, with their
conditional branches, can then be merged and coordinated. The coordination
process of course is more complicated because of the need to consider the various
combinations of plan execution threads that could be pursued. By annotating the
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plan choices with the conditions, a more sophisticated coordination process can
ignore combinations of conditional plans whose conditions cannot be satisfied in
the same run.

A second means of dealing with dynamics is through monitoring and replanning:
Each agent monitors its plan execution, and if there is a deviation it stops all
agents’ progress, and the plan-coordinate-execute cycle is repeated. Obviously,
if this happens frequently, a substantial expenditure of effort for planning and
coordination can result. Sometimes, strategies such as repairing the previous plans,
or accessing a library of reusable plans [42] can reduce the effort to make it
managable.

Significant overhead can of course be saved if a plan deviation can be addressed
locally rather than having to require coordination. For example, rather than coordi-
nating sequences of actions, the agents might coordinate their plans at an abstract
level. Then, during execution, an agent can replan details without requiring coordi-
nation with others so long as its plan revision fits within the coordinated abstract
plan. This approach has been taken in the team plan execution work of Kinney
and colleagues, for example [22]. The perceptive reader will also recognize in this
approach the flavor of organizational structuring and distributed planning in a hi-
erarchical behavior space: so long as it remains within the scope of its roles and
responsibilities, an agent can individually decide what is the best way of accom-
plishing its goals. By moving to coordinate at the most abstract plan level, the
process essentially reverses from post-planning to pre-planning coordination.

3.7.2 Pre-Planning Coordination

Before an agent begins planning at all, can coordination be done to ensure that,
whatever it plans to do, the agent will be coordinated with others? The answer is
of course yes, assuming that the coordination restrictions are acceptable. This was
the answer in organizational structuring in distributed problem solving, where an
agent could choose to work on any part of the problem so long as it fit within its
range of responsibilities.

A variation on this theme is captured in the work on social laws [39]. A social
law is a prohibition against particular choices of actions in particular contexts.
For example, entering an intersection on a red light is prohibited, as might be not
entering the intersection on a green light. These laws can be derived by working from
undesirable states of the world backwards to find combinations of actions that lead
to those states, and then imposing restrictions on actions so that the combinations
cannot, arise. A challenge is to find restrictions that prevent undesirable states
without handcuffing agents from achieving states that are acceptable and desirable.
When overly constrictive, relaxations of social laws can be made [1].

Alternatively, in domains where conflict avoidance is not a key consideration, it is
still possible that agents might mutually benefit if they each prefer to take actions
that benefit society as a whole, even if not directly relevant to the agent’s goal. For
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example, in a Distributed Delivery application, it could be that a delivery agent
is passing by a location where an object is awaiting pickup by a different agent.
The agent passing by could potentially pick up the object and deliver it itself, or
deliver it to a location along its route that will be a more convenient pickup point
for the other agent. For example, the delivery agents might pass through a “hub”
location. The bias toward doing such favors for other agents could be encoded into
cooperative state-changing rules [17] that require agents to take such cooperative
actions even to their individual detriment, as long as they are not detrimental
beyond some threshold.

3.7.3 Interleaved Planning, Coordination, and Execution

More generally, between approaches that assume agents have detailed plans to
coordinate and approaches that assume general-purpose coordination policies can
apply to all planning situations, lies work that is more flexible about at what point
between the most abstract and most detailed plan representations different kinds of
coordination should be done. Perhaps the search for the proper level is conducted
through a hierarchical protocol, or perhaps it is predefined. In either case, planning
and coordination are interleaved with each other, and often with execution as well.

Let us consider a particular example of an approach that assumes that planning
and coordination decisions must be continually revisited and revised. The approach
we focus on is called Partial Global Planning [8].

Task Decomposition — Partial Global Planning starts with the premise that tasks are
inherently decomposed — or at least that they could be. Therefore, unlike planning
techniques that assume that the overall task to be planned for is known by one
agent, which then decomposes the task into subtasks, which themselves might be
decomposed, and so on, partial global planning assumes that an agent with a task
to plan for might be unaware at the outset as to what tasks (if any) other agents
might be planning for, and how (and whether) those tasks might be related to its
own as in the DVM task. A fundamental assumption in Partial Global Planning is
that no individual agent might be aware of the global task or state, and the purpose
of coordination is to allow agents to develop sufficient awareness to accomplish their
tasks nonetheless.

Local Plan Formulation — Before an agent can coordinate with others using Partial
Global Planning, it must first develop an understanding of what goals it is trying to
achieve and what actions it is likely to take to achieve them. Hence, purely reactive
agents, which cannot explicitly represent goals that they are trying to achieve
and actions to achieve them, cannot gainfully employ Partial Global Planning (or,
for that matter, distributed planning at all). Moreover, since most agents will be
concurrently concerned with multiple goals (or at least will be able to identify
several achievable outcomes that satisfy a desired goal), local plans will most often
be uncertain, involving branches of alternative actions depending on the results of
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previous actions and changes in the environmental context in carrying out the plan.

Local Plan Abstraction — While it is important for an agent to identify alternative
courses of action for achieving the same goal in an unpredictable world, the details
of the alternatives might be unnecessary as far as the agent’s ability to coordinate
with others. That is, an agent might have to commit to activities at one level of
detail (to supply a result by a particular time) without committing to activities
at more detailed levels (specifying how the result will be constructed over time).
Abstraction plays a key role in coordination, since coordination that is both correct
and computationally efficient requires that agents have models of themselves and
others that are only detailed enough to gainfully enhance collective performance.
In Partial Global Planning, for example, agents are designed to identify their major
plan steps that could be of interest to other agents.

Communication — Since coordination through Partial Global Planning requires
agents to identify how they could and should work together, they must somehow
communicate about their abstract local plans so as to build models of joint activity.
In Partial Global Planning, the knowledge to guide this communication is contained
in the Meta-Level Organization (MLO). The MLO specifies information and
control flows among the agents: Who needs to know the plans of a particular agent,
and who has authority to impose new plans on an agent based on having a more
global view. The declarative MLO provides a flexible means for controlling the
process of coordination.

Partial Global Goal Identification — Due to the inherent decomposition of tasks
among agents, the exchange of local plans (and their associated goals) gives agents
an opportunity to identify when the goals of one or more agents could be considered
subgoals of a single global goal. Because, at any given time, only portions of
the global goal might be known to the agents, it is called a partial global goal.
Construction of partial global goals is, in fact, an interpretation problem, with a
set of operators that attempts to generate an overall interpretation (global goal)
that explains the component data (local goals). The kinds of knowledge needed are
abstractions of the knowledge needed to synthesize results of the distributed tasks.
And, just as interpretations can be ambiguous, so too is it possible that a local goal
can be seen as contributing to competing partial global goals.

Partial Global Plan Construction and Modification — Local plans that can be seen
as contributing to a single partial global goal can be integrated into a partial
global plan, which captures the planned concurrent activities (at the abstract
plan step level) of the individuals. By analyzing these activities, an agent that
has constructed the partial global plan can identify opportunities for improved
coordination. In particular, the coordination relationships emphasized in PGP are
those of facilitating task achievement of others by performing related tasks earlier,
and of avoiding redundant task achievement. PGP uses a simple hill-climbing
algorithm, coupled with an evaluation function on ordered actions, to search for
an improved (although not necessarily optimal) set of concurrent actions for the
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1.  For the current ordering, rate the individual actions and sum the ratings.

2. For each action, examine the later actions for the same agent and find
the most highly-rated one. If it is higher rated, then swap the actions.

3. If the new ordering is more highly rated than the current one, then replace
the current ordering with the new one and go to step 2.

4.  Return the current ordering.

Algorithm 3.2 The algorithm for PGP plan step reordering.

1. [Initialize the set of partial task results to integrate.
2. While the set contains more than one element:

(a) For each pair of elements: find the earliest time and agent at which
they can be combined.

(b) For the pair that can be combined earliest: add a new element to
the set of partial results for the combination and remove the two
elements that were combined.

3. Return the single element in the set.

Algorithm 3.3 The algorithm for planning communication actions.

partial global plan (see Algorithm 3.2). The evaluation function sums evaluations of
each action, where the evaluation of an action is based on features such as whether
the task is unlikely to have been accomplished already by another agent, how long
it is expected to take, and on how useful its results will be to others in performing
their tasks.

Communication Planning — After reordering the major local plan steps of the
participating agents so as to yield a more coordinated plan, an agent must next
consider what interactions should take place between agents. In PGP, interactions,
in the form of communicating the results of tasks, are also planned. By examining
the partial global plan, an agent can determine when a task will be completed by
one agent that could be of interest to another agent, and can explicitly plan the
communication action to transmit the result. If results need to be synthesized, an
agent using PGP will construct a tree of exchanges such that, at the root of the tree,
partially synthesized results will be at the same agent which can then construct the
complete result (see Algorithm 3.3).

Acting on Partial Global Plans — Once a partial global plan has been constructed
and the concurrent local and communicative actions have been ordered, the collec-
tive activities of the agents have been planned. What remains is for these activities
to be translated back to the local level so that they can be carried out. In PGP,
an agent responds to a change in its partial global plans by modifying the abstract
representation of its local plans accordingly. In turn, this modified representation
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is used by an agent when choosing its next local action, and thus the choice of
local actions is guided by the abstract local plan, which in turn represents the local
component of the planned collective activity.

Ongoing Modification — As agents pursue their plans, their actions or events in the
environment might lead to changes in tasks or in choices of actions to accomplish
tasks. Sometimes, these changes are so minor that they leave the abstract local
plans used for coordination unchanged. At other times, they do cause changes. A
challenge in coordination is deciding when the changes in local plans are significant
enough to warrant communication and recoordination. The danger in being too
sensitive to changes is that an agent that informs others of minor changes can cause
a chain reaction of minor changes, where the slight improvement in coordination
is more than offset by the effort spent in getting it. On the other hand, being too
insensitive can lead to very poor performance, as agents’ local activities do not mesh
well because each is expecting the other to act according to the partial global plan,
which is not being followed very closely anymore. In PGP, a system designer has
the ability to specify parametrically the threshold that defines significant temporal
deviation from planned activity.

Task Reallocation — In some circumstances, the exogenous task decomposition and
allocation might leave agents with disproportionate task loads. Through PGP,
agents that exchange abstract models of their activities will be able to detect
whether they are overburdened, and candidate agents that are underburdened. By
generating and proposing partial global plans that represent others taking over
some of its tasks, an agent essentially suggests a contracting relationship among
the agents. A recipient has an option of counter proposing by returning a modified
partial global plan, and the agents could engage in protracted negotiations. If
successful, however, the negotiations will lead to task reallocation among the agents,
allowing PGP to be useful even in situations where tasks are quite centralized.
Summary — PGP fills a distributed planning niche, being particularly suited to
applications where some uncoordinated activity can be tolerated and overcome,
since the agents are individually revisiting and revising their plans midstream,
such that the system as a whole might at times (or even through the whole task
episode) never settle down into a stable collection of local plans. PGP focuses on
dynamically revising plans in cost-effective ways given an uncertain world, rather
than on optimizing plans for static and predictable environments. It works well for
many tasks, but could be inappropriate for domains such as air-traffic control where
guarantees about coordination must be made prior to any execution.

3.7.4 Runtime Plan Coordination Without Communication

While tailored for dynamic domains, PGP still assumes that agents can and will
exchange planning information over time to coordinate their actions. In some
applications, however, runtime recoordination needs to be done when agents cannot
or should not communicate. We briefly touch on plan coordination mechanisms for
such circumstances.
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One way of coordinated without explicit communication is to allow agents to
infer each others plans based on observations. The plan recognition literature
focuses on how observed actions can lead to hypotheses about the plans being
executed by others. While generally more uncertain than coordination using explicit
communication, observation-based plan coordination can still achieve high-
quality results and, under some circumstances can outperform communication-
based distributed planning [18].

Another way of coordinating without explicit communication is to allow agents to
make inferences about the choices others are likely to make based on assumptions
about their rationality [36] or about how they view the world. For example, if
Distributed Delivery agents are going to hand off objects to each other, they might
infer that some locations (such as a hub) are more likely to be mutually recognized
as good choices. Such solutions to choice problems have been referred to as focal
points [13].

3.8 Conclusions

Distributed planning has a variety of reasonably well-studied tools and techniques in
its repertoire. One of the important challenges to the field is in characterizing these
tools and undertanding where and when to apply each. To some extent, the lack
of specificity in the term “distributed planning” in terms of whether the process or
the product or both of planning is distributed has hampered communication within
the field, but more fundamental issues of articulating the foundational assumptions
behind different approaches still need to be addressed. Until many of the assumed
context and semantics for plans are unveiled, the goal of having heterogeneous plan
generation and plan execution agents work together is likely to remain elusive.

The field of distributed problem solving is even more wide open, because the
characterization of a “problem” is that much broader. As we have tried to empha-
size, distributed plan formation and, in many cases, execution can be thought of as
distributed problem solving tasks. Representations and general-purpose strategies
for distributed problem solving are thus even more elusive. In this chapter we have
characterized basic classes of strategies such as task- sharing and result-sharing. Ul-
timately, the purpose of any strategy is to share the right information about tasks,
capabilities, availabilities, partial results, or whatever so that each agent is doing
the best thing that it can for the group at any given time. Of course, exchanging
and using the information that renders such choices can itself be costly, and opens
the door to misinterpretation that makes matters worse rather than better. All of
these considerations factor into the definition and implementation of a distributed
problem strategy, but formulating such a strategy still has more “art” to it than
we like to see in an engineering discipline.
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3.9 Exercises

1. [Level 1] The ToH time complexity analysis that reduces the complexity to
logarithmic time assumed that the number of levels was a function of the
problem size. More realistically, an organization would be developed for a
variety of problems, rather than on a case-by-case basis. Assume the number
of levels is fixed (and so the ratio between hierarchy levels will vary with the
problem size). Now what is the expected time complexity for the ToH in a
distributed problem-solving scenario. What does this answer tell you?

2. [Level 1] Consider Contract Net without focused addressing (that is, announce-
ments are broadcast).

(a) Name a real-life example where task announcment makes much more
sense than availability announcement. Justify why.

(b) Now name a real-life example where availability announcement makes
much more sense. Justify why.

(¢c) Let’s say that you are going to build a mechanism that oversees a
distributed problem-solving system, and can “switch” it to either a task
or availability announcement mode.

i.  Assuming communication costs are negligible, what criteria would
you use to switch between modes? Be specific about what you would
test.

ii. If communication costs are high, now what criteria would you use?
Be specific about what you would test.

3. [Level 2/3] We noted that task announcing can be tricky: If a manager is
too fussy about eligibility, it might get no bids, but if it is too open it might
have to process too many bids, including those from inferior contractors. Let
us say that the manager has n levels of eligibility specifications from which
it needs to choose one. Describe how it would make this choice based on a
decision-theoretic formulation. How would this formulation change if it needed
to consider competition for contractors from other managers?

4. [Level 2] A folk theorem in the organization literature is that, in human orga-
nizations, task decompositions invariably lead to clear assignments of subtasks
to members of the organization. Give an example of where decomposition with-
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out look-ahead to available contractors can be detrimental. Give an example
where biasing decomposition based on available contractors can instead be
detrimental. Finally, give an algorithm for alternating between decomposition
and assignment to incrementally formulate a distributed problem-solving sys-
tem. Is your algorithm assured of yielding an optimal result? Is it complete?

[Level 1] Consider the pursuit task, with four predators attempting to surround
and capture a prey. Define an organizational structure for the predators. What
are the roles and responsibilities of each? How does the structure indicate the
kinds of communication patterns (if any) that will lead to success?

[Level 2] In the problem of distributed meeting scheduling, let us say that the
chances that a specific meeting time proposal will be accepted is p.

(a) If each iteration of the scheduling protocol has an agent propose a
specific time to the others, what is the probability that the meeting will
be scheduled in exactly I iterations? What is the expected number of
iterations to schedule the meeting?

(b) If each iteration instead proposes N specific times, now what is the
probability that the meeting will be scheduled in exactly I iterations?
What is the expected number of iterations to schedule the meeting? What
happens when N approaches 17 How about when N grows very large?

(c) Based on the above, how would you choose a value for N to use in a
distributed meeting scheduling system? What other considerations might
need to be taken into account besides a desire to keep the number of
iterations low?

[Level 2] Consider the following simple instance of the distributed delivery
task. Robot A is at position a and robot B is at position 3. Article X is at
position ¢ and needs to go to position ¢, and article Y is at position ¢ and
needs to go to (. Positions «, 3, &, ¥, and ( are all different.

(a) Define in STRIPS notation, suitable for Partial Order Planning, simple
operators Pickup, Dropoff, PickDrop, and Return, where Pickup moves
the robot from its current position to a Pickup position where it then has
the article associated with that position; Dropoff moves a robot and an
article it holds to a dropoff position where it no longer has the article;
PickDrop combines the two (it drops off its article and picks up another
associated with that position); and Return moves a robot back to its
original position.

(b) Using these operators, generate the partial order plan with the shortest
sequence of plan steps to accomplish the deliveries. Decompose and
distribute this plan to the robots for parallel execution, inserting any
needed synchronization actions. How does the use of multiple robots affect
the plan execution?

(c) Using the operators, generate the partial order plan that, when dis-
tributed, will accomplish the deliveries as quickly as possible. Is this the
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10.

11.

same plan as in the previous part of this problem? Why or why not?

[Level 2] Given the problem of question 7, include in the operator descriptions
conditions that disallow robots to be at the same position at the same time
(for example, a robot cannot do a pickup in a location where another is doing a
dropoff). Assuming each robot was given the task of delivering a different one
of the articles, generate the individual plans and then use the plan merging
algorithm to formulate the synchronized plans, including any synchronization
actions into the plans. Show your work.

[Level 2] Consider the problem of question 7. Assume that delivery plans
can be decomposed into 3 subplans (pickup, dropoff, and return), and that
each of these subplans can further be decomposed into individual plan steps.
Furthermore, assume that robots should not occupy the same location at the
same time not just at dropoff/pickup points, but throughout their travels.
Use the hierarchical protocol to resolve potential conflicts between the robots
plans, given a few different layouts of the coordinates for the various positions
(that is, where path-crossing is maximized and minimized). What kinds of
coordinated plans arise depending on what level of the hierarchy the plans’
conflicts are resolved through synchronization?

[Level 2] Assume that agents in the distributed delivery domain could be given
delivery requests at any given time, and operate in a finite, fully shared delivery
region. Describe social laws that can assure that no matter what deliveries are
asked of them and when, the agents can be assured of avoiding collisions no
matter where the pickup and dropoff positions are. You may assume that the
world begins in a legal state. In what circumstances would using these laws be
very inefficient?

[Level 3] Assume that distributed delivery robots are in an environment where
delivery tasks pop up dynamically. When a delivery needs to be done, the
article to be delivered announces that it needs to be delivered, and delivery
agents within a particular distance from the article hear the announcement.

(a) Assume that the distance from which articles can be heard is small. What
characteristics would an organizational structure among the delivery
agents have to have to minimize the deliveries that might be overlooked?

(b) Assume that the distance is instead large. Would an organizational struc-
ture be beneficial anyway? Justify your answer.

(¢c) As they become aware of deliveries to be done, delivery agents try to in-
corporate those into their current delivery plans. But the dynamic nature
of the domain means that these plans are undergoing evolution. Under
what assumptions would partial global planning be a good approach for
coordinating the agents in this case?

(d) Assume you are using partial global planning for coordination in this
problem. What would you believe would be a good planning level for the
agents to communicate and coordinate their plans? How would the agents
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determine whether they were working on related plans? How would they
use this view to change their local plans? Would a hill-climbing strategy
work well for this?
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4 Search Algorithms for Agents

Makoto Yokoo and Toru Ishida

4.1 Introduction

In this chapter, we introduce several search algorithms that are useful for problem
solving by multiple agents. Search is an umbrella term for various problem solving
techniques in AI. In search problems, the sequence of actions required for solving
a problem cannot be known a priori but must be determined by a trial-and-error
exploration of alternatives. Since virtually all AT problems require some sort of
search, search has a long and distinguished history in AL

The problems that have been addressed by search algorithms can be divided
into three classes: path-finding problems, constraint satisfaction problems, and two-
player games.

A typical example of the first class, i.e., path-finding problems, is a puzzle called
the n-puzzle. Figure 4.1 shows the 8-puzzle, which consists of eight numbered tiles
arranged on a 3 X 3 board (in a generalized case, there are n = k% — 1 tiles on a
kx k board). The allowed moves are to slide any tile that is horizontally or vertically
adjacent to the empty square into the position of the empty square. The objective
is to transform the given initial configuration to the goal configuration by making
allowed moves. Such a problem is called a path-finding problem, since the objective
is to find a path (a sequence of moves) from the initial configuration to the goal
configuration.

A constraint satisfaction problem (CSP) involves finding a goal configuration
rather than finding a path to the goal configuration. A typical example of a CSP
is a puzzle called 8-queens. The objective is to place eight queens on a chess board
(88 squares) so that these queens will not threaten each other. This problem is
called a constraint satisfaction problem since the objective is to find a configuration
that satisfies the given conditions (constraints).

Another important class of search problems is two-player games, such as chess.
Since two-player games deal with situations in which two competitive agents exist,
it is obvious that these studies have a very close relation with DAI/multiagent
systems where agents are competitive.

On the other hand, most algorithms for the other two classes (constraint satisfac-
tion and path-finding) were originally developed for single-agent problem solving.



166 Search Algorithms for Agents

- AP

1[3]5

6]7]8
1[4]2 1[4]2 - HP
3|5 35 Q 314]5
6|78 6]7]8 6|78

initial state goal state

1[4[2

6]/3]5

| HE

Figure 4.1 Example of a path-finding problem (8-puzzle).

Figure 4.2 Example of a constraint satisfaction problem (8-queens).
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Among them, what kinds of algorithms would be useful for cooperative problem
solving by multiple agents?

In general, an agent is assumed to have [limited rationality. More specifically,
the computational ability or the recognition ability of an agent is usually limited.
Therefore, getting the complete picture of a given problem may be impossible.
Even if the agent can manage to get complete information on the problem, dealing
with the global information of the problem can be too expensive and beyond the
computational capability of the agent. Therefore, the agent must do a limited
amount of computations using only partial information on the problem and then
take appropriate actions based on the available resources.

In most standard search algorithms (e.g., the A* algorithm [20] and backtracking
algorithms [26]), each step is performed sequentially, and for each step, the global
knowledge of the problem is required. For example, the A* algorithm extends the
wavefront of explored states from the initial state and chooses the most promising
state within the whole wavefront.

On the other hand, a search problem can be represented by using a graph, and
there exist search algorithms with which a problem is solved by accumulating local
computations for each node in the graph. The execution order of these local com-
putations can be arbitrary or highly flexible, and can be executed asynchronously
and concurrently. We call these algorithms asynchronous search algorithms.

When a problem is solved by multiple agents each with limited rationality,
asynchronous search algorithms are appropriate based on the following reasons.

® We can assume that the computational and recognition abilities required to
perform the local computations of each node will be small enough for the agents.
On the other hand, if each step of the algorithm requires the global knowledge
of the problem, it may be beyond the capability of an agent.

= If multiple agents are cooperatively solving a problem using the asynchronous
search algorithm, the execution order of these agents can be highly flexible or
arbitrary. Otherwise, we need to synchronize the computations of the agents,
and the overhead for such control can be very high.

The importance of solving a problem by combining such local and asynchronous
computations was first pointed out by Lesser [24], and this idea has been widely
acknowledged in DAIT studies.

In the following, we give a formal definition of a constraint satisfaction problem
and a path-finding problem and introduce asynchronous search algorithms for
solving these problems. Then, we show the formalization of and algorithms for
two-player games.



168 Search Algorithms for Agents

X1 X2
{red, blue, yellow}
{red, blue, yellow}
Xsz{red, blue, yellow}

X4{red, blue, yellow}

Figure 4.3 Example of a constraint satisfaction problem (graph-coloring).

4.2 Constraint Satisfaction
4.2.1 Definition of a Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a problem to find a consistent value as-
signment of variables that take their values from finite, discrete domains. Formally,
a CSP consists of n variables =1, zs, ..., z,, whose values are taken from finite, dis-
crete domains Dy, Ds, ..., D,, respectively, and a set of constraints on their values.
A constraint is defined by a predicate. That is, the constraint py(zg1,...,zk;) is a
predicate that is defined on the Cartesian product Dy X ... x Dy;. This predicate
is true iff the value assignment of these variables satisfies this constraint. Solving a
CSP is equivalent to finding an assignment of values to all variables such that all
constraints are satisfied. Since constraint satisfaction is NP-complete in general, a
trial-and-error exploration of alternatives is inevitable.

For example, in the 8-queens problem, it is obvious that only one queen can be
placed in each row. Therefore, we can formalize this problem as a CSP, in which
there are eight variables z1, x5, ..., zs, each of which corresponds to the position
of a queen in each row. The domain of a variable is {1,2,...,8}. A solution is a
combination of values of these variables. The constraints that the queens will not
threaten each other can be represented as predicates, e.g., a constraint between z;
and z; can be represented as x; # x;A | i — j |#| x; —xj |.

Another typical example problem is a graph-coloring problem (Figure 4.3). The
objective of a graph-coloring problem is to paint nodes in a graph so that any two
nodes connected by a link do not have the same color. Each node has a finite number
of possible colors. This problem can be formalized as a CSP by representing the
color of each node as a variable, and the possible colors of the node as a domain of
the variable.

If all constraints are binary (i.e., between two variables), a CSP can be represented
as a graph, in which a node represents a variable, and a link between nodes
represents a constraint between the corresponding variables. Figure 4.4 shows a
constraint graph representing a CSP with three variables 1, x>, 3 and constraints
Ty # x3, T2 # x3. For simplicity, we will focus our attention on binary CSPs in
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Figure 4.4 Constraint graph.

the following chapter. However, the algorithms described in this chapter are also
applicable to non-binary CSPs.

Then, how can the CSP formalization be related to DAI? Let us assume that the
variables of a CSP are distributed among agents. Solving a CSP in which multiple
agents are involved (such a problem is called a distributed CSP) can be considered
as achieving coherence among the agents. Many application problems in DAI, e.g.,
interpretation problems, assignment problems, and multiagent truth maintenance
tasks, can be formalized as distributed CSPs.

An interpretation problem can be viewed as a problem to find a compatible set
of hypotheses that correspond to the possible interpretations of input data. An
interpretation problem can be mapped into a CSP by viewing possible interpreta-
tions as possible variable values. If there exist multiple agents, and each of them
is assigned a different part of the input data, such a problem can be formalized as
a distributed CSP. The agents can eliminate the number of hypotheses by using
the filtering algorithm or the hyper-resolution-based consistency algorithm, both of
which are described in the following.

If the problem is to allocate tasks or resources to multiple agents, and there exist
inter-agent constraints, such a problem can be formalized as a distributed CSP by
viewing each task or resource as a variable and the possible assignments as values.
Furthermore, we can formalize multiagent truth maintenance tasks described in
Chapter 2 as a distributed CSP, where each item of the uncertain data is represented
as a variable whose value can be IN or OUT.

In the following, we describe asynchronous search algorithms in which each
process corresponds to a variable, and the processes act asynchronously to solve
a CSP.

We assume the following communication model.

= Processes communicate by sending messages. A process can send messages to
other processes iff the process knows the addresses/identifiers of other processes.
= The delay in delivering a message is finite, though random.

= For the transmission between any pair of processes, messages are received in the
order in which they were sent.
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Furthermore, we call the processes that have links to x; neighbors of x;. We assume
that a process knows the identifiers of its neighbors.

4.2.2 Filtering Algorithm

In the filtering algorithm [36], each process communicates its domain to its neigh-
bors and then removes values that cannot satisfy constraints from its domain. More
specifically, a process ; performs the following procedure revise(z;,z;) for each
neighboring process ;.

procedure revise(z;, ;)
for all v; € D; do
if there is no value v; € D; such that v; is consistent with v;
then delete v; from D;; end if; end do;

If some value of the domain is removed by performing the procedure revise,
process z; sends the new domain to neighboring processes. If z; receives a new
domain from a neighboring process z;, the procedure revise(xz;,z;) is performed
again. The execution order of these processes is arbitrary.

We show an example of an algorithm execution in Figure 4.5. The example
problem is a smaller version of the 8-queens problem (3-queens problem). There
are three variables z1, x5, x3, whose domains are {1,2,3}. Obviously, this problem is
over-constrained and has no solution. After exchanging the domains (Figure 4.5 (a)),
x; performs revise(zy,zs) and removes 2 from its domain (if z; = 2, none of
x2’s values satisfies the constraint with x;). Similarly, z» performs revise(zs,x3),
x3 performs revise(zs,zs), and each process removes 2 from its domain. After
exchanging the new domains (Figure 4.5 (b)), z; performs revise(z;,z3), and
removes 1 and 3 from its domain. The domain of z; then becomes an empty set,
so the process discovers that this problem has no solution.

By applying the filtering algorithm, if a domain of some variable becomes an
empty set, the problem is over-constrained and has no solution. Also, if each
domain has a unique value, then the combination of the remaining values becomes
a solution. On the other hand, if there exist multiple values for some variable, we
cannot tell whether the problem has a solution or not, and further trial-and-error
search is required to find a solution.

Figure 4.6 shows a graph-coloring problem. Since there are three variables and the
only possible colors of each variable are red or blue, this problem is over-constrained.
However, in the filtering algorithm, no process can remove a value from its domain.
Furthermore, in the 8-queens problem (which has many solutions), no process can
remove a value from its domain by using the filtering algorithm.

Since the filtering algorithm cannot solve a problem in general, it should be
considered a preprocessing procedure that is invoked before the application of other
search methods. Even though the filtering algorithm alone cannot solve a problem,
reducing the domains of variables for the following search procedure is worthwhile.
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4.2.3 Hyper-Resolution-Based Consistency Algorithm

The filtering algorithm is one example of a general class of algorithms called
consistency algorithms. Consistency algorithms can be classified by the notion of
k-consistency [9]. A CSP is k-consistent iff the following condition is satisfied.

= Given any instantiation of any k—1 variables satisfying all the constraints among
those variables, it is possible to find an instantiation of any kth variable such
that these k variable values satisfy all the constraints among them.

The filtering algorithm achieves 2-consistency (also called arc-consistency), i.e.,
any variable value has at least one consistent value of another variable. A k-
consistency algorithm transforms a given problem into an equivalent (having the
same solutions as the original problem) k-consistent problem. If the problem is k-
consistent and j-consistent for all j < k, the problem is called strongly k-consistent.
If there are n variables in a CSP and the CSP is strongly n-consistent, then a
solution can be obtained immediately without any trial-and-error exploration, since
for any instantiation of & — 1 variables, we can always find at least one consistent
value for k-th variables.

In the following, we describe a consistency algorithm using the the hyper-
resolution rule [6]. In this algorithm, all constraints are represented as a nogood,
which is a prohibited combination of variable values. For example, in Figure 4.6, a
constraint between z; and z5 can be represented as two nogoods {z; = red, x5 =
red} and {z; = blue, x> = blue}.

A new nogood is generated from several existing nogoods by using the hyper-
resolution rule. For example, in Figure 4.6, there are nogoods such as {z; =
red,zy = red} and {z; = blue,z3 = blue}. Furthermore, since the domain of z;
is {red,blue}, (x; = red) V (z1 = blue) holds. The hyper-resolution rule combines
nogoods and the condition that a variable takes one value from its domain, and
generates a new nogood, e.g., {x2 = red,z3 = blue}.

The meaning of this nogood is as follows. If z5 is red, x; cannot be red. Also, if
x3 is blue, 1 cannot be blue. Since z; is either red or blue, if x5 is red and z3 is
blue, there is no possible value for z;. Therefore, this combination cannot satisfy
all constraints.

The hyper-resolution rule is described as follows (A; is a proposition such as
r = 1)

Al VA V...VA,

_|(A1 A A11 .. .),
_|(A2 A A21 .. .),
—|(Am ANAm .. )

—|(A11/\.../\Azl/\.../\Aml...)
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In the hyper-resolution-based consistency algorithm, each process represents its
constraints as nogoods. The process then generates new nogoods by combining
the information about its domain and existing nogoods using the hyper-resolution
rule. A newly obtained nogood is communicated to related processes. If a new
nogood is communicated, the process tries to generate further new nogoods using
the communicated nogood.

For example, in Figure 4.6, assume x; generates a new nogood {z2 = red, z3 =
blue} using nogood {z; = red, x5 = red} and nogood {z1 = blue, x5 = blue}. This
nogood is communicated to z» and 3. x5 generates a new nogood {z3 = blue}
using this communicated nogood and nogood {zs = blue, x5 = blue}. Similarly, z;
generates a new nogood {z» = blue,x3 = red} from {x; = blue,x» = blue} and
{x1 = red, z3 = red}. x5 generates a new nogood {z3 = red} using this nogood and
nogood {zs = red,z3 = red}. Then, z3 can generate {} from nogood{zs = blue}
and {z3 = red}, which is an empty set. Recall that a nogood is a combination of
variable values that is prohibited. Therefore, a superset of a nogood cannot be a
solution. Since any set is a superset of an empty set, if an empty set becomes a
nogood, the problem is over-constrained and has no solution.

The hyper-resolution rule can generate a very large number of nogoods. If we
restrict the application of the rules so that only nogoods whose lengths (the length
of a nogood is the number of variables that constitute the nogood) are less than k
are produced, the problem becomes strongly k-consistent.

4.2.4 Asynchronous Backtracking

The asynchronous backtracking algorithm [39] is an asynchronous version of a
backtracking algorithm, which is a standard method for solving CSPs. In the
asynchronous backtracking algorithm, the priority order of variables/processes is
determined, and each process communicates its tentative value assignment to
neighboring processes. The priority order is determined by alphabetical order of the
variable identifiers, i.e., preceding variables in the alphabetical order have higher
priority. A process changes its assignment if its current value assignment is not
consistent with the assignments of higher priority processes. If there exists no value
that is consistent with the higher priority processes, the process generates a new
nogood, and communicates the nogood to a higher priority process; thus the higher
priority process changes its value.

The generation procedure of a new nogood is basically identical to the hyper-
resolution rule described in Section 4.2.3. However, in the consistency algorithm,
all constraints (nogoods) are considered for generating new nogoods. On the other
hand, the asynchronous backtracking algorithm generates only the constraints that
are not satisfied in the current situation. In other words, a new nogood is generated
only if the nogood actually occurs in the asynchronous backtracking.

Each process maintains the current value assignment of other processes from its
viewpoint (local_view). It must be noted that since each process acts asynchronously
and concurrently and processes communicate by sending messages, the local_view
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when received (ok?, (z;, d;)) do — (i)
add (zj, d;) to local_view,
check_local_view;

end do;

when received (nogood, nogood) do — (ii)
record nogood as a new constraint;
when (zy, di) where zj, is not a neighbor do
request zj, to add z; to its neighbors;
add zj, to neighbors;
add (zg, di) to local_view; end do;
check_local_view;

end do;

procedure check_local_view
when local_view and current_value are not consistent do
if no value in D; is consistent with local_view
then resolve a new nogood using hyper-resolution rule
and send the nogood to the lowest priority process in the nogood;
when an empty nogood is found do
broadcast to other processes that there is no solution,
terminate this algorithm; end do;
else select d € D; where local_view and d are consistent;
current_value < d;
send (ok?, (zi, d)) to neighbors; end if; end do;

Algorithm 4.1 Procedures for receiving messages (asynchronous backtracking).

may contain obsolete information. Even if x;’s local_view says that z;’s current
assignment is 1, z; may already have changed its value. Therefore, if z; does not
have a consistent value with the higher priority processes according to its local _view,
we cannot use a simple control method such as x; orders a higher priority process
to change its value, since the local_view may be obsolete. Therefore, each process
needs to generate and communicate a new constraint (nogood), and the receiver of
the new nogood must check whether the nogood is actually violated from its own
local_view.

The main message types communicated among processes are ok? messages to
communicate the current value, and nogood messages to communicate a new nogood.
The procedures executed at process x; after receiving an ok? message and a nogood
message are described in Algorithm 4.1 (i) and Algorithm 4.1 (ii), respectively.

We show an example of an algorithm execution in Figure 4.7. In Figure 4.7 (a),
after receiving ok? messages from x; and xy, the local_view of x3 will be
{(z1,1), (x2,2)}. Since there is no possible value for z3 consistent with this lo-
cal_view, a new nogood {(z1,1), (z2,2)} is generated. z3 chooses the lowest priority
process in the nogood, i.e., z2, and sends a nogood message. By receiving this
nogood message, o records this nogood. This nogood, {(z1,1),(z2,2)}, contains
process x1, which is not a neighbor z». Therefore, a new link must be added be-
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Figure 4.7 Example of an algorithm execution (asynchronous backtracking).

tween x7 and xy. w2 requests x1 to send x1’s value to s, and adds (z1,1) to its
local_view (Figure 4.7 (b)). x2 checks whether its value is consistent with the lo-
cal_view. The local_view {(x1,1)} and the assignment (zs,2) violate the received
nogood {(z1,1), (x2,2)}. However, there is no other possible value for z5. There-
fore, x5 generates a new nogood {(z1,1)}, and sends a nogood message to
(Figure 4.7 (¢)).

The completeness of the algorithm (always finds a solution if one exists, and
terminates if no solution exists) is guaranteed. The outline of the proof is as follows.

We can show that this algorithm never falls into an infinite processing loop by
induction. In the base case, assume that the process with the highest priority, x1,
is in an infinite loop. Because it has the highest priority, z; only receives nogood
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messages. When it proposes a possible value, 1 either receives a nogood message
back, or else gets no message back. If it receives nogood messages for all possible
values of its variable, then it will generate an empty nogood (any choice leads to
a constraint violation) and the algorithm will terminate. If it does not receive a
nogood message for a proposed value, then it will not change that value. Either
way, it cannot be in an infinite loop.

Now, assume that processes z; to xx—1 (k > 2) are in a stable state, and the
process xj, is in an infinite processing loop. In this case, the only messages process
T receives are nogood messages from processes whose priorities are lower than k,
and these nogood messages contain only the processes x1 to zj. Since processes x
to xx—1 are in a stable state, the nogoods process xj receives must be compatible
with its local_view, and so xj, will change instantiation of its variable with a different
value. Because its variable’s domain is finite, z; will either eventually generate a
value that does not cause it to receive a nogood (which contradicts the assumption
that ) is in an infinite loop), or else it exhausts the possible values and sends a
nogood to one of z1 ...xy_1. However, this nogood would cause a process, which we
assumed as being in a stable state, to not be in a stable state. Thus, by contradiction,
x), cannot be in an infinite processing loop.

Since the algorithm does not fall in an infinite processing loop, the algorithm
eventually reaches a solution if one exists, and if the problem is over-constrained,
some process will eventually generate a nogood that is an empty set.

4.2.5 Asynchronous Weak-Commitment Search

One limitation of the asynchronous backtracking algorithm is that the pro-
cess/variable ordering is statically determined. If the value selection of a higher
priority process is bad, the lower priority processes need to perform an exhaustive
search to revise the bad decision.

We can reduce the chance of a process making a bad decision by introducing value
ordering heuristics, such as the min-conflict heuristic [27]. In this heuristic, when
a variable value is to be selected, a value that minimizes the number of constraint
violations with other variables is preferred. Although this heuristic has been found
to be very effective [27], it cannot completely avoid bad decisions.

The asynchronous weak-commitment search algorithm[38] introduces a method
for dynamically ordering processes so that a bad decision can be revised without an
exhaustive search. More specifically, a priority value is determined for each variable,
and the priority order among processes is determined using these priority values by
the following rules.

= For each variable/process, a non-negative integer value representing the priority
order of the variables/processes is defined. We call this value the priority value.

= The order is defined such that any variable/process with a larger priority value
has higher priority.

= If the priority values of multiple processes are the same, the order is determined
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by the alphabetical order of the identifiers.
= For each variable/process, the initial priority value is 0.

® If there exists no consistent value for z;, the priority value of x; is changed to
k + 1, where k is the largest priority value of related processes.

In the asynchronous weak-commitment search, as in the asynchronous backtrack-
ing, each process concurrently assigns a value to its variable, and sends the variable
value to other processes. After that, processes wait for and respond to incoming
messages. Although the following algorithm is described in a way that a process
reacts to messages sequentially, a process can handle multiple messages concur-
rently, i.e., the process first revises the local_view and constraints according to the
messages, and then performs check_local_view only once.

In Algorithm 4.2, the procedure executed at process z; by receiving an ok?
message is described (the procedure for a nogood message is basically identical to
that for the asynchronous backtracking algorithm). The differences between these
procedures and the procedures for the asynchronous backtracking algorithm are as
follows.

®  The priority value, as well as the current value assignment, is communicated
through the ok? message (Algorithm 4.2 (i)).

®  The priority order is determined using the communicated priority values. If the
current value is not consistent with the local_view, i.e., some constraint with
variables of higher priority processes is not satisfied, the agent changes its value
using the min-conflict heuristic, i.e., it selects a value that is not only consistent
with the local_view, but also minimizes the number of constraint violations with
variables of lower priority processes (Algorithm 4.2 (iii)).

= When z; cannot find a consistent value with its local_view, x; sends nogood mes-
sages to other processes, and increments its priority value. If x; cannot resolve
a new nogood, x; will not change its priority value but will wait for the next
message (Algorithm 4.2 (ii)). This procedure is needed to guarantee the com-
pleteness of the algorithm. In the asynchronous weak-commitment algorithm,
processes try to avoid situations previously found to be nogoods. However, due
to the delay of messages, a local_view of a process can occasionally be identi-
cal to a previously found nogood. In order to avoid reacting to such unstable
situations, and performing unnecessary changes of priority values, each process
records the nogoods that have been resolved. If no new nogood is found, the
process will not change the priority value and waits for the next message.

We illustrate an execution of the algorithm using the distributed 4-queens prob-
lem, i.e., there exist four processes, each of which corresponds to a queen in one of
the rows. The goal of the process is to find positions on a 4x4 chess board so that
the queens do not threaten each other.

The initial values are shown in Figure 4.8 (a). Processes communicate these values
with each other. The values within parentheses represent the priority values. The
initial priority values are 0. Since the priority values are equal, the priority order is
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when received (ok?, (z;, d;, priority)) do — (i)
add (z;, dj, priority) to local_view;
check_local_view;

end do;

procedure check_local_view
when local_view and current_value are not consistent do
if no value in D; is consistent with local_view
then resolve a new nogood using hyper-resolution rule;
when an empty nogood is found do
broadcast to other processes that there is no solution,
terminate this algorithm; end do;
when a new nogood is found do — (ii)
send the nogood to the processes in the nogood;
current_priority <— 1 + Pmaz,
where pmqe is the maximal priority value of neighbors;
select_best_value; end do;
else select_best_value; end if; end do;

procedure select_best_value
select d € D; where local_view and d are consistent, and d minimizes
the number of constraint violations with lower priority processes; — (iii)
current_value < d;
send (ok?, (zi, d, current_priority)) to neighbors; end do;

Algorithm 4.2 Procedures for receiving messages (asynchronous weak-
commitment search).

x1 (0|0 10 10 O 1o
x2 (0) O] O O] O o] O O
x3 (0] _{O VIl 10 @ O
x4 (0) o @ O (1) O (1) o

Figure 4.8 Example of an algorithm execution (asynchronous weak-commitment
search).
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determined by the alphabetical order of the identifiers. Therefore, only the value of
x4 is not consistent with its local_view. Since there is no consistent value, x4 sends
nogood messages and increments its priority value. In this case, the value minimizing
the number of constraint violations is 3, since it conflicts with z3 only. Therefore,
x4 selects 3 and sends ok? messages to the other processes (Figure 4.8 (b)). Then,
x3 tries to change its value. Since there is no consistent value, x3 sends nogood
messages, and increments its priority value. In this case, the value that minimizes
the number of constraint violations is 1 or 2. In this example, z3 selects 1 and
sends ok? messages to the other processes (Figure 4.8 (c)). After that, 1 changes
its value to 2, and a solution is obtained (Figure 4.8 (d)).

In the distributed 4-queens problem, there exists no solution when z;’s value is
1. We can see that the bad decision of z; (assigning its value to 1) can be revised
without an exhaustive search in the asynchronous weak-commitment search.

The completeness of the algorithm is guaranteed. The outline of the proof is as
follows. The priority values are changed if and only if a new nogood is found.
Since the number of possible nogoods is finite, the priority values cannot be
changed infinitely. Therefore, after a certain time point, the priority values will be
stable. If the priority values are stable, the asynchronous weak-commitment search
algorithm is basically identical to the asynchronous backtracking algorithm. Since
the asynchronous backtracking is guaranteed to be complete, the asynchronous
weak-commitment search algorithm is also complete.

However, the completeness of the algorithm is guaranteed by the fact that the
processes record all nogoods found so far. Handling a large number of nogoods is
time/space consuming. We can restrict the number of recorded nogoods, i.e., each
process records only a fixed number of the most recently found nogoods. In this
case, however, the theoretical completeness cannot be guaranteed (the algorithm
may fall into an infinite processing loop in which processes repeatedly find identical
nogoods). Yet, when the number of recorded nogoods is reasonably large, such an
infinite processing loop rarely occurs. Actually, when solving large-scale problems,
the theoretical completeness has only theoretical importance.

4.3 Path-Finding Problem
4.3.1 Definition of a Path-Finding Problem

A path-finding problem consists of the following components: a set of nodes N, each
representing a state, and a set of directed links L, each representing an operator
available to a problem solving agent. We assume that there exists a unique node s
called the start node, representing the initial state. Also, there exists a set of nodes
G, each of which represents a goal state. For each link, the weight of the link is
defined, which represents the cost of applying the operator. We call the weight of
the link between two nodes the distance between the nodes. We call the nodes that
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Figure 4.9 Example of a path-finding problem (maze).
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Figure 4.10 Planning for multiple robot hands.

have directed links from node i neighbors of node i.

The 8-puzzle problem can be formalized as a path-finding problem by repre-
senting possible arrangements of tiles as nodes, and allowed moves as links. The
arrangements that can be reached by sliding one tile are the neighbors of the orig-
inal arrangement. In this problem, the weights of all links are 1, and for each link,
there exists a link in the opposite direction.

Another example of a path-finding problem is a maze in a grid state space
(Figure 4.9). There exists a grid state-space with obstacles. We allow moves along
the horizontal and vertical dimensions, but not diagonal motions. The initial state
is at the upper-left corner and the goal state is at the bottom-right corner.

Then, how can the path-finding problem formalization be related to DAI? As-
sume that multiple robots are exploring an unknown environment for finding a
certain location. Such a problem can be formalized as a path-finding problem. Fur-
thermore, the planning problem of multiple robot hands shown in Figure 4.10 can
be represented as a path-finding problem.

In the following, we first introduce asynchronous dynamic programming as the
basis of other algorithms. Then, we present the Learning Real-time A* algorithm,
the Real-time A* algorithm, the Moving Target Search algorithm, Real-time Bidi-
rectional Search algorithms, and real-time multiagent search algorithms, as special
cases of asynchronous dynamic programming.
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4.3.2 Asynchronous Dynamic Programming

In a path-finding problem, the principle of optimality holds. In short, the principle
of optimality states that a path is optimal if and only if every segment of it is
optimal. For example, if there exists an optimal (shortest) path from the start node
to a goal node, and there exists an intermediate node z on the path, the segment
from the start node to node x is actually the optimal path from the start node to
node z. Similarly, the segment from node z to the goal state is also the optimal
path from node x to the goal state.

Let us represent the shortest distance from node i to goal nodes as h*(i). {From
the principle of optimality, the shortest distance via a neighboring node j is given
by f*(j) = k(i,7) + h*(j), where k(i, j) is the cost of the link between i, j. If node i
is not a goal node, the path to a goal node must visit one of the neighboring nodes.
Therefore, h*(i) = min; f*(j) holds.

If h* is given for each node, the optimal path can be obtained by repeating the
following procedure.

= For each neighboring node j of the current node i, compute f*(j) = k(i,j) +
h*(j). Then, move to the j that gives min; f*(j).

Asynchronous dynamic programming [4] computes h* by repeating the local com-
putations of each node.
Let us assume the following situation.

®  For each node i, there exists a process corresponding to .

= Each process records h(i), which is the estimated value of h*(i). The initial value
of h(i) is arbitrary (e.g., 0o, 0) except for goal nodes.

= For each goal node g, h(g) is 0.

®  Each process can refer to h values of neighboring nodes (via shared memory or
message passing)

In this situation, each process updates h(i) by the following procedure. The
execution order of the processes is arbitrary.

= For each neighboring node j, compute f(j) = k(i,j) + h(j), where h(j) is the
current estimated distance from j to a goal node, and k(i, j) is the cost of the
link from ¢ to j. Then, update h(i) as follows: h(i) < min; f(j).

We show an example of an algorithm execution in Figure 4.11. Assume that the
initial value of h is infinity except for the goal node (Figure 4.11 (i)). Then, h
values are changed at the nodes adjoining the goal node (Figure 4.11 (ii)). It must
be noted that these values do not have to be the true values. For example, though
the estimated cost from node d is currently 3, there exists a path from node d to
the goal node via node ¢, and the cost of the path is 2.

However, h values are further changed at the nodes that can be reached to the
goal node (Figure 4.11 (iii)). Now, the h value of d is equal to the true value. We
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Figure 4.11 Example of an algorithm execution (asynchronous dynamic program-
ming).

can see that the h values converge to the true values from the nodes that are close
to the goal node. By repeating the local computations, it is proved that for each
node i, h(i) will eventually converge to the true value h*(i) if the costs of all links
are positive.

In reality, we cannot use asynchronous dynamic programming for a reasonably
large path-finding problem. In a path-finding problem, the number of nodes can be
huge, and we cannot afford to have processes for all nodes. However, asynchronous
dynamic programming can be considered a foundation for the other algorithms
introduced in this section. In these algorithms, instead of allocating processes for all
nodes, some kind of control is introduced for enabling the execution by a reasonable
number of processes (or agents).

4.3.3 Learning Real-Time A¥*

When only one agent is solving a path-finding problem, it is not always possible
to perform local computations for all nodes. For example, autonomous robots may
not have enough time for planning and should interleave planning and execution.
Therefore, the agent must selectively execute the computations for certain nodes.
Given this requirement, which node should the agent choose? One intuitively
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natural way is to choose the current node where the agent is located. It is easily
to imagine that the sensing area of an autonomous robot is always limited. First,
the agent updates the h value of the current node, and then moves to the best
neighboring node. This procedure is repeated until the agent reaches a goal state.
This method is called the Learning Real-time A* (LRTA*) algorithm [19].

More precisely, in the LRTA* algorithm, each agent repeats the following proce-
dure (we assume that the current position of the agent is node 7). As with asyn-
chronous dynamic programming, the agent records the estimated distance h(i) for
each node.

1. Lookahead:
Calculate f(j) = k(i,j) + h(j) for each neighbor j of the current node 4, where
h(j) is the current estimate of the shortest distance from j to goal nodes, and
k(i, ) is the link cost from 7 to j.

2. Update:
Update the estimate of node i as follows.
h(i) <= min f(j)
J
3. Action selection:

Move to the neighbor j that has the minimum f(j) value. Ties are broken
randomly.

One characteristic of this algorithm is that the agent determines the next action
in a constant time, and executes the action. Therefore, this algorithm is called an
on-line, real-time search algorithm.

In the LRTA*, the initial value of h must be optimistic, i.e., it must never
overestimate the true value. Namely, the condition h(i) < h*(7) must be satisfied. If
the initial values satisfy this condition, h(i) will not be greater than the true value
h*(i) by updating.

We call a function that gives the initial values of h a heuristic function. For
example, in the 8-puzzle, we can use the number of mismatched tiles, or the sum
of the Manhattan distances (the sum of the horizontal and vertical distances) of
the mismatched tiles, for the heuristic function (the latter is more accurate). In
the maze problem, we can use the Manhattan distance to the goal as a heuristic
function.

A heuristic function is called admissible if it never overestimates. The above
examples satisfy this condition. If we cannot find any good heuristic function, we
can satisfy this condition by simply setting all estimates to 0.

In asynchronous dynamic programming, the initial values are arbitrary and can
be infinity. What makes this difference? In asynchronous dynamic programming,
it is assumed that the updating procedures are performed in all nodes. Therefore,
the h value of a node eventually converges to the true value, regardless of its initial
value. On the other hand, in LRTA*, the updating procedures are performed only
for the nodes that the agent actually visits. Therefore, if the initial value of node i
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is larger than the true value, it is possible that the agent never visits node i; thus,
h(i) will not be revised.
The following characteristic is known [19].

= In a finite number of nodes with positive link costs, in which there exists a path
from every node to a goal node, and starting with non-negative admissible initial
estimates, LRTA* is complete, i.e., it will eventually reach a goal node.

Furthermore, since LRTA* never overestimates, it learns the optimal solutions
through repeated trials, i.e., if the initial estimates are admissible, then over
repeated problem solving trials, the values learned by LRTA* will eventually
converge to their actual distances along every optimal path to the goal node.

A sketch of the proof for completeness is given in the following. Let h*(i) be the
cost of the shortest path between state ¢ and the goal state, and let h(:) be the
heuristic value of 7. First of all, for each state i, h(i) < h*(i) always holds, since this
condition is true in the initial situation where all h values are admissible, meaning
that they never overestimate the actual cost, and this condition will not be violated
by updating. Define the heuristic error at a given point of the algorithm as the sum
of h*(i) — h(i) over all states i. Define a positive quantity called heuristic disparity,
as the sum of the heuristic error and the heuristic value h(i) of the current state i
of the problem solver. It is easy to show that in any move of the problem solver,
this quantity decreases. Since it cannot be negative, and if it ever reaches zero the
problem is solved, the algorithm must eventually terminate successfully. This proof
can be easily extended to cover the case where the goal is moving as well. See [11]
for more details.

Now, the convergence of LRTA* is proven as follows. Define the excess cost at
each trial as the difference between the cost of actual moves of the problem solver
and the cost of moves along the shortest path. It can be shown that the sum of the
excess costs over repeated trials never exceeds the initial heuristic error. Therefore,
the problem solver eventually moves along the shortest path. It is said that h(7)
is correct if h(i) = h*(7). If the problem solver on the shortest path moves from
state i to the neighboring state j and h(j) is correct, h(i) will be correct after
updating. Since the h values of goal states are always correct, and the problem
solver eventually moves only along the shortest path, h(i) will eventually converge
to the true value h*(i). The details are given in [33].

4.3.4 Real-Time A¥*

Real-time A* (RTA*) updates the value of h(7) in a different way from LRTA*. In
the second step of RTA*, instead of setting h(i) to the smallest value of f(j) for all
neighbors j, the second smallest value is assigned to h(j). Thus, RTA* learns more
efficiently than LRTA*, but can overestimate heuristic costs. The RTA* algorithm is
shown below. Note that secondmin represents the function that returns the second
smallest value.
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1. Lookahead:
Calculate f(j) = k(i, j) + h(j) for each neighbor j of the current state 7, where
h(j) is the current lower bound of the actual cost from j to the goal state, and
k(i,j) is the edge cost from i to j.

2. Consistency maintenance:
Update the lower bound of state i as follows.

h(i) < secondmin; f(j)

3. Action selection:
Move to the neighbor j that has the minimum f(j) value. Ties are broken
randomly.

Similar to LRTA*, the following characteristic is known [19].

= In a finite problem space with positive edge costs, in which there exists a path
from every state to the goal, and starting with non-negative admissible initial
heuristic values, RTA* is complete in the sense that it will eventually reach the
goal.

Since the second smallest values are always maintained, RTA* can make locally
optimal decisions in a tree problem space, i.e., each move made by RTA* is along
a path whose estimated cost toward the goal is minimum based on the already-
obtained information. However, this result cannot be extended to cover general
graphs with cycles.

4.3.5 Moving Target Search

Heuristic search algorithms assume that the goal state is fixed and does not change
during the course of the search. For example, in the problem of a robot navigating
from its current location to a desired goal location, it is assumed that the goal
location remains stationary. In this subsection, we relax this assumption, and allow
the goal to change during the search. In the robot example, instead of moving to
a particular fixed location, the robot’s task may be to reach another robot which
is in fact moving as well. The target robot may cooperatively try to reach the
problem solving robot, actively avoid the problem solving robot, or independently
move around. There is no assumption that the target robot will eventually stop,
but the goal is achieved when the position of the problem solving robot and the
position of the target robot coincide. In order to guarantee success in this task, the
problem solver must be able to move faster than the target. Otherwise, the target
could evade the problem solver indefinitely, even in a finite problem space, merely
by avoiding being trapped in a dead-end path.

We now present the Moving Target Search (MTS) algorithm, which is a gen-
eralization of LRTA* to the case where the target can move. MTS must acquire
heuristic information for each target location. Thus, MTS maintains a matrix of
heuristic values, representing the function h(z,y) for all pairs of states x and y.
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Conceptually, all heuristic values are read from this matrix, which is initialized to
the values returned by the static evaluation function. Over the course of the search,
these heuristic values are updated to improve their accuracy. In practice, however,
we only store those values that differ from their static values. Thus, even though
the complete matrix may be very large, it is typically quite sparse.

There are two different events that occur in the algorithm: a move of the problem
solver, and a move of the target, each of which may be accompanied by the updating
of a heuristic value. We assume that the problem solver and the target move
alternately, and can each traverse at most one edge in a single move. The problem
solver has no control over the movements of the target, and no knowledge to allow it
to predict, even probabilistically, the motion of the target. The task is accomplished
when the problem solver and the target occupy the same node. In the description
below, z; and z; are the current and neighboring positions of the problem solver,
and y; and y; are the current and neighboring positions of the target. To simplify
the following discussions, we assume that all edges in the graph have unit cost.

When the problem solver mowves:

1. Calculate h(zj,y;) for each neighbor z; of z;.

2. Update the value of h(x;,y;) as follows:

h(z,y:)
h(x;, y; max
(o) { mings (h(z,p0) +1) }

3. Move to the neighbor z; with the minimum h(z;,y;), i.e., assign the value of
x; to x;. Ties are broken randomly.
When the target moves:
1. Calculate h(z;,y;) for the target’s new position y;.

2. Update the value of h(x;,y;) as follows:

h(zi,yi) < maz { i, yi) }

h(mwy,]) -1

3. Reflect the target’s new position as the new goal of the problem solver, i.e.,
assign the value of y; to y;.

A problem solver executing MTS is guaranteed to eventually reach the target.
The following characteristic is known [11]. The proof is obtained by extending the
one for LRTA*.

= In a finite problem space with positive edge costs, in which there exists a path
from every state to the goal state, starting with non-negative admissible initial
heuristic values, and allowing motion of either a problem solver or the target
along any edge in either direction with unit cost, the problem solver executing
MTS will eventually reach the target, if the target periodically skips moves.
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Figure 4.12 Sample Tracks of MTS.

An interesting target behavior is obtained by allowing a human user to indirectly
control the motion of the target. Figure 4.12 shows the experimental setup along
with sample tracks of the target (controlled by a human user) and problem solver
(controlled by MTS) with manually placed obstacles. The initial positions of the
problem solver and the target are represented by white rectangles, while their final
positions are denoted by black rectangles. In Figure 4.12 (a), the user’s task is to
avoid the problem solver, which is executing MTS, for as long as possible, while in
Figure 4.12 (b), the user’s task is to meet the problem solver as quickly as possible.
We can observe that if one is trying to avoid a faster pursuer as long as possible,
the best strategy is not to run away, but to hide behind obstacles. The pursuer then
reaches the opposite side of obstacles, and moves back and forth in confusion.

4.3.6 Real-Time Bidirectional Search

Moving target search enables problem solvers to adapt to changing goals. This
allows us to investigate various organizations for problem solving agents. Suppose
there are two robots trying to meet in a fairly complex maze: one is starting from the
entrance and the other from the exit. Each of the robots always knows its current
location in the maze, and can communicate with the other robot; thus, each robot
always knows its goal location. Even though the robots do not have a map of the
maze, they can gather information around them through various sensors.

For further sensing, however, the robots are required to physically move (as
opposed to state expansion): planning and execution must be interleaved. In such a
situation, how should the robots behave to efficiently meet with each other? Should
they negotiate their actions, or make decisions independently? Is the two-robot
organization really superior to a single robot one?

All previous research on bidirectional search focused on offline search [29] [5].
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In RTBS, however, two problem solvers starting from the initial and goal states
physically move toward each other. As a result, unlike the offline bidirectional
search, the coordination cost is expected to be limited within some constant time.
Since the planning time is also limited, the moves of the two problem solvers may
be inefficient.

In RTBS, the following steps are repeatedly executed until the two problem
solvers meet in the problem space.

1. Control strategy:
Select a forward (Step2) or backward move (Step3).

2. Forward move:
The problem solver starting from the initial state (i.e., the forward problem
solver) moves toward the problem solver starting from the goal state.

3. Backward move:
The problem solver starting from the goal state (i.e., the backward problem
solver) moves toward the problem solver starting from the initial state.

RTBS algorithms can be classified into the following two categories depending on
the autonomy of the problem solvers. One is called centralized RTBS where the best
action is selected from among all possible moves of the two problem solvers, and the
other is called decoupled RTBS where the two problem solvers independently make
their own decisions. Let us take an n-puzzle example. The real-time unidirectional
search algorithm utilizes a single game board, and interleaves both planning and
execution; it evaluates all possible actions at a current puzzle state and physically
performs the best action (slides one of the movable tiles). On the other hand, the
RTBS algorithm utilizes two game boards. At the beginning, one board indicates
the initial state and the other indicates the goal state. What is pursued in this case
is to equalize the two puzzle states. Centralized RTBS behaves as if one person
operates both game boards, while decoupled RTBS behaves as if each of two people
operates his/her own game board independently.

In centralized RTBS, the control strategy selects the best action from among all
of the possible forward and backward moves to minimize the estimated distance
to the goal state. Two centralized RTBS algorithms can be implemented, which
are based on LRTA* and RTA*, respectively. In decoupled RTBS, the control
strategy merely selects the forward or backward problem solver alternately. As
a result, each problem solver independently makes decisions based on its own
heuristic information. MTS can be used for both forward and backward moves
for implementing decoupled RTBS.

The evaluation results show that, in clear situations, (i.e., heuristic functions
return accurate values), decoupled RTBS performs better than centralized RTBS,
while in uncertain situations (i.e., heuristic functions return inaccurate values),
the latter becomes more efficient. Surprisingly enough, compared to real-time
unidirectional search, RTBS dramatically reduces the number of moves for 15- and
24-puzzles, and even solves larger games such as 35- 48- and 63- puzzles. On the
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other hand, it increases the number of moves for randomly generated mazes: the
number of moves for centralized RTBS is around 1/2 in 15-puzzles and 1/6 in 24-
puzzles that for real-time unidirectional search; In mazes, however, as the number
of obstacles increases, the number of moves for RTBS is roughly double that for
unidirectional search [12].

Why is RTBS efficient for n-puzzles but not for mazes? The key to understanding
the real-time bidirectional search performance is to view that RTBS algorithms
solve a totally different problem from unidirectional search, i.e., the difference
between real-time unidirectional search and bidirectional search is not the number
of problem solvers, but their problem spaces. Let x and y be the locations of two
problem solvers. We call a pair of locations (z,y) a p-state, and the problem space
consisting of p-states a combined problem space. When the number of states in
the original problem space is n, the number of p-states in the combined problem
space becomes n?. Let i and g be the initial and goal states; then (i,g) becomes
the initial p-state in the combined problem space. The goal p-state requires both
problem solvers to share the same location. Thus, the goal p-state in the combined
problem space is not unique, i.e., when there are n locations, there are n goal p-
states. Each state transition in the combined problem space corresponds to a move
by one of the problem solvers. Thus, the branching factor in the combined problem
space is the sum of the branching factors of the two problem solvers.

Centralized RTBS can be naturally explained by using a combined problem space.
In decoupled RTBS, two problem solvers independently make their own decisions
and alternately move toward the other problem solver. We can view, however, that
even in decoupled RTBS, the two problem solvers move in a combined problem
space. Each problem solver selects the best action from possible moves, but does
not examine the moves of the other problem solver. Thus, the selected action might
not be the best among the possible moves of the two problem solvers.

The performance of real-time search is sensitive to the topography of the problem
space, especially to heuristic depressions, i.e., a set of connected states with heuristic
values less than or equal to those of the set of immediate and completely surrounding
states. This is because, in real-time search, erroneous decisions seriously affect the
consequent problem solving behavior. Heuristic depressions in the original problem
space have been observed to become large and shallow in the combined problem
space. If the original heuristic depressions are deep, they become large and that
makes the problem harder to solve. If the original depressions are shallow, they
become very shallow and this makes the problem easier to solve. Based on the above
observation, we now have a better understanding of real-time bidirectional search:
in n-puzzles, where heuristic depressions are shallow, the performance increases
significantly, while in mazes, where deep heuristic depressions exist, the performance
seriously decreases.

Let us revisit the example at the beginning of this section. The two robots first
make decisions independently to move toward each other. However, this method
hardly solves the problem. To overcome this inefficiency, the robots then introduce
centralized decision making to choose the appropriate robot to move next. They are
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going to believe that two is better than one, because a two-robot organization has
more freedom for selecting actions; better actions can be selected through sufficient
coordination. However, the result appears miserable. The robots are not aware of
the changes that have occurred in their problem space.

4.3.7 Real-Time Multiagent Search

Even if the number of agents is two, RTBS is not the only way for organizing
problem solvers. Another possible way is to have both problem solvers start from
the initial state and move toward the goal state. In the latter case, it is natural
to adopt the original problem space. This means that the selection of the problem
solving organization is the selection of the problem space, which determines the
baseline of the organizational efficiency; once a difficult problem space is selected,
the local coordination among the problem solvers hardly overcomes the deficit.

If there exist multiple agents, how can these agents cooperatively solve a problem?
Again, the key issue is to select an appropriate organization for the agents. Since
the number of possible organizations is quite large, we start with the most simple
organization: the multiple agents share the same problem space with a single fixed
goal. Each agent executes the LRTA* algorithm independently, but they share the
updated h values (this algorithm is called multiagent LRTA*). In this case, when
one of the agents reaches the goal, the objective of the agents as a whole is satisfied.
How efficient is this particular organization? Two different effects are observed as
follows:

1. Effects of sharing experiences among agents:
As the execution order of the local computations of processes is arbitrary
in asynchronous dynamic programming, the LRTA* algorithm inherits this
property. Although the agents start from the same initial node, since ties are
broken randomly, the current nodes of the agents are gradually dispersed even
though the agents share h values. This algorithm is complete and the h values
will eventually converge to the true values, in the same way as the LRTA*.

2. Effects of autonomous decision making;:

If there exists a critical choice in the problem, solving the problem with
multiple agents becomes a great advantage. Assume the maze problem shown
in Figure 4.13. If an agent decides to go down at the first branching point, the
problem can be solved straightforwardly. On the other hand, if the agent goes
right, it will take a very long time before the agent returns to this point.

If the problem is solved by one agent, since ties are broken randomly, the
probability that the agent makes a correct decision is 1/2, so the problem can
be solved efficiently with the probability 0.5, but it may take a very long time
with the probability of 0.5. If the problem is solved by two agents, if one of the
agents goes down, the problem can be solved efficiently. The probability that
a solution can be obtained straightforwardly becomes 3/4 (i.e., 1-1/4, where
the probability that both agents go right is 1/4). If there exist k agents, the
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Figure 4.13 Example of a critical choice.

probability that a solution can be obtained straightforwardly becomes 1—1/2F.

By solving a problem with multiple agents concurrently, we can increase both
the efficiency and robustness. For further study on problem solving organizations,
there exist several typical example problems such as Tileworld [30] and the Pursuit
Game [2]. There are several techniques to create various organizations: explicitly
break down the goal into multiple subgoals which may change during the course
of problem solving; dynamically assign multiple subgoals to multiple agents; or
assign problem solving skills by allocating relevant operators to multiple agents.
Real-time search techniques will provide a solid basis for further study on problem
solving organizations in dynamic uncertain multiagent environments.

4.4 Two-Player Games
4.4.1 Formalization of Two-Player Games

For games like chess or checkers, we can describe the sequence of possible moves
using a tree. We call such a tree a game tree. Figure 4.14 shows a part of a game tree
for tic-tac-toe (noughts and crosses). There are two players; we call the player who
plays first the MAX player, and his opponent the MIN player. We assume MAX
marks crosses (x) and MIN marks circles (). This game tree is described from the
viewpoint of MAX. We call a node that shows MAX’s turn a MAX node, and a node
for MIN’s turn a MIN node. There is a unique node called a root node, representing
the initial state of the game. If a node n' can be obtained by a single move from
a node n, we say n' is a child node of z, and n is a parent of n'. Furthermore, if a
node n' is obtained by a sequence of moves from a node n, we call n an ancestor
of n'.

If we can generate a complete game tree, we can find a winning strategy, i.e.,
a strategy that guarantees a win for MAX regardless of how MIN plays, if such
a strategy exists. However, generating a complete game tree for a reasonably
complicated game is impossible. Therefore, instead of generating a complete game
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Figure 4.14 Example of a game tree.

tree, we need to find out a good move by creating only a reasonable portion of a
game tree.

4.4.2 Minimax Procedure

In the minimax procedure, we first generate a part of the game tree, evaluate the
merit of the nodes on the search frontier using a static evaluation function, then
use these values to estimate the merit of ancestor nodes. An evaluation function
returns a value for each node, where a node favorable to MAX has a large evaluation
value, while a node favorable to MIN has a small evaluation value. Therefore,
we can assume that MAX will choose the move that leads to the node with the
maximum evaluation value, while MIN will choose the move that leads to the node
with the minimum evaluation value. By using these assumptions, we can define the
evaluation value of each node recursively as follows.

®  The evaluation value of a MAX node is equal to the maximum value of any of
its child nodes.

= The evaluation value of a MIN node is equal to the minimum value of any of its
child nodes.

By backing up the evaluation values from frontier nodes to the root node, we can
obtain the evaluation value of the root node. MAX should choose a move that gives
the maximum evaluation value.



4.4 Two-Player Games 193

MAX 1
MIN -1 MIN 1
MIN -2
o)
o o o
o o o
6-5=1 5-5=0 6-5=1 5-5=0 4-5=1 S-4=1 6-4=2
o o o
o Xo
5-6=1 6-6=0 5-6=-1 6-6=0 4-6=2

Figure 4.15 Example of evaluation values obtained by the minimax procedure.

Figure 4.15 shows the evaluation values obtained using the minimax algorithm,
where nodes are generated by a search to depth 2 (symmetries are used to reduce
the number of nodes). We use the following evaluation function for frontier nodes:
(the number of complete rows, columns, or diagonals that are still open for MAX)
— (the number of complete rows, columns, or diagonals that are still open for MIN).
In this case, MAX chooses to place a x in the center.

4.4.3 Alpha-Beta Pruning

The alpha-beta pruning method is commonly used to speed up the minimax
procedure without any loss of information. This algorithm can prune a part of a
tree that cannot influence the evaluation value of the root node. More specifically,
for each node, the following value is recorded and updated.

a value: represents the lower bound of the evaluation value of a MAX node.

(3 value: represents the upper bound of the evaluation value of a MIN node.

While visiting nodes in a game tree from the root node by a depth-first order to
a certain depth, these values are updated by the following rules.

® The « value of a MAX node is the maximum value of any of its child nodes
visited so far.
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= The g value of a MIN node is the minimum value of any of its child nodes visited
so far.

We can prune a part of the tree if one of the following conditions is satisfied.

a-cut: If the 8 value of a MIN node is smaller than or equal to the maximum «
value of its ancestor MAX nodes, we can use the current 8 value as the evaluation
value of the MIN node, and can prune a part of the search tree under the MIN
node. In other words, the MAX player never chooses a move that leads to the MIN
node, since there exists a better move for the MAX player.

f-cut: If the a value of a MAX node is larger than or equal to the minimum J3
value of its ancestor MIN nodes, we can use the current « value as the evaluation
value of the MAX node, and can prune a part of the search tree under the MAX
node. In other words, the MIN player never chooses a move that leads to the MAX
node, since there exists a better move for the MIN player.

Figure 4.16 shows examples of these pruning actions. In this figure, a square
shows a MAX node, and a circle shows a MIN node. A number placed near each
node represents an « or 3 value. Also, x shows a pruning action. A pruning action
under a MAX node represents an a-cut, and that under a MIN node represents a
[-cut.

The effect of the alpha-beta pruning depends on the order in which the child nodes
are visited. If the algorithm first examines the nodes that will likely be chosen (i.e.,
MAX nodes with large « values, and MIN nodes with small 3 values), the effect of
the pruning becomes great. One popular approach for obtaining a good ordering is
to do an iterative deepening search, and use the backed-up values from one iteration
to determine the ordering of child nodes in the next iteration.

Figure 4.16 FExample of alpha-beta pruning.
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4.5 Conclusions

In this chapter, we presented several search algorithms that will be useful for prob-
lem solving by multiple agents. For constraint satisfaction problems, we presented
the filtering algorithm, the hyper-resolution-based consistency algorithm, the asyn-
chronous backtracking algorithm, and the weak-commitment search algorithm. For
path-finding problems, we introduced asynchronous dynamic programming as the
basis for other algorithms; we then described the LRTA* algorithm, the RTA* al-
gorithm, the MTS algorithm, RTBS algorithms, and real-time multiagent search
algorithms as special cases of asynchronous dynamic programming. For two-player
games, we presented the basic minimax procedure, and alpha-beta pruning to speed
up the minimax procedure.

There are many articles on constraint satisfaction, path-finding, two-player
games, and search in general. Pearl’s book [28] is a good textbook for path-finding
and two-player games. Tsang’s textbook [35] on constraint satisfaction covers top-
ics from basic concepts to recent research results. Concise overviews of path-finding
can be found in [18, 20], and one for constraint satisfaction is in [26].

The first application problem of CSPs was a line labeling problem in vision
research. The filtering algorithm [36] was developed to solve this problem. The
notion of k-consistency was introduced by Freuder [9]. The hyper-resolution-based
consistency algorithm [6] was developed during the research of an assumption-
based truth maintenance system (ATMS). Forbus and de Kleer’s textbook [8]
covers ATMS and truth maintenance systems in general. Distributed CSPs and the
asynchronous backtracking algorithm were introduced in [39], and the asynchronous
weak-commitment search algorithm was described in [38]. An iterative improvement
search algorithm for distributed CSPs was presented in [40].

Dynamic programming and the principle of optimality were proposed by Bell-
man [3], and have been widely used in the area of combinatorial optimization and
control. Asynchronous dynamic programming [4] was initially developed for dis-
tributed /parallel processing in dynamic programming. The Learning Real-time A*
algorithm and its variant Real-time A* algorithm were presented in [19]. Barto et
al. [1] later clarified the relationship between asynchronous dynamic programming
and various learning algorithms such as the Learning Real-time A* algorithm and
Q-learning [37]. The multiagent real-time A* algorithm was proposed in [16], where
a path-finding problem is solved by multiple agents, each of which uses the Real-
time A* algorithm. Methods for improving the multiagent Real-time A* algorithm
by organizing these agents was presented in [15, 41].

Although real-time search provides an attractive framework for resource-bounded
problem solving, the behavior of the problem solver is not rational enough for au-
tonomous agents: the problem solver tends to perform superfluous actions before
attaining the goal; the problem solver cannot utilize and improve previous exper-
iments; the problem solver cannot adapt to the dynamically changing goals; and
the problem solver cannot cooperatively solve problems with other problem solvers.
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Various extensions of real-time search, including Moving Target Search and Real-
time Bidirectional Search, have been studied in recent years [31, 13, 14].

The idea of the minimax procedure using a static evaluation function was
proposed in [32]. The alpha-beta pruning method was discovered independently by
many of the early AI researchers [17]. Another approach for improving the efficiency
of the minimax procedure is to control the search procedure in a best-first fashion
[21]. Best-first minimax procedure always expands the leaf node which determines
the « value of the root node.

There are other DAI works that are concerned with search, which were not
covered in this chapter due to space limitations. Lesser [23] formalized various
aspects of cooperative problem solving as a search problem. Attempts to formalize
the negotiations among agents in real-life application problems were presented in
[7, 22, 34].

4.6 Exercises

1. [Level 1] Implement the A* and LRTA* algorithms to solve the 8-puzzle
problem. Compare the number of states expanded by each algorithm. Use the
sum of the Manhattan distance of each misplaced tile as the heuristic function.

2. [Level 1] Implement the filtering algorithm to solve graph-coloring problems.
Consider a graph structure in which the filtering algorithm can always tell
whether the problem has a solution or not without further trial-and-error
search.

3. [Level 1] Implement a game-tree search algorithm for tic-tac-toe, which in-
troduces the alpha-beta pruning method. Use the static evaluation function
described in this chapter. Increase the search depth and see how the strategy
of the MAX player changes.

4. [Level 2] Tmplement the asynchronous backtracking algorithm to solve the n-
queens problem. If you are not familiar with programming using multiprocess
and inter-process communications, you may use shared memories, and assume
that agents act sequentially in a round-robin order.

5. [Level 2] Implement the asynchronous weak-commitment algorithm to solve
the n-queens problem. Increase n and see how large you can make it to solve
the problem in a reasonable amount of time.

6. [Level 2] In Moving Target Search, it has been observed that if one is trying to
avoid a faster pursuer as long as possible, the best strategy is not to run away,
but to hide behind obstacles. Explain how this phenomenon comes about.

7. [Level 3] When solving mazes by two problem solvers, there are at least two
possible organizations: One way is to have the two problem solvers start from
the initial and the goal states and meet in the middle of the problem space;
Another way is to have both problem solvers start from the initial state and
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move toward the goal state. Make a small maze and compare the efficiency of
the two organizations. Try to create original organizations that differ from the
given two organizations.

[Level 3] In the multiagent LRTA* algorithm, each agent chooses its action
independently without considering the actions nor the current states of other
agents. Improve the efficiency of the multiagent LRTA* algorithm by intro-
ducing coordination among the agents, i.e., agents coordinate their actions by
considering the actions and current states of other agents.

[Level 4] When a real-life problem is formalized as a CSP, it is often the
case that the problem is over-constrained. In such a case, we hope that the
algorithm will find an incomplete solution that satisfies most of the important
constraints, while violating some less important constraints [10]. One way
for representing the subjective importance of constraints is to introduce a
hierarchy of constraints, i.e., constraints are divided into several groups, such
as C1,C5,...,C. If all constraints cannot be satisfied, we will give up on
satisfying the constraints in Cj. If there exists no solution that satisfies all
constraints in Cp,Cy,...,Cr_1, we will further give up on satisfying the
constraints in C_1, and so on. Develop an asynchronous search algorithm that
can find the best incomplete solution of a distributed CSP when a hierarchy
of constraints is defined.

[Level 4] The formalization of a two-player game can be generalized to an
n-player game [25], i.e., there exist n players, each of which takes turns
alternately. Rewrite the minimax procedure so that it works for n-player games.
Consider what kinds of pruning techniques can be applied.
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5 Distributed Rational Decision Making

Tuomas W. Sandholm

5.1 Introduction

Automated negotiation systems with self-interested agents are becoming increas-
ingly important. One reason for this is the technology push of a growing standardized
communication infrastructure—Internet, WWW, NII, EDI, KQML, FIPA, Concor-
dia, Voyager, Odyssey, Telescript, Java, etc.—over which separately designed agents
belonging to different organizations can interact in an open environment in real-
time and safely carry out transactions. The second reason is strong application pull
for computer support for negotiation at the operative decision making level. For
example, we are witnessing the advent of small transaction electronic commerce on
the Internet for purchasing goods, information, and communication bandwidth [31].
There is also an industrial trend toward virtual enterprises: dynamic alliances of
small, agile enterprises which together can take advantage of economies of scale
when available (e.g., respond to more diverse orders than individual agents can),
but do not suffer from diseconomies of scale.

Multiagent technology facilitates such negotiation at the operative decision mak-
ing level. This automation can save labor time of human negotiators, but in addi-
tion, other savings are possible because computational agents can be more effective
at finding beneficial short-term contracts than humans are in strategically and com-
binatorially complex settings.

This chapter discusses multiagent negotiation in situations where agents may
have different goals, and each agent is trying to maximize its own good without
concern for the global good. Such self-interest naturally prevails in negotiations
among independent businesses or individuals. In building computer support for
negotiation in such settings, the issue of self-interest has to be dealt with. In
cooperative distributed problem solving [12, 9], the system designer imposes an
interaction pmtocol1 and a strategy (a mapping from state history to action; a

1. Here a protocol does not mean a low level communication protocol, but a negotiation
protocol which determines the possible actions that agents can take at different points
of the interaction. The sealed-bid first-price auction is an example protocol where each
bidder is free to submit one bid for the item, which is awarded to the highest bidder at
the price of his bid.
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way to use the protocol) for each agent. The main question is what social outcomes
follow given the protocol and assuming that the agents use the imposed strategies.
On the other hand, in multiagent systems [67, 63, 61, 56, 34], the agents are
provided with an interaction protocol, but each agent will choose its own strategy.
A self-interested agent will choose the best strategy for itself, which cannot be
explicitly imposed from outside. Therefore, the protocols need to be designed using
a moncooperative, strategic perspective: the main question is what social outcomes
follow given a protocol which guarantees that each agent’s desired local strategy
is best for that agent—and thus the agent will use it. This approach is required
in designing robust non-manipulable multiagent systems where the agents may be
constructed by separate designers and/or may represent different real world parties.

The rest of this chapter discusses protocols for voting, auctions, bargaining, mar-
kets, contracting, and coalition formation. However, first some central evaluation
criteria for protocols are presented.

5.2 Evaluation

Criteria

Negotiation protocols—i.e. mechanisms—can be evaluated according to many types
of criteria, as listed below. The choice of protocol will then depend on what
properties the protocol designer wants the overall system to have.

5.2.1 Social Welfare

Social welfare is the sum of all agents’ payoffs or utilities in a given solution. It
measures the global good of the agents. It can be used as a criterion for comparing
alternative mechanisms by comparing the solutions that the mechanisms lead to.
When measured in terms of utilities, the criterion is somewhat arbitrary, because
it requires interagent utility comparisons, and really each agent’s utility function
can only be specified up to positive affine transformations [39].

5.2.2 Pareto Efficiency

Pareto efficiency is another solution evaluation criterion that takes a global perspec-
tive. Again, alternative mechanisms can be evaluated according to Pareto efficiency
by comparing the solutions that the mechanisms lead to. A solution z is Pareto
efficient—i.e. Pareto optimal—if there is no other solution z' such that at least
one agent is better off in z' than in x and no agent is worse off in z' than in z.
So, Pareto efficiency measures global good, and it does not require questionable
interagent utility comparisons.

Social welfare maximizing solutions are a subset of Pareto efficient ones. Once
the sum of the payoffs is maximized, an agent’s payoff can increase only if another
agent’s payoff decreases.
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5.2.3 Individual Rationality

Participation in a negotiation is individually rational to an agent if the agent’s
payoff in the negotiated solution is no less than the payoff that the agent would
get by not participating in the negotiation. A mechanism is individually rational
if participation is individually rational for all agents. Only individually rational
mechanisms are viable: if the negotiated solution is not individually rational for
some agent, that self-interested agent would not participate in that negotiation.

5.2.4 Stability

Among self-interested agents, mechanism should be designed to be stable (non-
manipulable), i.e. they should motivate each agent to behave in the desired manner.
This is because if a self-interested agent is better off behaving in some other manner
than desired, it will do so.

Sometimes it is possible to design mechanisms with dominant strategies. This
means that an agent is best off by using a specific strategy no matter what strategies
the other agents use.

However, often an agent’s best strategy depends on what strategies other agents
choose. In such settings, dominant strategies do not exist, and other stability criteria
are needed. The most basic one is the Nash equilibrium [48, 39, 17, 35]. The strategy
profile S% = (S}, S5, ...,S|*A|> among agents A is in Nash equilibrium if for each
agent ¢, S} is the agent’s best strategy—i.e. best response—given that the other
agents choose strategies (S7, S5, ..., ;‘_1,5;‘+1,...,S"‘A‘). In other words, in Nash
equilibrium, each agent chooses a strategy that is a best response to the other
agents’ strategies.

There are two main problems in applying Nash equilibrium. First, in some games
no Nash equilibrium exists [39, 17, 35]. Second, some games have multiple Nash
equilibria, and it is not obvious which one the agents should actually play [35].

There are also limitations regarding what the Nash equilibrium guarantees even
when it exists and is unique.

First, in sequential games it only guarantees stability in the beginning of the
game. At a later stage the strategies need not be in equilibrium anymore. A refined
solution concept called the subgame perfect Nash equilibrium is defined to be a Nash
equilibrium that remains a Nash equilibrium in every subgame (even subgames that
are not along the actual path of play and will thus never be reached) [71, 39, 17, 35].
This solution concept also suffers from existence and uniqueness problems.

Second, the Nash equilibrium is often too weak because subgroups of agents can
deviate in a coordinated manner. Some refinements of the Nash equilibrium solution
concept, guarantee stability against such collusive deviations as well. This will be
discussed in Section 5.8.
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Sometimes efficiency goals and stability goals conflict. A simple example of this
is the Prisoner’s Dilemma game where the unique welfare maximizing and Pareto
efficient strategy profile is the one where both agents cooperate, Table 5.1. On the
other hand, the only dominant strategy equilibrium and Nash equilibrium is the
one where both agents defect.

column player

cooperate | defect

row cooperate 3,3 0,5
player | defect 5,0 1,1

Table 5.1 Prisoner’s Dilemma game. The row player’s payoff is listed first.

5.2.5 Computational Efficiency

Clearly, mechanisms should be designed so that when agents use them, as little
computation is needed as possible. Classically, mechanisms have been designed so
that they lead to domain solutions that satisfy some of the above evaluation criteria.
Of these mechanisms, the ones with the lowest computational overhead have been
preferred. However, a more advanced approach would be to explicitly trade off the
cost of the process against the solution quality [62].

5.2.6 Distribution and Communication Efficiency

All else being equal, distributed protocols should be preferred in order to avoid
a single point of failure and a performance bottleneck—among other reasons.
Simultaneously one would like to minimize the amount of communication that is
required to converge on a desirable global solution. In some cases these two goals
conflict.

The rest of this chapter discusses different interaction protocols using the eval-
uation criteria presented so far. These mechanisms include voting, auctions, bar-
gaining, markets, contracting, and coalition formation.

5.3 Voting

In a woting (social choice) setting, all agents give input to a mechanism, and the
outcome that the mechanism chooses based on these inputs is a solution for all of
the agents. In most settings, this outcome is enforced so that all agents have to
abide to the solution prescribed by the mechanisms.
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5.3.1 Truthful Voters

The classic goal has been to derive a social choice rule that ranks feasible social
outcomes based on individuals’ rankings of those outcomes. Let the set of agents
be A, and let O be the set of feasible outcomes for the society. Furthermore, let
each agent i € A have an asymmetric and transitive strict preference relation =; on
O. A social choice rule takes as input the agents’ preference relations (>1, ..., >4j)
and produces as output the social preferences denoted by a relation =*. Intuitively,
the following properties of a social choice rule seem desirable:

® A social preference ordering =* should exist for all possible inputs (individual
preferences).

= »* gshould be defined for every pair 0,0’ € O.
= >* should be asymmetric and transitive over O.
®  The outcome should be Pareto efficient: if Vi € A,0 =; o', then o =* 0'.

= The scheme should be independent of irrelevant alternatives. Specifically, if =
and > are arrays of consumer rankings that satisfy o =; o' iff o >} o' for all i,
then the social ranking of o and o’ is the same in these two situations.

= No agent should be a dictator in the sense that o =; o' implies o =* o' for all
preferences of the other agents.

Unfortunately it is not possible to satisfy these desiderata:

Theorem 5.1 Arrow’s impossibility theorem
No social choice rule satisfies all of these six conditions [4, 35].

So, to design social choice rules, the desiderata have to be relaxed. Commonly the
first property is relaxed in the sense that the domain (combinations of individual
preferences) on which the rule works is restricted. This will be discussed later in
conjunction with insincere voting.

The third desideratum can also be relaxed. This is done e.g. in the plurality
protocol which is a majority voting protocol where all alternatives are compared
simultaneously, and the one with the highest number of votes wins. Introducing an
irrelevant alternative can split the majority; some in favor of the old most favored
alternative, and some in favor of the newly introduced alternative. This may cause
both the old favorite, and the newly introduced irrelevant alternative to drop below
one of the originally less preferred alternatives, which then would become the social
choice.

In a binary protocol, the alternatives are voted on pairwise, and the winner
stays to challenge further alternatives while the loser is eliminated. As in plurality
protocols, also in binary protocols the introduction of irrelevant alternatives often
changes the outcome. Furthermore, in binary protocols, the agenda—i.e. order
of the pairings—can totally change the socially chosen outcome. For example,
Figure 5.1 shows four different agendas which all lead to a different outcome under
the given preferences of the agents. Interestingly, in the last agenda, alternative



Figure 5.1 Four different agendas for a binary protocol with four alternatives: a,
b, ¢, and d.

d wins although every agent prefers ¢ over d. In other words, the social choice is
Pareto dominated in this case.

If the number of alternative outcomes is large, pairwise voting may be slow, and
an alternative called the Borda protocol is often used. The Borda count assigns
an alternative |O| points whenever it is highest in some agent’s preference list,
|O] &1 whenever it is second and so on. These counts are then summed across
voters. The alternative with the highest count becomes the social choice. The
Borda protocol can also lead to paradoxical results, for example via irrelevant
alternatives. Table 5.2 shows an example (from [49]) where removing the lowest
ranked (irrelevant) alternative d from the set of possible outcomes leads to the
worst of the remaining alternatives turning best and the best turning worst.

Agent Preferences

1 a-b»cwd

2 b=c»d>a

3 c>d>=a>b

4 a>b>c>d

5 b-c>d=a

6 c=d»=a=b

7 a>b>c>d

Borda count ¢ wins with 20, b has 19, a has 18, d loses with 13
Borda count

with d removed a wins with 15, b has 14, ¢ loses with 13

Table 5.2 Winner turns loser and loser turns winner paradox in the Borda
protocol.
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5.3.2 Strategic (Insincere) Voters

So far it was assumed that in executing the social choice method, all agents’
preferences are known. In reality this is seldom the case. Instead, agents usually
have to reveal, i.e. declare, their preferences. Assuming knowledge of the preferences
is equivalent to assuming that the agents reveal their preferences truthfully. But if
an agent can benefit from insincerely declaring his preferences, he will do so. This
further complicates the design of social choice mechanisms.

An area of game theory called mechanism design explores such interaction
mechanisms among rational agents. The goal is to generate protocols such that
when agents use them according to some stability solution concept—e.g. dominant
strategy equilibrium [45, 17, 35], Nash equilibrium or its refinements [40, 52, 17, 35],
or some other type of equilibrium [46, 17, 35]—then desirable social outcomes follow.
The strategies are not externally imposed on the agents, but instead each agent uses
the strategy that is best for itself.

Let each agent ¢ € A have some type 6; € ©; which totally characterizes his
preferences (which are affected by his possible private information). Now, a social
choice function f : 8 — O chooses a social outcome given the agents’ types. With
insincere agents this is hard to implement because one needs to somehow motivate
the agents to reveal the types. A protocol (i.e. rules of the game) is said to implement
a particular social choice function if the protocol has an equilibrium—which may
involve insincere play by the agents—whose outcome is the same as the outcome of
the social choice function would be if the agents revealed their types truthfully. The
following positive result conceptually allows one to restrict the search for desirable
protocols to ones where revelation occurs truthfully in a single step.

Theorem 5.2 Revelation principle

Suppose some protocol (which may include multiple steps) implements social
choice function f(-) in Nash (or dominant strategy) equilibrium (where the agents’
strategies are not necessarily truthful). Then f(-) is implementable in Nash (or
dominant strategy, respectively) equilibrium via a single-step protocol where the
agents reveal their entire types truthfully [39, 35, 45, 40, 52].

The proof is based on changing the protocol so that it will construct the best (i.e.
according to the original equilibrium) strategic revelation on behalf of each agent
(this revelation depends on the agent’s truthful preferences), and then simulate the
old protocol as if the agents had constructed these insincere revelations themselves.
Under this new protocol, each agent is motivated to reveal his type truthfully in
a single step because the protocol will take care of optimally lying on the agent’s
behalf.

The idea of incorporating the strategy generation into the protocol is problematic
among computationally limited agents. In the original protocol it may have been in-
feasible or prohibitively costly for an agent to compute its best strategy. Therefore,
in a complex protocol the agents might not play the equilibrium. This may be un-
desirable because agents may play uncoordinated strategies leading to undesirable
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outcomes. On the other hand, if most equilibrium outcomes are undesirable, the
protocol designer can construct a complex protocol—where agents cannot find the
equilibrium—in the hope that a more desirable outcome will emerge. In the revised
protocol of the proof, it is assumed that the protocol can solve for the equilibrium.
However, if computation is costly, who pays for the computation that is required
to solve for equilibrium? For some protocols, solving for equilibrium might be hard
or even noncomputable.

The Nash equilibrium version of Theorem 5.2 has additional weaknesses. First, it
assumes that the agents and the protocol designer have common knowledge about
the joint probabilities of the agents’ types. Second, the revised protocol may have
other Nash equilibria in addition to the truthful one: Theorem 5.2 only says that
a truthful one exists. This problem can be partially alleviated by what are called
augmented revelation mechanisms [35].

While Theorem 5.2 is positive in nature, the following negative result establishes
that in the general case, non-manipulable protocols are dictatorial:

Theorem 5.3 Gibbard-Satterthwaite impossibility theorem

Let each agent’s type #; consist of a preference order >; on O. Let there be no
restrictions on »;, i.e. each agent may rank the outcomes O in any order.? Let
|O] > 3. Now, if the social choice function f(-) is truthfully implementable in a
dominant strategy equilibrium, then f(-) is dictatorial, i.e. there is some agent i
who gets (one of) his most preferred outcomes chosen no matter what types the
others reveal [18, 70].

Circumventing the Gibbard-Satterthwaite Impossibility Theorem:
Restricted Preferences and the Groves-Clarke Tax Mechanism

The design of nonmanipulable protocols is not as impossible as it may seem in
light of Theorem 5.3. The individual preferences may happen to belong to some
restricted domain—thus invalidating the conditions of the impossibility theorem—
and it is known that there are islands in the space of agents’ preferences for which
nonmanipulable nondictatorial protocols can be constructed.

Let us go through an example. Let the outcomes be of the form o = (g, m1, ..., 7)),
where 7; is the amount of some divisible numeraire (e.g. money) that agent i re-
ceives in the outcome, and g encodes the other features of the outcome. The agents’
preferences are called quasilinear if they can be represented by utility functions of
the form u;(0) = v;(g) + ;-

For example, in voting whether to build a joint pool, say g = 1 if the pool is
built and g = 0 if not. Call each agent’s gross benefit from the pool v{"***(g), and
say that the cost P of the pool would be divided equally among the agents, i.e.
7 = <P/]A|. So, an agent’s (net) benefit is v;(g) = v!"***(g) & P/|A|.

2. Theorem 5.3 applies even if each agent’s preferences are restricted to being complete,
transitive, and strict.
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Every agent i € A reveals his valuation 9;(g) for every possible g
The social choice is g* = argmax, »_, 9i(g)
Every agent is levied a tax: tar; = Zj# 0 (g%) — Zj# 0; (arg maxg Zk# x(9))

Algorithm 5.1 The Clarke tax algorithm.

Quasilinearity of the environment would require several things. First, no agent
should care how others divide payoffs among themselves. This might be violated
e.g. if an agent wants his enemies to pay more than his friends. Second, an agent’s
979%%(g) of the pool should not depend on the amount of money that the
agent will have. This might be violated for example if rich agents have more time
to enjoy the pool because they do not have to work.

When voting whether to build the pool or not, the agents that vote for the pool
impose an externality on the others because the others have to pay as well. On
the other hand, if only the pro-pool voters would have to pay, there would be
an incentive for them to vote for no pool, and free ride the pool that might be
built anyway due to the others’ votes. The solution is to make the agents precisely
internalize this externality by imposing a tax on those agents whose vote changes
the outcome. The size of an agent’s tax is exactly how much his vote lowers the
others’ utility. Agents that do not end up changing the outcome do not pay any
tax.

valuation v

Theorem 5.4
If each agent has quasilinear preferences, then, under Algorithm 5.1, each agent’s
dominant strategy is to reveal his true preferences, i.e. v;(g) = v;(g) for all g. [11, 21]

So, in the example, if the pool is built, the utility for each agent i becomes
u;(0) =v;(1) ©P/|A| &tax;, and if not, u;(0) = v;(0).

The mechanism leads to the socially most preferred g to be chosen. Also, because
truthtelling is every agents dominant strategy, the agents need not waste effort in
counterspeculating each others’ preference declarations. Furthermore, participation
in the mechanism can only increase an agent’s utility, which makes participation
individually rational.

Unfortunately the mechanism does not maintain budget balance: too much tax
is collected. There are other truth-dominant algorithms for this problem where too
little tax is collected (negative taxes are paybacks), but none that guarantee that
the sum of the taxes is zero. The schemes where too little is collected require an
external benefactor to operate. The schemes that collect too much are not Pareto
efficient because the extra tax revenue has to be burnt. It cannot be given back
to the agents or donated to any cause that any of the agents care about. Such
redistribution would affect the agents’ utilities, and truthtelling would no longer be
dominant.

Another problem with Algorithm 5.1 is that it is not coalition proof. Some
coalition of voters might coordinate their insincere preference revelations and
achieve higher utilities. Table 5.3 presents a 3-agent example of this where the
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cost of building the pool is P = 9,000, and v;(0) = 0 for every agent. We study the
case where agents 1 and 2 collude.

No collusion Agents 1 and 2 collude
i vfm”(l) v; (1) 03 (1) g* tax; uj 03 (1) g* tax; uj
1 5,000 2,000 2, 000 1,500 500 2, 500 1000 1, 000
2 4,000 1,000 1, 000 1(build) 500 500 1, 500 1(build) 0 1, 000
3 500 —2, 500 —2,500 0 —2,500 —2,500 0 —2,500

Table 5.3 Example of collusion in the Clarke tax algorithm.

Traditionally, the Clarke tax mechanism has been used to solve a single isolated
social choice problem. In multiagent planning—e.g. in AI—this would mean voting
over all possible multiagent plans. This is is often intractable. To reduce this
complexity, Ephrati has used a variant of the method where the agents repeatedly
use the Clarke tax mechanism to do planning over one timestep of the plan at
a time [14, 15, 13]. In such multistep approaches one has to be careful that
truthtelling is still a dominant strategy. If the outcomes of the different votings
are not independent in value to every agent, there is a risk e.g. that an agent will
speculatively reveal higher than truthful valuations for some outcomes because he
anticipates future outcomes that will be synergic with those particular ones of the
currently available outcomes.

Other Ways to Circumvent the Gibbard-Satterthwaite Impossibility
Theorem

Even if the agents do not happen to have preferences that are restricted in some par-
ticular way that allows one to avoid the negative conclusion of Theorem. 5.3, there
are ways to circumvent the seemingly unavoidable tradeoff between manipulability
and dictatoriality.

For example, ex ante fairness can be achieved by choosing the dictator randomly
in the protocol. This can be done via a protocol where every agent submits a vote
into a hat, and the decisive vote is pulled out of the hat at random. Clearly, each
agent’s dominant strategy is to vote truthfully: if his vote gets chosen, he would
have been best off voting for his most preferred alternative, and if his vote is not
chosen, it does not matter what the agent voted for.

Another possible way of getting around Theorem. 5.3 is to use a protocol for
which computing an untruthful revelation—that is better than the truthful one—
is prohibitively costly computationally. One difficulty with this approach is that
to guarantee that an agent can never manipulate, manipulation would have to be
provably hard for every instance (combination of agents’ preferences), not just in
the worst case. Another difficulty is that even if it were possible to prove that
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deterministically finding a beneficial manipulation is hard, the agent can (e.g.
randomly) generate insincere revelations, and simulate the protocol (given that
the others’ strategies cannot matter in a dominant strategy equilibrium) to check
whether his guessed manipulations are beneficial.

5.4 Auctions

Within mechanism design, auctions provide a special setting which is important
and often relatively easily analyzable. Auctions also have many practical computer
science applications [60, 81, 37, 25], and several successful web sites exist for buying
and selling items using auction protocols. Unlike voting where the outcome binds all
agents, in auctions the outcome is usually a deal between two agents: the auctioneer
and one bidder. Also, in voting the protocol designer is assumed to want to enhance
the social good, while in auctions, the auctioneer wants to maximize his own profit.

Auction theory analyzes protocols and agents’ strategies in auctions. An auction
consists of an auctioneer and potential bidders. Auctions are usually discussed in
situations where the auctioneer wants to sell an item and get the highest possible
payment for it while the bidders want to acquire the item at the lowest possible
price. The discussion of this section will pertain to the classical setting, although in
a contracting setting, the auctioneer wants to subcontract out tasks at the lowest
possible price while the bidders who handle the tasks want to receive the highest
possible payment for doing so. The mechanisms for the latter setting are totally
analogous to mechanisms for the former.

5.4.1 Auction Settings

There are three qualitatively different auction settings depending on how an agent’s
value (monetary equivalent of utility) of the item is formed.

In private wvalue auctions, the value of the good depends only on the agent’s
own preferences. An example is auctioning off a cake that the winning bidder will
eat. The key is that the winning bidder will not resell the item or get utility from
showing it off to others, because in such cases the value would depend on other
agents’ valuations (a valuation is the monetary equivalent of expected utility). The
agent is often assumed to know its value for the good exactly.

On the other hand, in common value auctions, an agent’s value of an item depends
entirely on other agents’ values of it, which are identical to the agent’s by symmetry
of this criterion. For example, auctioning treasury bills fulfills this criterion. Nobody
inherently prefers having the bills, and the value of the bill comes entirely from
reselling possibilities.

In correlated value auctions, an agent’s value depends partly on its own prefer-
ences and partly on others’ values. For example, a negotiation within a contracting
setting fulfills this criterion. An agent may handle a task itself in which case the
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agent’s local concerns define the cost of handling the task. On the other hand, the
agent can recontract out the task in which case the cost depends solely on other
agents’ valuations.

The next section discusses different auction protocols. Those protocols have
different properties under the three different auction settings presented above.

5.4.2 Auction Protocols

In the English (first-price open-cry) auction, each bidder is free to raise his bid.
When no bidder is willing to raise anymore, the auction ends, and the highest
bidder wins the item at the price of his bid. An agent’s strategy is a series of bids
as a function of his private value, his prior estimates of other bidder’s valuations,
and the past bids of others. In private value English auctions, an agent’s dominant
strategy is to always bid a small amount more than the current highest bid, and
stop when his private value price is reached. In correlated value auctions the rules
are often varied to make the auctioneer increase the price at a constant rate or at
a rate he thinks appropriate. Also, sometimes open-ezit is used where a bidder has
to openly declare exiting without a re-entering possibility. This provides the other
bidders more information regarding the agent’s valuation.

In the first-price sealed-bid auction, each bidder submits one bid without knowing
the others’ bids. The highest bidder wins the item and pays the amount of his bid.
An agent’s strategy is his bid as a function of his private value and prior beliefs
of others’ valuations. In general there is no dominant strategy for bidding in this
auction. An agent’s best strategy is to bid less than his true valuation, but how much
less depends on what the others bid. The agent would want to bid the lowest amount
that still wins the auction—given that this amount does not exceed his valuation.
With common knowledge assumptions regarding the probability distributions of the
agents’ values, it is possible to determine Nash equilibrium strategies for the agents.
For example, in a private value auction where the valuation v; for each agent i is
drawn independently from a uniform distribution between 0 and o, there is a Nash
equilibrium where every agent i bids "T‘A_llvi, see [54].

In the Dutch (descending) auction, the seller continuously lowers the price
until one of the bidders takes the item at the current price. The Dutch auc-
tion is strategically equivalent to the first-price sealed-bid auction, because in
both games, an agent’s bid matters only if it is the highest, and no relevant
information is revealed during the auction process. Dutch auctions are efficient
in terms of real time because the auctioneer can decrease the price at a brisk
pace. You can observe this e.g. by participating in a Dutch auction simulation at
http://www.mcsr.olemiss.edu/ ccjimmy/auction.

In the Vickrey (second-price sealed-bid) auction, each bidder submits one bid
without knowing the others’ bids. The highest bidder wins, but at the price of the
second highest bid [80, 42]. An agent’s strategy is his bid as a function of his private
value and prior beliefs of others’ valuations.
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Theorem 5.5
A bidder’s dominant strategy in a private value Vickrey auction is to bid his true
valuation [80].3

If he bids more than his valuation, and the increment made the difference between
winning or not, he will end up with a loss if he wins. If he bids less, there is a smaller
chance of winning, but the winning price is unaffected®. Theorem 5.5 means that an
agent is best off bidding truthfully no matter what the other bidders are like: what
are their capabilities, operating environments, bidding plans, etc. This has two
desirable sides. First, the agents reveal their preferences truthfully which allows
globally efficient decisions to be made. Second, the agents need not waste effort in
counterspeculating other agents because they do not matter in making the bidding
decision.

Vickrey auctions have been widely advocated and adopted for use in computa-
tional multiagent systems. For example, versions of the Vickrey auction have been
used to allocate computation resources in operating systems [81], to allocate band-
width in computer networks [37], and to computationally control building heat-
ing [25]. On the other hand, Vickrey auctions have not been widely adopted in
auctions among humans [57, 58] even though the protocol was invented over 25
years ago [80]. Limitations of the Vickrey auction protocol—especially in compu-
tational multiagent systems—are discussed in [61].

All-pay auctions are another family of auction protocols. In such mechanisms,
each participating bidder has to pay the amount of his bid (or some other amount)
to the auctioneer. The schemes have been used in computational multiagent systems
for tool reallocation [36]. These methods are often susceptible to infinite escalations
of bids [53], and will not be discussed further here.

5.4.3 Efficiency of the Resulting Allocation
In isolated private value or common value auctions, each one of the four auction

protocols (English, Dutch, first-price sealed-bid, and Vickrey) allocates the auc-
tioned item Pareto efficiently to the bidder who values it the most.? Although all

3. If the bidders know their own values, this result does not depend on the bidders’ risk
neutrality. On the other hand, if a bidder has some uncertainty about his own valuation,
this result only holds for a risk-neutral bidder: e.g. a risk averse bidder can be better off
by bidding less than his expected valuation [61].

4. In private value auctions, the Vickrey auction is strategically equivalent to the English
auction. They will produce the same allocation at the same prices. On the other hand, in
correlated value auctions, the other agents’ bids in the English auction provide information
to the agent about his own valuation. Therefore English and Vickrey auctions are not
strategically equivalent in general, and may lead to different results.

5. This holds at least as long as the auctioneer always sells the item. On the other hand,
if the auctioneer has a reservation price, he may inefficiently end up with the item even
though the highest bidder really values the item more than the auctioneer.
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four are Pareto efficient in the allocation, the ones with dominant strategies (Vick-
rey auction and English auction) are more efficient in the sense that no effort is
wasted in counterspeculating the other bidders.

5.4.4 Revenue Equivalence and Non-Equivalence

One could imagine that the first-price auctions give higher expected revenue to
the auctioneer because in second-price auctions the auctioneer only gets the second
price. On the other hand, in first-price auctions the bidders underbid while in the
second-price auctions they bid truthfully. Now, which of these effects is stronger,
i.e. which protocol should the auctioneer choose to maximize his expected revenue?
It turns out that the two effects are exactly equally strong:

Theorem 5.6 Revenue equivalence
All of the four auction protocols produce the same expected revenue to the auc-
tioneer in private value auctions where the values are independently distributed,
and bidders are risk-neutral [80, 42, 54].

Among risk averse bidders, the Dutch and the first-price sealed-bid protocols give
higher expected revenue to the auctioneer than the Vickrey or English auction
protocols. This is because in the former two protocols, a risk averse agent can insure
himself by bidding more than what is optimal for a risk-neutral agent. On the other
hand, a risk averse auctioneer achieves higher expected utility via the Vickrey or
English auction protocols than via the Dutch or the first-price sealed-bid protocol.

The fact that revenue equivalence holds in private value auctions does not
mean that it usually holds in practice: most auctions are not pure private value
auctions. In non-private value auctions with at least three bidders, the English
auction (especially the open-exit variant) leads to higher revenue than the Vickrey
auction. The reason is that other bidders willing to go high up in price causes a
bidder to increase his own valuation of the auctioned item. In this type of auctions,
both the English and the Vickrey protocols produce greater expected revenue to
the auctioneer than the first-price sealed-bid auction—or its equivalent, the Dutch
auction.

5.4.5 Bidder Collusion

One problem with all four of the auction protocols (English, Dutch, first-price
sealed-bid, and Vickrey) is that they are not collusion proof. The bidders could
coordinate their bid prices so that the bids stay artificially low. In this manner, the
bidders get the item at a lower price than they normally would.

The English auction and the Vickrey auction actually self-enforce some of the
most likely collusion agreements. Therefore, from the perspective of deterring
collusion, the first-price sealed-bid and the Dutch auctions are preferable. The
following example from [54] shows this. Let bidder Smith have value 20, and every
other bidder have value 18 for the auctioned item. Say that the bidders collude
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by deciding that Smith will bid 6, and everyone else will bid 5. In an English
auction this is self-enforcing, because if one of the other agents exceeds 5, Smith
will observe this, and will be willing to go all the way up to 20, and the cheater will
not gain anything from breaking the coalition agreement. In the Vickrey auction,
the collusion agreement can just as well be that Smith bids 20, because Smith will
get the item for 5 anyway. Bidding 20 removes the incentive from any bidder to
break the coalition agreement by bidding between 5 and 18, because no such bid
would win the auction. On the other hand, in a first-price sealed-bid auction, if
Smith bids anything below 18, the other agents have an incentive to bid higher
than Smith’s bid because that would cause them to win the auction. The same
holds for the Dutch auction.

However, for collusion to occur under the Vickrey auction, the first-price sealed-
bid auction, or the Dutch auction, the bidders need to identify each other before
the submission of bids—otherwise a non-member of the coalition could win the
auction. On the other hand, in the English auction this is not necessary, because
the bidders identify themselves by shouting bids. To prevent this, the auctioneer
can organize a computerized English auction where the bidding process does not
reveal the identities of the bidders.

5.4.6 Lying Auctioneer

Insincerity of the auctioneer may be a problem in the Vickrey auction. The
auctioneer may overstate the second highest bid to the highest bidder unless that
bidder can verify it. An overstated second offer would give the highest bidder a
higher bill than he would receive if the auctioneer were truthful. Cheating by the
auctioneer has been suggested to be one of the main reasons why the Vickrey auction
protocol has not been widely adopted in auctions among humans [58]. To solve the
problem, cryptographic electronic signatures could be used by the bidders so that
the auctioneer could actually present the second best bid to the winning bidder—
and would not be able to alter it. The other three auction protocols (English, Dutch,
and first-price sealed-bid) do not suffer from lying by the auctioneer because the
highest bidder gets the item at the price of his bid.

In non-private value auctions with the English (or all-pay) auction protocol, the
auctioneer can use shills that bid in the auction in order to make the real bidders
increase their valuations of the item. This is not possible in the sealed-bid protocols
or the Dutch protocol, because the bidders do not observe the others’ bids.

The auctioneer may also have other tools at his disposal. For example, he may
place a bid himself to guarantee that the item will not be sold below a certain
price (this can also be achieved by having a reservation price which may or may
not be public to the bidders). However, for example in the Vickrey auction, the
auctioneer is motivated to bid more than his true reservation price. This is because
there is a chance that his bid will be second highest in which case it determines the
item’s price. Such overbidding leads to the possibility that the auctioneer ends up
inefficiently keeping the item even though some bidders’ valuations exceed his true
reservation price.
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5.4.7 Bidders Lying in Non-Private-Value Auctions

Most auctions are not pure private value auctions: an agent’s valuation of a good
depends at least in part on the other agents’ valuations of that good. For example
in contracting settings, a bidder’s evaluation of a task is affected by the prices at
which the agent can subcontract the task or parts of it out to other agents. This
type of recontracting is commonly allowed in automated versions of the contract
net protocol also [60, 77].

Common value (and correlated value) auctions suffer from the winner’s curse. If
an agent bids its valuation and wins the auction, it will know that its valuation was
too high because the other agents bid less. Therefore winning the auction amounts
to a monetary loss. Knowing this in advance, agents should bid less than their
valuations [42, 54]. This is the best strategy in Vickrey auctions also. So, even
though the Vickrey auction promotes truthful bidding in private-value auctions, it
fails to induce truthful bidding in most auction settings.

5.4.8 Undesirable Private Information Revelation

Because the Vickrey auction has truthful bidding as the dominant strategy in pri-
vate value auctions, agents often bid truthfully. This leads to the bidders reveal-
ing their true valuations. Sometimes this information is sensitive, and the bidders
would prefer not to reveal it. For example, after winning a contract with a low
bid, a company’s subcontractors figure out that the company’s production cost is
low, and therefore the company is making larger profits than the subcontractors
thought. It has been observed that when such auction results are revealed, the sub-
contractors will want to renegotiate their deals to get higher payoff [58]. This has
been suggested—along with the problem of a lying auctioneer—as one of the main
reasons why the Vickrey auction protocol is not widely used in auctions among
humans [58]. First-price auction protocols do not expose a bidder’s valuation as
clearly because the bid is based on the agent’s model of other bidders, and this
(possibly inaccurate) model is not known by the subcontractors. Therefore, these
auction types may be more desirable than the Vickrey auction when valuations are
sensitive.

5.4.9 Roles of Computation in Auctions

Auction theory does not usually study the computational aspects of auctions.
However, from a DAI perspective they are crucial. Two issues that arise from
computation in auctions will be discussed: the computationally complex lookahead
that arises when auctioning interrelated items one at a time, and the implications
of costly local marginal cost (valuation) computation or information gathering in a
single-shot auction.
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Inefficient Allocation and Lying in Interrelated Auctions

In addition to single-item auctions, Vickrey auctions have been widely studied in the
allocation of multiple items of a homogeneous good [42], and the dominance of truth-
teling can be maintained. However, the case of auctioning heterogeneous interrelated
goods has received less attention. This is the setting of many real world problems,
including several where computational agents are used [66, 68, 67, 60, 62, 56].

This section discusses cases where heterogeneous items are auctioned one at a
time, and an agent’s valuations of these items are interdependent (not additive).
This occurs for example in task allocation in transportation problems. Figure 5.2
presents a simple example of such a problem with two delivery tasks: t; and ¢». Task
t; is auctioned before t5. The auctioneer wants to get the tasks handled while paying
agents 1 and 2 as little as possible for handling them. The initial locations of the
two agents are presented in the figure. To handle a task, an agent needs to move to
the beginning of the delivery task (arrow), and take a parcel from there to the end
of the arrow. An agent’s movement incurs the same cost irrespective of whether it
is carrying a parcel. The agents need not return to their initial locations. The costs
for handling tasks (subscripted by the name of the agent) can be measured from the
ﬁgure: Cl({tl}) = 2, Cl({tz}) = ]., Cl({tl,tz}) = 2, Cz({tl}) = 15, Cz({tz}) = 15,
and ¢z ({t1,t2}) = 2.5. Say that these costs are common knowledge to the agents.
Clearly the globally optimal allocation is the one where agent 1 handles both tasks.

This allocation is not reached if agents treat the auctions independently and bid
truthfully [61]. In the first auction of the example, task ¢; is allocated. Agent 1 bids
c1({t1}) = 2, and agent 2 bids ex({t1}) = 1.5. The task is allocated to agent 2.
In the second auction, task t, is allocated. Agent 1 bids ¢; ({t2}) = 1, and agent 2
bids e2({t2}) = 1.5, so ¢ is allocated to agent 1. The resulting allocation of the two
tasks is suboptimal. If agent 2 takes the ownership of #; into account when bidding
for to, then it will bid ex({t1,t2}) ©ca({t1}) = 2.5<1.5 = 1. In this case t> may be
allocated to either agent. In both cases the resulting allocation of the two tasks is
still suboptimal.

Alternatively, the agents could incorporate full lookahead into their auction
strategies. This way the optimal allocation is reached, but agents do not bid
their true per-item costs [61]. In the last auction of the example, an agent is
best off bidding its own costs that takes into account the tasks that the agent

1.0

Agent 1 Agent 2 t
A A 2

[
>

05 05

Figure 5.2 Small example problem with two agents and two delivery tasks.
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already has. Let us look at the auction of t,. If agent 1 has ¢y, it will bid
c1({t1,t2}) @ca({ti}) = 22 = 0, and ¢1({t2}) = 1 otherwise. If agent 2 has
t1, it will bid CQ({tl,tQ}) @CQ({tl}) =25&15= 1, and CQ({tQ}) = 1.5 otherwise.
So, if agent 1 has 1, it will win ¢» at the price 1.5, and get a payoff of 1.5<0 = 1.5
in the second auction, while agent 2 gets zero. On the other hand, if agent 2 has ¢y,
the bids for ¢, are equal, and both agents get a zero payoff in the second auction
irrespective of who t» gets allocated to. Therefore it is known that getting ¢; in the
first auction is worth an extra 1.5 to agent 1 while nothing extra to agent 2. So, in
the auction for ¢, agent 1’s dominant strategy is to bid ¢; ({¢1})<1.5 = 2<1.5 = 0.5.
This is lower than agent 2’s bid ¢2({t1}) <0 = 1.5 <0 = 1.5, so agent one gets t;.
In the second auction agent 1 gets t» as discussed above. So the globally optimal
allocation is reached. However, agent 1 bids 0.5 for ¢; instead of 2, which would be
the truthful bid if the auctions were treated independently without lookahead.

Put together, lookahead is a key feature in auctions of multiple interrelated items.
To date it has not been adequately addressed in computational multiagent systems
that use Vickrey auctions, and it is a common misunderstanding that Vickrey
auctions promote single-shot truth-telling even in interrelated auctions. In auctions
by humans, such interrelationships are sometimes addressed by allowing a bidder
to pool all of the interrelated items under one entirety bid [42]. Another method
for enhancing the efficiency of interrelated auctions is to allow agents to backtrack
from commitments by paying penalties. This allows a winning agent to beneficially
decommit, from an auctioned item in case that agent does not get synergic items
from other related auctions [41, 67, 62]. This question will be revisited in Section 5.7.

While avoidance of counterspeculation was one of the original reasons suggested
for adopting the Vickrey auction, lookahead requires speculation in the sense of
trying to guess which items are going to be auctioned in the future, and which agents
are going to win those auctions. Other speculative issues in sequential Vickrey
auctions have been discussed for example in [28].

Even under complete information, the computational cost of full lookahead
(searching the game tree which is deep if there are many items to be auctioned
sequentially) may be prohibitively great. Further work is required to devise methods
for controlling the search: the advantages of (partial) lookahead should be traded
off against the cost.

Counterspeculation When Computing One’s Valuation

Sometimes even the Vickrey auction protocol fails to avoid counterspeculation—
even in a single-shot auction. Let us look at a situation where an agent has
uncertainty regarding its own valuation of the auction item, but can pay to
remove this uncertainty. This situation often occurs among computational agents,
where the value of a good (or task contract [66, 68, 67, 60, 62, 56]) can only be
determined via carrying out a costly computation—e.g. a solution of a combinatorial
problem [60, 66]. Alternatively the payment can be viewed as the cost of solving a
prediction problem, or as the cost of performing an information gathering action,
or as the cost paid to an expert oracle.
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Theorem 5.7 Incentive to counterspeculate
In a single-shot private value Vickrey auction with uncertainty about an agent’s
own valuation, a risk neutral agent’s best (deliberation or information gathering)
action can depend on the other agents. It follows that (if counterspeculation is
cheap enough) it is worth counterspeculating [61].

Proof by example. Let there be two bidders: 1 and 2. Let 1’s valuation vy for
the auctioned item be uniformly distributed between 0 and 1, i.e. agent 1 does not
know its own valuation exactly. Let 2’s exact valuation vy be common knowledge.
Say 0 < vy < %, which implies E[v;] > vs.

Let agent 1 have the choice of finding out its exact valuation v; before the auction
by paying a cost ¢. Now, should agent 1 take this informative but costly action?

No matter what agent 1 chooses here, agent 2 will bid v2 because bidding ones
valuation is a dominant strategy in a single-shot private value Vickrey auction.

If agent 1 chooses not to pay ¢, agent 1 should bid E[v] = %, because bidding
ones expected valuation is a risk neutral agent’s dominant strategy in a single-
shot private value Vickrey auction. Now agent 1 gets the item at price vo. If agent
1’s valuation v; turns out to be less than v, agent 1 will suffer a loss. Agent 1’s
expected payoff is

1
1
E[ﬂ'noinfo] = / v] Svadv; = 5 Sy
0

If agent 1 chooses to pay ¢ for the exact information, it should bid v; because
bidding ones valuation is a dominant strategy in a single-shot private value Vickrey
auction. Agent 1 gets the item if and only if vi > vy. Note that now the agent
has no chance of suffering a loss, but on the other hand it has invested ¢ in the
information. Agent 1’s expected payoff is
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Agent 1 should choose to buy the information iff

E[’/rinfo] Z E[’/rnoinfo]
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& vy > V2 (because vy > 0)

So, agent 1’s best choice of action depends on agent 2’s valuation vs. Therefore,
agent, 1 can benefit from counterspeculating agent 2. m
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5.5 Bargaining

In a bargaining setting, agents can make a mutually beneficial agreement, but have
a conflict of interest about which agreement to make. In classical microeconomics,
assumptions of monopoly (or monopsony) or perfect competition are often made.
A monopolist gets all of the gains from interaction while an agent facing perfect
competition can make no profit. Real world settings usually consist of a finite num-
ber of competing agents, so neither monopoly nor perfect competition assumptions
strictly apply. Bargaining theory fits in this gap [50]. There are two major subfields
of bargaining theory: axiomatic and strategic.

5.5.1 Axiomatic Bargaining Theory

Unlike noncooperative (strategic) game theory, aziomatic bargaining theory does
not use the idea of a solution concept where the agents’ strategies form some type
of equilibrium. Instead, desirable properties for a solution, called axioms of the
bargaining solution, are postulated, and then the solution concept that satisfies
these axioms is sought [50, 30, 54, 51].

The Nash bargaining solution is a historically early solution concept that uses this
approach. Nash analyzed a 2-agent setting where the agents have to decide on an
outcome o € O, and the fallback outcome 0y41pack Occurs if no agreement is reached.
There is a utility function u; : O — R for each agent @ € [1,2]. It is assumed that
that the set of feasible utility vectors {(u(0),u2(0))|o € O} is convex. This occurs,
for example, if outcomes include all possible lotteries over actual alternatives.

When many deals are individually rational—i.e. have higher utility than the
fallback—to both agents, multiple Nash equilibria often exist. For example, if the
agents are bargaining over how to split a dollar, all splits that give each agent more
than zero are in equilibrium. If agent one’s strategy is to offer p and no more, agent
two’s best response is to take the offer as opposed to the fallback which is zero.
Now, one’s best response to this is to offer p and no more. Thus, a Nash equilibrium
exists for any p that defines a contract that is individually rational for both agents,
and feasible (0 < p < 1). Due to the nonuniqueness of the equilibrium, a stronger
(axiomatic) solution concept such as the Nash bargaining solution is needed to
prescribe a unique solution.

The axioms of the Nash bargaining solution u* = (u1(0*), u2(0*)) are:

= [nvariance: The agents’ numeric utility functions really only represent ordinal
preferences among outcomes—the actual cardinalities of the utilities do not mat-
ter. Therefore, it should be possible to transform the utility functions in the fol-
lowing way: for any strictly increasing linear function f, u*(f(0), f(0raltback)) =
f(uw*(0, 0ratiback))-

= Anonymity (symmetry): switching labels on the players does not affect the
outcome.
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= Independence of irrelevant alternatives: if some outcomes o are removed, but o*
is not, then o* still remains the solution.

= Pareto efficiency: it is not feasible to give both players higher utility than under

ut = (u1(0%), uz(0").

Theorem 5.8 Nash bargaining solution
The unique solution that satisfies these four axioms is [47]:

0" = arg mth[m(O) <:>U1(0fauback)][u2(0) <:>U2(0fauback)]

The Nash bargaining solution can be directly extended to more than two agents,
as long as the fallback occurs if at least one agent disagrees. The 2-agent Nash
bargaining solution is also the 2-agent special case of the Shapley value—a partic-
ular solution concept for payoff division in coalition formation, discussed later in
Section 5.8.3—where coalitions of agents can cooperate even if all agents do not
agree.

Other bargaining solutions also exist. They postulate different desiderata as
axioms and arrive at a different utility combination as the outcome [30].

5.5.2 Strategic Bargaining Theory

Unlike axiomatic bargaining theory, strategic bargaining theory does not postulate
desiderata as axioms on the solution concept. Instead, the bargaining situation is
modeled as a game, and the solution concept is based on an analysis of which of the
players’ strategies are in equilibrium. It follows that for some games, the solution is
not unique. On the other hand, strategic bargaining theory explains the behavior
of rational utility maximizing agents better than axiomatic approaches. The latter
are not based on what the agents can choose for strategies, but instead rely on the
agents pertaining to axiomatic, imposed notions of fairness.

Strategic bargaining theory usually analyses sequential bargaining where agents
alternate in making offers to each other in a prespecified order [50, 54, 51, 35]. Agent
1 gets to make the first offer. As an example, one can again think of deciding how to
split a dollar. In a protocol with a finite number of offers and no time discount, the
unique payoffs of the subgame perfect Nash equilibria are such that the last offerer
will get the whole dollar (minus €), because the other agent is better off accepting
€ than by rejecting and receiving nothing. For simplicity in the rest of this section,
say that in similar situations, € can be zero, and the other agent will still accept.

A time discount factor ¢ can be incorporated in the model. In round 1 the dollar
is worth 1, in round two it is worth §, in round three it is worth 4%, and so on.
With time discount, a subgame perfect Nash equilibrium of a finite game of length
T can be solved starting from the end. For example, if § = 0.9, then Table 5.4
represents the offerer’s maximal claims that are acceptable to the other agent. In
the last round, 2 would again accept zero. However, in the next to last round, 2
could keep 0.1, because it knows that this is how much 1 would loose by waiting to
the next round. The same reasoning works for the previous rounds.
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Round 1’s share 2’s share Total value Offerer

T-3 0.819 0.181 0.974

2
T-2 0.91 0.09 0.97-3 1
T-1 0.9 0.1 0.972 2
T 1 0 0.971 1

Table 5.4 Offerer’s maximal acceptable claims in a finite game.

Round 1’s share 2’s share Offerer
t—2 1—02(1—d1m1) 1
t—1 1—61m 2
t m 1

Table 5.5 Offerer’s maximal acceptable claims in an infinite game with different
discount factors.

When the protocol in a non-discounted setting allows an infinite number of
bargaining rounds, the solution concept is powerless because any split of the dollar
can be supported in subgame perfect Nash equilibrium—just as in the single-shot
case. On the other hand, with discounting, even the infinite game can be solved:

Theorem 5.9 Rubinstein bargaining solution

In a discounted infinite round setting, the subgame perfect Nash equilibrium
outcome is unique. Agent 1 gets (1 <d3)/(1 & 0102), where d; is 1’s discount
factor, and d is 2’s. Agent 2 gets one minus this. Agreement is reached in the
first round [59].

Proof Let us denote by 7 the maximum undiscounted share that 1 can get in
any subgame perfect Nash equilibrium on his turn to offer. Following the same
logic as in the example above, Table 5.5 can be filled. Now we have two ways to
represent the maximum undiscounted share that 1 can get in any subgame perfect
Nash equilibrium on his turn to offer. Setting them equal gives

1 &6,
1 @5162,

which is an upper bound for the undiscounted share that 1 can get in any subgame
perfect Nash equilibrium on his turn to offer. But now we can go through the same

T =1 @(52(1 <:>(517T_1) & T =
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argument by replacing m; by 7, the minimum undiscounted share that 1 can get
in any subgame perfect Nash equilibrium on his turn to offer. The minimum will
equal the maximum, which completes the proof. m

This proof technique allows one to solve for subgame perfect Nash equilibrium
payoffs even though it is impossible to carry out complete lookahead in the game
tree because it is infinitely long.

Another model of sequential bargaining does not use discounts, but assumes a
fixed bargaining cost per negotiation round.

= If the agents have symmetric bargaining costs, the solution concept is again
powerless because any split of the dollar can be supported in subgame perfect
Nash equilibrium.

= If 1’s bargaining cost ¢; is even slightly smaller than 2’s cost ¢z, then 1 gets the
entire dollar. If 2 offered 7 in round ¢, then in period t<1, 1 could offer 1©m &y,
and keep m + ¢2 to himself. In round ¢ <2, 2 would offer m + ¢2 <¢q, and keep
1 &7 &eo + ¢1. Following this reasoning, in round ¢ <2k, agent 2 would get to
keep 1 &7 k(e <¢1) which approaches <oo as k increases. Realizing this, 2
would not bargain, but accept zero up front.

= If 1’s bargaining cost is greater than 2’s, then 1 receives a payoff that equals the
second agent’s bargaining cost, and agent 2 receives the rest. Agreement is again
reached on the first round. This case is equivalent to the previous case except
that the agent with the smaller bargaining cost is willing to give the other agent
¢o in order to avoid going through the first period of bargaining.

Kraus et al. have extended the work on sequential bargaining to the case with
outside options [34]. They also analyze the case where one agent gains and one loses
over time. Finally, they discuss negotiation over time when agents do not know each
others’ types.

5.5.3 Computation in Bargaining

All of the bargaining models discussed above assume perfect rationality from the
agents. No computation is required in finding a mutually desirable contract. The
space of deals is assumed to be fully comprehended by the agents, and the value
of each potential contract known. On the other hand, future work should focus on
developing methods where the cost of search (deliberation) for solutions is explicit,
and it is decision-theoretically traded off against the bargaining gains that the
search provides. This becomes particularly important as the bargaining techniques
are scaled up to combinatorial problems with a multidimensional negotiation space
as opposed to combinatorially simple ones like splitting the dollar.

There are actually two searches occurring in bargaining. In the intra-agent delib-
erative search, an agent locally generates alternatives, evaluates them, counterspec-
ulates, does lookahead in the negotiation process etc. In the inter-agent committal
search, the agents make (binding) agreements with each other regarding the solu-
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tion. The agreements may occur over one part of the solution at a time. The agreed
issues provide context for more focused intra-agent deliberative search—thus re-
ducing the amount of costly computation required. The committal search may also
involve iteratively renegotiating some parts of the solution that have already been
agreed on, but have become less desirable in light of the newer agreements regarding
other parts of the solution [60]. The two-search model proposed here is similar to the
Real-Time A* search where an agent has to trade off thorough deliberation against
more real-world actions [33]. Similarly, in modeling bargaining settings that require
nontrivial computations, each agent’s strategy should incorporate both negotia-
tion actions and deliberation actions. The bargaining setting is more complex than
the single agent setting of Real-Time A* in that there are multiple self-interested
agents: the agents’ strategies should be in equilibrium.

5.6 General Equilibrium Market Mechanisms

This section presents general equilibrium theory, a microeconomic market frame-
work that has recently been successfully adapted for and used in computational
multiagent systems in many application domains [82, 83, 44, 85, 10]. General equi-
librium theory provides a distributed method for efficiently allocating goods and
resources among agents—i.e. striking the best tradeoffs in a moderately complex
multidimensional search space—based on market prices.

Such a market has n > 0 commodity goods g. The commodities can be physicals,
e.g. coffee and meat, or they can be more abstract, e.g. parameters of an airplane
design [83], flows in a traffic network [82], electricity in a power network [85], or
mirror sites on the Internet [44]. The amount of each commodity is unrestricted,
and each commodity is assumed arbitrarily divisible (continuous as opposed to
discrete). Different elements within a commodity are not distinguishable, but
different commodities are distinguishable from each other. The market also has
prices p = [p1,p2, ..., Pn], where p, € R is the price for good g.

The market can have two types of agents, consumers and producers. Each con-
sumer ¢ has a utility function u;(x;) which encodes its preferences over different con-
sumption bundles x; = [z, Tia, . . . ,:rm]T, where z;, € R4 is consumer ¢’s allocation
of good g. Each consumer i also has an initial endowment e; = [e;1,€;2,- - -, €in]T
where e;, € R is his endowment of commodity g.

The producers—if there are any—can use some commodities to produce others.
Let yj = [yj1,Yj2,---,Yjn]’ be the production vector, where y;, is the amount of
good g that producer 7 produces. Net usage of a commodity is denoted by a negative
number. A producer’s capability of turning inputs into outputs is characterized by
its production possibilities set Y;, which is the set of feasible production vectors.
The profit of producer j is p - y;, where y; € Y;. The producer’s profits are divided
among the consumers according to predetermined proportions which need not be
equal (one can think of the consumers owning stocks of the producers). Let 6;; be

)
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the fraction of producer j that consumer ¢ owns. The producers’ profits are divided
among consumers according to these shares. However, the consumers are assumed
to have no say-so in the producers’ production decisions.

Prices may change, and the agents may change their consumption and production
plans, but actual production and consumption only occur once the market has
reached a general equilibrium. We say that (p*,x*,y*) is a general (Walrasian)
equilibrium if

I markets clear:
S =Yt Y
i i j

IT each consumer ¢ maximizes its preferences given the prices:

*
x{ = arg max u;(x3), and
XERY | prx<preit)  0i;p*y;

IIT each producer j maximizes its profits given the prices:

*

yj = arg max p" -y;

Y;€Y;

5.6.1 Properties of General Equilibrium

General equilibrium solutions have some very desirable properties:

Theorem 5.10 Pareto efficiency
Each general equilibrium is Pareto efficient, i.e. no agent can be made better off
without making some other agent worse off [39].

This means that there is no possible methodology for finding solutions to the agents’
problem such that every agent is better off than in the general equilibrium. The
solution is also stable against collusion:

Theorem 5.11 Coalitional stability

Each general equilibrium with no producers is stable in the sense of the core solution
concept of coalition formation games: no subgroup of consumers can increase their
utilities by pulling out of the equilibrium and forming their own market [39].

The situation is more complex when producers are present: for example, if a set of
consumers colludes, and they own part of a producer via the shares, what can the
coalition produce?

Unfortunately, in some domains no general equilibrium exists. For example, it
may be best for some producer to produce an infinite amount of some good.
However, sufficient conditions for existence are known:

Theorem 5.12 Existence
Let the production possibilities sets be closed (i.e. include their boundaries), convex
(i.e. if bundles y and y' are producible, then so is ay + (1 ©a)y’ Va € [0,1]),
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and bounded above (i.e. an infinite amount of no good can be produced). Let the
consumers’ preferences be continuous (i.e. the preferences have no “jumps”), strictly
convex (i.e. if the consumer prefers y to y” and y’ to ", then he prefers ay+(1<a)y’
to y" Ya € 1]0,1]), and strongly monotone (i.e. each consumer strictly prefers more
to less of each commodity). Now, if a society-wide bundle is producible where the
amount of each commodity is positive (positive endowments trivially imply this),
a general equilibrium exists [39].

For example, economies of scale in production violate convexity of production
possibilities. Continuity of the consumer’s preferences is violated e.g. in bandwidth
allocation if an agent’s welfare jumps as the threshold for being able to participate in
a video conference is reached. Similarly, the consumer’s preferences are not convex
if the consumer starts to prefer a good (relative to other goods) more as he gets
more of that good. Drugs and Web surfing are examples of this.

Even if a general equilibrium exists, it might not be unique. However, there is an
easily understood sufficient condition for uniqueness:

Theorem 5.13 Uniqueness under gross substitutes
A general equilibrium is unique if the society-wide demand for each good is
nondecreasing in the prices of the other goods [39].

For example, as the price of meat increases, consumers have to convert to satisfying
their hunger with less expensive foods. It follows that the demand of potatoes
increases. On the other hand, the conditions of this theorem are not always met.
For example, as the price of bread increases, the demand of butter decreases.
Complementarities are also very common in production, where the producers often
need all of the inputs to create the outputs.

The basic general equilibrium framework does not account for externalities. In
consumption externalities, one agent’s consumption affects another agent’s utility.
In production externalities, one agent’s production possibilities set is directly af-
fected by another agent’s actions. Glance and Hogg have presented examples of
computational ecologies (not based on general equilibrium theory) where externali-
ties are so dominant that, counterintuitively, adding resources to the system makes
it operate less efficiently [19]. Hogg has also shown that externality problems are
likely to be common in computational ecosystems [23]. Evolutionary aspects of such
systems have also been discussed [43], and the behaviors under incomplete and de-
layed information analyzed [26]. Some mechanisms to attack externality problems
include taxes and viewing some of the externality issues as commodities them-
selves [79].

5.6.2 Distributed Search for a General Equilibrium
The operational motivation behind market mechanisms is that the agents can find

an efficient joint solution—which takes into account tradeoffs between agents and
the fact that the values of different goods to a single agent may be interdependent—
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Algorithm for the price adjustor:
pg =1 for all g € [1..n]
Set Ay to a positive number for all g € [1..n — 1]
Repeat
Broadcast p to consumers and producers
Receive a production plan yj from each producer j
Broadcast the plans yj to consumers
Receive a consumption plan x; from each consumer 7
Forg=1ton—-1
Pg =Dy + A (D (wig — €ig) — Zj Yig)
Until | ), (zig — €ig) — Ej Yig| < € for all g € [1..n]
Inform consumers and producers that an equilibrium has been reached
Algorithm for consumer i:
Repeat
Receive p from the adjustor
Receive a production plan y;j for each j from the adjustor
Announce to the adjustor a consumption plan x; € R}y that
maximizes u; (x;) given the budget constraint p-x; < p-e; +Zj 0i;p-y;j
Until informed that an equilibrium has been reached
Exchange and consume
Algorithm for producer j:
Repeat
Receive p from the adjustor
Announce to the adjustor a production plan y; € Y; that maximizes p - y;
Until informed that an equilibrium has been reached
Exchange and produce

Algorithm 5.2 The distributed price tatonnement algorithm.

while never centralizing all the information or control. There are many algorithms
that can be used to search for a general equilibrium, some centralized, and some
decentralized. The most common decentralized algorithm for this purpose is the
price tatonnement process, (Algorithm 5.2) which is a steepest descent search
method.

Clearly, if no general equilibrium exists, no algorithm can find it. Furthermore,
sometimes the price tatonnement algorithm fails to find an equilibrium even if
equilibria exist. However, there are sufficient conditions that guarantee that an
equilibrium is found if it exists. One such sufficient condition is the gross substitutes
property which was used in Theorem. 5.13. More generally,

Theorem 5.1/ Convergence

The price tatonnement algorithm convergences to a general equilibrium if p* -
(2i(xi(p) ©ei) &3, yj(p)) > 0 for all p not proportional to an equilibrium price
vector p* [39].

Strictly speaking, these convergence guarantees only apply to the continuous
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variant

‘%‘7 - )\Q(Z(xig(p) Seig) @Z Yis(P)),

g J

not to the more realistic discrete step version (Algorithm 5.2). However, these
results suggest that even the discrete variant often converges—e.g. under gross
substitutes—as long as the A-multipliers in the algorithm are sufficiently small. If
the A-multipliers are too large, the search may keep “overshooting” the equilibrium.
On the other hand, too small A-multipliers will make the convergence slow. One
potential solution to this problem is to dynamically adjust the step size, e.g. via
the Newton method

Do~ DN (i) Sei) &3 i (), where

i J
oY, (e (p)—ei1) =Dy (P)) (P, (i () —ei1) =32 y51(P))
Op1 T Opn
J(p) = : :
(Y, (in(P)—ein) =3, win () (Y, (@in(P)—ein) =3, vin (P))
op1 e Opn

The Newton method often requires fewer iterations than steepest descent, but
each iteration is computationally more intensive for the adjustor, and requires the
computation and communication of the derivative information by the consumers
and producers. One could conceptually take this information communication to the
limit by having the producers and consumers submit their entire production and
consumption functions (plans as a function of the possible price vectors), and the
price adjustor could run a centralized search—with known efficient algorithms—
for an equilibrium. However, this conflicts with one of the original motivations of
market mechanisms: decentralization.

The tatonnement process used in the WALRAS simulation [82] differs from
Algorithm 5.2. WALRAS uses asynchronous declarations by the agents, i.e. an agent
might only change its plan regarding a subset of goods at a time. Similarly, agents
might take arbitrary turns in making new declarations. Under certain conditions,
this process still converges to a general equilibrium [10]. As in tatonnement, trades
in WALRAS only occur after the market process has arrived (close) to a general
equilibrium.

In addition to price-based market mechanisms, quantity-based (commodity-
based, resource-based) mechanisms exist for reaching the general equilibrium [39].
In those mechanisms, the adjustor announces production and consumption plans,
and the producers and consumers announce willingness to pay in terms of prices or
marginal utilities. Unlike price-based algorithms, quantity-based algorithms main-
tain a feasible solution (once—e.g. up front—a feasible solution has been found)
where markets clear at every iteration. This constitutes an interruptible anytime
algorithm. Also, quantity-based algorithms offer the choice of carrying out the ac-
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tual exchanges at every iteration or only at the end as in price-based algorithms.
These advantages come at the cost of increased information centralization (com-
munication). For example, the adjustor needs to know the production possibilities
sets.

Most treatments of market-based search only discuss the complexity of finding
an equilibrium once the agent’s supply and demand functions are known. How-
ever, it may be computationally complex for each agent to generate its optimal
supply/demand decision given the current prices. For example, if the agent is a
manufacturer, it may need to solve several planning and scheduling problems just
to construct its production possibilities set from which it has to choose the profit
maximizing production plan. Furthermore, each agent has to go through this local
deliberation at every iteration of the market protocol because prices change, and
that affects what the optimal plan for each agent is.

5.6.3 Speculative Strategies in Equilibrium Markets

In general equilibrium markets, the agents are assumed to act competitively: they
treat prices as exogenous. This means that each agent makes and reveals its demand
(supply) decisions truthfully so as to maximize its utility (profit) given the market
prices—assuming that it has no impact on those prices. The idea behind this price-
taking assumption is that the market is so large that no single agent’s actions affect
the prices. However, this is paradoxical since the agents’ declarations completely
determine the prices. The price-taking assumption becomes valid as the number of
agents approaches infinity: with infinitely many agents (of comparable size), each
agent is best off acting competitively since it will not affect the prices.

However, in markets with a finite number of agents, an agent can act strategically,
and potentially achieve higher utility by over/under representing [69], [38, pp. 220-
223], [27]. In doing so, the agent has to speculate how its misrepresentation affects
the market prices, which are simultaneously affected by how other agents respond
to the prices which changed due to the first agent’s strategic actions. In other
words, general equilibria do not in general correspond to strictly rational, strategic
equilibria of game theory.

This section is based on [69]. We analyze how much an agent can gain by
speculation. Standard lies are also presented via which an agent can drive the
market to a solution that maximizes the agent’s gains from speculation, and looks
like a general equilibrium to the other agents and the adjustor. These results are
independent of the market algorithm as long as actual exchanges take place only
after the market has reached (close to) an equilibrium.

Case A: Speculating Consumer
The goal of a self-interested consumer is to find the consumption bundle that

maximizes its utility. To find the optimal bundle when acting in an equilibrium
market, the consumer must speculate how other agents respond to prices. This is
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because its demand decisions affect the prices, which affect the demand and supply
decisions of others, which again affect the prices that the consumer faces. Using
the model of other agents, the consumer computes its optimal demand decisions.
Note that other agents might also be speculating (in the same way or some other,
suboptimal way). That is included in the agent’s model of the other agents. A
solution to the following maximization problem gives the highest utility that a
speculating consumer s can possibly obtain.

max us(xs(p)) s.t. (5.1)
P
Zsg(P) > 0 (consumer does not produce)
Zsg(P) = €59 &( Z (xig <eig) <:>Z Yjg) (supply meets demand)
icConsumers—{s} J

p - (xs ©es) < Zesj p-yj(p) (budget constraint)
J

Case B: Speculating Producer

The goal of a self-interested producer is to find the production vector that maximizes
its profits. Again, this requires a model of how others react to prices because the
producer’s production decisions affect the prices, which affect the demand and
supply decisions of others, which again affect the prices that the producer faces.
A solution to the following maximization problem gives the highest profit that a
speculating producer s can possibly obtain.

max p-ys(p) s.t. (5.2)
P

yvs(p) € Y (feasible production plan)

Ysg = Z(xig Seig) & Z Yjg (supply meets demand)

¢ jeProducers—{s}

The last equality turns into > if free disposal for both inputs and outputs is possible.
The solution to the applicable optimization problem above (depending on
whether the speculator is a producer or a consumer) is denoted p**. The equilibrium
at p™* is not Pareto efficient in general. This does not violate Theorem. 5.10 because
that result only applies to true general equilibria where agents act competitively.

Reaching Equilibrium under Speculation: Driving the Market

The discussion above focused on the prices that a speculating agent would like to
drive the market to. However, there is a risk for the speculator that even though
such an equilibrium exists, the market algorithm would not find it. A speculating
agent’s best strategy is to declare demand plans x4 (p) (or production plans ys(p))

such that the market clears at the desired prices p** (an equilibrium exists), and
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the market process will find it. Formally, the market clears at p** if for each good g,

Zsg(P™) = €596 Z (xig (p**)<:>eig)<:>z Yjg(p™)) if s is a consumer, and
ieConsumers—{s} J
Ysg(P™) = Z(xig (p™) eiy) & Z Yjg(P™) if s is a producer.
g jeProducers—{s}

What remains to be analyzed is whether the particular market algorithms finds
the equilibrium even if the speculator acts strategically. Many standard market
algorithms, e.g. price tatonnement, Newtonian price tatonnement, and WALRAS,
are guaranteed to find the equilibrium if (Y ; (244 (P) ©eig) &3, yj4(P))/Opg <0
(society-wide demand decreases as price increases), and 9()_,(zi(p) & eiy) &
> Yig(P))/Opn > 0, for goods g # h (goods are gross substitutes). Let us assume
that these two conditions would hold in the market if the speculator were not
present. Now, if the speculating agent uses a strategy that satisfies

» Eq.5.6.3, and

B J(zs54(P) &esg)/Opg < 0 if s is a consumer, and Qysy(p)/0py > 0 if s is a
producer, and
= for goods g # h, O(xs4(P)Sesy)/Opr > 0if s is a consumer, and 0ys,(p)/Opr < 0

if s is a producer,

the market is guaranteed to converge to the unique equilibrium prices p** that
maximize the speculator’s gain.

It turns out that simple generic strategies exist for the speculator that guarantee
that these three conditions are met, i.e. that the speculator will be able to drive the
market to an equilibrium where his maximal gain from speculation materializes [69].
For example, the following linear strategy is viable for a consumer:

xs(p) = s +p*7 ©p & ( > (wig(P™) €eig) &Y yjg(P™))
ieConsumers—{s} j
and so is the constant strategy
x(p)=ea (Y (5(P7) Geig) Yy (PT)):
ieConsumers—{s} j
The corresponding strategies for a speculating producer are
Ys(P) =p &P + ) _(wiy(p™) Seig) & > Yig(P™)
i jeProducers—{s}
and

s(P) = Y (g (p™) eiy) & > Yjg (P™).

i jeProducers—{s}
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The last consideration is the speed of convergence to equilibrium. In any partic-
ular market setting, it may be that the market converges slower or faster when an
agent acts strategically than when he acts competitively.

Strategic Behavior by Multiple Agents

In the analysis so far, one agent designed its speculative strategy while the others’
strategies were fixed. However, the others would like to tailor their strategies to the
specific strategy that the agent chooses. For this reason, we argue that strategic
solution concepts from game theory should be used to design market protocols. The
strategies are in Nash equilibrium if each agent’s strategy is its best response to the
others’ strategies. This can be viewed as a necessary condition for system stability
in settings where all agents act strategically.

A stronger condition is to require dominant strategy equilibrium, i.e. that each
agent’s strategy is optimal for that agent no matter what strategies others choose.
Market protocols have been studied using dominant strategy equilibrium in [6]. The
results are negative in the sense that the agents need to be given price ratios for
trading in advance by the protocol designer, and the designer does not know the
agents’ preferences and capabilities. Therefore, not all beneficial trades can occur,
and thus the solution is usually not Pareto efficient.

In sequential protocols, one can also strengthen the Nash equilibrium solution
concept in multiple ways by requiring that the strategies stay in equilibrium at
every step of the game [39, 35]. Unlike the market speculation analysis presented in
this section so far, the Nash equilibrium outcome is specific to the market protocol.
Important factors impacting the outcome are the order in which bids are submitted
(see e.g. Stackleberg vs. Cournot models [39]), whether the bids are sealed or
open [61], whether the protocol is iterative (the agents can change their excess
demand between iterations) or not, whether the agents can decommit from their
agreements by paying a penalty [67, 62], etc.

In some games, no Nash equilibrium exists for the market in pure (non-
randomized) strategies. The following simple example illustrates this. Let there
be two consumer agents, A and B, that engage in a market where they reveal
their excess demand functions simultaneously and in a single round. Agent A can
choose between two strategies (Al and A2), and B can choose between B1 and
B2. Provided that A knows that B will choose B1, A will choose A2, and A1l if B
chooses B2. Provided that B knows that A will choose A2, B will choose B2, and
B1if A chooses A1. Now, from every possible pair of strategies, one agent would be
motivated to deviate to another strategy, i.e. no Nash equilibrium exists. In general,
existence and uniqueness of a general equilibrium (where agents act competitively)
for a market does not imply existence and uniqueness of a Nash equilibrium.

Some market protocols may be difficult to analyze game theoretically. For ex-
ample, in WALRAS, the agents might change their demand functions during the
computation of the equilibrium. Then some agents may deliberately send false bids
to generate more iterations of the market process in order to learn more about
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other agents’ excess demand/supply functions. If many agents are involved in such
probing, it seems that time becomes an important factor. Some agents might reveal
progressively more of their competitive demands in order to speed up the conver-
gence (as it might be urgent for them to get the resources traded), while others
might extend the probing in order to maximize their benefit from the trade.6

While the game theoretic approach is clearly to be preferred (when it is viable)
over the general equilibrium approach for designing interaction mechanisms for
self-interested agents, the general equilibrium approach may still allow one to
build reasonably nonmanipulable multiagent systems. For example, as the number
of—comparably sized—agents increases, the gains from strategic acting decrease,
approaching zero as the number of agents approaches infinity [55, 69]. Secondly, lack
of knowledge about the others may make speculation unprofitable. If there is even
minor uncertainty in the speculator’s estimates about the others’ strategies, the
speculator’s expected payoff may be significantly higher by acting competitively
than by acting speculatively [69]. Finally, although beneficial lies are easy to
compute once the others’ strategies are known, it may be computationally complex
to deduce the others’ strategies even if the speculator knows the others’ physical
characteristics completely. For example, the speculator would need to solve a
manufacturer’s planning and scheduling problems in order to be able to deduce
what the production possibilities sets of the manufacturer are, and what the
manufacturer’s (competitive) strategy will be. Sometimes the potential gains from
speculation are not great enough to warrant such costly computation that may be
required for speculation.

5.7 Contract Nets

General equilibrium market mechanisms use global prices, and—at least in the
implementations up to now—use a single centralized mediator. The mediator might
become a communication and computation bottleneck or a potential point of failure
for the whole system. Also, in some settings the agents want to have direct control
of who receives their sensitive information instead of posting the information to a
mediator who controls its dissemination. Furthermore, sometimes it is unrealistic
to assume that prices are global because there may be market frictions, costs
to propagate information to all agents, etc. In such settings, a more distributed
negotiation may be warranted.

The contract net protocol (see Chapter 2) was an early variant of such distributed

6. Some work has addressed non-competitive behavior in WALRAS [24], although there
was only one speculating agent in the experiments, and this agent was limited to simple
linear price prediction about how its actions affect the prices. Further analysis is required
to determine whether its optimal strategy can be captured in this model. This need not
be the case because the optimal strategy may involve some more “aggressive” behavior,
e.g. the probing described above.
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negotiation in a task allocation domain [77]. This section discusses some of the
recent improvements to the contract net protocol. The new methods lead to better
results, and they are viable among self-interested agents as well—unlike the original
contract net protocol which was for cooperative agents only.

5.7.1 Task Allocation Negotiation

The capability of (re)allocating tasks among agents is a key feature in automated
negotiation systems. In many domains, significant savings can be achieved by
reallocating tasks among agents. Some tasks are inherently synergic, and should
therefore be handled by the same agent. On the other hand, some tasks have
negative interactions, in which case it is better to allocate them to different agents.
Furthermore, different agents may have different resources which leads to different
capabilities and costs for handling tasks. This section discusses task allocation
among self-interested agents in the following model which captures the above
considerations.

Definition 5.1 [64]
A task allocation problem is defined by a set of tasks T', a set of agents A, a
cost function ¢; : 21 — R U {oco} (which states the cost that agent i incurs by

handling a particular subset of tasks), and the initial allocation of tasks among
agents (T, ..., Tll;g‘lit), where [J;c 4, T/™" = T, and T{"* N Tj""* = () for all i # j. 7

The original contract net and many of its later variants lacked a formal model
for making bidding and awarding decisions. More recently, such a formal model was
introduced which gives rise to a negotiation protocol that provably leads to desirable
task allocations among agents [60, 62, 64]. In that model, contracting decisions are
based on marginal cost calculations, i.e. that model invokes the concept of individual
rationality on a per contract basis (which implies individual rationality of sequences
of contracts). A contract is individually rational (IR) to an agent if that agent is
better off with the contract than without it.

Specifically, a contractee g accepts a contract if it gets paid more than its marginal
cost

Mcadd(Tcontract|Tq) — cq(Tcontract U Tq) <:>Cq(Tq)

of handling the tasks T°°™t"2¢t of the contract. The marginal cost is dynamic in the

sense that it depends on the other tasks 7}, that the contractee already has.
Similarly, a contractor r is willing to allocate the tasks 7°°"t"%¢t from its current

task set 7). to the contractee if it has to pay the contractee less than it saves by not

7. Although a static version of the problem is discussed, the contracting scheme works
even if tasks and resources (resources affect the cost functions) are added and removed
dynamically.
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handling the tasks T¢°"tract jtgelf:
Mcremove(Tcontract|Tr) _ cr(Tr) <:>cr(Tr @Tcontract).

In the protocol, agents then suggest contracts to each other, and make their
accepting/rejecting decisions based on these marginal cost calculations. An agent
can take on both contractor and contractee roles. It can also recontract out tasks
that it received earlier via another contract. The scheme does not assume that
agents know the tasks or cost functions of others.

With this domain independent contracting scheme, the task allocation can only
improve at each step. This corresponds to hill-climbing in the space of task alloca-
tions where the height-metric of the hill is social welfare (&), 4 ¢i(T;)). The fact
that the contractor pays the contractee some amount between their marginal costs
(e.g. half way between) causes the benefit from the improved task allocation to be
divided so that no agent is worse off with a contract than without it.

The scheme is an anytime algorithm: contracting can be terminated at any time,
and the worth (payments received from others minus cost of handling tasks) of each
agent’s solution increases monotonically. It follows that social welfare increases
monotonically. Details on an asynchronous distributed implementation based on
marginal costs can be found in [60, 62, 66].

Convergence to the Globally Optimal Task Allocation

In most contract net implementations, each contract regards only one task , i.e.
one task is moved from one agent to another against a payment [77, 72, 22]. Such
an original (O) contract can be understood as a particular search operator in the
global hill-climbing contracting algorithm that is used for task reallocation. When
the contracting protocol is equipped with O-contracts only, it may get stuck in a
local optimum where no contract is individually rational but the task allocation is
not globally optimal.

To solve this problem, several new contract types have recently been introduced:
cluster (C) contracts where a set of tasks is atomically contracted from one agent
to another, swap (S) contracts where a pair of agents swaps a pair of tasks, and
multiagent (M) contracts where more than two agents are involved in an atomic
exchange of tasks [64, 62, 60]. Each of the four contract types avoids some of the
local optima that the other three do not:

Theorem 5.15

For each of the four contract types (O, C, S, and M), there exist task allocations
where no IR contract with the other three contract types is possible, but an IR
contract with the fourth type is [64].

Unfortunately, even if the contracting protocol is equipped with all four of the
contract types, the globally optimal task allocation may not be reached via IR
contracts—even if there were an oracle for choosing the sequence of contracts:
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Theorem 5.16
There are instances of the task allocation problem where no IR sequence from the
initial task allocation to the optimal one exists using O-, C-, S- and M-contracts [64].

Clearly, no subset of the contract types suffices either. Another problem is that
without an oracle, contracting may get stuck in a local optimum even if some IR
sequence exists because the agents may choose some other IR sequence.

To address this shortcoming, a new contract type, OCSM-contract, has been
defined, which combines the characteristics of O-, C-, S-, and M-contracts into one
contract type—where the ideas of the four earlier contract types can be applied
simultaneously (atomically):

Definition 5.2 [64, 62]

An OCSM-contract is defined by a pair (T, p) of |A| x | A| matrices. An element T ;
is the set of tasks that agent ¢ gives to agent j, and an element p; ; is the amount
that ¢ pays to j.

So OCSM contracts allow moving from a task allocation to any other task allocation
with a single contract.

It could be shown that an IR sequence always exists from any task allocation to
the optimal one if the contracting protocol incorporates OCSM-contracts. However,
a stronger claim is now made. The following theorem states that OCSM-contracts
are sufficient for reaching the global task allocation optimum in a finite number of
contracts. The result holds for any sequence of IR, OCSM-contracts, i.e. for any hill-
climbing algorithm that uses OCSM-contracts: an oracle is not needed for choosing
the sequence. This means that from the perspectives of social welfare maximization
and of individual rationality, agents can accept IR contracts as they are offered.
They need not wait for more profitable ones, and they need not worry that a
current contract may make a more profitable future contract unprofitable. Neither
do they need to accept contracts that are not IR in anticipation of future contracts
that make the combination beneficial. Furthermore, these hill-climbing algorithms
do not need to backtrack.

Theorem 5.17

Let |A| and |T'| be finite. If the contracting protocol allows OCSM-contracts, any
hill-climbing algorithm (i.e. any sequence of IR contracts) finds the globally optimal
task allocation in a finite number of steps (without backtracking) [64, 62].

Proof With OCSM-contracts there are no local optima (that are not global
optima) since the global optimum can be reached from any task allocation in a single
contract. This last contract will be IR because moving to the optimum from some
suboptimal allocation improves welfare, and this gain can be arbitrarily divided
among the contract parties. Thus the algorithm will not run out of IR contracts
before the optimum has been reached. With finite |A| and |T'|, there are only a finite
number of task allocations. Since the algorithm hill-climbs, no task allocation will
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be repeated. Therefore, the optimum is reached in a finite number of contracts. m

OCSM-contracts are also necessary: no weaker set of contract types suffices—even
if there were an oracle to choose the order in which to apply them:

Theorem 5.18

If there is some OCSM-contract that the protocol does not allow, there are instances
of the task allocation problem where no IR sequence exists from the initial allocation
to the optimal one [64].

While OCSM-contracts are necessary in the general case, there may well be cost
functions ¢;(+) with special structure that guarantees that the global optimum is
reached even with less powerful contract types.

Theorem 5.17 gives a powerful tool for problem instances where the number of
possible task allocations is relatively small. On the other hand, for large problem
instances, the number of contracts made before the optimal task allocation is
reached may be impractically large—albeit finite. For example on a large-scale real-
world distributed vehicle routing problem instance, the TRACONET [60] (marginal
cost based) contracting system never reached even a local optimum even with just
O-contracts—with multiple hours of negotiation on five Unix machines. Another
problem is that although any OCSM-contract can be represented in O(|A|* + |T|)
space, the identification of welfare increasing contracts may be complex—especially
in a distributed setting—because there are ”2;” = ‘A‘2|T|2_‘A“Tl possible OCSM-
contracts, and the evaluation of just one contract requires each contract party to
compute the cost of handling its current tasks and the tasks allocated to it via the
contract. With such large problem instances, one cannot expect to reach the global
optimum in practice. Instead, the contracting should occur as long as there is time,
and then have a solution ready: the anytime character of this contracting scheme
becomes more important.

Insincere Agents in Task Allocation

So far in this section on contracting it was assumed that agents act based on
individual rationality. This differs from payoff maximizing agents of game theory.
Such an agent may reject an IR contract e.g. if it believes that it could be better
off by waiting for a more beneficial contract that cannot be accepted if the former
contract is accepted (e.g. due to limited resources). Similarly, such an agent may
accept a non-IR contract in anticipation of a synergic later contract that will make
the combination beneficial. Furthermore, strategic agents can also speculate on the
order of accepting contracts because different sequences of (IR) contracts may have
different payoff to the agent. The IR approach is sometimes more practical than the
full game theoretic analysis because each contract can be made by evaluating just
a single contract (each contract party evaluating one new task set) instead of doing
exponential lookahead into the future. The deviation from game theory comes at
the cost of not being able to normatively guarantee that a self-interested agent is
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best off by following the strategy of accepting any IR contracts.

In this section on contracting it was also assumed that agents truthfully bid their
marginal costs. However, an agent can benefit more in the contract payment by
exaggerating its marginal cost. On the other hand, too much lying may cause some
IR contracts to be perceived non-IR, and to be rejected. This issue of lying about
the valuation was discussed in Section 5.4 on auctions.

Agents could also lie about what tasks they have. This type of lying has been
thoroughly analyzed in a 2-agent task allocation setting [56]. The “Task Oriented
Domains (TODs)” in that work are a strict subset of the task allocation problems
presented here. Specifically, they assume that agents have symmetric cost functions
(ci(T") = ¢;(T")) and that every agent is capable of handling all tasks of all agents,
i.e. that the cost functions are always finite. The analysis is specific to a protocol
where all agents reveal their costs for all possible task sets up front, the social
welfare maximizing allocation is chosen, and then payoff is divided according to
the Nash bargaining solution (Section 5.5.1). So their protocol is not an anytime
algorithm: all task allocations have to be evaluated before any agreement is made.

How truthfully do agents reveal tasks to each other when each agent only knows
about its own tasks? The domain class of TODs includes subclasses with very
different properties regarding insincere task revelation. Subadditive TODs are TODs
where ¢;(T" UT") < ¢;(T") + ¢;(T"). A subclass of Subadditive TODs, Concave
TODs are TODs where ¢;(T" UT"") c;(T") > ¢;(T" UT") <c¢;(T"). Finally,
a subclass of Concave TODs, Modular TODs are TODs where ¢;(T" UT") =
ci(T") 4+ ¢(T") ©c(T'NT").

Three alternative types of deals are analyzed. In pure deals, agents are determin-
istically allocated exhaustive, disjoint task sets. Mized deals specify a probability
distribution over such partitions. All-or-nothing deals are mixed deals where the
alternatives only include partitions where one agent handles the tasks of all agents.

Three forms of lying are analyzed. First, an agent may hide tasks by not revealing
them. Second, it may declare phantom tasks which do not exist and cannot be
generated if another agent wants to see them. Finally, it may announce decoy tasks,
which really did not exist, but which can be generated on demand. The forms of
lying that are possible in different domain classes and with different deal types are
summarized in Table 5.6. With more general TODs, many different lying methods
can be profitable.

The analysis shows that even in the restricted settings, lying is often beneficial
under the three variants of this protocol. Because these restricted domains are
subproblems of more complex task allocation domains, the negative results carry
over directly to the more complex settings. The results leave open the possibility
that other protocols would demote lying more (while leading to Pareto efficient IR,
outcomes).
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Deal type General TOD | SubadditiveTOD | Concave TOD | Modular TOD
Hid | Pha | Dec | Hid | Pha | Dec | Hid | Pha | Dec | Hid | Pha | Dec
Pure L L L L L L L L L L
Mixed L L L L L L
All-or-nothing | - - - L

Table 5.6 Results on lying in task revelation. An 'L’ indicates that lying of the
specified type is profitable in some problem instances within the given domain class
using the deal type. In general TODs using all-or-nothing deals, the negotiation set
(set of individually rational Pareto efficient deals) may be empty.

5.7.2 Contingency Contracts and Leveled Commitment Contracts

In traditional multiagent negotiation protocols among self-interested agents, once
a contract is made, it is binding, i.e. neither party can back out [56, 60, 64, 1, 14,
34, 69, 10]. Once an agent agrees to a contract, it has to follow through with it
no matter how future events unravel. Although a contract may be profitable to an
agent when viewed ez ante, it need not be profitable when viewed after some future
events have occurred, i.e. ex post. Similarly, a contract may have too low expected
payoff ex ante, but in some realizations of the future events, the same contract may
be desirable when viewed ex post. Normal full commitment contracts are unable to
efficiently take advantage of the possibilities that such—probabilistically known—
future events provide.

On the other hand, many multiagent systems consisting of cooperative agents
incorporate some form of decommitment possibility in order to allow the agents to
accommodate new events. For example, in the original contract net protocol, the
agent that had contracted out a task could send a termination message to cancel
the contract even when the contractee had already partially fulfilled the contract.
This was possible because the agents were not self-interested: the contractee did
not mind losing part of its effort without a monetary compensation. Similarly, the
role of decommitment possibilities among cooperative agents has been studied in
meeting scheduling using a contracting approach [73]. Again, the agents did not
require a monetary compensation for their efforts: an agent agreed to cancel a
contract merely based on the fact that some other agent wanted to decommit. In
such multiagent systems consisting of cooperative agents, each agent can be trusted
to use such an externally imposed strategy even though using that strategy might
not be in the agent’s self-interest.

Some research in game theory has focused on utilizing the potential provided by
probabilistically known future events by contingency contracts among self-interested
agents. The obligations of the contract are made contingent on future events.
There are games in which this method provides an expected payoff increase to
both parties of the contract compared to any full commitment contract [53]. Also,
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some deals are enabled by contingency contracts in the sense that there is no full
commitment contract that both agents prefer over their fallback positions, but there
is a contingency contract that each agent prefers over its fallback.

There are at least three problems regarding the use of contingency contracts in
automated negotiation among self-interested agents. Though useful in anticipating a
small number of key events, contingency contracts get cumbersome as the number of
relevant events to monitor from the future increases. In the limit, all domain events
(changes in the domain problem, e.g. new tasks arriving or resources breaking
down) and all negotiation events—contracts from other negotiations—can affect
the value of the obligations of the original contract, and should therefore be
conditioned on. Furthermore, these future events may not only affect the value
of the original contract independently: the value of the original contract may
depend on combinations of the future events [66, 60, 56]. Thus there is a potential
combinatorial explosion of items to be conditioned on. Second, even if it were
feasible to use such cumbersome contingency contracts among the computerized
agents, it is often impossible to enumerate all possible relevant future events in
advance. The third problem is that of verifying the unraveling of the events.
Sometimes an event is only observable by one of the agents. This agent may have
an incentive to lie to the other party of the contract about the event in case the
event is associated with a disadvantageous contingency to the directly observing
agent. Thus, to be viable, contingency contracts would require an event verification
mechanism that is not manipulable and not prohibitively complicated or costly.

Leveled commitment contracts are another method for taking advantage of the
possibilities provided by probabilistically known future events [67, 62, 2, 3]. Instead
of conditioning the contract on future events, a mechanism is built into the contract
that allows unilateral decommitting at any point in time. This is achieved by
specifying in the contract decommitment penalties, one for each agent. If an agent
wants to decommit—i.e. to be freed from the obligations of the contract—it can do
so simply by paying the decommitment penalty to the other party. Such contracts
are called leveled commitment contracts because the decommitment penalties
can be used to choose a level of commitment. The method requires no explicit
conditioning on future events: each agent can do its own conditioning dynamically.
Therefore no event verification mechanism is required either.

While the leveled commitment contracting protocol has intuitive appeal and
several practical advantages [62], it is not obvious that it is beneficial. First, the
breacher’s gain may be smaller than the breach victim’s loss. Second, agents might
decommit insincerely. A truthful agent would decommit whenever its best outside
offer plus the decommitting penalty is better than the current contract. However,
a rational self-interested agent would be more reluctant in decommitting. It can
take into account the chance that the other party will decommit, in which case
the former agent gets freed from the contract obligations, does not have to pay
a decommitting penalty, and will collect a decommitting penalty from the other
party. Due to such reluctant decommitting, contracts may end up being kept even
though breaking them would be best from the social welfare perspective.
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This issue was recently analyzed formally [67, 62]. A Nash equilibrium analysis
was carried out where both contract parties’ decommitting strategies (characterized
by how good an agent’s outside offer has to be to induce the agent to decommit)
were best responses to each other. Both agents were decommitting insincerely but
neither was motivated to change the extent of his lie given that the other did not
change. It was shown that even under such insincere decommitting, the leveled
commitment, protocol outperforms the full commitment protocol. First, it enables
contracts by making them IR in settings where no full commitment contract is IR
(the reverse cannot happen). Second, leveled commitment contracts increase both
contract parties’ expected payoffs over any full commitment contracts.

5.8 Coalition Formation

In many domains, self-interested real world parties—e.g., companies or individual
people—can save costs by coordinating their activities with other parties. For
example when the planning activities are automated, it can be useful to automate
the coordination activities as well. This can be done via a negotiating software
agent representing each party.

The most general approach would be to state the coalition formation protocol as
a normal form game (see e.g. Table 5.1) or an extensive form (i.e. sequential) game,
and then analyze the Nash equilibria to see how the game would be played and
how efficient the outcomes would be. To rigorously incorporate computation in the
analysis, one could treat computational actions as part of each agent’s strategy—
just like physical actions.

However, the Nash equilibrium is often too weak because subgroups of agents can
deviate in a coordinated manner. The Strong Nash equilibrium is a solution concept
that guarantees more stability [5]. It requires that there is no subgroup that can
deviate by changing strategies jointly in a manner that increases the payoff of all of
its members given that nonmembers do not deviate from the original solution. The
Strong Nash equilibrium is often too strong a solution concept because in many
games no such equilibria exist.

The Coalition-Proof Nash equilibrium has been suggested as a partial remedy to
the nonexistence problem of the Strong Nash equilibrium [7, 8]. It requires that
there is no subgroup that can make a mutually beneficial deviation (keeping the
strategies of nonmembers fixed) in a way that the deviation itself is stable according
to the same criterion. A conceptual problem with this solution concept is that
the deviation may be stable within the deviating group, but the solution concept
ignores the possibility that some of the agents that deviated may prefer to deviate
again with agents that did not originally deviate. Furthermore, even these kinds of
solutions do not exist in all games.

Instead of the strategic approach that uses equilibrium analysis, coalition forma-
tion is often studied in a more abstract setting called a characteristic function game
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(CFG). The rest of this section will be restricted to coalition formation in CFGs.
In such games, the value of each coalition S is given by a characteristic function vg.
In other words, each coalition’s value is independent of nonmembers’ actions. How-
ever, in general the value of a coalition may depend on nonmembers’ actions due
to positive and negative externalities (interactions of the agents’ solutions). Nega-
tive externalities between a coalition and nonmembers are often caused by shared
resources. Once nonmembers are using the resource to a certain extent, not enough
of that resource is available to agents in the coalition to carry out the planned solu-
tion at the minimum cost. Negative externalities can also be caused by conflicting
goals. In satisfying their goals, nonmembers may actually move the world further
from the coalition’s goal state(s). Positive externalities are often caused by par-
tially overlapping goals. In satisfying their goals, nonmembers may actually move
the world closer to the coalition’s goal state(s). From there the coalition can reach
its goals less expensively than it could have without the actions of nonmembers.
Settings with externalities between coalitions and nonmembers can be modeled e.g.
as normal form games. CFGs are a strict subset of them. However, many real-world
multiagent problems happen to be CFGs [68].
Coalition formation in CFGs includes three activities:

1. Coalition structure generation: formation of coalitions by the agents such
that agents within each coalition coordinate their activities, but agents do
not coordinate between coalitions. Precisely this means partitioning the set
of agents into exhaustive and disjoint coalitions. This partition is called a
coalition structure (CS). For example, in a game with three agents, there are
seven possible coalitions: {1}, {2}, {3}, {1,2}, {2,3}, {3,1}, {1,2,3} and five
possible coalition structures: {{1}, {2}, {3}}, {{1}, {2,3}}, {{2}, {1,3}}, {{3},
{1,2}}, {{1,2,3}}.

2. Solving the optimization problem of each coalition. This means pooling the
tasks and resources of the agents in the coalition, and solving this joint
problem. The coalition’s objective is to maximize monetary value: money
received from outside the system for accomplishing tasks minus the cost of
using resources. (In some problems, not all tasks have to be handled. This can
be incorporated by associating a cost with each omitted task.)

3. Dividing the value of the generated solution among agents. This value may be

negative because agents incur costs for using their resources.

These activities may be interleaved, and they are not independent. For example,
the coalition that an agent wants to join depends on the portion of the value that
the agent would be allocated in each potential coalition.

5.8.1 Coalition Formation Activity 1: Coalition Structure Generation

Classically, coalition formation research has mostly focused on the payoff division
activity. Coalition structure generation and optimization within a coalition have
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not previously received as much attention. Research has focused [29, 86] on super-
additive games, i.e. games where vgyr > vg + v for all disjoint coalitions S, T C A.
In such games, coalition structure generation is trivial because the agents are best
off by forming the grand coalition where all agents operate together.

Superadditivity means that any pair of coalitions is best off by merging into one.
Classically it is argued that almost all games are superadditive because, at worst,
the agents in a composite coalition can use solutions that they had when they were
in separate coalitions.

However, many games are not superadditive because there is some cost to the
coalition formation process itself. For example, there might be coordination over-
head like communication costs, or possible anti-trust penalties. Similarly, solving
the optimization problem of a composite coalition may be more complex than solv-
ing the optimization problems of component coalitions. Therefore, under costly
computation, component coalitions may be better off by not forming the composite
coalition [68]. Also, if time is limited, the agents may not have time to carry out
the communications and computations required to coordinate effectively within a
composite coalition, so component coalitions may be more advantageous.

In games that are not superadditive, some coalitions are best off merging while
others are not. In such settings, the social welfare maximizing coalition structure
varies, and coalition structure generation becomes highly nontrivial. The goal is to
maximize the social welfare of the agents A by finding a coalition structure

CS* = arg max V(CS),
Ccsepartitions of A

where

V(CS)= Y ws

SeCs

The problem is that the number of coalition structures is large (Q(]A|41/2)), so not
all coalition structures can be enumerated unless the number of agents is extremely
small—in practice about 15 or fewer. Instead, one would like to search through a
subset (N C partitions of A) of coalition structures, and pick the best coalition
structure seen so far:

CSy = argcg%%%V(CS)

Taking an outsider’s view, the coalition structure generation process can be viewed
as search in a coalition structure graph, Figure 5.3. Now, how should such a graph
be searched if there are too many nodes to search it completely?
One desideratum is to be able to guarantee that this coalition structure is within
a worst case bound from optimal, i.e. that
V(CS*)

> -~ 7
"2 vicsy)
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Figure 5.3 Coalition structure graph for a 4-agent game. The nodes represent
coalition structures. The arcs represent mergers of two coalition when followed
downward, and splits of a coalition into two coalitions when followed upward.

is finite, and as small as possible. Let us define n,,;, to be the smallest size of NV
that allows us to establish such a bound k.

Theorem 5.19 Minimal search to establish a bound

To bound k, it suffices to search the lowest two levels of the coalition structure
graph (Figure 5.3). With this search, the bound k& = |A|, this bound is tight, and
the number of nodes searched is n = 2/41=!. No other search algorithm (than the
one that searches the bottom two levels) can establish a bound k while searching
only n = 241! nodes or fewer [65].

Interpreted positively, this means that—somewhat unintuitively—a worst case
bound from optimum can be guaranteed without seeing all CSs. Moreover, as the
number of agents grows, the fraction of coalition structures needed to be searched
approaches zero, i.e. marti{LWT — 0 as |A] — oo. This is because the

[41=1 ¢oalition structures while the total number of

algorithm needs to see only 2
coalition structures is Q(|A[l4!/2).

Interpreted negatively, the theorem shows that exponentially many coalition
structures have to be searched before a bound can be established. This may be
prohibitively complex if the number of agents is large—albeit significantly better
than attempting to enumerate all coalition structures. Viewed as a general impossi-
bility result, the theorem states that no algorithm for coalition structure generation
can establish a bound in general characteristic function games without trying at

least 21411 coalition structures.® This sheds light on earlier algorithms. Specifi-

8. In restricted domains where the vs values have special structure, it may be possible to
establish a bound k with less search. Shehory and Kraus have analyzed coalition structure
generation in one such setting [75]. However, the bound that they compute is not a bound
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1. Search the bottom two levels of the coalition structure graph.

2. Continue with a breadth-first search from the top of the graph as
long as there is time left, or until the entire graph has been searched.

3. Return the coalition structure that has the highest welfare among
those seen so far.

Algorithm 5.3 COALITION-STRUCTURE-SEARCH-1 [Sandholm et al.]

cally, all prior coalition structure generation algorithms for general characteristic
function games [76, 32]—which we know of—fail to establish such a bound. In other
words, the coalition structure that they find may be arbitrarily far from optimal.

On the other hand, the following algorithm will establish a bound in the minimal
amount of search, and then rapidly reduce the bound further if there is time for
more search. If the domain happens to be superadditive, the algorithm finds the
optimal coalition structure immediately.

The next theorem shows how this algorithm reduces the worst case bound, k,
as more of the graph is searched. For convenience, we introduce the notation
h= 7]+

Theorem 5.20 Lowering the bound with further search
After searching level [ with Algorithm 5.3, the bound & is [%1 if |A] = h<l(mod h)
and |A] =1 (mod 2). Otherwise the bound is L%J The bound is tight [65].

As was discussed earlier, before 2/4/=1 nodes have been searched, no bound can
be established, and at n = 2141~ the bound k = |A|. The surprising fact is that
by seeing just one additional node, i.e. the top node, the bound drops in half
(k = ‘zi‘) Then, to drop k to about %, two more levels need to be searched.
Roughly speaking, the divisor in the bound increases by one every time two more
levels are searched. So, the anytime phase (step 2) of Algorithm 5.3 has the desirable
feature that the bound drops rapidly early on, and there are overall diminishing

returns to further search, Figure 5.4.
Comparison to Other Algorithms

All previous coalition structure generation algorithms for general CFGs [76, 32]—
that we know of—fail to establish any worst case bound because they search fewer
than 2%~! coalition structures. Therefore, we compare Algorithm 5.3 to two other
obvious candidates:

® Merging algorithm, i.e. breadth first search from the top of the coalition struc-
ture graph. This algorithm cannot establish any bound before it has searched the

from optimum, but from a benchmark (best that is achievable given a preset limit on the
size of coalitions) which itself may be arbitrarily far from optimum.
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—— COALITION-STRUCTURE-SEARCH-1
-~ Splitting algorithm

1

0 50000 100000
Number of nodes searched

Figure 5.4 Ratio bound k as a function of search size in a 10-agent game.

entire graph. This is because, to establish a bound, the algorithm needs to see
every coalition, and the grand coalition only occurs in the bottom node. Visiting
the grand coalition as a special case would not help much since at least part of
level 2 needs to be searched as well: coalitions of size a <2 only occur there.

Splitting algorithm, i.e. breadth first search from the bottom of the graph.
This is identical to Algorithm 5.3 up to the point where 2°~! nodes have been
searched, and a bound k& = a has been established. After that, the splitting
algorithm reduces the bound much slower than Algorithm 5.3. This can be shown
by constructing bad cases for the splitting algorithm: the worst case may be even
worse. To construct a bad case, set vg = 1if |S| = 1, and vsg = 0 otherwise.
Now, CS* = {{1},...,{a}}, V(CS*) = a, and V(CSy%) = <1, where [ is the
level that the algorithm has completed (because the number of unit coalitions
in a C'S never exceeds [ <1). So, “//((gig;)) = %,9 Figure 5.4. In other words the
divisor drops by one every time a level is searched. However, the levels that this
algorithm searches first have many more nodes than the levels that Algorithm 5.3
searches first.

Variants of the Coalition Structure Generation Problem

One would like to construct an anytime algorithm that establishes a lower k for
any amount of search n, compared to any other anytime algorithm. However, such
an algorithm might not exist. It is conceivable that the search which establishes
the minimal k& while searching n' nodes (n’ > n) does not include all nodes of the
search which establishes the minimal & while searching n nodes. This hypothesis is
supported by the fact that the curves in Figure 5.4 cross in the end. However, this is
not conclusive because Algorithm 5.3 might not be the optimal anytime algorithm,

9. The only exception comes when the algorithm completes the last (top) level, i.e | = a.

V(CS*) _
n ViosT) = 1.
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and because the bad cases for the splitting algorithm might not be the worst cases.

If it turns out that no anytime algorithm is best for all n, one could use
information (e.g. exact, probabilistic, or bounds) about the termination time to
construct a design-to-time algorithm which establishes the lowest possible &k for the
specified amount of search.

So far we have discussed algorithms that have an off-line search control policy,
i.e. the nodes to be searched have to be selected without using information accrued
from the search so far. With on-line search control, one could perhaps establish a
lower k with less search because the search can be redirected based on the values
observed in the nodes so far. With on-line search control, it might make a difference
whether the search observes only values of coalition structures, V(CS), or values
of individual coalitions, vg, in those structures. The latter gives more information.

None of these variants (anytime vs. design-to-time, and off-line vs. on-line search
control) would affect the result that searching the bottom two levels of the coalition
structure graph is the unique minimal way to establish a worst case bound, and
that the bound is tight. However, the results on searching further might vary in
these different settings.

Parallelizing Coalition Structure Search among Insincere Agents

This section discusses the parallelizing of coalition structure search—or any other
search for that matter—across agents because the search can be done more ef-
ficiently in parallel, and the agents will share the burden of computation. Self-
interested agents prefer greater personal payoffs, so they will search for coalition
structures that maximize personal payoffs, ignoring k. Algorithm 5.4 can be used to
motivate self-interested agents to exactly follow the socially desirable search. The
randomizations in that algorithm can be done without a trusted third party by
using a distributed nonmanipulable protocol for randomly permuting the agents,
discussed at the end of Section 5.8.3.

5.8.2 Coalition Formation Activity 2: Optimization within a Coalition

Under unlimited and costless computation, each coalition would solve its optimiza-
tion problem, which would define the value of that coalition. However, in practice, in
many domains it is too complex from a combinatorial viewpoint to solve the prob-
lem exactly. Instead, only an approximate solution can be found. In such settings,
self-interested agents would want to strike the optimal tradeoff between solution
quality and the cost of the associated computation. This will affect the values of
coalitions, which in turn will affect which coalition structure gives the highest wel-
fare. This issue and several related questions are studied in detail in [68].

5.8.3 Coalition Formation Activity 3: Payoff Division

Payoff division strives to divide the value of the chosen coalition structure among
agents in a fair and stable way so that the agents are motivated to stay with the
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1. Deciding what part of the coalition structure graph to search. This can be
decided in advance, or be dictated by a central authority or a randomly chosen agent,
or be decided using some form of negotiation.

2. Partitioning the search space among agents. Each agent is assigned some part
of the coalition structure graph to search. The enforcement mechanism in step 4 will
motivate the agents to search exactly what they are assigned, no matter how unfairly
the assignment is done. One way of achieving ez ante fairness is to randomly allocate
the set search space portions to the agents. In this way, each agent searches equally on
an expected value basis, although ez post, some may search more than others. Another
option is to distribute the space equally among agents, or have some agents pay others
to compensate for unequal amounts of search.

3. Actual search. Each agent searches its part of the search space, and tells the others
which C'S maximized V(C'S) in its search space.

4. Enforcement. Two agents, ¢ and j, will be selected at random. Agent ¢ will re-search

the search space of j to verify that j has performed its search. Agent j gets caught of
mis-searching (or misrepresenting) if ¢ finds a better C'S in j’s space than j reported
(or i sees that the C'S that j reported does not belong to j’s space at all). If j gets
caught, it has to pay a penalty P. To motivate ¢ to conduct this additional search, we
make i the claimant of P. There is no pure strategy Nash equilibrium in this protocol.
(If i searches and the penalty is high enough, then j is motivated to search sincerely.
But then i is not motivated to search since it cannot receive P.) Instead, there will be
a mixed strategy Nash equilibrium where ¢ and j search truthfully with some
probabilities. By increasing P, the probability that j searches can be made arbitrarily
close to one. The probability that ¢ searches approaches zero, which minimizes
enforcement overhead.

5. Additional search. The previous steps can be repeated if more time to search
remains. For example, the agents could first do step 1 of Algorithm 5.3. Then, they
could repeatedly search more and more as time allows.

6. Payoff division. Many alternative methods for payoff division among agents could
be used here. The only concern is that the division of V(CS) may affect what C'S an
agent wants to report as a result of its search since different C'Ss may give the agent
different payoffs—depending on the payoff division scheme. However, by making P
high enough compared to V(CS)s, this consideration can be made negligible compared
to the risk of getting caught.

Algorithm 5.4 Parallel search for self-interested agents [Sandholm et al.]
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Repeat:
Choose a coalition T

- new vT_Z‘eT i new -
For every agent : € T, z}'°" = z; + #, and z7°Y =x; for i €T
new _
new EjeA 3 secs”

S
Maintain feasibility: For every agent ¢ € A, x; = z}°" — ]

Algorithm 5.5 A transfer scheme for reaching the core [84].

coalition structure rather than move out of it. Several ways of dividing payoffs have
been proposed in the literature [29]. This section discusses only two of them: the
core, and the Shapley value.

Payoff Division According to the Core

The core of a CFG with transferable payoffs is a set of payoff configurations (Z,CS),
where each  is a vector of payoffs to the agents in such a manner that no subgroup
is motivated to depart from the coalition structure C'S:

Definition 5.3
Core = {(Z,CS)|VS C A,) ;cqgxzi >vsand ), 4 Ti = ) gcog Vst

Clearly, only coalition structures that maximize social welfare can be stable in the
sense of the core because from any other coalition structure, the group of all agents
would prefer to switch to a social welfare maximizing one.

The core is the strongest of the classical solution concepts in coalition formation.
It is often too strong: in many cases it is empty [29, 78, 53, 86]. In such games
there is no way to divide the social good so that the coalition structure becomes
stable: any payoff configuration is prone to deviation by some subgroup of agents.
The new solution that is acquired by the deviation is again prone to deviation and
so on. There will be an infinite sequence of steps from one payoff configuration to
another. To avoid this, explicit mechanisms such as limits on negotiation rounds,
contract costs, or some social norms need to be in place in the negotiation setting.

Another problem is that the core may include multiple payoff vectors and the
agents have to agree on one of them. An often used solution is to pick the nucleolus
which, intuitively speaking, corresponds to a payoff vector that is in the center of
the set of payoff vectors in the core [29, 78, 53].

A further problem with the core is that the constraints in the definition become
numerous as the number of agents increases. This is due to the combinatorial subset
operator in the definition. To reduce the associated cognitive burden of the agents
that try to reach a payoff division in the core, Algorithm 5.5 can be used for payoff
division. It stays within the given C'S, and iteratively changes the payoff division. If
the core is nonempty, Algorithm 5.5 will converge to a solution in the core starting
from any initial payoff division. The choice of 7' can be made at random, or largest
(W= jer T first. The latter variant tends to converge faster. There is no guarantee
that a self-interested agent is motivated to follow the transfer scheme truthfully.
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Payoff Division according to the Shapley Value

The Shapley value is another policy for dividing payoff in CFGs. It will first be
characterized axiomatically. Agent i is called a dummy if vsyg; ©vs = vy for
every coalition S that does not include i. Agents ¢ and j are called interchangeable
if v(s\fipugjy = vs for every coalition S that includes ¢ but not j. The axioms of
the Shapley value are:

= Symmetry: If 7 and j are interchangeable then z; = z;.
® Dummies: If i is a dummy then z; = vg;.
= Additivity: For any two games v and w, x; in v + w equals z; in v plus z; in w,

where v + w is the game defined by (v + w)s = vs + wg.

Theorem 5.21
The following is the only payoff division scheme that satisfies these three axioms [74]:

!
wi=y (4] ©|S||A|,|S| (:)1)'[1)5 Svs—{i}]
scaA

This payoff is called the Shapley value of agent ¢. It can be interpreted as the
marginal contribution of agent ¢ to the coalition structure, averaged over all possible
joining orders. The joining order matters since the perceived contribution of agent
1 varies based on which agents have joined before it.

The Shapley value always exists and is unique, while the core guarantees neither
of these desirable properties. Like the core, the Shapley value is also Pareto efficient:
the entire value of the coalition structure gets distributed among the agents. Like the
core, the Shapley value guarantees that individual agents and the grand coalition
are motivated to stay with the coalition structure. However, unlike the core, it does
not guarantee that all subgroups of agents are better off in the coalition structure
than by breaking off into a coalition of their own. This is not guaranteed by the
Shapley value even in games where such a solution exists, i.e. the core is nonempty.

Another problem with the Shapley value is that the marginal contribution of
each agent has to be computed over all joining orders, and there are |A|! of them.
One can guarantee each agent an ezpected payoff equal to its Shapley value by
randomizing the joining order. This allows one to focus on one joining order only.
A trusted third party needs to carry out the randomization since each agent has
strong preferences over different joining orders because these orders lead to different
payoffs for the agent.

The need for a trusted third party randomizer can be overcome via Zlotkin and
Rosenschein’s recent distributed nonmanipulable protocol for finding a randomized
joining order [86]. First, every agent constructs a random permutation of the agents,
encrypts it, and sends it to all others. Once an agent has received an encrypted
permutation from every other agent, it broadcasts its key. These keys are then used
to decrypt the permutations. The overall joining order is determined by sequentially
permuting the results. For example, say that in a game of three agents, agent
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one’s permutation is 3, 1, 2, agent two’s permutation is 1, 3, 2, and agent three’s
permutation is 2, 3, 1. Applying agent one’s permutation gives 3, 1, 2. Applying
two’s permutation to that gives 3, 2, 1. Applying three’s permutation to that results
in a joining order of 2, 1, 3.

An agent can do no better than randomize its permutation—assuming that at
least one other agent randomizes its permutation (if the former agent knew exactly
what all other agents’ permutations are, that agent could tailor its permutation
and do better). This assumes that the agent cannot change the interpretation of its
permutation by changing its key after receiving the keys from others and decrypting
their permutations. Changing the key so as to customize the interpretation of the
permutation at that point may be difficult, and it can be made more difficult by
enhancing Zlotkin and Rosenschein’s protocol by requiring that every agent prefixes
its permutation by a common string, e.g. “Hello world”. Now manipulation would
require the agent to construct a key that will change the interpretation of the agent’s
permutation in a desirable way while not changing the prefix.

5.9 Conclusions

Multiagent systems consisting of self-interested agents are becoming ubiquitous.
Such agents cannot be coordinated by externally imposing the agent’s strategies.
Instead the interaction protocols have to be designed so that each agent really is
motivated to follow the strategies that the protocol designer wants it to follow.
This chapter discussed these issues under different types of protocols and different
settings. Substantial knowledge exists of impossibility results and of constructive
possibility demonstrations [39, 35]. This chapter only touched on some of it.

The implications of computational limitations were given special emphasis as a
topic that has not traditionally received adequate attention. It is clear that such
limitations have fundamental impact on what strategies agents want to use, and
therefore also on what protocols are desirable, and what is (im)possible. This is one
area where microeconomics and computer science fruitfully blend. Another area
of substantial current and potential future cross-fertilization is the relaxation of
the common knowledge assumption that underlies the Nash equilibrium solution
concept and its refinements [16, 20].

In the future, systems will increasingly be designed, built, and operated in a dis-
tributed manner. A larger number of systems will be used by multiple real-world
parties. The problem of coordinating these parties and avoiding manipulation can-
not be tackled by technological or economic methods alone. Instead, the successful
solutions are likely to emerge from a deep understanding and careful hybridization
of both.
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5.10 Exercises

[Level 1] The Gibbard-Satterthwaite theorem states that it is impossible to
devise a truthpromoting voting mechanism for insincere agents. On the other
hand, the Clarke tax mechanism is such a voting mechanism. Explain why this
is not a contradiction.

[Level 2] Let there be a salesman located at each one of the following three
coordinates: (0,0), (0,5), and (5,0). Let there be a customer at each one of
the following five locations: (1,4), (1.5,0), (2,2), (3,2), (5,2). Each customer
has to be assigned to exactly one salesman who will visit the customer. After
visiting all of the customers assigned to him, the salesman has to return to his
initial location. The domain cost that the salesman incurs from his travel is the
Euclidean length of the trip. The tasks (locations of customers) are known to
all salesmen. Write a program which uses the Clarke tax voting mechanism to
solve this problem, i.e. tax is levied in a way that each salesman is motivated
to reveal his preferences (over task allocations among agents) truthfully.

How many possible task allocations are there?

o &
~—~ —

List each agent’s preference (numeric value) for each of these.

Which task allocation will be chosen?

o
~

List the route of each salesman.

@

How much domain (travel) cost does each salesman incur?

()
N

How much tax does each agent pay/receive?
What is the budget balance/deficit?
Demonstrate a way—if one exists—how some agents can beneficially col-

lude by revealing their preferences untruthfully. How would this changes
answers (c)-(g)?

o
~— ~—

N N N N N N SN S
= oL
~

[Level 3] Program an example general equilibrium market economy that sat-
isfies the gross substitutes property. Compare the convergence of the price
tatonnement algorithm and the Newtonian price tatonnement algorithm.
Then, experiment with how much one agent can gain by acting strategically
(speculatively) instead of acting competitively as a price taker.

[Level 1] Discuss how the revelation principle relates the Vickrey auction to the
English auction. How does this relate to the “agent” that bids on the human’s
behalf at http://www.webauction.com?

[Level 2] Prove Theorem 5.5.

[Level 2] Show an example where an agent is best off bidding insincerely if the
second-price auction is implemented as open-cry instead of sealed-bid.

[Level 2] Construct an example where O-contracts lead to a local optimum
(when agents use per contract individual rationality as their decision criterion)
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that is not globally optimal.

[Level 4] How should agents look ahead in contracting and in auctions of
interrelated items? The extremes are no lookahead (IR contracts), and full
(game theoretic) lookahead. In practice something in between these extremes
is likely to be best since there is a tradeoff between the computational cost of
looking ahead and the domain cost savings that lookahead may provide.

[Level 3] Construct a 2-agent task allocation problem instance where an agent
benefits from a decoy lie. The protocol should make every agent reveal its tasks
at once (cost functions over tasks may be assumed common knowledge), should
use pure deals, and should divide payoffs according to the Nash bargaining
solution.

[Level 1] Program the transfer scheme for the core. Run it on an example
problem instance where the core is nonempty. What happens when you run it
on a problem instance where the core is empty?

[Level 2] This question is based on [68]. Let there be three agents. Let the unit
cost of computation be $200 (e.g. for a day of supercomputer time). Let the
algorithms’ performance profiles be:

Note that different coalitions might use different amounts of computation.
What is the social welfare maximizing coalition structure? Is it stable accord-
ing to the core (justify your answer)? How would these answers change if
computation were free?
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6 Learning in Multiagent Systems

Sandip Sen and Gerhard Weiss

6.1 Introduction

Learning and intelligence are intimately related to each other. It is usually agreed
that a system capable of learning deserves to be called intelligent; and conversely,
a system being considered as intelligent is, among other things, usually expected to
be able to learn. Learning always has to do with the self-improvement of future
behavior based on past experience. More precisely, according to the standard
artificial intelligence (AI) point of view learning can be informally defined as follows:

The acquisition of new knowledge and motor and cognitive skills and
the incorporation of the acquired knowledge and skills in future system
activities, provided that this acquisition and incorporation is conducted
by the system itself and leads to an improvement in its performance.

This definition also serves as a basis for this chapter. Machine learning (ML), as
one of the core fields of Al is concerned with the computational aspects of learning
in natural as well as technical systems. It is beyond the scope and intention of
this chapter to offer an introduction to the broad and well developed field of ML.
Instead, it introduces the reader into learning in multiagent systems and, with that,
into a subfield of both ML and distributed AI (DAI). The chapter is written such
that it can be understood without requiring familiarity with ML.

The intersection of DAI and ML constitutes a young but important area of
research and application. The DAI and the ML communities largely ignored this
area for a long time (there are exceptions on both sides, but they just prove the
rule). On the one hand, work in DAI was mainly concerned with multiagent systems
whose structural organization and functional behavior typically were determined
in detail and therefore were more or less fixed. On the other hand, work in ML
primarily dealt with learning as a centralized and isolated process that occurs in
intelligent stand-alone systems. In the past this mutual ignorance of DAI and ML
has disappeared, and today the area of learning in multiagent systems receives broad
and steadily increasing attention. This is also reflected by the growing number of
publications in this area; see [23, 24, 43, 45, 64, 66, 68] for collections of papers
related to learning in multiagent systems. There are two major reasons for this
attention, both showing the importance of bringing DAI and ML together:
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= there is a strong need to equip multiagent systems with learning abilities; and

= an extended view of ML that captures not only single-agent learning but also
multiagent learning can lead to an improved understanding of the general
principles underlying learning in both computational and natural systems.

The first reason is grounded in the insight that multiagent systems typically are in-
tended to act in complex—Ilarge, open, dynamic, and unpredictable—environments.
For such environments it is extremely difficult and sometimes even impossible to
correctly and completely specify these systems a priori, that is, at the time of their
design and prior to their use. This would require, for instance, that it is known a
priori which environmental conditions will emerge in the future, which agents will
be available at the time of emergence, and how the available agents will have to re-
act and interact in response to these conditions. The only feasible way to cope with
this difficulty is to endow the individual agents with the ability to improve their
own and the overall system performance. The second reason reflects the insight
that learning in multiagent systems is not just a magnification of learning in stand-
alone systems, and not just the sum of isolated learning activities of several agents.
Learning in multiagent systems comprises learning in stand-alone systems because
an agent may learn in a solitary way and completely independent of other agents.
Moreover, learning in multiagent systems extends learning in stand-alone systems.
This is because the learning activities of an individual agent may be considerably
influenced (e.g., delayed, accelerated, redirected, or made possible at all) by other
agents and because several agents may learn in a distributed and interactive way as
a single coherent whole. Such an extended view of learning is qualitatively different
from the view traditionally taken in ML, and has the capacity to provoke valuable
research impulses that lead to novel machine learning techniques and algorithms.

The chapter is organized as follows. First, Section 6.2 presents a general char-
acterization of learning in multiagent systems. Next, Sections 6.3 to 6.5 describe
several concrete learning approaches in detail. These sections offer three major,
overlapping perspectives of learning in multiagent systems, each reflecting a dif-
ferent focus of attention: learning and activity coordination; learning about and
from other agents; and learning and communication. Section 6.6 shows open direc-
tions for future research, and gives some further references to related work in ML,
economics, and psychology.

6.2 A General

Characterization

Learning in multiagent systems is a many-faceted phenomenon, and it is therefore
not surprising that many terms can be found in the literature that all refer to
this kind of learning while stressing different facets. Examples of such terms are:
mutual learning, cooperative learning, collaborative learning, co-learning, team
learning, social learning, shared learning, pluralistic learning, and organizational
learning. The purpose of this section is to make the different facets more explicit
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by offering a general characterization of learning in multiagent systems. This
is done by describing, from the point of view of multiagent systems, principal
categories of learning, basic features in which learning approaches may differ,
and the fundamental learning problem known as the credit-assignment problem.
The intention of this section is to enable the reader to basically characterize
algorithms for learning in multiagent systems, and to get an understanding of what
makes this kind of learning different from learning in stand-alone systems. (Further
considerations of how to characterize learning in multiagent systems can be found
in [63].)

6.2.1 Principal Categories

It is useful to distinguish two principal categories of learning in multiagent systems:

»  centralized learning (or isolated learning) and

®  decentralized learning (or interactive learning).

In order to make clear what kinds of learning are covered by these two categories
we introduce the notion of a learning process:

The term learning process refers to all activities (e.g., planning, inference
or decision steps) that are executed with the intention to achieve a
particular learning goal.

Learning is said to be centralized if the learning process is executed in all its parts
by a single agent and does not require any interaction with other agents. With
that, centralized learning takes place through an agent completely independent
of other agents—in conducting centralized learning the learner acts as if it were
alone. Learning is said to be decentralized if several agents are engaged in the
same learning process. This means that in decentralized learning the activities
constituting the learning process are executed by different agents. In contrast to
centralized learning, decentralized learning relies on, or even requires, the presence
of several agents capable of carrying out particular activities.

In a multiagent system several centralized learners that try to obtain different
or even the same learning goals may be active at the same time. Similarly, there
may be several groups of agents that are involved in different decentralized learning
processes. Moreover, the learning goals pursued by such groups may be different or
identical. It is also important to see that a single agent may be involved in several
centralized and/or distributed learning processes at the same time. Centralized
and decentralized learning are best interpreted as two appearances of learning in
multiagent systems that span a broad range of possible forms of learning. Learning
features that can be applied to structure this broad range are shown in the next
subsection.
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6.2.2 Differencing Features

The two learning categories described above are of a rather general nature, and they
cover a broad variety of forms of learning that can occur in multiagent systems.
In the following, several differencing features are described that are useful for
structuring this variety. The last two features, which are well known in the field of
ML (see, e.g., [6] where several other features are described), are equally well suited
for characterizing centralized and decentralized learning approaches. The others are
particularly or even exclusively useful for characterizing decentralized learning.

(1) The degree of decentralization. The decentralization of a learning process
concerns its

®  distributedness and

= parallelism.

One extreme is that a single agent carries out all learning activities sequentially. The

other extreme is that the learning activities are distributed over and parallelized
through all agents in a multiagent system.

(2) Interaction-specific features. There is a number of features that can be
applied to classifying the interactions required for realizing a decentralized learning
process. Here are some examples:

= the level of interaction (ranging from pure observation over simple signal passing
and sophisticated information exchange to complex dialogues and negotiations);

® the persistence of interaction (ranging from short-term to long-term);

= the frequency of interaction (ranging from low to high);

® the pattern of interaction (ranging from completely unstructured to strictly
hierarchical); and

= the variability of interaction (ranging from fixed to changeable).

There may be situations in which learning requires only “minimal interaction” (e.g.,
the observation of another agent for a short time interval), whereas other learning
situations require “maximal interaction” (e.g., iterated negotiation over a long time
period).

(3) Involvement-specific features. Examples of features that can be used for
characterizing the involvement of an agent into a learning process are

= the relevance of involvement and

® role played during involvement.

With respect to relevance, two extremes can be distinguished: the involvement of
an agent is not a condition for goal attainment because its learning activities could

be executed by another available agent as well; and to the contrary, the learning
goal could not be achieved without the involvement of exactly this agent. With



6.2 A General Characterization 263

respect to the role an agent plays in learning, an agent may act as a “generalist”
in so far as it performs all learning activities (in the case of centralized learning),
or it may act as a “specialist” in so far as it is specialized in a particular activity
(in the case of decentralized learning).

(4) Goal-specific features. Two examples of features that characterize learning
in multiagent systems with respect to the learning goals are

= the type of improvement that is tried to be achieved by learning and

= the compatibility of the learning goals pursued by the agents.

The first feature leads to the important distinction between learning that aims at
an improvement with respect to a single agent (e.g., its motor skills or inference
abilities) and learning that aims at an improvement with respect to several agents
acting as a group (e.g., their communication and negotiation abilities or their
degree of coordination and coherence). The second feature leads to the important
distinction between conflicting and complementary learning goals.

(5) The learning method. The following learning methods or strategies used by
an agent are usually distinguished:

= rote learning (i.e., direct implantation of knowledge and skills without requiring
further inference or transformation from the learner);

® learning from instruction and by advice taking (i.e., operationalization—
transformation into an internal representation and integration with prior knowl-
edge and skills—of new information like an instruction or advice that is not
directly executable by the learner);

= learning from examples and by practice (i.e., extraction and refinement of
knowledge and skills like a general concept or a standardized pattern of motion
from positive and negative examples or from practical experience);

® learning by analogy (i.e., solution-preserving transformation of knowledge and
skills from a solved to a similar but unsolved problem);
® learning by discovery (i.e., gathering new knowledge and skills by making

observations, conducting experiments, and generating and testing hypotheses
or theories on the basis of the observational and experimental results).

A major difference between these methods lies in the amount of learning efforts
required by them (increasing from top to bottom).

(6) The learning feedback. The learning feedback indicates the performance
level achieved so far. This feature leads to the following distinction:

® gsupervised learning (i.e., the feedback specifies the desired activity of the learner
and the objective of learning is to match this desired action as closely as possible);

= reinforcement learning (i.e., the feedback only specifies the utility of the actual
activity of the learner and the objective is to maximize this utility);
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= unsupervised learning (i.e., no explicit feedback is provided and the objective
is to find out useful and desired activities on the basis of trial-and-error and
self-organization processes).

In all three cases the learning feedback is assumed to be provided by the system
environment or the agents themselves. This means that the environment or an
agent providing feedback acts as a “teacher” in the case of supervised learning, as
a “critic” in the case of reinforcement learning, and just as a passive “observer” in
the case of unsupervised learning.

These features characterize learning in multiagent systems from different points
of view and at different levels. In particular, they have a significant impact on
the requirements on the abilities of the agents involved in learning. Numerous
combinations of different values for these features are possible. It is recommended
that the reader thinks about concrete learning scenarios (e.g., ones known from
everyday life), their characterizing features, and how easy or difficult it would be
to implement them.

6.2.3 The Credit-Assignment Problem

The basic problem any learning system is confronted with is the credit-assignment
problem (CAP), that is, the problem of properly assigning feedback—credit or
blame—for an overall performance change (increase or decrease) to each of the sys-
tem activities that contributed to that change. This problem has been traditionally
considered in the context of stand-alone systems, but it also exists in the context
of multiagent systems. Taking the standard AI view according to which the activi-
ties of an intelligent system are given by the external actions carried out by it and
its internal inferences and decisions implying these actions, the credit-assignment
problem for multiagent systems can be usefully decomposed into two subproblems:

= the inter-agent CAP, that is, the assignment of credit or blame for an overall
performance change to the external actions of the agents; and

= the intra-agent CAP, that is, the assignment of credit or blame for a particular
external action of an agent to its underlying internal inferences and decisions.

Figures 6.1 and 6.2 illustrate these subproblems. The inter-agent CAP is particu-
larly difficult for multiagent systems, because here an overall performance change
may be caused by external actions of different spatial and/or logically distributed
agents. Solving this subproblem necessitates to operate on the level of the over-
all system, and to answer the question of what action carried out by what agent
contributed to what extent to the performance change. The second subproblem is
equally difficult in single-agent and multiagent systems. Solving this sub-problem
necessitates to operate on the level of the individual agent, and to answer the ques-
tion of what knowledge, what inferences and what decisions led to an action. How
difficult it is to answer these questions and, with that, to solve the CAP, depends
on the concrete learning situation.
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Figure 6.1 Inter-agent CAP. The overall system consists of four agents. The ith
agent is represented by @ A feedback F for an overall performance change is
“decomposed” into action-specific portions F;;, where F;; indicates to what degree
the jth external action carried out by the ith agent contributes to F.
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Figure 6.2 Intra-agent CAP. Agent 3 carried out three actions, each based on
internal knowledge (O), inferences (>) and decisions (¢). The feedback Fs; for
action 3, for instance, is divided among an inference and a decision step. Action 1
is assumed to have no influence on the overall performance change.

The above description of the CAP is of a conceptual nature, and aims at a clear
distinction between the inter-agent and intra-agent subproblems. In practice this
distinction is not always obvious. Moreover, typically the available approaches to
learning in multiagent systems do not explicitly differ between the two subproblems,
or just focus on one of them while strongly simplifying the other. In any case, it
is useful to be aware of both subproblems when attacking a multiagent learning
problem.
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6.3 Learning and Activity Coordination

This section is centered around the question of how multiple agents can learn to
appropriately coordinate their activities (e.g., in order to optimally share resources
or to maximize one own’s profit). Appropriate activity coordination is much con-
cerned with the development and adaptation of data-flow and control patterns that
improve the interactions among multiple agents (see also Chapters 2, 3, and 7).
Whereas previous research on developing agent coordination mechanisms focused
on off-line design of agent organizations, behavioral rules, negotiation protocols,
etc., it was recognized that agents operating in open, dynamic environments must
be able to adapt to changing demands and opportunities [29, 44, 68]. In particular,
individual agents are forced to engage with other agents that have varying goals,
abilities, composition, and lifespan. To effectively utilize opportunities presented
and avoid pitfalls, agents need to learn about other agents and adapt local behav-
ior based on group composition and dynamics. To represent the basic problems and
approaches used for developing coordination through learning, two of the earliest
research efforts in the area of multiagent learning will be described below. The first
is work by Sen and his students [47] on the use of reinforcement learning techniques
for the purpose of achieving coordination in multiagent situations in which the indi-
vidual agents are not aware of each another. The second approach is work by Weiss
on optimization of environmental reinforcement by a group of cooperating learn-
ers [62]. (Both approaches were developed in the first half of the 1990s, and thus at
a time of intensified interest in reinforcement learning techniques. It is stressed that
several other reinforcement learning methods were described in the literature that
could be also used to demonstrate the scope and benefits of learning to coordinate
in multiagent settings; we choose the two approaches mentioned above because we
are particular familiar with them.) To enable the reader to follow the discussion of
the use of reinforcement learning techniques, a brief overview of the reinforcement
learning problem and a couple of widely used techniques for this problem class is
presented.

6.3.1 Reinforcement Learning

In reinforcement learning problems [3, 26] reactive and adaptive agents are given
a description of the current state and have to choose the next action from a set of
possible actions so as to maximize a scalar reinforcement or feedback received after
each action. The learner’s environment can be modeled by a discrete time, finite
state, Markov decision process that can be represented by a 4-tuple (S, A, P,r)
where S is a set of states, A is a set of actions, P : S x S x A — [0,1] gives the
probability of moving from state s; to s on performing action a, and r : Sx A — R
is a scalar reward function. Each agent maintains a policy, 7, that maps the current
state into the desirable action(s) to be performed in that state. The expected
value of a discounted sum of future rewards of a policy 7 at a state x is given

def

by VI '= E{}.;2 ']}, where r], is the random variable corresponding to the
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reward received by the learning agent ¢ time steps after if starts using the policy m
in state s, and v is a discount rate (0 < v < 1).

Q-Learning

Various reinforcement learning strategies have been proposed that can be used by
agents to develop a policy for maximizing rewards accumulated over time. For
evaluating the classifier system paradigm for multiagent reinforcement learning
described below, it is compared with the Q-learning [59] algorithm, which is
designed to find a policy 7* that maximizes VJ(s) for all states s € S. The
decision policy is represented by a function, @ : S x A — R, which estimates
long-term discounted rewards for each state-action pair. The @ values are defined
as Q7 (s,a) = V" (s), where a;7 denotes the event sequence of choosing action a
at the current state, followed by choosing actions based on policy =. The action, a,
to perform in a state s is chosen such that it is expected to maximize the reward,
Vvﬂ* (s) = max QZ*(S, a) for all s € S.

If an action a in state s produces a reinforcement of R and a transition to state s,
then the corresponding @ value is modified as follows:

Qls,0) & (1= ) Qs,a) + B (R+7 maxQ(s', )

where (3 is a small constant called learning rate.
Learning Classifier Systems

Classifier systems are rule based systems that learn by adjusting rule strengths from
environmental feedback and by discovering better rules using genetic algorithms. In
the following a simplified classifier system is used where all possible message action
pairs are explicitly stored and classifiers have one condition and one action. These
assumptions are similar to those made by Dorigo and Bersini [15]. Following their
notation, a classifier ¢ is described by (¢;, a;), where ¢; and a; are respectively the
condition and action parts of the classifier. Si(c¢;, a;) gives the strength of classifier
1 at time step .

All classifiers are initialized to some default strength. At each time step of problem
solving, an input message is received from the environment and matched with the
classifier rules to form a matchset, M. One of these classifiers is chosen to fire
and, based on its action, a feedback may be received from the environment. Then
the strengths of the classifier rules are adjusted. This cycle is repeated for a given
number of time steps. A series of cycles constitute a trial of the classifier system. In
the bucket brigade algorithm (BBA) for credit allocation, when a classifier is chosen
to fire, its strength is increased by the environmental feedback. But before that, a
fraction « of its strength is removed and added to the strength of the classifier that
fired in the last time cycle. So, if (i) the firing of classifier i at time step ¢ results in
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an external feedback R and (ii) classifier j fires at the next time step, the following
equation gives the strength update of classifier i:

Stﬂ(ci,ai) = (]. — Oé) * St(Ci, ai) + % (R + St+1(6j,aj))

It is instructive to note that the BBA and Q-learning credit allocation schemes are
similar in nature.

6.3.2 Isolated, Concurrent Reinforcement Learners

Reinforcement learning techniques can be used by agents to develop action selection
policies to optimize environmental feedback by forming a mapping between percep-
tions and actions. A particular advantage of these techniques is the fact that they
can be used in domains in which agents have little or no pre-existing domain ex-
pertise, and have little information about the capabilities and goals of other agents.
The lack of this useful information makes the coordination problem particularly
hard. Almost all currently used coordination mechanisms rely heavily on domain
knowledge and shared information between agents. The position espoused here is
that reinforcement learning approaches can be used as new coordination techniques
for domains where currently available coordination schemes are ineffective.

A related question is: should agents choose not to use communication while learn-
ing to coordinate (see 6.5)? Though communication is often helpful and indispens-
able as an aid to group activity, it does not guarantee coordinated behavior [20], is
time-consuming, and can detract from other problem-solving activity if not care-
fully controlled [16]. Also, agents overly reliant on communication will be severely
affected if the quality of communication is compromised (broken communication
channels, incorrect or deliberately misleading information, etc.). At other times,
communication can be risky or even fatal (as in some combat situations where
the adversary can intercept communicated messages). Even when communication
is feasible and safe, it is prudent to use it only when absolutely necessary. Such
a design philosophy produces systems where agents do not flood communication
channels with unwarranted information. As a result, agents do not have to shift
through a maze of useless data to locate necessary and time-critical information.

In the isolated, concurrent form of learning discussed here, each agent learns to
optimize its reinforcement from the environment. Other agents in the environment
are not explicitly modeled. As such, an interesting research question is whether it is
feasible for such an agent to use the same learning mechanism in both cooperative
and non-cooperative environments.

An underlying assumption of most reinforcement learning techniques is that the
dynamics of the environment is not affected by other agencies. This assumption is
invalid in domains with multiple, concurrent learners. A valid concern, therefore, is
whether standard reinforcement learning techniques will be adequate for concurrent,
isolated learning of coordination. More generally, the following dimensions were
identified to characterize domains amenable to concurrent, isolated, reinforcement
learning (referred to as CIRL henceforth)