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Preface

Purpose { The study of multiagent systems began in the �eld of distributed

arti�cial intelligence (DAI) about 20 years ago. Today these systems are not simply

a research topic, but are also beginning to become an important subject of academic

teaching and industrial and commercial application. While there are several high-

quality collections of articles on multiagent systems and DAI in print, most of

these are proceedings of conferences and workshops. What is urgently needed is a

book that o�ers a comprehensive and up-to-date introduction and is suitable as a

textbook for the �eld. The purpose of this volume is to ful�ll this need.

Features { The book o�ers a number of features that make it especially useful to

readers:

Scope. It is designed as an introductory text and a textbook that covers the

whole range of multiagent systems. The book re
ects the state of the art in this

�eld, and treats basic themes (Part I) as well as several closely related themes

(Part II) in detail.

Theory. It gives a clear and careful presentation of the key concepts, methods,

and algorithms that form the core of the �eld. Many illustrations and examples

are provided.

Practice. The emphasis is not only on theory, but also on practice. In particular,

the book includes a number of thought-provoking exercises of varying degrees

of di�culty at the end of each chapter that allow the reader to gain practical

experience.

Glossary. It contains an extensive glossary that provides the reader with compact

explanations of relevant terminology used in the �eld.

Expertise. Its chapters have been written by leading and outstanding authorities.

This guarantees that the book is built on a very broad and diverse basis of

knowledge and experience.

It is worth saying a little more about the last-mentioned feature. It is clear that

a book prepared by just a few authors, as textbooks usually are, is likely to be

more coherent than a book in which many authors are involved. But as the reader

will see, the contributors to Multiagent Systems have invested considerable e�ort

in ensuring the coherence of this book (and, in so doing, they practiced some of the

basic issues|cooperation and negotiation|described in their chapters).
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Readership { The book is primarily intended to meet the interests of the following

audiences:

Professors and students who require an up-to-date, in-depth source of material

for their courses on multiagent systems and DAI. Below it is described how the

book can be used as the basis of a number of di�erent courses.

Researchers in the �eld who wish to branch out beyond the area in which they are

specialized to better understand the �eld as a whole, to investigate relationships

between their own work and work by others, and to obtain valuable stimuli for

their future research activities.

Software practitioners and professionals from industry who want to �nd out

whether and how the technologies available in the �eld can be usefully applied

in their working domains.

Owing to the potential impact of multiagent systems on a variety of disciplines,

this book can also serve as a repository and primary reference volume for com-

puter scientists, sociologists, economists, management and organization scientists,

engineers, psychologists, and philosophers.

How to Use This Book { The book can be used for teaching as well as self-

study. The chapters and consequently the overall book are designed to be self-

contained and understandable without additional material. Of course, there are

many relationships between the chapters, but in principle they can be treated

independently and read in any sequence. I recommended, however, to start with

Chapters 1 and 2.

This book can be used as a text for a graduate or advanced undergraduate course.

A one-quarter course should concentrate on the �rst three chapters of Part I of

the book; with whatever time remains, further chapters of Part I, or parts of

them, could be covered. A course based on Part I could comfortably occupy a full

semester. A course fully covering Part I, Part II, and some separate material could

take an entire year. The book is also useful as a supplementary text for a general

AI course; for instance, within such a course the considerations on \classical" AI

topics like problem solving and search could be enriched by Chapter 3 and Chapter

4, respectively. Moreover, most chapters could be also used as the starting material

for speciality courses and seminars ; for instance, Chapter 5, Chapter 6, and Chapter

7 could be used for courses devoted to distributed decision making, distributed

machine learning, and computational organization theory, respectively. Although it

is obvious, I �nally want to mention that Chapter 8 should be part of courses with

an emphasis on theory, while Chapter 9 should be part of courses with a focus on

applications.

The exercises allow the reader to further deepen her or his knowledge, and course

instructors might use them for putting more emphasis on practical aspects. Some

exercises are fairly simple and are intended to make sure that the material provided
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in the chapters is mastered. Others are much more di�cult and may serve as a

subject of class discussions or advanced team work.

Throughout the book numerous references to the source literature are provided.

They enable interested students to further pursue speci�c aspects, and they support

professors in choosing additional course material.

The chapters can be understood without speci�c prior knowledge. However, a

background in computer science and mathematics/logic de�nitely would be helpful

in using all parts of the book most e�ciently.

One Final Word { When working through this book, the reader is asked to keep

in mind that multiagent systems and DAI constitute a young and dynamic �eld of

interdisciplinary nature whose de�ning boundaries are not yet fully clear. It is my

particular hope that this book contributes to the search for sharper boundaries by

spurring further research, teaching, and application in this fascinating �eld.

Acknowledgments { This book would not have happened without the help of

many people. I am most greateful to the authors for participating in this challenging

project. They contributed signi�cantly to this book not only by preparing and

coordinating their texts|the chapters, the chapter descriptions included in the

Prologue, and the index and glossary entries|but also by providing many useful

comments and suggestions on how the book's overall quality could be further

improved. It was the authors' enthusiasm and encouragement that often made my

editorial work easier. Particular thanks are due to Mike Wooldridge and Munindar

Singh for reading a draft of the Prologue.

At The MIT Press, I am grateful to Robert Prior for providing expert assistance

and support during this project whenever necessary.

I give my warmest thanks to my wife, Tina, for her tolerance and patience at the

many evenings and weekends I worked on this book.

Over the course of this project I have been �nancially supported by DFG (German

National Science Foundation) under grant We1718/6-1.

Of course, despite the authors' in
uencing comments and suggestions, responsi-

bility for the conception of this book and the �nal selection of the chapter themes

ultimately lies with me.

Gerhard Wei�
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Multiagent Systems and Distributed Arti�cial Intelligence

Since its inception in the mid to late 1970s distributed arti�cial intelligence (DAI)

evolved and diversi�ed rapidly. Today it is an established and promising research

and application �eld which brings together and draws on results, concepts, and

ideas from many disciplines, including arti�cial intelligence (AI), computer science,

sociology, economics, organization and management science, and philosophy. Its

broad scope and multi-disciplinary nature make it di�cult to precisely characterize

DAI in a few words. The following de�nition is intended to serve as a starting point

for exploring this arena and as a constant point of reference for reading through

this book:

DAI is the study, construction, and application of multiagent systems,

that is, systems in which several interacting, intelligent agents pursue

some set of goals or perform some set of tasks.

An agent is a computational entity such as a software program or a robot that can

be viewed as perceiving and acting upon its environment and that is autonomous in

that its behavior at least partially depends on its own experience. As an intelligent

entity, an agent operates 
exibly and rationally in a variety of environmental

circumstances given its perceptual and e�ectual equipment. Behavioral 
exibility

and rationality are achieved by an agent on the basis of key processes such as

problem solving, planning, decision making, and learning. As an interacting entity,

an agent can be a�ected in its activities by other agents and perhaps by humans.

A key pattern of interaction in multiagent systems is goal- and task-oriented

coordination, both in cooperative and in competitive situations. In the case of

cooperation several agents try to combine their e�orts to accomplish as a group

what the individuals cannot, and in the case of competition several agents try to

get what only some of them can have. The long-term goal of DAI is to develop

mechanisms and methods that enable agents to interact as well as humans (or even

better), and to understand interaction among intelligent entities whether they are

computational, human, or both. This goal raises a number of challenging issues that

all are centered around the elementary question of when and how to interact with

whom.

Two main reasons to deal with DAI can be identi�ed, and these two reasons are

the primary driving forces behind the growth of this �eld in recent years. The �rst

is that multiagent systems have the capacity to play a key role in current and future
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computer science and its application. Modern computing platforms and information

environments are distributed, large, open, and heterogeneous. Computers are no

longer stand-alone systems, but have became tightly connected both with each

other and their users. The increasing complexity of computer and information

systems goes together with an increasing complexity of their applications. These

often exceed the level of conventional, centralized computing because they require,

for instance, the processing of huge amounts of data, or of data that arises at

geographically distinct locations. To cope with such applications, computers have to

act more as \individuals" or agents, rather than just \parts." The technologies that

DAI promises to provide are among those that are urgently needed for managing

high-level interaction in and intricate applications for modern computing and

information processing systems.

The second reason is that multiagent systems have the capacity to play an

important role in developing and analyzing models and theories of interactivity in

human societies. Humans interact in various ways and at many levels: for instance,

they observe and model one another, they request and provide information, they

negotiate and discuss, they develop shared views of their environment, they detect

and resolve con
icts, and they form and dissolve organizational structures such

as teams, committees, and economies. Many interactive processes among humans

are still poorly understood, although they are an integrated part of our everyday

life. DAI technologies enable us to explore their sociological and psychological

foundations.

Intelligent Agents that Interact

To make the above considerations more concrete, a closer look has to be taken on

multiagent systems and thus on \interacting, intelligent agents":

\Agents" are autonomous, computational entities that can be viewed as per-

ceiving their environment through sensors and acting upon their environment

through e�ectors. To say that agents are computational entities simply means

that they physically exist in the form of programs that run on computing de-

vices. To say that they are autonomous means that to some extent they have

control over their behavior and can act without the intervention of humans and

other systems. Agents pursue goals or carry out tasks in order to meet their

design objectives, and in general these goals and tasks can be supplementary as

well as con
icting.

\Intelligent" indicates that the agents pursue their goals and execute their

tasks such that they optimize some given performance measures. To say that

agents are intelligent does not mean that they are omniscient or omnipotent,

nor does it mean that they never fail. Rather, it means that they operate


exibly and rationally in a variety of environmental circumstances, given the

information they have and their perceptual and e�ectual capabilities. A major
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focus of DAI therefore is on processes such as problem solving, planning, search,

decision making, and learning that make it possible for agents to show 
exibility

and rationality in their behavior, and on the realization of such processes in

multiagent scenarios.

\Interacting" indicates that the agents may be a�ected by other agents or

perhaps by humans in pursuing their goals and executing their tasks. Interaction

can take place indirectly through the environment in which they are embedded

(e.g., by observing one another or by carrying out an action that modi�es the

environmental state) or directly through a shared language (e.g., by providing

information in which other agents are interested or which confuses other agents).

DAI primarily focuses on coordination as a form of interaction that is particularly

important with respect to goal attainment and task completion. The purpose

of coordination is to achieve or avoid states of a�airs that are considered as

desirable or undesirable by one or several agents. To coordinate their goals and

tasks, agents have to explicitly take dependencies among their activities into

consideration. Two basic, contrasting patterns of coordination are cooperation

and competition. In the case of cooperation, several agents work together and

draw on the broad collection of their knowledge and capabilities to achieve a

common goal. Against that, in the case of competition, several agents work

against each other because their goals are con
icting. Cooperating agents try

to accomplish as a team what the individuals cannot, and so fail or succeed

together. Competitive agents try to maximize their own bene�t at the expense

of others, and so the success of one implies the failure of others.

It has to be stressed that there is no universally accepted de�nition of agency or

of intelligence, and the above explanations are just intended to show how these

terms are generally understood and what is generally considered as essential for an

entity to be an intelligent agent. The concept of an intelligent agent that interacts

allows various degrees of degradation, and is perhaps best viewed as a \guideline"

for designing and analyzing systems rather than an \instruction" that allows no

variation, or a precise \criterion" that always allows one to determine whether an

object does or does not ful�ll it. A useful catalog of agent theories and systems

is provided in [45]. Another popular text on agents is [38, Chapter 2]. A recent

overview of key themes in agent research is given in [22].

In [25] the following major characteristics of multiagent systems are identi�ed:

each agent has just incomplete information and is restricted in its capabilities;

system control is distributed;

data is decentralized; and

computation is asynchronous.

Multiagent systems can di�er in the agents themselves, the interactions among the

agents, and the environments in which the agents act. The following table gives

an overview of some attributes of multiagent systems, together with their potential

range (an extensive overview is o�ered in [22]):
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attribute range

number from two upward

uniformity homogeneous : : : heterogeneous

goals contradicting : : : complementary
agents

architecture reactive : : : deliberative

abilities (sensors,

e�ectors, cognition)
simple : : : advanced

frequency low : : : high

persistence short-term : : : long-term

level signal-passing : : : knowledge-intensive

interaction pattern (
ow of

data and control)
decentralized : : : hierarchical

variability �xed : : : changeable

purpose competitive : : : cooperative

predictability forseeable : : : unforseeable

accessibility

and knowability
unlimited : : : limited

environment dynamics �xed : : : variable

diversity poor : : : rich

availability of

resources
restricted : : : ample

Traditionally two primary types of DAI systems have been distinguished [2]: mul-

tiagent systems in which several agents coordinate their knowledge and activities

and reason about the processes of coordination; and distributed problem solving

systems in which the work of solving a particular problem is divided among a num-

ber of nodes that divide and share knowledge about the problem and the developing

solution. Whereas initially the emphasis of work on multiagent systems was on be-

havior coordination, the emphasis of work on distributed problem solving systems

was on task decomposition and solution synthesis. The modern concept of multi-

agent systems as described above covers both types of systems. For that reason,

and in accordance with contemporary usage, in this book no explicit distinction

is made between multiagent systems and distributed problem solving systems, and

the terms multiagent system and DAI system are used synonymously.

The role that the concept of a multiagent system plays in DAI is comparable

to the role that the concept of an individual agent plays in traditional AI (see,

e.g., [33, 36, 38]). Broadly construed, both DAI and traditional AI deal with

computational aspects of intelligence, but they do so from di�erent points of view

and under di�erent assumptions. Where traditional AI concentrates on agents as

\intelligent stand-alone systems" and on intelligence as a property of systems that

act in isolation, DAI concentrates on agents as \intelligent connected systems" and
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on intelligence as a property of systems that interact. Where traditional AI focuses

on \cognitive processes" within individuals, DAI focuses on \social processes" in

groups of individuals. Where traditional AI considers systems having a single locus

of internal reasoning and control and requiring just minimal help from others to act

successfully, DAI considers systems in which reasoning and control is distributed

and successful activity is a joint e�ort. And where traditional AI uses psychology

and behaviorism for ideas, inspiration, and metaphor, DAI uses sociology and

economics. In this way, DAI is not so much a specialization of traditional AI, but

a generalization of it.

Challenging Issues

To build a multiagent system in which the agents \do what they should do" turns

out to be particularly di�cult in the light of the basic system characteristics

mentioned above. The only way to cope with these characteristics is to enable

the agents to interact appropriately, and thus the elementary question faced by

DAI is When and how should which agents interact|cooperate and compete|to

successfully meet their design objectives? Based on the common distinction between

the \micro" or agent level and the \macro" or group level (e.g., see [31]), in principle

one can follow two di�erent routes to answer this question:

bottom up: to search for speci�c agent-level capabilities that result in appropriate

interaction at the overall group level; or

top down: to search for speci�c group-level rules|called conventions, norms,

and so on|that appropriately constrain the interaction repertoire at the level

of the individual agents.

(The question how agent-level|individual|activity and group-level|societal|

rules and structures are related to each other is known as the micro-macro problem

in sociology.) No matter which route is chosen, this question raises several chal-

lenging, intertwined issues (items 1 to 5 were �rst mentioned in [2], and item 6 and

items 7 and 8 were additionally formulated in [31] and [25], respectively):

1. How to enable agents to decompose their goals and tasks, to allocate sub-goals

and sub-tasks to other agents, and to synthesize partial results and solutions.

2. How to enable agents to communicate. What communication languages and

protocols to use.

3. How to enable agents to represent and reason about the actions, plans, and

knowledge of other agents in order to appropriately interact with them.

4. How to enable agents to represent and reason about the state of their inter-

action processes. How to enable them to �nd out whether they have achieved

progress in their coordination e�orts, and how to enable them to improve the

state of their coordination and to act coherently.
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5. How to enable agents to recognize and reconcile disparate viewpoints and

con
icts. How to syntheze views and results.

6. How to engineer and constrain practical multiagent systems. How to design

technology platforms and development methodologies for DAI.

7. How to e�ectively balance local computation and communication.

8. How to avoid or mitigate harmful (e.g., chaotic or oscillatory) overall system

behavior.

9. How to enable agents to negotiate and contract. What negotiation and contract

protocols should they use.

10. How to enable agents to form and dissolve organizational structures|teams,

alliances, and so on|that are suited for attaining their goals and completing

their tasks.

11. How to formally describe multiagent systems and the interactions among

agents. How to make sure that they are correctly speci�ed.

12. How to realize \intelligent processes" such as problem solving, planning,

decision making, and learning in multiagent contexts. How to enable agents to

collectively carry out such processes in a coherent way.

To provide solutions to these issues is the core request of DAI.

Applications

Many existing and potential industrial and commercial applications for DAI and

multiagent systems are described in the literature (e.g., see [23, 24] and also [26]).

Basically following [25] (here the readers �nd a number of pointers to speci�c work),

examples of such applications are:

Electronic commerce and electronic markets, where \buyer" and \seller" agents

purchase and sell goods on behalf of their users.

Real-time monitoring and management of telecommunication networks, where

agents are responsible, e.g., for call forwarding and signal switching and trans-

mission.

Modelling and optimization of in-house, in-town, national- or world-wide trans-

portation systems, where agents represent, e.g., the transportation vehicles or

the goods or customers to be transported.

Information handling in information environments like the Internet, where mul-

tiple agents are responsible, e.g., for information �ltering and gathering.

Improving the 
ow of urban or air tra�c, where agents are responsible for

appropriately interpreting data arising at di�erent sensor stations.

Automated meeting scheduling, where agents act on behalf of their users to �x

meeting details like location, time, and agenda.
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Optimization of industrial manufacturing and production processes like shop-


oor scheduling or supply chain management, where agents represent, e.g.,

di�erent workcells or whole enterprises.

Analysis of business processes within or between enterprises, where agents

represent the people or the distinct departments involved in these processes

in di�erent stages and at di�erent levels.

Electronic entertainment and interactive, virtual reality-based computer games,

where, e.g., animated agents equipped with di�erent characters play against each

other or against humans.

Design and re-engineering of information- and control-
ow patterns in large-scale

natural, technical, and hybrid organizations, where agents represent the entities

responsible for these patterns.

Investigation of social aspects of intelligence and simulation of complex social

phenomena such as the evolution of roles, norms, and organzational structures,

where agents take on the role of the members of the natural societies under

consideration.

What these applications have in common is that they show one or several of the

following features [2]:

Inherent Distribution { They are inherently distributed in the sense that the

data and information to be processed

arise at geographically di�erent locations (\spatial distribution");

arise at di�erent times (\temporal distribution");

are structured into clusters whose access and use requires familiarity with

di�erent ontologies and languages (\semantic distribution"); and/or

are structured into clusters whose access and use requires di�erent perceptual,

e�ectual, and cognitive capabilities (\functional distribution").

Inherent Complexity { They are inherently complex in the sense that they are

too large to be solved by a single, centralized system because of limitations

available at a given level of hardware or software technology. To enlarge a

centralized system such that it meets the requirements of inherently complex

applications usually is very di�cult, time-consuming, and costly. Moreover, such

an enlargement often results in solutions that are brittle and that become useless

as soon as the application requirements change only slightly.

Solving inherently distributed and complex applications in a centralized way is ob-

viously not only counter-intuitive, but often not even possible at all. The alternative

is to distribute the solution process across multiple entities capable of intelligent

coordination|and DAI aims at developing technologies and methodologies for re-

alizing this alternative in a very natural way [15].
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Rationales for Multiagent Systems

The two major reasons that cause people to study multiagent systems are:

Technological and Application Needs { Multiagent systems o�er a promising and

innovative way to understand, manage, and use distributed, large-scale, dynamic,

open, and heterogeneous computing and information systems. The Internet is the

most prominent example of such systems; other examples are multi-database sys-

tems and in-house information systems. Computers and computer applications

play an increasingly important and in
uencing part in our everyday life, as they

become more powerful and more tightly connected both with each other through

long-range and local-area networks and with humans through user-interfaces.

These systems are too complex to be completely characterized and precisely de-

scribed. As their control becomes more and more decentralized, their components

act more and more like \individuals" that deserve attributes like autonomous,

rational, intelligent, and so forth rather than just as \parts." DAI does not only

aim at providing know-how for building sophisticated interactive systems from

scratch, but also for interconnecting existing legacy systems such that they co-

herently act as a whole. Moreover, like no other discipline, DAI aims at providing

solutions to inherently distributed and inherently complex applications. As we

saw above, these applications are hard to solve with centralized computing tech-

nology. Many real world applications, if not most, fall into this class, and they are

present in many domains such as scheduling, manufacturing, control, diagnosis,

and logistics.

Natural View of Intelligent Systems { Multiagent systems o�er a natural way to

view and characterize intelligent systems. Intelligence and interaction are deeply

and inevitably coupled, and multiagent systems re
ect this insight. Natural

intelligent systems, like humans, do not function in isolation. Instead, they are

at the very least a part of the environment in which they and other intelligent

systems operate. Humans interact in various ways and at various levels, and

most of what humans have achieved is a result of interaction. DAI can provide

insights and understanding about poorly understood interactions among natural,

intelligent beings, as they organize themselves into various groups, committees,

societies, and economies in order to achieve improvement.

In addition, multiagent systems, as distributed systems, have the capacity to o�er

several desirable properties [2]:

Speed-up and E�ciency { Agents can operate asynchronously and in parallel,

and this can result in an increased overall speed (provided that the overhead of

necessary coordination does not outweigh this gain).

Robustness and Reliability { The failure of one or several agents does not neces-

sarily make the overall system useless, because other agents already available in

the system may take over their part.
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Scalability and Flexibility { The system can be adopted to an increased problem

size by adding new agents, and this does not necessarily a�ect the operationality

of the other agents.

Costs { It may be much more cost-e�ective than a centralized system, since it

could be composed of simple subsystems of low unit cost.

Development and Reusability { Individual agents can be developed separately

by specialists (either from scratch or on the basis of already available hardware

and/or software facilities), the overall system can be tested and maintained

more easily, and it may be possible to recon�gure and reuse agents in di�erent

application scenarios.

The available computer and network technology forms a sound platform for real-

izing these systems. In particular, recent developments in object-oriented program-

ming, parallel and distributed computing, and mobile computing, as well as ongo-

ing progress in programming and computing standardization e�orts such as KSE

(e.g., http://www.cs.umbc.edu/kse/), FIPA (e.g., http://drogo.cselt.stet.it/�pa/),

and CORBA (e.g., http://www.rhein-neckar.de/~cetus/oo corba.html and http://

industry.ebi.ac.uk/~corba/) are expected to further improve the possibilities of im-

plementing and applying DAI techniques and methods.

A Guide to This Book

The Chapters

The book is divided into two parts. Part I contains nine chapters, each treating a

core theme in the �eld of multiagent systems and DAI:

Chapter 1 concentrates on agents|the \micro" level referred to above.

Chapter 2 expands the considerations of Chapter 1 by focusing on systems

of agents and the computational infrastructure required for interaction|the

\macro" level referred to above.

Chapters 3 to 6 address elementary \intelligent activities" and their realization

in multiagent systems, namely,

problem solving and planning,

search,

decision making, and

learning.

Chapter 7 shows how processes of organizing, as they occur among agents and

humans, can be computationally modelled.
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Chapter 8 describes formal methods for studying and constructing agents and

multiagent systems.

Chapter 9 concentrates on applications of agent and multiagent system technol-

ogy.

Part II includes chapters on closely related, selected themes from computer science

and software engineering:

Chapter 10 focuses on groupware and computer supported cooperative work.

Chapter 11 concentrates on distributed decision support systems.

Chapter 12 discusses various issues of concurrent programming.

Chapter 13 describes distributed control algorithms.

The relevance of these themes for the �eld can be easily seen. Agents in a multiagent

system often have to coordinate their activities, and so there is a need for technolo-

gies that support them in acting coherently as a group; additionally, groupware

and computer supported cooperative work constitute an important application do-

main for multiagent systems. Agents in a multiagent system often have to jointly

make decisions, and so there is a need for technologies that support them in their

distributed decision processes; moreover, distributed decision making is another

obvious application domain for multiagent systems. There is a need for powerful

concurrent programming techniques that allow to e�ciently implement multiagent

systems as parallel and distributed systems. And �nally, there is an obvious need

for mechanisms and methods that enable agents to control their distributed com-

putations.

In the following, the individual chapters and their themes are motivated in more

detail.

Chapter 1, \Intelligent Agents" by Michael Wooldridge { This chapter

aims to introduce the reader to the basic issues surrounding the design and im-

plementation of intelligent agents. It begins by motivating the idea of an agent,

presents a de�nition of agents and intelligent agents, and then discusses the rela-

tionship between agents and other software paradigms (in particular, objects and

expert systems). The chapter then goes on to discuss four major approaches to

building agents. First, logic based architectures are reviewed. In logic based archi-

tectures, decision-making is viewed as logical deduction: the process of deciding

which action to perform is reduced to a theorem proving problem. Such architec-

tures have the advantage of semantic clarity, and in addition allow us to bring to

bear all the apparatus of logic and theorem proving that has been developed in

AI and computer science over the years. However, such architectures su�er from a

number of drawbacks, not the least of which being that purely logical architectures

do not seem well suited to domains that are subject to real time constraints. Sec-

ond, reactive architectures are discussed. The characteristic of such architectures

is that they eschew symbolic representations and reasoning in favour of a closer
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relationship between agent perception and action. Such architectures are more eco-

nomical in computational terms, making them well-suited to episodic environments

that require real-time performance. However, the process of engineering such ar-

chitectures is not well understood. Third, belief-desire-intention architectures are

discussed. In such architectures, decision making is viewed as practical reasoning

from beliefs about how the world is and will be to the options available to an agent,

and �nally to intentions and actions. The process is somewhat similar to the kind

of \folk reasoning" that humans use every day in deciding what to do. Belief-desire-

intention architectures also have an attractive formalization, discussed elsewhere in

this book. Fourth, layered agent architectures are reviewed. In such architectures,

decision making is partitioned into a number of di�erent decision making layers,

each dealing with the agent's environment at a di�erent level of abstraction. Lay-

ered agent architectures provide a natural way of decomposing agent functionality,

and are currently a popular approach to agent design. In particular, the horizon-

tally layered touringmachines architecture and the vertically layered interrap

architecture are discussed. Finally, some prototypical agent programming languages

are reviewed: Shoham's agent0 language, and Fisher's ConcurrentMetateM lan-

guage.

Chapter 2, \Multiagent Systems and Societies of Agents" by Michael

N. Huhns and Larry M. Stephens { Agents operate and exist in some

environment, which typically is both computational and physical. The environment

might be open or closed, and it might or might not contain other agents. Although

there are situations where an agent can operate usefully by itself, the increasing

interconnection and networking of computers is making such situations rare. In

Chapter 2, environments in which agents can operate e�ectively and interact with

each other productively are analyzed, described, and designed.

The environments provide a computational infrastructure for such interactions

to take place. The infrastructure includes communication protocols, which enable

agents to exchange and understand messages, and interaction protocols, which en-

able agents to have conversations|structured exchanges of messages. For example,

a communication protocol might specify that the messages for a particular course

of action to be exchanged between two agents are of the types Propose, Accept, Re-

ject, and Counterpropose. Based on these message types, two agents might use the

following interaction protocol for negotiation: Agent1 proposes a course of action

to Agent2; Agent2 evaluates the proposal and sends a counterproposal to Agent1;

Agent1 accepts the counterproposal.

Interaction protocols enable agents to coordinate their activities, which can then

be performed more e�ciently. The degree of coordination is the extent to which they

avoid extraneous activity by reducing resource contention, avoiding livelock and

deadlock, and maintaining applicable safety conditions. Cooperation is coordination

among nonantagonistic agents, while negotiation is coordination among competitive

or simply self-interested agents. Chapter 2 describes protocols for coordination,

cooperation, and negotiation.
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Chapter 2 also shows how environments in which large numbers of agents exist

must have di�erent interaction protocols, based on social commitments, laws, and

conventions.

Chapter 3, \Distributed Problem Solving and Planning" by Edmund

H. Durfee { The interaction protocols introduced in Chapter 2 provide a means

for agents to communicate about working together to solve problems, including

coordination problems. Chapter 3 focuses on strategies for using protocols and

reasoning capabilities to realize the bene�ts of cooperation. Distributed problem

solving focuses on techniques for exploiting the distributed computational power

and expertise in a MAS to accomplish large complex tasks. Of particular interest

are strategies for moving tasks or results among agents to realize the bene�ts of

cooperative problem solving. One main thread of work is the development of task-

passing techniques to decide where to allocate subtasks to exploit the available

capabilities of agents when large tasks initially arrive at a few agents. A second

main thread of work is the study of result-sharing strategies to decide how agents

that might be working on pieces of larger task can discover the relationships among

their activities and coordinate them.

Coordinating problem-solving activities can involve anticipating the activities

being undertaken by various agents and modifying those plans to make them

more coordinated. Solving this planning problem is thus both a means to an

end (distributed problem solving) and a distributed problem to be solved in its

own right. The speci�c requirements and representations of planning problems,

however, allow us to identify techniques that are particularly suited for distributed

planning . We distinguish between the planning process and the execution of plans,

and recognize that either, or both, of these can be distributed. We can then consider

techniques for each. An interesting issue arises as to whether the coordination

process should precede or succeed the planning processes of the agents; di�erent

decisions lead to di�erent 
avors of distributed planning, and a perspective is

presented that allows these approaches to be seen as extremes of a more general

process. It is also considered how throwing execution into the mix of planning

and coordination can complicate matters, and algorithms for interleaving planning,

coordination, and execution for dynamic applications are presented.

Chapter 4, \Search Algorithms for Agents" by Makoto Yokoo and Toru

Ishida { This chapter deals with search algorithms for agents. Search is an umbrella

term for various problem solving techniques in AI, where the sequence of actions

required for solving a problem cannot be known a priori but must be determined by

a trial-and-error exploration of alternatives. Search problems are divided into three

classes: (i) path-�nding problems, where the objective is to �nd a path from an

initial state to a goal state, (ii) constraint satisfaction problems, where the objec-

tive is to �nd a combination of variable values that satis�es the given constraints,

and (iii) two-player games such as chess and checkers. While two-player games

deal with situations in which two competitive agents exist, most algorithms for the

other two classes (constraint satisfaction and path-�nding) were originally devel-
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oped for single-agent problem solving. Various asynchronous search algorithms for

these two classes are described. These algorithms are useful for cooperative problem

solving by multiple agents each with limited rationality , since in these algorithms,

a problem can be solved by accumulating local computations for each agent, and

the execution order of these local computations can be arbitrary or highly 
exi-

ble. More speci�cally, with respect constraint satisfaction problems the following

asynchronous search algorithms are presented: the �ltering algorithm, the hyper-

resolution-based consistency algorithm, the asynchronous backtracking algorithm,

and the asynchronous weak-commitment search algorithm. With respect to path-

�nding problems, �rst asynchronous dynamic programming as the basis for other

algorithms is introduced. Then the Learning Real-time A* algorithm, the Real-time

A* algorithm, the Moving Target Search algorithm, Real-time Bidirectional Search

algorithms, and real-time multiagent search algorithms as special cases of asyn-

chronous dynamic programming are described. With respect to two-player games,

the basic minimax procedure and the alpha-beta pruning method to speed up the

minimax procedure are presented.

Chapter 5, \Distributed Rational Decision Making" by Tuomas W.

Sandholm { Multiagent systems consisting of self-interested agents are becoming

increasingly important. One reason for this is the technology push of a growing

standardized communication infrastructure over which separately designed agents

belonging to di�erent organizations can interact in an open environment in real-

time and safely carry out transactions. The second reason is strong application pull

for computer support for negotiation at the operative decision making level. For

example, we are witnessing the advent of small transaction electronic commerce on

the Internet for purchasing goods, information, and communication bandwidth.

There is also an industrial trend toward virtual enterprises: dynamic alliances

of small, agile enterprises which together can take advantage of economies of

scale when available|e.g., respond to more diverse orders than individual agents

can|but do not su�er from diseconomies of scale. Automated negotiation can

save labor time of human negotiators, but in addition, other savings are possible

because computational agents can be more e�ective at �nding bene�cial short-term

contracts than humans are in strategically and combinatorially complex settings.

This chapter discusses methods for making socially desirable decisions among

rational agents that only care of their own good, and may act insincerely to promote

it. The techniques covered include

voting,

auctions,

bargaining,

market mechanisms,

contracting, and

coalition formation.
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The chapter cites results from microeconomics|especially game theory|but it is

not a general overview of those topics. Instead it deals relatively deeply with some of

the topics which are particularly relevant to the design of computational multiagent

systems. Special emphasis is placed on the implications of limited computation

on the classic results. This is one area where game theory and computer science

fruitfully blend within the �eld of DAI.

Chapter 6, \Learning in Multiagent Systems" by Sandip Sen and Ger-

hard Weiss { Multiagent systems typically are of considerable complexity with

respect to both their structure and their function. For most application tasks, and

even in environments that appear to be more or less simple at a �rst glance, it is

extremely di�cult or even impossible to correctly specify the behavioral repertoires

and concrete activities of multiagent sytems at design time. This would require, for

instance, that it is known in advance which environmental requirements will emerge

in the future, which agents will be available at the time of emergence, and how the

available agents have to interact in response to these requirements. Obviously, of-

ten the only feasible way to cope with this kind of problems is to endow the agents

themselves with the ability to learn appropriate activity and interaction patterns.

This chapter focuses on important aspects of learning in multiagent systems.

The chapter starts with a more general characterization of learning in multiagent

systems. This includes an identi�cation of principle categories of this kind of

learning, an overview of di�erencing features that help to structure the broad variety

of forms of learning that may occur in multiagent systems, and (from the point of

view of multiagent systems) a description of the basic learning problem known as the

credit-assignment problem. Then several typical learning approaches are described

and illustrated. These approaches are ordered according to their main focus:

learning and activity coordination;

learning about and from other agents; and

learning and communication.

The chapter also o�ers a brief guide to relevant related work from machine learning,

psychology, and economics, and shows potential directions of future research.

Chapter 7, \Computational Organization Theory" by Kathleen M. Car-

ley and Les Gasser { Chapter 7 provides an overview of the emergent �eld of

Computational Organization Theory (COT). Researchers in COT use mathemat-

ical and computational models to theorize about and analyze organizations and

the processes of organizing. Research in this area blends some of the traditional

concerns of AI and distributed computing with work by organizational and social

theorists, to develop a more comprehensive understanding. In most of this work, or-

ganizations are characterized as multiagent systems in which agents are embedded

in particular social roles, have particular cognitive capabilities, and are engaged in

speci�c organizationally-relevant tasks. Using computationally intensive techniques

and empirical data, researchers are examining how organizations composed of peo-
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ple, arti�cial agents (such as webbots, robots, or other information technologies),

or both, should be coordinated and how work should be distributed within and

across such systems. Much of the work in this area focuses on issues of represen-

tation, organizational design, knowledge sharing, learning, and adaptivity. Some

issues currently being addressed include:

What is the nature of coordination and how can it be made most e�ective?

How do organizations of people and organizations of automated agents di�er?

Should they be coordinated in similar ways?

How socially intelligent do arti�cal agents need to be to communicate e�ectively

with people during a team decision task?

and so on. In general, the aim of research in this area is to build new concepts,

theories, and knowledge about organizing and organization in the abstract, to

develop tools and procedures for the validation and analysis of computational

organizational models, and to re
ect these computational abstractions back to

actual organizational practice through both tools and knowledge. This chapter

reviews the dominant approaches and models in this area, potential toolkits, new

�ndings, directions, and trends.

Chapter 8, \Formal Methods in DAI" by Munindar P. Singh, Anand

S. Rao, and Michael P. George� { As DAI moves into larger and more

critical applications, it is becoming increasingly important to develop techniques

to ensure that DAI systems behave appropriately. Safety and assurance can be

addressed by development methodologies, as in traditional software engineering.

But for methodologies to be e�ective in improving safety and correctness, they

must be founded upon rigorous characterizations of the architecture and behavior

of the given class of systems. In the case of DAI, this means that we develop formal

bases for the abstractions and constructions that arise in the study of agents and

multiagent systems.

Chapter 8 studies precisely such formalizations. It begins with background ma-

terial on some logics that are commonly used in traditional computer science, espe-

cially in the veri�cation of concurrent programs. It presents DAI-speci�c enhance-

ments to these logics, covering the concepts of knowledge, beliefs, desires, goals,

intentions, and know-how. Such cognitive concepts have long been informally stud-

ied in the context of agents, because they o�er high-level speci�cations of the agents'

design and behavior that are independent of most implementation details. In order

to give a 
avor of how the formal techniques might be applied, this chapter also

describes how the above concepts may be realized in a practical interpreter.

Next, this chapter discusses a range of additional phenomena, such as coordina-

tion, teamwork, interagent communications, and social primitives. In conjunction

with concepts such as joint and group intentions, which lift single-agent primitives

to multiagent systems, these topics provide the essential conceptual basis for mul-

tiagent systems.
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The chapter concludes with a discussion of tools and systems that either di-

rectly implement the associated DAI-speci�c formal theories, are inspired by those

theories, or bring in traditional formal approaches.

Chapter 9, \Industrial and Practical Applications of DAI" by H. Van

Dyke Parunak { Successful application of agents (as of any technology) must

reconcile two perspectives. The researcher (exempli�ed in Chapters 1 to 8) focuses

on a particular capability (e.g., communication, planning, learning), and seeks

practical problems to demonstrate the usefulness of this capability (and justify

further funding). The industrial practitioner has a practical problem to solve, and

cares much more about the speed and cost-e�ectiveness of the solution than about

its elegance or sophistication. Chapter 9 attempts to bridge these perspectives. To

the agent researcher, it o�ers an overview of the kinds of problems that industrialists

face, and some examples of agent technologies that have made their way into

practical application. To the industrialist, it explains why agents are not just the

latest technical fad, but a natural match to the characteristics of a broad class of real

problems. Chapter 9 emphasizes agent applications in manufacturing and physical

control because good examples are available, the problems of interfacing agents

to the environment are more challenging than in all-electronic domains, and the

evidence of success or failure is clearer when a systemmust directly confront the laws

of physics. The chapter begins by describing the main industrial motivations for

choosing an agent architecture for a particular problem. It then explains the concept

of a system life cycle, which is widely used in industry to manage the progress of a

project toward its intended results. The life cycle serves as an organizing framework

for two sets of case studies. The �rst shows where in the life cycle agent-based

systems are used, while the second discusses the design and construction of an

agent-based system in terms of the life cycle. The chapter includes a review of some

development tools that will hasten deployment of agent technology in industry.

Chapter 10, \Groupware and Computer Supported Cooperative Work"

by Clarence Ellis and Jacques Wainer { The explosive growth of internet, in-

tranet, and related technologies is leading to an explosive growth of the interest in

groupware. Within our society, we see technologies that appear to greatly advance

the conditions for human life (e.g., water puri�cation technology), and others that

seem to be questionable in their societal e�ects (e.g., television technology). Con-

vergence of computer and communications technologies makes the world a \global

village." Groupware is an emerging technology that promises to conceptually bring

people together. Whether people are in the same conference room or scattered

around the world, groupware can potentially help them to coordinate, collaborate,

and cooperate.

Chapter 10 provides an introduction to groupware and computer supported coop-

erative work. Groupware is de�ned as computing and communications technology-

based systems that assist groups of participants, and help to support a shared

environment. Computer supported cooperative work is de�ned as the study of how

groups work, and how technology to enhance group interaction and collaboration
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can be implemented.

The chapter, which primarily emphasizes technical issues of groupware, o�ers

a taxonomy of groupware that is based on four aspects. The �rst aspect, keeper ,

groups functionalities that are related to storage and access of shared data; the

second aspect, coordinator , is related to the ordering and synchronization of indi-

vidual activities that make up the group process; the third aspect, communicator ,

groups functionalities related to unconstrained and explicit communication among

the participants; and the fourth aspect, team-agents , refers to intelligent or semi-

intelligent software components that perform specialized functions and contribute

as participants to the dynamics of the group. Most current groupware systems

have functionalities that are covered by the �rst three aspects. However, the most

promising aspect is the fourth one|and because this aspect is most closely related

to DAI, particular attention is paid to it throughout the chapter.

Chapter 11, \Distributed Models for Decision Support" by Jose Cuena

and Sascha Ossowski { Decision support systems (DSS) assist the responsible

persons in generating action plans in order to in
uence the behavior of natural

or arti�cial systems in a desired direction. Knowledge-based DSSs have shown

to perform well in a variety of di�erent domains, as they allow for a meaningful

dialogue with the control personnel. Still, the growing complexity of todays decision

support problems makes the design process of such systems increasingly di�cult

and cost intensive.

This chapter introduces the notion of distributed knowledge-based DSSs. Setting

out from concepts described in Part 1 of this book, an agent-based decision support

architecture is proposed. On the basis of this architecture, the possibilities of a

distributed, agent-based approach to DSS design are discussed by means of three

case studies taken from literature:

Environmental EmergencyManagement { The objective of Environmental Emer-

gency Management is to minimize the negative impact of natural disasters or

industrial accidents. The architecture of a multiagent DSS is presented, in which

each agent corresponds to a preestablished organizational entity. An example of

the operation of this system is given within the frame of a 
ood management

scenario.

EnergyManagement { EnergyManagement aims to maintain high quality supply

of electrical energy despite damages to transport and distribution networks

caused by wind, icing, lightning etc. A multiagent decision support architecture

for this task is described, that integrates both preexisting and purposefully

designed agents. In an example, it is shown how these agents cooperate to

perform fault diagnosis and service restauration in a distributed fashion.

Road Tra�c Management { Road Tra�c Management is concerned with the

smooth 
ow of tra�c in a road network along the di�erent rush hour demands

and despite events such as accidents or road works. A multiagent architecture

is presented, where each tra�c agent is responsible for speci�c parts of the road
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network. An example illustrates how the interaction between these agents leads

to the coordinated proposals of tra�c control actions.

Chapter 12, \Concurrent Programming for DAI" by Gul A. Agha and

Nadeem Jamali { As processors and networks have become faster and cheaper,

parallelism and distribution to achieve performance gains has become more attrac-

tive. This chapter describes the Actor model of concurrent computation and extends

it to de�ne mobile agents. Mobile agents may travel over a network of processors

in search for resources that they need to achieve their goals.

An economic model is useful as a basis on which hosts could be provided incentives

to allow agents to migrate and also to limit the resources that the agents consume.

The chapter de�nes agents that are allocated limited units of a global currency

which they can expend on purchasing physical resources needed for carrying out

their activities on di�erent hosts.

Reasoning about concurrent systems has traditionally been a challenging task.

The chapter discusses ways of modifying semantics of Actor systems to support

mobility and control of resource consumption. The semantics of Agent systems

provides guidelines for designing systems of agents, for supporting non-intrusive

monitoring of the system, allows the systematic use computational re
ection,

and enables agents to develop proofs of safe execution which may be o�ered to

prospective hosts.

The dynamicity and uncertainty in the behavior of ensembles of agents poses

challenging problems. The chapter describes how the context in which agents exe-

cute, and in which their interactions are mediated, may be dynamically customized.

Programming constructs for naming in open systems and scalable communication

are also described. The chapter also includes a number of programming examples

and a discussion of open issues.

Chapter 13, \Distributed Control Algorithms for AI" by Gerard Tel {

This chapter discusses a number of elementary problems in distributed computing

and a couple of well-known algorithmic \building blocks," which are used as

procedures in distributed applications. The chapter is not intended to be complete,

as an enumeration of the many known distributed algorithms would be pointless

and endless. The chapter is even not intended to touch all relevant sub-areas and

problems studied in distributed computing, because they are not all relevant to

DAI. Rather than an algorithm catalogue, the chapter aims to be an eye-opener for

the possibilities of the distributed computing model, an introduction to designing

and reasoning about the algorithms, and a pointer to some literature.

The chapter introduces the distributed model and illustrates the various possi-

bilities and di�culties with algorithms to compute spanning trees in a network. It

is shown how the communication and time complexities of the algorithms are eval-

uated. Then a more complicated, but relevant control problem is studied, namely

termination detection. This study reveals how intricate it is to make information

about a distributed global state available to a node locally. Termination detection
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occurs in distributed applications of all areas and is not speci�c for DAI.

Application of some distributed control techniques is exempli�ed in the later

sections in distributed computations for AI problems. A distributed implementa-

tion of Arc Consistency and Constraint Satisfaction is discussed, and it is shown

how termination detection and distributed evaluation of functions play a role. The

chapter �nally presents a distributed graph algorithm, illustrating another termina-

tion detection principle, and providing an example of broadcast/convergecast and

controller movement.

The Exercises

To enable the reader to gain practice in multiagent systems and DAI, a number of

exercises of varying levels of di�culty are provided at the end of each chapter. The

following rating system is applied to roughly indicate the amount of e�ort required

for solving the exercises:

1. [Level 1] Exercises of Level 1 are solvable within a day (e.g., simple test of

comprehension or a small program).

2. [Level 2] Solving exercises of Level 2 can take days or weeks (e.g., writting

a fairly complex program). Usually the chapters provide all the information

necessary for solving Level-1 and Level-2 exercises.

3. [Level 3] Exercises of Level 3 are even harder and their solution can take

several weeks or months. Many of these exercises are related to \hot" topics

of current research.

4. [Level 4] Exercises of Level 4 concern open research questions and could be

topics of PhD theses. Solving Level-3 and Level-4 exercises typically requires

to read further literature and/or to conduct extensive experiments.

It is recommend to do the Level-1 and Level-2 exercises, and to attack at least

some of the exercises of Levels 3 and 4. Carefully working through Level-1 and

Level-2 exercises will reward a reader with a real understanding of the material of

the chapters, and solving Level-3 and Level-4 exercises will turn a reader into a real

expert!

The Glossary

The glossary at the end of the book is the result of a joint e�ort of the chapter

authors. It provides compact explanations of a number of terms used in the �eld of

multiagent systems and DAI. This glossary is neither intended to be complete nor

to o�er \de�nitions" in the strict sense of this word. Instead, the focus is on key

terms and on their common usage. The primary purpose of the glossary is to make

it easier for the readers to get acquainted with basic terminology.



20 Prologue

A Few Pointers to Further Readings

The number of publications on multiagent systems and DAI has grown rapidly in

the past decade. The reader not familiar with the �eld and the available literature

may �nd the following, by no means complete, list of pointers useful as an initial

point of orientation:

Introductory texts, surveys, and overviews :

There are several general texts on multiagent systems and DAI (e.g., [2, 8, 20,

22, 25, 31, 40]), distributed problem solving (e.g., [10, 11, 17]), and agents (e.g.,

[5, 22, 45]).

Collections :

A detailed treatment of many key aspects of DAI is provided in [34]. A recent

compendium that covers both agent and multiagent themes is [23]. A \classic"

collection of DAI articles is [3]. Journal special issues on DAI and multiagent

systems are, e.g., [9, 16, 46]. There is a number of proceedings of conferences

and workshops on multiagent systems and DAI. For instance, the \International

Conference on Multi-Agent Systems (ICMAS)" series resulted in three proceed-

ings [12, 18, 30] that broadly cover the whole range of multiagent systems. The

AAAI-sponsored \Workshop on DAI" series led to two other \classic" collections

of DAI papers [19, 21]. The papers presented at the \European Workshop on

Modelling Agents in a Multi-Agent World (MAAMAW)" series are published

in [1, 7, 6, 13, 14, 35, 42, 43]. There are several conference and workshop se-

ries on agents. Among them are, for instance, the \International Conference on

Autonomous Agents (Agents)" series [37, 41], the \International Workshop on

Agent Theories, Architectures, and Languages (ATAL)" series [32, 39, 44, 47],

and the \Cooperative Information Agents (CIA)" series [27, 28].

Bibliographies :

A useful list of pointers to published material on DAI and related areas is

provided in [29]. A subject-indexed bibliography that comprehensively covers

early DAI publications is [4].

The �rst journal in the �eld is Autonomous Agents and Multi-Agent Systems

(Kluwer Academic Publishers).

Pointers to papers that deal with speci�c aspects of multiagent systems are exten-

sively included in the individual chapters.
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1 Intelligent Agents

Michael Wooldridge

1.1 Introduction

Computers are not very good at knowing what to do: every action a computer

performs must be explicitly anticipated, planned for, and coded by a programmer. If

a computer program ever encounters a situation that its designer did not anticipate,

then the result is not usually pretty|a system crash at best, multiple loss of life

at worst. This mundane fact is at the heart of our relationship with computers. It

is so self-evident to the computer literate that it is rarely mentioned. And yet it

comes as a complete surprise to those encountering computers for the �rst time.

For the most part, we are happy to accept computers as obedient, literal,

unimaginative servants. For many applications (such as payroll processing), it is

entirely acceptable. However, for an increasingly large number of applications, we

require systems that can decide for themselves what they need to do in order

to satisfy their design objectives. Such computer systems are known as agents.

Agents that must operate robustly in rapidly changing, unpredictable, or open

environments, where there is a signi�cant possibility that actions can fail are known

as intelligent agents , or sometimes autonomous agents. Here are examples of recent

application areas for intelligent agents:

When a space probe makes its long 
ight from Earth to the outer planets, a

ground crew is usually required to continually track its progress, and decide how

to deal with unexpected eventualities. This is costly and, if decisions are required

quickly, it is simply not practicable. For these reasons, organisations like nasa

are seriously investigating the possibility of making probes more autonomous|

giving them richer decision making capabilities and responsibilities.

Searching the Internet for the answer to a speci�c query can be a long and tedious

process. So, why not allow a computer program|an agent|do searches for us?

The agent would typically be given a query that would require synthesising

pieces of information from various di�erent Internet information sources. Failure

would occur when a particular resource was unavailable, (perhaps due to network

failure), or where results could not be obtained.

This chapter is about intelligent agents. Speci�cally, it aims to give you a thorough
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introduction to the main issues associated with the design and implementation of

intelligent agents. After reading it, you will understand:

why agents are believed to be an important new way of conceptualising and

implementing certain types of software application;

what intelligent agents are (and are not), and how agents relate to other software

paradigms|in particular, expert systems and object-oriented programming;

the main approaches that have been advocated for designing and implementing

intelligent agents, the issues surrounding these approaches, their relative merits,

and the challenges that face the agent implementor;

the characteristics of the main programming languages available for building

agents today.

The chapter is structured as follows. First, section 1.2 describes what is meant by

the term agent. Section 1.3, presents some abstract architectures for agents. That is,

some general models and properties of agents are discussed without regard to how

they might be implemented. Section 1.4, discusses concrete architectures for agents.

The various major design routes that one can follow in implementing an agent

system are outlined in this section. In particular, logic-based architectures, reactive

architectures, belief-desire-intention architectures, and �nally, layered architectures

for intelligent agents are described in detail. Finally, section 1.5 introduces some

prototypical programming languages for agent systems.

Comments on Notation

This chapter makes use of simple mathematical notation in order to make ideas

precise. The formalism used is that of discrete maths: a basic grounding in sets and

�rst-order logic should be quite su�cient to make sense of the various de�nitions

presented. In addition: if S is an arbitrary set, then }(S) is the powerset of S, and

S� is the set of sequences of elements of S; the symbol : is used for logical negation

(so :p is read \not p"); ^ is used for conjunction (so p ^ q is read \p and q"); _ is

used for disjunction (so p _ q is read \p or q"); and �nally, ) is used for material

implication (so p) q is read \p implies q").

1.2 What Are Agents?

An obvious way to open this chapter would be by presenting a de�nition of the term

agent. After all, this is a book about multiagent systems|surely we must all agree

on what an agent is? Surprisingly, there is no such agreement: there is no universally

accepted de�nition of the term agent, and indeed there is a good deal of ongoing

debate and controversy on this very subject. Essentially, while there is a general

consensus that autonomy is central to the notion of agency, there is little agreement

beyond this. Part of the di�culty is that various attributes associated with agency
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ENVIRONMENT
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action 
output
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Figure 1.1 An agent in its environment. The agent takes sensory input from

the environment, and produces as output actions that a�ect it. The interaction is

usually an ongoing, non-terminating one.

are of di�ering importance for di�erent domains. Thus, for some applications, the

ability of agents to learn from their experiences is of paramount importance; for

other applications, learning is not only unimportant, it is undesirable.

Nevertheless, some sort of de�nition is important|otherwise, there is a danger

that the term will lose all meaning (cf. \user friendly"). The de�nition presented

here is adapted from [71]: An agent is a computer system that is situated in some

environment, and that is capable of autonomous action in this environment in order

to meet its design objectives.

There are several points to note about this de�nition. First, the de�nition refers

to \agents" and not \intelligent agents." The distinction is deliberate: it is discussed

in more detail below. Second, the de�nition does not say anything about what type

of environment an agent occupies. Again, this is deliberate: agents can occupy many

di�erent types of environment, as we shall see below. Third, we have not de�ned

autonomy. Like agency itself, autonomy is a somewhat tricky concept to tie down

precisely. In this chapter, it is used to mean that agents are able to act without

the intervention of humans or other systems: they have control both over their own

internal state, and over their behavior. In section 1.2.3, we will contrast agents with

the objects of object-oriented programming, and we will elaborate this point there.

In particular, we will see how agents embody a much stronger sense of autonomy

than objects do.

Figure 1.1 gives an abstract, top-level view of an agent. In this diagram, we can

see the action output generated by the agent in order to a�ect its environment. In

most domains of reasonable complexity, an agent will not have complete control over

its environment. It will have at best partial control, in that it can in
uence it. From

the point of view of the agent, this means that the same action performed twice in

apparently identical circumstances might appear to have entirely di�erent e�ects,

and in particular, it may fail to have the desired e�ect. Thus agents in all but the
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most trivial of environments must be prepared for the possibility of failure. We can

sum this situation up formally by saying that environments are non-deterministic.

Normally, an agent will have a repertoire of actions available to it. This set of

possible actions represents the agents e�ectoric capability : its ability to modify its

environments. Note that not all actions can be performed in all situations. For

example, an action \lift table" is only applicable in situations where the weight

of the table is su�ciently small that the agent can lift it. Similarly, the action

\purchase a Ferrari" will fail if insu�cient funds area available to do so. Actions

therefore have pre-conditions associated with them, which de�ne the possible

situations in which they can be applied.

The key problem facing an agent is that of deciding which of its actions it

should perform in order to best satisfy its design objectives. Agent architectures,

of which we shall see several examples later in this chapter, are really software

architectures for decision making systems that are embedded in an environment.

The complexity of the decision-making process can be a�ected by a number

of di�erent environmental properties. Russell and Norvig suggest the following

classi�cation of environment properties [59, p46]:

Accessible vs inaccessible.

An accessible environment is one in which the agent can obtain complete, ac-

curate, up-to-date information about the environment's state. Most moderately

complex environments (including, for example, the everyday physical world and

the Internet) are inaccessible. The more accessible an environment is, the simpler

it is to build agents to operate in it.

Deterministic vs non-deterministic.

As we have already mentioned, a deterministic environment is one in which any

action has a single guaranteed e�ect|there is no uncertainty about the state

that will result from performing an action. The physical world can to all intents

and purposes be regarded as non-deterministic. Non-deterministic environments

present greater problems for the agent designer.

Episodic vs non-episodic.

In an episodic environment, the performance of an agent is dependent on a

number of discrete episodes, with no link between the performance of an agent

in di�erent scenarios. An example of an episodic environment would be a mail

sorting system [60]. Episodic environments are simpler from the agent developer's

perspective because the agent can decide what action to perform based only on

the current episode|it need not reason about the interactions between this and

future episodes.

Static vs dynamic.

A static environment is one that can be assumed to remain unchanged except

by the performance of actions by the agent. A dynamic environment is one that

has other processes operating on it, and which hence changes in ways beyond

the agent's control. The physical world is a highly dynamic environment.
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Discrete vs continuous.

An environment is discrete if there are a �xed, �nite number of actions and

percepts in it. Russell and Norvig give a chess game as an example of a discrete

environment, and taxi driving as an example of a continuous one.

As Russell and Norvig observe [59, p46], if an environment is su�ciently complex,

then the fact that it is actually deterministic is not much help: to all intents and

purposes, it may as well be non-deterministic. The most complex general class

of environments are those that are inaccessible, non-deterministic, non-episodic,

dynamic, and continuous.

1.2.1 Examples of Agents

At this point, it is worth pausing to consider some examples of agents (though not,

as yet, intelligent agents):

Any control system can be viewed as an agent. A simple (and overused) example

of such a system is a thermostat. Thermostats have a sensor for detecting room

temperature. This sensor is directly embedded within the environment (i.e., the

room), and it produces as output one of two signals: one that indicates that the

temperature is too low, another which indicates that the temperature is OK. The

actions available to the thermostat are \heating on" or \heating o�". The action

\heating on" will generally have the e�ect of raising the room temperature, but

this cannot be a guaranteed e�ect|if the door to the room is open, for example,

switching on the heater may have no e�ect. The (extremely simple) decision

making component of the thermostat implements (usually in electro-mechanical

hardware) the following rules:

too cold �! heating on

temperature OK �! heating o�

More complex environment control systems, of course, have considerably richer

decision structures. Examples include autonomous space probes, 
y-by-wire

aircraft, nuclear reactor control systems, and so on.

Most software daemons, (such as background processes in the unix operating

system), which monitor a software environment and perform actions to modify

it, can be viewed as agents. An example is the X Windows program xbiff. This

utility continually monitors a user's incoming email, and indicates via a gui

icon whether or not they have unread messages. Whereas our thermostat agent

in the previous example inhabited a physical environment|the physical world|

the xbiff program inhabits a software environment. It obtains information

about this environment by carrying out software functions (by executing system

programs such as ls, for example), and the actions it performs are software

actions (changing an icon on the screen, or executing a program). The decision

making component is just as simple as our thermostat example.
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To summarize, agents are simply computer systems that are capable of autonomous

action in some environment in order to meet their design objectives. An agent will

typically sense its environment (by physical sensors in the case of agents situated

in part of the real world, or by software sensors in the case of software agents),

and will have available a repertoire of actions that can be executed to modify the

environment, which may appear to respond non-deterministically to the execution

of these actions.

1.2.2 Intelligent Agents

We are not used to thinking of thermostats or unix daemons as agents, and certainly

not as intelligent agents. So, when do we consider an agent to be intelligent? The

question, like the question what is intelligence? itself, is not an easy one to answer.

But for the purposes of this chapter, an intelligent agent is one that is capable of


exible autonomous action in order to meet its design objectives, where 
exibility

means three things [71]:

reactivity : intelligent agents are able to perceive their environment, and respond

in a timely fashion to changes that occur in it in order to satisfy their design

objectives;

pro-activeness : intelligent agents are able to exhibit goal-directed behavior by

taking the initiative in order to satisfy their design objectives;

social ability : intelligent agents are capable of interacting with other agents (and

possibly humans) in order to satisfy their design objectives.

These properties are more demanding than they might at �rst appear. To see why,

let us consider them in turn. First, consider pro-activeness : goal directed behavior.

It is not hard to build a system that exhibits goal directed behavior|we do it every

time we write a procedure in pascal, a function in c, or a method in java. When

we write such a procedure, we describe it in terms of the assumptions on which it

relies (formally, its pre-condition) and the e�ect it has if the assumptions are valid

(its post-condition). The e�ects of the procedure are its goal : what the author of

the software intends the procedure to achieve. If the pre-condition holds when the

procedure is invoked, then we expect that the procedure will execute correctly : that

it will terminate, and that upon termination, the post-condition will be true, i.e.,

the goal will be achieved. This is goal directed behavior: the procedure is simply

a plan or recipe for achieving the goal. This programming model is �ne for many

environments. For example, its works well when we consider functional systems|

those that simply take some input x, and produce as output some some function

f(x) of this input. Compilers are a classic example of functional systems.

But for non-functional systems, this simple model of goal directed programming

is not acceptable, as it makes some important limiting assumptions. In particular, it

assumes that the environment does not change while the procedure is executing. If

the environment does change, and in particular, if the assumptions (pre-condition)
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underlying the procedure become false while the procedure is executing, then the

behavior of the procedure may not be de�ned|often, it will simply crash. Also, it

is assumed that the goal, that is, the reason for executing the procedure, remains

valid at least until the procedure terminates. If the goal does not remain valid, then

there is simply no reason to continue executing the procedure.

In many environments, neither of these assumptions are valid. In particular, in

domains that are too complex for an agent to observe completely, that are multi-

agent (i.e., they are populated with more than one agent that can change the

environment), or where there is uncertainty in the environment, these assumptions

are not reasonable. In such environments, blindly executing a procedure without

regard to whether the assumptions underpinning the procedure are valid is a poor

strategy. In such dynamic environments, an agent must be reactive, in just the way

that we described above. That is, it must be responsive to events that occur in its

environment, where these events a�ect either the agent's goals or the assumptions

which underpin the procedures that the agent is executing in order to achieve its

goals.

As we have seen, building purely goal directed systems is not hard. As we shall

see later in this chapter, building purely reactive systems|ones that continually

respond to their environment|is also not di�cult. However, what turns out to be

hard is building a system that achieves an e�ective balance between goal-directed

and reactive behavior. We want agents that will attempt to achieve their goals

systematically, perhaps by making use of complex procedure-like patterns of action.

But we don't want our agents to continue blindly executing these procedures in an

attempt to achieve a goal either when it is clear that the procedure will not work,

or when the goal is for some reason no longer valid. In such circumstances, we want

our agent to be able to react to the new situation, in time for the reaction to be of

some use. However, we do not want our agent to be continually reacting, and hence

never focussing on a goal long enough to actually achieve it.

On re
ection, it should come as little surprise that achieving a good balance

between goal directed and reactive behavior is hard. After all, it is comparatively

rare to �nd humans that do this very well. How many of us have had a manager

who stayed blindly focussed on some project long after the relevance of the project

was passed, or it was clear that the project plan was doomed to failure? Similarly,

how many have encountered managers who seem unable to stay focussed at all,

who 
it from one project to another without ever managing to pursue a goal long

enough to achieve anything? This problem|of e�ectively integrating goal-directed

and reactive behavior|is one of the key problems facing the agent designer. As we

shall see, a great many proposals have been made for how to build agents that can

do this|but the problem is essentially still open.

Finally, let us say something about social ability, the �nal component of 
exible

autonomous action as de�ned here. In one sense, social ability is trivial: every

day, millions of computers across the world routinely exchange information with

both humans and other computers. But the ability to exchange bit streams is

not really social ability. Consider that in the human world, comparatively few of
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our meaningful goals can be achieved without the cooperation of other people,

who cannot be assumed to share our goals|in other words, they are themselves

autonomous, with their own agenda to pursue. To achieve our goals in such

situations, we must negotiate and cooperate with others. We may be required to

understand and reason about the goals of others, and to perform actions (such as

paying them money) that we would not otherwise choose to perform, in order

to get them to cooperate with us, and achieve our goals. This type of social

ability is much more complex, and much less well understood, than simply the

ability to exchange binary information. Social ability in general (and topics such

as negotiation and cooperation in particular) are dealt with elsewhere in this book,

and will not therefore be considered here. In this chapter, we will be concerned with

the decision making of individual intelligent agents in environments which may be

dynamic, unpredictable, and uncertain, but do not contain other agents.

1.2.3 Agents and Objects

Object-oriented programmers often fail to see anything novel or new in the idea of

agents. When one stops to consider the relative properties of agents and objects,

this is perhaps not surprising. Objects are de�ned as computational entities that

encapsulate some state, are able to perform actions, or methods on this state, and

communicate by message passing.

While there are obvious similarities, there are also signi�cant di�erences between

agents and objects. The �rst is in the degree to which agents and objects are

autonomous. Recall that the de�ning characteristic of object-oriented programming

is the principle of encapsulation|the idea that objects can have control over their

own internal state. In programming languages like java, we can declare instance

variables (and methods) to be private, meaning they are only accessible from

within the object. (We can of course also declare them public, meaning that they

can be accessed from anywhere, and indeed we must do this for methods so that

they can be used by other objects. But the use of public instance variables is

usually considered poor programming style.) In this way, an object can be thought

of as exhibiting autonomy over its state: it has control over it. But an object does

not exhibit control over it's behavior. That is, if a method m is made available for

other objects to invoke, then they can do so whenever they wish|once an object

has made a method public, then it subsequently has no control over whether or

not that method is executed. Of course, an object must make methods available to

other objects, or else we would be unable to build a system out of them. This is not

normally an issue, because if we build a system, then we design the objects that go

in it, and they can thus be assumed to share a \common goal". But in many types

of multiagent system, (in particular, those that contain agents built by di�erent

organisations or individuals), no such common goal can be assumed. It cannot be

for granted that an agent i will execute an action (method) a just because another

agent j wants it to|a may not be in the best interests of i. We thus do not think of

agents as invoking methods upon one-another, but rather as requesting actions to
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be performed. If j requests i to perform a, then i may perform the action or it may

not. The locus of control with respect to the decision about whether to execute an

action is thus di�erent in agent and object systems. In the object-oriented case, the

decision lies with the object that invokes the method. In the agent case, the decision

lies with the agent that receives the request. This distinction between objects and

agents has been nicely summarized in the following slogan: Objects do it for free;

agents do it for money.

Note that there is nothing to stop us implementing agents using object-oriented

techniques. For example, we can build some kind of decision making about whether

to execute a method into the method itself, and in this way achieve a stronger

kind of autonomy for our objects. The point is that autonomy of this kind is not a

component of the basic object-oriented model.

The second important distinction between object and agent systems is with

respect to the notion of 
exible (reactive, pro-active, social) autonomous behavior.

The standard object model has nothing whatsoever to say about how to build

systems that integrate these types of behavior. Again, one could object that we can

build object-oriented programs that do integrate these types of behavior. But this

argument misses the point, which is that the standard object-oriented programming

model has nothing to do with these types of behavior.

The third important distinction between the standard object model and our

view of agent systems is that agents are each considered to have their own thread

of control|in the standard object model, there is a single thread of control in

the system. Of course, a lot of work has recently been devoted to concurrency

in object-oriented programming. For example, the java language provides built-

in constructs for multi-threaded programming. There are also many programming

languages available (most of them admittedly prototypes) that were speci�cally

designed to allow concurrent object-based programming. But such languages do

not capture the idea we have of agents as autonomous entities. Perhaps the closest

that the object-oriented community comes is in the idea of active objects :

An active object is one that encompasses its own thread of control [. . . ]. Active

objects are generally autonomous, meaning that they can exhibit some behavior

without being operated upon by another object. Passive objects, on the other hand,

can only undergo a state change when explicitly acted upon. [5, p91]

Thus active objects are essentially agents that do not necessarily have the ability

to exhibit 
exible autonomous behavior.

To summarize, the traditional view of an object and our view of an agent have

at least three distinctions:

agents embody stronger notion of autonomy than objects, and in particular,

they decide for themselves whether or not to perform an action on request from

another agent;

agents are capable of 
exible (reactive, pro-active, social) behavior, and the

standard object model has nothing to say about such types of behavior;
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a multiagent system is inherently multi-threaded, in that each agent is assumed

to have at least one thread of control.

1.2.4 Agents and Expert Systems

Expert systems were the most important AI technology of the 1980s [31]. An expert

system is one that is capable of solving problems or giving advice in some knowledge-

rich domain [32]. A classic example of an expert system is mycin, which was

intended to assist physicians in the treatment of blood infections in humans. mycin

worked by a process of interacting with a user in order to present the system with

a number of (symbolically represented) facts, which the system then used to derive

some conclusion. mycin acted very much as a consultant : it did not operate directly

on humans, or indeed any other environment. Thus perhaps the most important

distinction between agents and expert systems is that expert systems like mycin are

inherently disembodied. By this, we mean that they do not interact directly with any

environment: they get their information not via sensors, but through a user acting as

middle man. In the same way, they do not act on any environment, but rather give

feedback or advice to a third party. In addition, we do not generally require expert

systems to be capable of co-operating with other agents. Despite these di�erences,

some expert systems, (particularly those that perform real-time control tasks), look

very much like agents. A good example is the archon system [33].

Sources and Further Reading

A view of arti�cial intelligence as the process of agent design is presented in [59],

and in particular, Chapter 2 of [59] presents much useful material. The de�nition

of agents presented here is based on [71], which also contains an extensive review

of agent architectures and programming languages. In addition, [71] contains a de-

tailed survey of agent theories|formalisms for reasoning about intelligent, rational

agents, which is outside the scope of this chapter. This question of \what is an

agent" is one that continues to generate some debate; a collection of answers may

be found in [48]. The relationship between agents and objects has not been widely

discussed in the literature, but see [24]. Other readable introductions to the idea of

intelligent agents include [34] and [13].

1.3 Abstract Architectures for Intelligent Agents

We can easily formalize the abstract view of agents presented so far. First, we will

assume that the state of the agent's environment can be characterized as a set

S = fs1; s2; : : :g of environment states. At any given instant, the environment is

assumed to be in one of these states. The e�ectoric capability of an agent is assumed

to be represented by a set A = fa1; a2; : : :g of actions. Then abstractly, an agent
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can be viewed as a function

action : S� ! A

which maps sequences of environment states to actions. We will refer to an agent

modelled by a function of this form as a standard agent. The intuition is that an

agent decides what action to perform on the basis of its history|its experiences to

date. These experiences are represented as a sequence of environment states|those

that the agent has thus far encountered.

The (non-deterministic) behavior of an an environment can be modelled as a

function

env : S �A! }(S)

which takes the current state of the environment s 2 S and an action a 2 A

(performed by the agent), and maps them to a set of environment states env(s; a)|

those that could result from performing action a in state s. If all the sets in the

range of env are all singletons, (i.e., if the result of performing any action in any

state is a set containing a single member), then the environment is deterministic,

and its behavior can be accurately predicted.

We can represent the interaction of agent and environment as a history. A history

h is a sequence:

h : s0
a0
�! s1

a1
�! s2

a2
�! s3

a3
�! � � �

au�1
�! su

au
�! � � �

where s0 is the initial state of the environment (i.e., its state when the agent starts

executing), au is the u'th action that the agent chose to perform, and su is the u'th

environment state (which is one of the possible results of executing action au�1 in

state su�1). If action : S� ! A is an agent, env : S �A! }(S) is an environment,

and s0 is the initial state of the environment, then the sequence

h : s0
a0
�! s1

a1
�! s2

a2
�! s3

a3
�! � � �

au�1
�! su

au
�! � � �

will represent a possible history of the agent in the environment i� the following

two conditions hold:

8u 2 IN; au = action((s0; s1; : : : ; su))

and

8u 2 IN such that u > 0; su 2 env(su�1; au�1):

The characteristic behavior of an agent action : S� ! A in an environment

env : S � A ! }(S) is the set of all the histories that satisfy these properties.

If some property � holds of all these histories, this property can be regarded as

an invariant property of the agent in the environment. For example, if our agent

is a nuclear reactor controller, (i.e., the environment is a nuclear reactor), and

in all possible histories of the controller/reactor, the reactor does not blow up,

then this can be regarded as a (desirable) invariant property. We will denote by
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hist(agent; environment) the set of all histories of agent in environment. Two

agents ag1 and ag2 are said to be behaviorally equivalent with respect to environ-

ment env i� hist(ag1; env) = hist(ag2; env), and simply behaviorally equivalent i�

they are behaviorally equivalent with respect to all environments.

In general, we are interested in agents whose interaction with their environment

does not end, i.e., they are non-terminating. In such cases, the histories that we

consider will be in�nite.

1.3.1 Purely Reactive Agents

Certain types of agents decide what to do without reference to their history. They

base their decision making entirely on the present, with no reference at all to the

past. We will call such agents purely reactive, since they simply respond directly

to their environment. Formally, the behavior of a purely reactive agent can be

represented by a function

action : S ! A:

It should be easy to see that for every purely reactive agent, there is an equivalent

standard agent; the reverse, however, is not generally the case.

Our thermostat agent is an example of a purely reactive agent. Assume, without

loss of generality, that the thermostat's environment can be in one of two states|

either too cold, or temperature OK. Then the thermostat's action function is simply

action(s) =

(
heater o� if s = temperature OK

heater on otherwise.

1.3.2 Perception

Viewing agents at this abstract level makes for a pleasantly simply analysis.

However, it does not help us to construct them, since it gives us no clues about

how to design the decision function action. For this reason, we will now begin

to re�ne our abstract model of agents, by breaking it down into sub-systems in

exactly the way that one does in standard software engineering. As we re�ne our

view of agents, we �nd ourselves making design choices that mostly relate to the

subsystems that go to make up an agent|what data and control structures will be

present. An agent architecture is essentially a map of the internals of an agent|its

data structures, the operations that may be performed on these data structures,

and the control 
ow between these data structures. Later in this chapter, we will

discuss a number of di�erent types of agent architecture, with very di�erent views

on the data structures and algorithms that will be present within an agent. In

the remainder of this section, however, we will survey some fairly high-level design

decisions. The �rst of these is the separation of an agent's decision function into

perception and action subsystems: see Figure 1.2.
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ENVIRONMENT

action

AGENT

see

Figure 1.2 Perception and action subsystems.

The idea is that the function see captures the agent's ability to observe its

environment, whereas the action function represents the agent's decision making

process. The see function might be implemented in hardware in the case of an

agent situated in the physical world: for example, it might be a video camera or

an infra-red sensor on a mobile robot. For a software agent, the sensors might be

system commands that obtain information about the software environment, such as

ls, finger, or suchlike. The output of the see function is a percept|a perceptual

input. Let P be a (non-empty) set of percepts. Then see is a function

see : S ! P

which maps environment states to percepts, and action is now a function

action : P � ! A

which maps sequences of percepts to actions.

These simple de�nitions allow us to explore some interesting properties of agents

and perception. Suppose that we have two environment states, s1 2 S and s2 2 S,

such that s1 6= s2, but see(s1) = see(s2). Then two di�erent environment states are

mapped to the same percept, and hence the agent would receive the same perceptual

information from di�erent environment states. As far as the agent is concerned,

therefore, s1 and s2 are indistinguishable. To make this example concrete, let us

return to the thermostat example. Let x represent the statement

\the room temperature is OK"

and let y represent the statement

\John Major is Prime Minister."

If these are the only two facts about our environment that we are concerned with,
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then the set S of environment states contains exactly four elements:

S = ff:x;:yg| {z }
s1

; f:x; yg| {z }
s2

; fx;:yg| {z }
s3

; fx; yg| {z }
s4

g

Thus in state s1, the room temperature is not OK, and John Major is not Prime

Minister; in state s2, the room temperature is not OK, and John Major is Prime

Minister. Now, our thermostat is sensitive only to temperatures in the room. This

room temperature is not causally related to whether or not John Major is Prime

Minister. Thus the states where JohnMajor is and is not Prime Minister are literally

indistinguishable to the thermostat. Formally, the see function for the thermostat

would have two percepts in its range, p1 and p2, indicating that the temperature is

too cold or OK respectively. The see function for the thermostat would behave as

follows:

see(s) =

(
p1 if s = s1 or s = s2

p2 if s = s3 or s = s4.

Given two environment states s 2 S and s0 2 S, let us write s � s0 if

see(s) = see(s0). It is not hard to see that � is an equivalence relation over

environment states, which partitions S into mutually indistinguishable sets of

states. Intuitively, the coarser these equivalence classes are, the less e�ective is

the agent's perception. If j � j = jSj, (i.e., the number of distinct percepts is equal

to the number of di�erent environment states), then the agent can distinguish every

state|the agent has perfect perception in the environment; it is omniscient. At the

other extreme, if j � j = 1, then the agent's perceptual ability is non-existent|it

cannot distinguish between any di�erent states. In this case, as far as the agent is

concerned, all environment states are identical.

1.3.3 Agents with State

We have so far been modelling an agent's decision function action as from sequences

of environment states or percepts to actions. This allows us to represent agents

whose decision making is in
uenced by history. However, this is a somewhat

unintuitive representation, and we shall now replace it by an equivalent, but

somewhat more natural scheme. The idea is that we now consider agents that

maintain state|see Figure 1.3.

These agents have some internal data structure, which is typically used to record

information about the environment state and history. Let I be the set of all internal

states of the agent. An agent's decision making process is then based, at least in

part, on this information. The perception function see for a state-based agent is

unchanged, mapping environment states to percepts as before:

see : S ! P
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actionsee

next state

AGENT

ENVIRONMENT

Figure 1.3 Agents that maintain state.

The action-selection function action is now de�ned a mapping

action : I ! A

from internal states to actions. An additional function next is introduced, which

maps an internal state and percept to an internal state:

next : I � P ! I

The behavior of a state-based agent can be summarized as follows. The agent

starts in some initial internal state i0. It then observes its environment state s,

and generates a percept see(s). The internal state of the agent is then updated

via the next function, becoming set to next(i0; see(s)). The action selected by the

agent is then action(next(i0; see(s))). This action is then performed, and the agent

enters another cycle, perceiving the world via see, updating its state via next, and

choosing an action to perform via action.

It is worth observing that state-based agents as de�ned here are in fact no

more powerful than the standard agents we introduced earlier. In fact, they are

identical in their expressive power|every state-based agent can be transformed

into a standard agent that is behaviorally equivalent.

Sources and Further Reading

The abstract model of agents presented here is based on that given in [25, Chapter

13], and also makes use of some ideas from [61, 60]. The properties of perception

as discussed in this section lead to knowledge theory, a formal analysis of the

information implicit within the state of computer processes, which has had a

profound e�ect in theoretical computer science. The de�nitive reference is [14],

and an introductory survey is [29].



42 Intelligent Agents

1.4 Concrete Architectures for Intelligent Agents

Thus far, we have considered agents only in the abstract. So while we have examined

the properties of agents that do and do not maintain state, we have not stopped

to consider what this state might look like. Similarly, we have modelled an agent's

decision making as an abstract function action, which somehow manages to indicate

which action to perform|but we have not discussed how this function might be

implemented. In this section, we will rectify this omission. We will consider four

classes of agents:

logic based agents|in which decision making is realized through logical deduc-

tion;

reactive agents|in which decision making is implemented in some form of direct

mapping from situation to action;

belief-desire-intention agents|in which decision making depends upon the ma-

nipulation of data structures representing the beliefs, desires, and intentions of

the agent; and �nally,

layered architectures|in which decision making is realized via various software

layers, each of which is more-or-less explicitly reasoning about the environment

at di�erent levels of abstraction.

In each of these cases, we are moving away from the abstract view of agents, and

beginning to make quite speci�c commitments about the internal structure and

operation of agents. Each section explains the nature of these commitments, the

assumptions upon which the architectures depend, and the relative advantages and

disadvantages of each.

1.4.1 Logic-Based Architectures

The \traditional" approach to building arti�cially intelligent systems, (known as

symbolic AI ) suggests that intelligent behavior can be generated in a system by

giving that system a symbolic representation of its environment and its desired

behavior, and syntactically manipulating this representation. In this section, we

focus on the apotheosis of this tradition, in which these symbolic representations are

logical formulae, and the syntactic manipulation corresponds to logical deduction,

or theorem proving.

The idea of agents as theorem provers is seductive. Suppose we have some theory

of agency|some theory that explains how an intelligent agent should behave.

This theory might explain, for example, how an agent generates goals so as to

satisfy its design objective, how it interleaves goal-directed and reactive behavior

in order to achieve these goals, and so on. Then this theory � can be considered

as a speci�cation for how an agent should behave. The traditional approach to

implementing a system that will satisfy this speci�cation would involve re�ning the
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speci�cation through a series of progressively more concrete stages, until �nally an

implementation was reached. In the view of agents as theorem provers, however, no

such re�nement takes place. Instead, � is viewed as an executable speci�cation: it

is directly executed in order to produce the agent's behavior.

To see how such an idea might work, we shall develop a simple model of logic-

based agents, which we shall call deliberate agents. In such agents, the internal state

is assumed to be a database of formulae of classical �rst-order predicate logic. For

example, the agent's database might contain formulae such as:

Open(valve221)

Temperature(reactor4726; 321)

Pressure(tank776; 28)

It is not di�cult to see how formulae such as these can be used to represent the

properties of some environment. The database is the information that the agent

has about its environment. An agent's database plays a somewhat analogous role to

that of belief in humans. Thus a person might have a belief that valve 221 is open|

the agent might have the predicate Open(valve221) in its database. Of course, just

like humans, agents can be wrong. Thus I might believe that valve 221 is open when

it is in fact closed; the fact that an agent has Open(valve221) in its database does

not mean that valve 221 (or indeed any valve) is open. The agent's sensors may

be faulty, its reasoning may be faulty, the information may be out of date, or the

interpretation of the formula Open(valve221) intended by the agent's designer may

be something entirely di�erent.

Let L be the set of sentences of classical �rst-order logic, and let D = }(L) be

the set of L databases, i.e., the set of sets of L-formulae. The internal state of an

agent is then an element of D. We write �;�1; : : : for members of D. The internal

state of an agent is then simply a member of the set D. An agent's decision making

process is modelled through a set of deduction rules, �. These are simply rules of

inference for the logic. We write � `� � if the formula � can be proved from the

database � using only the deduction rules �. An agents perception function see

remains unchanged:

see : S ! P:

Similarly, our next function has the form

next : D � P ! D

It thus maps a database and a percept to a new database. However, an agent's

action selection function, which has the signature

action : D ! A

is de�ned in terms of its deduction rules. The pseudo-code de�nition of this function

is as follows.
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1. function action(� : D) : A

2. begin

3. for each a 2 A do

4. if � `� Do(a) then

5. return a

6. end-if

7. end-for

8. for each a 2 A do

9. if � 6`� :Do(a) then

10. return a

11. end-if

12. end-for

13. return null

14. end function action

The idea is that the agent programmer will encode the deduction rules � and

database � in such a way that if a formula Do(a) can be derived, where a is a

term that denotes an action, then a is the best action to perform. Thus, in the �rst

part of the function (lines (3){(7)), the agent takes each of its possible actions a in

turn, and attempts to prove the form the formula Do(a) from its database (passed

as a parameter to the function) using its deduction rules �. If the agent succeeds

in proving Do(a), then a is returned as the action to be performed.

What happens if the agent fails to proveDo(a), for all actions a 2 A? In this case,

it attempts to �nd an action that is consistent with the rules and database, i.e.,

one that is not explicitly forbidden. In lines (8){(12), therefore, the agent attempts

to �nd an action a 2 A such that :Do(a) cannot be derived from its database

using its deduction rules. If it can �nd such an action, then this is returned as the

action to be performed. If, however, the agent fails to �nd an action that is at least

consistent, then it returns a special action null (or noop), indicating that no action

has been selected.

In this way, the agent's behavior is determined by the agent's deduction rules

(its \program") and its current database (representing the information the agent

has about its environment).

To illustrate these ideas, let us consider a small example (based on the vacuum

cleaning world example of [59, p51]). The idea is that we have a small robotic agent

that will clean up a house. The robot is equipped with a sensor that will tell it

whether it is over any dirt, and a vacuum cleaner that can be used to suck up dirt.

In addition, the robot always has a de�nite orientation (one of north, south, east,

or west). In addition to being able to suck up dirt, the agent can move forward one

\step" or turn right 90�. The agent moves around a room, which is divided grid-like

into a number of equally sized squares (conveniently corresponding to the unit of

movement of the agent). We will assume that our agent does nothing but clean|it

never leaves the room, and further, we will assume in the interests of simplicity

that the room is a 3�3 grid, and the agent always starts in grid square (0; 0) facing
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dirt dirt

(0,0) (1,0) (2,0)

(0,1)

(0,2)

(1,1) (2,1)

(2,2)(1,2)

Figure 1.4 Vacuum world

north.

To summarize, our agent can receive a percept dirt (signifying that there is dirt

beneath it), or null (indicating no special information). It can perform any one of

three possible actions: forward, suck, or turn. The goal is to traverse the room

continually searching for and removing dirt. See Figure 1.4 for an illustration of the

vacuum world.

First, note that we make use of three simple domain predicates in this exercise:

In(x; y) agent is at (x; y)

Dirt(x; y) there is dirt at (x; y)

Facing(d) the agent is facing direction d

Now we specify our next function. This function must look at the perceptual

information obtained from the environment (either dirt or null), and generate a

new database which includes this information. But in addition, it must remove old

or irrelevant information, and also, it must try to �gure out the new location and

orientation of the agent. We will therefore specify the next function in several parts.

First, let us write old(�) to denote the set of \old" information in a database, which

we want the update function next to remove:

old(�) = fP (t1; : : : ; tn) j P 2 fIn;Dirt; Facingg and P (t1; : : : ; tn) 2 �g

Next, we require a function new, which gives the set of new predicates to add to

the database. This function has the signature

new : D � P ! D

The de�nition of this function is not di�cult, but it is rather lengthy, and so we

will leave it as an exercise. (It must generate the predicates In(: : :), describing the

new position of the agent, Facing(: : :) describing the orientation of the agent, and

Dirt(: : :) if dirt has been detected at the new position.) Given the new and old

functions, the next function is de�ned as follows:

next(�; p) = (� n old(�)) [ new(�; p)
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Now we can move on to the rules that govern our agent's behavior. The deduction

rules have the form

�(: : :) �!  (: : :)

where � and  are predicates over some arbitrary list of constants and variables.

The idea being that if � matches against the agent's database, then  can be

concluded, with any variables in  instantiated.

The �rst rule deals with the basic cleaning action of the agent: this rule will take

priority over all other possible behaviors of the agent (such as navigation).

In(x; y) ^Dirt(x; y) �! Do(suck) (1.1)

Hence if the agent is at location (x; y) and it perceives dirt, then the prescribed

action will be to suck up dirt. Otherwise, the basic action of the agent will be to

traverse the world. Taking advantage of the simplicity of our environment, we will

hardwire the basic navigation algorithm, so that the robot will always move from

(0; 0) to (0; 1) to (0; 2) and then to (1; 2), (1; 1) and so on. Once the agent reaches

(2; 2), it must head back to (0; 0). The rules dealing with the traversal up to (0; 2)

are very simple.

In(0; 0) ^ Facing(north) ^ :Dirt(0; 0) �! Do(forward) (1.2)

In(0; 1) ^ Facing(north) ^ :Dirt(0; 1) �! Do(forward) (1.3)

In(0; 2) ^ Facing(north) ^ :Dirt(0; 2) �! Do(turn) (1.4)

In(0; 2) ^ Facing(east) �! Do(forward) (1.5)

Notice that in each rule, we must explicitly check whether the antecedent of rule

(1.1) �res. This is to ensure that we only ever prescribe one action via the Do(: : :)

predicate. Similar rules can easily be generated that will get the agent to (2; 2), and

once at (2; 2) back to (0; 0). It is not di�cult to see that these rules, together with

the next function, will generate the required behavior of our agent.

At this point, it is worth stepping back and examining the pragmatics of the

logic-based approach to building agents. Probably the most important point to

make is that a literal, naive attempt to build agents in this way would be more or

less entirely impractical. To see why, suppose we have designed out agent's rule set

� such that for any database �, if we can proveDo(a) then a is an optimal action|

that is, a is the best action that could be performed when the environment is as

described in �. Then imagine we start running our agent. At time t1, the agent has

generated some database �1, and begins to apply its rules � in order to �nd which

action to perform. Some time later, at time t2, it manages to establish �1 `� Do(a)

for some a 2 A, and so a is the optimal action that the agent could perform at time

t1. But if the environment has changed between t1 and t2, then there is no guarantee

that a will still be optimal. It could be far from optimal, particularly if much time

has elapsed between t1 and t2. If t2�t1 is in�nitesimal|that is, if decision making is

e�ectively instantaneous|then we could safely disregard this problem. But in fact,
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we know that reasoning of the kind our logic-based agents use will be anything but

instantaneous. (If our agent uses classical �rst-order predicate logic to represent

the environment, and its rules are sound and complete, then there is no guarantee

that the decision making procedure will even terminate.) An agent is said to enjoy

the property of calculative rationality if and only if its decision making apparatus

will suggest an action that was optimal when the decision making process began.

Calculative rationality is clearly not acceptable in environments that change faster

than the agent can make decisions|we shall return to this point later.

One might argue that this problem is an artifact of the pure logic-based approach

adopted here. There is an element of truth in this. By moving away from strictly

logical representation languages and complete sets of deduction rules, one can build

agents that enjoy respectable performance. But one also loses what is arguably

the greatest advantage that the logical approach brings: a simple, elegant logical

semantics.

There are several other problems associated with the logical approach to agency.

First, the see function of an agent, (its perception component), maps its environ-

ment to a percept. In the case of a logic-based agent, this percept is likely to be

symbolic|typically, a set of formulae in the agent's representation language. But

for many environments, it is not obvious how the mapping from environment to

symbolic percept might be realized. For example, the problem of transforming an

image to a set of declarative statements representing that image has been the object

of study in AI for decades, and is still essentially open. Another problem is that

actually representing properties of dynamic, real-world environments is extremely

hard. As an example, representing and reasoning about temporal information|how

a situation changes over time|turns out to be extraordinarily di�cult. Finally, as

the simple vacuum world example illustrates, representing even rather simple pro-

cedural knowledge (i.e., knowledge about \what to do") in traditional logic can be

rather unintuitive and cumbersome.

To summarize, in logic-based approaches to building agents, decision making is

viewed as deduction. An agent's \program"|that is, its decision making strategy|

is encoded as a logical theory, and the process of selecting an action reduces to a

problem of proof. Logic-based approaches are elegant, and have a clean (logical)

semantics|wherein lies much of their long-lived appeal. But logic-based approaches

have many disadvantages. In particular, the inherent computational complexity

of theorem proving makes it questionable whether agents as theorem provers

can operate e�ectively in time-constrained environments. Decision making in such

agents is predicated on the assumption of calculative rationality|the assumption

that the world will not change in any signi�cant way while the agent is deciding

what to do, and that an action which is rational when decision making begins

will be rational when it concludes. The problems associated with representing

and reasoning about complex, dynamic, possibly physical environments are also

essentially unsolved.
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Sources and Further Reading

My presentation of logic based agents is based largely on the discussion of deliberate

agents presented in [25, Chapter 13], which represents the logic-centric view of AI

and agents very well. The discussion is also partly based on [38]. A number of more-

or-less \pure" logical approaches to agent programming have been developed. Well-

known examples include the congolog system of Lesp�erance and colleagues [39]

(which is based on the situation calculus [45]) and the MetateM and Concurrent

MetateM programming languages developed by Fisher and colleagues [3, 21] (in

which agents are programmed by giving them temporal logic speci�cations of the

behavior they should exhibit). Concurrent MetateM is discussed as a case study

in section 1.5. Note that these architectures (and the discussion above) assume

that if one adopts a logical approach to agent-building, then this means agents

are essentially theorem provers, employing explicit symbolic reasoning (theorem

proving) in order to make decisions. But just because we �nd logic a useful tool

for conceptualising or specifying agents, this does not mean that we must view

decision-making as logical manipulation. An alternative is to compile the logical

speci�cation of an agent into a form more amenable to e�cient decision making.

The di�erence is rather like the distinction between interpreted and compiled

programming languages. The best-known example of this work is the situated

automata paradigm of Leslie Kaelbling and Stanley Rosenschein [58]. A review

of the role of logic in intelligent agents may be found in [70]. Finally, for a detailed

discussion of calculative rationality and the way that it has a�ected thinking in AI,

see [60].

1.4.2 Reactive Architectures

The seemingly intractable problems with symbolic/logical approaches to building

agents led some researchers to question, and ultimately reject, the assumptions

upon which such approaches are based. These researchers have argued that minor

changes to the symbolic approach, such as weakening the logical representation

language, will not be su�cient to build agents that can operate in time-constrained

environments: nothing less than a whole new approach is required. In the mid-

to-late 1980s, these researchers began to investigate alternatives to the symbolic

AI paradigm. It is di�cult to neatly characterize these di�erent approaches, since

their advocates are united mainly by a rejection of symbolic AI, rather than by a

common manifesto. However, certain themes do recur:

the rejection of symbolic representations, and of decision making based on

syntactic manipulation of such representations;

the idea that intelligent, rational behavior is seen as innately linked to the

environment an agent occupies|intelligent behavior is not disembodied, but

is a product of the interaction the agent maintains with its environment;
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the idea that intelligent behavior emerges from the interaction of various simpler

behaviors.

Alternative approaches to agency are sometime referred to as behavioral (since a

common theme is that of developing and combining individual behaviors), situ-

ated (since a common theme is that of agents actually situated in some environ-

ment, rather than being disembodied from it), and �nally|the term used in this

chapter|reactive (because such systems are often perceived as simply reacting to

an environment, without reasoning about it). This section presents a survey of the

subsumption architecture, which is arguably the best-known reactive agent archi-

tecture. It was developed by Rodney Brooks|one of the most vocal and in
uential

critics of the symbolic approach to agency to have emerged in recent years.

There are two de�ning characteristics of the subsumption architecture. The �rst

is that an agent's decision-making is realized through a set of task accomplishing

behaviors ; each behavior may be though of as an individual action function, as we

de�ned above, which continually takes perceptual input and maps it to an action

to perform. Each of these behavior modules is intended to achieve some particular

task. In Brooks' implementation, the behavior modules are �nite state machines.

An important point to note is that these task accomplishing modules are assumed

to include no complex symbolic representations, and are assumed to do no symbolic

reasoning at all. In many implementations, these behaviors are implemented as rules

of the form

situation �! action

which simple map perceptual input directly to actions.

The second de�ning characteristic of the subsumption architecture is that many

behaviors can \�re" simultaneously. There must obviously be a mechanism to choose

between the di�erent actions selected by these multiple actions. Brooks proposed

arranging the modules into a subsumption hierarchy, with the behaviors arranged

into layers. Lower layers in the hierarchy are able to inhibit higher layers: the lower

a layer is, the higher is its priority. The idea is that higher layers represent more

abstract behaviors. For example, one might desire a behavior in a mobile robot for

the behavior \avoid obstacles". It makes sense to give obstacle avoidance a high

priority|hence this behavior will typically be encoded in a low-level layer, which

has high priority. To illustrate the subsumption architecture in more detail, we will

now present a simple formal model of it, and illustrate how it works by means of a

short example. We then discuss its relative advantages and shortcomings, and point

at other similar reactive architectures.

The see function, which represents the agent's perceptual ability, is assumed to

remain unchanged. However, in implemented subsumption architecture systems,

there is assumed to be quite tight coupling between perception and action|raw

sensor input is not processed or transformed much, and there is certainly no attempt

to transform images to symbolic representations.
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The decision function action is realized through a set of behaviors, together with

an inhibition relation holding between these behaviors. A behavior is a pair (c; a),

where c � P is a set of percepts called the condition, and a 2 A is an action. A

behavior (c; a) will �re when the environment is in state s 2 S i� see(s) 2 c. Let

Beh = f(c; a) j c � P and a 2 Ag be the set of all such rules.

Associated with an agent's set of behavior rules R � Beh is a binary inhibition

relation on the set of behaviors: � � R�R. This relation is assumed to be a total

ordering on R (i.e., it is transitive, irre
exive, and antisymmetric). We write b1 � b2

if (b1; b2) 2�, and read this as \b1 inhibits b2", that is, b1 is lower in the hierarchy

than b2, and will hence get priority over b2. The action function is then de�ned as

follows:

1. function action(p : P ) : A

2. var fired : }(R)

3. var selected : A

4. begin

5. fired := f(c; a) j (c; a) 2 R and p 2 cg

6. for each (c; a) 2 fired do

7. if :(9(c0; a0) 2 fired such that (c0; a0) � (c; a)) then

8. return a

9. end-if

10. end-for

11. return null

12. end function action

Thus action selection begins by �rst computing the set fired of all behaviors

that �re (5). Then, each behavior (c; a) that �res is checked, to determine whether

there is some other higher priority behavior that �res. If not, then the action part

of the behavior, a, is returned as the selected action (8). If no behavior �res, then

the distinguished action null will be returned, indicating that no action has been

chosen.

Given that one of our main concerns with logic-based decision making was its

theoretical complexity, it is worth pausing to examine how well our simple behavior-

based system performs. The overall time complexity of the subsumption action

function is no worse than O(n2), where n is the larger of the number of behaviors or

number of percepts. Thus, even with the naive algorithm above, decision making is

tractable. In practice, we can do considerably better than this: the decision making

logic can be encoded into hardware, giving constant decision time. For modern

hardware, this means that an agent can be guaranteed to select an action within

nano-seconds. Perhaps more than anything else, this computational simplicity is

the strength of the subsumption architecture.

To illustrate how the subsumption architecture in more detail, we will show how

subsumption architecture agents were built for the following scenario (this example

is adapted from [66]):
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The objective is to explore a distant planet, more concretely, to collect samples of

a particular type of precious rock. The location of the rock samples is not known in

advance, but they are typically clustered in certain spots. A number of autonomous

vehicles are available that can drive around the planet collecting samples and later

reenter the a mothership spacecraft to go back to earth. There is no detailed map of

the planet available, although it is known that the terrain is full of obstacles|hills,

valleys, etc.|which prevent the vehicles from exchanging any communication.

The problem we are faced with is that of building an agent control architecture for

each vehicle, so that they will cooperate to collect rock samples from the planet

surface as e�ciently as possible. Luc Steels argues that logic-based agents, of the

type we described above, are \entirely unrealistic" for this problem [66]. Instead,

he proposes a solution using the subsumption architecture.

The solution makes use of two mechanisms introduced by Steels: The �rst is a

gradient �eld. In order that agents can know in which direction the mothership lies,

the mothership generates a radio signal. Now this signal will obviously weaken as

distance to the source increases|to �nd the direction of the mothership, an agent

need therefore only travel \up the gradient" of signal strength. The signal need not

carry any information|it need only exist.

The second mechanism enables agents to communicate with one another. The

characteristics of the terrain prevent direct communication (such as message pass-

ing), so Steels adopted an indirect communication method. The idea is that agents

will carry \radioactive crumbs", which can be dropped, picked up, and detected by

passing robots. Thus if an agent drops some of these crumbs in a particular loca-

tion, then later, another agent happening upon this location will be able to detect

them. This simple mechanism enables a quite sophisticated form of cooperation.

The behavior of an individual agent is then built up from a number of behaviors,

as we indicated above. First, we will see how agents can be programmed to

individually collect samples. We will then see how agents can be programmed to

generate a cooperative solution.

For individual (non-cooperative) agents, the lowest-level behavior, (and hence

the behavior with the highest \priority") is obstacle avoidance. This behavior can

can be represented in the rule:

if detect an obstacle then change direction. (1.6)

The second behavior ensures that any samples carried by agents are dropped back

at the mother-ship.

if carrying samples and at the base then drop samples (1.7)

if carrying samples and not at the base then travel up gradient. (1.8)

Behavior (1.8) ensures that agents carrying samples will return to the mother-ship

(by heading towards the origin of the gradient �eld). The next behavior ensures
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that agents will collect samples they �nd.

if detect a sample then pick sample up. (1.9)

The �nal behavior ensures that an agent with \nothing better to do" will explore

randomly.

if true then move randomly. (1.10)

The pre-condition of this rule is thus assumed to always �re. These behaviors are

arranged into the following hierarchy:

(1:6) � (1:7) � (1:8) � (1:9) � (1:10)

The subsumption hierarchy for this example ensures that, for example, an agent

will always turn if any obstacles are detected; if the agent is at the mother-ship

and is carrying samples, then it will always drop them if it is not in any immediate

danger of crashing, and so on. The \top level" behavior|a random walk|will only

every be carried out if the agent has nothing more urgent to do. It is not di�cult

to see how this simple set of behaviors will solve the problem: agents will search for

samples (ultimately by searching randomly), and when they �nd them, will return

them to the mother-ship.

If the samples are distributed across the terrain entirely at random, then equip-

ping a large number of robots with these very simple behaviors will work extremely

well. But we know from the problem speci�cation, above, that this is not the case:

the samples tend to be located in clusters. In this case, it makes sense to have agents

cooperate with one-another in order to �nd the samples. Thus when one agent �nds

a large sample, it would be helpful for it to communicate this to the other agents,

so they can help it collect the rocks. Unfortunately, we also know from the problem

speci�cation that direct communication is impossible. Steels developed a simple

solution to this problem, partly inspired by the foraging behavior of ants. The idea

revolves around an agent creating a \trail" of radioactive crumbs whenever it �nds

a rock sample. The trail will be created when the agent returns the rock samples

to the mother ship. If at some later point, another agent comes across this trail,

then it need only follow it down the gradient �eld to locate the source of the rock

samples. Some small re�nements improve the e�ciency of this ingenious scheme

still further. First, as an agent follows a trail to the rock sample source, it picks

up some of the crumbs it �nds, hence making the trail fainter. Secondly, the trail

is only laid by agents returning to the mothership. Hence if an agent follows the

trail out to the source of the nominal rock sample only to �nd that it contains no

samples, it will reduce the trail on the way out, and will not return with samples

to reinforce it. After a few agents have followed the trail to �nd no sample at the

end of it, the trail will in fact have been removed.

The modi�ed behaviors for this example are as follows. Obstacle avoidance, (1.6),

remains unchanged. However, the two rules determining what to do if carrying a
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sample are modi�ed as follows.

if carrying samples and at the base then drop samples (1.11)

if carrying samples and not at the base

then drop 2 crumbs and travel up gradient.
(1.12)

The behavior (1.12) requires an agent to drop crumbs when returning to base with

a sample, thus either reinforcing or creating a trail. The \pick up sample" behavior,

(1.9), remains unchanged. However, an additional behavior is required for dealing

with crumbs.

if sense crumbs then pick up 1 crumb and travel down gradient (1.13)

Finally, the randommovement behavior, (1.10), remains unchanged. These behavior

are then arranged into the following subsumption hierarchy.

(1:6) � (1:11) � (1:12) � (1:9) � (1:13) � (1:10)

Steels shows how this simple adjustment achieves near-optimal performance in

many situations. Moreover, the solution is cheap (the computing power required

by each agent is minimal) and robust (the loss of a single agent will not a�ect the

overall system signi�cantly).

In summary, there are obvious advantages to reactive approaches such as that

Brooks' subsumption architecture: simplicity, economy, computational tractability,

robustness against failure, and elegance all make such architectures appealing. But

there are some fundamental, unsolved problems, not just with the subsumption

architecture, but with other purely reactive architectures:

If agents do not employ models of their environment, then they must have

su�cient information available in their local environment for them to determine

an acceptable action.

Since purely reactive agents make decisions based on local information, (i.e.,

information about the agents current state), it is di�cult to see how such decision

making could take into account non-local information|it must inherently take

a \short term" view.

It is di�cult to see how purely reactive agents can be designed that learn from

experience, and improve their performance over time.

A major selling point of purely reactive systems is that overall behavior emerges

from the interaction of the component behaviors when the agent is placed in

its environment. But the very term \emerges" suggests that the relationship

between individual behaviors, environment, and overall behavior is not under-

standable. This necessarily makes it very hard to engineer agents to ful�ll speci�c

tasks. Ultimately, there is no principled methodology for building such agents:

one must use a laborious process of experimentation, trial, and error to engineer

an agent.
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While e�ective agents can be generated with small numbers of behaviors (typi-

cally less that ten layers), it is much harder to build agents that contain many

layers. The dynamics of the interactions between the di�erent behaviors become

too complex to understand.

Various solutions to these problems have been proposed. One of the most popular

of these is the idea of evolving agents to perform certain tasks. This area of work

has largely broken away from the mainstream AI tradition in which work on, for

example, logic-based agents is carried out, and is documented primarily in the

arti�cial life (alife) literature.

Sources and Further Reading

Brooks' original paper on the subsumption architecture|the one that started all

the fuss|was published as [8]. The description and discussion here is partly based

on [15]. This original paper seems to be somewhat less radical than many of his

later ones, which include [9, 11, 10]. The version of the subsumption architecture

used in this chapter is actually a simpli�cation of that presented by Brooks.

The subsumption architecture is probably the best-known reactive architecture

around|but there are many others. The collection of papers edited by Pattie

Maes [41] contains papers that describe many of these, as does the collection by

Agre and Rosenschein [2]. Other approaches include:

the agent network architecture developed by Pattie Maes [40, 42, 43];

Nilsson's teleo reactive programs [49];

Rosenchein and Kaelbling's situated automata approach, which is particularly

interesting in that it shows how agents can be speci�ed in an abstract, logi-

cal framework, and compiled into equivalent, but computationally very simple

machines [57, 36, 35, 58];

Agre and Chapman's pengi system [1];

Schoppers' universal plans|which are essentially decision trees that can be used

to e�ciently determine an appropriate action in any situation [62];

Firby's reactive action packages [19].

Kaelbling [34] gives a good discussion of the issues associated with developing

resource-bounded rational agents, and proposes an agent architecture somewhat

similar to that developed by Brooks.

1.4.3 Belief-Desire-Intention Architectures

In this section, we shall discuss belief-desire-intention (bdi) architectures. These ar-

chitectures have their roots in the philosophical tradition of understanding practical

reasoning|the process of deciding, moment by moment, which action to perform

in the furtherance of our goals.
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Practical reasoning involves two important processes: deciding what goals we

want to achieve, and how we are going to achieve these goals. The former process is

known as deliberation, the latter asmeans-ends reasoning. To gain an understanding

of the bdi model, it is worth considering a simple example of practical reasoning.

When you leave university with a �rst degree, you are faced with a decision to

make|about what to do with your life. The decision process typically begins by

trying to understand what the options available to you are. For example, if you

gain a good �rst degree, then one option is that of becoming an academic. (If you

fail to obtain a good degree, this option is not available to you.) Another option is

entering industry. After generating this set of alternatives, you must choose between

them, and commit to some. These chosen options become intentions, which then

determine the agent's actions. Intentions then feed back into the agent's future

practical reasoning. For example, if I decide I want to be an academic, then I

should commit to this objective, and devote time and e�ort to bringing it about.

Intentions play a crucial role in the practical reasoning process. Perhaps the most

obvious property of intentions is that they tend to lead to action. If I truly have

an intention to become an academic, then you would expect me to act on that

intention|to try to achieve it. For example, you might expect me to apply to

various PhD programs. You would expect to make a reasonable attempt to achieve

the intention. Thus you would expect me to carry our some course of action that

I believed would best satisfy the intention. Moreover, if a course of action fails to

achieve the intention, then you would expect me to try again|you would not expect

me to simply give up. For example, if my �rst application for a PhD programme is

rejected, then you might expect me to apply to alternative universities.

In addition, once I have adopted an intention, then the very fact of having this

intention will constrain my future practical reasoning. For example, while I hold

some particular intention, I will not entertain options that are inconsistent with

that intention. Intending to become an academic, for example, would preclude the

option of partying every night: the two are mutually exclusive.

Next, intentions persist. If I adopt an intention to become an academic, then I

should persist with this intention and attempt to achieve it. For if I immediately

drop my intentions without devoting resources to achieving them, then I will never

achieve anything. However, I should not persist with my intention for too long|if it

becomes clear to me that I will never become an academic, then it is only rational

to drop my intention to do so. Similarly, if the reason for having an intention goes

away, then it is rational of me to drop the intention. For example, if I adopted the

intention to become an academic because I believed it would be an easy life, but

then discover that I would be expected to actually teach, then the justi�cation for

the intention is no longer present, and I should drop the intention.

Finally, intentions are closely related to beliefs about the future. For example, if

I intend to become an academic, then I should believe that I will indeed become

an academic. For if I truly believe that I will never be an academic, it would be

non-sensical of me to have an intention to become one. Thus if I intend to become

an academic, I should at least believe that there is a good chance I will indeed
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become one.

From this discussion, we can see that intentions play a number of important roles

in practical reasoning:

Intentions drive means-ends reasoning.

If I have formed an intention to become an academic, then I will attempt to

achieve the intention, which involves, amongst other things, deciding how to

achieve it, for example, by applying for a PhD programme. Moreover, if one

particular course of action fails to achieve an intention, then I will typically

attempt others. Thus if I fail to gain a PhD place at one university, I might try

another university.

Intentions constrain future deliberation.

If I intend to become an academic, then I will not entertain options that are

inconsistent with this intention. For example, a rational agent would not consider

being rich as an option while simultaneously intending to be an academic. (While

the two are not actually mutually exclusive, the probability of simultaneously

achieving both is in�nitesimal.)

Intentions persist.

I will not usually give up on my intentions without good reason|they will

persist, typically until either I believe I have successfully achieved them, I believe

I cannot achieve them, or else because the purpose for the intention is no longer

present.

Intentions in
uence beliefs upon which future practical reasoning is based.

If I adopt the intention to become an academic, then I can plan for the future on

the assumption that I will be an academic. For if I intend to be an academic while

simultaneously believing that I will never be one, then I am being irrational.

A key problem in the design of practical reasoning agents is that of of achieving

a good balance between these di�erent concerns. Speci�cally, it seems clear that

an agent should at times drop some intentions (because it comes to believe that

either they will never be achieved, they are achieved, or else because the reason

for having the intention is no longer present). It follows that, from time to time,

it is worth an agent stopping to reconsider its intentions. But reconsideration has

a cost|in terms of both time and computational resources. But this presents us

with a dilemma:

an agent that does not stop to reconsider su�ciently often will continue attempt-

ing to achieve its intentions even after it is clear that they cannot be achieved,

or that there is no longer any reason for achieving them;

an agent that constantly reconsiders its attentions may spend insu�cient time

actually working to achieve them, and hence runs the risk of never actually

achieving them.

This dilemma is essentially the problem of balancing pro-active (goal directed) and

reactive (event driven) behavior, that we introduced in section 1.2.2.
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There is clearly a tradeo� to be struck between the degree of commitment and

reconsideration at work here. The nature of this tradeo� was examined by David

Kinny and Michael George�, in a number of experiments carried out with a bdi

agent framework called dMARS [37]. They investigate how bold agents (those that

never stop to reconsider) and cautious agents (those that are constantly stopping

to reconsider) perform in a variety of di�erent environments. The most important

parameter in these experiments was the rate of world change, 
. The key results of

Kinny and George� were as follows.

If 
 is low, (i.e., the environment does not change quickly), then bold agents

do well compared to cautious ones, because cautious ones waste time recon-

sidering their commitments while bold agents are busy working towards|and

achieving|their goals.

If 
 is high, (i.e., the environment changes frequently), then cautious agents tend

to outperform bold agents, because they are able to recognize when intentions

are doomed, and also to take advantage of serendipitous situations and new

opportunities.

The lesson is that di�erent types of environment require di�erent types of decision

strategies. In static, unchanging environment, purely pro-active, goal directed

behavior is adequate. But in more dynamic environments, the ability to react to

changes by modi�fying intentions becomes more important.

The process of practical reasoning in a bdi agent is summarized in Figure 1.5.

As this Figure illustrates, there are seven main components to a bdi agent:

a set of current beliefs, representing information the agent has about its current

environment;

a belief revision function, (brf), which takes a perceptual input and the agent's

current beliefs, and on the basis of these, determines a new set of beliefs;

an option generation function, (options), which determines the options available

to the agent (its desires), on the basis of its current beliefs about its environment

and its current intentions ;

a set of current options, representing possible courses of actions available to the

agent;

a �lter function (filter), which represents the agent's deliberation process, and

which determines the agent's intentions on the basis of its current beliefs, desires,

and intentions;

a set of current intentions, representing the agent's current focus|those states

of a�airs that it has committed to trying to bring about;

an action selection function (execute), which determines an action to perform

on the basis of current intentions.

It is straightforward to formally de�ne these components. First, let Bel be the set

of all possible beliefs, Des be the set of all possible desires, and Int be the set of
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Figure 1.5 Schematic diagram of a generic belief-desire-intention architecture.

all possible intentions. For the purposes of this chapter, the content of these sets

is not important. (Often, beliefs, desires, and intentions are represented as logical

formulae, perhaps of �rst-order logic.) Whatever the content of these sets, its is

worth noting that they should have some notion of consistency de�ned upon them,

so that one can answer the question of, for example, whether having an intention

to achieve x is consistent with the belief that y. Representing beliefs, desires, and

intentions as logical formulae permits us to cast such questions as questions as

questions of determining whether logical formulae are consistent|a well known

and well-understood problem. The state of a bdi agent at any given moment is,

unsurprisingly, a triple (B;D; I), where B � Bel, D � Des, and I � Int.

An agent's belief revision function is a mapping

brf : }(Bel)� P ! }(Bel)

which on the basis of the current percept and current beliefs determines a new set

of beliefs. Belief revision is out of the scope of this chapter (and indeed this book),

and so we shall say no more about it here.



1.4 Concrete Architectures for Intelligent Agents 59

The option generation function, options, maps a set of beliefs and a set of

intentions to a set of desires.

options : }(Bel)� }(Int)! }(Des)

This function plays several roles. First, it must be responsible for the agent's means-

ends reasoning|the process of deciding how to achieve intentions. Thus, once an

agent has formed an intention to x, it must subsequently consider options to achieve

x. These options will be more concrete|less abstract|than x. As some of these

options then become intentions themselves, they will also feedback into option gen-

eration, resulting in yet more concrete options being generated. We can thus think

of a bdi agent's option generation process as one of recursively elaborating a hier-

archical plan structure, considering and committing to progressively more speci�c

intentions, until �nally it reaches the intentions that correspond to immediately

executable actions.

While the main purpose of the options function is thus means-ends reasoning,

it must in addition satisfy several other constraints. First, it must be consistent :

any options generated must be consistent with both the agent's current beliefs and

current intentions. Secondly, it must be opportunistic, in that it should recognize

when environmental circumstances change advantageously, to o�er the agent new

ways of achieving intentions, or the possibility of achieving intentions that were

otherwise unachievable.

A bdi agent's deliberation process (deciding what to do) is represented in the

filter function,

filter : }(Bel)� }(Des)� }(Int)! }(Int)

which updates the agent's intentions on the basis of its previously-held intentions

and current beliefs and desires. This function must ful�ll two roles. First, it must

drop any intentions that are no longer achievable, or for which the expected cost

of achieving them exceeds the expected gain associated with successfully achieving

them. Second, it should retain intentions that are not achieved, and that are still

expected to have a positive overall bene�t. Finally, it should adopt new intentions,

either to achieve existing intentions, or to exploit new opportunities.

Notice that we do not expect this function to introduce intentions from nowhere.

Thus filter should satisfy the following constraint:

8B 2 }(Bel);8D 2 }(Des);8I 2 }(Int); filter(B;D; I) � I [D:

In other words, current intentions are either previously held intentions or newly

adopted options.

The execute function is assumed to simply return any executable intentions|one

that corresponds to a directly executable action:

execute : }(Int)! A

The agent decision function, action of a bdi agent is then a function

action : P ! A

and is de�ned by the following pseudo-code.
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1. function action(p : P ) : A

2. begin

3. B := brf(B; p)

4. D := options(D; I)

5. I := filter(B;D; I)

6. return execute(I)

7. end function action

Note that representing an agent's intentions as a set (i.e., as an unstructured

collection) is generally too simplistic in practice. A simple alternative is to associate

a priority with each intention, indicating its relative importance. Another natural

idea is to represent intentions as a stack. An intention is pushed on to the stack

when it is adopted, and popped when it is either achieved or else not achievable.

More abstract intentions will tend to be at the bottom of the stack, with more

concrete intentions towards the top.

To summarize, bdi architectures are practical reasoning architectures, in which

the process of deciding what to do resembles the kind of practical reasoning that

we appear to use in our everyday lives. The basic components of a bdi architecture

are data structures representing the beliefs, desires, and intentions of the agent,

and functions that represent its deliberation (deciding what intentions to have|

i.e., deciding what to do) and means-ends reasoning (deciding how to do it).

Intentions play a central role in the bdi model: they provide stability for decision

making, and act to focus the agent's practical reasoning. A major issue in bdi

architectures is the problem of striking a balance between being committed to and

overcommitted to one's intentions: the deliberation process must be �nely tuned

to its environment, ensuring that in more dynamic, highly unpredictable domains,

it reconsiders its intentions relatively frequently|in more static environments, less

frequent reconsideration is necessary.

The bdi model is attractive for several reasons. First, it is intuitive|we all

recognize the processes of deciding what to do and then how to do it, and we

all have an informal understanding of the notions of belief, desire, and intention.

Second, it gives us a clear functional decomposition, which indicates what sorts of

subsystems might be required to build an agent. But the main di�culty, as ever, is

knowing how to e�ciently implement these functions.

Sources and Further Reading

Belief-desire-intention architectures originated in the work of the Rational Agency

project at Stanford Research Institute in the mid 1980s. The origins of the model

lie in the theory of human practical reasoning developed by the philosopher Michael

Bratman [6], which focusses particularly on the role of intentions in practical



1.4 Concrete Architectures for Intelligent Agents 61

reasoning. The conceptual framework of the BDI model is described in [7], which

also describes a speci�c BDI agent architecture called irma. The description of

the bdi model given here (and in particular Figure 1.5) is adapted from [7]. One

of the interesting aspects of the bdi model is that it has been used in one of

the most successful agent architectures to date. The Procedural Resoning System

(prs), originally developed by Michael George� and Amy Lansky [26], has been

used to build some of the most exacting agent applications to date, including fault

diagnosis for the reaction control system of the space shuttle, and an air tra�c

management system at Sydney airport in Australia|overviews of these systems

are described in [27]. In the prs, an agent is equipped with a library of plans which

are used to perform means-ends reasoning. Deliberation is achieved by the use of

meta-level plans, which are able to modify an agent's intention structure at run-

time, in order to change the focus of the agent's practical reasoning. Beliefs in the

prs are represented as prolog-like facts|essentially, as atoms of �rst-order logic.

The bdi model is also interesting because a great deal of e�ort has been devoted

to formalising it. In particular, Anand Rao and Michael George� have developed a

range of bdi logics, which they use to axiomatize properties of bdi-based practical

reasoning agents [52, 56, 53, 54, 55, 51]. These models have been extended by others

to deal with, for example, communication between agents [28].

1.4.4 Layered Architectures

Given the requirement that an agent be capable of reactive and pro-active behavior,

an obvious decomposition involves creating separate subsystems to deal with these

di�erent types of behaviors. This idea leads naturally to a class of architectures in

which the various subsystems are arranged into a hierarchy of interacting layers.

In this section, we will consider some general aspects of layered architectures,

and then go on to consider two examples of such architectures: interrap and

touringmachines.

Typically, there will be at least two layers, to deal with reactive and pro-active

behaviors respectively. In principle, there is no reason why there should not be many

more layers. However many layers there are, a useful typology for such architectures

is by the information and control 
ows within them. Broadly speaking, we can

identify two types of control 
ow within layered architectures (see Figure 1.6):

Horizontal layering.

In horizontally layered architectures (Figure 1.6(a)), the software layers are each

directly connected to the sensory input and action output. In e�ect, each layer

itself acts like an agent, producing suggestions as to what action to perform.

Vertical layering.

In vertically layered architectures (Figure 1.6(b) and 1.6(c)), sensory input and

action output are each dealt with by at most one layer each.

The great advantage of horizontally layered architectures is their conceptual sim-

plicity: if we need an agent to exhibit n di�erent types of behavior, then we imple-



62 Intelligent Agents

action
output

perceptual
input

(b) Vertical layering
(One pass control)

(a) Horizontal layering

perceptual
input

action
output

perceptual
input

action
output

(Two pass control)

Layer 1

Layer 2

Layer n

Layer 1

Layer 2

Layer n

Layer 1

Layer 2

Layer n

... ... ...

(c) Vertical layering

Figure 1.6 Information and control 
ows in three types of layered agent architec-

ture (Source: [47, p263]).

ment n di�erent layers. However, because the layers are each in e�ect competing

with one-another to generate action suggestions, there is a danger that the overall

behavior of the agent will not be coherent. In order to ensure that horizontally lay-

ered architectures are consistent, they generally include a mediator function, which

makes decisions about which layer has \control" of the agent at any given time.

The need for such central control is problematic: it means that the designer must

potentially consider all possible interactions between layers. If there are n layers in

the architecture, and each layer is capable of suggesting m possible actions, then

this means there are mn such interactions to be considered. This is clearly di�cult

from a design point of view in any but the most simple system. The introduction

of a central control system also introduces a bottleneck into the agent's decision

making.

These problems are partly alleviated in a vertically layered architecture. We can

subdivide vertically layered architectures into one pass architectures (Figure 1.6(b))

and two pass architectures (Figure 1.6(c)). In one-pass architectures, control 
ows

sequentially through each layer, until the �nal layer generates action output. In two-

pass architectures, information 
ows up the architecture (the �rst pass) and control

then 
ows back down. There are some interesting similarities between the idea of

two-pass vertically layered architectures and the way that organisations work, with

information 
owing up to the highest levels of the organisation, and commands

then 
owing down. In both one pass and two pass vertically layered architectures,

the complexity of interactions between layers is reduced: since there are n � 1

interfaces between n layers, then if each layer is capable of suggesting m actions,

there are at most m2(n � 1) interactions to be considered between layers. This is

clearly much simpler than the horizontally layered case. However, this simplicity

comes at the cost of some 
exibility: in order for a vertically layered architecture to
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Figure 1.7 TouringMachines: a horizontally layered agent architecture

make a decision, control must pass between each di�erent layer. This is not fault

tolerant: failures in any one layer are likely to have serious consequences for agent

performance.

In the remainder of this section, we will consider two examples of layered

architectures: Innes Ferguson's touringmachines, and J�org M�uller's interrap.

The former is an example of a horizontally layered architecture; the latter is a (two

pass) vertically layered architecture.

TouringMachines

The touringmachines architecture is illustrated in Figure 1.7. As this Figure

shows, TouringMachines consists of three activity producing layers. That is,

each layer continually produces \suggestions" for what actions the agent should

perform. The reactive layer provides a more-or-less immediate response to changes

that occur in the environment. It is implemented as a set of situation-action rules,

like the behaviors in Brooks' subsumption architecture (section 1.4.2). These rules

map sensor input directly to e�ector output. The original demonstration scenario

for touringmachines was that of autonomous vehicles driving between locations

through streets populated by other similar agents. In this scenario, reactive rules

typically deal with functions like obstacle avoidance. For example, here is an

example of a reactive rule for avoiding the kerb (from [16, p59]):

rule-1: kerb-avoidance

if

is-in-front(Kerb, Observer) and

speed(Observer) > 0 and

separation(Kerb, Observer) < KerbThreshHold
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then

change-orientation(KerbAvoidanceAngle)

Here change-orientation(...) is the action suggested if the rule �res. The rules

can only make references to the agent's current state|they cannot do any explicit

reasoning about the world, and on the right hand side of rules are actions, not

predicates. Thus if this rule �red, it would not result in any central environment

model being updated, but would just result in an action being suggested by the

reactive layer.

The touringmachines planning layer achieves the agent's pro-active behavior.

Speci�cally, the planning layer is responsible for the \day-to-day" running of the

agent|under normal circumstances, the planning layer will be responsible for decid-

ing what the agent does. However, the planning layer does not do \�rst-principles"

planning. That is, it does not attempt to generate plans from scratch. Rather, the

planning layer employs a library of plan \skeletons" called schemas. These skele-

tons are in essence hierarchically structured plans, which the touringmachines

planning layer elaborates at run time in order to decide what to do. So, in order

to achieve a goal, the planning layer attempts to �nd a schema in its library which

matches that goal. This schema will contain sub-goals, which the planning layer

elaborates by attempting to �nd other schemas in its plan library that match these

sub-goals.

The modeling layer represents the various entities in the world (including the

agent itself, as well as other agents). The modeling layer thus predicts con
icts

between agents, and generates new goals to be achieved in order to resolve these

con
icts. These new goals are then posted down to the planning layer, which makes

use of its plan library in order to determine how to satisfy them.

The three control layers are embedded within a control subsystem, which is

e�ectively responsible for deciding which of the layers should have control over the

agent. This control subsystem is implemented as a set of control rules. Control rules

can either suppress sensor information between the control rules and the control

layers, or else censor action outputs from the control layers. Here is an example

censor rule [18, p207]:

censor-rule-1:

if

entity(obstacle-6) in perception-buffer

then

remove-sensory-record(layer-R, entity(obstacle-6))

This rule prevents the reactive layer from ever knowing about whether obstacle-6

has been perceived. The intuition is that although the reactive layer will in general

be the most appropriate layer for dealing with obstacle avoidance, there are certain

obstacles for which other layers are more appropriate. This rule ensures that the

reactive layer never comes to know about these obstacles.
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Figure 1.8 interrap|a vertically layered two-pass agent architecture.

InteRRaP

interrap is an example of a vertically layered two-pass agent architecture|see

Figure 1.8.

As Figure 1.8 shows, interrap contains three control layers, as in touringma-

chines. Moreover, the purpose of each interrap layer appears to be rather similar

to the purpose of each corresponding touringmachines layer. Thus the lowest (be-

havior based) layer deals with reactive behavior; the middle (local planning) layer

deals with everyday planning to achieve the agent's goals, and the uppermost (coop-

erative planning) layer deals with social interactions. Each layer has associated with

it a knowledge base, i.e., a representation of the world appropriate for that layer.

These di�erent knowledge bases represent the agent and its environment at di�erent

levels of abstraction. Thus the highest level knowledge base represents the plans and

actions of other agents in the environment; the middle-level knowledge base repre-

sents the plans and actions of the agent itself; and the lowest level knowledge base

represents \raw" information about the environment. The explicit introduction of

these knowledge bases distinguishes touringmachines from interrap.

The way the di�erent layers in interrap conspire to produce behavior is also

quite di�erent from touringmachines. The main di�erence is in the way the layers

interract with the environment. In touringmachines, each layer was directly

coupled to perceptual input and action output. This necessitated the introduction

of a supervisory control framework, to deal with con
icts or problems between

layers. In interrap, layers interact with each other to achieve the same end. The

two main types of interaction between layers are bottom-up activation and top-

down execution. Bottom-up activation occurs when a lower layer passes control to

a higher layer because it is not competent to deal with the current situation. Top-

down execution occurs when a higher layer makes use of the facilities provided by
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a lower layer to achieve one of its goals. The basic 
ow of control in interrap

begins when perceptual input arrives at the lowest layer in the achitecture. If the

reactive layer can deal with this input, then it will do so; otherwise, bottom-up

activation will occur, and control will be passed to the local planning layer. If

the local planning layer can handle the situation, then it will do so, typically by

making use of top-down execution. Otherwise, it will use bottom-up activation to

pass control to the highest layer. In this way, control in interrap will 
ow from

the lowest layer to higher layers of the architecture, and then back down again.

The internals of each layer are not important for the purposes of this chapter.

However, it is worth noting that each layer implements two general functions. The

�rst of these is a situation recognition and goal activation function. This function

acts rather like the options function in a BDI architecture (see section 1.4.3).

It maps a knowledge base (one of the three layers) and current goals to a new

set of goals. The second function is responsible for planning and scheduling|it is

responsible for selecting which plans to execute, based on the current plans, goals,

and knowledge base of that layer.

Layered architectures are currently the most popular general class of agent

architecture available. Layering represents a natural decomposition of functionality:

it is easy to see how reactive, pro-active, social behavior can be generated by the

reactive, pro-active, and social layers in an architecture. The main problem with

layered architectures is that while they are arguably a pragmatic solution, they

lack the conceptual and semantic clarity of unlayered approaches. In particular,

while logic-based approaches have a clear logical semantics, it is di�cult to see how

such a semantics could be devised for a layered architecture. Another issue is that

of interactions between layers. If each layer is an independent activity producing

process (as in touringmachines), then it is necessary to consider all possible ways

that the layers can interact with one another. This problem is partly alleviated in

two-pass vertically layered architecture such as interrap.

Sources and Further Reading

The introductory discussion of layered architectures given here draws heavily

upon [47, pp262{264]. The best reference to touringmachines is [16]; more

accessible references include [17, 18]. The de�nitive reference to interrap is [46],

although [20] is also a useful reference. Other examples of layered architectures

include the subsumption architecture [8] (see also section 1.4.2), and the 3T

architecture [4].

1.5 Agent Programming Languages

As agent technology becomes more established, we might expect to see a variety

of software tools become available for the design and construction of agent-based
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systems; the need for software support tools in this area was identi�ed as long ago

as the mid-1980s [23]. In this section, we will discuss two of the better-known agent

programming languages, focussing in particular on Yoav Shoham's agent0 system.

1.5.1 Agent-Oriented Programming

Yoav Shoham has proposed a \new programming paradigm, based on a societal

view of computation" which he calls agent-oriented programming. The key idea

which informs aop is that of directly programming agents in terms of mentalistic

notions (such as belief, desire, and intention) that agent theorists have developed

to represent the properties of agents. The motivation behind the proposal is

that humans use such concepts as an abstraction mechanism for representing the

properties of complex systems. In the same way that we use these mentalistic

notions to describe and explain the behavior of humans, so it might be useful

to use them to program machines.

The �rst implementation of the agent-oriented programming paradigm was the

agent0 programming language. In this language, an agent is speci�ed in terms of a

set of capabilities (things the agent can do), a set of initial beliefs (playing the role

of beliefs in bdi architectures), a set of initial commitments (playing a role similar

to that of intentions in bdi architectures), and a set of commitment rules. The key

component, which determines how the agent acts, is the commitment rule set. Each

commitment rule contains a message condition, a mental condition, and an action.

In order to determine whether such a rule �res, the message condition is matched

against the messages the agent has received; the mental condition is matched against

the beliefs of the agent. If the rule �res, then the agent becomes committed to the

action. Actions may be private, corresponding to an internally executed subroutine,

or communicative, i.e., sending messages. Messages are constrained to be one of

three types: \requests" or \unrequests" to perform or refrain from actions, and

\inform" messages, which pass on information|Shoham indicates that he took his

inspiration for these message types from speech act theory [63, 12]. Request and

unrequest messages typically result in the agent's commitments being modi�ed;

inform messages result in a change to the agent's beliefs.

Here is an example of an agent0 commitment rule:

COMMIT(

( agent, REQUEST, DO(time, action)

), ;;; msg condition

( B,

[now, Friend agent] AND

CAN(self, action) AND

NOT [time, CMT(self, anyaction)]

), ;;; mental condition

self,

DO(time, action) )
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Figure 1.9 The 
ow of control in agent-0.

This rule may be paraphrased as follows:

if I receive a message from agent which requests me to do action at time, and I

believe that:

agent is currently a friend;

I can do the action;

at time, I am not committed to doing any other action,

then commit to doing action at time.

The operation of an agent can be described by the following loop (see Figure 1.9):

1. Read all current messages, updating beliefs|and hence commitments|where

necessary;

2. Execute all commitments for the current cycle where the capability condition

of the associated action is satis�ed;

3. Goto (1).

It should be clear how more complex agent behaviors can be designed and built
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in agent0. However, it is important to note that this language is essentially a

prototype, not intended for building anything like large-scale production systems.

But it does at least give a feel for how such systems might be built.

1.5.2 Concurrent MetateM

The Concurrent MetateM language developed by Fisher is based on the direct

execution of logical formulae [21]. A Concurrent MetateM system contains a

number of concurrently executing agents, each of which is able to communicate with

its peers via asynchronous broadcast message passing. Each agent is programmed

by giving it a temporal logic speci�cation of the behavior that it is intended the

agent should exhibit. An agent's speci�cation is executed directly to generate its

behavior. Execution of the agent program corresponds to iteratively building a

logical model for the temporal agent speci�cation. It is possible to prove that the

procedure used to execute an agent speci�cation is correct, in that if it is possible

to satisfy the speci�cation, then the agent will do so [3].

The logical semantics of ConcurrentMetateM are closely related to the seman-

tics of temporal logic itself. This means that, amongst other things, the speci�cation

and veri�cation of Concurrent MetateM systems is a realistic proposition [22].

An agent program in Concurrent MetateM has the form
V

i
Pi ) Fi, where

Pi is a temporal logic formula referring only to the present or past, and Fi is a

temporal logic formula referring to the present or future. The Pi ) Fi formulae are

known as rules. The basic idea for executing such a program may be summed up

in the following slogan:

on the basis of the past do the future.

Thus each rule is continually matched against an internal, recorded history, and if a

match is found, then the rule �res. If a rule �res, then any variables in the future time

part are instantiated, and the future time part then becomes a commitment that

the agent will subsequently attempt to satisfy. Satisfying a commitment typically

means making some predicate true within the agent. Here is a simple example of a

Concurrent MetateM agent de�nition:

rc(ask)[give] :

ask(x)) give(x)

(:ask(x) Z (give(x) ^ :ask(x))) :give(x)

give(x) ^ give(y)) (x = y)

The agent in this example is a controller for a resource that is in�nitely renewable,

but which may only be possessed by one agent at any given time. The controller

must therefore enforce mutual exclusion over this resource. The �rst line of the

program de�nes the interface to the agent: its name is rc (for resource controller),

and it will accept ask messages and send give messages. The following three lines

constitute the agent program itself. The predicate ask(x) means that agent x has
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asked for the resource. The predicate give(x) means that the resource controller

has given the resource to agent x. The resource controller is assumed to be the

only agent able to \give" the resource. However, many agents may ask for the

resource simultaneously. The three rules that de�ne this agent's behavior may be

summarized as follows:

Rule 1: if someone has just asked for the resource, then eventually give them the

resource;

Rule 2: don't give unless someone has asked since you last gave; and

Rule 3: if you give to two people, then they must be the same person (i.e., don't

give to more than one person at a time).

ConcurrentMetateM is a good illustration of how a quite pure approach to logic-

based agent programming can work, even with a quite expressive logic.

Sources and Further Reading

The main references to agent0 are [64, 65]. Michael Fisher's ConcurrentMetateM

language is described in [21]; the execution algorithm that underpins it is described

in [3]. Since Shoham's proposal, a number of languages have been proposed which

claim to be agent-oriented. Examples include Becky Thomas's Planning Commu-

nicating Agents (placa) language [67, 68], mail [30], and Anand Rao's agents-

peak(l) language [50]. april is a language that is intended to be used for building

multiagent systems, although it is not \agent-oriented" in the sense that Shoham de-

scribes [44]. The telescript programming language, developed by General Magic,

Inc., was the �rst mobile agent programming language [69]. That is, it explicitly

supports the idea of agents as processes that have the ability to autonomously move

themselves across a computer network and recommence executing at a remote site.

Since telescript was announced, a number of mobile agent extensions to the java

programming language have been developed.

1.6 Conclusions

I hope that after reading this chapter, you understand what agents are and why

they are considered to be an important area of research and development. The

requirement for systems that can operate autonomously is very common. The

requirement for systems capable of 
exible autonomous action, in the sense that I

have described in this chapter, is similarly common. This leads me to conclude that

intelligent agents have the potential to play a signi�cant role in the future of software

engineering. Intelligent agent research is about the theory, design, construction, and

application of such systems. This chapter has focussed on the design of intelligent

agents. It has presented a high-level, abstract view of intelligent agents, and

described the sort of properties that one would expect such an agent to enjoy. It went
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on to show how this view of an agent could be re�ned into various di�erent types

of agent architecture|purely logical agents, purely reactive/behavioral agents, bdi

agents, and layered agent architectures.

1.7 Exercises

1. [Level 1] Give other examples of agents (not necessarily intelligent) that you

know of. For each, de�ne as precisely as possible:

(a) the environment that the agent occupies (physical, software, . . . ), the

states that this environment can be in, and whether the environment is:

accessible or inaccessible; deterministic or non-deterministic; episodic or

non-episodic; static or dynamic; discrete or continuous.

(b) the action repertoire available to the agent, and any pre-conditions asso-

ciated with these actions;

(c) the goal, or design objectives of the agent|what it is intended to achieve.

2. [Level 1] Prove that

(a) for every purely reactive agent, these is a behaviorally equivalent standard

agent.

(b) there exist standard agents that have no behaviorally equivalent purely

reactive agent.

3. [Level 1] Prove that state-based agents are equivalent in expressive power to

standard agents, i.e., that for every state-based agent there is a behaviorally

equivalent standard agent and vice versa.

4. [Level 2] The following few questions refer to the vacuum world example

described in section 1.4.1.

Give the full de�nition (using pseudo-code if desired) of the new function,

which de�nes the predicates to add to the agent's database.

5. [Level 2] Complete the vacuum world example, by �lling in the missing rules.

How intuitive do you think the solution is? How elegant is it? How compact is

it?

6. [Level 2] Try using your favourite (imperative) programming language to code

a solution to the basic vacuum world example. How do you think it compares to

the logical solution? What does this tell you about trying to encode essentially

procedural knowledge (i.e., knowledge about what action to perform) as purely

logical rules?

7. [Level 2] If you are familiar with prolog, try encoding the vacuum world

example in this language and running it with randomly placed dirt. Make

use of the assert and retract meta-level predicates provided by prolog

to simplify your system (allowing the program itself to achieve much of the

operation of the next function).
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8. [Level 2] Develop a solution to the vacuum world example using the behavior-

based approach described in section 1.4.2. How does it compare to the logic-

based example?

9. [Level 2] Try scaling the vacuum world up to a 10�10 grid size. Approximately

how many rules would you need to encode this enlarged example, using the

approach presented above? Try to generalize the rules, encoding a more general

decision making mechanism.

10. [Level 3] Suppose that the vacuum world could also contain obstacles, which

the agent needs to avoid. (Imagine it is equipped with a sensor to detect

such obstacles.) Try to adapt the example to deal with obstacle detection and

avoidance. Again, compare a logic-based solution to one implemented in a

traditional (imperative) programming language.

11. [Level 3] Suppose the agent's sphere of perception in the vacuum world is

enlarged, so that it can see the whole of its world, and see exactly where the dirt

lay. In this case, it would be possible to generate an optimal decision-making

algorithm|one which cleared up the dirt in the smallest time possible. Try and

think of such general algorithms, and try to code them both in �rst-order logic

and a more traditional programming language. Investigate the e�ectiveness of

these algorithms when there is the possibility of noise in the perceptual input

the agent receives, (i.e., there is a non-zero probability that the perceptual

information is wrong), and try to develop decision-making algorithms that are

robust in the presence of such noise. How do such algorithms perform as the

level of perception is reduced?

12. [Level 2] Try developing a solution to the Mars explorer example from sec-

tion 1.4.2 using the logic-based approach. How does it compare to the reactive

solution?

13. [Level 3] In the programming language of your choice, implement the Mars

explorer example using the subsumption architecture. (To do this, you may

�nd it useful to implement a simple subsumption architecture \shell" for

programming di�erent behaviors.) Investigate the performance of the two

approaches described, and see if you can do better.

14. [Level 3] Using the simulator implemented for the preceding question, see what

happens as you increase the number of agents. Eventually, you should see that

overcrowding leads to a sub-optimal solution|agents spend too much time

getting out of each other's way to get any work done. Try to get around this

problem by allowing agents to pass samples to each other, thus implementing

chains. (See the description in [15, p305].)

15. [Level 4] Read about traditional control theory, and compare the problems

and techniques of control theory to what are trying to accomplish in building

intelligent agents. How are the techniques and problems of traditional control

theory similar to those of intelligent agent work, and how do they di�er?

16. [Level 4] One advantage of the logic-based approach to building agents is that
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the logic-based architecture is generic: �rst-order logic turns out to extremely

powerful and useful for expressing a range of di�erent properties. Thus it

turns out to be possible to use the logic-based architecture to encode a range

of other architectures. For this exercise, you should attempt to use �rst-order

logic to encode the di�erent architectures (reactive, bdi, layered) described in

this chapter. (You will probably need to read the original references to be able

to do this.) Once completed, you will have a logical theory of the architecture,

that will serve both as a formal speci�cation of the architecture, and also as

a precise mathematical model of it, amenable to proof. Once you have your

logically-speci�ed architecture, try to animate it, by mapping your logical

theory of it into, say the prolog programming language. What compromises

do you have to make? Does it seem worthwhile trying to directly program the

system in logic, or would it be simpler to implement your system in a more

pragmatic programming language (such as java)?
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2 Multiagent Systems and

Societies of Agents

Michael N. Huhns and Larry M. Stephens

2.1 Introduction

Agents operate and exist in some environment, which typically is both computa-

tional and physical. The environment might be open or closed, and it might or

might not contain other agents. Although there are situations where an agent can

operate usefully by itself, the increasing interconnection and networking of com-

puters is making such situations rare, and in the usual state of a�airs the agent

interacts with other agents. Whereas the previous chapter de�ned the structure and

characteristics of an individual agent, the focus of this chapter is on systems with

multiple agents. At times, the number of agents may be too numerous to deal with

them individually, and it is then more convenient to deal with them collectively, as

a society of agents.

In this chapter, we will learn how to analyze, describe, and design environments

in which agents can operate e�ectively and interact with each other productively.

The environments will provide a computational infrastructure for such interactions

to take place. The infrastructure will include protocols for agents to communicate

and protocols for agents to interact.

Communication protocols enable agents to exchange and understand messages.

Interaction protocols enable agents to have conversations, which for our purposes

are structured exchanges of messages. As a concrete example of these, a communi-

cation protocol might specify that the following types of messages can be exchanged

between two agents:

Propose a course of action

Accept a course of action

Reject a course of action

Retract a course of action

Disagree with a proposed course of action

Counterpropose a course of action

Based on these message types, the following conversation|an instance of an
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interaction protocol for negotiation|can occur between Agent1 and Agent2:

Agent1 proposes a course of action to Agent2

Agent2 evaluates the proposal and

sends acceptance to Agent1

or

sends counterproposal to Agent1

or

sends disagreement to Agent1

or

sends rejection to Agent1

This chapter describes several protocols for communication and interaction

among both large and small groups of agents.

2.1.1 Motivations

But why should we be interested in distributed systems of agents? Indeed, cen-

tralized solutions are generally more e�cient: anything that can be computed in a

distributed system can be moved to a single computer and optimized to be at least

as e�cient. However, distributed computations are sometimes easier to understand

and easier to develop, especially when the problem being solved is itself distributed.

Distribution can lead to computational algorithms that might not have been discov-

ered with a centralized approach. There are also times when a centralized approach

is impossible, because the systems and data belong to independent organizations

that want to keep their information private and secure for competitive reasons.

The information involved is necessarily distributed, and it resides in information

systems that are large and complex in several senses: (1) they can be geographically

distributed, (2) they can have many components, (3) they can have a huge content,

both in the number of concepts and in the amount of data about each concept,

and (4) they can have a broad scope, i.e., coverage of a major portion of a

signi�cant domain. Also, the components of the systems are typically distributed

and heterogeneous. The topology of these systems is dynamic and their content is

changing so rapidly that it is di�cult for a user or an application program to obtain

correct information, or for the enterprise to maintain consistent information.

There are four major techniques for dealing with the size and complexity of

these enterprise information systems: modularity, distribution, abstraction, and

intelligence, i.e., being smarter about how you seek and modify information. The

use of intelligent, distributed modules combines all four of these techniques, yielding

a distributed arti�cial intelligence (DAI) approach [25, 18].

In accord with this approach, computational agents need to be distributed

and embedded throughout the enterprise. The agents could function as intelligent

application programs, active information resources, \wrappers" that surround and

bu�er conventional components, and on-line network services. The agents would be
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knowledgeable about information resources that are local to them, and cooperate

to provide global access to, and better management of, the information. For

the practical reason that the systems are too large and dynamic (i.e., open) for

global solutions to be formulated and implemented, the agents need to execute

autonomously and be developed independently.

The rationale for interconnecting computational agents and expert systems is to

enable them to cooperate in solving problems, to share expertise, to work in parallel

on common problems, to be developed and implemented modularly, to be fault

tolerant through redundancy, to represent multiple viewpoints and the knowledge

of multiple experts, and to be reusable.

The possibility of an agent interacting with other agents in the future, in

unanticipated ways, causes its developer to think about and construct it di�erently.

For example, the developer might consider \What exactly does my agent know?"

and \How can another agent access and use the knowledge my agent has?" This

might lead to an agent's knowledge being represented declaratively, rather than

being buried in procedural code.

Multiagent systems are the best way to characterize or design distributed comput-

ing systems. Information processing is ubiquitous. There are computer processors

seemingly everywhere, embedded in all aspects of our environment. Your kitchen

likely has many, in such places as the microwave oven, toaster, and co�ee maker,

and this number does not consider the electrical power system, which probably uses

hundreds in getting electricity to the kitchen. The large number of processors and

the myriad ways in which they interact makes distributed computing systems the

dominant computational paradigm today.

When the processors in the kitchen are intelligent enough to be considered

agents, then it becomes convenient to think of them in anthropomorphic terms.

For example, \the toaster knows when the toast is done," and \the co�ee pot

knows when the co�ee is ready." When these systems are interconnected so they

can interact, then they should also know that the co�ee and toast should be ready at

approximately the same time. In these terms, your kitchen becomes more than just a

collection of processors|a distributed computing system|it becomes a multiagent

system.

Much of traditional AI has been concerned with how an agent can be constructed

to function intelligently, with a single locus of internal reasoning and control

implemented in a Von Neumann architecture. But intelligent systems do not

function in isolation|they are at the very least a part of the environment in which

they operate, and the environment typically contains other such intelligent systems.

Thus, it makes sense to view such systems in societal terms.

2.1.2 Characteristics of Multiagent Environments

1. Multiagent environments provide an infrastructure specifying communication

and interaction protocols.
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2. Multiagent environments are typically open and have no centralized designer.

3. Multiagent environments contain agents that are autonomous and distributed,

and may be self-interested or cooperative.

A multiagent execution environment includes a number of concerns, which are

enumerated as possible characteristics in Table 2.1.

Property Range of values

Design Autonomy Platform/Interaction Protocol

/Language/Internal Architecture

Communication Infrastructure Shared memory (blackboard) or Message-based

Connected or Connection-less (email)

Point-to-Point, Multicast, or Broadcast

Push or Pull

Synchronous or Asynchronous

Directory Service White pages, Yellow pages

Message Protocol KQML

HTTP and HTML

OLE, CORBA, DSOM

Mediation Services Ontology-based? Transactions?

Security Services Timestamps/Authentication

Remittance Services Billing/Currency

Operations Support Archiving/Redundancy

/Restoration/Accounting

Table 2.1 Characteristics of multiagent environments.

Property De�nition

Knowable To what extent is the environment known to the agent

Predictable To what extent can it be predicted by the agent

Controllable To what extent can the agent modify the environment

Historical Do future states depend on the entire history, or only the current state

Teleological Are parts of it purposeful, i.e., are there other agents

Real-time Can the environment change while the agent is deliberating

Table 2.2 Environment-agent characteristics.

Table 2.2 lists some key properties of an environment with respect to a speci�c

agent that inhabits it. These generalize the presentation in [38].
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2.2 Agent Communications

We �rst provide a basic de�nition for an agent, which we need in order to describe

the languages and protocols needed by multiagent systems. Fundamentally, an agent

is an active object with the ability to perceive, reason, and act. We assume that

an agent has explicitly represented knowledge and a mechanism for operating on

or drawing inferences from its knowledge. We also assume that an agent has the

ability to communicate. This ability is part perception (the receiving of messages)

and part action (the sending of messages). In a purely computer-based agent, these

may be the agent's only perceptual and acting abilities.

2.2.1 Coordination

Agents communicate in order to achieve better the goals of themselves or of the

society/system in which they exist. Note that the goals might or might not be known

to the agents explicitly, depending on whether or not the agents are goal-based.

Communication can enable the agents to coordinate their actions and behavior,

resulting in systems that are more coherent.

Coordination is a property of a system of agents performing some activity in

a shared environment. The degree of coordination is the extent to which they

avoid extraneous activity by reducing resource contention, avoiding livelock and

deadlock, and maintaining applicable safety conditions. Cooperation is coordination

among nonantagonistic agents, while negotiation is coordination among competitive

or simply self-interested agents. Typically, to cooperate successfully, each agent

must maintain a model of the other agents, and also develop a model of future

interactions. This presupposes sociability.

Coordination

Cooperation Competition

Planning Negotiation

Centralized PlanningDistributed Planning

Figure 2.1 A taxonomy of some of the di�erent ways in which agents can

coordinate their behavior and activities.
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Coherence is how well a system behaves as a unit. A problem for a multiagent

system is how it can maintain global coherence without explicit global control.

In this case, the agents must be able on their own to determine goals they share

with other agents, determine common tasks, avoid unnecessary con
icts, and pool

knowledge and evidence. It is helpful if there is some form of organization among

the agents. Also, social commitments can be a means to achieving coherence, which

is addressed in Section 2.4.

Section 2.3.7 discusses another means, based on economic principles of markets.

In this regard, Simon [40] argues eloquently that although markets are excellent

for clearing all goods, i.e., �nding a price at which everything is sold, they are less

e�ective in computing optimal allocations of resources. Organizational structures

are essential for that purpose. It is believed that coherence and optimality are

intimately related.

2.2.2 Dimensions of Meaning

There are three aspects to the formal study of communication: syntax (how the

symbols of comunication are structured), semantics (what the symbols denote),

and pragmatics (how the symbols are interpreted). Meaning is a combination of

semantics and pragmatics. Agents communicate in order to understand and be

understood, so it is important to consider the di�erent dimensions of meaning that

are associated with communication [42].

Descriptive vs. Prescriptive. Some messages describe phenomena, while others

prescribe behavior. Descriptions are important for human comprehension, but are

di�cult for agents to mimic. Appropriately, then, most agent communication lan-

guages are designed for the exchange of information about activities and behavior.

Personal vs. Conventional Meaning. An agent might have its own meaning for

a message, but this might di�er from the meaning conventionally accepted by the

other agents with which the agent communicates. To the greatest extent possible,

multiagent systems should opt for conventional meanings, especially since these

systems are typically open environments in which new agents might be introduced

at any time.

Subjective vs. Objective Meaning Similar to conventional meaning, where

meaning is determined external to an agent, a message often has an explicit e�ect

on the environment, which can be perceived objectively. The e�ect might be di�er-

ent than that understood internally, i.e., subjectively, by the sender or receiver of

the message.

Speaker's vs. Hearer's vs. Society's Perspective Independent of the conven-

tional or objective meaning of a message, the message can be expressed according

to the viewpoint of the speaker or hearer or other observers.

Semantics vs. Pragmatics The pragmatics of a communication are concerned

with how the communicators use the communication. This includes considerations
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of the mental states of the communicators and the environment in which they exist,

considerations that are external to the syntax and semantics of the communication.

Contextuality Messages cannot be understood in isolation, but must be inter-

preted in terms of the mental states of the agents, the present state of the environ-

ment, and the environment's history: how it arrived at its present state. Interpre-

tations are directly a�ected by previous messages and actions of the agents.

Coverage Smaller languages are more manageable, but they must be large enough

so that an agent can convey the meanings it intends.

Identity When a communication occurs among agents, its meaning is dependent

on the identities and roles of the agents involved, and on how the involved agents

are speci�ed. A message might be sent to a particular agent, or to just any agent

satisfying a speci�ed criterion.

Cardinality A message sent privately to one agent would be understood di�erently

than the same message broadcast publicly.

2.2.3 Message Types

It is important for agents of di�erent capabilities to be able to communicate.

Communication must therefore be de�ned at several levels, with communication

at the lowest level used for communication with the least capable agent. In order

to be of interest to each other, the agents must be able to participate in a dialogue.

Their role in this dialogue may be either active, passive, or both, allowing them

to function as a master, slave, or peer, respectively. In keeping with the above

de�nition for and assumptions about an agent, we assume that an agent can send

and receive messages through a communication network. The messages can be of

several types, as de�ned next.

There are two basic message types: assertions and queries. Every agent, whether

active or passive, must have the ability to accept information. In its simplest form,

this information is communicated to the agent from an external source by means of

an assertion. In order to assume a passive role in a dialog, an agent must additionally

be able to answer questions, i.e., it must be able to 1) accept a query from an

external source and 2) send a reply to the source by making an assertion. Note that

from the standpoint of the communication network, there is no distinction between

an unsolicited assertion and an assertion made in reply to a query.

In order to assume an active role in a dialog, an agent must be able to issue queries

and make assertions. With these capabilities, the agent then can potentially control

another agent by causing it to respond to the query or to accept the information

asserted. This means of control can be extended to the control of subagents, such

as neural networks and databases.

An agent functioning as a peer with another agent can assume both active and

passive roles in a dialog. It must be able to make and accept both assertions and

queries. A summary of the capabilities needed by di�erent classes of agents is shown

in Table 2.3.
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Basic Agent Passive Agent Active Agent Peer Agent

Receives assertions � � � �

Receives queries � �

Sends assertions � � �

Sends queries � �

Table 2.3 Agent capabilities.

Communicative Action Illocutionary Force Expected Result

Assertion Inform Acceptance

Query Question Reply

Reply Inform Acceptance

Request Request

Explanation Inform Agreement

Command Request

Permission Inform Acceptance

Refusal Inform Acceptance

O�er/Bid Inform Acceptance

Acceptance

Agreement

Proposal Inform O�er/Bid

Con�rmation

Retraction

Denial

Table 2.4 Interagent message types.

Other types of messages, derived from work on speech-act theory [43], are listed

in Table 2.4.

2.2.4 Communication Levels

Communication protocols are typically speci�ed at several levels. The lowest level

of the protocol speci�es the method of interconnection; the middle level speci�es

the format, or syntax, of the information being transfered; the top level speci�es

the meaning, or semantics, of the information. The semantics refers not only to the

substance of the message, but also to the type of the message.

There are both binary and n-ary communication protocols. A binary protocol

involves a single sender and a single receiver, whereas an n-ary protocol involves a

single sender and multiple receivers (sometimes called broadcast or multicast). A

protocol is speci�ed by a data structure with the following �ve �elds:

1. sender
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2. receiver(s)

3. language in the protocol

4. encoding and decoding functions

5. actions to be taken by the receiver(s).

2.2.5 Speech Acts

Spoken human communication is used as the model for communication among

computational agents. A popular basis for analyzing human communication is

speech act theory [1, 39]. Speech act theory views human natural language as

actions, such as requests, suggestions, commitments, and replies. For example, when

you request something, you are not simply making a statement, but creating the

request itself. When a jury declares a defendant guilty, there is an action taken: the

defendant's social status is changed.

A speech act has three aspects:

1. Locution, the physical utterance by the speaker

2. Illocution, the intended meaning of the utterance by the speaker

3. Perlocution, the action that results from the locution.

For example, John might say to Mary, \Please close the window." This act consists

of the physical sounds generated by John (or the character sequences typed by

John), John's intent for the message as a request or a command, and if all goes

well, the window being shut.

In communication among humans, the intent of the message is not always easily

identi�ed. For example, \I am cold," can be viewed as an assertion, a request

for a sweater, or a demand for an increase in room temperature. However, for

communication among agents, we want to insure that there is no doubt about the

type of message.

Speech act theory uses the term performative to identify the illocutionary force

of this special class of utterance. Example performative verbs include promise,

report, convince, insist, tell, request, and demand. Illocutionary force can be broadly

classi�ed as assertives (statements of fact), directives (commands in a master-

slave structure), commissives (commitments), declaratives (statements of fact), and

expressives (expressions of emotion).

Performatives are usually represented in the stylized syntatic form \I hereby

tell..." or \I hereby request..." Because performatives have the special property

that \saying it makes it so," not all verbs are performatives. For example, stating

that \I hereby solve this problem" does not create the solution. Although the term

speech is used in this discussion, speech acts have to do with communication in

forms other than the spoken word.

In summary, speech act theory helps de�ne the type of message by using the

concept of the illocutionary force, which constrains the semantics of the communi-

cation act itself. The sender's intended communication act is clearly de�ned, and
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the receiver has no doubt as to the type of message sent. This constraint simpli�es

the design of our software agents.

The message contained within the protocol may be ambiguous, may have no

simple response, or may require decomposition and the assistance of other agents;

however, the communication protocol itself should clearly identify the type of

message being sent.

2.2.6 Knowledge Query and Manipulation Language (KQML)

A fundamental decision for the interaction of agents is to separate the seman-

tics of the communication protocol (which must be domain independent) from the

semantics of the enclosed message (which may depend on the domain). The com-

munication protocol must be universally shared by all agents. It should be concise

and have only a limited number of primitive communication acts.

The knowledge query and manipulation language (KQML) is a protocol for

exchanging information and knowledge, as illustrated in Figure 2.2. The elegance

of KQML is that all information for understanding the content of the message is

included in the communication itself. The basic protocol is de�ned by the following

structure:
(KQML-performative

:sender <word>

:receiver <word>

:language <word>

:ontology <word>

:content <expression>

...)
The syntax is Lisp-like; however, the arguments|identi�ed by keywords preceded

KQML KQML

Agent Agent
Application

Program

Figure 2.2 KQML is a protocol for communications among both agents and

application programs.
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by a colon|may be given in any order. The KQML-performatives are modeled on

speech act performatives. Thus, the semantics of KQML performatives is domain

independent, while the semanatics of the message is de�ned by the �elds :content

(the message itself), :language (the langauge in which the message is expressed),

and :ontology (the vocabulary of the \words" in the message). In e�ect, KQML

\wraps" a message in a structure that can be understood by any agent. (To

understand the message itself, the recipient must understand the language and

have access to the ontology.)

The terms :content, :language, and :ontology delineate the semantics of

the message. Other arguments, including :sender, :receiver, :reply-with, and

:in-reply-to, are parameters of the message passing. KQML assumes asyn-

chronous communications; the �elds :reply-with from a sender and :in-reply-to

from a responding agent link an outgoing message with an expected response.

KQML is part of a broad research e�ort to develop a methodology for distributing

information among di�erent systems [35]. One part of the e�ort involves de�ning

the Knowledge Interchange Format (KIF), a formal syntax for representing knowl-

edge. Described in the next section, KIF is largely based on �rst-order predicate

calculus. Another part of the e�ort is de�ning ontologies that de�ne the common

concepts, attributes, and relationships for di�erent subsets of world knowledge. The

de�nitions of the ontology terms give meaning to expressions represented in KIF.

For example, in a Blocks-World ontology, if the concept of a wooden block of a

given size is represented by the unary predicate Block, then the fact that block A

is on top of block B could be communicated as follows:

(tell

:sender Agent1

:receiver Agent2

:language: KIF

:ontology: Blocks-World

:content (AND (Block A) (Block B) (On A B))

The language in a KQML message is not restricted to KIF; other languages such

as PROLOG, LISP, SQL, or any other de�ned agent communication language can

be used.

KQML-speaking agents appear to each other as clients and servers. Their com-

munications can be either synchronous or asynchronous, as illustrated in Figure

2.3. For a synchronous communication, a sending agent waits for a reply. For an

asynchronous communication, the sending agent continues with its reasoning or

acting, which would then be interrupted when replies arrive at a later time.

Interestingly, KQML messages can be \nested" in that the content of a KQML

message may be another KQML message, which is self contained. For example,

if Agent1 cannot communicate directly with Agent2 (but can communicate with

Agent3), Agent1 might ask Agent3 to forward a message to Agent2:



90 Multiagent Systems and Societies of Agents

Client Server

Client Server

Client Server

query

replyy

query
handle

next

next
reply

reply

reply

reply

reply

subscribe

Synchronous:  a blocking query waits for an expected reply

Asynchronous:  a nonblocking subscribe results in replies

Server maintains state; replies sent individually when requested

Figure 2.3 Synchronous and asynchronous communications among agents that

understand KQML.
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(forward

:from Agent1

:to Agent2

:sender Agent1

:receiver Agent3

:language KQML

:ontology kqml-ontology

:content (tell

:sender Agent1

:receiver Agent2

:language KIF

:ontology: Blocks-World

:content (On (Block A) (Block B))))

In a forwarded KQML message, the value of the :from �eld becomes the value

in the :sender �eld of the :content message, and the value of the :to �eld in the

forward becomes the value of the :receiver �eld.

The KQML performatives may be organized into seven basic categories:

Basic query performatives (evaluate, ask-one, ask-all, ...)

Multiresponse query performatives (stream-in, stream-all, ...)

Response performatives (reply, sorry, ...)

Generic informational performatives (tell, achieve, cancel, untell, unachieve, ...)

Generator performatives (standby, ready, next, rest, ...)

Capability-de�nition performatives (advertise, subscribe, monitor, ...)

Networking performatives (register, unregister, forward, broadcast, ...)

The advertise performative is used by a :sender agent to inform a :receiver

about the :sender's capabilities:

(advertise

:sender Agent2

:receiver Agent1

:language KQML

:ontology kqml-ontology

:content (ask-all

:sender Agent1

:receiver Agent2

:in-reply-to id1

:language Prolog

:ontology: Blocks-World

:content \on(X,Y)"))
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Now Agent1 may query Agent2:

(ask-all

:sender Agent1

:receiver Agent2

:in-reply-to id1

:reply-with id2

:language: Prolog

:ontology: Blocks-World

:content \on(X,Y)"

Agent2 could respond with matching assertions from its knowledge base:

(tell

:sender Agent2

:receiver Agent1

:in-reply-to id2

:language: Prolog

:ontology: Blocks-World

:content \[on(a,b),on(c,d)]"

Issues:

The sender and receiver must understand the agent communication language

being used; the ontology must be created and be accesssible to the agents who are

communicating.

KQML must operate within a communication infrastructure that allows agents

to locate each other. The infrastructure is not part of the KQML speci�cation, and

implemented systems use custom-made utility programs called routers or facilators

to perform this function. In the advertise example above, if Agent2 sent the message

to a facilator agent, then other agents could query the facilitator to �nd out about

Agent2's capabilities.

KQML is still a work in progress and its semantics have not been completely de-

�ned. Labrou and Finin [31] have recently proposed a new KQML speci�cation that

re�nes the original draft [15]. However, there is yet no o�cal KQML speci�cation

that agent builders can rely on.

2.2.7 Knowledge Interchange Format (KIF)

Agents need descriptions of real-world things. The descriptions could be expressed

in natural languages, such as English and Japanese, which are capable of describing

a wide variety of things and situations. However, the meaning of a natural language

statement is often subject to di�erent interpretations.
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Symbolic logic is a general mathematical tool for describing things. Rather simple

logics (e.g., the �rst order predicate calculus) have been found to be capable of de-

scribing almost anything of interest or utility to people and other intelligent agents.

These things include simple concrete facts, de�nitions, abstractions, inference rules,

constraints, and even metaknowledge (knowledge about knowledge).

KIF, a particular logic language, has been proposed as a standard to use to

describe things within expert systems, databases, intelligent agents, etc. It is

readable by both computer systems and people. Moreover, it was speci�cally

designed to serve as an \interlingua," or mediator in the translation of other

languages. For example, there is a translation program that can map a STEP/PDES

expression about products into an equivalent KIF expression and vice versa. If there

were a translation program for mapping between the healthcare language HL7 and

KIF, then there would be a way to translate between STEP/PDES and HL7 (to

exchange information about healthcare products) using KIF as an intermediate

representation.

KIF is a pre�x version of �rst order predicate calculus with extensions to support

nonmonotonic reasoning and de�nitions. The language description includes both

a speci�cation for its syntax and one for its semantics. KIF provides for the

expression of simple data. For example, the sentences shown below encode 3 tuples

in a personnel database (arguments stand for employee ID number, department

assignment, and salary, respectively):

(salary 015-46-3946 widgets 72000)

(salary 026-40-9152 grommets 36000)

(salary 415-32-4707 fidgets 42000)

More complicated information can be expressed through the use of complex

terms. For example, the following sentence states that one chip is larger than

another:

(> (* (width chip1) (length chip1))

(* (width chip2) (length chip2)))

KIF includes a variety of logical operators to assist in the encoding of logical

information, such as negation, disjunction, rules, and quanti�ed formulas. The

expression shown below is an example of a complex sentence in KIF. It asserts

that the number obtained by raising any real-number ?x to an even power ?n is

positive:

(=> (and (real-number ?x)

(even-number ?n))

(> (expt ?x ?n) 0))

KIF provides for the encoding of knowledge about knowledge, using the back-

quote (`) and comma (,) operators and related vocabulary. For example, the follow-

ing sentence asserts that agent Joe is interested in receiving triples in the salary

relation. The use of commas signals that the variables should not be taken literally.
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Without the commas, this sentence

(interested joe `(salary ,?x ,?y ,?z))

would say that agent joe is interested in the sentence (salary ?x ?y ?z) instead

of its instances.

KIF can also be used to describe procedures, i.e., to write programs or scripts

for agents to follow. Given the pre�x syntax of KIF, such programs resemble Lisp

or Scheme. The following is an example of a three-step procedure written in KIF.

The �rst step ensures that there is a fresh line on the standard output stream; the

second step prints \Hello!" to the standard output stream; the �nal step adds a

carriage return to the output.

(progn (fresh-line t)

(print "Hello!")

(fresh-line t))

The semantics of the KIF core (KIF without rules and de�nitions) is similar to

that of �rst-order logic. There is an extension to handle nonstandard operators

(like backquote and comma), and there is a restriction that models must satisfy

various axiom schemata (to give meaning to the basic vocabulary in the format).

Despite these extensions and restrictions, the core language retains the fundamental

characteristics of �rst-order logic, including compactness and the semi-decidability

of logical entailment.

2.2.8 Ontologies

An ontology is a speci�cation of the objects, concepts, and relationships in an

area of interest. In the Blocks-World example above, the term Block represents a

concept and the term On represents a relationship. Concepts can be represented in

�rst-order logic as unary predicates; higher-arity predicates represent relationships.

To express the idea that a block is a physical object, we might use the �rst-order

expression

8x (Block x) ) (PhysicalObject x)

There are other, more general representations. Instead of (Block A), the expres-

sion (instanceOf A Block) could be used. Both A and Block are now objects in

the universe of discourse, and new relationships instanceOf and subclassOf are

introduced:

(class Block)

(class PhysicalObject)

(subclassOf Block PhysicalObject)

8x,y,z (instanceOf x y) ^ (subclassOf y z) ) (instanceOf x z)
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The last sentence is a rule that expresses the notion of a type hierarchy.

An ontology is more than a taxonomy of classes (or types); the ontology must

describe the relationships. The classes and relationships must be represented in

the ontology; the instances of classes need not be represented. For example, there

is no need to represent A in the ontology for either (Block A) or (instanceOf

A Block). An ontology is analogous to a database schema, not the contents of a

database itself.

Implicit in this discussion is that an agent must represent its knowledge in the

vocabulary of a speci�ed ontology. Since agents are constructed by people, the e�ect

is that the agent's creator must use a speci�ed ontology to represent the agent's

knowledge. All agents that share the same ontology for knowledge representation

have an understanding of the \words" in the agent communication language.

Many agents have knowledge bases in which relationships are de�ned in more

detail than just a character string. For example, the domain and range of a binary

relationship can be speci�ed;

(domain On PhysicalObject)

(range On PhysicalObject)

These restrictions limit the values allowed in using a relationship. (On A B) is

permitted since both A and B are instances of PhysicalObject via transitive closure

of subclassOf; (On A Dream1) would be prohibited assuming that Dream1 is not

of type PhysicalObject.

Ontology editors, such as those developed at Stanford [14] and the University of

South Carolina [32], are typically frame-based knowledge-representation systems

that allow users to de�ne ontologies and their components: classes, instances,

relationships, and functions. Figure 2.4 shows an example of such an ontology.

Ontology editors o�er a variety of features, such as the ability to translate ontologies

into several representation languages or the ability for distributed groups to develop

ontologies jointly over the Internet.

2.2.9 Other Communication Protocols

The above protocols for interagent communication in no way preclude other means

by which computational agents can interact, communicate, and be interconnected.

For example, one agent may be able to view a second agent with a camera, and use

the resulting images to coordinate its own actions with those of the second agent.

Once communication protocols are de�ned and agreed upon by a set of agents,

higher level protocols can be readily implemented. The next section describes some

of these.
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Thing

Agent

Person Enterprise

Employee Department

Part-Time
Employee

Full-Time
Employee

Entity Class of All
Attributes

Agent
Attributes

Enterprise

Department

Attributes

Attributes

Class of All
Relations

Employment
Relations

works-for

Employee

Person
Attributes

Attributes

Part-Time
Employee
Attributes Attributes

Full-Time
Employee

Person
SSN

Person
Name

ID
Employee

Name
Department

Figure 2.4 Example ontology for a simple business, showing classes and their

subclasses, relationships, and instances (indicated by a dashed line).

2.3 Agent Interaction Protocols

The previous section describes mechanisms for agents to communicate single mes-

sages. Interaction protocols govern the exchange of a series of messages among

agents|a conversation. Several interaction protocols have been devised for sys-

tems of agents. In cases where the agents have con
icting goals or are simply self-

interested, the objective of the protocols is to maximize the payo�s (utilities) of

the agents [37]. In cases where the agents have similar goals or common problems,

as in distributed problem solving (DPS), the objective of the protocols is to main-

tain globally coherent performance of the agents without violating autonomy, i.e.,

without explicit global control [11]. For the latter cases, important aspects include

how to

determine shared goals

determine common tasks

avoid unnecessary con
icts

pool knowledge and evidence.
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2.3.1 Coordination Protocols

In an environment with limited resources, agents must coordinate their activities

with each other to further their own interests or satisfy group goals. The actions

of multiple agents need to be coordinated because there are dependencies between

agents' actions, there is a need to meet global constraints, and no one agent has

su�cient competence, resources or information to achieve system goals. Examples

of coordination include supplying timely information to other agents, ensuring the

actions of agents are synchronized, and avoiding redundant problem solving.

To produce coordinated systems, most DAI research has concentrated on tech-

niques for distributing both control and data. Distributed control means that agents

have a degree of autonomy in generating new actions and in deciding which goals to

pursue next. The disadvantage of distributing control and data is that knowledge

of the system's overall state is dispersed throughout the system and each agent has

only a partial and imprecise perspective. There is an increased degree of uncertainty

about each agent's actions, so it is more di�cult to attain coherent global behavior.

The actions of agents in solving goals can be expressed as search through a

classical AND/OR goal graph. The goal graph includes a representation of the

dependencies between the goals and the resources needed to solve the primitive goals

(leaf nodes of the graph). Indirect dependencies can exist between goals through

shared resources.

Formulating a multiagent system in this manner allows the activities requiring

coordination to be clearly identi�ed. Such activities include: (1) de�ning the goal

graph, including identi�cation and classi�cation of dependencies; (2) assigning

particular regions of the graph to appropriate agents; (3) controlling decisions about

which areas of the graph to explore; (4) traversing the graph; and (5) ensuring that

successful traversal is reported. Some of the activities may be collaborative, while

some may be carried out by an agent acting in isolation. Determining the approach

for each of the phases is a matter of system design.

While the distributed goal search formalism has been used frequently to charac-

terize both global and local problems, the key agent structures are commitment and

convention [29]. Commitments are viewed as pledges to undertake a speci�ed course

of action, while conventions provide a means of managing commitments in chang-

ing circumstances. Commitments provide a degree of predictability so that agents

can take the future activities of others into consideration when dealing with intera-

gent dependencies, global constraints, or resource utilization con
icts. As situations

change, agents must evaluate whether existing commitments are still valid. Con-

ventions constrain the conditions under which commitments should be reassessed

and specify the associated actions that should then be undertaken: either retain,

rectify or abandon the commitments.

If its circumstances do not change, an agent will endeavor to honor its commit-

ments. This obligation constrains the agent's subsequent decisions about making

new commitments, since it knows that su�cient resources must be reserved to honor

its existing ones. For this reason, an agent's commitments should be both internally
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consistent and consistent with its beliefs.

Conventions help an agent manage its commitments, but they do not specify how

the agent should behave towards others if it alters or modi�es its commitments.

However for goals that are dependent, it is essential that the relevant agents be

informed of any substantial change that a�ects them. A convention of this type is a

social one. If communication resources are limited, the following social convention

might be appropriate:

LIMITED-BANDWIDTH SOCIAL CONVENTION

INVOKE WHEN

Local commitment dropped

Local commitment satisfied

ACTIONS

RULE1: IF Local commitment satisfied

THEN inform all related commitments

Rule2: IF local commitments dropped because unattainable or

motivation not present

THEN inform all strongly related commitments

Rule3: IF local commitments dropped because unattainable or

motivation not present

AND communication resources not overburdened

THEN inform all weakly related commitments

When agents decide to pursue a joint action, they jointly commit themselves to

a common goal, which they expect will bring about the desired state of a�airs.

The minimum information that a team of cooperating agents should share is (1)

the status of their commitment to the shared objective, and (2) the status of their

commitment to the given team framework. If an agent's beliefs about either of

these issues change, then the semantics of joint commitments requires that all team

members be informed. As many joint actions depend upon the participation of

an entire team, a change of commitment by one participant can jeopardize the

team's e�orts. Hence, if an agent comes to believe that a team member is no longer

jointly committed, it also needs to reassess its own position with respect to the joint

action. These three basic assumptions are encoded in a convention that represents

the minimum requirement for joint commitments, as shown below.

BASIC JOINT-ACTION CONVENTION

INVOKE WHEN

Status of commitment to joint action changes

Status of commitment to attaining joint action in present



2.3 Agent Interaction Protocols 99

team context changes

Status of joint commitment of a team member changes

ACTIONS

Rule1: IF Status of commitment to joint action changes

OR

IF Status of commitment to present team

context changes

THEN inform all other team member of these changes

Rule2: IF Status of joint commitment of a team member changes

THEN Determine whether joint commitment still viable

Commitments and conventions are the cornerstones of coordination: commit-

ments provide the necessary structure for predictable interactions, and social con-

ventions provide the necessary degree of mutual support.

2.3.2 Cooperation Protocols

A basic strategy shared by many of the protocols for cooperation is to decompose

and then distribute tasks. Such a divide-and-conquer approach can reduce the com-

plexity of a task: smaller subtasks require less capable agents and fewer resources.

However, the system must decide among alternative decompositions, if available,

and the decomposition process must consider the resources and capabilities of the

agents. Also, there might be interactions among the subtasks and con
icts among

the agents.

Task decomposition can be done by the system designer, whereby decomposition

is programmed during implementation, or by the agents using hierarchical planning,

or it might be inherent in the representation of the problem, as in an AND-

OR graph. Task decomposition might be done spatially, based on the layout of

information sources or decision points, or functionally, according to the expertise

of available agents.

Once tasks are decomposed, they can be distributed according to the following

criteria [13]:

Avoid overloading critical resources

Assign tasks to agents with matching capabilities

Make an agent with a wide view assign tasks to other agents

Assign overlapping responsibilities to agents to achieve coherence

Assign highly interdependent tasks to agents in spatial or semantic proximity.

This minimizes communication and synchronization costs

Reassign tasks if necessary for completing urgent tasks.
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Spatial decomposition by information source or decision point:

Functional decomposition by expertise:

Pediatrician

Internist

Psychologist

Neurologist

Cardiologist

Agent 1

Agent 2

Agent 3

Figure 2.5 Two commonly used methods for distributing tasks among cooperative

agents.

The following mechanisms are commonly used to distribute tasks:

Market mechanisms: tasks are matched to agents by generalized agreement or

mutual selection (analogous to pricing commodities)

Contract net: announce, bid, and award cycles

Multiagent planning: planning agents have the responsibility for task assignment

Organizational structure: agents have �xed responsibilities for particular tasks.

Figure 2.5 illustrates two of the methods of task distribution. Details of additional

methods are described in the sections that follow.

2.3.3 Contract Net

Of the above mechanisms, the best known and most widely applied is the contract

net protocol [44, 9]. The contract net protocol is an interaction protocol for coop-

erative problem solving among agents. It is modeled on the contracting mechanism
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used by businesses to govern the exchange of goods and services. The contract net

provides a solution for the so-called connection problem: �nding an appropriate

agent to work on a given task. Figure 2.6 illustrates the basic steps in this protocol.

An agent wanting a task solved is called the manager; agents that might be able

to solve the task are called potential contractors. From a manager's perspective,

the process is

Announce a task that needs to be performed

Receive and evaluate bids from potential contractors

Award a contract to a suitable contractor

Receive and synthesize results.

From a contractor's perspective, the process is

Receive task announcements

Evaluate my capability to respond

Respond (decline, bid)

Perform the task if my bid is accepted

Report my results.

The roles of agents are not speci�ed in advance. Any agent can act as a manager

by making task announcements; any agent can act as a contractor by responding

to task announcements. This 
exibility allows for further task decomposition: a

contractor for a speci�c task may act as a manager by soliciting the help of other

agents in solving parts of that task. The resulting manager-contractor links form a

control hierarchy for task sharing and result synthesis.

The contract net o�ers the advantages of graceful performance degradation. If a

contractor is unable to provide a satisfactory solution, the manager can seek other

potential contractors for the task.

The structure of a task announcement includes slots for addressee, eligibility

speci�cation, task abstraction, bid speci�cation, and expiration time. The tasks may

be addressed to one or more potential contractors who must meet the criteria of

the eligibility speci�cation. The task abstraction, a brief description of the task,

is used by contractors to rank tasks from several task announcements. The bid

speci�cation tells potential contractors what information must be provided with

the bid; returned bid speci�cations give the manager a basis for comparing bids

from di�erent potential contractors. The expiration time is a deadline for receiving

bids.

Each potential contractor evaluates unexpired task announcements to determine

if it is eligible to o�er a bid. The contractor then chooses the most attractive task

(based on some criteria) and o�ers a bid to the corresponding manager.

A manager receives and evaluates bids for each task announcement. Any bid

deemed satisfactory may be accepted before the expiration time of the task an-

nouncement. The manager noti�es the contractor of bid acceptance with an an-
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A manager announces the existence of tasks via a (possibly selective)
multicast

Agents evaluate the announcement.  Some of these agents submit bids

The manager awards a contract to the most appropriate agent

The manager and contractor communicate privately as necessary

Figure 2.6 The basic steps in the contract net, an important generic protocol for

interactions among cooperative agents.
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nounced award message. (A limitation of the contract net protocol is that a task

might be awarded to a contractor with limited capability if a better quali�ed con-

tractor is busy at award time. Another limitation is that a manager is under no

obligation to inform potential contractors that an award has already been made.)

A manager may not receive bids for several reasons: (1) all potential contractors

are busy with other tasks, (2) a potential contractor is idle but ranks the proposed

task below other tasks under consideration, (3) no contractors, even if idle, are

capable of working on the task. To handle these cases, a manager may request

immediate response bids to which contractors respond with messages such as eligible

but busy, ineligible, or uninterested (task ranked too low for contractor to bid). The

manager can then make adjustments in its task plan. For example, the manager

can wait until a busy potential contractor is free.

The contract net provides for directed contracts to be issued without negotiation.

The selected contractor responds with an acceptance or refusal. This capability can

simplify the protocol and improve e�ency for certain tasks.

2.3.4 Blackboard Systems

Blackboard-based problem solving is often presented using the following metaphor:

\Imagine a group of human or agent specialists seated next to a large blackboard.

The specialists are working cooperatively to solve a problem, using the blackboard

as the workplace for developing the solution. Problem solving begins when the

problem and initial data are written onto the blackboard. The specialists watch the

blackboard, looking for an opportunity to apply their expertise to the developing

solution. When a specialist �nds su�cient information to make a contribution, he

records the contribution on the blackboard. This additional information may enable

other specialists to apply their expertise. This process of adding contributions to

the blackboard continues until the problem has been solved."

This metaphor captures a number of the important characteristics of blackboard

systems, each of which is described below.

Independence of expertise. The specialists (called knowledges sources or KSs)

are not trained to work solely with that speci�c group of specialists. Each is

an expert on some aspects of the problem and can contribute to the solution

independently of the particular mix of other specialists in the room.

Diversity in problem-solving techniques. In blackboard systems, the internal

representation and inferencing machinery used by each KS are hidden from direct

view.

Flexible representation of blackboard information. The blackboard model

does not place any prior restrictions on what information can be placed on the

blackboard.

Common interaction language. KSs in blackboard systems must be able to cor-

rectly interpret the information recorded on the blackboard by other KSs. In prac-
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tice, there is a tradeo� between the representational expressiveness of a specialized

representation shared by only a few KSs and a fully general representation under-

stood by all KSs.

Event-based activation. KSs in blackboard systems are triggered in response to

blackboard and external events. Blackboard events include the addition of new

information to the blackboard, a change in existing information, or the removal of

existing information. Rather than having each KS scan the blackboard, each KS

informs the blackboard system about the kind of events in which it is interested.

The blackboard system records this information and directly considers the KS for

activation whenever that kind of event occurs.

Need for control. A control component that is separate from the individual KSs

is responsible for managing the course of problem solving. The control component

can be viewed as a specialist in directing problem solving, by considering the

overall bene�t of the contributions that would be made by triggered KSs. When

the currently executing KS activation completes, the control component selects the

most appropriate pending KS activation for execution.

When a KS is triggered, the KS uses its expertise to evaluate the quality and

importance of its contribution. Each triggered KS informs the control component of

the quality and costs associated with its contribution, without actually performing

the work to compute the contribution. The control component uses these estimates

to decide how to proceed.

Incremental solution generation. KSs contribute to the solution as appropri-

ate, sometimes re�ning, sometimes contradicting, and sometimes initiating a new

line of reasoning.

Figure 2.7 shows the architecture of a basic blackboard system.

2.3.5 Negotiation

A frequent form of interaction that occurs among agents with di�erent goals is

termed negotiation. Negotiation is a process by which a joint decision is reached

by two or more agents, each trying to reach an individual goal or objective. The

agents �rst communicate their positions, which might con
ict, and then try to move

towards agreement by making concessions or searching for alternatives.

The major features of negotiation are (1) the language used by the participating

agents, (2) the protocol followed by the agents as they negotiate, and (3) the decision

process that each agent uses to determine its positions, concessions, and criteria for

agreement.

Many groups have developed systems and techniques for negotiation. These

can be either environment-centered or agent-centered. Developers of environment-

centered techniques focus on the following problem: \How can the rules of the

environment be designed so that the agents in it, regardless of their origin, capabil-

ities, or intentions, will interact productively and fairly?" The resultant negotiation

mechanism should ideally have the following attributes:
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E�ciency: the agents should not waste resources in coming to an agreement.

Stability: no agent should have an incentive to deviate from agreed-upon strate-

gies.

Simplicity: the negotiation mechanism should impose low computational and

bandwidth demands on the agents.

Distribution: the mechanism should not require a central decision maker.

Symmetry: the mechanism should not be biased against any agent for arbitrary

or inappropriate reasons.

An articulate and entertaining treatment of these concepts is found in [36]. In par-

ticular, three types of environments have been identi�ed: worth-oriented domains,

state-oriented domains, and task-oriented domains.

A task-oriented domain is one where agents have a set of tasks to achieve, all

resources needed to achieve the tasks are available, and the agents can achieve

the tasks without help or interference from each other. However, the agents can

bene�t by sharing some of the tasks. An example is the \Internet downloading

domain," where each agent is given a list of documents that it must access over

the Internet. There is a cost associated with downloading, which each agent would

like to minimize. If a document is common to several agents, then they can save

……….….
…….…….

Blackboard

……….….
…….…….

Control
Components

Pending
KS

Activations

Executing
Activated

KS

Library
of

KSs

Events

Figure 2.7 The architecture of a basic blackboard system, showing the black-

board, knowledge sources or agents, and control components.
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downloading cost by accessing the document once and then sharing it.

The environment might provide the following simple negotiation mechanism

and constraints: (1) each agent declares the documents it wants, (2) documents

found to be common to two or more agents are assigned to agents based on

the toss of a coin, (3) agents pay for the documents they download, and (4)

agents are granted access to the documents they download, as well as any in their

common sets. This mechanism is simple, symmetric, distributed, and e�cient (no

document is downloaded twice). To determine stability, the agents' strategies must

be considered.

An optimal strategy is for an agent to declare the true set of documents that it

needs, regardless of what strategy the other agents adopt or the documents they

need. Because there is no incentive for an agent to diverge from this strategy, it is

stable.

Developers of agent-centered negotiation mechanisms focus on the following

problem: \Given an environment in which my agent must operate, what is the best

strategy for it to follow?" Most such negotiation strategies have been developed for

speci�c problems, so few general principles of negotiation have emerged. However,

there are two general approaches, each based on an assumption about the particular

type of agents involved.

For the �rst approach, speech-act classi�ers together with a possible world se-

mantics are used to formalize negotiation protocols and their components. This

clari�es the conditions of satisfaction for di�erent kinds of messages. To provide a


avor of this approach, we show in the following example how the commitments

that an agent might make as part of a negotiation are formalized [21]:

8x(x 6= y) ^

:(Precommita y x �) ^ (Goal y Eventually(Achieves y �)) ^ (Willing y �)

() (Intend y Eventually(Achieves y �))

This rule states that an agent forms and maintains its commitment to achieve �

individually i� (1) it has not precommitted itself to another agent to adopt and

achieve �, (2) it has a goal to achieve � individually, and (3) it is willing to achieve �

individually. The chapter on \Formal Methods in DAI" provides more information

on such descriptions.

The second approach is based on an assumption that the agents are economically

rational. Further, the set of agents must be small, they must have a common lan-

guage and common problem abstraction, and they must reach a common solution.

Under these assumptions, Rosenschein and Zlotkin [37] developed a uni�ed negoti-

ation protocol. Agents that follow this protocol create a deal , that is, a joint plan

between the agents that would satisfy all of their goals. The utility of a deal for

an agent is the amount he is willing to pay minus the cost of the deal. Each agent

wants to maximize its own utility. The agents discuss a negotiation set, which is

the set of all deals that have a positive utility for every agent.
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In formal terms, a task-oriented domain under this approach becomes a tuple

< T; A; c >

where T is the set of tasks, A is the set of agents, and c(X) is a monotonic function

for the cost of executing the tasks X . A deal is a redistribution of tasks. The utility

of deal d for agent k is

Uk(d) = c(Tk)� c(dk)

The con
ict deal D occurs when the agents cannot reach a deal. A deal d is

individually rational if d > D. Deal d is pareto optimal if there is no deal

d0 > d. The set of all deals that are individually rational and pareto optimal

is the negotiation set, NS. There are three possible situations:

1. con
ict: the negotiation set is empty

2. compromise: agents prefer to be alone, but since they are not, they will agree

to a negotiated deal

3. cooperative: all deals in the negotiation set are preferred by both agents over

achieving their goals alone.

When there is a con
ict, then the agents will not bene�t by negotiating|they

are better o� acting alone. Alternatively, they can \
ip a coin" to decide which

agent gets to satisfy its goals. Negotiation is the best alternative in the other two

cases.

Since the agents have some execution autonomy, they can in principle deceive

or mislead each other. Therefore, an interesting research problem is to develop

protocols or societies in which the e�ects of deception and misinformation can be

constrained. Another aspect of the research problem is to develop protocols under

which it is rational for agents to be honest with each other.

The connections of the economic approaches with human-oriented negotiation

and argumentation have not yet been fully worked out.

2.3.6 Multiagent Belief Maintenance

A multiagent truth-maintenance system can serve as a detailed example of a high-

level interaction among agents. A truth-maintenance system (TMS) [10] is designed

to ensure the integrity of an agent's knowledge, which should be stable, well-

founded, and logically consistent. Depending on how beliefs, justi�cations, and

data are represented, a stable state of a knowledge base is one in which 1) each

datum that has a valid justi�cation is believed, and 2) each datum that lacks a

valid justi�cation is disbelieved. A well-founded knowledge base permits no set of

its beliefs to be mutually dependent. A logically consistent knowledge base is one

that is stable at the time that consistency is determined and in which no logical

contradiction exists. A consistent knowledge base is one in which no datum is both

believed and disbelieved (or neither), or in which no datum and its negation are both
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believed. Other desirable properties for a knowledge base are that it be complete,

concise, accurate, and e�cient.

A single-agent TMS attempts to maintain well-founded stable states of a knowl-

edge base by adjusting which data are believed and which are disbelieved. However,

it is important for a group of agents to be able to assess and maintain the integrity

of communicated information, as well as of their own knowledge. A multiagent TMS

can provide this integrity [27].

We consider a modi�ed justi�cation-based TMS, in which every datum has a

set of justi�cations and an associated status of INTERNAL (believed, because of a

valid local justi�cation), EXTERNAL (believed, because another agent asserted it),

or OUT (disbelieved). Consider a network of many agents, each with a partially-

independent system of beliefs. The agents interact by communicating data, either

unsolicited or in response to a query. For well-foundedness, a communicated datum

must be INTERNAL to at least one of the agents that believes it and either INTERNAL

or EXTERNAL to the rest.

The support status of a communicated datum is jointly maintained by several

agents. Hence, a single agent is generally not free to change the status on its own

accord. It must coordinate with the other agents so that they are all consistent on

the status of the datum.

The multiagent TMS is invoked by the addition or removal of a justi�cation, and

obeys the following principles:

Belief changes should be resolved with as few agents as possible.

Belief changes should be resolved by changing as few beliefs as possible.

When invoked, it does the following three things:

1. Unlabels some data, including the newly justi�ed datum and, presumably, its

consequences. This unlabeled data set might be con�ned to a single agent or

it might span several agents. If a communicated datum is unlabeled in some

agent, it must be unlabeled in all the agents that share it.

2. Chooses labelings for all the unlabeled shared data, as de�ned above.

3. Initiates labeling by each of the a�ected agents with respect to the require-

ments imposed by the shared data. If any of the a�ected agents fails to label

successfully, it then backtracks. It either chooses di�erent labelings for the

shared data (step 2), or unlabels a di�erent set of data (step 1).

Consider the justi�cation network in Figure 2.8. There are two agents, Agent 1

and Agent 2, and they share the communicated datum T. Assume that the initial

labeling shown in the diagram is perturbed by the addition of a new justi�cation for

Q. Agent 1 initially unlabels just the changed datum and private data downstream,

P and Q, but there is no consistent relabeling. Hence, Agent 1 unlabels all shared

data downstream of P and Q, and all private data downstream from there: P,

Q, both Ts, and U. Again labeling fails. Since there is no further shared data

downstream, Agent 1 and Agent 2 unlabel upstream and privately downstream
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Figure 2.8 A multiagent TMS network before a new justi�cation for datum Q

(shown dashed) is added; this invokes the multiagent TMS algorithm and results

in a relabeling of the network.

from there: P, Q, Ts, U, R, and S. Now labeling succeeds, with S and U IN and

everything else OUT, as shown in Figure 2.9. Had labeling failed, unlabel would not

be able to unlabel more data, and would report that the network is inconsistent.

2.3.7 Market Mechanisms

Most of the protocols and mechanisms described earlier in this chapter require

agents to communicate with each other directly, so are appropriate for small

numbers of agents only. Other mechanisms for coordination are needed when there

are a large or unknown number of agents. One mechanism is based on voting, where

agents choose from a set of alternatives, and then adopt the alternative receiving

the most votes. This mechanism is simple, equitable, and distributed, but it requires

signi�cant amounts of communication and organization, and is most useful when

there are just a few well de�ned issues to be decided.
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Figure 2.9 The resultant stable labeling of the justi�cation network that is

produced by the multiagent TMS algorithm.

Computational economies, based on market mechanisms, are another approach

[47]. These are e�ective for coordinating the activities of many agents with minimal

direct communication among the agents. The research challenge is to build compu-

tational economies to solve speci�c problems of distributed resource allocation.

Everything of interest to an agent is described by current prices|the preferences

or abilities of others are irrelevant except insofar as they (automatically) a�ect

the prices. There are two types of agents, consumers, who exchange goods, and

producers, who transform some goods into other goods. Agents bid for goods at

various prices, but all exchanges occur at current market prices. All agents bid so

as to maximize either their pro�ts or their utility.

To cast a problem in terms of a computational market, one needs to specify

the goods being traded

the consumer agents that are trading the goods
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the producer agents, with their technologies for transforming some goods into

others

the bidding and trading behaviors of the agents.

Since the markets for goods are interconnected, the price of one good will

a�ect the supply and demand of others. The market will reach a competitive

equilibrium such that (1) consumers bid to maximize their utility, subject to their

budget constraints, (2) producers bid to maximize their pro�ts, subject to their

technological capability, and (3) net demand is zero for all goods.

The important property is that an equilibrium corresponds|in some sense

optimally|to an allocation of resources and dictates the activities and consump-

tions of the agents. In general, equilibria need not exist or be unique, but under

certain conditions, such as when the e�ect of an individual on the market is assumed

negligible, they can be guaranteed to exist uniquely.

In an open market, agents are free to choose their own strategy, and they do not

have to behave rationally. Economic rationality assumes that the agent's preferences

are given along with knowledge of the e�ects of the agent's actions. From these, the

rational action for an agent is the one that maximizes its preferences.

Economic rationality has the charm of being a simple, \least common denomi-

nator" approach|if you can reduce everything to money, you can talk about max-

imizing it. But to apply it well requires a careful selection of the target problem.

One of the oldest applications of economic rationality is in decision-theoretic

planning, which models the costs and e�ects of actions quantitatively and proba-

bilistically. For many applications, where the probabilities can be estimated reliably,

this leads to highly e�ective plans of actions [24, 22].

The need to maximize preferences essentially requires that there be a scalar

representation for all the true preferences of an agent. In other words, all of the

preferences must be reduced to a single scalar that can be compared e�ectively

with other scalars. This is often di�cult unless one can carefully circumscribe the

application domain. Otherwise, one ends up essentially recreating all of the other

concepts under a veneer of rationality. For example, if we would like an agent to

be governed by its past commitments, not just the most attractive choice at the

present time, then we can develop a utility function that gives additional weight to

past commitments. This approach may work in principle, but, in practice, it only

serves to hide the structure of commitments in the utility function that one chooses.

The next section describes social commitments more fully.

2.4 Societies of Agents

Much of traditional AI has been concerned with how an agent can be constructed

to function intelligently, with a single locus of internal reasoning and control

implemented in a Von Neumann architecture. But intelligent systems do not

function in isolation|they are at the very least a part of the environment in which
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they operate, and the environment typically contains other such intelligent systems.

Thus, it makes sense to view such systems in societal terms.

There are promising opportunities engendered by the combination of increasingly

large information environments, such as the national information infrastructure

and the intelligent vehicle highway system, and recent advances in multiagent

systems. Planned information environments are too large, complex, dynamic, and

open to be managed centrally or via prede�ned techniques|the only feasible

alternative is for computational intelligence to be embedded at many and sundry

places in such environments to provide distributed control. Each locus of embedded

intelligence is best thought of as an autonomous agent that �nds, conveys, or

manages information. Because of the nature of the environments, the agents must

be long-lived (they should be able to execute unattended for long periods of

time), adaptive (they should be able to explore and learn about their environment,

including each other), and social (they should interact and coordinate to achieve

their own goals, and the goals of their society; they should rely on other agents to

know things so they do not have to know everything).

Techniques for managing societies of autonomous computational agents are useful

not only for large open information environments, but also for large open physical

environments. For example, such techniques can yield new e�ciencies in defense

logistics: by considering each item of materiel to be an intelligent entity whose goal

is to reach a destination, a distribution system could manage more complicated

schedules and surmount unforeseen di�culties.

A group of agents can form a small society in which they play di�erent roles.

The group de�nes the roles, and the roles de�ne the commitments associated with

them. When an agent joins a group, he joins in one or more roles, and acquires

the commitments of that role. Agents join a group autonomously, but are then

constrained by the commitments for the roles they adopt. The groups de�ne the

social context in which the agents interact.

Social agency involves abstractions from sociology and organizational theory

to model societies of agents. Since agents are often best studied as members of

multiagent systems, this view of agency is important and gaining recognition.

Sociability is essential to cooperation, which itself is essential for moving beyond the

somewhat rigid client-server paradigm of today to a true peer-to-peer distributed

and 
exible paradigm that modern applications call for, and where agent technology

�nds its greatest payo�s.

Although mental primitives, such as beliefs, desires, and intentions, are appropri-

ate for a number of applications and situations, they are not suitable in themselves

for understanding all aspects of social interactions. Further, economic models of

agency, although quite general in principle, are typically limited in practice. This

is because the value functions that are tractable essentially reduce an agent to a

sel�sh agent. [7] argue that a self-interested agent need not be sel�sh, because it

may have other interests than its immediate personal gain. This is certainly true

in many cases when describing humans, and is likely to be a richer assumption for

modeling arti�cial agents in settings that are appropriately complex.
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Social commitments are the commitments of an agent to another agent. These

must be carefully distinguished from internal commitments. Social commitments

have been studied by a number of researchers, including [17, 28]. There are a

number of de�nitions in the literature, which add components such as witnesses

[5] or contexts [41]. Social commitments are a 
exible means through which the

behavior of autonomous agents is constrained. An important concept is that of

social dependence, de�ned as

(SocialDependence x y a p) � (Goal x p) ^

:(CanDo x a) ^

(CanDo y a) ^

((DoneBy y a) =) Eventually p)

that is, agent x depends on agent y with regard to act a for realizing state p, when

p is a goal of x and x is unable to realize p while y is able to do so.

Social dependence can be voluntary when the agents adopt the roles that bind

them to certain commitments. However, it is an objective relationship, in that

it holds independently of the agents' awareness of it. Of course, there may be

consequences that occur when the agents become aware of it, such as x might try

to in
uence y to pursue p.

Social dependencies may be compound. For example, mutual dependence occurs

when x and y depend on each other for realizing a common goal p, which can be

achieved by a plan including at least two di�erent actions, such that x depends on

y doing ay and y depends on x doing ax, as

9p((SocialDependence x y ay p) ^ (SocialDependence y x ax p))

Cooperation is a form of such mutual dependence.

Reciprocal dependence occurs when x and y depend on each other for realizing

di�erent goals, px for x and py for y, as

9px9py((SocialDependence x y ay px) ^ (SocialDependence y x ax py))

Social exchange is a form of such reciprocal dependence.

With this as a basis, a group of agents form a cooperative team when

All agents share a common goal.

Each agent is required to do its share to achieve the common goal by the group

itself or a subgroup.

Each agent adopts a request to do its share.

Beyond social dependencies, social laws may govern the behaviors of large numbers

of agents in a society. See [34] for a treatment of this concept.
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2.5 Conclusions

This chapter described elements of a computational environment that are needed

for the interaction of multiple software agents. The elements enable agents to

communicate, cooperate, and negotiate while they act in the interests of themselves

or their society.

Further research is needed to develop the basis and techniques for societies of

autonomous computational agents that execute in open environments for inde�-

nite periods. This research will rely on the ability of agents to acquire and use

representations of each other. This is what is needed for negotiation, cooperation,

coordination, and multiagent learning. What should be the contents of these rep-

resentations? Subsequent chapters of this textbook provide the answers.

2.6 Exercises

1. [Level 1] What are some of the advantages and disadvantages of synchronous

versus asynchronous communications among agents?

2. [Level 1] Imagine that two agents are negotiating a contract. In the course

of the negotiation, they engage in the following speech acts: propose, counter-

propose, accept, reject, retract, explain, ask-for-clari�cation, agree, disagree.

Draw a state diagram for the negotiation protocol followed by each agent.

3. [Level 3] Consider an environment having one broker agent with which many

information agents can advertise. When an information agent advertises, it

provides the broker with a list of predicate calculus expressions summarizing

its knowledge. To �nd information agents who are knowledgeable about certain

topics, a query agent supplies predicate calculus expressions to the broker and

asks for pointers to the relevant information agents. The broker then returns

a list of all relevant information agents.

(a) List the KQML message that would be sent when query agent Q1 asks

broker agent B1 for pointers to information agents knowledgeable about

the predicate calculus expression weight(Automobile ?x). Hint: the fol-

lowing is an example KQML message for an information agent advertising

with a broker:

(advertise

:content weight(Automobile ?z)

:language Predicate-Calculus

:ontology Transportation-Domain

:sender info-agent-3

:receiver broker-1)

(b) The Transportation-Domain ontology is common to all agents. Draw a
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state transition diagram for each agent. Be sure that every speech act

sent and received serves as a \condition" for a state transition. State any

simplifying assumptions used.

4. [Level 1] What is the di�erence between the concepts coherence and coordi-

nation?

5. [Level 1] Give an advantage and disadvantage of the use of the contract net

protocol.

6. [Level 2] Formalize the following protocol for the contract net in KQML.

Clearly state which parts must be in the :content part of the communications.

\One agent, the Manager, has a task that it wants to be solved. The Man-

ager announces the task by broadcasting the task description in a task-

announcement message to the other agents, the potential contractors. When

contractors receives a task announcement, they evaluate it and some of them

respond with a bid message, containing an estimate of their ability and a cost.

The manager evaluates the bids, chooses the best one, and sends an award

message to the winning contractor."

7. [Level 2] List the sequence of KQML performatives that must the generated

by agents A, B, and C in solving the following problem: \Agent A wants to

�nd out the cost of football tickets. Agent A does not know the cost, but

Agent A knows that Agent B exists. Agent B does not know the cost either,

but Agent B knows that Agent C exists. Agent C knows the cost." Assume

that the agents are cooperative and truthful.

8. [Level 2] Describe how three agents might negotiate to �nd a common tele-

phone line for a conference call. Assume that Agent A has telephones lines 1,

2, 3; Agent B, 1, 3; and Agent C, 2, 3.

The negotiation proceeds pair-wise: two agents at a time. The agents negotiate

in order: A, B, C, A, B, C, A,... Also, alternate lines are chosen in the order

speci�ed above for each agent.

Initially,

Agent A proposes line 1 to Agent B, and Agent B accepts it.

Agent B proposes line 1 to Agent C, but Agent C rejects it.

Complete the process until all agents have picked a common line.

9. [Level 3] \Multiagent Truth Maintenance:" A single agent who knows P and

P ) Q would have its knowledge labeled as follows:
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fact1: P

status: (IN)

shared with: (NIL)

justi�cation: (PREMISE)

rule1: P ) Q

status: (IN)

shared with: (NIL)

justi�cation: (PREMISE)

fact2: Q

status: (IN)

shared with: (NIL)

justi�cation: (fact1, rule1)
If the agent shares fact1 with another agent, fact1's status changes to IN-

TERNAL, and the agent receiving the knowledge labels its new fact as having

status EXTERNAL.

Now consider the following situation in which the knowledge is initially local

to each agent:

Agent A Agent B Agent C

fact1: P rule1: P ) Q fact1: R

rule1: S ) V rule2: R ) Q

rule3: R ) S

rule4: Q ) W

(a) Suppose that Agent A shares fact1 with Agent B, who uses forward

chaining to make all possible conclusions from his knowledge. Show

the e�ect of Agent A sharing fact1 on the status, shared with, and

justification �elds for all data in each agent.

(b) Now suppose Agent C shares fact1 with Agent B. Show the e�ect of

sharing this knowledge on the status, shared with, and justification

�elds for all data in each agent.

(c) Now suppose that Agent A retracts fact1 by making fact1 have status

OUT. Show the changes that would occur to the status, shared with,

and justification �elds for all data in each agent.

10. [Level 1] In the discussion of the uni�ed negotiation protocol, it is stated that

the agents might decide to \
ip a coin" when the negotiation set is empty.

Under what conditions might this be bene�cial to the agents.

11. [Level 4] Imagine a two-dimensional domain consisting of packages and desti-

nations (Figure 2.10). In this domain, robots must move the packages to the

correct destinations. Robots can carry only one package at a time, and they
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Figure 2.10 A domain where robots must move packages to their destinations.

are not allowed to travel through a package|they must maneuver around it.

There is a cost associated with moving a package, but not with picking it up

or setting it down. If a robot encounters a package when it is already carrying

another, it can either move the package out of the way, or it can go around

it. Moving it has a higher cost, but it might be bene�cial to itself or other

robots in the future to have the package out of the way. Assume that a robot

is rewarded according to the amount that it moves a package closer to its des-

tination. Develop a computer simulation of this domain, and try to establish

answers to the following questions:

(a) Will the robots develop any social conventions regarding which direction

they move packages that are obstacles?

(b) Under what conditions will \roadways" (paths without obstacles) form

for the robots to travel on?

(c) Destination points will likely become congested with robots attempting

to drop o� their packages. Gridlock might even occur. Will the robots

become specialized in their operation, where some robots bring packages

near the destinations and other robots move them from the drop-o� points

to the �nal destinations?

(d) If the robots communicate information about their intentions regarding

the packages they are moving, will other robots be able to take advantage

of the information?

Suggestions: choose a grid of size NxN containing P packages, R robots, and D

destinations, where initial values for the parameters are N=100, P=50, R=8,

and D=3. Assume that a robot and a package each take up one square of the
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grid. Assume that a robot can move to any of its 8 adjoining squares, or stay

where it is, in each time interval.

12. [Level 1] The initial state in a Block's World is On(B,C), On(D,A), Table(A),

and Table(C). The desired goal state is On(A,B), On(B,C), Table(C), and

Table(D). Agent1 can manipulate only blocks A and B; Agent2 can manipulate

only blocks C and D. In solving this problem, the action MoveToTable(agent,

block) can be used to place block D on the table. Express the movement of

block D to the table in terms of the social dependence formula in this chapter.
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3 Distributed Problem Solving and Planning

Edmund H. Durfee

3.1 Introduction

Distributed problem solving is the name applied to a sub�eld of distributed arti�cial

intelligence (AI) in which the emphasis is on getting agents to work together well

to solve problems that require collective e�ort. Due to an inherent distribution

of resources such as knowledge, capability, information, and expertise among the

agents, an agent in a distributed problem-solving system is unable to accomplish

its own tasks alone, or at least can accomplish its tasks better (more quickly,

completely, precisely, or certainly) when working with others.

Solving distributed problems well demands both group coherence (that is, agents

need to want to work together) and competence (that is, agents need to know

how to work together well). As the reader by now recognizes, group coherence is

hard to realize among individually-motivated agents (see Chapters 2 and 5, for

example). In distributed problem solving, we typically assume a fair degree of

coherence is already present: the agents have been designed to work together; or the

payo�s to self-interested agents are only accrued through collective e�orts; or social

engineering has introduced disincentives for agent individualism; etc. Distributed

problem solving thus concentrates on competence; as anyone who has played on a

team, worked on a group project, or performed in an orchestra can tell you, simply

having the desire to work together by no means ensures a competent collective

outcome!

Distributed problem solving presumes the existence of problems that need to be

solved and expectations about what constitute solutions. For example, a problem

to solve might be for a team of (computational) agents to design an artifact (say, a

car). The solution they formulate must satisfy overall requirements (it should have

four wheels, the engine should �t within the engine compartment and be powerful

enough to move the car, etc.), and must exist in a particular form (a speci�cation

document for the assembly plant). The teamed agents formulate solutions by each

tackling (one or more) subproblems and synthesizing these subproblem solutions

into overall solutions.

Sometimes the problem the agents are solving is to construct a plan. And of-

ten, even if the agents are solving other kinds of problems, they also have to solve
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Figure 3.1 Tower of Hanoi (ToH).

planning problems as well. That is, how the agents should plan to work together|

decompose problems into subproblems, allocate these subproblems, exchange sub-

problem solutions, and synthesize overall solutions|is itself a problem the agents

need to solve. Distributed planning is thus tightly intertwined with distributed

problem solving, being both a problem in itself and a means to solving a problem.

In this chapter, we will build on the topics of the previous chapters to describe

the concepts and algorithms that comprise the foundations of distributed problem

solving and planning. The reader is already familiar with protocols of interaction;

here we describe how those protocols are used in the context of distributed problem

solving and planning. The reader is also assumed to be familiar with traditional AI

search techniques; since problem solving and planning are usually accomplished

through search, we make liberal use of the relevant concepts. The subsequent

chapter delves more formally into distributed search speci�cally.

The remainder of the chapter is structured as follows. We begin by introducing

some representative example problems, as well as overviewing a variety of other

applications of the techniques to be described. Working from these motivating

examples, we work our way up through a series of algorithms and concepts as

we introduce increasingly complicated requirements into the kinds of problems to

solve, including planning problems.

3.2 Example Problems

There are several motivations for distributed problem solving and distributed plan-

ning. One obvious motivation is that using distributed resources concurrently can

allow a speedup of problem solving thanks to parallelism. The possible improve-

ments due to parallelism depend, of course, on the degree of parallelism inherent

in a problem.

One problem that permits a large amount of parallelism during planning is a

classic toy problem from the AI literature: the Tower of Hanoi (ToH) problem

(see Figure 3.1). As the reader will recall from an introductory AI course, ToH

consists of 3 pegs and n disks of graduated sizes. The starting situation has all of

the disks on one peg, largest at bottom to smallest at top. The goal is to move the

disks from the start peg to another speci�ed peg, moving only one disk at a time,
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without ever placing a larger disk on top of a smaller disk. The problem, then, is

to �nd a sequence of moves that will achieve the goal state.

A second motivation for distributed problem solving and planning is that exper-

tise or other problem-solving capabilities can be inherently distributed. For exam-

ple, in concurrent engineering, a problem could involve designing and manufacturing

an artifact (such as a car) by allowing specialized agents to individually formulate

components and processes, and combining these into a collective solution. Or, su-

pervisory systems for air-tra�c control, factory automation, or crisis management

can involve an interplay between separate pieces for event monitoring, situation

assessment, diagnosis, prioritization, and response generation. In these kinds of

systems, the problem is to employ diverse capabilities to solve problems that are

not only large (the ToH can itself be arbitrarily large) but also multi-faceted.

As a simple example of distributed capability, we will use the example of dis-

tributed sensor network establishment for monitoring a large area for vehicle

movements. In this kind of problem, the overall task of monitoring cannot be done

in a central location since the large area cannot be sensed from any single location.

The establishment problem is thus to decompose the larger monitoring task into

subtasks that can be allocated appropriately to geographically distributed agents.

A third motivation is related to the second, and that is that beliefs or other data

can be distributed. For example, following the successful solution of the distributed

sensor network establishment problem just described, the problem of actually doing

the distributed vehicle monitoring could in principle be centralized: each of the

distributed sensor agents could transmit raw data to a central site to be interpreted

into a global view. This centralized strategy, however, could involve tremendous

amounts of unnecessary communication compared to allowing the separate sensor

agents to formulate local interpretations that could then be transmitted selectively.

Finally, a fourth motivation is that the results of problem solving or planning

might need to be distributed to be acted on by multiple agents. For example, in a

task involving the delivery of objects between locations, distributed delivery

agents can act in parallel (see Figure 3.2). The formation of the plans that

they execute could be done at a centralized site (a dispatcher) or could involve

distributed problem- solving among them. Moreover, during the execution of their

plans, features of the environment that were not known at planning time, or

that unexpectedly change, can trigger changes in what the agents should do.

Again, all such decisions could be routed through a central coordinator, but for

a variety of reasons (exploiting parallelism, sporadic coordinator availability, slow

communication channels, etc.) it could be preferable for the agents to modify their

plans unilaterally or with limited communication among them.

In the above, we have identi�ed several of the motivations for distributed problem

solving and planning, and have enumerated examples of the kinds of applications

for which these techniques make sense. In the rest of this chapter, we will refer back

to several of these kinds of application problems, speci�cally:
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Figure 3.2 Distributed delivery example.

Tower of Hanoi (ToH)

Distributed Sensor Network Establishment (DSNE)

Distributed Vehicle Monitoring (DVM)

Distributed Delivery (DD)

3.3 Task Sharing

The �rst class of distributed problem-solving strategies that we will consider have

been called \task sharing" or \task passing" strategies in the literature. The idea

is simple. When an agent has many tasks to do, it should enlist the help of agents

with few or no tasks. The main steps in task sharing are:

1. Task decomposition: Generate the set of tasks to potentially be passed to

others. This could generally involve decomposing large tasks into subtasks that

could be tackled by di�erent agents.

2. Task allocation: Assign subtasks to appropriate agents.

3. Task accomplishment: The appropriate agents each accomplish their sub-

tasks, which could include further decomposition and subsubtask assignment,

recursively to the point that an agent can accomplish the task it is handed

alone.

4. Result synthesis: When an agent accomplishes its subtask, it passes the

result to the appropriate agent (usually the original agent, since it knows the
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decomposition decisions and thus is most likely to know how to compose the

results into an overall solution).

Note that, depending on the circumstances, di�erent steps might be more or less

di�cult. For example, sometimes an overburdened agent begins with a bundle of

separate tasks, so decomposition is unnecessary; sometimes the agent can pass tasks

o� to any of a number of identical agents, so allocation is trivial; and sometimes

accomplishing the tasks does not yield any results that need to be synthesized in

any complex way.

3.3.1 Task Sharing in the ToH Problem

To get a feel for the possibilities of task sharing, we start with the very simple ToH

problem. Consider the task-sharing steps when it comes to this problem:

1. Task decomposition: Means-ends analysis (see Figure 3.3), where moving the

largest disk that is not at its destination peg is considered the most important

di�erence, leads to a recursive decomposition: solve the problem of getting to

the state where the largest disk can be moved, and get from the state after it

is moved to the goal state. These subproblems can be further decomposed into

problems of moving the second largest disk to the middle peg to get it out of

the way, so the state where that can be done needs to be reached, etc.

2. Task allocation: If we assume an inde�nite number of identical idle agents

capable of solving (pieces of) the ToH problem, then allocation reduces to just

assigning a task randomly to one of these agents.

3. Task accomplishment: In general, an agent can use means-ends analysis to

�nd the most signi�cant di�erence between the start and goal states that

it is responsible for, and will decompose the problem based on these. If the

decomposed problems are such that the start and goal states are the same

(that is, where the most signi�cant di�erence is also the only di�erence), then

the recursive decomposition terminates.

4. Result synthesis: When an agent has solved its problem, it passes the solution

back on up. When an agent has received solutions to all of the subproblems

it passed down, it can compose these into a more comprehensive sequence of

moves, and then pass this up as its solution.

ToH represents an ideal case of the possibilities of distributed problem solving due

to the hierarchical nature of the problem. In general, for a problem like ToH, the

search space is exponential in size. If we assume a branching factor of b (meaning

that from a state, there are b alternative states that can be reached by moving some

disk to some peg), and assuming that in the best case it will take n disk movements

to go from the start state to the end state, then the search complexity is bn.

Thanks to the hierarchical structure of the problem, the means-ends heuristic can

reduce this complexity dramatically. Let us assume that ultimately the hierarchy
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Figure 3.3 Means-ends decomposition for ToH.

divides the problem of size n into problems each of size k, yielding n=k subproblems,

each of which requires f(k) time to solve. These solutions are fed to the next level

up in the hierarchy such that k are given to each of the agents at this level. Each

of these n=k2 agents has to synthesize k results, again requiring f(k) time. This

aggregation process continues up the hierarchy, such that at the next-to-topmost

level, n=kl�1 agents are combining k results from below in the hierarchy with l

levels. The topmost agent then combines these n=kl�1 results together, requiring

f(n=kl�1) time. The total expenditure is thus:

f(n=kl�1) + (n=kl�1 � f(k)) + (n=kl�2 � f(k)) + : : :+ (n=k � f(k)) :

Since k is a constant, and we can choose l = logk n, the equation can be reduced

to O([(kl � 1)=(k � 1)]f(k)) which can be simpli�ed simply to O(n) [23, 23]. More

importantly, if each level of the hierarchy has agents that solve their subproblems in

parallel, then the time needed below the top of the hierarchy (assuming negligible

distribution and communication time) is simply f(k) for each level, so (l � 1)f(k).

This is added to the top agent's calculation f(n=kl�1). Again, since k (and hence

f(k)) is constant, and l = logk n, this reduces simply to O(logk n). This means that

through decomposition and parallel problem solving, the exponential ToH problem

can be reduced to logarithmic time complexity [33].

What the ToH problem illustrates is the potential for improved parallelism due

to distributed problem solving in the ideally decomposable case. Unfortunately, few

problems satisfy the assumptions in this analysis of ToH, including:

1. There is no backtracking back upward in the abstraction hierarchy, meaning

that each distributed subproblem is solvable independently and the solution

of one does not a�ect the solution of others. We will consider the e�ects of

relaxing this assumption in Subection 3.3.4.

2. The solution found hierarchically approximates (is linear in length to) the

solution that would be found using brute-force centralized search. This depends

on having hierarchical abstraction spaces that do not exclude good solutions

as a consequence of reducing complexity.
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3. The number of abstraction levels grows with the problem size. While doing

this is easy for ToH, often the number of levels is �xed by the domain rather

than the speci�c problem instance.

4. The ratio between levels is the base of the logarithm, k. Again, this depends

on how the abstraction space is constructed.

5. The problems can be decomposed into equal-sized subproblems. This is very

di�cult in domains where problems are decomposed into qualitatively di�erent

pieces, requiring di�erent expertise. We consider the e�ects of relaxing this

assumption in Subsection 3.3.2.

6. There are at least as many agents as there are \leaf" subproblems. Clearly,

this will be di�cult to scale!

7. The processes of decomposing problems, distributing subproblems, and collect-

ing results takes negligible time. We consider some of the e�ects of relaxing

this assumption at various places in this chapter.

3.3.2 Task Sharing in Heterogeneous Systems

One of the powerful motivations for distributed problem solving is that it is

di�cult to build artifacts (or train humans) to be competent in every possible

task. Moreover, even if it feasible to build (or train) an omni-capable agent, it is

often overkill because, at any given time, most of those capabilities will go to waste.

The strategy in human systems, and adopted in many distributed problem-solving

systems, is to bring together on demand combinations of specialists in di�erent

areas to combine their expertise to solve problems that are beyond their individual

capabilities.

In the ToH example, the subproblems required identical capabilities, and so the

decisions about where to send tasks was extremely simple. When agents can have

di�erent capabilities, and di�erent subproblems require di�erent capabilities, then

the assignment of subproblems to agents is not so simple.

Conceptually, it is possible for an agent to have a table that identi�es the

capabilities of agents, so that it can simply select an appropriate agent and send

the subproblem o�, but usually the decisions need to be based on more dynamic

information. For example, if several candidate agents are capable of solving a

subproblem, but some are already committed to other subproblems, how is this

discovered? One way is to use the Contract Net protocol (Chapter 2) with directed

contracts or focused addressing: the agent (in Contract-Net terms, the manager)

announces a subproblem to a speci�c agent (in the case of directed contracts) or

a focused subset of other agents (in focused addressing) based on the table of

capabilities, and requests that returned bids describe acceptance/availability. The

manager can then award the subproblem to the directed contractor if it accepts, or

to one of the available contractors in the focused addressing set. However, if none of

the agents are available, the manager has several options, described in the following

paragraphs.
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Broadcast Contracting

In the kind of open environment for which Contract Net was envisioned, it is unlikely

that a manager will be acquainted with all of the possible contractors in its world.

Thus, while directed contracts and focused addressing might be reasonable �rst tries

(to minimize communication in the network), a manager might want to update its

knowledge of eligible contractors by broadcasting its announcement to reach agents

that it is currently unaware of as well. This is the most commonly considered

mode of operation for Contract Net. Directed contracts and focused addressing can

be thought of as caching results of such broadcasts, but since the cached results

can become outdated, many implementations of Contract Net do not include this

function. It is interesting to note, however, that this kind of \capabilities database"

has found renewed favor in knowledge sharing e�orts such as KQML (Chapter 2),

where some agents explicitly adopt the task of keeping track of what other agents

purport to be good at.

Retry

One very simple strategy is to retry the announcement periodically, assuming that

eventually a contractor will free up. The retry interval then becomes an important

parameter: if retries happen too slowly, then many ine�ciencies can arise as agents

do not utilize each other well; but if retries happen to quickly, the network can get

bogged down with messages. One strategy for overcoming such a situation is to turn

the protocol on its head. Rather than announcing tasks and collecting bids, which

implies that usually there are several bidders for each task, instead the protocol

can be used by potential contractors to announce availability, and managers can

respond to the announcements by bidding their pending tasks! It is possible to

have a system alternate between the task and availability announcement strategies

depending on where the bottlenecks are in the system at various times [41].

Announcement Revision

Part of the announcement message that a manager sends is the eligibility speci�-

cation for potential contractors. When no (satisfactory) contractors respond to an

announcement, it could be that the manager was being too exclusive in whom it

would entertain bids from. Thus, the manager could engage in iterative revision of

its announcement, relaxing eligibility requirements until it begins to receive bids.

An interesting aspect of this relaxation process is that the eligibility speci�ca-

tions could well re
ect preferences over di�erent classes of contractors { or, more

speci�cally, over the quality of services that di�erent contractors provide. In con-

cert with other methods of handling a lack of bids (described above), a manager

will be deciding the relative importance of having a preferred contractor eventu-
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ally pursue the subproblem compared to �nding a suboptimal contractor sooner.

In many cases, these preferences and tradeo�s between them can be captured using

economic representations. By describing parts of its marginal utility curve, for ex-

ample, a manager can provide tradeo� information to an auction, which can then

apply principled algorithms to optimize the allocation of capabilities (see Chap-

ter 5).

Alternative Decompositions

The manager can try decomposing the overall problem di�erently such that con-

tractors are available for the alternative subproblems. In general, the relationship

between problem decomposition and subproblem allocation is extremely complex

and has not received su�cient attention. Sometimes a manager should �rst de-

termine the space of alternative contractors to focus problem decomposition, while

other times the space of decompositions can be very restrictive. Moreover, decisions

about the number of problems to decompose into and the granularity of those sub-

problems will depend on other features of the application environment, including

communication delays. We say no more about these issues here, other than to stress

the research opportunities in this area.

3.3.3 Task Sharing for DSNE

Smith and Davis (and others since) have explored the use of the Contract Net

protocol for a variety of problems, including the Distributed Sensor Net Establish-

ment (DSNE) problem [4]. To give the reader a 
avor of this approach, we brie
y

summarize the stages of this application.

At the outset, it is assumed that a particular agent is given the task of monitoring

a wide geographic area. This agent has expertise in how to perform the overall

task, but is incapable of sensing all of the area from its own locality. Therefore,

the �rst step is that an agent recognizes that it can perform its task better (or

at all) if it enlists the help of other agents. Given this recognition, it then needs

to create subtasks to o�oad to other agents. In the DSNE problem, it can use its

representation of the structure of the task to identify that it needs sensing done (and

sensed data returned) from remote areas. Given this decomposition, it then uses

the protocol to match these sensing subtasks with available agents. It announces

(either directed, focused, or broadcast) a subtask; we leave out the details of the

message �elds since they were given in Chapter 2.

The important aspects of the announcement for our purposes here are the

eligibility speci�cation, the task abstraction, and the bid speci�cation. To be eligible

for this task requires that the bidding agent have a sensor position within the

required sensing area identi�ed and that it have the desired sensing capabilities.

Agents that meet these requirements can then analyze the task abstraction (what,

at an abstract level, is the task being asked of the bidders) and can determine the
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degree to which it is willing and able to perform the task, from its perspective.

Based on this analysis, an eligible agent can bid on the task, where the content of

a bid is dictated by the bid speci�cation.

The agent with the task receives back zero or more bids. If it gets back no bids,

then it faces the options previously described: it can give up, try again, broaden

the eligibility requirements to increase the pool of potential bidders, or decompose

the task di�erently to target a di�erent pool of bidders. If it gets back bids, it could

be that none are acceptable to it, and it is as if it got none back. If one or more

is acceptable, then it can award the sensing subtask to one (or possible several) of

the bidding agents. Note that, because the agent with the task has a choice over

what it announces and what bids it accepts, and an eligible agent has a choice over

whether it wants to bid and what content to put into its bid, no agent is forced to

be part of a contract. The agents engage in a rudimentary form of negotiation, and

form teams through mutual selection.

3.3.4 Task Sharing for Interdependent Tasks

For problems like ToH, tasks can be accomplished independently; the sequence of

actions to get from the start state to an intermediate state can be found completely

separately from the sequence to get from that intermediate state to the goal

state. Thus, the subtasks can be accomplished in any order (or concurrently), and

synthesis need only wait to complete until they are all done.

In some cases, contracted tasks are not independent. In a concurrent engineering

application, for example, process planning subtasks usually need to wait until

product design tasks have progressed beyond a certain point. For relatively clearcut

subtask relationships, a manager for the subtasks can coordinate their execution by

initiating a subtask based on the progress of another, or by relaying interim results

for one subtask to contractors of related subtasks.

More generally, however, aspects of subtask relationships might only become

apparent during the course of problem solving, rather than being dictated ahead of

time by the problem decomposition. For example, when using a distributed sensor

network to perform vehicle monitoring, the runtime relationships between what

is being monitored in di�erent areas is as variable as the possible movements

of vehicles through the areas. While a task-sharing strategy, exempli�ed in the

Contract Net protocol, can establish a distributed sensor network, it does not

provide a su�cient basis for using the network. Or, put more correctly, when task

sharing is used to allocate classes of tasks among agents, then if di�erent instances

of those tasks have di�erent interrelationships, discovering and exploiting those

relationships requires the generation and sharing of tentative results.
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3.4 Result Sharing

A problem-solving task is accomplished within the context of the problem solver, so

the results of the task if performed by one problem solver could well di�er from the

results of the same task being performed by another problem solver. For example,

students in a class are often given the same task (homework problem), but their

independently derived solutions will not (better not!) be identical.

By sharing results, problem solvers can improve group performance in combina-

tions of the following ways:

1. Con�dence: Independently derived results for the same task can be used to

corroborate each other, yielding a collective result that has a higher con�dence

of being correct. For example, when studying for an exam, students might sep-

arately work out an exercise and then compare answers to increase con�dence

in their solutions.

2. Completeness: Each agent formulates results for whichever subtasks it can

(or has been contracted to) accomplish, and these results altogether cover a

more complete portion of the overall task. For example, in distributed vehicle

monitoring, a more complete map of vehicle movements is possible when agents

share their local maps.

3. Precision: To re�ne its own solution, an agent needs to know more about the

solutions that others have formulated. For example, in a concurrent engineering

application, each agent might separately come up with speci�cations for part

of an artifact, but by sharing these the speci�cations can be further honed to

�t together more precisely.

4. Timeliness: Even if an agent could in principle solve a large task alone, solving

subtasks in parallel can yield an overall solution faster.

Accruing the bene�ts of result sharing obviously means that agents need to share

results. But making this work is harder than you might think! First of all, agents

need to know what to do with shared results: how should an agent assimilate results

shared from others in with its own results? Second, given that assimilation might

be non-trivial, that communicating large volumes of results can be costly, and that

managing many assimilated results incurs overhead, agents should attempt to be

as selective as possible about what they exchange. In the remainder of this section,

we look at these issues.

3.4.1 Functionally Accurate Cooperation

In task-passing applications like ToH, the separate problem-solving agents are com-

pletely accurate in their computations (they have all information and a complete

speci�cation for their subtasks) and operate independently. In contrast, agents do-
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ing Distributed Vehicle Monitoring (DVM) lack information about what is happen-

ing elsewhere that could impact their calculations. As a result, these agents need to

cooperate to solve their subtasks, and might formulate tentative results along the

way that turn out to be unnecessary. This style of collective problem solving has

been termed functionally-accurate (it gets the answer eventually, but with possibly

many false starts) and cooperative (it requires iterative exchange) [28].

Functionally-accurate cooperation has been used extensively in distributed prob-

lem solving for tasks such as interpretation and design, where agents only discover

the details of how their subproblem results interrelate through tentative formu-

lation and iterative exchange. For this method to work well, participating agents

need to treat the partial results they have formulated and received as tentative, and

therefore might have to entertain and contrast several competing partial hypothe-

ses at once. A variety of agent architectures can support this need; in particular,

blackboard architectures (Chapter 2) have often been employed as semi-structured

repositories for storing multiple competing hypotheses.

Exchanging tentative partial solutions can impact completeness, precision, and

con�dence. When agents can synthesize partial solutions into larger (possibly

still partial) solutions, more of the overall problem is covered by the solution.

When an agent uses a result from another to re�ne its own solutions, precision is

increased. And when an agent combines con�dence measures of two (corroborating

or competing) partial solutions, the con�dence it has in the solutions changes. In

general, most distributed problem-solving systems assume similar representations

of partial solutions (and their certainty measures) which makes combining them

straightforward, although some researchers have considered challenges in crossing

between representations, such as combining di�erent uncertainty measurements

[47].

In functionally accurate cooperation, the iterative exchange of partial results is

expected to lead, eventually, to some agent having enough information to keep

moving the overall problem solving forward. Given enough information exchange,

therefore, the overall problem will be solved. Of course, without being tempered

by some control decisions, this style of cooperative problem solving could incur

dramatic amounts of communication overhead and wasted computation. For exam-

ple, if agents share too many results, a phenomenon called distraction can arise:

it turns out that they can begin to all gravitate toward doing the same problem-

solving actions (synthesizing the same partial results into more complete solutions).

That is, they all begin exploring the same part of the search space (Chapter 4). For

this reason, limiting communication is usually a good idea, as is giving agents some

degree of skepticism in how they assimilate and react to information from others.

We address these issues next.
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3.4.2 Shared Repositories and Negotiated Search

One strategy for reducing potential 
urry of multicast messages is to instead

concentrate tentative partial results in a single, shared repository. The blackboard

architecture, for example, allows cooperating knowledge sources to exchange results

and build o� of them by communicating through a common, structured blackboard

(Chapter 2).

This strategy has been adopted in a variety of distributed problem-solving

approaches, including those for design applications [25, 45]. In essence, using a

shared repository can support search through alternative designs, where agents

with di�erent design criteria can revise and critique the alternatives. In many ways,

this is a distributed constraint satisfaction problem (Chapter 4), but it di�ers from

traditional formulations in a few respects.

Two important di�erences are: agents are not assumed to know whose constraints

might be a�ected by their design choices, and agents can relax constraints in a pinch.

The �rst di�erence motivates the use of a shared repository, since agents would not

know whom to notify of their decisions (as is assumed in typical DCSP formulations

as in Chapter 4). The second di�erence motivates the need for heuristics to control

the distributed search, since at any given time agents might need to choose between

improving some solutions, rejecting some solutions, or relaxing expectations (thus

making some solutions that were previously considered as rejected now acceptable).

For example, agents engaged in negotiated search [25] have at their disposal a

variety of operators for progressing the distributed problem-solving e�ort: initiate-

solution (propose a new starting point for a solution); extend-solution (revise

an already existing partial solution); critique-solution (provide feedback on the

viability of an already existing partial solution); and relax-solution-requirement

(change local requirements for solution acceptability). At any given time, an agent

needs to decide which of these operators to apply, and where. While a systematic

exploration of the space can be considered (Chapter 4), the problem domains for

negotiated search are typically complex enough that heuristic guidance is preferred.

Heuristic measures for when to invoke operators (such as invoking the relax-

solution-requirement operator when lack of progress is detected) and on what (such

as relaxing requirements corresponding to the most constrained component) are

generally application-speci�c.

3.4.3 Distributed Constrained Heuristic Search

Constraint satisfaction problems in distributed environments also arise due to

contention for resources. Rather than assuming a shared repository for tentative

partial solutions, a search strategy that has been gainfully employed for distributed

resource allocation problems has been to associate an \agent" with each resource,

and have that agent process the contending demands for the resource. One form that

this strategy takes is so-called market-oriented programming [44] where associated
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with resources are auctions that support the search for equilibria in which resources

are allocated e�ciently. Market mechanisms are covered in detail in Chapter 5.

A second form that this strategy takes is to allow resources to compute their

aggregate demands, which then the competing agents can take into account as they

attack their constraint-satisfaction problem. For example, distributed constrained

heuristic search (DCHS) uses aggregate demand to inform a heuristic search for

solving a distributed constraint satisfaction problem [43]. The idea is that more

informed search decisions decrease wasted backtracking e�ort, and that constraint

satisfaction heuristics such as variable and value ordering can be gainfully employed

in a distributed environment.

DCHS works as follows (Figure 3.4):

1. An agent begins with a problem state comprised of a problem topology (the

tasks to do and their relationships including constraints).

2. An agent propagates constraints within its state; it backtracks if an inconsis-

tency is detected. Otherwise, it determines what resources it requires for what

time intervals and computes a demand pro�le for those resources.

3. If the system is just beginning, or if the demand pro�les di�er from previous

pro�les, an agent sends the pro�le(s) to the resource(s).

4. A resource computes aggregate demand and informs the agents making the

demands.

5. An agent uses the aggregate demands to order its variables (resource-and-

time-interval pairs) and order the activities that it might assign to the highest-

demand pair. It identi�es a preferred resource/time-interval/activity assign-

ment.

6. An agent requests that the resource reserve the interval for it.

7. The resource in turn grants the reservation if possible and updates the resource

schedule. Otherwise the request is denied.

8. An agent processes the response from the resource. If the reservation is granted,

the agent goes to step 2 (to propagate the e�ects of concretely scheduling

the activity). If the reservation is not granted, the agent attempts another

reservation, going to step 6.

This view of the search strategy, while simpli�ed, highlights the use of resources

being contended for to focus communication, and of an exchange of information

that tends to decrease the amount of backtracking. That is, by giving agents an

opportunity to settle the \di�cult" contention issues �rst, much useless work is

avoided in settling the easier issues and then discovering that these fail to allow the

hard issues to be settled.
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3.4.4 Organizational Structuring

When a shared repository cannot be supported or when problem-solving is not tan-

tamount to resource scheduling, an alternative strategy for reducing communication

is to exploit the task decomposition structure, to the extent that it is known. In a

distributed design problem, for example, it makes sense to have designers working

on components that must \connect" speak with each other more frequently than

they speak with designers working on more remote parts of the design (of course,

physical proximity might be only one heuristic!). Or, in a DVM task, agents mon-

itoring neighboring parts of the space should communicate when their maps show

activity at or near their mutual boundary. The notion is that agents have general

roles to play in the collective e�ort, and by using knowledge of these roles the agents

can make better interaction decisions.

This notion can be explicitly manifested in an organizational structure, which

de�nes roles, responsibilities, and preferences for the agents within a cooperative

society, and thus in turn de�nes control and communication patterns between them.

From a global view, the organizational structure associates with each agent the
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types of tasks that it can do, and usually some prioritization over the types such

that an agent that currently could do any of a number of tasks can identify the most

important tasks as part of its organizational role. Allowing prioritization allows the

structure to permit overlapping responsibilities (to increase the chances of success

despite the loss of some of the agents) while still di�erentiating agents based on

their primary roles.

Since each agent has responsibilities, it is important that an agent be informed of

partial results that could in
uence how it carries out its responsibilities. More im-

portantly, agents need not be told of results that could not a�ect their actions, and

this can be determined based on the organizational structure. Thus, an organiza-

tional structure provides the basis for deciding who might potentially be interested

in a partial result. It also can dictate the degree to which an agent should believe

and act on (versus remain skeptical about) a received result.

While an organizational structure needs to be coherent from an overall perspec-

tive, it is important to note that, as in human organizations, an agent only needs

to be aware of its local portion of the structure: what it is supposed to be doing

(and how to decide what to do when it has choices), who to send what kinds of

information to, who to accept what kinds of information from and how strongly

to react to that information, etc. For practical purposes, therefore, organizational

structures are usually implemented in terms of stored pattern-response rules: when

a partial result that matches the pattern is generated/received, then the response

actions are taken (to transmit the partial result to a particular agent, or to act on

it locally, or to decrement its importance, etc.). Note that a single partial result

could trigger multiple actions.

Finally, we have brie
y mentioned that an organizational structure can be

founded upon the problem decomposition structure, such as for the DSNE problem

where agents would be made aware of which other agents are responsible for

neighboring areas so that partial results that matched the overlapping regions of

interest would be shared. The design of organizational structures for multi- agent

systems, however, is generally a complex search problem in its own right. The

search can be conducted in a bottom-up distributed manner, where boundaries

between the roles of agents can be determined as the problem instance is initialized

[5] or as problem solving progresses [19, 35], where adjustments to the structure

can be based on reacting to performance ine�ciencies of the current structure. In

some cases, the organizational structure can be equated to a priority order for a

distributed constraint satisfaction problem, and the agents are trying to discover

an e�ective ordering to converge on a solution e�ciently (see Chapter 4).

Alternatively, organizational structuring can be viewed as a top-down design

problem, where the space of alternative designs can be selectively explored and

candidate designs can be evaluated prior to their implementation [3, 34, 40]. The

use of computational techniques to study, and prescribe, organizational structures

is covered in Chapter 7.
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3.4.5 Communication Strategies

Organization structures, or similar knowledge, can provide static guidelines about

who is generally interested in what results. But this ignores timing issues. When

deciding whether to send a result, an agent really wants to know whether the

potential recipient is likely to be interested in the result now (or soon). Sending

a result that is potentially useful but that turns out to not be at best clutters up

the memory of the recipient, and at worst can distract the recipient away from the

useful work that it otherwise would have done. On the other hand, refraining from

sending a result for fear of these negative consequences can lead to delays in the

pursuit of worthwhile results and even to the failure of the system to converge on

reasonable solutions at all because some links in the solution chain were broken.

When cluttering memory is not terrible and when distracting garden paths are

short, then the communication strategy can simply be to send all partial results.

On the other hand, when it is likely that an exchange of a partial result will lead

a subset of agents into redundant exploration of a part of the solution space, it is

better to refrain, and only send a partial result when the agent that generated it has

completed everything that it can do with it locally. For example, in a distributed

theorem-proving problem, an agent might work forward through a number of

resolutions toward the sentence to prove, and might transmit the �nal resolvent

that it has formed when it could progress no further.

Between the extremes of sending everything and sending only locally complete

results are a variety of gradations [7], including sending a small partial result early

on (to potentially spur the recipient into pursuing useful related results earlier).

For example, in the DVM problem, agents in neighboring regions need to agree

when they map vehicles from one region to the other. Rather than waiting until it

forms its own local map before telling its neighbor, an agent can send a preliminary

piece of its map near the boundary early on, to stimulate its neighbor into forming

a complementary map (or determining that no such map is possible and that the

�rst agent is working down a worthless interpretation path).

So far, we have concentrated on how agents decide when and with whom to

voluntarily share results. But the decision could clearly be reversed: agents could

only send results when requested. Just like the choice between announcing tasks

versus announcing availability in the Contract Net depends on which is more scarce,

the same holds true in result sharing. When the space of possible interesting results

is large compared to the actual results that are generated, then communicating

results makes sense. But when the space of results formed is large and only few

are really needed by others, then sending requests (or more generally, goals) to

others makes more sense. This strategy has been explored in the DVM problem [3],

as well as in distributed theorem proving [15, 31]. For example, in DARES [31],

when a theorem proving agent would fail to make progress, it would request to

import clauses from other such agents, where the set of desired literals would be

heuristically chosen (Figure 3.5).
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It is also important to consider the delays in iterative exchange compared to a

blind inundation of information. A request followed by a reply incurs two commu-

nication delays, compared to the voluntary sharing of an unrequested result. But

sharing too many unrequested results can introduce substantial overhead. Clearly,

there is a tradeo� between reducing information exchanged by iterative messaging

versus reducing delay in having the needed information reach its destination by

sending many messages at the same time. Sen, for example, has looked at this in

the context of distributed meeting scheduling [38]. Our experience as human meet-

ing schedulers tells us that �nding a meeting time could involve a series of proposals

of speci�c times until one is acceptable, or it could involve having the participants

send all of their available times at the outset. Most typically, however, practical

considerations leave us somewhere between these extremes, sending several options

at each iteration.

Finally, the communication strategies outlined have assumed that messages are

assured of getting through. If messages get lost, then results (or requests for results)

will not get through. But since agents do not necessarily expect messages from each

other, a potential recipient will be unable to determine whether or not messages

have been lost. One solution to this is to require that messages be acknowledged, and

that an agent sending a message will periodically repeat the message (sometimes

called \murmuring") until it gets an acknowledgment [29]. Or, a less obtrusive but

more uncertain method is for the sending agent to predict how the message will

a�ect the recipient, and to assume the message made it through when the predicted

change of behavior is observed (see discussion of plan recognition in Subsection 7.4).

3.4.6 Task Structures

Up to this point, we have made intuitive appeals to why agents might need to

communicate results. The TAEMS work of Decker and Lesser has investigated this

question much more concretely [6]. In their model, an agent's local problem solving
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can have non-local e�ects on the activity of other agents. Perhaps it is supplying

a result that another agent must have to enable its problem-solving tasks. Or the

result might facilitate the activities of the recipient, allowing it to generate better

results and/or generate results faster. The opposites of these (inhibit and hinder ,

respectively) are among the other possible relationships.

By representing the problem decomposition structure explicitly, and capturing

within it these kinds of task relationships, we can employ a variety of coordination

mechanisms. For example, an agent that provides an enabling result to another

can use the task structure representation to detect this relationship, and can then

bias its processing to provide this result earlier. In fact, it can use models of task

quality versus time curves to make commitments to the recipient as to when it will

generate a result with su�ciently high quality. In situations where there are complex

networks of non-local task interrelationships, decisions of this kind of course get

more di�cult. Ultimately, relatively static organizational structures, relationships,

and communication strategies can only go so far. Going farther means that the

problem-solving agents need to analyze their current situation and construct plans

for how they should interact to solve their problems.

3.5 Distributed Planning

In many respects, distributed planning can be thought of simply as a specialization

of distributed problem solving, where the problem being solved is to design a plan.

But because of the particular features of planning problems, it is generally useful

to consider techniques that are particularly suited to planning.

Distributed planning is something of an ambiguous term, because it is unclear

exactly what is \distributed." It could be that the operative issue is that, as a

consequence of planning, a plan is formulated that can be distributed among a

variety of execution systems. Alternatively, the operative issue could be that the

planning process should be distributed, whether or not the resulting plan(s) can be.

Or perhaps both issues are of interest. In this section, we consider both distributed

plans and distributed plan formation as options; we of course skip over the case

where neither holds (since that is traditional centralized planning) and consider

where one or both of these distributions exists.

3.5.1 Centralized Planning for Distributed Plans

Plans that are to be executed in a distributed fashion can nonetheless be formulated

in a centralized manner. For example, a partial order planner can generate plans

where there need not be a strict ordering between some actions, and in fact where

those actions can be executed in parallel. A centralized coordinator agent with

such a plan can break it into separate threads, possibly with some synchronization
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actions. These separate plan pieces can be passed (using task-passing technology)

to agents that can execute them. If followed suitably, and under assumptions of

correctness of knowledge and predictability of the world, the agents operating in

parallel achieve a state of the world consistent with the goals of the plan.

Let us consider this process more algorithmically. It involves:

1. Given a goal description, a set of operators, and an initial state description,

generate a partial order plan. When possible, bias the search to �nd a plan in

which the steps have few ordering constraints among them.

2. Decompose the plan into subplans such that ordering relationships between

steps tend to be concentrated within subplans and minimized across subplans.

[26].

3. Insert synchronization (typically, communication) actions into subplans.

4. Allocate subplans to agents using task-passing mechanisms. If failure, return

to previous steps (decompose di�erently, or generate a di�erent partial order

plan, ...). If success, insert remaining bindings into subplans (such as binding

names of agents to send synchronization messages to).

5. Initiate plan execution, and optionally monitor progress (synthesize feedback

from agents to ensure complete execution, for example).

Notice that this algorithm is just a specialization of the decompose-allocate-

execute-synthesize algorithm used in task passing. The speci�c issues of decomposi-

tion and allocation that are involved in planning give it a special 
avor. Essentially,

the objective is to �nd, of all the possible plans that accomplish the goal, the plan

that can be decomposed and distributed most e�ectively. But since the availability

of agents for the subplans is not easy to determine without �rst having devised the

subplans, it is not certain that the most decomposable and distributable plan can

be allocated in any current context.

Moreover, the communication infrastructure can have a big impact on the degree

to which plans should be decomposed and distributed. As an extreme, if the

distributed plans require synchronization and if the communication channels are

slow or undependable, then it might be better to form a more e�cient centralized

plan. The monetary and/or time costs of distributing and synchronizing plans

should thus be taken into account. In practical terms, what this usually means is

that there is some minimal subplan size smaller than which it does not make sense

to decompose a plan. In loosely-coupled networks, this leads to systems with fewer

agents each accomplishing larger tasks, while in tightly-connected (or even shared-

memory) systems the degree of decomposition and parallelism can be increased.

3.5.2 Distributed Planning for Centralized Plans

Formulating a complex plan might require collaboration among a variety of co-

operative planning specialists, just like generating the solution to any complex
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problem would. Thus, for complex planning in �elds such as manufacturing and

logistics, the process of planning could well be distributed among numerous agents,

each of which contributes pieces to the plan, until an overarching plan is created.

Parallels to task-sharing and result-sharing problem solving are appropriate in

this context. The overall problem-formulation task can be thought of as being de-

composed and distributed among various planning specialists, each of which might

then proceed to generate its portion of the plan. For some types of problems, the

interactions among the planning specialists might be through the exchange of a

partially-speci�ed plan. For example, this model has been used in the manufac-

turing domain, where a general-purpose planner has been coupled with specialist

planners for geometric reasoning and �xturing [21]. In this application, the geo-

metric specialist considers the shape of a part to be machined, and generates an

abstract plan as an ordering over the geometric features to put into the part. The

general-purpose planner then uses these ordering constraints to plan machining

operations, and the augmented plan is passed on to the �xture specialist, which

ensures that the operations can be carried out in order (that the part can be held

for each operation, given that as each operation is done the shape of the part can

become increasingly irregular). If any of these planners cannot perform its plan-

ning subtask with the partially- constructed plan, they can backtrack and try other

choices (See Chapter 4 on DCSPs). Similar techniques have been used for planning

in domains such as mission planning for unmanned vehicles [7] and for logistics

planning [46].

The more asynchronous activity on the part of planning problem-solvers that

is characteristic of most distributed problem-solving systems can also be achieved

through the use of result sharing. Rather than pass around a single plan that

is elaborated and passed on (or discovered to be a deadend and passed back),

a result-sharing approach would have each of the planning agents generate a

partial plan in parallel and then share and merge these to converge on a complete

plan in a negotiated search mode. For example, in the domain of communication

networks, localized agents can tentatively allocate network connections to particular

circuits and share these tentative allocations with neighbors [2]. When inconsistent

allocations are noticed, some agents try other allocations, and the process continues

until a consistent set of allocations have been found. In this example, result-sharing

amounts to a distributed constraint satisfaction search, with the usual concerns of

completeness and termination (See Chapter 4 on DCSPs).

3.5.3 Distributed Planning for Distributed Plans

The most challenging version of distributed planning is when both the planning

process and its results are intended to be distributed. In this case, it might be

unnecessary to ever have a multi-agent plan represented in its entirety anywhere

in the system, and yet the distributed pieces of the plan should be compatible,

which at a minimum means that the agents should not con
ict with each other
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when executing the plans, and preferably should help each other achieve their plans

when it would be rational to do so (e.g. when a helping agent is no worse o� for its

e�orts).

The literature on this kind of distributed planning is relatively rich and varied.

In this chapter, we will hit a few of the many possible techniques that can be useful.

Plan Merging

We begin by considering the problem of having multiple agents formulate plans

for themselves as individuals, and then having to ensure that their separate plans

can be executed without con
ict. Assume that the assignment of goals to agents

has been done, either through task-sharing techniques, or because of the inherent

distributivity of the application domain (such as in a distributed delivery (DD)

task, where di�erent agents are contacted by users to provide a delivery service).

Now the challenge is to identify and resolve potential con
icts.

We begin by considering a centralized plan coordination approach. Let us say that

an agent collects together these individual plans. It then has to analyze the plans to

discover what sequences of actions might lead to con
icts, and to modify the plans

to remove the con
icts. In general, the former problem amounts to a reachability

analysis { given a set of possible initial states, and a set of action sequences that

can be executed asynchronously, enumerate all possible states of the world that can

be reached. Of these, then, �nd the subset of worlds to avoid, and insert constraints

on the sequences to eliminate them.

In general, enumerating the reachable state space can be intractable, so strategies

for keeping this search reasonable are needed. From the planning literature, many

assumptions about the limited e�ects of actions and minimal interdependence

between agents' goals can be used to reduce the search. We will look at one way of

doing this, adapted from George� [16] next.

As is traditional, assume that the agents know the possible initial states of the

world, and each agent builds a totally-ordered plan using any planning technology.

The plan is comprised of actions a1 through an, such that a1 is applicable to any

of the initial states, and ai is applicable in all states that could arise after action

ai�1. The state arising after an satis�es the agent's goal.

We represent an action as a STRIPS operator, with preconditions that must

hold for the action to take place, e�ects that the action has (where features of the

world not mentioned in the e�ects are assumed una�ected), and \during" conditions

to indicate changes to the world that occur only during the action. The STRIPS

assumption simpli�es the analysis for interactions by allowing us to avoid having to

search through all possible interleavings of actions; it is enough to identify speci�c

actions that interact with other speci�c actions, since the e�ects of any sequence is

just the combined e�ects of the sequence's actions.

The merging method thus proceeds as follows. Given the plans of several agents

(where each is assume to be a correct individual plan), the method begins by
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analyzing for interactions between pairs of actions to be taken by di�erent agents.

Arbitrarily, let us say we are considering the actions ai and bj are the next to be

executed by agents A and B, respectively, having arrived at this point through the

asynchronous execution of plans by A and B. Actions ai and bj can be executed

in parallel if the preconditions, during conditions, and e�ects of each are satis�able

at the same time as any of those conditions of the other action. If this is the case,

then the actions can commute, and are essentially independent. If this is not the

case, then it might still be possible for both actions to be taken but in a stricter

order. If the situation before either action is taken, modi�ed by the e�ects of ai,

can satisfy the preconditions of bj , then ai can precede bj . It is also possible for bj
to precede ai. If neither can precede the other, then the actions con
ict.

From the interaction analysis, the set of unsafe situations can be identi�ed.

Clearly, it is unsafe to begin both ai and bj if they do not commute. It is also unsafe

to begin ai before bj unless ai has precedence over bj . Finally, we can propagate

these unsafe interactions to neighboring situations:

the situation of beginning ai and bj is unsafe if either of its successor situations

is unsafe;

the situation of beginning ai and ending bj is unsafe if the situation of ending

ai and ending bj is unsafe;

the situation of ending ai and ending bj is unsafe if both of its successor states

are unsafe.

To keep this safety analysis tractable, actions that commute with all others can

be dropped from consideration. Given a loosely-coupled multiagent system, where

agents mostly bring their own resources and capabilities to bear and thus have few

opportunities to con
ict, dropping commuting actions would reduce the agents'

plans to relatively short sequences. From these simpli�ed sequences, then, the

process can �nd the space of unsafe interactions by considering the (exponential)

number of interleavings. And, �nally, given the discovered unsafe interactions,

synchronization actions can be added to the plans to force some agents to suspend

activities during regions of their plans that could con
ict with others' ongoing

actions, until those others release the waiting agents.

Plan synchronization need not be accomplished strictly through communication

only. Using messages as signals allows agents to synchronize based on the comple-

tion of events rather than reaching speci�c time points. But many applications have

temporal features for goals. Manufacturing systems might have deadlines for fabri-

cating an artifact, or delivery systems might have deadlines for dropping o� objects.

For these kinds of applications, where temporal predictions for individual tasks are

fundamentally important, the formulation of distributed plans can be based on

scheduling activities during �xed time intervals. Thus, in these kinds of systems,

the individual planners can formulate a desired schedule of activities assuming inde-

pendence, and then plan coordination requires that the agents search for revisions

to their schedules to �nd non-con
icting times for their activities (which can be ac-
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complished by DCHS (see 3.4.3)). More importantly, di�erent tasks that the agents

pursue might be related in a precedence ordering (e.g. a particular article needs to

be dropped o� before another one can be picked up). Satisfying these constraints,

along with deadlines and resource limitation constraints, turns the search for a

workable collective schedule into a distributed constraint satisfaction problem (see

Chapter 4).

A host of approaches to dealing with more complex forms of this problem exist,

but are beyond the scope of this chapter. We give the 
avor of a few of these

to illustrate some of the possibilities. When there are uncertainties about the time

needs of tasks, or of the possibility of arrival of new tasks, the distributed scheduling

problem requires mechanisms to maximize expected performance and to make

forecasts about future activities [30]. When there might not be feasible schedules

to satisfy all agents, issues arise about how agents should decide which plans to

combine to maximize their global performance [12]. More complex representations

of reactive plans and techniques for coordinating them based on model-checking

and Petri-net-based mechanisms have also been explored [20, 27, 37].

Iterative Plan Formation

Plan merging is a powerful technique for increasing parallelism in the planning

process as well as during execution. The synchronization and scheduling algorithms

outlined above can be carried out in centralized and decentralized ways, where

the 
ow is generally that of (1) assign goals to agents; (2) agents formulate local

plans; (3) local plans are exchanged and combined; (4) messaging and/or timing

commitments are imposed to resolve negative plan interactions. The parallels

between this method of planning and the task-sharing style of distributed problem-

solving should be obvious. But just as we discovered in distributed problem solving,

not all problems are like the Tower of Hanoi; sometimes, local decisions are

dependent on the decisions of others. This raises the question of the degree to

which local plans should be formulated with an eye on the coordination issues,

rather than as if the agent could work alone.

One way of tempering proposed local plans based on global constraints is to

require agents to search through larger spaces of plans rather than each proposing

a single speci�c plan. Thus, each agent might construct the set of all feasible plans

for accomplishing its own goals. The distributed planning process then consists of

a search through how subsets of agents' plans can �t together.

Ephrati and Rosenschein [11] have developed a plan combination search

approach for doing this kind of search, where the emphasis is on beginning with

encompassing sets of possible plans and re�ning these to converge on a nearly

optimal subset. They avoid commitment to sequences of actions by specifying sets

of propositions that hold as a result of action sequences instead. The agents engage

in the search by proposing, given a particular set of propositions about the world,

the changes to that set that they each can make with a single action from their
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plans. These are all considered so as to generate candidate next sets of propositions

about the world, and these candidates can be ranked using an A* heuristic (where

each agent can use its plans to estimate the cost from the candidate to completing

its own goals). The best candidate is chosen and the process repeats, until no agent

wants to propose any changes (each has accomplished its goal).

Note that, depending on the more global movement of the plan, an agent will

be narrowing down the plan it expects to use to accomplish its own private goals.

Thus, agents are simultaneously searching for which local plan to use as well as for

synchronization constraints on their actions (since in many cases the optimal step

forward in the set of achieved propositions might omit the possible contributions

of an agent, meaning that the agent should not perform an action at the time).

An alternative to this approach instead exploits the hierarchical structure of a

plan space to perform distributed hierarchical planning. By now, hierarchical

planning is well-established in the AI literature. It has substantial advantages (as

exempli�ed in the ToH problem) in that some interactions can be worked out

in more abstract plan spaces, thereby pruning away large portions of the more

detailed spaces. In the distributed planning literature, the advantages of hierarchical

planning were �rst investigated by Corkill.

Corkill's work considered a distributed version of Sacerdoti's NOAH system. He

added a \decompose plan" critic that would look for conjunctive goals to distribute.

Thus, in a blocks-world problem (the infamous Sussman's Anomaly, for instance),

the initial plan re�nement of (AND (ON A B) (ON B C)) leads to a plan network

with two concurrent paths, one for each of the conjuncts. The decompose-plan

critic gives a copy of the plan network to a second agent, where each of the two

agents now represents the goal it is to achieve as well as a parallel node in the

network that represents a model of the other agent's plan. Then the agents proceed

re�ne their abstract plans to successively detailed levels. As an agent does so, it

can communicate with the other one about the changes that it expects to make to

the world state, so that each can separately detect con
icts. For example, when an

agent learns that the other is going to make block B not clear (it does not know

the details of how) it can determine that this will interfere with stacking B on C,

and can ask the �rst agent to WAIT on the action that causes that change until

it has received permission to go on. This process can continue until a synchronized

set of detailed plans are formed.

A variation on the hierarchical distributed planning approach is to allow each

agent to represent its local planned behaviors at multiple levels of abstraction, any

of which can su�ce to resolve all con
icts. In this hierarchical behavior-space

search approach to distributed planning, the outer loop of the protocol identi�es

a particular level of abstraction to work with, and whether con
icts should be

resolved at this level or passed to more detailed levels. The inner loop of the protocol

conducts what can be thought of as a distributed constraint satisfaction search to

resolve the con
icts. Because the plans at various abstraction levels dictate the

behaviors of agents to a particular degree, this approach has been characterized
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1. Initialize the current-abstraction-level to the most abstract level.

2. Agents exchange descriptions of the plans and goals of interest at the

current level.

3. Remove plans with no potential con
icts. If the set is empty, then done;

otherwise determine whether to resolve con
icts at the current level or at

a deeper level.

4. If con
icts are to be resolved at a deeper level, set the current level to the

next deeper level and set the plans/goals of interest to the re�nements of

the plans with potential con
icts. Go to step 2.

5. If con
icts are to be resolved at this level:

(a) Agents form a total order. Top agent is the current superior.

(b) Current superior sends down its plan to the others.

(c) Other agents change their plans to work properly with those of the

current superior. Before con�rming with the current superior, an

agent also doublechecks that its plan changes do not con
ict with

previous superiors.

(d) Once no further changes are needed among the plans of the inferior

agents, the current superior becomes a previous superior and the

next agent in the total order becomes the superior. Return to step

(b). If there is no next agent, then the protocol terminates and the

agents have coordinated their plans.

Algorithm 3.1 Hierarchical behavior-space search algorithm.

as search through hierarchical behavior space [9]. The algorithm is presented in

Algorithm 3.1. Provided that there are �nite abstraction levels and that agents are

restricted in the changes to their plans that they can make such that they cannot get

into cyclic plan generation patterns, the above protocol is assured to terminate. A

challenge lies in the outer loop, in terms of deciding whether to resolve at an abstract

level or to go deeper. The advantage of resolving a con
ict at an abstract level is that

it reduces the amount of search, and thus yields coordinated plans with less time

and messaging. The disadvantage is that the coordination constraints at an abstract

level might impose unnecessary limits on more detailed actions. At more detailed

levels, the precise interaction problems can be recognized and resolved, while at

abstract levels more ine�cient coordination solutions might work. The tradeo�s

between long-term, simple, but possibly ine�cient coordination decisions versus

more responsive but complex runtime coordination decisions is invariably domain-

dependent. The goal is to have mechanisms that support the broad spectrum of

possibilities.

As a concrete example of this approach, consider the DD problem of two delivery

robots making repeated deliveries between two rooms as in Figure 3.6 (left side).

Since R1 always delivers between the upper locations, and R2 between the lower

ones, the robots could each inform the other about where they might be into the
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Figure 3.6 An organizational solution.

inde�nite future (between the locations, passing through the closest door). Their

long-term delivery behaviors potentially con
ict over that door, so the robots can

choose either to search in greater detail around the door, or to eliminate the con
ict

at the abstract behavior level. The latter leads to a strategy for coordinating that

statically assigns the doors. This leads to the permanent allocation of spatial regions

shown in Figure 3.6 (right side), where R2 is always running around the long way.

This \organizational" solution avoids any need for further coordination, but it can

be ine�cient, especially when R1 is not using its door, since R2 is still taking

the long route. If they choose to examine their behaviors in more detail, they can

�nd other solutions. If they consider a particular delivery, for example, R1 and R2

might consider their time/space needs, and identify that pushing their activities

apart in space or time would su�ce (Figure 3.7, top). With temporal resolution,

R2 waits until R1 is done before beginning to move through the central door. Or

the robots could use information from this more abstract level to further focus

communication on exchanging more detailed information about the trouble spots.

They could resolve the potential con
ict at an intermediate level of abstraction;

temporal resolution has R2 begin once R1 has cleared the door (Figure 3.7, middle).

Or they could communicate more details (Figure 3.7, bottom), where now R2 moves

at the same time as R1, and stops just before the door to let R1 pass through

�rst. Clearly, this last instance of coordination is crispest, but it is also the most

expensive to arrive at and the least tolerant of failure, since the robots have less

distance between them in general, so less room to avoid collisions if they deviate

from planned paths.

Of course, there are even more strategies for coordination even in a simple domain

such as the distributed delivery task. One interesting strategy is for the robots to

move up a level to see their tasks as part of a single, team task. By doing so, they

can recognize alternative decompositions. For example, rather than decompose by
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Figure 3.7 Alternative levels of abstraction.

items to deliver, they could decompose by spatial areas, leading to a solution where

one robot picks up items at the source locations and drops them o� at the doorway,

and the other picks up at the doorway and delivers to the �nal destinations. By

seeing themselves as part of one team, the agents can coordinate to their mutual

bene�t (they can cooperate) by searching through an enlarged behavior space.
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Negotiation in Distributed Planning

In the above, we considered how agents can determine that con
icts exist between

their plans and how to impose constraints on (usually when they take) their actions

to avoid con
ict. Sometimes, determining which agent should wait for another is

fairly random and arbitrary. Exceptions, however, exist. A large amount of work

in negotiation (see Chapter 2) is concerned with these issues, so we only touch on

them brie
y here.

Sometimes the selection of the agent that should revise its local plans is based on

models of the possibilities open to the agents. For example, Steeb and Cammarata,

in the air-tra�c control domain, were concerned with which of the various aircraft

should alter direction to decrease potentially dangerous congestion. Their agents

exchanged descriptions indicating their 
exibility, and the agent that had the most

other options was asked to change its plan, in an early distributed AI application

of the least-constrained agent heuristic (see Subsection 3.4.3 and Chapter 4 on

DCSPs).

Of course, these and other negotiation mechanisms for resolving goals presume

that agents are honest about the importance of their goals and their options

for how to achieve them. Issues of how to encourage self-interested agents to be

honest are covered elsewhere in this book (see Chapter 5). However, clearly agents

have self-interest in looking for opportunities to work to their mutual bene�t by

accomplishing goals that each other need. However, although the space of possible

con
icts between agents is large, the space of possible cooperative activities can

be even larger, and introduces a variety of utility assessments. That is, while

it can be argued that agents that have con
icts always should resolve them

(since the system might collapse if con
icts are manifested), the case for potential

cooperative actions is not so strong. Usually, cooperation is \better," but the degree

to which agents bene�t might not outweigh the e�orts they expend in �nding

cooperative opportunities. Thus, work on distributed planning that focuses on

planning for mutually bene�cial actions even though they were not strictly necessary

has been limited to several forays into studies within well-de�ned boundaries. For

example, partial global planning (see Subsection 3.7.3) emphasized a search for

generating partial solutions near partial solution boundaries with other agents,

so as to provide them with useful focusing information early on (see Subsection

3.4.5 on communication strategies). The work of von Martial [32] concentrated on

strategies that agents can use to exploit \favor relations" among their goals, such

as accomplishing a goal for another agent while pursuing its own goal.

3.6 Distributed Plan Representations

Distributed problem solving, encompassing distributed planning, generally relies

heavily on agents being able to communicate about tasks, solutions, goals, plans,

and so on. Of course, much work has gone into low-level networking protocols for
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interprocess communication in computer science generally, which forms the founda-

tion upon which the particular communication mechanisms for multiagent systems

build. At a much higher level, general-purpose protocols for agent interaction have

been developed over the years, ranging from the Contract Net protocol which we

have already seen to a broader variety of languages based on speech acts, such as

KQML and agent-oriented programming (see Chapter 2). With speech-act-based

languages, sending a message can be seen as invoking a behavior at the recipient.

For example, sending a message of the type \query" might be expected to evoke

in the recipient a good-faith e�ort to generate an answer followed by sending a

message of the type \response" back to the sender.

This is all well and good, but what should the query itself look like? And the

response? Di�erent kinds of information might be asked about, and talked about,

very di�erently. For this reason, a high-level speech-act-based language usually

leaves the de�nition of the \content" of a message up to the designer. For any

application domain, therefore, one or more relevant content languages need to be

de�ned such that agents can understand not only the intent behind a message, but

also the content of the message. In general, the de�nition of content languages is

di�cult and open-ended. By restricting our considerations to distributed planning,

however, there is some hope in developing characteristics of a sharable planning

language.

A planning content language needs to satisfy all of the constituencies that would

use the plan. If we think of a plan as being comprised of a variety of �elds (di�erent

kinds of related information), then di�erent combinations of agents will need to

access and modify di�erent combinations of �elds. In exchanging a plan, the agents

need to be able to �nd the information they need so as to take the actions that

they are expected to take in interpreting, modifying, or executing the plan. They

also need to know how to change the plan in ways that will be interpreted correctly

by other agents and lead to desirable e�ects.

To date, there are few standards for specifying plans for computer-based agents.

Some conventions certainly exist (such as the \STRIPS operator" format [14]), but

these are usually useful only within a narrow context. In most distributed planning

systems, it is assumed that the agents use identical representations and are built

to interpret them in the same ways.

One e�ort for formulating a more general description of a plan has been under-

taken by SRI, in the development of their Cypress system [46]. In a nutshell, Cypress

combined existing systems for plan generation and for plan execution. These ex-

isting systems were initially written to be stand-alone; Cypress needed to de�ne a

language that the two systems could use to exchange plans, despite the fact that

what each system did with plans was very di�erent. In their formalism, an ACT

is composed of the following �elds:

Name { a unique label

Cue { goals which the ACT is capable of achieving
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Precondition { features of the world state that need to hold for the ACT to be

applicable

Setting { world-state features that are bound to ACT variables

Resources { resources required by the ACT during execution

Properties { other properties associated with the ACT

Comment { documentation information

Plot { speci�cation of the procedure (partially-ordered sequences of goals/actions)

to be executed

Of course, each of these �elds in turn needs a content language that can be

understood by the relevant agents.

Other e�orts have sought planning languages grounded in temporal logics and

operational formalisms such as Petri Nets and Graphcet [20, 27, 37]. By appealing

to a representation with a well-understood operational interpretation, the planning

agents are freed from having to use identical internal representations so long as

their interpretations are consistent with the operational semantics.

3.7 Distributed Planning and Execution

Of course, distributed planning does not occur in a vacuum. The product of

distributed planning needs to be executed. The relationships between planning

and execution are an important topic in AI in general, and the added complexity

of coordinating plans only compounds the challenges. In this section, we consider

strategies for combining coordination, planning, and execution.

3.7.1 Post-Planning Coordination

The distributed planning approach based on plan merging essentially sequentialized

the processes in terms of allowing agents to plan, then coordinating the plans, and

then executing them. This is reasonable approach given that the agents individually

build plans that are likely to be able to be coordinated, and that the coordinated

result is likely to executed successfully. If, during execution, one (or more) plans for

agents fail to progress as expected, the coordinated plan set is in danger of failing

as a whole.

As in classical planning systems, there are several routes of recourse to this

problem. One is contingency planning. Each agent formulates not only its

expected plan, but also alternative (branches of) plans to respond to possible

contingencies that can arise at execution time. These larger plans, with their

conditional branches, can then be merged and coordinated. The coordination

process of course is more complicated because of the need to consider the various

combinations of plan execution threads that could be pursued. By annotating the
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plan choices with the conditions, a more sophisticated coordination process can

ignore combinations of conditional plans whose conditions cannot be satis�ed in

the same run.

A second means of dealing with dynamics is through monitoring and replanning:

Each agent monitors its plan execution, and if there is a deviation it stops all

agents' progress, and the plan-coordinate-execute cycle is repeated. Obviously,

if this happens frequently, a substantial expenditure of e�ort for planning and

coordination can result. Sometimes, strategies such as repairing the previous plans,

or accessing a library of reusable plans [42] can reduce the e�ort to make it

managable.

Signi�cant overhead can of course be saved if a plan deviation can be addressed

locally rather than having to require coordination. For example, rather than coordi-

nating sequences of actions, the agents might coordinate their plans at an abstract

level. Then, during execution, an agent can replan details without requiring coordi-

nation with others so long as its plan revision �ts within the coordinated abstract

plan. This approach has been taken in the team plan execution work of Kinney

and colleagues, for example [22]. The perceptive reader will also recognize in this

approach the 
avor of organizational structuring and distributed planning in a hi-

erarchical behavior space: so long as it remains within the scope of its roles and

responsibilities, an agent can individually decide what is the best way of accom-

plishing its goals. By moving to coordinate at the most abstract plan level, the

process essentially reverses from post-planning to pre-planning coordination.

3.7.2 Pre-Planning Coordination

Before an agent begins planning at all, can coordination be done to ensure that,

whatever it plans to do, the agent will be coordinated with others? The answer is

of course yes, assuming that the coordination restrictions are acceptable. This was

the answer in organizational structuring in distributed problem solving, where an

agent could choose to work on any part of the problem so long as it �t within its

range of responsibilities.

A variation on this theme is captured in the work on social laws [39]. A social

law is a prohibition against particular choices of actions in particular contexts.

For example, entering an intersection on a red light is prohibited, as might be not

entering the intersection on a green light. These laws can be derived by working from

undesirable states of the world backwards to �nd combinations of actions that lead

to those states, and then imposing restrictions on actions so that the combinations

cannot arise. A challenge is to �nd restrictions that prevent undesirable states

without handcu�ng agents from achieving states that are acceptable and desirable.

When overly constrictive, relaxations of social laws can be made [1].

Alternatively, in domains where con
ict avoidance is not a key consideration, it is

still possible that agents might mutually bene�t if they each prefer to take actions

that bene�t society as a whole, even if not directly relevant to the agent's goal. For
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example, in a Distributed Delivery application, it could be that a delivery agent

is passing by a location where an object is awaiting pickup by a di�erent agent.

The agent passing by could potentially pick up the object and deliver it itself, or

deliver it to a location along its route that will be a more convenient pickup point

for the other agent. For example, the delivery agents might pass through a \hub"

location. The bias toward doing such favors for other agents could be encoded into

cooperative state-changing rules [17] that require agents to take such cooperative

actions even to their individual detriment, as long as they are not detrimental

beyond some threshold.

3.7.3 Interleaved Planning, Coordination, and Execution

More generally, between approaches that assume agents have detailed plans to

coordinate and approaches that assume general-purpose coordination policies can

apply to all planning situations, lies work that is more 
exible about at what point

between the most abstract and most detailed plan representations di�erent kinds of

coordination should be done. Perhaps the search for the proper level is conducted

through a hierarchical protocol, or perhaps it is prede�ned. In either case, planning

and coordination are interleaved with each other, and often with execution as well.

Let us consider a particular example of an approach that assumes that planning

and coordination decisions must be continually revisited and revised. The approach

we focus on is called Partial Global Planning [8].

Task Decomposition { Partial Global Planning starts with the premise that tasks are

inherently decomposed { or at least that they could be. Therefore, unlike planning

techniques that assume that the overall task to be planned for is known by one

agent, which then decomposes the task into subtasks, which themselves might be

decomposed, and so on, partial global planning assumes that an agent with a task

to plan for might be unaware at the outset as to what tasks (if any) other agents

might be planning for, and how (and whether) those tasks might be related to its

own as in the DVM task. A fundamental assumption in Partial Global Planning is

that no individual agent might be aware of the global task or state, and the purpose

of coordination is to allow agents to develop su�cient awareness to accomplish their

tasks nonetheless.

Local Plan Formulation { Before an agent can coordinate with others using Partial

Global Planning, it must �rst develop an understanding of what goals it is trying to

achieve and what actions it is likely to take to achieve them. Hence, purely reactive

agents, which cannot explicitly represent goals that they are trying to achieve

and actions to achieve them, cannot gainfully employ Partial Global Planning (or,

for that matter, distributed planning at all). Moreover, since most agents will be

concurrently concerned with multiple goals (or at least will be able to identify

several achievable outcomes that satisfy a desired goal), local plans will most often

be uncertain, involving branches of alternative actions depending on the results of
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previous actions and changes in the environmental context in carrying out the plan.

Local Plan Abstraction { While it is important for an agent to identify alternative

courses of action for achieving the same goal in an unpredictable world, the details

of the alternatives might be unnecessary as far as the agent's ability to coordinate

with others. That is, an agent might have to commit to activities at one level of

detail (to supply a result by a particular time) without committing to activities

at more detailed levels (specifying how the result will be constructed over time).

Abstraction plays a key role in coordination, since coordination that is both correct

and computationally e�cient requires that agents have models of themselves and

others that are only detailed enough to gainfully enhance collective performance.

In Partial Global Planning, for example, agents are designed to identify their major

plan steps that could be of interest to other agents.

Communication { Since coordination through Partial Global Planning requires

agents to identify how they could and should work together, they must somehow

communicate about their abstract local plans so as to build models of joint activity.

In Partial Global Planning, the knowledge to guide this communication is contained

in the Meta-Level Organization (MLO). The MLO speci�es information and

control 
ows among the agents: Who needs to know the plans of a particular agent,

and who has authority to impose new plans on an agent based on having a more

global view. The declarative MLO provides a 
exible means for controlling the

process of coordination.

Partial Global Goal Identi�cation { Due to the inherent decomposition of tasks

among agents, the exchange of local plans (and their associated goals) gives agents

an opportunity to identify when the goals of one or more agents could be considered

subgoals of a single global goal. Because, at any given time, only portions of

the global goal might be known to the agents, it is called a partial global goal.

Construction of partial global goals is, in fact, an interpretation problem, with a

set of operators that attempts to generate an overall interpretation (global goal)

that explains the component data (local goals). The kinds of knowledge needed are

abstractions of the knowledge needed to synthesize results of the distributed tasks.

And, just as interpretations can be ambiguous, so too is it possible that a local goal

can be seen as contributing to competing partial global goals.

Partial Global Plan Construction and Modi�cation { Local plans that can be seen

as contributing to a single partial global goal can be integrated into a partial

global plan, which captures the planned concurrent activities (at the abstract

plan step level) of the individuals. By analyzing these activities, an agent that

has constructed the partial global plan can identify opportunities for improved

coordination. In particular, the coordination relationships emphasized in PGP are

those of facilitating task achievement of others by performing related tasks earlier,

and of avoiding redundant task achievement. PGP uses a simple hill-climbing

algorithm, coupled with an evaluation function on ordered actions, to search for

an improved (although not necessarily optimal) set of concurrent actions for the
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1. For the current ordering, rate the individual actions and sum the ratings.

2. For each action, examine the later actions for the same agent and �nd

the most highly-rated one. If it is higher rated, then swap the actions.

3. If the new ordering is more highly rated than the current one, then replace

the current ordering with the new one and go to step 2.

4. Return the current ordering.

Algorithm 3.2 The algorithm for PGP plan step reordering.

1. Initialize the set of partial task results to integrate.

2. While the set contains more than one element:

(a) For each pair of elements: �nd the earliest time and agent at which

they can be combined.

(b) For the pair that can be combined earliest: add a new element to

the set of partial results for the combination and remove the two

elements that were combined.

3. Return the single element in the set.

Algorithm 3.3 The algorithm for planning communication actions.

partial global plan (see Algorithm 3.2). The evaluation function sums evaluations of

each action, where the evaluation of an action is based on features such as whether

the task is unlikely to have been accomplished already by another agent, how long

it is expected to take, and on how useful its results will be to others in performing

their tasks.

Communication Planning { After reordering the major local plan steps of the

participating agents so as to yield a more coordinated plan, an agent must next

consider what interactions should take place between agents. In PGP, interactions,

in the form of communicating the results of tasks, are also planned. By examining

the partial global plan, an agent can determine when a task will be completed by

one agent that could be of interest to another agent, and can explicitly plan the

communication action to transmit the result. If results need to be synthesized, an

agent using PGP will construct a tree of exchanges such that, at the root of the tree,

partially synthesized results will be at the same agent which can then construct the

complete result (see Algorithm 3.3).

Acting on Partial Global Plans { Once a partial global plan has been constructed

and the concurrent local and communicative actions have been ordered, the collec-

tive activities of the agents have been planned. What remains is for these activities

to be translated back to the local level so that they can be carried out. In PGP,

an agent responds to a change in its partial global plans by modifying the abstract

representation of its local plans accordingly. In turn, this modi�ed representation
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is used by an agent when choosing its next local action, and thus the choice of

local actions is guided by the abstract local plan, which in turn represents the local

component of the planned collective activity.

Ongoing Modi�cation { As agents pursue their plans, their actions or events in the

environment might lead to changes in tasks or in choices of actions to accomplish

tasks. Sometimes, these changes are so minor that they leave the abstract local

plans used for coordination unchanged. At other times, they do cause changes. A

challenge in coordination is deciding when the changes in local plans are signi�cant

enough to warrant communication and recoordination. The danger in being too

sensitive to changes is that an agent that informs others of minor changes can cause

a chain reaction of minor changes, where the slight improvement in coordination

is more than o�set by the e�ort spent in getting it. On the other hand, being too

insensitive can lead to very poor performance, as agents' local activities do not mesh

well because each is expecting the other to act according to the partial global plan,

which is not being followed very closely anymore. In PGP, a system designer has

the ability to specify parametrically the threshold that de�nes signi�cant temporal

deviation from planned activity.

Task Reallocation { In some circumstances, the exogenous task decomposition and

allocation might leave agents with disproportionate task loads. Through PGP,

agents that exchange abstract models of their activities will be able to detect

whether they are overburdened, and candidate agents that are underburdened. By

generating and proposing partial global plans that represent others taking over

some of its tasks, an agent essentially suggests a contracting relationship among

the agents. A recipient has an option of counter proposing by returning a modi�ed

partial global plan, and the agents could engage in protracted negotiations. If

successful, however, the negotiations will lead to task reallocation among the agents,

allowing PGP to be useful even in situations where tasks are quite centralized.

Summary { PGP �lls a distributed planning niche, being particularly suited to

applications where some uncoordinated activity can be tolerated and overcome,

since the agents are individually revisiting and revising their plans midstream,

such that the system as a whole might at times (or even through the whole task

episode) never settle down into a stable collection of local plans. PGP focuses on

dynamically revising plans in cost-e�ective ways given an uncertain world, rather

than on optimizing plans for static and predictable environments. It works well for

many tasks, but could be inappropriate for domains such as air-tra�c control where

guarantees about coordination must be made prior to any execution.

3.7.4 Runtime Plan Coordination Without Communication

While tailored for dynamic domains, PGP still assumes that agents can and will

exchange planning information over time to coordinate their actions. In some

applications, however, runtime recoordination needs to be done when agents cannot

or should not communicate. We brie
y touch on plan coordination mechanisms for

such circumstances.
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One way of coordinated without explicit communication is to allow agents to

infer each others plans based on observations. The plan recognition literature

focuses on how observed actions can lead to hypotheses about the plans being

executed by others. While generally more uncertain than coordination using explicit

communication, observation-based plan coordination can still achieve high-

quality results and, under some circumstances can outperform communication-

based distributed planning [18].

Another way of coordinating without explicit communication is to allow agents to

make inferences about the choices others are likely to make based on assumptions

about their rationality [36] or about how they view the world. For example, if

Distributed Delivery agents are going to hand o� objects to each other, they might

infer that some locations (such as a hub) are more likely to be mutually recognized

as good choices. Such solutions to choice problems have been referred to as focal

points [13].

3.8 Conclusions

Distributed planning has a variety of reasonably well-studied tools and techniques in

its repertoire. One of the important challenges to the �eld is in characterizing these

tools and undertanding where and when to apply each. To some extent, the lack

of speci�city in the term \distributed planning" in terms of whether the process or

the product or both of planning is distributed has hampered communication within

the �eld, but more fundamental issues of articulating the foundational assumptions

behind di�erent approaches still need to be addressed. Until many of the assumed

context and semantics for plans are unveiled, the goal of having heterogeneous plan

generation and plan execution agents work together is likely to remain elusive.

The �eld of distributed problem solving is even more wide open, because the

characterization of a \problem" is that much broader. As we have tried to empha-

size, distributed plan formation and, in many cases, execution can be thought of as

distributed problem solving tasks. Representations and general-purpose strategies

for distributed problem solving are thus even more elusive. In this chapter we have

characterized basic classes of strategies such as task- sharing and result-sharing. Ul-

timately, the purpose of any strategy is to share the right information about tasks,

capabilities, availabilities, partial results, or whatever so that each agent is doing

the best thing that it can for the group at any given time. Of course, exchanging

and using the information that renders such choices can itself be costly, and opens

the door to misinterpretation that makes matters worse rather than better. All of

these considerations factor into the de�nition and implementation of a distributed

problem strategy, but formulating such a strategy still has more \art" to it than

we like to see in an engineering discipline.
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3.9 Exercises

1. [Level 1] The ToH time complexity analysis that reduces the complexity to

logarithmic time assumed that the number of levels was a function of the

problem size. More realistically, an organization would be developed for a

variety of problems, rather than on a case-by-case basis. Assume the number

of levels is �xed (and so the ratio between hierarchy levels will vary with the

problem size). Now what is the expected time complexity for the ToH in a

distributed problem-solving scenario. What does this answer tell you?

2. [Level 1] Consider Contract Net without focused addressing (that is, announce-

ments are broadcast).

(a) Name a real-life example where task announcment makes much more

sense than availability announcement. Justify why.

(b) Now name a real-life example where availability announcement makes

much more sense. Justify why.

(c) Let's say that you are going to build a mechanism that oversees a

distributed problem-solving system, and can \switch" it to either a task

or availability announcement mode.

i. Assuming communication costs are negligible, what criteria would

you use to switch between modes? Be speci�c about what you would

test.

ii. If communication costs are high, now what criteria would you use?

Be speci�c about what you would test.

3. [Level 2/3] We noted that task announcing can be tricky: If a manager is

too fussy about eligibility, it might get no bids, but if it is too open it might

have to process too many bids, including those from inferior contractors. Let

us say that the manager has n levels of eligibility speci�cations from which

it needs to choose one. Describe how it would make this choice based on a

decision-theoretic formulation. How would this formulation change if it needed

to consider competition for contractors from other managers?

4. [Level 2] A folk theorem in the organization literature is that, in human orga-

nizations, task decompositions invariably lead to clear assignments of subtasks

to members of the organization. Give an example of where decomposition with-
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out look-ahead to available contractors can be detrimental. Give an example

where biasing decomposition based on available contractors can instead be

detrimental. Finally, give an algorithm for alternating between decomposition

and assignment to incrementally formulate a distributed problem-solving sys-

tem. Is your algorithm assured of yielding an optimal result? Is it complete?

5. [Level 1] Consider the pursuit task, with four predators attempting to surround

and capture a prey. De�ne an organizational structure for the predators. What

are the roles and responsibilities of each? How does the structure indicate the

kinds of communication patterns (if any) that will lead to success?

6. [Level 2] In the problem of distributed meeting scheduling, let us say that the

chances that a speci�c meeting time proposal will be accepted is p.

(a) If each iteration of the scheduling protocol has an agent propose a

speci�c time to the others, what is the probability that the meeting will

be scheduled in exactly I iterations? What is the expected number of

iterations to schedule the meeting?

(b) If each iteration instead proposes N speci�c times, now what is the

probability that the meeting will be scheduled in exactly I iterations?

What is the expected number of iterations to schedule the meeting? What

happens when N approaches 1? How about when N grows very large?

(c) Based on the above, how would you choose a value for N to use in a

distributed meeting scheduling system? What other considerations might

need to be taken into account besides a desire to keep the number of

iterations low?

7. [Level 2] Consider the following simple instance of the distributed delivery

task. Robot A is at position � and robot B is at position �. Article X is at

position � and needs to go to position  , and article Y is at position  and

needs to go to �. Positions �, �, �,  , and � are all di�erent.

(a) De�ne in STRIPS notation, suitable for Partial Order Planning, simple

operators Pickup, Dropo�, PickDrop, and Return, where Pickup moves

the robot from its current position to a Pickup position where it then has

the article associated with that position; Dropo� moves a robot and an

article it holds to a dropo� position where it no longer has the article;

PickDrop combines the two (it drops o� its article and picks up another

associated with that position); and Return moves a robot back to its

original position.

(b) Using these operators, generate the partial order plan with the shortest

sequence of plan steps to accomplish the deliveries. Decompose and

distribute this plan to the robots for parallel execution, inserting any

needed synchronization actions. How does the use of multiple robots a�ect

the plan execution?

(c) Using the operators, generate the partial order plan that, when dis-

tributed, will accomplish the deliveries as quickly as possible. Is this the
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same plan as in the previous part of this problem? Why or why not?

8. [Level 2] Given the problem of question 7, include in the operator descriptions

conditions that disallow robots to be at the same position at the same time

(for example, a robot cannot do a pickup in a location where another is doing a

dropo�). Assuming each robot was given the task of delivering a di�erent one

of the articles, generate the individual plans and then use the plan merging

algorithm to formulate the synchronized plans, including any synchronization

actions into the plans. Show your work.

9. [Level 2] Consider the problem of question 7. Assume that delivery plans

can be decomposed into 3 subplans (pickup, dropo�, and return), and that

each of these subplans can further be decomposed into individual plan steps.

Furthermore, assume that robots should not occupy the same location at the

same time not just at dropo�/pickup points, but throughout their travels.

Use the hierarchical protocol to resolve potential con
icts between the robots

plans, given a few di�erent layouts of the coordinates for the various positions

(that is, where path-crossing is maximized and minimized). What kinds of

coordinated plans arise depending on what level of the hierarchy the plans'

con
icts are resolved through synchronization?

10. [Level 2] Assume that agents in the distributed delivery domain could be given

delivery requests at any given time, and operate in a �nite, fully shared delivery

region. Describe social laws that can assure that no matter what deliveries are

asked of them and when, the agents can be assured of avoiding collisions no

matter where the pickup and dropo� positions are. You may assume that the

world begins in a legal state. In what circumstances would using these laws be

very ine�cient?

11. [Level 3] Assume that distributed delivery robots are in an environment where

delivery tasks pop up dynamically. When a delivery needs to be done, the

article to be delivered announces that it needs to be delivered, and delivery

agents within a particular distance from the article hear the announcement.

(a) Assume that the distance from which articles can be heard is small. What

characteristics would an organizational structure among the delivery

agents have to have to minimize the deliveries that might be overlooked?

(b) Assume that the distance is instead large. Would an organizational struc-

ture be bene�cial anyway? Justify your answer.

(c) As they become aware of deliveries to be done, delivery agents try to in-

corporate those into their current delivery plans. But the dynamic nature

of the domain means that these plans are undergoing evolution. Under

what assumptions would partial global planning be a good approach for

coordinating the agents in this case?

(d) Assume you are using partial global planning for coordination in this

problem. What would you believe would be a good planning level for the

agents to communicate and coordinate their plans? How would the agents
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determine whether they were working on related plans? How would they

use this view to change their local plans? Would a hill-climbing strategy

work well for this?
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4 Search Algorithms for Agents

Makoto Yokoo and Toru Ishida

4.1 Introduction

In this chapter, we introduce several search algorithms that are useful for problem

solving by multiple agents. Search is an umbrella term for various problem solving

techniques in AI. In search problems, the sequence of actions required for solving

a problem cannot be known a priori but must be determined by a trial-and-error

exploration of alternatives. Since virtually all AI problems require some sort of

search, search has a long and distinguished history in AI.

The problems that have been addressed by search algorithms can be divided

into three classes: path-�nding problems, constraint satisfaction problems, and two-

player games.

A typical example of the �rst class, i.e., path-�nding problems, is a puzzle called

the n-puzzle. Figure 4.1 shows the 8-puzzle, which consists of eight numbered tiles

arranged on a 3 � 3 board (in a generalized case, there are n = k2 � 1 tiles on a

k�k board). The allowed moves are to slide any tile that is horizontally or vertically

adjacent to the empty square into the position of the empty square. The objective

is to transform the given initial con�guration to the goal con�guration by making

allowed moves. Such a problem is called a path-�nding problem, since the objective

is to �nd a path (a sequence of moves) from the initial con�guration to the goal

con�guration.

A constraint satisfaction problem (CSP) involves �nding a goal con�guration

rather than �nding a path to the goal con�guration. A typical example of a CSP

is a puzzle called 8-queens. The objective is to place eight queens on a chess board

(8�8 squares) so that these queens will not threaten each other. This problem is

called a constraint satisfaction problem since the objective is to �nd a con�guration

that satis�es the given conditions (constraints).

Another important class of search problems is two-player games, such as chess.

Since two-player games deal with situations in which two competitive agents exist,

it is obvious that these studies have a very close relation with DAI/multiagent

systems where agents are competitive.

On the other hand, most algorithms for the other two classes (constraint satisfac-

tion and path-�nding) were originally developed for single-agent problem solving.
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Figure 4.1 Example of a path-�nding problem (8-puzzle).

Figure 4.2 Example of a constraint satisfaction problem (8-queens).
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Among them, what kinds of algorithms would be useful for cooperative problem

solving by multiple agents?

In general, an agent is assumed to have limited rationality. More speci�cally,

the computational ability or the recognition ability of an agent is usually limited.

Therefore, getting the complete picture of a given problem may be impossible.

Even if the agent can manage to get complete information on the problem, dealing

with the global information of the problem can be too expensive and beyond the

computational capability of the agent. Therefore, the agent must do a limited

amount of computations using only partial information on the problem and then

take appropriate actions based on the available resources.

In most standard search algorithms (e.g., the A* algorithm [20] and backtracking

algorithms [26]), each step is performed sequentially, and for each step, the global

knowledge of the problem is required. For example, the A* algorithm extends the

wavefront of explored states from the initial state and chooses the most promising

state within the whole wavefront.

On the other hand, a search problem can be represented by using a graph, and

there exist search algorithms with which a problem is solved by accumulating local

computations for each node in the graph. The execution order of these local com-

putations can be arbitrary or highly 
exible, and can be executed asynchronously

and concurrently. We call these algorithms asynchronous search algorithms.

When a problem is solved by multiple agents each with limited rationality,

asynchronous search algorithms are appropriate based on the following reasons.

We can assume that the computational and recognition abilities required to

perform the local computations of each node will be small enough for the agents.

On the other hand, if each step of the algorithm requires the global knowledge

of the problem, it may be beyond the capability of an agent.

If multiple agents are cooperatively solving a problem using the asynchronous

search algorithm, the execution order of these agents can be highly 
exible or

arbitrary. Otherwise, we need to synchronize the computations of the agents,

and the overhead for such control can be very high.

The importance of solving a problem by combining such local and asynchronous

computations was �rst pointed out by Lesser [24], and this idea has been widely

acknowledged in DAI studies.

In the following, we give a formal de�nition of a constraint satisfaction problem

and a path-�nding problem and introduce asynchronous search algorithms for

solving these problems. Then, we show the formalization of and algorithms for

two-player games.
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Figure 4.3 Example of a constraint satisfaction problem (graph-coloring).

4.2 Constraint Satisfaction

4.2.1 De�nition of a Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a problem to �nd a consistent value as-

signment of variables that take their values from �nite, discrete domains. Formally,

a CSP consists of n variables x1; x2; : : : ; xn, whose values are taken from �nite, dis-

crete domains D1; D2; : : : ; Dn, respectively, and a set of constraints on their values.

A constraint is de�ned by a predicate. That is, the constraint pk(xk1; : : : ; xkj) is a

predicate that is de�ned on the Cartesian product Dk1 � : : :�Dkj . This predicate

is true i� the value assignment of these variables satis�es this constraint. Solving a

CSP is equivalent to �nding an assignment of values to all variables such that all

constraints are satis�ed. Since constraint satisfaction is NP-complete in general, a

trial-and-error exploration of alternatives is inevitable.

For example, in the 8-queens problem, it is obvious that only one queen can be

placed in each row. Therefore, we can formalize this problem as a CSP, in which

there are eight variables x1; x2; : : : ; x8, each of which corresponds to the position

of a queen in each row. The domain of a variable is f1; 2; : : : ; 8g. A solution is a

combination of values of these variables. The constraints that the queens will not

threaten each other can be represented as predicates, e.g., a constraint between xi
and xj can be represented as xi 6= xj^ j i� j j6=j xi � xj j.

Another typical example problem is a graph-coloring problem (Figure 4.3). The

objective of a graph-coloring problem is to paint nodes in a graph so that any two

nodes connected by a link do not have the same color. Each node has a �nite number

of possible colors. This problem can be formalized as a CSP by representing the

color of each node as a variable, and the possible colors of the node as a domain of

the variable.

If all constraints are binary (i.e., between two variables), a CSP can be represented

as a graph, in which a node represents a variable, and a link between nodes

represents a constraint between the corresponding variables. Figure 4.4 shows a

constraint graph representing a CSP with three variables x1; x2; x3 and constraints

x1 6= x3, x2 6= x3. For simplicity, we will focus our attention on binary CSPs in
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Figure 4.4 Constraint graph.

the following chapter. However, the algorithms described in this chapter are also

applicable to non-binary CSPs.

Then, how can the CSP formalization be related to DAI? Let us assume that the

variables of a CSP are distributed among agents. Solving a CSP in which multiple

agents are involved (such a problem is called a distributed CSP) can be considered

as achieving coherence among the agents. Many application problems in DAI, e.g.,

interpretation problems, assignment problems, and multiagent truth maintenance

tasks, can be formalized as distributed CSPs.

An interpretation problem can be viewed as a problem to �nd a compatible set

of hypotheses that correspond to the possible interpretations of input data. An

interpretation problem can be mapped into a CSP by viewing possible interpreta-

tions as possible variable values. If there exist multiple agents, and each of them

is assigned a di�erent part of the input data, such a problem can be formalized as

a distributed CSP. The agents can eliminate the number of hypotheses by using

the �ltering algorithm or the hyper-resolution-based consistency algorithm, both of

which are described in the following.

If the problem is to allocate tasks or resources to multiple agents, and there exist

inter-agent constraints, such a problem can be formalized as a distributed CSP by

viewing each task or resource as a variable and the possible assignments as values.

Furthermore, we can formalize multiagent truth maintenance tasks described in

Chapter 2 as a distributed CSP, where each item of the uncertain data is represented

as a variable whose value can be IN or OUT.

In the following, we describe asynchronous search algorithms in which each

process corresponds to a variable, and the processes act asynchronously to solve

a CSP.

We assume the following communication model.

Processes communicate by sending messages. A process can send messages to

other processes i� the process knows the addresses/identi�ers of other processes.

The delay in delivering a message is �nite, though random.

For the transmission between any pair of processes, messages are received in the

order in which they were sent.
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Furthermore, we call the processes that have links to xi neighbors of xi. We assume

that a process knows the identi�ers of its neighbors.

4.2.2 Filtering Algorithm

In the �ltering algorithm [36], each process communicates its domain to its neigh-

bors and then removes values that cannot satisfy constraints from its domain. More

speci�cally, a process xi performs the following procedure revise(xi; xj) for each

neighboring process xj .

procedure revise(xi; xj)

for all vi 2 Di do

if there is no value vj 2 Dj such that vj is consistent with vi
then delete vi from Di; end if; end do;

If some value of the domain is removed by performing the procedure revise,

process xi sends the new domain to neighboring processes. If xi receives a new

domain from a neighboring process xj , the procedure revise(xi; xj) is performed

again. The execution order of these processes is arbitrary.

We show an example of an algorithm execution in Figure 4.5. The example

problem is a smaller version of the 8-queens problem (3-queens problem). There

are three variables x1; x2; x3, whose domains are f1,2,3g. Obviously, this problem is

over-constrained and has no solution. After exchanging the domains (Figure 4.5 (a)),

x1 performs revise(x1; x2) and removes 2 from its domain (if x1 = 2, none of

x2's values satis�es the constraint with x1). Similarly, x2 performs revise(x2; x3),

x3 performs revise(x3; x2), and each process removes 2 from its domain. After

exchanging the new domains (Figure 4.5 (b)), x1 performs revise(x1; x3), and

removes 1 and 3 from its domain. The domain of x1 then becomes an empty set,

so the process discovers that this problem has no solution.

By applying the �ltering algorithm, if a domain of some variable becomes an

empty set, the problem is over-constrained and has no solution. Also, if each

domain has a unique value, then the combination of the remaining values becomes

a solution. On the other hand, if there exist multiple values for some variable, we

cannot tell whether the problem has a solution or not, and further trial-and-error

search is required to �nd a solution.

Figure 4.6 shows a graph-coloring problem. Since there are three variables and the

only possible colors of each variable are red or blue, this problem is over-constrained.

However, in the �ltering algorithm, no process can remove a value from its domain.

Furthermore, in the 8-queens problem (which has many solutions), no process can

remove a value from its domain by using the �ltering algorithm.

Since the �ltering algorithm cannot solve a problem in general, it should be

considered a preprocessing procedure that is invoked before the application of other

search methods. Even though the �ltering algorithm alone cannot solve a problem,

reducing the domains of variables for the following search procedure is worthwhile.
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Figure 4.5 Example of an algorithm execution (�ltering).
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Figure 4.6 Example that the �ltering algorithm cannot solve.
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4.2.3 Hyper-Resolution-Based Consistency Algorithm

The �ltering algorithm is one example of a general class of algorithms called

consistency algorithms. Consistency algorithms can be classi�ed by the notion of

k-consistency [9]. A CSP is k-consistent i� the following condition is satis�ed.

Given any instantiation of any k�1 variables satisfying all the constraints among

those variables, it is possible to �nd an instantiation of any kth variable such

that these k variable values satisfy all the constraints among them.

The �ltering algorithm achieves 2-consistency (also called arc-consistency), i.e.,

any variable value has at least one consistent value of another variable. A k-

consistency algorithm transforms a given problem into an equivalent (having the

same solutions as the original problem) k-consistent problem. If the problem is k-

consistent and j-consistent for all j < k, the problem is called strongly k-consistent.

If there are n variables in a CSP and the CSP is strongly n-consistent, then a

solution can be obtained immediately without any trial-and-error exploration, since

for any instantiation of k � 1 variables, we can always �nd at least one consistent

value for k-th variables.

In the following, we describe a consistency algorithm using the the hyper-

resolution rule [6]. In this algorithm, all constraints are represented as a nogood,

which is a prohibited combination of variable values. For example, in Figure 4.6, a

constraint between x1 and x2 can be represented as two nogoods fx1 = red; x2 =

redg and fx1 = blue; x2 = blueg.

A new nogood is generated from several existing nogoods by using the hyper-

resolution rule. For example, in Figure 4.6, there are nogoods such as fx1 =

red; x2 = redg and fx1 = blue; x3 = blueg. Furthermore, since the domain of x1
is fred; blueg, (x1 = red) _ (x1 = blue) holds. The hyper-resolution rule combines

nogoods and the condition that a variable takes one value from its domain, and

generates a new nogood, e.g., fx2 = red; x3 = blueg.

The meaning of this nogood is as follows. If x2 is red, x1 cannot be red. Also, if

x3 is blue, x1 cannot be blue. Since x1 is either red or blue, if x2 is red and x3 is

blue, there is no possible value for x1. Therefore, this combination cannot satisfy

all constraints.

The hyper-resolution rule is described as follows (Ai is a proposition such as

x1 = 1).

A1 _A2 _ : : : _ Am

:(A1 ^ A11 : : :);

:(A2 ^ A21 : : :);

...

:(Am ^ Am1 : : :)

:(A11 ^ : : : ^ A21 ^ : : : ^ Am1 : : :)
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In the hyper-resolution-based consistency algorithm, each process represents its

constraints as nogoods. The process then generates new nogoods by combining

the information about its domain and existing nogoods using the hyper-resolution

rule. A newly obtained nogood is communicated to related processes. If a new

nogood is communicated, the process tries to generate further new nogoods using

the communicated nogood.

For example, in Figure 4.6, assume x1 generates a new nogood fx2 = red; x3 =

blueg using nogood fx1 = red; x2 = redg and nogood fx1 = blue; x3 = blueg. This

nogood is communicated to x2 and x3. x2 generates a new nogood fx3 = blueg

using this communicated nogood and nogood fx2 = blue; x3 = blueg. Similarly, x1
generates a new nogood fx2 = blue; x3 = redg from fx1 = blue; x2 = blueg and

fx1 = red; x3 = redg. x2 generates a new nogood fx3 = redg using this nogood and

nogood fx2 = red; x3 = redg. Then, x3 can generate fg from nogoodfx3 = blueg

and fx3 = redg, which is an empty set. Recall that a nogood is a combination of

variable values that is prohibited. Therefore, a superset of a nogood cannot be a

solution. Since any set is a superset of an empty set, if an empty set becomes a

nogood, the problem is over-constrained and has no solution.

The hyper-resolution rule can generate a very large number of nogoods. If we

restrict the application of the rules so that only nogoods whose lengths (the length

of a nogood is the number of variables that constitute the nogood) are less than k

are produced, the problem becomes strongly k-consistent.

4.2.4 Asynchronous Backtracking

The asynchronous backtracking algorithm [39] is an asynchronous version of a

backtracking algorithm, which is a standard method for solving CSPs. In the

asynchronous backtracking algorithm, the priority order of variables/processes is

determined, and each process communicates its tentative value assignment to

neighboring processes. The priority order is determined by alphabetical order of the

variable identi�ers, i.e., preceding variables in the alphabetical order have higher

priority. A process changes its assignment if its current value assignment is not

consistent with the assignments of higher priority processes. If there exists no value

that is consistent with the higher priority processes, the process generates a new

nogood, and communicates the nogood to a higher priority process; thus the higher

priority process changes its value.

The generation procedure of a new nogood is basically identical to the hyper-

resolution rule described in Section 4.2.3. However, in the consistency algorithm,

all constraints (nogoods) are considered for generating new nogoods. On the other

hand, the asynchronous backtracking algorithm generates only the constraints that

are not satis�ed in the current situation. In other words, a new nogood is generated

only if the nogood actually occurs in the asynchronous backtracking.

Each process maintains the current value assignment of other processes from its

viewpoint (local view). It must be noted that since each process acts asynchronously

and concurrently and processes communicate by sending messages, the local view
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when received (ok?, (xj , dj)) do | (i)

add (xj , dj) to local view;

check local view;

end do;

when received (nogood, nogood) do | (ii)

record nogood as a new constraint;

when (xk, dk) where xk is not a neighbor do

request xk to add xi to its neighbors;

add xk to neighbors;

add (xk, dk) to local view; end do;

check local view;

end do;

procedure check local view

when local view and current value are not consistent do

if no value in Di is consistent with local view

then resolve a new nogood using hyper-resolution rule

and send the nogood to the lowest priority process in the nogood;

when an empty nogood is found do

broadcast to other processes that there is no solution,

terminate this algorithm; end do;

else select d 2 Di where local view and d are consistent;

current value  d;

send (ok?, (xi, d)) to neighbors; end if; end do;

Algorithm 4.1 Procedures for receiving messages (asynchronous backtracking).

may contain obsolete information. Even if xi's local view says that xj 's current

assignment is 1, xj may already have changed its value. Therefore, if xi does not

have a consistent value with the higher priority processes according to its local view,

we cannot use a simple control method such as xi orders a higher priority process

to change its value, since the local view may be obsolete. Therefore, each process

needs to generate and communicate a new constraint (nogood), and the receiver of

the new nogood must check whether the nogood is actually violated from its own

local view.

The main message types communicated among processes are ok? messages to

communicate the current value, and nogoodmessages to communicate a new nogood.

The procedures executed at process xi after receiving an ok? message and a nogood

message are described in Algorithm 4.1 (i) and Algorithm 4.1 (ii), respectively.

We show an example of an algorithm execution in Figure 4.7. In Figure 4.7 (a),

after receiving ok? messages from x1 and x2, the local view of x3 will be

f(x1; 1); (x2; 2)g. Since there is no possible value for x3 consistent with this lo-

cal view, a new nogood f(x1; 1); (x2; 2)g is generated. x3 chooses the lowest priority

process in the nogood, i.e., x2, and sends a nogood message. By receiving this

nogood message, x2 records this nogood. This nogood, f(x1; 1); (x2; 2)g, contains

process x1, which is not a neighbor x2. Therefore, a new link must be added be-
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Figure 4.7 Example of an algorithm execution (asynchronous backtracking).

tween x1 and x2. x2 requests x1 to send x1's value to x2, and adds (x1; 1) to its

local view (Figure 4.7 (b)). x2 checks whether its value is consistent with the lo-

cal view. The local view f(x1; 1)g and the assignment (x2; 2) violate the received

nogood f(x1; 1); (x2; 2)g. However, there is no other possible value for x2. There-

fore, x2 generates a new nogood f(x1; 1)g, and sends a nogood message to x1
(Figure 4.7 (c)).

The completeness of the algorithm (always �nds a solution if one exists, and

terminates if no solution exists) is guaranteed. The outline of the proof is as follows.

We can show that this algorithm never falls into an in�nite processing loop by

induction. In the base case, assume that the process with the highest priority, x1,

is in an in�nite loop. Because it has the highest priority, x1 only receives nogood
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messages. When it proposes a possible value, x1 either receives a nogood message

back, or else gets no message back. If it receives nogood messages for all possible

values of its variable, then it will generate an empty nogood (any choice leads to

a constraint violation) and the algorithm will terminate. If it does not receive a

nogood message for a proposed value, then it will not change that value. Either

way, it cannot be in an in�nite loop.

Now, assume that processes x1 to xk�1 (k > 2) are in a stable state, and the

process xk is in an in�nite processing loop. In this case, the only messages process

xk receives are nogood messages from processes whose priorities are lower than k,

and these nogood messages contain only the processes x1 to xk . Since processes x1
to xk�1 are in a stable state, the nogoods process xk receives must be compatible

with its local view, and so xk will change instantiation of its variable with a di�erent

value. Because its variable's domain is �nite, xk will either eventually generate a

value that does not cause it to receive a nogood (which contradicts the assumption

that xk is in an in�nite loop), or else it exhausts the possible values and sends a

nogood to one of x1 . . .xk�1. However, this nogood would cause a process, which we

assumed as being in a stable state, to not be in a stable state. Thus, by contradiction,

xk cannot be in an in�nite processing loop.

Since the algorithm does not fall in an in�nite processing loop, the algorithm

eventually reaches a solution if one exists, and if the problem is over-constrained,

some process will eventually generate a nogood that is an empty set.

4.2.5 Asynchronous Weak-Commitment Search

One limitation of the asynchronous backtracking algorithm is that the pro-

cess/variable ordering is statically determined. If the value selection of a higher

priority process is bad, the lower priority processes need to perform an exhaustive

search to revise the bad decision.

We can reduce the chance of a process making a bad decision by introducing value

ordering heuristics, such as the min-con
ict heuristic [27]. In this heuristic, when

a variable value is to be selected, a value that minimizes the number of constraint

violations with other variables is preferred. Although this heuristic has been found

to be very e�ective [27], it cannot completely avoid bad decisions.

The asynchronous weak-commitment search algorithm[38] introduces a method

for dynamically ordering processes so that a bad decision can be revised without an

exhaustive search. More speci�cally, a priority value is determined for each variable,

and the priority order among processes is determined using these priority values by

the following rules.

For each variable/process, a non-negative integer value representing the priority

order of the variables/processes is de�ned. We call this value the priority value.

The order is de�ned such that any variable/process with a larger priority value

has higher priority.

If the priority values of multiple processes are the same, the order is determined
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by the alphabetical order of the identi�ers.

For each variable/process, the initial priority value is 0.

If there exists no consistent value for xi, the priority value of xi is changed to

k + 1, where k is the largest priority value of related processes.

In the asynchronous weak-commitment search, as in the asynchronous backtrack-

ing, each process concurrently assigns a value to its variable, and sends the variable

value to other processes. After that, processes wait for and respond to incoming

messages. Although the following algorithm is described in a way that a process

reacts to messages sequentially, a process can handle multiple messages concur-

rently, i.e., the process �rst revises the local view and constraints according to the

messages, and then performs check local view only once.

In Algorithm 4.2, the procedure executed at process xi by receiving an ok?

message is described (the procedure for a nogood message is basically identical to

that for the asynchronous backtracking algorithm). The di�erences between these

procedures and the procedures for the asynchronous backtracking algorithm are as

follows.

The priority value, as well as the current value assignment, is communicated

through the ok? message (Algorithm 4.2 (i)).

The priority order is determined using the communicated priority values. If the

current value is not consistent with the local view, i.e., some constraint with

variables of higher priority processes is not satis�ed, the agent changes its value

using the min-con
ict heuristic, i.e., it selects a value that is not only consistent

with the local view, but also minimizes the number of constraint violations with

variables of lower priority processes (Algorithm 4.2 (iii)).

When xi cannot �nd a consistent value with its local view, xi sends nogood mes-

sages to other processes, and increments its priority value. If xi cannot resolve

a new nogood, xi will not change its priority value but will wait for the next

message (Algorithm 4.2 (ii)). This procedure is needed to guarantee the com-

pleteness of the algorithm. In the asynchronous weak-commitment algorithm,

processes try to avoid situations previously found to be nogoods. However, due

to the delay of messages, a local view of a process can occasionally be identi-

cal to a previously found nogood. In order to avoid reacting to such unstable

situations, and performing unnecessary changes of priority values, each process

records the nogoods that have been resolved. If no new nogood is found, the

process will not change the priority value and waits for the next message.

We illustrate an execution of the algorithm using the distributed 4-queens prob-

lem, i.e., there exist four processes, each of which corresponds to a queen in one of

the rows. The goal of the process is to �nd positions on a 4�4 chess board so that

the queens do not threaten each other.

The initial values are shown in Figure 4.8 (a). Processes communicate these values

with each other. The values within parentheses represent the priority values. The

initial priority values are 0. Since the priority values are equal, the priority order is
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when received (ok?, (xj , dj , priority)) do | (i)

add (xj , dj , priority) to local view;

check local view;

end do;

procedure check local view

when local view and current value are not consistent do

if no value in Di is consistent with local view

then resolve a new nogood using hyper-resolution rule;

when an empty nogood is found do

broadcast to other processes that there is no solution,

terminate this algorithm; end do;

when a new nogood is found do | (ii)

send the nogood to the processes in the nogood;

current priority  1 + pmax,

where pmax is the maximal priority value of neighbors;

select best value; end do;

else select best value; end if; end do;

procedure select best value

select d 2 Di where local view and d are consistent, and d minimizes

the number of constraint violations with lower priority processes; | (iii)

current value  d;

send (ok?, (xi, d, current priority)) to neighbors; end do;

Algorithm 4.2 Procedures for receiving messages (asynchronous weak-

commitment search).

x1
x2
x3
x4

(0)

(a) (b) (c) (d)

(0)
(0)
(0)

(0)
(0)
(0)
(1)

(0)
(0)
(2)
(1)

(0)
(0)
(2)
(1)

Figure 4.8 Example of an algorithm execution (asynchronous weak-commitment

search).
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determined by the alphabetical order of the identi�ers. Therefore, only the value of

x4 is not consistent with its local view. Since there is no consistent value, x4 sends

nogood messages and increments its priority value. In this case, the value minimizing

the number of constraint violations is 3, since it con
icts with x3 only. Therefore,

x4 selects 3 and sends ok? messages to the other processes (Figure 4.8 (b)). Then,

x3 tries to change its value. Since there is no consistent value, x3 sends nogood

messages, and increments its priority value. In this case, the value that minimizes

the number of constraint violations is 1 or 2. In this example, x3 selects 1 and

sends ok? messages to the other processes (Figure 4.8 (c)). After that, x1 changes

its value to 2, and a solution is obtained (Figure 4.8 (d)).

In the distributed 4-queens problem, there exists no solution when x1's value is

1. We can see that the bad decision of x1 (assigning its value to 1) can be revised

without an exhaustive search in the asynchronous weak-commitment search.

The completeness of the algorithm is guaranteed. The outline of the proof is as

follows. The priority values are changed if and only if a new nogood is found.

Since the number of possible nogoods is �nite, the priority values cannot be

changed in�nitely. Therefore, after a certain time point, the priority values will be

stable. If the priority values are stable, the asynchronous weak-commitment search

algorithm is basically identical to the asynchronous backtracking algorithm. Since

the asynchronous backtracking is guaranteed to be complete, the asynchronous

weak-commitment search algorithm is also complete.

However, the completeness of the algorithm is guaranteed by the fact that the

processes record all nogoods found so far. Handling a large number of nogoods is

time/space consuming. We can restrict the number of recorded nogoods, i.e., each

process records only a �xed number of the most recently found nogoods. In this

case, however, the theoretical completeness cannot be guaranteed (the algorithm

may fall into an in�nite processing loop in which processes repeatedly �nd identical

nogoods). Yet, when the number of recorded nogoods is reasonably large, such an

in�nite processing loop rarely occurs. Actually, when solving large-scale problems,

the theoretical completeness has only theoretical importance.

4.3 Path-Finding Problem

4.3.1 De�nition of a Path-Finding Problem

A path-�nding problem consists of the following components: a set of nodes N , each

representing a state, and a set of directed links L, each representing an operator

available to a problem solving agent. We assume that there exists a unique node s

called the start node, representing the initial state. Also, there exists a set of nodes

G, each of which represents a goal state. For each link, the weight of the link is

de�ned, which represents the cost of applying the operator. We call the weight of

the link between two nodes the distance between the nodes. We call the nodes that
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start

goal

Figure 4.9 Example of a path-�nding problem (maze).

robot hand

Figure 4.10 Planning for multiple robot hands.

have directed links from node i neighbors of node i.

The 8-puzzle problem can be formalized as a path-�nding problem by repre-

senting possible arrangements of tiles as nodes, and allowed moves as links. The

arrangements that can be reached by sliding one tile are the neighbors of the orig-

inal arrangement. In this problem, the weights of all links are 1, and for each link,

there exists a link in the opposite direction.

Another example of a path-�nding problem is a maze in a grid state space

(Figure 4.9). There exists a grid state-space with obstacles. We allow moves along

the horizontal and vertical dimensions, but not diagonal motions. The initial state

is at the upper-left corner and the goal state is at the bottom-right corner.

Then, how can the path-�nding problem formalization be related to DAI? As-

sume that multiple robots are exploring an unknown environment for �nding a

certain location. Such a problem can be formalized as a path-�nding problem. Fur-

thermore, the planning problem of multiple robot hands shown in Figure 4.10 can

be represented as a path-�nding problem.

In the following, we �rst introduce asynchronous dynamic programming as the

basis of other algorithms. Then, we present the Learning Real-time A* algorithm,

the Real-time A* algorithm, the Moving Target Search algorithm, Real-time Bidi-

rectional Search algorithms, and real-time multiagent search algorithms, as special

cases of asynchronous dynamic programming.
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4.3.2 Asynchronous Dynamic Programming

In a path-�nding problem, the principle of optimality holds. In short, the principle

of optimality states that a path is optimal if and only if every segment of it is

optimal. For example, if there exists an optimal (shortest) path from the start node

to a goal node, and there exists an intermediate node x on the path, the segment

from the start node to node x is actually the optimal path from the start node to

node x. Similarly, the segment from node x to the goal state is also the optimal

path from node x to the goal state.

Let us represent the shortest distance from node i to goal nodes as h�(i). >From

the principle of optimality, the shortest distance via a neighboring node j is given

by f�(j) = k(i; j)+h�(j), where k(i; j) is the cost of the link between i; j. If node i

is not a goal node, the path to a goal node must visit one of the neighboring nodes.

Therefore, h�(i) = minjf
�(j) holds.

If h� is given for each node, the optimal path can be obtained by repeating the

following procedure.

For each neighboring node j of the current node i, compute f�(j) = k(i; j) +

h�(j). Then, move to the j that gives minj f
�(j).

Asynchronous dynamic programming [4] computes h� by repeating the local com-

putations of each node.

Let us assume the following situation.

For each node i, there exists a process corresponding to i.

Each process records h(i), which is the estimated value of h�(i). The initial value

of h(i) is arbitrary (e.g., 1, 0) except for goal nodes.

For each goal node g, h(g) is 0.

Each process can refer to h values of neighboring nodes (via shared memory or

message passing)

In this situation, each process updates h(i) by the following procedure. The

execution order of the processes is arbitrary.

For each neighboring node j, compute f(j) = k(i; j) + h(j), where h(j) is the

current estimated distance from j to a goal node, and k(i; j) is the cost of the

link from i to j. Then, update h(i) as follows: h(i) minj f(j).

We show an example of an algorithm execution in Figure 4.11. Assume that the

initial value of h is in�nity except for the goal node (Figure 4.11 (i)). Then, h

values are changed at the nodes adjoining the goal node (Figure 4.11 (ii)). It must

be noted that these values do not have to be the true values. For example, though

the estimated cost from node d is currently 3, there exists a path from node d to

the goal node via node c, and the cost of the path is 2.

However, h values are further changed at the nodes that can be reached to the

goal node (Figure 4.11 (iii)). Now, the h value of d is equal to the true value. We
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Figure 4.11 Example of an algorithm execution (asynchronous dynamic program-

ming).

can see that the h values converge to the true values from the nodes that are close

to the goal node. By repeating the local computations, it is proved that for each

node i, h(i) will eventually converge to the true value h�(i) if the costs of all links

are positive.

In reality, we cannot use asynchronous dynamic programming for a reasonably

large path-�nding problem. In a path-�nding problem, the number of nodes can be

huge, and we cannot a�ord to have processes for all nodes. However, asynchronous

dynamic programming can be considered a foundation for the other algorithms

introduced in this section. In these algorithms, instead of allocating processes for all

nodes, some kind of control is introduced for enabling the execution by a reasonable

number of processes (or agents).

4.3.3 Learning Real-Time A*

When only one agent is solving a path-�nding problem, it is not always possible

to perform local computations for all nodes. For example, autonomous robots may

not have enough time for planning and should interleave planning and execution.

Therefore, the agent must selectively execute the computations for certain nodes.

Given this requirement, which node should the agent choose? One intuitively
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natural way is to choose the current node where the agent is located. It is easily

to imagine that the sensing area of an autonomous robot is always limited. First,

the agent updates the h value of the current node, and then moves to the best

neighboring node. This procedure is repeated until the agent reaches a goal state.

This method is called the Learning Real-time A* (LRTA*) algorithm [19].

More precisely, in the LRTA* algorithm, each agent repeats the following proce-

dure (we assume that the current position of the agent is node i). As with asyn-

chronous dynamic programming, the agent records the estimated distance h(i) for

each node.

1. Lookahead:

Calculate f(j) = k(i; j)+h(j) for each neighbor j of the current node i, where

h(j) is the current estimate of the shortest distance from j to goal nodes, and

k(i; j) is the link cost from i to j.

2. Update:

Update the estimate of node i as follows.

h(i) min
j

f(j)

3. Action selection:

Move to the neighbor j that has the minimum f(j) value. Ties are broken

randomly.

One characteristic of this algorithm is that the agent determines the next action

in a constant time, and executes the action. Therefore, this algorithm is called an

on-line, real-time search algorithm.

In the LRTA*, the initial value of h must be optimistic, i.e., it must never

overestimate the true value. Namely, the condition h(i) � h�(i) must be satis�ed. If

the initial values satisfy this condition, h(i) will not be greater than the true value

h�(i) by updating.

We call a function that gives the initial values of h a heuristic function. For

example, in the 8-puzzle, we can use the number of mismatched tiles, or the sum

of the Manhattan distances (the sum of the horizontal and vertical distances) of

the mismatched tiles, for the heuristic function (the latter is more accurate). In

the maze problem, we can use the Manhattan distance to the goal as a heuristic

function.

A heuristic function is called admissible if it never overestimates. The above

examples satisfy this condition. If we cannot �nd any good heuristic function, we

can satisfy this condition by simply setting all estimates to 0.

In asynchronous dynamic programming, the initial values are arbitrary and can

be in�nity. What makes this di�erence? In asynchronous dynamic programming,

it is assumed that the updating procedures are performed in all nodes. Therefore,

the h value of a node eventually converges to the true value, regardless of its initial

value. On the other hand, in LRTA*, the updating procedures are performed only

for the nodes that the agent actually visits. Therefore, if the initial value of node i
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is larger than the true value, it is possible that the agent never visits node i; thus,

h(i) will not be revised.

The following characteristic is known [19].

In a �nite number of nodes with positive link costs, in which there exists a path

from every node to a goal node, and starting with non-negative admissible initial

estimates, LRTA* is complete, i.e., it will eventually reach a goal node.

Furthermore, since LRTA* never overestimates, it learns the optimal solutions

through repeated trials, i.e., if the initial estimates are admissible, then over

repeated problem solving trials, the values learned by LRTA* will eventually

converge to their actual distances along every optimal path to the goal node.

A sketch of the proof for completeness is given in the following. Let h�(i) be the

cost of the shortest path between state i and the goal state, and let h(i) be the

heuristic value of i. First of all, for each state i, h(i) � h�(i) always holds, since this

condition is true in the initial situation where all h values are admissible, meaning

that they never overestimate the actual cost, and this condition will not be violated

by updating. De�ne the heuristic error at a given point of the algorithm as the sum

of h�(i)�h(i) over all states i. De�ne a positive quantity called heuristic disparity,

as the sum of the heuristic error and the heuristic value h(i) of the current state i

of the problem solver. It is easy to show that in any move of the problem solver,

this quantity decreases. Since it cannot be negative, and if it ever reaches zero the

problem is solved, the algorithm must eventually terminate successfully. This proof

can be easily extended to cover the case where the goal is moving as well. See [11]

for more details.

Now, the convergence of LRTA* is proven as follows. De�ne the excess cost at

each trial as the di�erence between the cost of actual moves of the problem solver

and the cost of moves along the shortest path. It can be shown that the sum of the

excess costs over repeated trials never exceeds the initial heuristic error. Therefore,

the problem solver eventually moves along the shortest path. It is said that h(i)

is correct if h(i) = h�(i). If the problem solver on the shortest path moves from

state i to the neighboring state j and h(j) is correct, h(i) will be correct after

updating. Since the h values of goal states are always correct, and the problem

solver eventually moves only along the shortest path, h(i) will eventually converge

to the true value h�(i). The details are given in [33].

4.3.4 Real-Time A*

Real-time A* (RTA*) updates the value of h(i) in a di�erent way from LRTA*. In

the second step of RTA*, instead of setting h(i) to the smallest value of f(j) for all

neighbors j, the second smallest value is assigned to h(j). Thus, RTA* learns more

e�ciently than LRTA*, but can overestimate heuristic costs. The RTA* algorithm is

shown below. Note that secondmin represents the function that returns the second

smallest value.



4.3 Path-Finding Problem 185

1. Lookahead:

Calculate f(j) = k(i; j)+h(j) for each neighbor j of the current state i, where

h(j) is the current lower bound of the actual cost from j to the goal state, and

k(i; j) is the edge cost from i to j.

2. Consistency maintenance:

Update the lower bound of state i as follows.

h(i) secondminjf(j)

3. Action selection:

Move to the neighbor j that has the minimum f(j) value. Ties are broken

randomly.

Similar to LRTA*, the following characteristic is known [19].

In a �nite problem space with positive edge costs, in which there exists a path

from every state to the goal, and starting with non-negative admissible initial

heuristic values, RTA* is complete in the sense that it will eventually reach the

goal.

Since the second smallest values are always maintained, RTA* can make locally

optimal decisions in a tree problem space, i.e., each move made by RTA* is along

a path whose estimated cost toward the goal is minimum based on the already-

obtained information. However, this result cannot be extended to cover general

graphs with cycles.

4.3.5 Moving Target Search

Heuristic search algorithms assume that the goal state is �xed and does not change

during the course of the search. For example, in the problem of a robot navigating

from its current location to a desired goal location, it is assumed that the goal

location remains stationary. In this subsection, we relax this assumption, and allow

the goal to change during the search. In the robot example, instead of moving to

a particular �xed location, the robot's task may be to reach another robot which

is in fact moving as well. The target robot may cooperatively try to reach the

problem solving robot, actively avoid the problem solving robot, or independently

move around. There is no assumption that the target robot will eventually stop,

but the goal is achieved when the position of the problem solving robot and the

position of the target robot coincide. In order to guarantee success in this task, the

problem solver must be able to move faster than the target. Otherwise, the target

could evade the problem solver inde�nitely, even in a �nite problem space, merely

by avoiding being trapped in a dead-end path.

We now present the Moving Target Search (MTS) algorithm, which is a gen-

eralization of LRTA* to the case where the target can move. MTS must acquire

heuristic information for each target location. Thus, MTS maintains a matrix of

heuristic values, representing the function h(x; y) for all pairs of states x and y.
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Conceptually, all heuristic values are read from this matrix, which is initialized to

the values returned by the static evaluation function. Over the course of the search,

these heuristic values are updated to improve their accuracy. In practice, however,

we only store those values that di�er from their static values. Thus, even though

the complete matrix may be very large, it is typically quite sparse.

There are two di�erent events that occur in the algorithm: a move of the problem

solver, and a move of the target, each of which may be accompanied by the updating

of a heuristic value. We assume that the problem solver and the target move

alternately, and can each traverse at most one edge in a single move. The problem

solver has no control over the movements of the target, and no knowledge to allow it

to predict, even probabilistically, the motion of the target. The task is accomplished

when the problem solver and the target occupy the same node. In the description

below, xi and xj are the current and neighboring positions of the problem solver,

and yi and yj are the current and neighboring positions of the target. To simplify

the following discussions, we assume that all edges in the graph have unit cost.

When the problem solver moves:

1. Calculate h(xj ; yi) for each neighbor xj of xi.

2. Update the value of h(xi; yi) as follows:

h(xi; yi) max

(
h(xi; yi)

minx0fh(xj ; yi) + 1g

)

3. Move to the neighbor xj with the minimum h(xj ; yi), i.e., assign the value of

xj to xi. Ties are broken randomly.

When the target moves:

1. Calculate h(xi; yj) for the target's new position yj .

2. Update the value of h(xi; yi) as follows:

h(xi; yi) max

(
h(xi; yi)

h(xi; yj)� 1

)

3. Re
ect the target's new position as the new goal of the problem solver, i.e.,

assign the value of yj to yi.

A problem solver executing MTS is guaranteed to eventually reach the target.

The following characteristic is known [11]. The proof is obtained by extending the

one for LRTA*.

In a �nite problem space with positive edge costs, in which there exists a path

from every state to the goal state, starting with non-negative admissible initial

heuristic values, and allowing motion of either a problem solver or the target

along any edge in either direction with unit cost, the problem solver executing

MTS will eventually reach the target, if the target periodically skips moves.
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Problem Solver
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The initial positions of the problem solver and the target.
The final position of the problem solver reaching the target.

Figure 4.12 Sample Tracks of MTS.

An interesting target behavior is obtained by allowing a human user to indirectly

control the motion of the target. Figure 4.12 shows the experimental setup along

with sample tracks of the target (controlled by a human user) and problem solver

(controlled by MTS) with manually placed obstacles. The initial positions of the

problem solver and the target are represented by white rectangles, while their �nal

positions are denoted by black rectangles. In Figure 4.12 (a), the user's task is to

avoid the problem solver, which is executing MTS, for as long as possible, while in

Figure 4.12 (b), the user's task is to meet the problem solver as quickly as possible.

We can observe that if one is trying to avoid a faster pursuer as long as possible,

the best strategy is not to run away, but to hide behind obstacles. The pursuer then

reaches the opposite side of obstacles, and moves back and forth in confusion.

4.3.6 Real-Time Bidirectional Search

Moving target search enables problem solvers to adapt to changing goals. This

allows us to investigate various organizations for problem solving agents. Suppose

there are two robots trying to meet in a fairly complex maze: one is starting from the

entrance and the other from the exit. Each of the robots always knows its current

location in the maze, and can communicate with the other robot; thus, each robot

always knows its goal location. Even though the robots do not have a map of the

maze, they can gather information around them through various sensors.

For further sensing, however, the robots are required to physically move (as

opposed to state expansion): planning and execution must be interleaved. In such a

situation, how should the robots behave to e�ciently meet with each other? Should

they negotiate their actions, or make decisions independently? Is the two-robot

organization really superior to a single robot one?

All previous research on bidirectional search focused on o�ine search [29] [5].
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In RTBS, however, two problem solvers starting from the initial and goal states

physically move toward each other. As a result, unlike the o�ine bidirectional

search, the coordination cost is expected to be limited within some constant time.

Since the planning time is also limited, the moves of the two problem solvers may

be ine�cient.

In RTBS, the following steps are repeatedly executed until the two problem

solvers meet in the problem space.

1. Control strategy:

Select a forward (Step2) or backward move (Step3).

2. Forward move:

The problem solver starting from the initial state (i.e., the forward problem

solver) moves toward the problem solver starting from the goal state.

3. Backward move:

The problem solver starting from the goal state (i.e., the backward problem

solver) moves toward the problem solver starting from the initial state.

RTBS algorithms can be classi�ed into the following two categories depending on

the autonomy of the problem solvers. One is called centralized RTBS where the best

action is selected from among all possible moves of the two problem solvers, and the

other is called decoupled RTBS where the two problem solvers independently make

their own decisions. Let us take an n-puzzle example. The real-time unidirectional

search algorithm utilizes a single game board, and interleaves both planning and

execution; it evaluates all possible actions at a current puzzle state and physically

performs the best action (slides one of the movable tiles). On the other hand, the

RTBS algorithm utilizes two game boards. At the beginning, one board indicates

the initial state and the other indicates the goal state. What is pursued in this case

is to equalize the two puzzle states. Centralized RTBS behaves as if one person

operates both game boards, while decoupled RTBS behaves as if each of two people

operates his/her own game board independently.

In centralized RTBS, the control strategy selects the best action from among all

of the possible forward and backward moves to minimize the estimated distance

to the goal state. Two centralized RTBS algorithms can be implemented, which

are based on LRTA* and RTA*, respectively. In decoupled RTBS, the control

strategy merely selects the forward or backward problem solver alternately. As

a result, each problem solver independently makes decisions based on its own

heuristic information. MTS can be used for both forward and backward moves

for implementing decoupled RTBS.

The evaluation results show that, in clear situations, (i.e., heuristic functions

return accurate values), decoupled RTBS performs better than centralized RTBS,

while in uncertain situations (i.e., heuristic functions return inaccurate values),

the latter becomes more e�cient. Surprisingly enough, compared to real-time

unidirectional search, RTBS dramatically reduces the number of moves for 15- and

24-puzzles, and even solves larger games such as 35- 48- and 63- puzzles. On the
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other hand, it increases the number of moves for randomly generated mazes: the

number of moves for centralized RTBS is around 1=2 in 15-puzzles and 1=6 in 24-

puzzles that for real-time unidirectional search; In mazes, however, as the number

of obstacles increases, the number of moves for RTBS is roughly double that for

unidirectional search [12].

Why is RTBS e�cient for n-puzzles but not for mazes? The key to understanding

the real-time bidirectional search performance is to view that RTBS algorithms

solve a totally di�erent problem from unidirectional search, i.e., the di�erence

between real-time unidirectional search and bidirectional search is not the number

of problem solvers, but their problem spaces. Let x and y be the locations of two

problem solvers. We call a pair of locations (x; y) a p-state, and the problem space

consisting of p-states a combined problem space. When the number of states in

the original problem space is n, the number of p-states in the combined problem

space becomes n2. Let i and g be the initial and goal states; then (i; g) becomes

the initial p-state in the combined problem space. The goal p-state requires both

problem solvers to share the same location. Thus, the goal p-state in the combined

problem space is not unique, i.e., when there are n locations, there are n goal p-

states. Each state transition in the combined problem space corresponds to a move

by one of the problem solvers. Thus, the branching factor in the combined problem

space is the sum of the branching factors of the two problem solvers.

Centralized RTBS can be naturally explained by using a combined problem space.

In decoupled RTBS, two problem solvers independently make their own decisions

and alternately move toward the other problem solver. We can view, however, that

even in decoupled RTBS, the two problem solvers move in a combined problem

space. Each problem solver selects the best action from possible moves, but does

not examine the moves of the other problem solver. Thus, the selected action might

not be the best among the possible moves of the two problem solvers.

The performance of real-time search is sensitive to the topography of the problem

space, especially to heuristic depressions, i.e., a set of connected states with heuristic

values less than or equal to those of the set of immediate and completely surrounding

states. This is because, in real-time search, erroneous decisions seriously a�ect the

consequent problem solving behavior. Heuristic depressions in the original problem

space have been observed to become large and shallow in the combined problem

space. If the original heuristic depressions are deep, they become large and that

makes the problem harder to solve. If the original depressions are shallow, they

become very shallow and this makes the problem easier to solve. Based on the above

observation, we now have a better understanding of real-time bidirectional search:

in n-puzzles, where heuristic depressions are shallow, the performance increases

signi�cantly, while in mazes, where deep heuristic depressions exist, the performance

seriously decreases.

Let us revisit the example at the beginning of this section. The two robots �rst

make decisions independently to move toward each other. However, this method

hardly solves the problem. To overcome this ine�ciency, the robots then introduce

centralized decision making to choose the appropriate robot to move next. They are
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going to believe that two is better than one, because a two-robot organization has

more freedom for selecting actions; better actions can be selected through su�cient

coordination. However, the result appears miserable. The robots are not aware of

the changes that have occurred in their problem space.

4.3.7 Real-Time Multiagent Search

Even if the number of agents is two, RTBS is not the only way for organizing

problem solvers. Another possible way is to have both problem solvers start from

the initial state and move toward the goal state. In the latter case, it is natural

to adopt the original problem space. This means that the selection of the problem

solving organization is the selection of the problem space, which determines the

baseline of the organizational e�ciency; once a di�cult problem space is selected,

the local coordination among the problem solvers hardly overcomes the de�cit.

If there exist multiple agents, how can these agents cooperatively solve a problem?

Again, the key issue is to select an appropriate organization for the agents. Since

the number of possible organizations is quite large, we start with the most simple

organization: the multiple agents share the same problem space with a single �xed

goal. Each agent executes the LRTA* algorithm independently, but they share the

updated h values (this algorithm is called multiagent LRTA*). In this case, when

one of the agents reaches the goal, the objective of the agents as a whole is satis�ed.

How e�cient is this particular organization? Two di�erent e�ects are observed as

follows:

1. E�ects of sharing experiences among agents:

As the execution order of the local computations of processes is arbitrary

in asynchronous dynamic programming, the LRTA* algorithm inherits this

property. Although the agents start from the same initial node, since ties are

broken randomly, the current nodes of the agents are gradually dispersed even

though the agents share h values. This algorithm is complete and the h values

will eventually converge to the true values, in the same way as the LRTA*.

2. E�ects of autonomous decision making:

If there exists a critical choice in the problem, solving the problem with

multiple agents becomes a great advantage. Assume the maze problem shown

in Figure 4.13. If an agent decides to go down at the �rst branching point, the

problem can be solved straightforwardly. On the other hand, if the agent goes

right, it will take a very long time before the agent returns to this point.

If the problem is solved by one agent, since ties are broken randomly, the

probability that the agent makes a correct decision is 1/2, so the problem can

be solved e�ciently with the probability 0.5, but it may take a very long time

with the probability of 0.5. If the problem is solved by two agents, if one of the

agents goes down, the problem can be solved e�ciently. The probability that

a solution can be obtained straightforwardly becomes 3/4 (i.e., 1-1/4, where

the probability that both agents go right is 1/4). If there exist k agents, the
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start

goal

Figure 4.13 Example of a critical choice.

probability that a solution can be obtained straightforwardly becomes 1�1=2k.

By solving a problem with multiple agents concurrently, we can increase both

the e�ciency and robustness. For further study on problem solving organizations,

there exist several typical example problems such as Tileworld [30] and the Pursuit

Game [2]. There are several techniques to create various organizations: explicitly

break down the goal into multiple subgoals which may change during the course

of problem solving; dynamically assign multiple subgoals to multiple agents; or

assign problem solving skills by allocating relevant operators to multiple agents.

Real-time search techniques will provide a solid basis for further study on problem

solving organizations in dynamic uncertain multiagent environments.

4.4 Two-Player Games

4.4.1 Formalization of Two-Player Games

For games like chess or checkers, we can describe the sequence of possible moves

using a tree. We call such a tree a game tree. Figure 4.14 shows a part of a game tree

for tic-tac-toe (noughts and crosses). There are two players; we call the player who

plays �rst the MAX player, and his opponent the MIN player. We assume MAX

marks crosses (�) and MIN marks circles (
). This game tree is described from the

viewpoint of MAX. We call a node that shows MAX's turn a MAX node, and a node

for MIN's turn a MIN node. There is a unique node called a root node, representing

the initial state of the game. If a node n0 can be obtained by a single move from

a node n, we say n0 is a child node of x, and n is a parent of n0. Furthermore, if a

node n00 is obtained by a sequence of moves from a node n, we call n an ancestor

of n00.

If we can generate a complete game tree, we can �nd a winning strategy, i.e.,

a strategy that guarantees a win for MAX regardless of how MIN plays, if such

a strategy exists. However, generating a complete game tree for a reasonably

complicated game is impossible. Therefore, instead of generating a complete game
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MAX

MIN ...

MAX ...

MIN ...

... ... ...

Figure 4.14 Example of a game tree.

tree, we need to �nd out a good move by creating only a reasonable portion of a

game tree.

4.4.2 Minimax Procedure

In the minimax procedure, we �rst generate a part of the game tree, evaluate the

merit of the nodes on the search frontier using a static evaluation function, then

use these values to estimate the merit of ancestor nodes. An evaluation function

returns a value for each node, where a node favorable to MAX has a large evaluation

value, while a node favorable to MIN has a small evaluation value. Therefore,

we can assume that MAX will choose the move that leads to the node with the

maximum evaluation value, while MIN will choose the move that leads to the node

with the minimum evaluation value. By using these assumptions, we can de�ne the

evaluation value of each node recursively as follows.

The evaluation value of a MAX node is equal to the maximum value of any of

its child nodes.

The evaluation value of a MIN node is equal to the minimum value of any of its

child nodes.

By backing up the evaluation values from frontier nodes to the root node, we can

obtain the evaluation value of the root node. MAX should choose a move that gives

the maximum evaluation value.
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MAX

MIN MIN

6-5=1 5-5=0 5-5=0 4-5=-16-5=1

6-6=05-6=-1

-1

-2

1

MIN

5-6=-1 6-6=0 4-6=-2

5-4=1 6-4=2

1

Figure 4.15 Example of evaluation values obtained by the minimax procedure.

Figure 4.15 shows the evaluation values obtained using the minimax algorithm,

where nodes are generated by a search to depth 2 (symmetries are used to reduce

the number of nodes). We use the following evaluation function for frontier nodes:

(the number of complete rows, columns, or diagonals that are still open for MAX)

{ (the number of complete rows, columns, or diagonals that are still open for MIN).

In this case, MAX chooses to place a � in the center.

4.4.3 Alpha-Beta Pruning

The alpha-beta pruning method is commonly used to speed up the minimax

procedure without any loss of information. This algorithm can prune a part of a

tree that cannot in
uence the evaluation value of the root node. More speci�cally,

for each node, the following value is recorded and updated.

� value: represents the lower bound of the evaluation value of a MAX node.

� value: represents the upper bound of the evaluation value of a MIN node.

While visiting nodes in a game tree from the root node by a depth-�rst order to

a certain depth, these values are updated by the following rules.

The � value of a MAX node is the maximum value of any of its child nodes

visited so far.
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The � value of a MIN node is the minimum value of any of its child nodes visited

so far.

We can prune a part of the tree if one of the following conditions is satis�ed.

�-cut: If the � value of a MIN node is smaller than or equal to the maximum �

value of its ancestor MAX nodes, we can use the current � value as the evaluation

value of the MIN node, and can prune a part of the search tree under the MIN

node. In other words, the MAX player never chooses a move that leads to the MIN

node, since there exists a better move for the MAX player.

�-cut: If the � value of a MAX node is larger than or equal to the minimum �

value of its ancestor MIN nodes, we can use the current � value as the evaluation

value of the MAX node, and can prune a part of the search tree under the MAX

node. In other words, the MIN player never chooses a move that leads to the MAX

node, since there exists a better move for the MIN player.

Figure 4.16 shows examples of these pruning actions. In this �gure, a square

shows a MAX node, and a circle shows a MIN node. A number placed near each

node represents an � or � value. Also, � shows a pruning action. A pruning action

under a MAX node represents an �-cut, and that under a MIN node represents a

�-cut.

The e�ect of the alpha-beta pruning depends on the order in which the child nodes

are visited. If the algorithm �rst examines the nodes that will likely be chosen (i.e.,

MAX nodes with large � values, and MIN nodes with small � values), the e�ect of

the pruning becomes great. One popular approach for obtaining a good ordering is

to do an iterative deepening search, and use the backed-up values from one iteration

to determine the ordering of child nodes in the next iteration.

11

11

11

11

11 12 9 15 16 3 1

3

1

15

159

3

3

Figure 4.16 Example of alpha-beta pruning.



4.5 Conclusions 195

4.5 Conclusions

In this chapter, we presented several search algorithms that will be useful for prob-

lem solving by multiple agents. For constraint satisfaction problems, we presented

the �ltering algorithm, the hyper-resolution-based consistency algorithm, the asyn-

chronous backtracking algorithm, and the weak-commitment search algorithm. For

path-�nding problems, we introduced asynchronous dynamic programming as the

basis for other algorithms; we then described the LRTA* algorithm, the RTA* al-

gorithm, the MTS algorithm, RTBS algorithms, and real-time multiagent search

algorithms as special cases of asynchronous dynamic programming. For two-player

games, we presented the basic minimax procedure, and alpha-beta pruning to speed

up the minimax procedure.

There are many articles on constraint satisfaction, path-�nding, two-player

games, and search in general. Pearl's book [28] is a good textbook for path-�nding

and two-player games. Tsang's textbook [35] on constraint satisfaction covers top-

ics from basic concepts to recent research results. Concise overviews of path-�nding

can be found in [18, 20], and one for constraint satisfaction is in [26].

The �rst application problem of CSPs was a line labeling problem in vision

research. The �ltering algorithm [36] was developed to solve this problem. The

notion of k-consistency was introduced by Freuder [9]. The hyper-resolution-based

consistency algorithm [6] was developed during the research of an assumption-

based truth maintenance system (ATMS). Forbus and de Kleer's textbook [8]

covers ATMS and truth maintenance systems in general. Distributed CSPs and the

asynchronous backtracking algorithm were introduced in [39], and the asynchronous

weak-commitment search algorithm was described in [38]. An iterative improvement

search algorithm for distributed CSPs was presented in [40].

Dynamic programming and the principle of optimality were proposed by Bell-

man [3], and have been widely used in the area of combinatorial optimization and

control. Asynchronous dynamic programming [4] was initially developed for dis-

tributed/parallel processing in dynamic programming. The Learning Real-time A*

algorithm and its variant Real-time A* algorithm were presented in [19]. Barto et

al. [1] later clari�ed the relationship between asynchronous dynamic programming

and various learning algorithms such as the Learning Real-time A* algorithm and

Q-learning [37]. The multiagent real-time A* algorithm was proposed in [16], where

a path-�nding problem is solved by multiple agents, each of which uses the Real-

time A* algorithm. Methods for improving the multiagent Real-time A* algorithm

by organizing these agents was presented in [15, 41].

Although real-time search provides an attractive framework for resource-bounded

problem solving, the behavior of the problem solver is not rational enough for au-

tonomous agents: the problem solver tends to perform super
uous actions before

attaining the goal; the problem solver cannot utilize and improve previous exper-

iments; the problem solver cannot adapt to the dynamically changing goals; and

the problem solver cannot cooperatively solve problems with other problem solvers.
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Various extensions of real-time search, including Moving Target Search and Real-

time Bidirectional Search, have been studied in recent years [31, 13, 14].

The idea of the minimax procedure using a static evaluation function was

proposed in [32]. The alpha-beta pruning method was discovered independently by

many of the early AI researchers [17]. Another approach for improving the e�ciency

of the minimax procedure is to control the search procedure in a best-�rst fashion

[21]. Best-�rst minimax procedure always expands the leaf node which determines

the � value of the root node.

There are other DAI works that are concerned with search, which were not

covered in this chapter due to space limitations. Lesser [23] formalized various

aspects of cooperative problem solving as a search problem. Attempts to formalize

the negotiations among agents in real-life application problems were presented in

[7, 22, 34].

4.6 Exercises

1. [Level 1] Implement the A* and LRTA* algorithms to solve the 8-puzzle

problem. Compare the number of states expanded by each algorithm. Use the

sum of the Manhattan distance of each misplaced tile as the heuristic function.

2. [Level 1] Implement the �ltering algorithm to solve graph-coloring problems.

Consider a graph structure in which the �ltering algorithm can always tell

whether the problem has a solution or not without further trial-and-error

search.

3. [Level 1] Implement a game-tree search algorithm for tic-tac-toe, which in-

troduces the alpha-beta pruning method. Use the static evaluation function

described in this chapter. Increase the search depth and see how the strategy

of the MAX player changes.

4. [Level 2] Implement the asynchronous backtracking algorithm to solve the n-

queens problem. If you are not familiar with programming using multiprocess

and inter-process communications, you may use shared memories, and assume

that agents act sequentially in a round-robin order.

5. [Level 2] Implement the asynchronous weak-commitment algorithm to solve

the n-queens problem. Increase n and see how large you can make it to solve

the problem in a reasonable amount of time.

6. [Level 2] In Moving Target Search, it has been observed that if one is trying to

avoid a faster pursuer as long as possible, the best strategy is not to run away,

but to hide behind obstacles. Explain how this phenomenon comes about.

7. [Level 3] When solving mazes by two problem solvers, there are at least two

possible organizations: One way is to have the two problem solvers start from

the initial and the goal states and meet in the middle of the problem space;

Another way is to have both problem solvers start from the initial state and
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move toward the goal state. Make a small maze and compare the e�ciency of

the two organizations. Try to create original organizations that di�er from the

given two organizations.

8. [Level 3] In the multiagent LRTA* algorithm, each agent chooses its action

independently without considering the actions nor the current states of other

agents. Improve the e�ciency of the multiagent LRTA* algorithm by intro-

ducing coordination among the agents, i.e., agents coordinate their actions by

considering the actions and current states of other agents.

9. [Level 4] When a real-life problem is formalized as a CSP, it is often the

case that the problem is over-constrained. In such a case, we hope that the

algorithm will �nd an incomplete solution that satis�es most of the important

constraints, while violating some less important constraints [10]. One way

for representing the subjective importance of constraints is to introduce a

hierarchy of constraints, i.e., constraints are divided into several groups, such

as C1; C2; : : : ; Ck . If all constraints cannot be satis�ed, we will give up on

satisfying the constraints in Ck . If there exists no solution that satis�es all

constraints in C1; C2; : : : ; Ck�1, we will further give up on satisfying the

constraints in Ck�1, and so on. Develop an asynchronous search algorithm that

can �nd the best incomplete solution of a distributed CSP when a hierarchy

of constraints is de�ned.

10. [Level 4] The formalization of a two-player game can be generalized to an

n-player game [25], i.e., there exist n players, each of which takes turns

alternately. Rewrite the minimax procedure so that it works for n-player games.

Consider what kinds of pruning techniques can be applied.
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5 Distributed Rational Decision Making

Tuomas W. Sandholm

5.1 Introduction

Automated negotiation systems with self-interested agents are becoming increas-

ingly important. One reason for this is the technology push of a growing standardized

communication infrastructure|Internet, WWW, NII, EDI, KQML, FIPA, Concor-

dia, Voyager, Odyssey, Telescript, Java, etc.|over which separately designed agents

belonging to di�erent organizations can interact in an open environment in real-

time and safely carry out transactions. The second reason is strong application pull

for computer support for negotiation at the operative decision making level. For

example, we are witnessing the advent of small transaction electronic commerce on

the Internet for purchasing goods, information, and communication bandwidth [31].

There is also an industrial trend toward virtual enterprises: dynamic alliances of

small, agile enterprises which together can take advantage of economies of scale

when available (e.g., respond to more diverse orders than individual agents can),

but do not su�er from diseconomies of scale.

Multiagent technology facilitates such negotiation at the operative decision mak-

ing level. This automation can save labor time of human negotiators, but in addi-

tion, other savings are possible because computational agents can be more e�ective

at �nding bene�cial short-term contracts than humans are in strategically and com-

binatorially complex settings.

This chapter discusses multiagent negotiation in situations where agents may

have di�erent goals, and each agent is trying to maximize its own good without

concern for the global good. Such self-interest naturally prevails in negotiations

among independent businesses or individuals. In building computer support for

negotiation in such settings, the issue of self-interest has to be dealt with. In

cooperative distributed problem solving [12, 9], the system designer imposes an

interaction protocol1 and a strategy (a mapping from state history to action; a

1. Here a protocol does not mean a low level communication protocol, but a negotiation

protocol which determines the possible actions that agents can take at di�erent points

of the interaction. The sealed-bid �rst-price auction is an example protocol where each

bidder is free to submit one bid for the item, which is awarded to the highest bidder at

the price of his bid.
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way to use the protocol) for each agent. The main question is what social outcomes

follow given the protocol and assuming that the agents use the imposed strategies.

On the other hand, in multiagent systems [67, 63, 61, 56, 34], the agents are

provided with an interaction protocol, but each agent will choose its own strategy.

A self-interested agent will choose the best strategy for itself, which cannot be

explicitly imposed from outside. Therefore, the protocols need to be designed using

a noncooperative, strategic perspective: the main question is what social outcomes

follow given a protocol which guarantees that each agent's desired local strategy

is best for that agent|and thus the agent will use it. This approach is required

in designing robust non-manipulable multiagent systems where the agents may be

constructed by separate designers and/or may represent di�erent real world parties.

The rest of this chapter discusses protocols for voting, auctions, bargaining, mar-

kets, contracting, and coalition formation. However, �rst some central evaluation

criteria for protocols are presented.

5.2 Evaluation Criteria

Negotiation protocols|i.e. mechanisms|can be evaluated according to many types

of criteria, as listed below. The choice of protocol will then depend on what

properties the protocol designer wants the overall system to have.

5.2.1 Social Welfare

Social welfare is the sum of all agents' payo�s or utilities in a given solution. It

measures the global good of the agents. It can be used as a criterion for comparing

alternative mechanisms by comparing the solutions that the mechanisms lead to.

When measured in terms of utilities, the criterion is somewhat arbitrary, because

it requires interagent utility comparisons, and really each agent's utility function

can only be speci�ed up to positive a�ne transformations [39].

5.2.2 Pareto E�ciency

Pareto e�ciency is another solution evaluation criterion that takes a global perspec-

tive. Again, alternative mechanisms can be evaluated according to Pareto e�ciency

by comparing the solutions that the mechanisms lead to. A solution x is Pareto

e�cient|i.e. Pareto optimal|if there is no other solution x0 such that at least

one agent is better o� in x0 than in x and no agent is worse o� in x0 than in x.

So, Pareto e�ciency measures global good, and it does not require questionable

interagent utility comparisons.

Social welfare maximizing solutions are a subset of Pareto e�cient ones. Once

the sum of the payo�s is maximized, an agent's payo� can increase only if another

agent's payo� decreases.
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5.2.3 Individual Rationality

Participation in a negotiation is individually rational to an agent if the agent's

payo� in the negotiated solution is no less than the payo� that the agent would

get by not participating in the negotiation. A mechanism is individually rational

if participation is individually rational for all agents. Only individually rational

mechanisms are viable: if the negotiated solution is not individually rational for

some agent, that self-interested agent would not participate in that negotiation.

5.2.4 Stability

Among self-interested agents, mechanism should be designed to be stable (non-

manipulable), i.e. they should motivate each agent to behave in the desired manner.

This is because if a self-interested agent is better o� behaving in some other manner

than desired, it will do so.

Sometimes it is possible to design mechanisms with dominant strategies. This

means that an agent is best o� by using a speci�c strategy no matter what strategies

the other agents use.

However, often an agent's best strategy depends on what strategies other agents

choose. In such settings, dominant strategies do not exist, and other stability criteria

are needed. The most basic one is the Nash equilibrium [48, 39, 17, 35]. The strategy

pro�le S�A = hS�1 ; S�2 ; :::; S�jAji among agents A is in Nash equilibrium if for each

agent i, S�i is the agent's best strategy|i.e. best response|given that the other

agents choose strategies hS�1 ; S�2 ; :::; S�i�1; S
�
i+1; :::; S

�
jAji. In other words, in Nash

equilibrium, each agent chooses a strategy that is a best response to the other

agents' strategies.

There are two main problems in applying Nash equilibrium. First, in some games

no Nash equilibrium exists [39, 17, 35]. Second, some games have multiple Nash

equilibria, and it is not obvious which one the agents should actually play [35].

There are also limitations regarding what the Nash equilibrium guarantees even

when it exists and is unique.

First, in sequential games it only guarantees stability in the beginning of the

game. At a later stage the strategies need not be in equilibrium anymore. A re�ned

solution concept called the subgame perfect Nash equilibrium is de�ned to be a Nash

equilibrium that remains a Nash equilibrium in every subgame (even subgames that

are not along the actual path of play and will thus never be reached) [71, 39, 17, 35].

This solution concept also su�ers from existence and uniqueness problems.

Second, the Nash equilibrium is often too weak because subgroups of agents can

deviate in a coordinated manner. Some re�nements of the Nash equilibrium solution

concept guarantee stability against such collusive deviations as well. This will be

discussed in Section 5.8.
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Sometimes e�ciency goals and stability goals con
ict. A simple example of this

is the Prisoner's Dilemma game where the unique welfare maximizing and Pareto

e�cient strategy pro�le is the one where both agents cooperate, Table 5.1. On the

other hand, the only dominant strategy equilibrium and Nash equilibrium is the

one where both agents defect.

column player

cooperate defect

row cooperate 3, 3 0, 5

player defect 5, 0 1, 1

Table 5.1 Prisoner's Dilemma game. The row player's payo� is listed �rst.

5.2.5 Computational E�ciency

Clearly, mechanisms should be designed so that when agents use them, as little

computation is needed as possible. Classically, mechanisms have been designed so

that they lead to domain solutions that satisfy some of the above evaluation criteria.

Of these mechanisms, the ones with the lowest computational overhead have been

preferred. However, a more advanced approach would be to explicitly trade o� the

cost of the process against the solution quality [62].

5.2.6 Distribution and Communication E�ciency

All else being equal, distributed protocols should be preferred in order to avoid

a single point of failure and a performance bottleneck|among other reasons.

Simultaneously one would like to minimize the amount of communication that is

required to converge on a desirable global solution. In some cases these two goals

con
ict.

The rest of this chapter discusses di�erent interaction protocols using the eval-

uation criteria presented so far. These mechanisms include voting, auctions, bar-

gaining, markets, contracting, and coalition formation.

5.3 Voting

In a voting (social choice) setting, all agents give input to a mechanism, and the

outcome that the mechanism chooses based on these inputs is a solution for all of

the agents. In most settings, this outcome is enforced so that all agents have to

abide to the solution prescribed by the mechanisms.
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5.3.1 Truthful Voters

The classic goal has been to derive a social choice rule that ranks feasible social

outcomes based on individuals' rankings of those outcomes. Let the set of agents

be A, and let O be the set of feasible outcomes for the society. Furthermore, let

each agent i 2 A have an asymmetric and transitive strict preference relation �i on

O. A social choice rule takes as input the agents' preference relations (�1; :::;�jAj)

and produces as output the social preferences denoted by a relation ��. Intuitively,

the following properties of a social choice rule seem desirable:

A social preference ordering �� should exist for all possible inputs (individual

preferences).

�� should be de�ned for every pair o; o0 2 O.

�� should be asymmetric and transitive over O.

The outcome should be Pareto e�cient: if 8i 2 A; o �i o
0, then o �� o0.

The scheme should be independent of irrelevant alternatives. Speci�cally, if �
and �0 are arrays of consumer rankings that satisfy o �i o

0 i� o �0
i o

0 for all i,

then the social ranking of o and o0 is the same in these two situations.

No agent should be a dictator in the sense that o �i o
0 implies o �� o0 for all

preferences of the other agents.

Unfortunately it is not possible to satisfy these desiderata:

Theorem 5.1 Arrow's impossibility theorem

No social choice rule satis�es all of these six conditions [4, 35].

So, to design social choice rules, the desiderata have to be relaxed. Commonly the

�rst property is relaxed in the sense that the domain (combinations of individual

preferences) on which the rule works is restricted. This will be discussed later in

conjunction with insincere voting.

The third desideratum can also be relaxed. This is done e.g. in the plurality

protocol which is a majority voting protocol where all alternatives are compared

simultaneously, and the one with the highest number of votes wins. Introducing an

irrelevant alternative can split the majority; some in favor of the old most favored

alternative, and some in favor of the newly introduced alternative. This may cause

both the old favorite, and the newly introduced irrelevant alternative to drop below

one of the originally less preferred alternatives, which then would become the social

choice.

In a binary protocol, the alternatives are voted on pairwise, and the winner

stays to challenge further alternatives while the loser is eliminated. As in plurality

protocols, also in binary protocols the introduction of irrelevant alternatives often

changes the outcome. Furthermore, in binary protocols, the agenda|i.e. order

of the pairings|can totally change the socially chosen outcome. For example,

Figure 5.1 shows four di�erent agendas which all lead to a di�erent outcome under

the given preferences of the agents. Interestingly, in the last agenda, alternative



Figure 5.1 Four di�erent agendas for a binary protocol with four alternatives: a,

b, c, and d.

d wins although every agent prefers c over d. In other words, the social choice is

Pareto dominated in this case.

If the number of alternative outcomes is large, pairwise voting may be slow, and

an alternative called the Borda protocol is often used. The Borda count assigns

an alternative jOj points whenever it is highest in some agent's preference list,

jOj � 1 whenever it is second and so on. These counts are then summed across

voters. The alternative with the highest count becomes the social choice. The

Borda protocol can also lead to paradoxical results, for example via irrelevant

alternatives. Table 5.2 shows an example (from [49]) where removing the lowest

ranked (irrelevant) alternative d from the set of possible outcomes leads to the

worst of the remaining alternatives turning best and the best turning worst.

Agent Preferences

1 a � b � c � d

2 b � c � d � a

3 c � d � a � b

4 a � b � c � d

5 b � c � d � a

6 c � d � a � b

7 a � b � c � d

Borda count c wins with 20, b has 19, a has 18, d loses with 13

Borda count

with d removed a wins with 15, b has 14, c loses with 13

Table 5.2 Winner turns loser and loser turns winner paradox in the Borda

protocol.



5.3 Voting 207

5.3.2 Strategic (Insincere) Voters

So far it was assumed that in executing the social choice method, all agents'

preferences are known. In reality this is seldom the case. Instead, agents usually

have to reveal, i.e. declare, their preferences. Assuming knowledge of the preferences

is equivalent to assuming that the agents reveal their preferences truthfully. But if

an agent can bene�t from insincerely declaring his preferences, he will do so. This

further complicates the design of social choice mechanisms.

An area of game theory called mechanism design explores such interaction

mechanisms among rational agents. The goal is to generate protocols such that

when agents use them according to some stability solution concept|e.g. dominant

strategy equilibrium [45, 17, 35], Nash equilibrium or its re�nements [40, 52, 17, 35],

or some other type of equilibrium [46, 17, 35]|then desirable social outcomes follow.

The strategies are not externally imposed on the agents, but instead each agent uses

the strategy that is best for itself.

Let each agent i 2 A have some type �i 2 �i which totally characterizes his

preferences (which are a�ected by his possible private information). Now, a social

choice function f : � ! O chooses a social outcome given the agents' types. With

insincere agents this is hard to implement because one needs to somehow motivate

the agents to reveal the types. A protocol (i.e. rules of the game) is said to implement

a particular social choice function if the protocol has an equilibrium|which may

involve insincere play by the agents|whose outcome is the same as the outcome of

the social choice function would be if the agents revealed their types truthfully. The

following positive result conceptually allows one to restrict the search for desirable

protocols to ones where revelation occurs truthfully in a single step.

Theorem 5.2 Revelation principle

Suppose some protocol (which may include multiple steps) implements social

choice function f(�) in Nash (or dominant strategy) equilibrium (where the agents'

strategies are not necessarily truthful). Then f(�) is implementable in Nash (or

dominant strategy, respectively) equilibrium via a single-step protocol where the

agents reveal their entire types truthfully [39, 35, 45, 40, 52].

The proof is based on changing the protocol so that it will construct the best (i.e.

according to the original equilibrium) strategic revelation on behalf of each agent

(this revelation depends on the agent's truthful preferences), and then simulate the

old protocol as if the agents had constructed these insincere revelations themselves.

Under this new protocol, each agent is motivated to reveal his type truthfully in

a single step because the protocol will take care of optimally lying on the agent's

behalf.

The idea of incorporating the strategy generation into the protocol is problematic

among computationally limited agents. In the original protocol it may have been in-

feasible or prohibitively costly for an agent to compute its best strategy. Therefore,

in a complex protocol the agents might not play the equilibrium. This may be un-

desirable because agents may play uncoordinated strategies leading to undesirable
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outcomes. On the other hand, if most equilibrium outcomes are undesirable, the

protocol designer can construct a complex protocol|where agents cannot �nd the

equilibrium|in the hope that a more desirable outcome will emerge. In the revised

protocol of the proof, it is assumed that the protocol can solve for the equilibrium.

However, if computation is costly, who pays for the computation that is required

to solve for equilibrium? For some protocols, solving for equilibrium might be hard

or even noncomputable.

The Nash equilibrium version of Theorem 5.2 has additional weaknesses. First, it

assumes that the agents and the protocol designer have common knowledge about

the joint probabilities of the agents' types. Second, the revised protocol may have

other Nash equilibria in addition to the truthful one: Theorem 5.2 only says that

a truthful one exists. This problem can be partially alleviated by what are called

augmented revelation mechanisms [35].

While Theorem 5.2 is positive in nature, the following negative result establishes

that in the general case, non-manipulable protocols are dictatorial:

Theorem 5.3 Gibbard-Satterthwaite impossibility theorem

Let each agent's type �i consist of a preference order �i on O. Let there be no

restrictions on �i, i.e. each agent may rank the outcomes O in any order.2 Let

jOj � 3. Now, if the social choice function f(�) is truthfully implementable in a

dominant strategy equilibrium, then f(�) is dictatorial, i.e. there is some agent i

who gets (one of) his most preferred outcomes chosen no matter what types the

others reveal [18, 70].

Circumventing the Gibbard-Satterthwaite Impossibility Theorem:

Restricted Preferences and the Groves-Clarke Tax Mechanism

The design of nonmanipulable protocols is not as impossible as it may seem in

light of Theorem 5.3. The individual preferences may happen to belong to some

restricted domain|thus invalidating the conditions of the impossibility theorem|

and it is known that there are islands in the space of agents' preferences for which

nonmanipulable nondictatorial protocols can be constructed.

Let us go through an example. Let the outcomes be of the form o = (g; �1; : : : ; �jAj),

where �i is the amount of some divisible numeraire (e.g. money) that agent i re-

ceives in the outcome, and g encodes the other features of the outcome. The agents'

preferences are called quasilinear if they can be represented by utility functions of

the form ui(o) = vi(g) + �i.

For example, in voting whether to build a joint pool, say g = 1 if the pool is

built and g = 0 if not. Call each agent's gross bene�t from the pool vgrossi (g), and

say that the cost P of the pool would be divided equally among the agents, i.e.

�i = �P=jAj. So, an agent's (net) bene�t is vi(g) = v
gross
i (g)� P=jAj.

2. Theorem 5.3 applies even if each agent's preferences are restricted to being complete,

transitive, and strict.
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Every agent i 2 A reveals his valuation v̂i(g) for every possible g

The social choice is g� = argmaxg
P

i
v̂i(g)

Every agent is levied a tax: taxi =
P

j 6=i
v̂j(g

�)�
P

j 6=i
v̂j(argmaxg

P
k 6=i

v̂k(g))

Algorithm 5.1 The Clarke tax algorithm.

Quasilinearity of the environment would require several things. First, no agent

should care how others divide payo�s among themselves. This might be violated

e.g. if an agent wants his enemies to pay more than his friends. Second, an agent's

valuation v
gross
i (g) of the pool should not depend on the amount of money that the

agent will have. This might be violated for example if rich agents have more time

to enjoy the pool because they do not have to work.

When voting whether to build the pool or not, the agents that vote for the pool

impose an externality on the others because the others have to pay as well. On

the other hand, if only the pro-pool voters would have to pay, there would be

an incentive for them to vote for no pool, and free ride the pool that might be

built anyway due to the others' votes. The solution is to make the agents precisely

internalize this externality by imposing a tax on those agents whose vote changes

the outcome. The size of an agent's tax is exactly how much his vote lowers the

others' utility. Agents that do not end up changing the outcome do not pay any

tax.

Theorem 5.4

If each agent has quasilinear preferences, then, under Algorithm 5.1, each agent's

dominant strategy is to reveal his true preferences, i.e. v̂i(g) = vi(g) for all g. [11, 21]

So, in the example, if the pool is built, the utility for each agent i becomes

ui(o) = vi(1)� P=jAj � taxi, and if not, ui(o) = vi(0).

The mechanism leads to the socially most preferred g to be chosen. Also, because

truthtelling is every agents dominant strategy, the agents need not waste e�ort in

counterspeculating each others' preference declarations. Furthermore, participation

in the mechanism can only increase an agent's utility, which makes participation

individually rational.

Unfortunately the mechanism does not maintain budget balance: too much tax

is collected. There are other truth-dominant algorithms for this problem where too

little tax is collected (negative taxes are paybacks), but none that guarantee that

the sum of the taxes is zero. The schemes where too little is collected require an

external benefactor to operate. The schemes that collect too much are not Pareto

e�cient because the extra tax revenue has to be burnt. It cannot be given back

to the agents or donated to any cause that any of the agents care about. Such

redistribution would a�ect the agents' utilities, and truthtelling would no longer be

dominant.

Another problem with Algorithm 5.1 is that it is not coalition proof. Some

coalition of voters might coordinate their insincere preference revelations and

achieve higher utilities. Table 5.3 presents a 3-agent example of this where the
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cost of building the pool is P = 9; 000, and vi(0) = 0 for every agent. We study the

case where agents 1 and 2 collude.

No collusion Agents 1 and 2 collude

i v
gross

i
(1) vi(1) v̂i(1) g� taxi ui v̂i(1) g� taxi ui

1 5; 000 2; 000 2; 000 1; 500 500 2; 500 1000 1; 000

2 4; 000 1; 000 1; 000 1(build) 500 500 1; 500 1(build) 0 1; 000

3 500 �2; 500 �2; 500 0 �2; 500 �2; 500 0 �2; 500

Table 5.3 Example of collusion in the Clarke tax algorithm.

Traditionally, the Clarke tax mechanism has been used to solve a single isolated

social choice problem. In multiagent planning|e.g. in AI|this would mean voting

over all possible multiagent plans. This is is often intractable. To reduce this

complexity, Ephrati has used a variant of the method where the agents repeatedly

use the Clarke tax mechanism to do planning over one timestep of the plan at

a time [14, 15, 13]. In such multistep approaches one has to be careful that

truthtelling is still a dominant strategy. If the outcomes of the di�erent votings

are not independent in value to every agent, there is a risk e.g. that an agent will

speculatively reveal higher than truthful valuations for some outcomes because he

anticipates future outcomes that will be synergic with those particular ones of the

currently available outcomes.

Other Ways to Circumvent the Gibbard-Satterthwaite Impossibility

Theorem

Even if the agents do not happen to have preferences that are restricted in some par-

ticular way that allows one to avoid the negative conclusion of Theorem. 5.3, there

are ways to circumvent the seemingly unavoidable tradeo� between manipulability

and dictatoriality.

For example, ex ante fairness can be achieved by choosing the dictator randomly

in the protocol. This can be done via a protocol where every agent submits a vote

into a hat, and the decisive vote is pulled out of the hat at random. Clearly, each

agent's dominant strategy is to vote truthfully: if his vote gets chosen, he would

have been best o� voting for his most preferred alternative, and if his vote is not

chosen, it does not matter what the agent voted for.

Another possible way of getting around Theorem. 5.3 is to use a protocol for

which computing an untruthful revelation|that is better than the truthful one|

is prohibitively costly computationally. One di�culty with this approach is that

to guarantee that an agent can never manipulate, manipulation would have to be

provably hard for every instance (combination of agents' preferences), not just in

the worst case. Another di�culty is that even if it were possible to prove that
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deterministically �nding a bene�cial manipulation is hard, the agent can (e.g.

randomly) generate insincere revelations, and simulate the protocol (given that

the others' strategies cannot matter in a dominant strategy equilibrium) to check

whether his guessed manipulations are bene�cial.

5.4 Auctions

Within mechanism design, auctions provide a special setting which is important

and often relatively easily analyzable. Auctions also have many practical computer

science applications [60, 81, 37, 25], and several successful web sites exist for buying

and selling items using auction protocols. Unlike voting where the outcome binds all

agents, in auctions the outcome is usually a deal between two agents: the auctioneer

and one bidder. Also, in voting the protocol designer is assumed to want to enhance

the social good, while in auctions, the auctioneer wants to maximize his own pro�t.

Auction theory analyzes protocols and agents' strategies in auctions. An auction

consists of an auctioneer and potential bidders. Auctions are usually discussed in

situations where the auctioneer wants to sell an item and get the highest possible

payment for it while the bidders want to acquire the item at the lowest possible

price. The discussion of this section will pertain to the classical setting, although in

a contracting setting, the auctioneer wants to subcontract out tasks at the lowest

possible price while the bidders who handle the tasks want to receive the highest

possible payment for doing so. The mechanisms for the latter setting are totally

analogous to mechanisms for the former.

5.4.1 Auction Settings

There are three qualitatively di�erent auction settings depending on how an agent's

value (monetary equivalent of utility) of the item is formed.

In private value auctions, the value of the good depends only on the agent's

own preferences. An example is auctioning o� a cake that the winning bidder will

eat. The key is that the winning bidder will not resell the item or get utility from

showing it o� to others, because in such cases the value would depend on other

agents' valuations (a valuation is the monetary equivalent of expected utility). The

agent is often assumed to know its value for the good exactly.

On the other hand, in common value auctions, an agent's value of an item depends

entirely on other agents' values of it, which are identical to the agent's by symmetry

of this criterion. For example, auctioning treasury bills ful�lls this criterion. Nobody

inherently prefers having the bills, and the value of the bill comes entirely from

reselling possibilities.

In correlated value auctions, an agent's value depends partly on its own prefer-

ences and partly on others' values. For example, a negotiation within a contracting

setting ful�lls this criterion. An agent may handle a task itself in which case the
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agent's local concerns de�ne the cost of handling the task. On the other hand, the

agent can recontract out the task in which case the cost depends solely on other

agents' valuations.

The next section discusses di�erent auction protocols. Those protocols have

di�erent properties under the three di�erent auction settings presented above.

5.4.2 Auction Protocols

In the English (�rst-price open-cry) auction, each bidder is free to raise his bid.

When no bidder is willing to raise anymore, the auction ends, and the highest

bidder wins the item at the price of his bid. An agent's strategy is a series of bids

as a function of his private value, his prior estimates of other bidder's valuations,

and the past bids of others. In private value English auctions, an agent's dominant

strategy is to always bid a small amount more than the current highest bid, and

stop when his private value price is reached. In correlated value auctions the rules

are often varied to make the auctioneer increase the price at a constant rate or at

a rate he thinks appropriate. Also, sometimes open-exit is used where a bidder has

to openly declare exiting without a re-entering possibility. This provides the other

bidders more information regarding the agent's valuation.

In the �rst-price sealed-bid auction, each bidder submits one bid without knowing

the others' bids. The highest bidder wins the item and pays the amount of his bid.

An agent's strategy is his bid as a function of his private value and prior beliefs

of others' valuations. In general there is no dominant strategy for bidding in this

auction. An agent's best strategy is to bid less than his true valuation, but how much

less depends on what the others bid. The agent would want to bid the lowest amount

that still wins the auction|given that this amount does not exceed his valuation.

With common knowledge assumptions regarding the probability distributions of the

agents' values, it is possible to determine Nash equilibrium strategies for the agents.

For example, in a private value auction where the valuation vi for each agent i is

drawn independently from a uniform distribution between 0 and �v, there is a Nash

equilibrium where every agent i bids jAj�1

jAj
vi, see [54].

In the Dutch (descending) auction, the seller continuously lowers the price

until one of the bidders takes the item at the current price. The Dutch auc-

tion is strategically equivalent to the �rst-price sealed-bid auction, because in

both games, an agent's bid matters only if it is the highest, and no relevant

information is revealed during the auction process. Dutch auctions are e�cient

in terms of real time because the auctioneer can decrease the price at a brisk

pace. You can observe this e.g. by participating in a Dutch auction simulation at

http://www.mcsr.olemiss.edu/ ccjimmy/auction.

In the Vickrey (second-price sealed-bid) auction, each bidder submits one bid

without knowing the others' bids. The highest bidder wins, but at the price of the

second highest bid [80, 42]. An agent's strategy is his bid as a function of his private

value and prior beliefs of others' valuations.
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Theorem 5.5

A bidder's dominant strategy in a private value Vickrey auction is to bid his true

valuation [80].3

If he bids more than his valuation, and the increment made the di�erence between

winning or not, he will end up with a loss if he wins. If he bids less, there is a smaller

chance of winning, but the winning price is una�ected4. Theorem 5.5 means that an

agent is best o� bidding truthfully no matter what the other bidders are like: what

are their capabilities, operating environments, bidding plans, etc. This has two

desirable sides. First, the agents reveal their preferences truthfully which allows

globally e�cient decisions to be made. Second, the agents need not waste e�ort in

counterspeculating other agents because they do not matter in making the bidding

decision.

Vickrey auctions have been widely advocated and adopted for use in computa-

tional multiagent systems. For example, versions of the Vickrey auction have been

used to allocate computation resources in operating systems [81], to allocate band-

width in computer networks [37], and to computationally control building heat-

ing [25]. On the other hand, Vickrey auctions have not been widely adopted in

auctions among humans [57, 58] even though the protocol was invented over 25

years ago [80]. Limitations of the Vickrey auction protocol|especially in compu-

tational multiagent systems|are discussed in [61].

All-pay auctions are another family of auction protocols. In such mechanisms,

each participating bidder has to pay the amount of his bid (or some other amount)

to the auctioneer. The schemes have been used in computational multiagent systems

for tool reallocation [36]. These methods are often susceptible to in�nite escalations

of bids [53], and will not be discussed further here.

5.4.3 E�ciency of the Resulting Allocation

In isolated private value or common value auctions, each one of the four auction

protocols (English, Dutch, �rst-price sealed-bid, and Vickrey) allocates the auc-

tioned item Pareto e�ciently to the bidder who values it the most.5 Although all

3. If the bidders know their own values, this result does not depend on the bidders' risk

neutrality. On the other hand, if a bidder has some uncertainty about his own valuation,

this result only holds for a risk-neutral bidder: e.g. a risk averse bidder can be better o�

by bidding less than his expected valuation [61].
4. In private value auctions, the Vickrey auction is strategically equivalent to the English

auction. They will produce the same allocation at the same prices. On the other hand, in

correlated value auctions, the other agents' bids in the English auction provide information

to the agent about his own valuation. Therefore English and Vickrey auctions are not

strategically equivalent in general, and may lead to di�erent results.
5. This holds at least as long as the auctioneer always sells the item. On the other hand,

if the auctioneer has a reservation price, he may ine�ciently end up with the item even

though the highest bidder really values the item more than the auctioneer.
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four are Pareto e�cient in the allocation, the ones with dominant strategies (Vick-

rey auction and English auction) are more e�cient in the sense that no e�ort is

wasted in counterspeculating the other bidders.

5.4.4 Revenue Equivalence and Non-Equivalence

One could imagine that the �rst-price auctions give higher expected revenue to

the auctioneer because in second-price auctions the auctioneer only gets the second

price. On the other hand, in �rst-price auctions the bidders underbid while in the

second-price auctions they bid truthfully. Now, which of these e�ects is stronger,

i.e. which protocol should the auctioneer choose to maximize his expected revenue?

It turns out that the two e�ects are exactly equally strong:

Theorem 5.6 Revenue equivalence

All of the four auction protocols produce the same expected revenue to the auc-

tioneer in private value auctions where the values are independently distributed,

and bidders are risk-neutral [80, 42, 54].

Among risk averse bidders, the Dutch and the �rst-price sealed-bid protocols give

higher expected revenue to the auctioneer than the Vickrey or English auction

protocols. This is because in the former two protocols, a risk averse agent can insure

himself by bidding more than what is optimal for a risk-neutral agent. On the other

hand, a risk averse auctioneer achieves higher expected utility via the Vickrey or

English auction protocols than via the Dutch or the �rst-price sealed-bid protocol.

The fact that revenue equivalence holds in private value auctions does not

mean that it usually holds in practice: most auctions are not pure private value

auctions. In non-private value auctions with at least three bidders, the English

auction (especially the open-exit variant) leads to higher revenue than the Vickrey

auction. The reason is that other bidders willing to go high up in price causes a

bidder to increase his own valuation of the auctioned item. In this type of auctions,

both the English and the Vickrey protocols produce greater expected revenue to

the auctioneer than the �rst-price sealed-bid auction|or its equivalent, the Dutch

auction.

5.4.5 Bidder Collusion

One problem with all four of the auction protocols (English, Dutch, �rst-price

sealed-bid, and Vickrey) is that they are not collusion proof. The bidders could

coordinate their bid prices so that the bids stay arti�cially low. In this manner, the

bidders get the item at a lower price than they normally would.

The English auction and the Vickrey auction actually self-enforce some of the

most likely collusion agreements. Therefore, from the perspective of deterring

collusion, the �rst-price sealed-bid and the Dutch auctions are preferable. The

following example from [54] shows this. Let bidder Smith have value 20, and every

other bidder have value 18 for the auctioned item. Say that the bidders collude
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by deciding that Smith will bid 6, and everyone else will bid 5. In an English

auction this is self-enforcing, because if one of the other agents exceeds 5, Smith

will observe this, and will be willing to go all the way up to 20, and the cheater will

not gain anything from breaking the coalition agreement. In the Vickrey auction,

the collusion agreement can just as well be that Smith bids 20, because Smith will

get the item for 5 anyway. Bidding 20 removes the incentive from any bidder to

break the coalition agreement by bidding between 5 and 18, because no such bid

would win the auction. On the other hand, in a �rst-price sealed-bid auction, if

Smith bids anything below 18, the other agents have an incentive to bid higher

than Smith's bid because that would cause them to win the auction. The same

holds for the Dutch auction.

However, for collusion to occur under the Vickrey auction, the �rst-price sealed-

bid auction, or the Dutch auction, the bidders need to identify each other before

the submission of bids|otherwise a non-member of the coalition could win the

auction. On the other hand, in the English auction this is not necessary, because

the bidders identify themselves by shouting bids. To prevent this, the auctioneer

can organize a computerized English auction where the bidding process does not

reveal the identities of the bidders.

5.4.6 Lying Auctioneer

Insincerity of the auctioneer may be a problem in the Vickrey auction. The

auctioneer may overstate the second highest bid to the highest bidder unless that

bidder can verify it. An overstated second o�er would give the highest bidder a

higher bill than he would receive if the auctioneer were truthful. Cheating by the

auctioneer has been suggested to be one of the main reasons why the Vickrey auction

protocol has not been widely adopted in auctions among humans [58]. To solve the

problem, cryptographic electronic signatures could be used by the bidders so that

the auctioneer could actually present the second best bid to the winning bidder|

and would not be able to alter it. The other three auction protocols (English, Dutch,

and �rst-price sealed-bid) do not su�er from lying by the auctioneer because the

highest bidder gets the item at the price of his bid.

In non-private value auctions with the English (or all-pay) auction protocol, the

auctioneer can use shills that bid in the auction in order to make the real bidders

increase their valuations of the item. This is not possible in the sealed-bid protocols

or the Dutch protocol, because the bidders do not observe the others' bids.

The auctioneer may also have other tools at his disposal. For example, he may

place a bid himself to guarantee that the item will not be sold below a certain

price (this can also be achieved by having a reservation price which may or may

not be public to the bidders). However, for example in the Vickrey auction, the

auctioneer is motivated to bid more than his true reservation price. This is because

there is a chance that his bid will be second highest in which case it determines the

item's price. Such overbidding leads to the possibility that the auctioneer ends up

ine�ciently keeping the item even though some bidders' valuations exceed his true

reservation price.
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5.4.7 Bidders Lying in Non-Private-Value Auctions

Most auctions are not pure private value auctions: an agent's valuation of a good

depends at least in part on the other agents' valuations of that good. For example

in contracting settings, a bidder's evaluation of a task is a�ected by the prices at

which the agent can subcontract the task or parts of it out to other agents. This

type of recontracting is commonly allowed in automated versions of the contract

net protocol also [60, 77].

Common value (and correlated value) auctions su�er from the winner's curse. If

an agent bids its valuation and wins the auction, it will know that its valuation was

too high because the other agents bid less. Therefore winning the auction amounts

to a monetary loss. Knowing this in advance, agents should bid less than their

valuations [42, 54]. This is the best strategy in Vickrey auctions also. So, even

though the Vickrey auction promotes truthful bidding in private-value auctions, it

fails to induce truthful bidding in most auction settings.

5.4.8 Undesirable Private Information Revelation

Because the Vickrey auction has truthful bidding as the dominant strategy in pri-

vate value auctions, agents often bid truthfully. This leads to the bidders reveal-

ing their true valuations. Sometimes this information is sensitive, and the bidders

would prefer not to reveal it. For example, after winning a contract with a low

bid, a company's subcontractors �gure out that the company's production cost is

low, and therefore the company is making larger pro�ts than the subcontractors

thought. It has been observed that when such auction results are revealed, the sub-

contractors will want to renegotiate their deals to get higher payo� [58]. This has

been suggested|along with the problem of a lying auctioneer|as one of the main

reasons why the Vickrey auction protocol is not widely used in auctions among

humans [58]. First-price auction protocols do not expose a bidder's valuation as

clearly because the bid is based on the agent's model of other bidders, and this

(possibly inaccurate) model is not known by the subcontractors. Therefore, these

auction types may be more desirable than the Vickrey auction when valuations are

sensitive.

5.4.9 Roles of Computation in Auctions

Auction theory does not usually study the computational aspects of auctions.

However, from a DAI perspective they are crucial. Two issues that arise from

computation in auctions will be discussed: the computationally complex lookahead

that arises when auctioning interrelated items one at a time, and the implications

of costly local marginal cost (valuation) computation or information gathering in a

single-shot auction.
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Ine�cient Allocation and Lying in Interrelated Auctions

In addition to single-item auctions, Vickrey auctions have been widely studied in the

allocation of multiple items of a homogeneous good [42], and the dominance of truth-

teling can be maintained. However, the case of auctioning heterogeneous interrelated

goods has received less attention. This is the setting of many real world problems,

including several where computational agents are used [66, 68, 67, 60, 62, 56].

This section discusses cases where heterogeneous items are auctioned one at a

time, and an agent's valuations of these items are interdependent (not additive).

This occurs for example in task allocation in transportation problems. Figure 5.2

presents a simple example of such a problem with two delivery tasks: t1 and t2. Task

t1 is auctioned before t2. The auctioneer wants to get the tasks handled while paying

agents 1 and 2 as little as possible for handling them. The initial locations of the

two agents are presented in the �gure. To handle a task, an agent needs to move to

the beginning of the delivery task (arrow), and take a parcel from there to the end

of the arrow. An agent's movement incurs the same cost irrespective of whether it

is carrying a parcel. The agents need not return to their initial locations. The costs

for handling tasks (subscripted by the name of the agent) can be measured from the

�gure: c1(ft1g) = 2, c1(ft2g) = 1, c1(ft1; t2g) = 2, c2(ft1g) = 1:5, c2(ft2g) = 1:5,

and c2(ft1; t2g) = 2:5. Say that these costs are common knowledge to the agents.

Clearly the globally optimal allocation is the one where agent 1 handles both tasks.

This allocation is not reached if agents treat the auctions independently and bid

truthfully [61]. In the �rst auction of the example, task t1 is allocated. Agent 1 bids

c1(ft1g) = 2, and agent 2 bids c2(ft1g) = 1:5. The task is allocated to agent 2.

In the second auction, task t2 is allocated. Agent 1 bids c1(ft2g) = 1, and agent 2

bids c2(ft2g) = 1:5, so t2 is allocated to agent 1. The resulting allocation of the two

tasks is suboptimal. If agent 2 takes the ownership of t1 into account when bidding

for t2, then it will bid c2(ft1; t2g)� c2(ft1g) = 2:5� 1:5 = 1. In this case t2 may be

allocated to either agent. In both cases the resulting allocation of the two tasks is

still suboptimal.

Alternatively, the agents could incorporate full lookahead into their auction

strategies. This way the optimal allocation is reached, but agents do not bid

their true per-item costs [61]. In the last auction of the example, an agent is

best o� bidding its own costs that takes into account the tasks that the agent

t2

t1

Agent 1 Agent 2

0.5 0.5

1.0

Figure 5.2 Small example problem with two agents and two delivery tasks.
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already has. Let us look at the auction of t2. If agent 1 has t1, it will bid

c1(ft1; t2g) � c1(ft1g) = 2 � 2 = 0, and c1(ft2g) = 1 otherwise. If agent 2 has

t1, it will bid c2(ft1; t2g)� c2(ft1g) = 2:5� 1:5 = 1, and c2(ft2g) = 1:5 otherwise.

So, if agent 1 has t1, it will win t2 at the price 1:5, and get a payo� of 1:5� 0 = 1:5

in the second auction, while agent 2 gets zero. On the other hand, if agent 2 has t1,

the bids for t2 are equal, and both agents get a zero payo� in the second auction

irrespective of who t2 gets allocated to. Therefore it is known that getting t1 in the

�rst auction is worth an extra 1.5 to agent 1 while nothing extra to agent 2. So, in

the auction for t1, agent 1's dominant strategy is to bid c1(ft1g)�1:5 = 2�1:5 = 0:5.

This is lower than agent 2's bid c2(ft1g)� 0 = 1:5� 0 = 1:5, so agent one gets t1.

In the second auction agent 1 gets t2 as discussed above. So the globally optimal

allocation is reached. However, agent 1 bids 0:5 for t1 instead of 2, which would be

the truthful bid if the auctions were treated independently without lookahead.

Put together, lookahead is a key feature in auctions of multiple interrelated items.

To date it has not been adequately addressed in computational multiagent systems

that use Vickrey auctions, and it is a common misunderstanding that Vickrey

auctions promote single-shot truth-telling even in interrelated auctions. In auctions

by humans, such interrelationships are sometimes addressed by allowing a bidder

to pool all of the interrelated items under one entirety bid [42]. Another method

for enhancing the e�ciency of interrelated auctions is to allow agents to backtrack

from commitments by paying penalties. This allows a winning agent to bene�cially

decommit from an auctioned item in case that agent does not get synergic items

from other related auctions [41, 67, 62]. This question will be revisited in Section 5.7.

While avoidance of counterspeculation was one of the original reasons suggested

for adopting the Vickrey auction, lookahead requires speculation in the sense of

trying to guess which items are going to be auctioned in the future, and which agents

are going to win those auctions. Other speculative issues in sequential Vickrey

auctions have been discussed for example in [28].

Even under complete information, the computational cost of full lookahead

(searching the game tree which is deep if there are many items to be auctioned

sequentially) may be prohibitively great. Further work is required to devise methods

for controlling the search: the advantages of (partial) lookahead should be traded

o� against the cost.

Counterspeculation When Computing One's Valuation

Sometimes even the Vickrey auction protocol fails to avoid counterspeculation|

even in a single-shot auction. Let us look at a situation where an agent has

uncertainty regarding its own valuation of the auction item, but can pay to

remove this uncertainty. This situation often occurs among computational agents,

where the value of a good (or task contract [66, 68, 67, 60, 62, 56]) can only be

determined via carrying out a costly computation|e.g. a solution of a combinatorial

problem [60, 66]. Alternatively the payment can be viewed as the cost of solving a

prediction problem, or as the cost of performing an information gathering action,

or as the cost paid to an expert oracle.
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Theorem 5.7 Incentive to counterspeculate

In a single-shot private value Vickrey auction with uncertainty about an agent's

own valuation, a risk neutral agent's best (deliberation or information gathering)

action can depend on the other agents. It follows that (if counterspeculation is

cheap enough) it is worth counterspeculating [61].

Proof by example. Let there be two bidders: 1 and 2. Let 1's valuation v1 for

the auctioned item be uniformly distributed between 0 and 1, i.e. agent 1 does not

know its own valuation exactly. Let 2's exact valuation v2 be common knowledge.

Say 0 � v2 <
1
2
, which implies E[v1] > v2.

Let agent 1 have the choice of �nding out its exact valuation v1 before the auction

by paying a cost c. Now, should agent 1 take this informative but costly action?

No matter what agent 1 chooses here, agent 2 will bid v2 because bidding ones

valuation is a dominant strategy in a single-shot private value Vickrey auction.

If agent 1 chooses not to pay c, agent 1 should bid E[v1] =
1
2
, because bidding

ones expected valuation is a risk neutral agent's dominant strategy in a single-

shot private value Vickrey auction. Now agent 1 gets the item at price v2. If agent

1's valuation v1 turns out to be less than v2, agent 1 will su�er a loss. Agent 1's

expected payo� is

E[�noinfo] =

Z 1

0

v1 � v2dv1 =
1

2
� v2

If agent 1 chooses to pay c for the exact information, it should bid v1 because

bidding ones valuation is a dominant strategy in a single-shot private value Vickrey

auction. Agent 1 gets the item if and only if v1 � v2. Note that now the agent

has no chance of su�ering a loss, but on the other hand it has invested c in the

information. Agent 1's expected payo� is

E[�info] =

Z v2

0

�cdv1 +
Z 1

v2

v1 � v2 � cdv1 =
1

2
v22 � v2 +

1

2
� c

Agent 1 should choose to buy the information i�

E[�info] � E[�noinfo]

, 1

2
v22 � v2 +

1

2
� c � 1

2
� v2

, 1

2
v22 � c

, v2 �
p
2c (because v2 � 0)

So, agent 1's best choice of action depends on agent 2's valuation v2. Therefore,

agent 1 can bene�t from counterspeculating agent 2.
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5.5 Bargaining

In a bargaining setting, agents can make a mutually bene�cial agreement, but have

a con
ict of interest about which agreement to make. In classical microeconomics,

assumptions of monopoly (or monopsony) or perfect competition are often made.

A monopolist gets all of the gains from interaction while an agent facing perfect

competition can make no pro�t. Real world settings usually consist of a �nite num-

ber of competing agents, so neither monopoly nor perfect competition assumptions

strictly apply. Bargaining theory �ts in this gap [50]. There are two major sub�elds

of bargaining theory: axiomatic and strategic.

5.5.1 Axiomatic Bargaining Theory

Unlike noncooperative (strategic) game theory, axiomatic bargaining theory does

not use the idea of a solution concept where the agents' strategies form some type

of equilibrium. Instead, desirable properties for a solution, called axioms of the

bargaining solution, are postulated, and then the solution concept that satis�es

these axioms is sought [50, 30, 54, 51].

The Nash bargaining solution is a historically early solution concept that uses this

approach. Nash analyzed a 2-agent setting where the agents have to decide on an

outcome o 2 O, and the fallback outcome ofallback occurs if no agreement is reached.

There is a utility function ui : O ! < for each agent i 2 [1; 2]. It is assumed that

that the set of feasible utility vectors f(u1(o); u2(o))jo 2 Og is convex. This occurs,
for example, if outcomes include all possible lotteries over actual alternatives.

When many deals are individually rational|i.e. have higher utility than the

fallback|to both agents, multiple Nash equilibria often exist. For example, if the

agents are bargaining over how to split a dollar, all splits that give each agent more

than zero are in equilibrium. If agent one's strategy is to o�er � and no more, agent

two's best response is to take the o�er as opposed to the fallback which is zero.

Now, one's best response to this is to o�er � and no more. Thus, a Nash equilibrium

exists for any � that de�nes a contract that is individually rational for both agents,

and feasible (0 < � < 1). Due to the nonuniqueness of the equilibrium, a stronger

(axiomatic) solution concept such as the Nash bargaining solution is needed to

prescribe a unique solution.

The axioms of the Nash bargaining solution u� = (u1(o
�); u2(o

�)) are:

Invariance: The agents' numeric utility functions really only represent ordinal

preferences among outcomes|the actual cardinalities of the utilities do not mat-

ter. Therefore, it should be possible to transform the utility functions in the fol-

lowing way: for any strictly increasing linear function f , u�(f(o); f(ofallback)) =

f(u�(o; ofallback)).

Anonymity (symmetry): switching labels on the players does not a�ect the

outcome.
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Independence of irrelevant alternatives: if some outcomes o are removed, but o�

is not, then o� still remains the solution.

Pareto e�ciency: it is not feasible to give both players higher utility than under

u� = (u1(o
�); u2(o

�)).

Theorem 5.8 Nash bargaining solution

The unique solution that satis�es these four axioms is [47]:

o� = argmax
o

[u1(o)� u1(ofallback)][u2(o)� u2(ofallback)]

The Nash bargaining solution can be directly extended to more than two agents,

as long as the fallback occurs if at least one agent disagrees. The 2-agent Nash

bargaining solution is also the 2-agent special case of the Shapley value|a partic-

ular solution concept for payo� division in coalition formation, discussed later in

Section 5.8.3|where coalitions of agents can cooperate even if all agents do not

agree.

Other bargaining solutions also exist. They postulate di�erent desiderata as

axioms and arrive at a di�erent utility combination as the outcome [30].

5.5.2 Strategic Bargaining Theory

Unlike axiomatic bargaining theory, strategic bargaining theory does not postulate

desiderata as axioms on the solution concept. Instead, the bargaining situation is

modeled as a game, and the solution concept is based on an analysis of which of the

players' strategies are in equilibrium. It follows that for some games, the solution is

not unique. On the other hand, strategic bargaining theory explains the behavior

of rational utility maximizing agents better than axiomatic approaches. The latter

are not based on what the agents can choose for strategies, but instead rely on the

agents pertaining to axiomatic, imposed notions of fairness.

Strategic bargaining theory usually analyses sequential bargaining where agents

alternate in making o�ers to each other in a prespeci�ed order [50, 54, 51, 35]. Agent

1 gets to make the �rst o�er. As an example, one can again think of deciding how to

split a dollar. In a protocol with a �nite number of o�ers and no time discount, the

unique payo�s of the subgame perfect Nash equilibria are such that the last o�erer

will get the whole dollar (minus �), because the other agent is better o� accepting

� than by rejecting and receiving nothing. For simplicity in the rest of this section,

say that in similar situations, � can be zero, and the other agent will still accept.

A time discount factor � can be incorporated in the model. In round 1 the dollar

is worth 1, in round two it is worth �, in round three it is worth �2, and so on.

With time discount, a subgame perfect Nash equilibrium of a �nite game of length

T can be solved starting from the end. For example, if � = 0:9, then Table 5.4

represents the o�erer's maximal claims that are acceptable to the other agent. In

the last round, 2 would again accept zero. However, in the next to last round, 2

could keep 0:1, because it knows that this is how much 1 would loose by waiting to

the next round. The same reasoning works for the previous rounds.
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Round 1's share 2's share Total value O�erer

...
...

...
...

...

T � 3 0:819 0:181 0:9T�4 2

T � 2 0:91 0:09 0:9T�3 1

T � 1 0:9 0:1 0:9T�2 2

T 1 0 0:9T�1 1

Table 5.4 O�erer's maximal acceptable claims in a �nite game.

Round 1's share 2's share O�erer

...
...

...
...

t� 2 1� �2(1� �1 ��1) 1

t� 1 1� �1 ��1 2

t ��1 1

...
...

...
...

Table 5.5 O�erer's maximal acceptable claims in an in�nite game with di�erent

discount factors.

When the protocol in a non-discounted setting allows an in�nite number of

bargaining rounds, the solution concept is powerless because any split of the dollar

can be supported in subgame perfect Nash equilibrium|just as in the single-shot

case. On the other hand, with discounting, even the in�nite game can be solved:

Theorem 5.9 Rubinstein bargaining solution

In a discounted in�nite round setting, the subgame perfect Nash equilibrium

outcome is unique. Agent 1 gets (1 � �2)=(1 � �1�2), where �1 is 1's discount

factor, and �2 is 2's. Agent 2 gets one minus this. Agreement is reached in the

�rst round [59].

Proof Let us denote by ��1 the maximum undiscounted share that 1 can get in

any subgame perfect Nash equilibrium on his turn to o�er. Following the same

logic as in the example above, Table 5.5 can be �lled. Now we have two ways to

represent the maximum undiscounted share that 1 can get in any subgame perfect

Nash equilibrium on his turn to o�er. Setting them equal gives

��1 = 1� �2(1� �1 ��1), ��1 =
1� �2

1� �1�2
;

which is an upper bound for the undiscounted share that 1 can get in any subgame

perfect Nash equilibrium on his turn to o�er. But now we can go through the same
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argument by replacing ��1 by �1
�
, the minimum undiscounted share that 1 can get

in any subgame perfect Nash equilibrium on his turn to o�er. The minimum will

equal the maximum, which completes the proof.

This proof technique allows one to solve for subgame perfect Nash equilibrium

payo�s even though it is impossible to carry out complete lookahead in the game

tree because it is in�nitely long.

Another model of sequential bargaining does not use discounts, but assumes a

�xed bargaining cost per negotiation round.

If the agents have symmetric bargaining costs, the solution concept is again

powerless because any split of the dollar can be supported in subgame perfect

Nash equilibrium.

If 1's bargaining cost c1 is even slightly smaller than 2's cost c2, then 1 gets the

entire dollar. If 2 o�ered � in round t, then in period t�1, 1 could o�er 1���c2,

and keep � + c2 to himself. In round t� 2, 2 would o�er � + c2 � c1, and keep

1� � � c2 + c1. Following this reasoning, in round t� 2k, agent 2 would get to

keep 1 � � � k(c2 � c1) which approaches �1 as k increases. Realizing this, 2

would not bargain, but accept zero up front.

If 1's bargaining cost is greater than 2's, then 1 receives a payo� that equals the

second agent's bargaining cost, and agent 2 receives the rest. Agreement is again

reached on the �rst round. This case is equivalent to the previous case except

that the agent with the smaller bargaining cost is willing to give the other agent

c2 in order to avoid going through the �rst period of bargaining.

Kraus et al. have extended the work on sequential bargaining to the case with

outside options [34]. They also analyze the case where one agent gains and one loses

over time. Finally, they discuss negotiation over time when agents do not know each

others' types.

5.5.3 Computation in Bargaining

All of the bargaining models discussed above assume perfect rationality from the

agents. No computation is required in �nding a mutually desirable contract. The

space of deals is assumed to be fully comprehended by the agents, and the value

of each potential contract known. On the other hand, future work should focus on

developing methods where the cost of search (deliberation) for solutions is explicit,

and it is decision-theoretically traded o� against the bargaining gains that the

search provides. This becomes particularly important as the bargaining techniques

are scaled up to combinatorial problems with a multidimensional negotiation space

as opposed to combinatorially simple ones like splitting the dollar.

There are actually two searches occurring in bargaining. In the intra-agent delib-

erative search, an agent locally generates alternatives, evaluates them, counterspec-

ulates, does lookahead in the negotiation process etc. In the inter-agent committal

search, the agents make (binding) agreements with each other regarding the solu-
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tion. The agreements may occur over one part of the solution at a time. The agreed

issues provide context for more focused intra-agent deliberative search|thus re-

ducing the amount of costly computation required. The committal search may also

involve iteratively renegotiating some parts of the solution that have already been

agreed on, but have become less desirable in light of the newer agreements regarding

other parts of the solution [60]. The two-search model proposed here is similar to the

Real-Time A* search where an agent has to trade o� thorough deliberation against

more real-world actions [33]. Similarly, in modeling bargaining settings that require

nontrivial computations, each agent's strategy should incorporate both negotia-

tion actions and deliberation actions. The bargaining setting is more complex than

the single agent setting of Real-Time A* in that there are multiple self-interested

agents: the agents' strategies should be in equilibrium.

5.6 General Equilibrium Market Mechanisms

This section presents general equilibrium theory, a microeconomic market frame-

work that has recently been successfully adapted for and used in computational

multiagent systems in many application domains [82, 83, 44, 85, 10]. General equi-

librium theory provides a distributed method for e�ciently allocating goods and

resources among agents|i.e. striking the best tradeo�s in a moderately complex

multidimensional search space|based on market prices.

Such a market has n > 0 commodity goods g. The commodities can be physicals,

e.g. co�ee and meat, or they can be more abstract, e.g. parameters of an airplane

design [83], 
ows in a tra�c network [82], electricity in a power network [85], or

mirror sites on the Internet [44]. The amount of each commodity is unrestricted,

and each commodity is assumed arbitrarily divisible (continuous as opposed to

discrete). Di�erent elements within a commodity are not distinguishable, but

di�erent commodities are distinguishable from each other. The market also has

prices p = [p1; p2; : : : ; pn], where pg 2 < is the price for good g.

The market can have two types of agents, consumers and producers. Each con-

sumer i has a utility function ui(xi) which encodes its preferences over di�erent con-

sumption bundles xi = [xi1; xi2; : : : ; xin]
T , where xig 2 <+ is consumer i's allocation

of good g. Each consumer i also has an initial endowment ei = [ei1; ei2; : : : ; ein]
T ,

where eig 2 < is his endowment of commodity g.

The producers|if there are any|can use some commodities to produce others.

Let yj = [yj1; yj2; : : : ; yjn]
T be the production vector, where yjg is the amount of

good g that producer j produces. Net usage of a commodity is denoted by a negative

number. A producer's capability of turning inputs into outputs is characterized by

its production possibilities set Yj , which is the set of feasible production vectors.

The pro�t of producer j is p �yj, where yj 2 Yj . The producer's pro�ts are divided

among the consumers according to predetermined proportions which need not be

equal (one can think of the consumers owning stocks of the producers). Let �ij be
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the fraction of producer j that consumer i owns. The producers' pro�ts are divided

among consumers according to these shares. However, the consumers are assumed

to have no say-so in the producers' production decisions.

Prices may change, and the agents may change their consumption and production

plans, but actual production and consumption only occur once the market has

reached a general equilibrium. We say that (p�;x�;y�) is a general (Walrasian)

equilibrium if

I markets clear:

X
i

x�i =
X
i

ei +
X
j

y�j , and

II each consumer i maximizes its preferences given the prices:

x�i = arg max
xi2<

n
+
j p��xi�p��ei+

P
j
�ijp��yj

ui(xi), and

III each producer j maximizes its pro�ts given the prices:

y�j = arg max
yj2Yj

p� � yj

5.6.1 Properties of General Equilibrium

General equilibrium solutions have some very desirable properties:

Theorem 5.10 Pareto e�ciency

Each general equilibrium is Pareto e�cient, i.e. no agent can be made better o�

without making some other agent worse o� [39].

This means that there is no possible methodology for �nding solutions to the agents'

problem such that every agent is better o� than in the general equilibrium. The

solution is also stable against collusion:

Theorem 5.11 Coalitional stability

Each general equilibrium with no producers is stable in the sense of the core solution

concept of coalition formation games: no subgroup of consumers can increase their

utilities by pulling out of the equilibrium and forming their own market [39].

The situation is more complex when producers are present: for example, if a set of

consumers colludes, and they own part of a producer via the shares, what can the

coalition produce?

Unfortunately, in some domains no general equilibrium exists. For example, it

may be best for some producer to produce an in�nite amount of some good.

However, su�cient conditions for existence are known:

Theorem 5.12 Existence

Let the production possibilities sets be closed (i.e. include their boundaries), convex

(i.e. if bundles y and y0 are producible, then so is �y + (1 � �)y0 8� 2 [0; 1]),
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and bounded above (i.e. an in�nite amount of no good can be produced). Let the

consumers' preferences be continuous (i.e. the preferences have no \jumps"), strictly

convex (i.e. if the consumer prefers y to y00 and y0 to y00, then he prefers �y+(1��)y0
to y00 8� 2 [0; 1]), and strongly monotone (i.e. each consumer strictly prefers more

to less of each commodity). Now, if a society-wide bundle is producible where the

amount of each commodity is positive (positive endowments trivially imply this),

a general equilibrium exists [39].

For example, economies of scale in production violate convexity of production

possibilities. Continuity of the consumer's preferences is violated e.g. in bandwidth

allocation if an agent's welfare jumps as the threshold for being able to participate in

a video conference is reached. Similarly, the consumer's preferences are not convex

if the consumer starts to prefer a good (relative to other goods) more as he gets

more of that good. Drugs and Web sur�ng are examples of this.

Even if a general equilibrium exists, it might not be unique. However, there is an

easily understood su�cient condition for uniqueness:

Theorem 5.13 Uniqueness under gross substitutes

A general equilibrium is unique if the society-wide demand for each good is

nondecreasing in the prices of the other goods [39].

For example, as the price of meat increases, consumers have to convert to satisfying

their hunger with less expensive foods. It follows that the demand of potatoes

increases. On the other hand, the conditions of this theorem are not always met.

For example, as the price of bread increases, the demand of butter decreases.

Complementarities are also very common in production, where the producers often

need all of the inputs to create the outputs.

The basic general equilibrium framework does not account for externalities. In

consumption externalities, one agent's consumption a�ects another agent's utility.

In production externalities, one agent's production possibilities set is directly af-

fected by another agent's actions. Glance and Hogg have presented examples of

computational ecologies (not based on general equilibrium theory) where externali-

ties are so dominant that, counterintuitively, adding resources to the system makes

it operate less e�ciently [19]. Hogg has also shown that externality problems are

likely to be common in computational ecosystems [23]. Evolutionary aspects of such

systems have also been discussed [43], and the behaviors under incomplete and de-

layed information analyzed [26]. Some mechanisms to attack externality problems

include taxes and viewing some of the externality issues as commodities them-

selves [79].

5.6.2 Distributed Search for a General Equilibrium

The operational motivation behind market mechanisms is that the agents can �nd

an e�cient joint solution|which takes into account tradeo�s between agents and

the fact that the values of di�erent goods to a single agent may be interdependent|
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Algorithm for the price adjustor:

pg = 1 for all g 2 [1::n]

Set �g to a positive number for all g 2 [1::n � 1]

Repeat

Broadcast p to consumers and producers

Receive a production plan yj from each producer j

Broadcast the plans yj to consumers

Receive a consumption plan xi from each consumer i

For g = 1 to n� 1

pg = pg + �g(
P

i
(xig � eig)�

P
j
yjg)

Until j
P

i
(xig � eig)�

P
j
yjg j < � for all g 2 [1::n]

Inform consumers and producers that an equilibrium has been reached

Algorithm for consumer i:

Repeat

Receive p from the adjustor

Receive a production plan yj for each j from the adjustor

Announce to the adjustor a consumption plan xi 2 <n+ that

maximizes ui(xi) given the budget constraint p �xi � p �ei+
P

j
�ijp �yj

Until informed that an equilibrium has been reached

Exchange and consume

Algorithm for producer j:

Repeat

Receive p from the adjustor

Announce to the adjustor a production plan yj 2 Yj that maximizes p �yj

Until informed that an equilibrium has been reached

Exchange and produce

Algorithm 5.2 The distributed price tâtonnement algorithm.

while never centralizing all the information or control. There are many algorithms

that can be used to search for a general equilibrium, some centralized, and some

decentralized. The most common decentralized algorithm for this purpose is the

price tâtonnement process, (Algorithm 5.2) which is a steepest descent search

method.

Clearly, if no general equilibrium exists, no algorithm can �nd it. Furthermore,

sometimes the price tâtonnement algorithm fails to �nd an equilibrium even if

equilibria exist. However, there are su�cient conditions that guarantee that an

equilibrium is found if it exists. One such su�cient condition is the gross substitutes

property which was used in Theorem. 5.13. More generally,

Theorem 5.14 Convergence

The price tâtonnement algorithm convergences to a general equilibrium if p� �
(
P

i(xi(p)� ei)�
P

j yj(p)) > 0 for all p not proportional to an equilibrium price

vector p� [39].

Strictly speaking, these convergence guarantees only apply to the continuous
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variant

dpg

dt
= �g(

X
i

(xig(p) � eig)�
X
j

yjg(p));

not to the more realistic discrete step version (Algorithm 5.2). However, these

results suggest that even the discrete variant often converges|e.g. under gross

substitutes|as long as the �-multipliers in the algorithm are su�ciently small. If

the �-multipliers are too large, the search may keep \overshooting" the equilibrium.

On the other hand, too small �-multipliers will make the convergence slow. One

potential solution to this problem is to dynamically adjust the step size, e.g. via

the Newton method

dpg

dt
= ��g[J(p)]�1(

X
i

(xig(p)� eig)�
X
j

yjg(p)), where

J(p) =

2
6664

@(
P

i
(xi1(p)�ei1)�

P
j
yj1(p))

@p1
� � �

@(
P

i
(xi1(p)�ei1)�

P
j
yj1(p))

@pn
...

...
@(
P

i
(xin(p)�ein)�

P
j
yjn(p))

@p1
� � �

@(
P

i
(xin(p)�ein)�

P
j
yjn(p))

@pn

3
7775

The Newton method often requires fewer iterations than steepest descent, but

each iteration is computationally more intensive for the adjustor, and requires the

computation and communication of the derivative information by the consumers

and producers. One could conceptually take this information communication to the

limit by having the producers and consumers submit their entire production and

consumption functions (plans as a function of the possible price vectors), and the

price adjustor could run a centralized search|with known e�cient algorithms|

for an equilibrium. However, this con
icts with one of the original motivations of

market mechanisms: decentralization.

The tâtonnement process used in the Walras simulation [82] di�ers from

Algorithm 5.2.Walras uses asynchronous declarations by the agents, i.e. an agent

might only change its plan regarding a subset of goods at a time. Similarly, agents

might take arbitrary turns in making new declarations. Under certain conditions,

this process still converges to a general equilibrium [10]. As in tâtonnement, trades

in Walras only occur after the market process has arrived (close) to a general

equilibrium.

In addition to price-based market mechanisms, quantity-based (commodity-

based, resource-based) mechanisms exist for reaching the general equilibrium [39].

In those mechanisms, the adjustor announces production and consumption plans,

and the producers and consumers announce willingness to pay in terms of prices or

marginal utilities. Unlike price-based algorithms, quantity-based algorithms main-

tain a feasible solution (once|e.g. up front|a feasible solution has been found)

where markets clear at every iteration. This constitutes an interruptible anytime

algorithm. Also, quantity-based algorithms o�er the choice of carrying out the ac-
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tual exchanges at every iteration or only at the end as in price-based algorithms.

These advantages come at the cost of increased information centralization (com-

munication). For example, the adjustor needs to know the production possibilities

sets.

Most treatments of market-based search only discuss the complexity of �nding

an equilibrium once the agent's supply and demand functions are known. How-

ever, it may be computationally complex for each agent to generate its optimal

supply/demand decision given the current prices. For example, if the agent is a

manufacturer, it may need to solve several planning and scheduling problems just

to construct its production possibilities set from which it has to choose the pro�t

maximizing production plan. Furthermore, each agent has to go through this local

deliberation at every iteration of the market protocol because prices change, and

that a�ects what the optimal plan for each agent is.

5.6.3 Speculative Strategies in Equilibrium Markets

In general equilibrium markets, the agents are assumed to act competitively: they

treat prices as exogenous. This means that each agent makes and reveals its demand

(supply) decisions truthfully so as to maximize its utility (pro�t) given the market

prices|assuming that it has no impact on those prices. The idea behind this price-

taking assumption is that the market is so large that no single agent's actions a�ect

the prices. However, this is paradoxical since the agents' declarations completely

determine the prices. The price-taking assumption becomes valid as the number of

agents approaches in�nity: with in�nitely many agents (of comparable size), each

agent is best o� acting competitively since it will not a�ect the prices.

However, in markets with a �nite number of agents, an agent can act strategically,

and potentially achieve higher utility by over/under representing [69], [38, pp. 220-

223], [27]. In doing so, the agent has to speculate how its misrepresentation a�ects

the market prices, which are simultaneously a�ected by how other agents respond

to the prices which changed due to the �rst agent's strategic actions. In other

words, general equilibria do not in general correspond to strictly rational, strategic

equilibria of game theory.

This section is based on [69]. We analyze how much an agent can gain by

speculation. Standard lies are also presented via which an agent can drive the

market to a solution that maximizes the agent's gains from speculation, and looks

like a general equilibrium to the other agents and the adjustor. These results are

independent of the market algorithm as long as actual exchanges take place only

after the market has reached (close to) an equilibrium.

Case A: Speculating Consumer

The goal of a self-interested consumer is to �nd the consumption bundle that

maximizes its utility. To �nd the optimal bundle when acting in an equilibrium

market, the consumer must speculate how other agents respond to prices. This is
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because its demand decisions a�ect the prices, which a�ect the demand and supply

decisions of others, which again a�ect the prices that the consumer faces. Using

the model of other agents, the consumer computes its optimal demand decisions.

Note that other agents might also be speculating (in the same way or some other,

suboptimal way). That is included in the agent's model of the other agents. A

solution to the following maximization problem gives the highest utility that a

speculating consumer s can possibly obtain.

max
p

us(xs(p)) s.t. (5.1)

xsg(p) � 0 (consumer does not produce)

xsg(p) = esg � (
X

i2Consumers�fsg

(xig � eig)�
X
j

yjg) (supply meets demand)

p � (xs � es) �
X
j

�sj p � yj(p) (budget constraint)

Case B: Speculating Producer

The goal of a self-interested producer is to �nd the production vector that maximizes

its pro�ts. Again, this requires a model of how others react to prices because the

producer's production decisions a�ect the prices, which a�ect the demand and

supply decisions of others, which again a�ect the prices that the producer faces.

A solution to the following maximization problem gives the highest pro�t that a

speculating producer s can possibly obtain.

max
p

p � ys(p) s.t. (5.2)

ys(p) 2 Ys (feasible production plan)

ysg =
X
i

(xig � eig)�
X

j2Producers�fsg

yjg (supply meets demand)

The last equality turns into� if free disposal for both inputs and outputs is possible.

The solution to the applicable optimization problem above (depending on

whether the speculator is a producer or a consumer) is denoted p��. The equilibrium

at p�� is not Pareto e�cient in general. This does not violate Theorem. 5.10 because

that result only applies to true general equilibria where agents act competitively.

Reaching Equilibrium under Speculation: Driving the Market

The discussion above focused on the prices that a speculating agent would like to

drive the market to. However, there is a risk for the speculator that even though

such an equilibrium exists, the market algorithm would not �nd it. A speculating

agent's best strategy is to declare demand plans xs(p) (or production plans ys(p))

such that the market clears at the desired prices p�� (an equilibrium exists), and



5.6 General Equilibrium Market Mechanisms 231

the market process will �nd it. Formally, the market clears at p�� if for each good g,

xsg(p
��) = esg�(

X
i2Consumers�fsg

(xig(p
��)�eig)�

X
j

yjg(p
��)) if s is a consumer, and

ysg(p
��) =

X
i

(xig(p
��)� eig)�

X
j2Producers�fsg

yjg(p
��) if s is a producer.

What remains to be analyzed is whether the particular market algorithms �nds

the equilibrium even if the speculator acts strategically. Many standard market

algorithms, e.g. price tâtonnement, Newtonian price tâtonnement, and Walras,

are guaranteed to �nd the equilibrium if @(
P

i(xig(p)� eig)�
P

j yjg(p))=@pg < 0

(society-wide demand decreases as price increases), and @(
P

i(xig(p) � eig) �P
j yjg(p))=@ph � 0, for goods g 6= h (goods are gross substitutes). Let us assume

that these two conditions would hold in the market if the speculator were not

present. Now, if the speculating agent uses a strategy that satis�es

Eq. 5.6.3, and

@(xsg(p) � esg)=@pg � 0 if s is a consumer, and @ysg(p)=@pg � 0 if s is a

producer, and

for goods g 6= h, @(xsg(p)�esg)=@ph � 0 if s is a consumer, and @ysg(p)=@ph � 0

if s is a producer,

the market is guaranteed to converge to the unique equilibrium prices p�� that

maximize the speculator's gain.

It turns out that simple generic strategies exist for the speculator that guarantee

that these three conditions are met, i.e. that the speculator will be able to drive the

market to an equilibrium where his maximal gain from speculation materializes [69].

For example, the following linear strategy is viable for a consumer:

xs(p) = �es + p�� � p� (
X

i2Consumers�fsg

(xig(p
��)� eig)�

X
j

yjg(p
��))

and so is the constant strategy

xs(p) = �es � (
X

i2Consumers�fsg

(xig(p
��)� eig)�

X
j

yjg(p
��)):

The corresponding strategies for a speculating producer are

ys(p) = p� p�� +
X
i

(xig(p
��)� eig)�

X
j2Producers�fsg

yjg(p
��)

and

ys(p) =
X
i

(xig(p
��)� eig)�

X
j2Producers�fsg

yjg(p
��):
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The last consideration is the speed of convergence to equilibrium. In any partic-

ular market setting, it may be that the market converges slower or faster when an

agent acts strategically than when he acts competitively.

Strategic Behavior by Multiple Agents

In the analysis so far, one agent designed its speculative strategy while the others'

strategies were �xed. However, the others would like to tailor their strategies to the

speci�c strategy that the agent chooses. For this reason, we argue that strategic

solution concepts from game theory should be used to design market protocols. The

strategies are in Nash equilibrium if each agent's strategy is its best response to the

others' strategies. This can be viewed as a necessary condition for system stability

in settings where all agents act strategically.

A stronger condition is to require dominant strategy equilibrium, i.e. that each

agent's strategy is optimal for that agent no matter what strategies others choose.

Market protocols have been studied using dominant strategy equilibrium in [6]. The

results are negative in the sense that the agents need to be given price ratios for

trading in advance by the protocol designer, and the designer does not know the

agents' preferences and capabilities. Therefore, not all bene�cial trades can occur,

and thus the solution is usually not Pareto e�cient.

In sequential protocols, one can also strengthen the Nash equilibrium solution

concept in multiple ways by requiring that the strategies stay in equilibrium at

every step of the game [39, 35]. Unlike the market speculation analysis presented in

this section so far, the Nash equilibrium outcome is speci�c to the market protocol.

Important factors impacting the outcome are the order in which bids are submitted

(see e.g. Stackleberg vs. Cournot models [39]), whether the bids are sealed or

open [61], whether the protocol is iterative (the agents can change their excess

demand between iterations) or not, whether the agents can decommit from their

agreements by paying a penalty [67, 62], etc.

In some games, no Nash equilibrium exists for the market in pure (non-

randomized) strategies. The following simple example illustrates this. Let there

be two consumer agents, A and B, that engage in a market where they reveal

their excess demand functions simultaneously and in a single round. Agent A can

choose between two strategies (A1 and A2), and B can choose between B1 and

B2. Provided that A knows that B will choose B1, A will choose A2, and A1 if B

chooses B2. Provided that B knows that A will choose A2, B will choose B2, and

B1 if A chooses A1. Now, from every possible pair of strategies, one agent would be

motivated to deviate to another strategy, i.e. no Nash equilibrium exists. In general,

existence and uniqueness of a general equilibrium (where agents act competitively)

for a market does not imply existence and uniqueness of a Nash equilibrium.

Some market protocols may be di�cult to analyze game theoretically. For ex-

ample, in Walras, the agents might change their demand functions during the

computation of the equilibrium. Then some agents may deliberately send false bids

to generate more iterations of the market process in order to learn more about
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other agents' excess demand/supply functions. If many agents are involved in such

probing, it seems that time becomes an important factor. Some agents might reveal

progressively more of their competitive demands in order to speed up the conver-

gence (as it might be urgent for them to get the resources traded), while others

might extend the probing in order to maximize their bene�t from the trade.6

While the game theoretic approach is clearly to be preferred (when it is viable)

over the general equilibrium approach for designing interaction mechanisms for

self-interested agents, the general equilibrium approach may still allow one to

build reasonably nonmanipulable multiagent systems. For example, as the number

of|comparably sized|agents increases, the gains from strategic acting decrease,

approaching zero as the number of agents approaches in�nity [55, 69]. Secondly, lack

of knowledge about the others may make speculation unpro�table. If there is even

minor uncertainty in the speculator's estimates about the others' strategies, the

speculator's expected payo� may be signi�cantly higher by acting competitively

than by acting speculatively [69]. Finally, although bene�cial lies are easy to

compute once the others' strategies are known, it may be computationally complex

to deduce the others' strategies even if the speculator knows the others' physical

characteristics completely. For example, the speculator would need to solve a

manufacturer's planning and scheduling problems in order to be able to deduce

what the production possibilities sets of the manufacturer are, and what the

manufacturer's (competitive) strategy will be. Sometimes the potential gains from

speculation are not great enough to warrant such costly computation that may be

required for speculation.

5.7 Contract Nets

General equilibrium market mechanisms use global prices, and|at least in the

implementations up to now|use a single centralized mediator. The mediator might

become a communication and computation bottleneck or a potential point of failure

for the whole system. Also, in some settings the agents want to have direct control

of who receives their sensitive information instead of posting the information to a

mediator who controls its dissemination. Furthermore, sometimes it is unrealistic

to assume that prices are global because there may be market frictions, costs

to propagate information to all agents, etc. In such settings, a more distributed

negotiation may be warranted.

The contract net protocol (see Chapter 2) was an early variant of such distributed

6. Some work has addressed non-competitive behavior in Walras [24], although there

was only one speculating agent in the experiments, and this agent was limited to simple

linear price prediction about how its actions a�ect the prices. Further analysis is required

to determine whether its optimal strategy can be captured in this model. This need not

be the case because the optimal strategy may involve some more \aggressive" behavior,

e.g. the probing described above.
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negotiation in a task allocation domain [77]. This section discusses some of the

recent improvements to the contract net protocol. The new methods lead to better

results, and they are viable among self-interested agents as well|unlike the original

contract net protocol which was for cooperative agents only.

5.7.1 Task Allocation Negotiation

The capability of (re)allocating tasks among agents is a key feature in automated

negotiation systems. In many domains, signi�cant savings can be achieved by

reallocating tasks among agents. Some tasks are inherently synergic, and should

therefore be handled by the same agent. On the other hand, some tasks have

negative interactions, in which case it is better to allocate them to di�erent agents.

Furthermore, di�erent agents may have di�erent resources which leads to di�erent

capabilities and costs for handling tasks. This section discusses task allocation

among self-interested agents in the following model which captures the above

considerations.

De�nition 5.1 [64]

A task allocation problem is de�ned by a set of tasks T , a set of agents A, a

cost function ci : 2
T ! < [ f1g (which states the cost that agent i incurs by

handling a particular subset of tasks), and the initial allocation of tasks among

agents hT init
1 ; :::; T init

jAj i, where
S
i2A T init

i = T , and T init
i \ T init

j = ; for all i 6= j. 7

The original contract net and many of its later variants lacked a formal model

for making bidding and awarding decisions. More recently, such a formal model was

introduced which gives rise to a negotiation protocol that provably leads to desirable

task allocations among agents [60, 62, 64]. In that model, contracting decisions are

based on marginal cost calculations, i.e. that model invokes the concept of individual

rationality on a per contract basis (which implies individual rationality of sequences

of contracts). A contract is individually rational (IR) to an agent if that agent is

better o� with the contract than without it.

Speci�cally, a contractee q accepts a contract if it gets paid more than its marginal

cost

MCadd(T contractjTq) = cq(T
contract [ Tq)� cq(Tq)

of handling the tasks T contract of the contract. The marginal cost is dynamic in the

sense that it depends on the other tasks Tq that the contractee already has.

Similarly, a contractor r is willing to allocate the tasks T contract from its current

task set Tr to the contractee if it has to pay the contractee less than it saves by not

7. Although a static version of the problem is discussed, the contracting scheme works

even if tasks and resources (resources a�ect the cost functions) are added and removed

dynamically.



5.7 Contract Nets 235

handling the tasks T contract itself:

MCremove(T contractjTr) = cr(Tr)� cr(Tr � T contract):

In the protocol, agents then suggest contracts to each other, and make their

accepting/rejecting decisions based on these marginal cost calculations. An agent

can take on both contractor and contractee roles. It can also recontract out tasks

that it received earlier via another contract. The scheme does not assume that

agents know the tasks or cost functions of others.

With this domain independent contracting scheme, the task allocation can only

improve at each step. This corresponds to hill-climbing in the space of task alloca-

tions where the height-metric of the hill is social welfare (�Pi2A ci(Ti)). The fact

that the contractor pays the contractee some amount between their marginal costs

(e.g. half way between) causes the bene�t from the improved task allocation to be

divided so that no agent is worse o� with a contract than without it.

The scheme is an anytime algorithm: contracting can be terminated at any time,

and the worth (payments received from others minus cost of handling tasks) of each

agent's solution increases monotonically. It follows that social welfare increases

monotonically. Details on an asynchronous distributed implementation based on

marginal costs can be found in [60, 62, 66].

Convergence to the Globally Optimal Task Allocation

In most contract net implementations, each contract regards only one task , i.e.

one task is moved from one agent to another against a payment [77, 72, 22]. Such

an original (O) contract can be understood as a particular search operator in the

global hill-climbing contracting algorithm that is used for task reallocation. When

the contracting protocol is equipped with O-contracts only, it may get stuck in a

local optimum where no contract is individually rational but the task allocation is

not globally optimal.

To solve this problem, several new contract types have recently been introduced:

cluster (C) contracts where a set of tasks is atomically contracted from one agent

to another, swap (S) contracts where a pair of agents swaps a pair of tasks, and

multiagent (M) contracts where more than two agents are involved in an atomic

exchange of tasks [64, 62, 60]. Each of the four contract types avoids some of the

local optima that the other three do not:

Theorem 5.15

For each of the four contract types (O, C, S, and M), there exist task allocations

where no IR contract with the other three contract types is possible, but an IR

contract with the fourth type is [64].

Unfortunately, even if the contracting protocol is equipped with all four of the

contract types, the globally optimal task allocation may not be reached via IR

contracts|even if there were an oracle for choosing the sequence of contracts:
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Theorem 5.16

There are instances of the task allocation problem where no IR sequence from the

initial task allocation to the optimal one exists using O-, C-, S- and M-contracts [64].

Clearly, no subset of the contract types su�ces either. Another problem is that

without an oracle, contracting may get stuck in a local optimum even if some IR

sequence exists because the agents may choose some other IR sequence.

To address this shortcoming, a new contract type, OCSM-contract, has been

de�ned, which combines the characteristics of O-, C-, S-, and M-contracts into one

contract type|where the ideas of the four earlier contract types can be applied

simultaneously (atomically):

De�nition 5.2 [64, 62]

An OCSM-contract is de�ned by a pair hT;�i of jAj�jAj matrices. An element Ti;j
is the set of tasks that agent i gives to agent j, and an element �i;j is the amount

that i pays to j.

So OCSM contracts allow moving from a task allocation to any other task allocation

with a single contract.

It could be shown that an IR sequence always exists from any task allocation to

the optimal one if the contracting protocol incorporates OCSM-contracts. However,

a stronger claim is now made. The following theorem states that OCSM-contracts

are su�cient for reaching the global task allocation optimum in a �nite number of

contracts. The result holds for any sequence of IR OCSM-contracts, i.e. for any hill-

climbing algorithm that uses OCSM-contracts: an oracle is not needed for choosing

the sequence. This means that from the perspectives of social welfare maximization

and of individual rationality, agents can accept IR contracts as they are o�ered.

They need not wait for more pro�table ones, and they need not worry that a

current contract may make a more pro�table future contract unpro�table. Neither

do they need to accept contracts that are not IR in anticipation of future contracts

that make the combination bene�cial. Furthermore, these hill-climbing algorithms

do not need to backtrack.

Theorem 5.17

Let jAj and jT j be �nite. If the contracting protocol allows OCSM-contracts, any

hill-climbing algorithm (i.e. any sequence of IR contracts) �nds the globally optimal

task allocation in a �nite number of steps (without backtracking) [64, 62].

Proof With OCSM-contracts there are no local optima (that are not global

optima) since the global optimum can be reached from any task allocation in a single

contract. This last contract will be IR because moving to the optimum from some

suboptimal allocation improves welfare, and this gain can be arbitrarily divided

among the contract parties. Thus the algorithm will not run out of IR contracts

before the optimum has been reached. With �nite jAj and jT j, there are only a �nite
number of task allocations. Since the algorithm hill-climbs, no task allocation will
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be repeated. Therefore, the optimum is reached in a �nite number of contracts.

OCSM-contracts are also necessary: no weaker set of contract types su�ces|even

if there were an oracle to choose the order in which to apply them:

Theorem 5.18

If there is some OCSM-contract that the protocol does not allow, there are instances

of the task allocation problem where no IR sequence exists from the initial allocation

to the optimal one [64].

While OCSM-contracts are necessary in the general case, there may well be cost

functions ci(�) with special structure that guarantees that the global optimum is

reached even with less powerful contract types.

Theorem 5.17 gives a powerful tool for problem instances where the number of

possible task allocations is relatively small. On the other hand, for large problem

instances, the number of contracts made before the optimal task allocation is

reached may be impractically large|albeit �nite. For example on a large-scale real-

world distributed vehicle routing problem instance, the TRACONET [60] (marginal

cost based) contracting system never reached even a local optimum even with just

O-contracts|with multiple hours of negotiation on �ve Unix machines. Another

problem is that although any OCSM-contract can be represented in O(jAj2 + jT j)
space, the identi�cation of welfare increasing contracts may be complex|especially

in a distributed setting|because there are v2�v
2

= jAj2jT j�jAjjT j

2
possible OCSM-

contracts, and the evaluation of just one contract requires each contract party to

compute the cost of handling its current tasks and the tasks allocated to it via the

contract. With such large problem instances, one cannot expect to reach the global

optimum in practice. Instead, the contracting should occur as long as there is time,

and then have a solution ready: the anytime character of this contracting scheme

becomes more important.

Insincere Agents in Task Allocation

So far in this section on contracting it was assumed that agents act based on

individual rationality. This di�ers from payo� maximizing agents of game theory.

Such an agent may reject an IR contract e.g. if it believes that it could be better

o� by waiting for a more bene�cial contract that cannot be accepted if the former

contract is accepted (e.g. due to limited resources). Similarly, such an agent may

accept a non-IR contract in anticipation of a synergic later contract that will make

the combination bene�cial. Furthermore, strategic agents can also speculate on the

order of accepting contracts because di�erent sequences of (IR) contracts may have

di�erent payo� to the agent. The IR approach is sometimes more practical than the

full game theoretic analysis because each contract can be made by evaluating just

a single contract (each contract party evaluating one new task set) instead of doing

exponential lookahead into the future. The deviation from game theory comes at

the cost of not being able to normatively guarantee that a self-interested agent is
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best o� by following the strategy of accepting any IR contracts.

In this section on contracting it was also assumed that agents truthfully bid their

marginal costs. However, an agent can bene�t more in the contract payment by

exaggerating its marginal cost. On the other hand, too much lying may cause some

IR contracts to be perceived non-IR, and to be rejected. This issue of lying about

the valuation was discussed in Section 5.4 on auctions.

Agents could also lie about what tasks they have. This type of lying has been

thoroughly analyzed in a 2-agent task allocation setting [56]. The \Task Oriented

Domains (TODs)" in that work are a strict subset of the task allocation problems

presented here. Speci�cally, they assume that agents have symmetric cost functions

(ci(T
0) = cj(T

0)) and that every agent is capable of handling all tasks of all agents,

i.e. that the cost functions are always �nite. The analysis is speci�c to a protocol

where all agents reveal their costs for all possible task sets up front, the social

welfare maximizing allocation is chosen, and then payo� is divided according to

the Nash bargaining solution (Section 5.5.1). So their protocol is not an anytime

algorithm: all task allocations have to be evaluated before any agreement is made.

How truthfully do agents reveal tasks to each other when each agent only knows

about its own tasks? The domain class of TODs includes subclasses with very

di�erent properties regarding insincere task revelation. Subadditive TODs are TODs

where ci(T
0 [ T 00) � ci(T

0) + ci(T
00). A subclass of Subadditive TODs, Concave

TODs are TODs where ci(T
0 [ T 000) � ci(T

0) � ci(T
00 [ T 000) � ci(T

00). Finally,

a subclass of Concave TODs, Modular TODs are TODs where ci(T
0 [ T 00) =

ci(T
0) + ci(T

00)� ci(T
0 \ T 00).

Three alternative types of deals are analyzed. In pure deals, agents are determin-

istically allocated exhaustive, disjoint task sets. Mixed deals specify a probability

distribution over such partitions. All-or-nothing deals are mixed deals where the

alternatives only include partitions where one agent handles the tasks of all agents.

Three forms of lying are analyzed. First, an agent may hide tasks by not revealing

them. Second, it may declare phantom tasks which do not exist and cannot be

generated if another agent wants to see them. Finally, it may announce decoy tasks,

which really did not exist, but which can be generated on demand. The forms of

lying that are possible in di�erent domain classes and with di�erent deal types are

summarized in Table 5.6. With more general TODs, many di�erent lying methods

can be pro�table.

The analysis shows that even in the restricted settings, lying is often bene�cial

under the three variants of this protocol. Because these restricted domains are

subproblems of more complex task allocation domains, the negative results carry

over directly to the more complex settings. The results leave open the possibility

that other protocols would demote lying more (while leading to Pareto e�cient IR

outcomes).
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Deal type General TOD SubadditiveTOD Concave TOD Modular TOD

Hid Pha Dec Hid Pha Dec Hid Pha Dec Hid Pha Dec

Pure L L L L L L L L L L

Mixed L L L L L L

All-or-nothing - - - L

Table 5.6 Results on lying in task revelation. An 'L' indicates that lying of the

speci�ed type is pro�table in some problem instances within the given domain class

using the deal type. In general TODs using all-or-nothing deals, the negotiation set

(set of individually rational Pareto e�cient deals) may be empty.

5.7.2 Contingency Contracts and Leveled Commitment Contracts

In traditional multiagent negotiation protocols among self-interested agents, once

a contract is made, it is binding, i.e. neither party can back out [56, 60, 64, 1, 14,

34, 69, 10]. Once an agent agrees to a contract, it has to follow through with it

no matter how future events unravel. Although a contract may be pro�table to an

agent when viewed ex ante, it need not be pro�table when viewed after some future

events have occurred, i.e. ex post. Similarly, a contract may have too low expected

payo� ex ante, but in some realizations of the future events, the same contract may

be desirable when viewed ex post. Normal full commitment contracts are unable to

e�ciently take advantage of the possibilities that such|probabilistically known|

future events provide.

On the other hand, many multiagent systems consisting of cooperative agents

incorporate some form of decommitment possibility in order to allow the agents to

accommodate new events. For example, in the original contract net protocol, the

agent that had contracted out a task could send a termination message to cancel

the contract even when the contractee had already partially ful�lled the contract.

This was possible because the agents were not self-interested: the contractee did

not mind losing part of its e�ort without a monetary compensation. Similarly, the

role of decommitment possibilities among cooperative agents has been studied in

meeting scheduling using a contracting approach [73]. Again, the agents did not

require a monetary compensation for their e�orts: an agent agreed to cancel a

contract merely based on the fact that some other agent wanted to decommit. In

such multiagent systems consisting of cooperative agents, each agent can be trusted

to use such an externally imposed strategy even though using that strategy might

not be in the agent's self-interest.

Some research in game theory has focused on utilizing the potential provided by

probabilistically known future events by contingency contracts among self-interested

agents. The obligations of the contract are made contingent on future events.

There are games in which this method provides an expected payo� increase to

both parties of the contract compared to any full commitment contract [53]. Also,
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some deals are enabled by contingency contracts in the sense that there is no full

commitment contract that both agents prefer over their fallback positions, but there

is a contingency contract that each agent prefers over its fallback.

There are at least three problems regarding the use of contingency contracts in

automated negotiation among self-interested agents. Though useful in anticipating a

small number of key events, contingency contracts get cumbersome as the number of

relevant events to monitor from the future increases. In the limit, all domain events

(changes in the domain problem, e.g. new tasks arriving or resources breaking

down) and all negotiation events|contracts from other negotiations|can a�ect

the value of the obligations of the original contract, and should therefore be

conditioned on. Furthermore, these future events may not only a�ect the value

of the original contract independently: the value of the original contract may

depend on combinations of the future events [66, 60, 56]. Thus there is a potential

combinatorial explosion of items to be conditioned on. Second, even if it were

feasible to use such cumbersome contingency contracts among the computerized

agents, it is often impossible to enumerate all possible relevant future events in

advance. The third problem is that of verifying the unraveling of the events.

Sometimes an event is only observable by one of the agents. This agent may have

an incentive to lie to the other party of the contract about the event in case the

event is associated with a disadvantageous contingency to the directly observing

agent. Thus, to be viable, contingency contracts would require an event veri�cation

mechanism that is not manipulable and not prohibitively complicated or costly.

Leveled commitment contracts are another method for taking advantage of the

possibilities provided by probabilistically known future events [67, 62, 2, 3]. Instead

of conditioning the contract on future events, a mechanism is built into the contract

that allows unilateral decommitting at any point in time. This is achieved by

specifying in the contract decommitment penalties, one for each agent. If an agent

wants to decommit|i.e. to be freed from the obligations of the contract|it can do

so simply by paying the decommitment penalty to the other party. Such contracts

are called leveled commitment contracts because the decommitment penalties

can be used to choose a level of commitment. The method requires no explicit

conditioning on future events: each agent can do its own conditioning dynamically.

Therefore no event veri�cation mechanism is required either.

While the leveled commitment contracting protocol has intuitive appeal and

several practical advantages [62], it is not obvious that it is bene�cial. First, the

breacher's gain may be smaller than the breach victim's loss. Second, agents might

decommit insincerely. A truthful agent would decommit whenever its best outside

o�er plus the decommitting penalty is better than the current contract. However,

a rational self-interested agent would be more reluctant in decommitting. It can

take into account the chance that the other party will decommit, in which case

the former agent gets freed from the contract obligations, does not have to pay

a decommitting penalty, and will collect a decommitting penalty from the other

party. Due to such reluctant decommitting, contracts may end up being kept even

though breaking them would be best from the social welfare perspective.
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This issue was recently analyzed formally [67, 62]. A Nash equilibrium analysis

was carried out where both contract parties' decommitting strategies (characterized

by how good an agent's outside o�er has to be to induce the agent to decommit)

were best responses to each other. Both agents were decommitting insincerely but

neither was motivated to change the extent of his lie given that the other did not

change. It was shown that even under such insincere decommitting, the leveled

commitment protocol outperforms the full commitment protocol. First, it enables

contracts by making them IR in settings where no full commitment contract is IR

(the reverse cannot happen). Second, leveled commitment contracts increase both

contract parties' expected payo�s over any full commitment contracts.

5.8 Coalition Formation

In many domains, self-interested real world parties|e.g., companies or individual

people|can save costs by coordinating their activities with other parties. For

example when the planning activities are automated, it can be useful to automate

the coordination activities as well. This can be done via a negotiating software

agent representing each party.

The most general approach would be to state the coalition formation protocol as

a normal form game (see e.g. Table 5.1) or an extensive form (i.e. sequential) game,

and then analyze the Nash equilibria to see how the game would be played and

how e�cient the outcomes would be. To rigorously incorporate computation in the

analysis, one could treat computational actions as part of each agent's strategy|

just like physical actions.

However, the Nash equilibrium is often too weak because subgroups of agents can

deviate in a coordinated manner. The Strong Nash equilibrium is a solution concept

that guarantees more stability [5]. It requires that there is no subgroup that can

deviate by changing strategies jointly in a manner that increases the payo� of all of

its members given that nonmembers do not deviate from the original solution. The

Strong Nash equilibrium is often too strong a solution concept because in many

games no such equilibria exist.

The Coalition-Proof Nash equilibrium has been suggested as a partial remedy to

the nonexistence problem of the Strong Nash equilibrium [7, 8]. It requires that

there is no subgroup that can make a mutually bene�cial deviation (keeping the

strategies of nonmembers �xed) in a way that the deviation itself is stable according

to the same criterion. A conceptual problem with this solution concept is that

the deviation may be stable within the deviating group, but the solution concept

ignores the possibility that some of the agents that deviated may prefer to deviate

again with agents that did not originally deviate. Furthermore, even these kinds of

solutions do not exist in all games.

Instead of the strategic approach that uses equilibrium analysis, coalition forma-

tion is often studied in a more abstract setting called a characteristic function game
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(CFG). The rest of this section will be restricted to coalition formation in CFGs.

In such games, the value of each coalition S is given by a characteristic function vS .

In other words, each coalition's value is independent of nonmembers' actions. How-

ever, in general the value of a coalition may depend on nonmembers' actions due

to positive and negative externalities (interactions of the agents' solutions). Nega-

tive externalities between a coalition and nonmembers are often caused by shared

resources. Once nonmembers are using the resource to a certain extent, not enough

of that resource is available to agents in the coalition to carry out the planned solu-

tion at the minimum cost. Negative externalities can also be caused by con
icting

goals. In satisfying their goals, nonmembers may actually move the world further

from the coalition's goal state(s). Positive externalities are often caused by par-

tially overlapping goals. In satisfying their goals, nonmembers may actually move

the world closer to the coalition's goal state(s). From there the coalition can reach

its goals less expensively than it could have without the actions of nonmembers.

Settings with externalities between coalitions and nonmembers can be modeled e.g.

as normal form games. CFGs are a strict subset of them. However, many real-world

multiagent problems happen to be CFGs [68].

Coalition formation in CFGs includes three activities:

1. Coalition structure generation: formation of coalitions by the agents such

that agents within each coalition coordinate their activities, but agents do

not coordinate between coalitions. Precisely this means partitioning the set

of agents into exhaustive and disjoint coalitions. This partition is called a

coalition structure (CS). For example, in a game with three agents, there are

seven possible coalitions: f1g, f2g, f3g, f1,2g, f2,3g, f3,1g, f1,2,3g and �ve

possible coalition structures: ff1g, f2g, f3gg, ff1g, f2,3gg, ff2g, f1,3gg, ff3g,
f1,2gg, ff1,2,3gg.

2. Solving the optimization problem of each coalition. This means pooling the

tasks and resources of the agents in the coalition, and solving this joint

problem. The coalition's objective is to maximize monetary value: money

received from outside the system for accomplishing tasks minus the cost of

using resources. (In some problems, not all tasks have to be handled. This can

be incorporated by associating a cost with each omitted task.)

3. Dividing the value of the generated solution among agents. This value may be

negative because agents incur costs for using their resources.

These activities may be interleaved, and they are not independent. For example,

the coalition that an agent wants to join depends on the portion of the value that

the agent would be allocated in each potential coalition.

5.8.1 Coalition Formation Activity 1: Coalition Structure Generation

Classically, coalition formation research has mostly focused on the payo� division

activity. Coalition structure generation and optimization within a coalition have
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not previously received as much attention. Research has focused [29, 86] on super-

additive games, i.e. games where vS[T � vS+vT for all disjoint coalitions S; T � A.

In such games, coalition structure generation is trivial because the agents are best

o� by forming the grand coalition where all agents operate together.

Superadditivity means that any pair of coalitions is best o� by merging into one.

Classically it is argued that almost all games are superadditive because, at worst,

the agents in a composite coalition can use solutions that they had when they were

in separate coalitions.

However, many games are not superadditive because there is some cost to the

coalition formation process itself. For example, there might be coordination over-

head like communication costs, or possible anti-trust penalties. Similarly, solving

the optimization problem of a composite coalition may be more complex than solv-

ing the optimization problems of component coalitions. Therefore, under costly

computation, component coalitions may be better o� by not forming the composite

coalition [68]. Also, if time is limited, the agents may not have time to carry out

the communications and computations required to coordinate e�ectively within a

composite coalition, so component coalitions may be more advantageous.

In games that are not superadditive, some coalitions are best o� merging while

others are not. In such settings, the social welfare maximizing coalition structure

varies, and coalition structure generation becomes highly nontrivial. The goal is to

maximize the social welfare of the agents A by �nding a coalition structure

CS� = arg max
CS2partitions of A

V (CS);

where

V (CS) =
X
S2CS

vS

The problem is that the number of coalition structures is large (
(jAjjAj=2)), so not
all coalition structures can be enumerated unless the number of agents is extremely

small|in practice about 15 or fewer. Instead, one would like to search through a

subset (N � partitions of A) of coalition structures, and pick the best coalition

structure seen so far:

CS�N = arg max
CS2N

V (CS)

Taking an outsider's view, the coalition structure generation process can be viewed

as search in a coalition structure graph, Figure 5.3. Now, how should such a graph

be searched if there are too many nodes to search it completely?

One desideratum is to be able to guarantee that this coalition structure is within

a worst case bound from optimal, i.e. that

k � V (CS�)

V (CS�N )
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Figure 5.3 Coalition structure graph for a 4-agent game. The nodes represent

coalition structures. The arcs represent mergers of two coalition when followed

downward, and splits of a coalition into two coalitions when followed upward.

is �nite, and as small as possible. Let us de�ne nmin to be the smallest size of N

that allows us to establish such a bound k.

Theorem 5.19 Minimal search to establish a bound

To bound k, it su�ces to search the lowest two levels of the coalition structure

graph (Figure 5.3). With this search, the bound k = jAj, this bound is tight, and

the number of nodes searched is n = 2jAj�1. No other search algorithm (than the

one that searches the bottom two levels) can establish a bound k while searching

only n = 2jAj�1 nodes or fewer [65].

Interpreted positively, this means that|somewhat unintuitively|a worst case

bound from optimum can be guaranteed without seeing all CSs. Moreover, as the

number of agents grows, the fraction of coalition structures needed to be searched

approaches zero, i.e. nmin

jpartitions of Aj
! 0 as jAj ! 1. This is because the

algorithm needs to see only 2jAj�1 coalition structures while the total number of

coalition structures is 
(jAjjAj=2).
Interpreted negatively, the theorem shows that exponentially many coalition

structures have to be searched before a bound can be established. This may be

prohibitively complex if the number of agents is large|albeit signi�cantly better

than attempting to enumerate all coalition structures. Viewed as a general impossi-

bility result, the theorem states that no algorithm for coalition structure generation

can establish a bound in general characteristic function games without trying at

least 2jAj�1 coalition structures.8 This sheds light on earlier algorithms. Speci�-

8. In restricted domains where the vS values have special structure, it may be possible to

establish a bound k with less search. Shehory and Kraus have analyzed coalition structure

generation in one such setting [75]. However, the bound that they compute is not a bound



5.8 Coalition Formation 245

1. Search the bottom two levels of the coalition structure graph.

2. Continue with a breadth-�rst search from the top of the graph as

long as there is time left, or until the entire graph has been searched.

3. Return the coalition structure that has the highest welfare among

those seen so far.

Algorithm 5.3 COALITION-STRUCTURE-SEARCH-1 [Sandholm et al.]

cally, all prior coalition structure generation algorithms for general characteristic

function games [76, 32]|which we know of|fail to establish such a bound. In other

words, the coalition structure that they �nd may be arbitrarily far from optimal.

On the other hand, the following algorithm will establish a bound in the minimal

amount of search, and then rapidly reduce the bound further if there is time for

more search. If the domain happens to be superadditive, the algorithm �nds the

optimal coalition structure immediately.

The next theorem shows how this algorithm reduces the worst case bound, k,

as more of the graph is searched. For convenience, we introduce the notation

h = b jAj�l
2

c+ 2.

Theorem 5.20 Lowering the bound with further search

After searching level l with Algorithm 5.3, the bound k is d jAj
h
e if jAj � h�1(mod h)

and jAj � l (mod 2). Otherwise the bound is b jAj
h
c. The bound is tight [65].

As was discussed earlier, before 2jAj�1 nodes have been searched, no bound can

be established, and at n = 2jAj�1 the bound k = jAj. The surprising fact is that

by seeing just one additional node, i.e. the top node, the bound drops in half

(k = jAj

2
). Then, to drop k to about jAj

3
, two more levels need to be searched.

Roughly speaking, the divisor in the bound increases by one every time two more

levels are searched. So, the anytime phase (step 2) of Algorithm 5.3 has the desirable

feature that the bound drops rapidly early on, and there are overall diminishing

returns to further search, Figure 5.4.

Comparison to Other Algorithms

All previous coalition structure generation algorithms for general CFGs [76, 32]|

that we know of|fail to establish any worst case bound because they search fewer

than 2a�1 coalition structures. Therefore, we compare Algorithm 5.3 to two other

obvious candidates:

Merging algorithm, i.e. breadth �rst search from the top of the coalition struc-

ture graph. This algorithm cannot establish any bound before it has searched the

from optimum, but from a benchmark (best that is achievable given a preset limit on the

size of coalitions) which itself may be arbitrarily far from optimum.
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Figure 5.4 Ratio bound k as a function of search size in a 10-agent game.

entire graph. This is because, to establish a bound, the algorithm needs to see

every coalition, and the grand coalition only occurs in the bottom node. Visiting

the grand coalition as a special case would not help much since at least part of

level 2 needs to be searched as well: coalitions of size a� 2 only occur there.

Splitting algorithm, i.e. breadth �rst search from the bottom of the graph.

This is identical to Algorithm 5.3 up to the point where 2a�1 nodes have been

searched, and a bound k = a has been established. After that, the splitting

algorithm reduces the bound much slower than Algorithm 5.3. This can be shown

by constructing bad cases for the splitting algorithm: the worst case may be even

worse. To construct a bad case, set vS = 1 if jSj = 1, and vS = 0 otherwise.

Now, CS� = ff1g; :::; fagg, V (CS�) = a, and V (CS�N ) = l � 1, where l is the

level that the algorithm has completed (because the number of unit coalitions

in a CS never exceeds l� 1). So,
V (CS�)

V (CS�
N
)
= a

l�1
,9 Figure 5.4. In other words the

divisor drops by one every time a level is searched. However, the levels that this

algorithm searches �rst have many more nodes than the levels that Algorithm 5.3

searches �rst.

Variants of the Coalition Structure Generation Problem

One would like to construct an anytime algorithm that establishes a lower k for

any amount of search n, compared to any other anytime algorithm. However, such

an algorithm might not exist. It is conceivable that the search which establishes

the minimal k while searching n0 nodes (n0 > n) does not include all nodes of the

search which establishes the minimal k while searching n nodes. This hypothesis is

supported by the fact that the curves in Figure 5.4 cross in the end. However, this is

not conclusive because Algorithm 5.3 might not be the optimal anytime algorithm,

9. The only exception comes when the algorithm completes the last (top) level, i.e l = a.

Then
V (CS�)

V (CS�
N
)
= 1.
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and because the bad cases for the splitting algorithm might not be the worst cases.

If it turns out that no anytime algorithm is best for all n, one could use

information (e.g. exact, probabilistic, or bounds) about the termination time to

construct a design-to-time algorithm which establishes the lowest possible k for the

speci�ed amount of search.

So far we have discussed algorithms that have an o�-line search control policy,

i.e. the nodes to be searched have to be selected without using information accrued

from the search so far. With on-line search control, one could perhaps establish a

lower k with less search because the search can be redirected based on the values

observed in the nodes so far. With on-line search control, it might make a di�erence

whether the search observes only values of coalition structures, V (CS), or values

of individual coalitions, vS , in those structures. The latter gives more information.

None of these variants (anytime vs. design-to-time, and o�-line vs. on-line search

control) would a�ect the result that searching the bottom two levels of the coalition

structure graph is the unique minimal way to establish a worst case bound, and

that the bound is tight. However, the results on searching further might vary in

these di�erent settings.

Parallelizing Coalition Structure Search among Insincere Agents

This section discusses the parallelizing of coalition structure search|or any other

search for that matter|across agents because the search can be done more ef-

�ciently in parallel, and the agents will share the burden of computation. Self-

interested agents prefer greater personal payo�s, so they will search for coalition

structures that maximize personal payo�s, ignoring k. Algorithm 5.4 can be used to

motivate self-interested agents to exactly follow the socially desirable search. The

randomizations in that algorithm can be done without a trusted third party by

using a distributed nonmanipulable protocol for randomly permuting the agents,

discussed at the end of Section 5.8.3.

5.8.2 Coalition Formation Activity 2: Optimization within a Coalition

Under unlimited and costless computation, each coalition would solve its optimiza-

tion problem, which would de�ne the value of that coalition. However, in practice, in

many domains it is too complex from a combinatorial viewpoint to solve the prob-

lem exactly. Instead, only an approximate solution can be found. In such settings,

self-interested agents would want to strike the optimal tradeo� between solution

quality and the cost of the associated computation. This will a�ect the values of

coalitions, which in turn will a�ect which coalition structure gives the highest wel-

fare. This issue and several related questions are studied in detail in [68].

5.8.3 Coalition Formation Activity 3: Payo� Division

Payo� division strives to divide the value of the chosen coalition structure among

agents in a fair and stable way so that the agents are motivated to stay with the
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1. Deciding what part of the coalition structure graph to search. This can be

decided in advance, or be dictated by a central authority or a randomly chosen agent,

or be decided using some form of negotiation.

2. Partitioning the search space among agents. Each agent is assigned some part

of the coalition structure graph to search. The enforcement mechanism in step 4 will

motivate the agents to search exactly what they are assigned, no matter how unfairly

the assignment is done. One way of achieving ex ante fairness is to randomly allocate

the set search space portions to the agents. In this way, each agent searches equally on

an expected value basis, although ex post, some may search more than others. Another

option is to distribute the space equally among agents, or have some agents pay others

to compensate for unequal amounts of search.

3. Actual search. Each agent searches its part of the search space, and tells the others

which CS maximized V (CS) in its search space.

4. Enforcement. Two agents, i and j, will be selected at random. Agent i will re-search

the search space of j to verify that j has performed its search. Agent j gets caught of

mis-searching (or misrepresenting) if i �nds a better CS in j's space than j reported

(or i sees that the CS that j reported does not belong to j's space at all). If j gets

caught, it has to pay a penalty P . To motivate i to conduct this additional search, we

make i the claimant of P . There is no pure strategy Nash equilibrium in this protocol.

(If i searches and the penalty is high enough, then j is motivated to search sincerely.

But then i is not motivated to search since it cannot receive P .) Instead, there will be

a mixed strategy Nash equilibrium where i and j search truthfully with some

probabilities. By increasing P , the probability that j searches can be made arbitrarily

close to one. The probability that i searches approaches zero, which minimizes

enforcement overhead.

5. Additional search. The previous steps can be repeated if more time to search

remains. For example, the agents could �rst do step 1 of Algorithm 5.3. Then, they

could repeatedly search more and more as time allows.

6. Payo� division. Many alternative methods for payo� division among agents could

be used here. The only concern is that the division of V (CS) may a�ect what CS an

agent wants to report as a result of its search since di�erent CSs may give the agent

di�erent payo�s|depending on the payo� division scheme. However, by making P

high enough compared to V (CS)s, this consideration can be made negligible compared

to the risk of getting caught.

Algorithm 5.4 Parallel search for self-interested agents [Sandholm et al.]
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Repeat:

Choose a coalition T

For every agent i 2 T , xnewi = xi +
vT�
P

j2T
xj

jT j
, and xnewi = xi for i 62 T

Maintain feasibility: For every agent i 2 A, xi = xnewi �

P
j2A

xnew
j

�

P
S2CS

vS

jAj

Algorithm 5.5 A transfer scheme for reaching the core [84].

coalition structure rather than move out of it. Several ways of dividing payo�s have

been proposed in the literature [29]. This section discusses only two of them: the

core, and the Shapley value.

Payo� Division According to the Core

The core of a CFG with transferable payo�s is a set of payo� con�gurations (~x; CS),

where each ~x is a vector of payo�s to the agents in such a manner that no subgroup

is motivated to depart from the coalition structure CS:

De�nition 5.3

Core = f(~x; CS)j8S � A;
P

i2S xi � vS and
P

i2A xi =
P

S2CS vSg

Clearly, only coalition structures that maximize social welfare can be stable in the

sense of the core because from any other coalition structure, the group of all agents

would prefer to switch to a social welfare maximizing one.

The core is the strongest of the classical solution concepts in coalition formation.

It is often too strong: in many cases it is empty [29, 78, 53, 86]. In such games

there is no way to divide the social good so that the coalition structure becomes

stable: any payo� con�guration is prone to deviation by some subgroup of agents.

The new solution that is acquired by the deviation is again prone to deviation and

so on. There will be an in�nite sequence of steps from one payo� con�guration to

another. To avoid this, explicit mechanisms such as limits on negotiation rounds,

contract costs, or some social norms need to be in place in the negotiation setting.

Another problem is that the core may include multiple payo� vectors and the

agents have to agree on one of them. An often used solution is to pick the nucleolus

which, intuitively speaking, corresponds to a payo� vector that is in the center of

the set of payo� vectors in the core [29, 78, 53].

A further problem with the core is that the constraints in the de�nition become

numerous as the number of agents increases. This is due to the combinatorial subset

operator in the de�nition. To reduce the associated cognitive burden of the agents

that try to reach a payo� division in the core, Algorithm 5.5 can be used for payo�

division. It stays within the given CS, and iteratively changes the payo� division. If

the core is nonempty, Algorithm 5.5 will converge to a solution in the core starting

from any initial payo� division. The choice of T can be made at random, or largest

vT�
P

j2T xj �rst. The latter variant tends to converge faster. There is no guarantee

that a self-interested agent is motivated to follow the transfer scheme truthfully.
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Payo� Division according to the Shapley Value

The Shapley value is another policy for dividing payo� in CFGs. It will �rst be

characterized axiomatically. Agent i is called a dummy if vS[fig � vS = vfig for

every coalition S that does not include i. Agents i and j are called interchangeable

if v(Snfig)[fjg = vS for every coalition S that includes i but not j. The axioms of

the Shapley value are:

Symmetry: If i and j are interchangeable then xi = xj .

Dummies: If i is a dummy then xi = vfig.

Additivity: For any two games v and w, xi in v +w equals xi in v plus xi in w,

where v + w is the game de�ned by (v + w)S = vS + wS .

Theorem 5.21

The following is the only payo� division scheme that satis�es these three axioms [74]:

xi =
X
S�A

(jAj � jSj)!(jSj � 1)!

jAj! [vS � vS�fig]

This payo� is called the Shapley value of agent i. It can be interpreted as the

marginal contribution of agent i to the coalition structure, averaged over all possible

joining orders. The joining order matters since the perceived contribution of agent

i varies based on which agents have joined before it.

The Shapley value always exists and is unique, while the core guarantees neither

of these desirable properties. Like the core, the Shapley value is also Pareto e�cient:

the entire value of the coalition structure gets distributed among the agents. Like the

core, the Shapley value guarantees that individual agents and the grand coalition

are motivated to stay with the coalition structure. However, unlike the core, it does

not guarantee that all subgroups of agents are better o� in the coalition structure

than by breaking o� into a coalition of their own. This is not guaranteed by the

Shapley value even in games where such a solution exists, i.e. the core is nonempty.

Another problem with the Shapley value is that the marginal contribution of

each agent has to be computed over all joining orders, and there are jAj! of them.
One can guarantee each agent an expected payo� equal to its Shapley value by

randomizing the joining order. This allows one to focus on one joining order only.

A trusted third party needs to carry out the randomization since each agent has

strong preferences over di�erent joining orders because these orders lead to di�erent

payo�s for the agent.

The need for a trusted third party randomizer can be overcome via Zlotkin and

Rosenschein's recent distributed nonmanipulable protocol for �nding a randomized

joining order [86]. First, every agent constructs a random permutation of the agents,

encrypts it, and sends it to all others. Once an agent has received an encrypted

permutation from every other agent, it broadcasts its key. These keys are then used

to decrypt the permutations. The overall joining order is determined by sequentially

permuting the results. For example, say that in a game of three agents, agent
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one's permutation is 3, 1, 2, agent two's permutation is 1, 3, 2, and agent three's

permutation is 2, 3, 1. Applying agent one's permutation gives 3, 1, 2. Applying

two's permutation to that gives 3, 2, 1. Applying three's permutation to that results

in a joining order of 2, 1, 3.

An agent can do no better than randomize its permutation|assuming that at

least one other agent randomizes its permutation (if the former agent knew exactly

what all other agents' permutations are, that agent could tailor its permutation

and do better). This assumes that the agent cannot change the interpretation of its

permutation by changing its key after receiving the keys from others and decrypting

their permutations. Changing the key so as to customize the interpretation of the

permutation at that point may be di�cult, and it can be made more di�cult by

enhancing Zlotkin and Rosenschein's protocol by requiring that every agent pre�xes

its permutation by a common string, e.g. \Hello world". Now manipulation would

require the agent to construct a key that will change the interpretation of the agent's

permutation in a desirable way while not changing the pre�x.

5.9 Conclusions

Multiagent systems consisting of self-interested agents are becoming ubiquitous.

Such agents cannot be coordinated by externally imposing the agent's strategies.

Instead the interaction protocols have to be designed so that each agent really is

motivated to follow the strategies that the protocol designer wants it to follow.

This chapter discussed these issues under di�erent types of protocols and di�erent

settings. Substantial knowledge exists of impossibility results and of constructive

possibility demonstrations [39, 35]. This chapter only touched on some of it.

The implications of computational limitations were given special emphasis as a

topic that has not traditionally received adequate attention. It is clear that such

limitations have fundamental impact on what strategies agents want to use, and

therefore also on what protocols are desirable, and what is (im)possible. This is one

area where microeconomics and computer science fruitfully blend. Another area

of substantial current and potential future cross-fertilization is the relaxation of

the common knowledge assumption that underlies the Nash equilibrium solution

concept and its re�nements [16, 20].

In the future, systems will increasingly be designed, built, and operated in a dis-

tributed manner. A larger number of systems will be used by multiple real-world

parties. The problem of coordinating these parties and avoiding manipulation can-

not be tackled by technological or economic methods alone. Instead, the successful

solutions are likely to emerge from a deep understanding and careful hybridization

of both.
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5.10 Exercises

1. [Level 1] The Gibbard-Satterthwaite theorem states that it is impossible to

devise a truthpromoting voting mechanism for insincere agents. On the other

hand, the Clarke tax mechanism is such a voting mechanism. Explain why this

is not a contradiction.

2. [Level 2] Let there be a salesman located at each one of the following three

coordinates: (0; 0), (0; 5), and (5; 0). Let there be a customer at each one of

the following �ve locations: (1; 4), (1:5; 0), (2; 2), (3; 2), (5; 2). Each customer

has to be assigned to exactly one salesman who will visit the customer. After

visiting all of the customers assigned to him, the salesman has to return to his

initial location. The domain cost that the salesman incurs from his travel is the

Euclidean length of the trip. The tasks (locations of customers) are known to

all salesmen. Write a program which uses the Clarke tax voting mechanism to

solve this problem, i.e. tax is levied in a way that each salesman is motivated

to reveal his preferences (over task allocations among agents) truthfully.

(a) How many possible task allocations are there?

(b) List each agent's preference (numeric value) for each of these.

(c) Which task allocation will be chosen?

(d) List the route of each salesman.

(e) How much domain (travel) cost does each salesman incur?

(f) How much tax does each agent pay/receive?

(g) What is the budget balance/de�cit?

(h) Demonstrate a way|if one exists|how some agents can bene�cially col-

lude by revealing their preferences untruthfully. How would this changes

answers (c)-(g)?

3. [Level 3] Program an example general equilibrium market economy that sat-

is�es the gross substitutes property. Compare the convergence of the price

tâtonnement algorithm and the Newtonian price tâtonnement algorithm.

Then, experiment with how much one agent can gain by acting strategically

(speculatively) instead of acting competitively as a price taker.

4. [Level 1] Discuss how the revelation principle relates the Vickrey auction to the

English auction. How does this relate to the \agent" that bids on the human's

behalf at http://www.webauction.com?

5. [Level 2] Prove Theorem 5.5.

6. [Level 2] Show an example where an agent is best o� bidding insincerely if the

second-price auction is implemented as open-cry instead of sealed-bid.

7. [Level 2] Construct an example where O-contracts lead to a local optimum

(when agents use per contract individual rationality as their decision criterion)
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that is not globally optimal.

8. [Level 4] How should agents look ahead in contracting and in auctions of

interrelated items? The extremes are no lookahead (IR contracts), and full

(game theoretic) lookahead. In practice something in between these extremes

is likely to be best since there is a tradeo� between the computational cost of

looking ahead and the domain cost savings that lookahead may provide.

9. [Level 3] Construct a 2-agent task allocation problem instance where an agent

bene�ts from a decoy lie. The protocol should make every agent reveal its tasks

at once (cost functions over tasks may be assumed common knowledge), should

use pure deals, and should divide payo�s according to the Nash bargaining

solution.

10. [Level 1] Program the transfer scheme for the core. Run it on an example

problem instance where the core is nonempty. What happens when you run it

on a problem instance where the core is empty?

11. [Level 2] This question is based on [68]. Let there be three agents. Let the unit

cost of computation be $200 (e.g. for a day of supercomputer time). Let the

algorithms' performance pro�les be:

cf1g(tCPU ) = $100 � e�tCPU + $300

cf2g(tCPU ) = $80 � e�tCPU + $200

cf3g(tCPU ) = $65 � e�tCPU + $200

cf1;2g(tCPU ) = $240 � e�tCPU + $400

cf2;3g(tCPU ) = $175 � e�tCPU + $419

cf1;3g(tCPU ) = $190 � e�tCPU + $400

cf1;2;3g(tCPU ) = $500 � e�tCPU + $595

Note that di�erent coalitions might use di�erent amounts of computation.

What is the social welfare maximizing coalition structure? Is it stable accord-

ing to the core (justify your answer)? How would these answers change if

computation were free?
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6 Learning in Multiagent Systems

Sandip Sen and Gerhard Weiss

6.1 Introduction

Learning and intelligence are intimately related to each other. It is usually agreed

that a system capable of learning deserves to be called intelligent; and conversely,

a system being considered as intelligent is, among other things, usually expected to

be able to learn. Learning always has to do with the self-improvement of future

behavior based on past experience. More precisely, according to the standard

arti�cial intelligence (AI) point of view learning can be informally de�ned as follows:

The acquisition of new knowledge and motor and cognitive skills and

the incorporation of the acquired knowledge and skills in future system

activities, provided that this acquisition and incorporation is conducted

by the system itself and leads to an improvement in its performance.

This de�nition also serves as a basis for this chapter. Machine learning (ML), as

one of the core �elds of AI, is concerned with the computational aspects of learning

in natural as well as technical systems. It is beyond the scope and intention of

this chapter to o�er an introduction to the broad and well developed �eld of ML.

Instead, it introduces the reader into learning in multiagent systems and, with that,

into a sub�eld of both ML and distributed AI (DAI). The chapter is written such

that it can be understood without requiring familiarity with ML.

The intersection of DAI and ML constitutes a young but important area of

research and application. The DAI and the ML communities largely ignored this

area for a long time (there are exceptions on both sides, but they just prove the

rule). On the one hand, work in DAI was mainly concerned with multiagent systems

whose structural organization and functional behavior typically were determined

in detail and therefore were more or less �xed. On the other hand, work in ML

primarily dealt with learning as a centralized and isolated process that occurs in

intelligent stand-alone systems. In the past this mutual ignorance of DAI and ML

has disappeared, and today the area of learning in multiagent systems receives broad

and steadily increasing attention. This is also re
ected by the growing number of

publications in this area; see [23, 24, 43, 45, 64, 66, 68] for collections of papers

related to learning in multiagent systems. There are two major reasons for this

attention, both showing the importance of bringing DAI and ML together:
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there is a strong need to equip multiagent systems with learning abilities; and

an extended view of ML that captures not only single-agent learning but also

multiagent learning can lead to an improved understanding of the general

principles underlying learning in both computational and natural systems.

The �rst reason is grounded in the insight that multiagent systems typically are in-

tended to act in complex|large, open, dynamic, and unpredictable|environments.

For such environments it is extremely di�cult and sometimes even impossible to

correctly and completely specify these systems a priori, that is, at the time of their

design and prior to their use. This would require, for instance, that it is known a

priori which environmental conditions will emerge in the future, which agents will

be available at the time of emergence, and how the available agents will have to re-

act and interact in response to these conditions. The only feasible way to cope with

this di�culty is to endow the individual agents with the ability to improve their

own and the overall system performance. The second reason re
ects the insight

that learning in multiagent systems is not just a magni�cation of learning in stand-

alone systems, and not just the sum of isolated learning activities of several agents.

Learning in multiagent systems comprises learning in stand-alone systems because

an agent may learn in a solitary way and completely independent of other agents.

Moreover, learning in multiagent systems extends learning in stand-alone systems.

This is because the learning activities of an individual agent may be considerably

in
uenced (e.g., delayed, accelerated, redirected, or made possible at all) by other

agents and because several agents may learn in a distributed and interactive way as

a single coherent whole. Such an extended view of learning is qualitatively di�erent

from the view traditionally taken in ML, and has the capacity to provoke valuable

research impulses that lead to novel machine learning techniques and algorithms.

The chapter is organized as follows. First, Section 6.2 presents a general char-

acterization of learning in multiagent systems. Next, Sections 6.3 to 6.5 describe

several concrete learning approaches in detail. These sections o�er three major,

overlapping perspectives of learning in multiagent systems, each re
ecting a dif-

ferent focus of attention: learning and activity coordination; learning about and

from other agents; and learning and communication. Section 6.6 shows open direc-

tions for future research, and gives some further references to related work in ML,

economics, and psychology.

6.2 A General Characterization

Learning in multiagent systems is a many-faceted phenomenon, and it is therefore

not surprising that many terms can be found in the literature that all refer to

this kind of learning while stressing di�erent facets. Examples of such terms are:

mutual learning, cooperative learning, collaborative learning, co-learning, team

learning, social learning, shared learning, pluralistic learning, and organizational

learning. The purpose of this section is to make the di�erent facets more explicit
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by o�ering a general characterization of learning in multiagent systems. This

is done by describing, from the point of view of multiagent systems, principal

categories of learning, basic features in which learning approaches may di�er,

and the fundamental learning problem known as the credit-assignment problem.

The intention of this section is to enable the reader to basically characterize

algorithms for learning in multiagent systems, and to get an understanding of what

makes this kind of learning di�erent from learning in stand-alone systems. (Further

considerations of how to characterize learning in multiagent systems can be found

in [63].)

6.2.1 Principal Categories

It is useful to distinguish two principal categories of learning in multiagent systems:

centralized learning (or isolated learning) and

decentralized learning (or interactive learning).

In order to make clear what kinds of learning are covered by these two categories

we introduce the notion of a learning process :

The term learning process refers to all activities (e.g., planning, inference

or decision steps) that are executed with the intention to achieve a

particular learning goal.

Learning is said to be centralized if the learning process is executed in all its parts

by a single agent and does not require any interaction with other agents. With

that, centralized learning takes place through an agent completely independent

of other agents|in conducting centralized learning the learner acts as if it were

alone. Learning is said to be decentralized if several agents are engaged in the

same learning process. This means that in decentralized learning the activities

constituting the learning process are executed by di�erent agents. In contrast to

centralized learning, decentralized learning relies on, or even requires, the presence

of several agents capable of carrying out particular activities.

In a multiagent system several centralized learners that try to obtain di�erent

or even the same learning goals may be active at the same time. Similarly, there

may be several groups of agents that are involved in di�erent decentralized learning

processes. Moreover, the learning goals pursued by such groups may be di�erent or

identical. It is also important to see that a single agent may be involved in several

centralized and/or distributed learning processes at the same time. Centralized

and decentralized learning are best interpreted as two appearances of learning in

multiagent systems that span a broad range of possible forms of learning. Learning

features that can be applied to structure this broad range are shown in the next

subsection.
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6.2.2 Di�erencing Features

The two learning categories described above are of a rather general nature, and they

cover a broad variety of forms of learning that can occur in multiagent systems.

In the following, several di�erencing features are described that are useful for

structuring this variety. The last two features, which are well known in the �eld of

ML (see, e.g., [6] where several other features are described), are equally well suited

for characterizing centralized and decentralized learning approaches. The others are

particularly or even exclusively useful for characterizing decentralized learning.

(1) The degree of decentralization. The decentralization of a learning process

concerns its

distributedness and

parallelism.

One extreme is that a single agent carries out all learning activities sequentially. The

other extreme is that the learning activities are distributed over and parallelized

through all agents in a multiagent system.

(2) Interaction-speci�c features. There is a number of features that can be

applied to classifying the interactions required for realizing a decentralized learning

process. Here are some examples:

the level of interaction (ranging from pure observation over simple signal passing

and sophisticated information exchange to complex dialogues and negotiations);

the persistence of interaction (ranging from short-term to long-term);

the frequency of interaction (ranging from low to high);

the pattern of interaction (ranging from completely unstructured to strictly

hierarchical); and

the variability of interaction (ranging from �xed to changeable).

There may be situations in which learning requires only \minimal interaction" (e.g.,

the observation of another agent for a short time interval), whereas other learning

situations require \maximal interaction" (e.g., iterated negotiation over a long time

period).

(3) Involvement-speci�c features. Examples of features that can be used for

characterizing the involvement of an agent into a learning process are

the relevance of involvement and

role played during involvement.

With respect to relevance, two extremes can be distinguished: the involvement of

an agent is not a condition for goal attainment because its learning activities could

be executed by another available agent as well; and to the contrary, the learning

goal could not be achieved without the involvement of exactly this agent. With
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respect to the role an agent plays in learning, an agent may act as a \generalist"

in so far as it performs all learning activities (in the case of centralized learning),

or it may act as a \specialist" in so far as it is specialized in a particular activity

(in the case of decentralized learning).

(4) Goal-speci�c features. Two examples of features that characterize learning

in multiagent systems with respect to the learning goals are

the type of improvement that is tried to be achieved by learning and

the compatibility of the learning goals pursued by the agents.

The �rst feature leads to the important distinction between learning that aims at

an improvement with respect to a single agent (e.g., its motor skills or inference

abilities) and learning that aims at an improvement with respect to several agents

acting as a group (e.g., their communication and negotiation abilities or their

degree of coordination and coherence). The second feature leads to the important

distinction between con
icting and complementary learning goals.

(5) The learning method. The following learning methods or strategies used by

an agent are usually distinguished:

rote learning (i.e., direct implantation of knowledge and skills without requiring

further inference or transformation from the learner);

learning from instruction and by advice taking (i.e., operationalization|

transformation into an internal representation and integration with prior knowl-

edge and skills|of new information like an instruction or advice that is not

directly executable by the learner);

learning from examples and by practice (i.e., extraction and re�nement of

knowledge and skills like a general concept or a standardized pattern of motion

from positive and negative examples or from practical experience);

learning by analogy (i.e., solution-preserving transformation of knowledge and

skills from a solved to a similar but unsolved problem);

learning by discovery (i.e., gathering new knowledge and skills by making

observations, conducting experiments, and generating and testing hypotheses

or theories on the basis of the observational and experimental results).

A major di�erence between these methods lies in the amount of learning e�orts

required by them (increasing from top to bottom).

(6) The learning feedback. The learning feedback indicates the performance

level achieved so far. This feature leads to the following distinction:

supervised learning (i.e., the feedback speci�es the desired activity of the learner

and the objective of learning is to match this desired action as closely as possible);

reinforcement learning (i.e., the feedback only speci�es the utility of the actual

activity of the learner and the objective is to maximize this utility);
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unsupervised learning (i.e., no explicit feedback is provided and the objective

is to �nd out useful and desired activities on the basis of trial-and-error and

self-organization processes).

In all three cases the learning feedback is assumed to be provided by the system

environment or the agents themselves. This means that the environment or an

agent providing feedback acts as a \teacher" in the case of supervised learning, as

a \critic" in the case of reinforcement learning, and just as a passive \observer" in

the case of unsupervised learning.

These features characterize learning in multiagent systems from di�erent points

of view and at di�erent levels. In particular, they have a signi�cant impact on

the requirements on the abilities of the agents involved in learning. Numerous

combinations of di�erent values for these features are possible. It is recommended

that the reader thinks about concrete learning scenarios (e.g., ones known from

everyday life), their characterizing features, and how easy or di�cult it would be

to implement them.

6.2.3 The Credit-Assignment Problem

The basic problem any learning system is confronted with is the credit-assignment

problem (CAP), that is, the problem of properly assigning feedback|credit or

blame|for an overall performance change (increase or decrease) to each of the sys-

tem activities that contributed to that change. This problem has been traditionally

considered in the context of stand-alone systems, but it also exists in the context

of multiagent systems. Taking the standard AI view according to which the activi-

ties of an intelligent system are given by the external actions carried out by it and

its internal inferences and decisions implying these actions, the credit-assignment

problem for multiagent systems can be usefully decomposed into two subproblems:

the inter-agent CAP , that is, the assignment of credit or blame for an overall

performance change to the external actions of the agents; and

the intra-agent CAP , that is, the assignment of credit or blame for a particular

external action of an agent to its underlying internal inferences and decisions.

Figures 6.1 and 6.2 illustrate these subproblems. The inter-agent CAP is particu-

larly di�cult for multiagent systems, because here an overall performance change

may be caused by external actions of di�erent spatial and/or logically distributed

agents. Solving this subproblem necessitates to operate on the level of the over-

all system, and to answer the question of what action carried out by what agent

contributed to what extent to the performance change. The second subproblem is

equally di�cult in single-agent and multiagent systems. Solving this sub-problem

necessitates to operate on the level of the individual agent, and to answer the ques-

tion of what knowledge, what inferences and what decisions led to an action. How

di�cult it is to answer these questions and, with that, to solve the CAP, depends

on the concrete learning situation.
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Figure 6.1 Inter-agent CAP. The overall system consists of four agents. The ith

agent is represented by 
i . A feedback F for an overall performance change is

\decomposed" into action-speci�c portions Fij , where Fij indicates to what degree

the jth external action carried out by the ith agent contributes to F.

Figure 6.2 Intra-agent CAP. Agent 3 carried out three actions, each based on

internal knowledge (2), inferences (�) and decisions (3). The feedback F33 for

action 3, for instance, is divided among an inference and a decision step. Action 1

is assumed to have no in
uence on the overall performance change.

The above description of the CAP is of a conceptual nature, and aims at a clear

distinction between the inter-agent and intra-agent subproblems. In practice this

distinction is not always obvious. Moreover, typically the available approaches to

learning in multiagent systems do not explicitly di�er between the two subproblems,

or just focus on one of them while strongly simplifying the other. In any case, it

is useful to be aware of both subproblems when attacking a multiagent learning

problem.
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6.3 Learning and Activity Coordination

This section is centered around the question of how multiple agents can learn to

appropriately coordinate their activities (e.g., in order to optimally share resources

or to maximize one own's pro�t). Appropriate activity coordination is much con-

cerned with the development and adaptation of data-
ow and control patterns that

improve the interactions among multiple agents (see also Chapters 2, 3, and 7).

Whereas previous research on developing agent coordination mechanisms focused

on o�-line design of agent organizations, behavioral rules, negotiation protocols,

etc., it was recognized that agents operating in open, dynamic environments must

be able to adapt to changing demands and opportunities [29, 44, 68]. In particular,

individual agents are forced to engage with other agents that have varying goals,

abilities, composition, and lifespan. To e�ectively utilize opportunities presented

and avoid pitfalls, agents need to learn about other agents and adapt local behav-

ior based on group composition and dynamics. To represent the basic problems and

approaches used for developing coordination through learning, two of the earliest

research e�orts in the area of multiagent learning will be described below. The �rst

is work by Sen and his students [47] on the use of reinforcement learning techniques

for the purpose of achieving coordination in multiagent situations in which the indi-

vidual agents are not aware of each another. The second approach is work by Weiss

on optimization of environmental reinforcement by a group of cooperating learn-

ers [62]. (Both approaches were developed in the �rst half of the 1990s, and thus at

a time of intensi�ed interest in reinforcement learning techniques. It is stressed that

several other reinforcement learning methods were described in the literature that

could be also used to demonstrate the scope and bene�ts of learning to coordinate

in multiagent settings; we choose the two approaches mentioned above because we

are particular familiar with them.) To enable the reader to follow the discussion of

the use of reinforcement learning techniques, a brief overview of the reinforcement

learning problem and a couple of widely used techniques for this problem class is

presented.

6.3.1 Reinforcement Learning

In reinforcement learning problems [3, 26] reactive and adaptive agents are given

a description of the current state and have to choose the next action from a set of

possible actions so as to maximize a scalar reinforcement or feedback received after

each action. The learner's environment can be modeled by a discrete time, �nite

state, Markov decision process that can be represented by a 4-tuple hS;A; P; ri

where S is a set of states, A is a set of actions, P : S � S � A 7! [0; 1] gives the

probability of moving from state s1 to s2 on performing action a, and r : S�A 7! <

is a scalar reward function. Each agent maintains a policy, �, that maps the current

state into the desirable action(s) to be performed in that state. The expected

value of a discounted sum of future rewards of a policy � at a state x is given

by V �



def
= Ef

P
1

t=0 

tr�s;tg, where r

�
s;t is the random variable corresponding to the
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reward received by the learning agent t time steps after if starts using the policy �

in state s, and 
 is a discount rate (0 � 
 < 1).

Q-Learning

Various reinforcement learning strategies have been proposed that can be used by

agents to develop a policy for maximizing rewards accumulated over time. For

evaluating the classi�er system paradigm for multiagent reinforcement learning

described below, it is compared with the Q-learning [59] algorithm, which is

designed to �nd a policy �� that maximizes V �

 (s) for all states s 2 S. The

decision policy is represented by a function, Q : S � A 7! <, which estimates

long-term discounted rewards for each state-action pair. The Q values are de�ned

as Q�

 (s; a) = V a;�


 (s), where a;� denotes the event sequence of choosing action a

at the current state, followed by choosing actions based on policy �. The action, a,

to perform in a state s is chosen such that it is expected to maximize the reward,

V ��


 (s) = max
a2A

Q��


 (s; a) for all s 2 S:

If an action a in state s produces a reinforcement of R and a transition to state s0,

then the corresponding Q value is modi�ed as follows:

Q(s; a) (1� �) Q(s; a) + � (R+ 
 max
a02A

Q(s0; a0)) ;

where � is a small constant called learning rate.

Learning Classi�er Systems

Classi�er systems are rule based systems that learn by adjusting rule strengths from

environmental feedback and by discovering better rules using genetic algorithms. In

the following a simpli�ed classi�er system is used where all possible message action

pairs are explicitly stored and classi�ers have one condition and one action. These

assumptions are similar to those made by Dorigo and Bersini [15]. Following their

notation, a classi�er i is described by (ci; ai), where ci and ai are respectively the

condition and action parts of the classi�er. St(ci; ai) gives the strength of classi�er

i at time step t.

All classi�ers are initialized to some default strength. At each time step of problem

solving, an input message is received from the environment and matched with the

classi�er rules to form a matchset, M. One of these classi�ers is chosen to �re

and, based on its action, a feedback may be received from the environment. Then

the strengths of the classi�er rules are adjusted. This cycle is repeated for a given

number of time steps. A series of cycles constitute a trial of the classi�er system. In

the bucket brigade algorithm (BBA) for credit allocation, when a classi�er is chosen

to �re, its strength is increased by the environmental feedback. But before that, a

fraction � of its strength is removed and added to the strength of the classi�er that

�red in the last time cycle. So, if (i) the �ring of classi�er i at time step t results in
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an external feedback R and (ii) classi�er j �res at the next time step, the following

equation gives the strength update of classi�er i:

St+1(ci; ai) = (1� �) � St(ci; ai) + � � (R+ St+1(cj ; aj)) :

It is instructive to note that the BBA and Q-learning credit allocation schemes are

similar in nature.

6.3.2 Isolated, Concurrent Reinforcement Learners

Reinforcement learning techniques can be used by agents to develop action selection

policies to optimize environmental feedback by forming a mapping between percep-

tions and actions. A particular advantage of these techniques is the fact that they

can be used in domains in which agents have little or no pre-existing domain ex-

pertise, and have little information about the capabilities and goals of other agents.

The lack of this useful information makes the coordination problem particularly

hard. Almost all currently used coordination mechanisms rely heavily on domain

knowledge and shared information between agents. The position espoused here is

that reinforcement learning approaches can be used as new coordination techniques

for domains where currently available coordination schemes are ine�ective.

A related question is: should agents choose not to use communication while learn-

ing to coordinate (see 6.5)? Though communication is often helpful and indispens-

able as an aid to group activity, it does not guarantee coordinated behavior [20], is

time-consuming, and can detract from other problem-solving activity if not care-

fully controlled [16]. Also, agents overly reliant on communication will be severely

a�ected if the quality of communication is compromised (broken communication

channels, incorrect or deliberately misleading information, etc.). At other times,

communication can be risky or even fatal (as in some combat situations where

the adversary can intercept communicated messages). Even when communication

is feasible and safe, it is prudent to use it only when absolutely necessary. Such

a design philosophy produces systems where agents do not 
ood communication

channels with unwarranted information. As a result, agents do not have to shift

through a maze of useless data to locate necessary and time-critical information.

In the isolated, concurrent form of learning discussed here, each agent learns to

optimize its reinforcement from the environment. Other agents in the environment

are not explicitly modeled. As such, an interesting research question is whether it is

feasible for such an agent to use the same learning mechanism in both cooperative

and non-cooperative environments.

An underlying assumption of most reinforcement learning techniques is that the

dynamics of the environment is not a�ected by other agencies. This assumption is

invalid in domains with multiple, concurrent learners. A valid concern, therefore, is

whether standard reinforcement learning techniques will be adequate for concurrent,

isolated learning of coordination. More generally, the following dimensions were

identi�ed to characterize domains amenable to concurrent, isolated, reinforcement

learning (referred to as CIRL henceforth) approach:
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Agent coupling: In some domains the actions of one agent strongly and frequently

a�ect the plans of other agents (tightly coupled system), whereas in other domains

the actions of one agent only weakly and infrequently a�ect the plans of other

agents (loosely coupled system).

Agent relationships: Agents in a multiagent system can have di�erent kinds of

mutual relationships:

they may act in a group to solve a common problem (cooperative agents),

they may not have any preset disposition towards each other but interact because

they use common resources (indi�erent agents),

they may have opposing interests (adversarial agents).

For the discussions in this chapter, the latter two classes of domains are grouped

as non-cooperative domains.

Feedback timing: In some domains, the agents may have immediate knowledge

of the e�ects of their actions, whereas in others they may get the feedback for their

actions only after a period of delay.

Optimal behavior combinations: How many behavior combinations of partici-

pating agents will optimally solve the task at hand? This value varies from one to

in�nity for di�erent domains.

To evaluate these questions, both Q-learning and classi�er systems were used in

three di�erent domains:

Block pushing: Two agents individually learn to push a box from a starting loca-

tion to a goal location along a given trajectory. Both cooperative (two agents have

same goal location) and competitive (two agents have distinct goal locations) situ-

ations are studied. Feedback is based on the deviation of box location from desired

path. Domain characteristics are: concurrent learning by two agents with immediate

environmental feedback; strongly coupled system; multiple optimal behaviors.

Resource sharing: Given individual task loads, two agents have to learn to share

a resource over a time period. Domain characteristics are: delayed environmental

feedback; strongly coupled system; single optimal behavior.

Robot navigation: Two robots learn to navigate intersecting paths on a grid

without colliding. Domain characteristics: immediate environmental feedback; vari-

able coupling; multiple optimal behaviors.

The basic conclusion from these series of experiments is that CIRL provides a

novel paradigm for multiagent systems through which both friends and foes can

concurrently acquire useful coordination knowledge. Neither prior knowledge about

domain characteristics nor an explicit model about capabilities of other agents is

required. The limitation of this approach lies in the inability of CIRL to develop

e�ective coordination when agent actions are strongly coupled, feedback is delayed,

and there is one or only a few optimal behavior combinations. A possible partial

�x to this problem would be to use some form of staggered or lock-step learning. In
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this approach, each agent can learn for a period of time, then execute its current

policy without modi�cation for some time, then switch back to learning, etc. Two

agents can synchronize their behavior so that one is learning while the other is

following a �xed policy and vice versa. Even if perfect synchronization is infeasible,

the staggered learning mode is likely to be more e�ective than the concurrent

learning mode.

Other interesting observations include the following:

In cooperative situations, agents can learn complimentary policies to solve the

problem. This amounts to role specialization rather than developing identical

behavior. This phenomenon has been observed by other researchers when global

reinforcement is used [1].

Agents can transfer learning to similar situations, i.e., once agents learn to

coordinate for a given problem, they can learn to coordinate quickly for a similar

problem.

6.3.3 Interactive Reinforcement Learning of Coordination

In contrast to the above-mentioned work, Weiss [62] investigates agents explicitly

communicating to decide on individual and group actions. The learning approach

used is a modi�cation of the BBA scheme for classi�er systems. In this approach,

agents can observe the set of actions being considered by other agents, and ac-

cordingly can eliminate incompatible actions from its local choices. Two variants of

the BBA algorithm, the Action Estimation (ACE) and Action Group Estimation

(AGE) algorithms, are investigated that requires varying degree of involvement and

coordination e�ort on the part of the group members. The underlying assumption of

this work is that the agents are working to optimize a group goal. Below simpli�ed

versions of the ACE and AGE algorithms are presented. An algorithm called Dis-

solution and Formation of Groups (DFG), which is based on these two algorithms

but explicitly models group development processes, is described in [61].

Action Estimation Algorithm (ACE): Given its perception, Si, of the current

environmental state, S, each agent, ai, in a group �rst calculates the set of actions,

Ai(S), it can execute in that state. For each such executable action, A
j
i 2 Ai(S),

an agent calculates the goal relevance, E
j
i (S), of that action. For all actions whose

estimated goal relevance is above a threshold, the agent calculates and announces

to other agents a bid that is proportional to its goal relevance plus a noise term, �

(to prevent convergence to local minima):

B
j
i (S) = (� + �)E

j
i (S) ;

where � is a small constant risk factor .

The action with the highest bid is selected for execution, and incompatible actions

are eliminated from consideration. This process is repeated until all actions for

which bids were submitted are either selected or eliminated. Selected actions form
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the activity context, A. Then a BBA type mechanism is used to reduce the estimates

of the selected action, with the total reduced amount being distributed among

actions in the previous activity context. If upon the execution of actions in the

current activity context the system receives external payo�, the latter is equally

distributed among the executed actions. The goal of this estimate reassignment is to

enable successful action sequences to increase in estimate over time and to suppress

the estimates of ine�ective actions. The net estimate update for any action selected

for execution is as follows:

E
j
i (S) E

j
i (S)�B

j
i (S) +

R

jAj
;

where R is the external rewards received. The bid values paid out are then summed

up and redistributed equally between all actions Al
k executed in the immediately

previous activity context, B, corresponding the previous state S0:

El
k(S

0) El
k(S

0) +

P
A
j

i
2A

B
j
i (S)

jBj
:

Action Group Estimation Algorithm (AGE): In the AGE algorithm, �rst

the applicable actions from all agents in a given environmental state are collected.

From these action sets, the set of all activity contexts, A(S) is calculated where an

activity context, A, consists of any set of mutually compatible actions:

A(S) = fA : 8Al
k; A

j
i 2 A; A

l
k and A

j
i are compatible g :

Then, for each activity context, bids are collected from each agent for all of its

actions in that activity context:

B
j
i (S;A) = (�+ �)E

j
i (S;A) ;

where E
j
i (S;A) is ai's estimate of goal relevance of action A

j
i given its perception

Si of state S and the activity context A. The activity context with the highest sum

of bids for the actions contained is selected, and all the actions contained in it are

executed by respective agents.

Let A be the activity context selected as above. Then for each A
j
i 2 A agent ai

modi�es its estimate as follows:

E
j
i (S;A) E

j
i (S;A)�B

j
i (S;A) +

R

jAj
:

The total bid paid out in the current activity activity context is distributed among

actions executed in the previous activity context in a manner analogous to the ACE

algorithm:

El
k(S

0;B) El
k(S

0;B) +

P
A
j

i
2A

B
j
i (S;A)

jBj
:
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From the above descriptions, it is clear that the AGE algorithm requires more

computational e�ort. The possible gain is the use of a global view in selecting the

activity context. The conjecture is that this will lead to better system performance.

To test this conjecture, a multiagent blocks world domain is used, where each agent

is capable of performing only some of the necessary operations in the environment.

Experiments demonstrated that both the ACE and AGE algorithms enabled

agents to learn coordinated behavior in the sense that the agents were able to

much more e�ectively solve problems compared to random action selection. AGE

produced more e�ective coordination compared to ACE but at the cost of increased

higher space and computation costs. Globally optimal performance, however, was

not attained because of the limited local perception and the inability to distinguish

some distinct global states. Though fairly simple in design, ACE and AGE represent

potent designs that can be extended and augmented to enable the use of additional

agent knowledge and reasoning abilities.

Recent work on theoretical and experimental issues in multiagent reinforcement

learning promises new frameworks for isolated and interactive learning of coordi-

nation (e.g., [1, 11, 19, 42, 64]).

6.4 Learning about and from Other Agents

In the last section, scenarios are discussed where agents learned to coordinate

their actions. The primary emphasis there was on learning to better cooperate to

achieve common tasks. In this section scenarios are considered where agents learn to

improve their individual performance. At times such improvement in performance

or increase in environmental reward has to come at the expense of other agents in

the environment. The emphasis in the learning scenarios presented in this section

is on agents trying to learn about other agents in order to better capitalize on

available opportunities, and on the question of how learning conducted by an agent

can be in
uenced by other agents. This focus is much concerned with the prediction

of the behavior of other agents (including their preferences, strategies, intentions,

etc.), with the improvement and re�nement of an agent's behavior by interacting

with and observing other agents, and with the development of a common view of

the world.

Since space restrictions preclude the possibility of discussing all published re-

search in this area, a few representative samples from literature were chosen for

illustration:

Learning organizational roles: Agents in groups need to learn role assignments

to e�ectively complement each other. Adapting group structure and individual

member activities in a situation-dependent manner enables a group to enhance

system performance and meet unforeseen challenges. Nagendra Prasad, Lesser,

and Lander [35] present a formalism that combines memory-based reasoning and
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reinforcement learning to enable group members to adaptively select organizational

roles.

Learning to bene�t from market conditions: Information agents selling and

buying information units in an electronic marketplace need to be adaptive to

their environmental conditions. Vidal and Durfee investigate the advantages of

learning agents that learn models of other agents [58]. They empirically characterize

situations when it is bene�cial for agents selling information to model other sellers

and prospective buyers.

Learning to play better against an opponent: In adversarial domains like

board games, classical maximin strategy provides a conservative approach to play-

ing games. If the strategy used by the opponent to choose moves can be approxi-

mated, exploitation of weaknesses in the strategy can lead to better results when

playing against that particular opponent [7, 46].

All of the domains discussed below involve isolated learning in a distributed sense.

One or more agents may be concurrently learning in the environment. The agents

interact frequently, and information from such interactions is used by agents to

develop models about other agents. Since each agent learns separately, every agent

has to execute all learning activities. Most of the learning mechanisms used are

variants of reinforcement learning approaches discussed before.

6.4.1 Learning Organizational Roles

Nagendra Prasad, Lesser, and Lander [35] address the important multiagent learn-

ing problem of agents learning to adopt situation-speci�c roles in a cooperative

problem-solving domain. Each agent is assumed to have the capability of playing

one of several roles in a situation. The learning goal is for an agent to be able to

select the most appropriate role to play in a problem-solving state that is likely to

lead to better problem solving with less cost.

The basic framework includes the use of Utility, Probability and Cost (UPC)

estimates of a role adopted at a particular situation. World states, S, are mapped

into a smaller set of situations. Utility represents an agent's estimate of a desired

�nal state's worth if the agent adopted the given role in the current situation.

Probability represents the likelihood of reaching a successful �nal state given the

agent plays the adopted role in the current situation, and cost is the associated

computational cost incurred. In addition, potentials for roles are maintained, which

estimate the usefulness of a role in discovering pertinent global information and

constraints. This measure can be orthogonal to the utility measure.

Let Sk and Rk be the sets of situation vectors and roles for agent k respectively.

An agent maintains up to jSkj� jRkj vectors of UPC and potential values describing

the estimates of di�erent roles in di�erent situations. During the learning phase,
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the probability of selecting a given role r in a situation s is given by

Pr(r) =
f(Urs; Prs; Crs; P otentialrs)P

j2Rk

f(Ujs; Pjs; Cjs; P otentialjs)
;

where f is an objective function used to rate a role by combining the di�erent

component measures mentioned before. After the learning phase is over, the role to

be played in situation s is chosen deterministically as follows:

r = arg max
j2Rk

f(Ujs; Pjs; Cjs; P otentialjs) :

The abstracting of states to situations, and selecting the highest rated role for

the situation is suggestive of a memory based approach. The estimation of role

UPC and potential values, however, is learned using a reinforcement learning

framework. Repeated problem solving is used to incrementally update estimates of

these values. Let Ûn
rs, P̂

n
rs,

dPotential
n

rs, represent estimates of the utility, probability,

and potential of role r in situation s after n updates. Let S be the situations

encountered between the time of adopting role r in situation s and reaching a �nal

state F . A learning rate of 0 � � � 1 is used for updating estimates.

If UF is the utility of the �nal state reached, then the utility values are updated

as follows:

Ûn+1
rs  (1� �)Ûn

rs + �UF :

This and other updates shown below are performed for all roles chosen in each of

the situations, S, that are encountered on the path to the �nal state.

Let O : S ! [0; 1], be a function which returns 1 if the given state is successful

and 0 otherwise. Then the update rule for probability is as follows:

P̂n+1
rs  (1� �)P̂n

rs + �O(F ) :

Let Conf(S) be a function which returns 1 if in the path to the �nal state,

con
icts between agents are detected followed by information exchange to resolve

these con
icts. Conf(S) returns 0 otherwise. Then the update rule for potential is

dPotential
n+1

rs  (1� �) dPotential
n

rs + �Conf(S) :

The update rules for cost are domain dependent as is the nature of the function

f . Prasad, Lesser, and Lander have successfully used this learning organization role

approach in a steam condenser design domain. The evaluation function used by

them ignores the cost metric: f(U; P;C; Potential) = U � P + Potential.

Related Approaches to Learning Organizational Roles

In a related approach, Haynes and Sen [22] present a multiagent case-based learn-

ing (MCBL) algorithm by which agents can learn complementary behaviors to



6.4 Learning about and from Other Agents 275

improve group performance. The domain of experimentation is the predator-prey

domain [57]. Agents are initialized with hand-crafted behavioral strategies which

are modi�ed based on their interaction with the world. Failures to successfully ex-

ecute actions suggested by default rules trigger learning of negative cases. These

negative cases alter the agent policies, and with experience, team members are

shown to improve problem-solving performance.

Stone and Veloso [55] investigate the e�ectiveness of teammates learning to

coordinate their actions against opponent teams. The domain of study is a simulated

robotic soccer game. Their approach is interesting in the novel use of a layered

learning methodology, where learning of low-level skills is followed by learning of

higher-level decision making. For example, a neural network{based approach is

used to learn how to shoot the ball towards a chosen direction. After this skill is

acquired, a decision tree{based method is used to select a teammate to pass the

ball to. Higher-level decision making in the context of a team of agents, such as

moving into open positions expecting a pass from the teammate with the ball, is

possible in such a layered learning approach.

6.4.2 Learning in Market Environments

Vidal and Durfee [58] investigate the use of agents to buy and sell information

in electronic marketplaces like digital libraries. They assume such environments

are open in nature as new agents (either buyers or sellers of information) can

enter or leave the marketplace at will. A practical approach to implementing such

systems would be to consider each agent as a self-interested entity with the goal

of maximizing local utility. A market mechanism is used to control the transfer

of information units between agents that can supply the information and agents

that need it. Quality of information available to di�erent sellers may not be the

same, and the pricing and buying decisions are left to individual sellers and buyers

respectively.

It is assumed that information can be reproduced arbitrarily at negligible cost

and agents have uniform access to all other agents in the marketplace. In such

scenarios, a seller needs to provide value-added services to di�erentiate its products

from other sellers. In such a market, a buyer announces for a good it needs. Sellers

bid with prices for delivering such goods. The buyer then selects from these bids

and pays the corresponding seller the bid price. This seller then provides the good

to the buyer. The buyer can assess the quality of the received good only after it

receives it from the seller, i.e., it cannot examine the quality of the good before

buying. The pro�t of a seller s in selling a good g at price p is p� cgs , where c
g
s is

its cost of producing that good. If this good was of quality q, its value to a buyer

b is V
g
b (p; q). In a transaction, the goal of the buyer and the seller is to maximize

value and pro�t respectively.

Three types of agents are investigated in such a market economy:

0-level agents: These are agents that do not model the behavior of other agents.

They set their buying and selling prices based on aggregate past experience.
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1-level agents: These are agents that analyze the past behavior of other agents

and try to predict their buying or selling price preferences. Other agents, however,

are just modeled as 0-level agents or agents with no model of other agents. That

is, if an 1-level agent A is modeling a 0-level agent B, A does not consider the

fact that B is also modeling A. Note that 1-level agents have information about

individual agents in the environment, where 0-level agents just use their aggregate

past experience.

2-level agents: These are agents that model other agents as 1-level agents. That

is, these agents view other agents as agents which are modeling others as 0-level

agents or agents having no models of others.

In the following the strategies of 0-level and 1-level agents are only described

concisely. The performance comparison of such agents will be presented next.

Strategy of 0-level Agents

A 0-level buyer chooses the seller s� for supplying a good g, such that

s� = argmax
s2S

fg(pgs) ;

where S is the set of sellers and the function fg(p) returns the expected value to

the buyer of buying g at price p. This value function is incrementally learned in a

reinforcement learning framework:

f
g
t+1 = (1� �)fgt (p) + �V

g
b (p; q) ;

where � is the learning rate which is decreased over time from a starting value of

1 to a �nal value close to �min. The buyer also explores randomly (picks a random

seller) with probability �, with this probability also decreased over time in a manner

similar to that of �.

A seller s has to sell a good g at a price greater than or equal to its cost, i.e.,

pgs � cgs . The actual price p
�

s is chosen to maximize expected pro�t:

p�s = arg max
p2P&p�cgs

hgs(p) ;

where P is the set of prices and the function hgs(p) returns the expected pro�t for

the seller if it o�ers good g at a price p. This expected pro�t function is learned as

h
g
t+1(p) = (1� �)h

g
t (p) + �Profitgs(p) ;

where Profitgs(p) = p� cgs if it wins the auction and is 0 otherwise.
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Strategy of 1-level Agents

A 1-level buyer models each seller by a probability density function, qgs (x) over the

qualities x returned by s when providing good g in the past. Such a buyer chooses

the seller s� for supplying a good g to obtain the highest expected value:

s� = argmax
s2S

E(V
g
b (p

g
s ; q

g
s (x)))

= argmax
s2S

1

jQj

X
x2Q

qgs (x)V
g
b (p

g
s ; x);

where Q is the set of possible quality levels. The 1-level buyer does not model other

buyers.

The 1-level seller models each buyer b for good g by a probability density function

m
g
b(p) that returns the probability that b will choose price p for good g. It also

models every seller s for good g by a probability density function ngs(y), which

gives the probability that s will bid y for good g. With these information, the

1-level seller can determine its bid to maximize expected pro�ts as

p� = argmax
p2P

(p� cgs)
Y
s02s

X
p0

N(g; b; s; s0; p; p0) ;

where s = S � fsg, and N(g; b; s; s0; p; p0) = n
g
s0(p

0) if m
g
b(p

0) � m
g
b(p) and is

0 otherwise. The function chooses the best bid by calculating for each possible

bid the product of the probability of winning the auction with that bid and the

pro�t from that bid. The probability of winning a bid is obtained by multiplying

the probabilities of bidding lower than each of the other sellers. The probability

of bidding lower than a given seller is calculated by summing the probabilities

corresponding to all bids by that seller for which the buyer will prefer the bid of

the learning agent.

Vidal and Durfee [58] simulated di�erent arti�cial economies with 5 buyers and

8 sellers with the value function used by buyers being Vb(p; q) = 3q � p for all

goods. The following list shows the major conclusions from the observed behavior

of learning mechanisms described above:

In a group consisting of 0-level agents only, isolated learning produced equilib-

rium prices when all seller agents o�ered goods of the same quality. If the latter

condition was violated, price 
uctuations prevent equilibrium.

If buyers are 0-level agents, 1-level sellers can bene�t based on price volatility as

the buyers try to �gure out the price-quality correlation. The 1-level sellers can

pretend to be high-quality goods sellers by bidding high prices and thus obtain

substantial pro�ts at the expense of the buyer.

If the buyers are 1-level agents, they learn to buy from sellers who can provide

them with the highest value. Interestingly enough, 1-level sellers su�er, because

they assume buyers are 0-level agents and hence try to over-price their goods.
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The above observations suggest that if the model of the other agents is accurate,

an agent can gain substantially from it. But if the model underestimates the true

capability of the other agent, the modeling agent can also lose out.

6.4.3 Learning to Exploit an Opponent

Two player zero-sum games have been studied widely within both the game theory

and arti�cial intelligence communities. The most prominent approach in AI for

developing game playing programs has been the use of the minimax algorithm

(developed from the maximin strategy espoused in the game theory literature). In

the absence of any knowledge of the opponent's strategy, the maximin approach

assumes that the opponent will chose a move that is the worst from the player's

viewpoint.

If an accurate model of the opponent is available, such a model can be used to

predict the exact move the opponent is going to play corresponding to each of the

moves that the player can play from the current board con�guration. Carmel and

Markovitch [7] present an M� algorithm, a generalization of minimax, that can

use an opponent model to choose a more appropriate move to play against that

player. Given the set of possible game states S, a successor function � : S ! 2S, an

opponent model to specify opponent's move from any given state, ' : S ! S, from

a given state s and for a search depth d, the M� algorithm returns the following

value:

M(s; d; f; ') =

8>><
>>:

f(s) d � 0

max s0 2 �(s)(f(s0)) d = 1

max s0 2 �(s)(M('(s0); d� 2; f; ')) d > 1

:

If the player is using an evaluation function of f0, the standard minimax algorithm

can be written as a special form of M as

M0
(hf0i;d)

(s) =M(s; d; f0;M
0
(h�f0i;d�1)

)

which denotes the fact that minimax assumes the opponent is minimizing the

player's payo� by searching up to a depth of d� 1.

If the player was using an evaluation of f1 and the actual evaluation function,

f0, used by the opponent was known, then another special case of M , the M1

algorithm, can be de�ned as

M1
(hf1;f0i;d)

(s) =M(s; d; f1;M
0
(hf0i;d�1)

) :

The M1 algorithm �rst �nds the opponents choice move by performing the oppo-

nent's minimax search to depth d�1. It then evaluates the selected moves by calling

itself recursively to depth d� 2.
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In the general case, it is possible to de�ne the Mn algorithm to be the M

algorithm for which ' =Mn�1:

Mn
(hfn;:::;f0i;d)

(s) =M(s; fn; d;M
n�1
(hfn�1;:::;f0i;d�1)

) :

For example, The player with the M1 algorithm assumes that its opponent is a M0

or minimax player, the M2 player assumes that its opponent is a M1 player, and

so on.

Carmel and Markovitch use the domain of checkers to show that the M1 player

performs better than M0 or minimax player against di�erent opponents when the

model of the opponent is accurately known. The problem in approaches like this is

how one gets to know about the evaluation function of the opponent.

In a related work Carmel and Markovitch have developed a learning approach

to approximating the opponent model [8]. Given a set of opponent moves from

speci�c board con�gurations, they �rst present an algorithm to calculate the depth

of search being used by the opponent. If the assumed function model is accurate

then few examples su�ce to induce the depth of search.

They also present an algorithm to learn the opponent's game-playing strategy.

The assumptions made are the following: the opponent's evaluation function is a

linear combination of known board features, and the opponent does not change its

function while playing (because this would eliminate the possibility of concurrent

learning). A hill-climbing approach is used to select the weight vector on the features

and depth of search. They also experimentally demonstrate the e�ectiveness of this

learning approach for di�erent opponent strategies.

Related Approaches to Opponent Modeling

In a similar approach to developing game players that can exploit weaknesses

of a particular opponent, Sen and Arora [46] have used a Maximum Expected

Utility (MEU) principle approach to exploiting learned opponent models. In their

approach, conditional probabilities for di�erent opponent moves corresponding to

all moves from the current state are used to compute expected utilities of each of

the possible moves. The move with the maximum expected utility is then played. A

probabilistic model of the opponent strategy is developed by observing moves played

by the opponent in di�erent discrepancy ranges as measured by the evaluation

function of the player.

Let the player and the opponent be required to choose from move sets

f�1; �2; : : :g = � and f�1; �2; : : :g = � respectively, and the utility received by

A for a (�i; �j) pair of moves be u(�i; �j). The MEU principle can be used to

choose a move as follows:

argmax
�i2�

X
�j2�

p(�j j�i) u(�i; �j) ;

where p(�j j�i) is the conditional probability that the opponent chooses the move
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White  wins Black  wins
Figure 6.3 Winning scenarios in the game of Connect-Four.

�j given that the agent plays its move �i. The maximin strategy can be shown to

be a special case of the MEU strategy. If the opponent strategy can be accurately

modeled by the learning mechanism, the MEU player will be able to exploit the

opponent's weaknesses.

The initial domain of application of this approach involves the two-player zero-

sum game of Connect-Four. Connect-Four is a popular two-player board game. Each

player has several round tokens of a speci�c color (black or white). The board is

placed vertically and is divided into six slots (the actual game sold in the market

has seven slots, but most of the AI programs use the six-slot version of the game).

Each slot has room for six tokens. Players alternate in making moves. A player

wins if it is able to line up four tokens horizontally, vertically, or diagonally. The

game ends in a draw if the board �lls up with neither player winning. Examples of

winning and losing scenarios are shown in Figure 6.3. In this board game, the MEU

player is shown to be able to beat a simple opponent in fewer moves compared to

the maximin player.

Other related work worthy of mention include Carmel and Markovitch's work

on modeling opponent strategies with a �nite automaton [9]; Bui, Kieronska and

Venkatesh's work on learning probabilistic models of the preferences of other agents

in the meeting scheduling domain [5]; and Zeng and Sycara's work on using Bayesian

updating by bargainers to learn opponent preferences in sequential decision making

situations [69].

Explanation-Based Learning

Sugawara and Lesser [56] present an explanation-based learning [17] approach to

improving cooperative problem-solving behavior. Their proposed learning frame-

work contains a collection of heuristics for recognizing ine�ciencies in coordinated

behavior, identifying control decisions causing such ine�ciencies, and rectifying

these decisions.
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The general procedure is to record problem-solving traces including tasks and

operations executed, relationships existing between tasks, messages communicated

between agents, resource usage logs, domain data, and knowledge and control

knowledge used for problem solving. Local traces and models of problem-solving

activities are exchanged by agents when a coordination ine�ciency is detected.

This information is used to construct a global model and to review the problem-

solving activities. A lack-of-information problem is solved by choosing alternative

tasks to satisfy certain goals. An incorrect-control problem requires more elaborate

processing and coordination strategies need to be altered in such cases.

To identify the type of problem confronting the system, agents analyze traces to

identify mainstream tasks and messages. Based on this identi�cation, learning anal-

ysis problem (LAPs) situations are identi�ed which include execution of unnecessary

actions, task processing delays, longer task durations, redundant task processing,

etc. After some LAP is detected, agents try to locally generate the existing task re-

lationships that may have caused the LAP. Information is exchanged incrementally

to form a more comprehensive description of the problem. The purpose of this anal-

ysis is to identify whether the LAP is of lack-of-control or incorrect control problem

type. Problems of the former type can normally be resolved in a relatively straight-

forward manner. For incorrect-control problems, the following solution methods are

applied: changing the rating of speci�c goals and messages, changing the order of

operations and communications, allocating tasks to idle agents, and using results

calculated by other agents. For both types encountered, the system learns to avoid

similar problems in the future. To accomplish this, the system learns situation-

speci�c rules using an inductive learning scheme.

The learning approach discussed above relies extensively on domain models

and sophisticated diagnostic reasoning. In contrast, most of the other multiagent

learning approaches that have been studied in literature rely very little on prior

domain knowledge.

6.5 Learning and Communication

The focus of this section is on how learning and communication are related to

each other. This relationship is mainly concerned with requirements on the agents'

ability to e�ectively exchange useful information. The available work on learning in

multiagent systems allows us to identify two major relationships and research lines:

Learning to communicate: Learning is viewed as a method for reducing the load

of communication among individual agents.
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Communication as learning : Communication is viewed as a method for exchang-

ing information that allows agents to continue or re�ne their learning activities.

Work along the former line starts from the fact that communication usually is very

slow and expensive, and therefore should be avoided or at least reduced whenever

this is possible (see also 6.3.2). Work along the latter line starts from the fact that

learning (as well as, e.g., planning and decision making) is inherently limited in

its potential e�ects by the information that is available to and can be processed

by an agent. Both lines of research have to do with improving communication and

learning in multiagent systems, and are related to the following issues:

What to communicate (e.g., what information is of interest to the others).

When to communicate (e.g., what e�orts should an agent investigate in solving

a problem before asking others for support).

With whom to communicate (e.g., what agent is interested in this information,

what agent should be asked for support).

How to communicate (e.g., at what level should the agents communicate, what

language and protocol should be used, should the exchange of information occur

directly|point-to-point and broadcast|or via a blackboard mechanism).

These issues have to be addressed by the system designer or derived by the system

itself. The following two subsections illustrate the two lines of research by describing

representative approaches to \learning to communicate" and \communication as

learning."

There is another aspect that is worth stressing when talking about learning and

communication in multiagent systems. A necessary condition for a useful exchange

of information is the existence of a common ontology. Obviously, communication is

not possible if the agents assign di�erent meanings to the same symbols without

being aware of the di�erences (or without being able to detect and handle them).

The development of a common and shared meaning of symbols therefore can be

considered as an essential learning task in multiagent systems (see [18] for further

considerations). This \shared meaning problem" is closely related to (or may be

considered as the DAI variant of) the symbol grounding problem [21], that is,

the problem of grounding the meaning of symbols in the real world. According to

the physical grounding hypothesis [4], which has received particular attention in

behavior-oriented AI and robotics, the grounding of symbols in the physical world

is a necessary condition for building a system that is intelligent. This hypothesis

was formulated as a counterpart to the symbol system hypothesis [36] upon which

classical knowledge-oriented AI is based and which states that the ability to handle,

manipulate, and operate on symbols is a necessary and su�cient condition for

general intelligence (independent of the symbols' grounding).
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6.5.1 Reducing Communication by Learning

Consider the contract-net approach (e.g., [54]) as described in Chapter 2. According

to this approach the process of task distribution consists of three elementary

activities: announcement of tasks by managers (i.e., agents that want to allocate

tasks to other agents); submission of bids by potential contractors (i.e., agents

that could execute announced tasks); and conclusion of contracts among managers

and contractors. In the basic form of the contract net a broadcasting of task

announcements is assumed. This works well in small problem environments, but

runs into problems as the problem size|the number of communicating agents

and the number of tasks announced by them|increases. What therefore is needed

in more complex environments are mechanisms for reducing the communication

load resulting from broadcasting. Smith [53] proposed several such mechanisms like

focused addressing and direct contracting which aim at substituting point-to-point

communication for broadcasting. A drawback of these mechanisms is, however, that

direct communication paths must be known in advance by the system designer,

and that the resulting communication patterns therefore may be too in
exible in

non-static environments. In the following, an alternative and more 
exible learning-

based mechanism called addressee learning [37] is described (in a slightly simpli�ed

form).

The primary idea underlying addressee learning is to reduce the communication

e�orts for task announcement by enabling the individual agents to acquire and

re�ne knowledge about the other agents' task solving abilities. With the help

of the acquired knowledge, tasks can be assign more directly without the need

of broadcasting their announcements to all agents. Case-based reasoning (e.g.,

[27, 60]) is employed as an experience-based mechanism for knowledge acquisition

and re�nement. Case-based reasoning is based on the observation that humans often

solve a problem on the basis of solutions that worked well for similar problems

in the past. Case-based reasoning aims at constructing cases, that is, problem-

solution pairs. Whenever a new problem arises, it is checked whether it is completely

unknown or similar to an already known problem (case retrieval). If it is unknown,

a solution must be generated from scratch. If there is some similarity to a known

problem, the solution of this problem can be used as a starting point for solving

the new one (case adaptation). All problems encountered so far, together with their

solutions, are stored as cases in the case base (case storage). This mechanism can

be applied to communication reduction in a contract net as follows. Each agent

maintains its own case base. A case is assumed to consist of (i) a task speci�cation

and (ii) information about which agent already solved this task in the past and

how good or bad the solution was. The speci�cation of a task Ti is of the form

Ti = fAi1Vi1; : : : ; Aimi
Vimi
g ;

where Aij is an attribute of Ti and Vij is the attribute's value. What is needed

in order to apply case-based reasoning is a measure for the similarity between the
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tasks. In the case of addressee learning, this measure is reduced to the similarity

between attributes and attribute values. More precisely, for each two attributes Air

and Ajs the distance between them is de�ned as

DIST(Air ; Ajs) = SIMILAR-ATT(Air; Ajs) � SIMILAR-VAL(Vir ; Vjs) ;

where SIMILAR-ATT and SIMILAR-VAL express the similarity between the at-

tributes and the attribute values, respectively. How these two measures are de�ned

depends on the application domain and on the available knowledge about the task

attributes and their values. In the most simplest form, they are de�ned as

SIMILAR-ATT(x; y) = SIMILAR-VAL(x; y) =

(
1 if x = y

0 otherwise
;

which means that similarity is equal to identity. With the help of the distance DIST

between attributes, now the similarity between two tasks Ti and Tj can be de�ned

in an intuitively clear and straightforward way as

SIMILAR(Ti; Tj) =
X
r

X
s

DIST(Air ; Ajs) :

For every task, Ti, a set of similar tasks, S(Ti), can be de�ned by specifying the

demands on the similarity between tasks. An example of such a speci�cation is

S(Ti) = fTj : SIMILAR(Ti; Tj) � 0:85g ;

where the tasks Tj are contained in the case base of the agent searching for similar

cases. Now consider the situation in which a agent N has to decide about assigning

some task Ti to another agent. Instead of broadcasting the announcement of Ti, N

tries to preselect one or several agents which it considers as appropriate for solving

Ti by calculating for each agent M the suitability

SUIT(M;Ti) =
1

jS(Ti)j

X
Tj2S(Ti)

PERFORM(M;Tj) ;

where PERFORM(M;Tj) is an experience-based measure indicating how good or

bad Tj has been performed by M in the past. (The speci�cation of PERFORM

again depends on the application domain.) With that, agent N just sends the

announcement of Ti to the most appropriate agent(s), instead of all agents.

6.5.2 Improving Learning by Communication

As an agent usually can not be assumed to be omnipotent, in most problem domains

it also can not be assumed to be omniscient without violating realistic assumptions.

The lack of information an agent su�ers from may concern
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the environment in which it is embedded (e.g., the location of obstacles) and the

problem to be solved (e.g., the speci�cation of the goal state to be reached);

other agents (e.g., their abilities, strategies, and knowledge);

the dependencies among di�erent activities and the e�ects of one own's and other

agents' activities on the environment and on potential future activities (e.g., an

action a carried out by an agent A may prevent an agent B from carrying out

action b and enable an agent C to carry out action c).

Agents having a limited access to relevant information run the risk of failing in

solving a given learning task. This risk may be reduced by enabling the agents

to explicitly exchange information, that is, to communicate with each other. Gen-

erally, the following two forms of improving learning by communication may be

distinguished:

learning based on low-level communication, that is, relatively simple query-and-

answer interactions for the purpose of exchanging missing pieces of information

(knowledge and belief); and

learning based on high-level communication, that is, more complex communica-

tive interactions like negotiation and mutual explanation for the purpose of com-

bining and synthesizing pieces of information.

Whereas the �rst form of communicative learning results in shared information,

the second form results in shared understanding. Below two communication-based

learning approaches are described which illustrate these two forms.

In both forms communication is used as a means for improving learning. Aside

from this \assisting view" of communication, the reader should keep in mind that

communication as such can be viewed as learning, because it is a multiagent-

speci�c realization of knowledge acquisition. Whether learning should be enriched

by communication is a very di�cult question. In the light of the standard evaluation

criteria for learning algorithms|speed, quality, and complexity|this question can

be decomposed into the following three subquestions:

How fast are the learning results achieved with/without communication?

Are the learning results achieved with/without communication of su�cient

quality?

How complex is the overall learning process with/without communication?

The above considerations should make clear that communication o�ers numerous

possibilities to improve learning, but that it is not a panacea for solving learning

problems in multiagent systems. Combining them therefore has to be done very

carefully. In particular, it is important to see that communication itself may bring

in incomplete and false information into an agent's information base (e.g., because

of transmission errors) which then makes it even more di�cult to solve a learning

task.



286 Learning in Multiagent Systems
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predator

prey

Figure 6.4 Predator-prey domain: a 10 by 10 grid world (left) and a visual �eld

of depth 2 (right).

Illustration 1: Let's Hunt Together!

Many attempts have been made to improve learning in multiagent systems by

allowing low-level communication among the learners. Among them is the work by

Tan [57] which is also well suited for illustrating this form of learning. Related work

that focuses on multirobot learning was presented, e.g., by Matari�c [31, 32] and

Parker [38, 39].

Tan investigated learning based on low-level communication in the context of the

predator-prey domain shown in Figure 6.4. The left part of this �gure shows a two-

dimensional world in which two types of agents, predators and prey, act and live.

The task to be solved by the predators is to catch a prey by occupying the same

position. Each agent has four possible actions a to choose from: moving up, moving

down, moving left , and moving right . On each time step each prey randomly moves

around and each predator chooses its next move according to the decision policy

it has gained through Q-learning (see Section 6.3.1). Each predator has a limited

visual �eld of some prede�ned depth. The sensation of a predator is represented

by s = [u; v], where u and v describe the relative distance to the closest prey

within its visual �eld. This is illustrated by the right part of Figure 6.4; here the

perceptual state is represented by [2; 1]. Tan identi�ed two kinds of information

that the learners could exchange in order to support each other in their learning:

Sensor data. Here the predators inform each other about their visual input. If

the predators know their relative positions (e.g., by continuously informing each

other about their moves), then they can draw inferences about the prey's actual

positions. This corresponds to a pooling of sensory resources, and thus aims at

a more centralized control of distributed sensors.

Decision/Activity policies. Here the predators inform each other about what they

have learned so far w.r.t. their decisions/activities (i.e., the values Q(s; a) in the

case of Q-learning). This corresponds to a pooling of motor resources, and thus

aims at a more centralized control of distributed e�ectors.
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The experimental investigations reported by Tan show that these kinds of infor-

mation exchange clearly lead to improved learning results. The fact that these two

kinds of information exchange are applicable in most problem domains makes them

essential. It is stressed that it is an important but still unanswered question how

closely a centralized control of sensors and e�ectors should be approached. It is ob-

vious, however, that an optimal degree of centralization of control depends on the

problem domain under consideration and on the abilities of the individual agents.

Illustration 2: What Will a Cup of Co�ee Cost?

Learning based on high-level communication|which is a characteristic of human-

human learning|is rather complex, and so it is not surprising that not many

approaches to this form of learning are available so far. In the following, an idea

of this form of learning is given by describing the approach by Sian [48, 49]

called consensus learning (details omitted and slightly simpli�ed). According to

this approach a number of agents is assumed to interact through a blackboard. The

agents use a simple language for communication that consists of the following nine

operators for hypotheses:

Introduction and removal of hypotheses to/from the blackboard

ASSERT (H) { Introduction of a non-modi�able hypothesis H .

PROPOSE(H;C) { Proposal of a new hypothesis H with con�dence

value C.

WITHDRAW (H) { Rejection of a hypothesis H .

Evaluation of hypotheses

CONFIRM(H;C) { Indication of con�rmatory evidence for a hypoth-

esis H with con�dence value C.

DISAGREE(H;C){ Indication of disagreement with a hypothesis H

with con�dence value C.

NOOPINION(H) { Indication that no opinion is available with re-

gards to a hypothesis H .

MODIFY (H;G;C){ Generation of a modi�ed version G (hence, of a

new hypothesis) of H with con�dence value C.

Modi�cation of the status of hypotheses and acceptance

AGREED(H;T ) { Change of status of a hypothesis H from \pro-

posed" to \agreed" with the resultant con�dence

value T (see below).

ACCEPT (H) { Acceptance of a previously agreed hypothesis H .
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Adverse Weather Country

Flood           Frost          Drought Tea         Coffee         Cocoa Kenya          Brazil           India

Crop

Figure 6.5 Taxonomies available to the agents.

After an agent introduced a hypothesis H (by means of PROPOSE) and the

other agents responded (by means of CONFIRM , DISAGREE, NOOPINION ,

or MODIFY ), the introducing agent can determine the resultant con�dence value

T ofH . Let fC+
1 ; : : : ; C

+
mg be the con�dence values associated with the CONFIRM

and MODIFY responses of the other agents, and fC�

1 ; : : : ; C
�

n g the con�dence

values associated with the DISAGREE responses of the other agents. Then

T = SUPPORT (H) � [1�AGAINST (H)]

where SUPPORT (H) = V (C+
m) and AGAINST (H) = V (C�

n ) with

V (C+
m) =

(
V (C+

m�1) + C+
m � [1� V (C+

m�1)] if m � 1

0 if m = 0

and

V (C�

n ) =

(
V (C�

n�1) + C�

n � [1� V (C�

n�1)] if n � 1

0 if n = 0
:

For instance, V (C+
3 ) = C+

1 + C+
2 + C+

3 � C+
1 C

+
2 � C+

1 C
+
3 � C+

2 C
+
3 + C+

1 C
+
2 C

+
3 .

The de�nition of V aims at adding con�dence values (which represent a measure of

belief on the part of an agent) and, at the same time, taking their potential overlaps

into consideration.

For an illustration of consensus learning, consider the case of three agents who

want to �nd out how the prices for co�ee, tea, and cocoa will develop. The common

knowledge available to the three agents is shown in Figure 6.5. In addition, the

agents have the following local domain knowledge:

Agent 1: Major-Producer(Kenya; Coffee)

Major-Producer(Kenya; Tea)

Agent 2: Major-Producer(Brazil; Coffee)

Major-Producer(Brazil; Cocoa)

Agent 3: Major-Producer(India; T ea)

Assume that after a period of time the agents observed the following data and have

constructed the following generalizations:

Agent 1: Weather(Kenya;Drought), Price(Tea;Rising)

Weather(Kenya;Drought), Price(Cocoa; Steady)
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Weather(Kenya; Frost), Price(Coffee;Rising)

GEN: Weather(Kenya;Adverse) and

Major-Producer(Kenya; Crop)! Price(Crop;Rising)

Agent 2: Weather(Brazil; F rost), Price(Coffee;Rising)

Weather(Brazil; F lood), Price(Cocoa;Rising)

GEN: Weather(Brazil; Adverse)! Price(Crop;Rising)

Agent 3: Weather(India; F lood), Price(Tea;Rising)

GEN: Weather(India; F lood)! Price(Tea;Rising)

Figure 6.6 shows a potential interaction sequence. The Agent 3 has enough con-

�dence in its generalization, and starts the interaction with the hypothesis H1.

The other agents respond to H1. Agent 2 has no direct evidence for H1, but its

generalization totally subsumes H1. It therefore proposes its generalization as a

modi�cation of H1, leading to the hypothesis H2. The situation is similar with

Agent 3, and this agent proposes the hypothesis H3. At this point, Agent 3 can

calculate the resultant con�dence value for its hypothesis H1. In the sequel, the

non-proposing agents respond to the hypotheses H2 and H3, and the proposing

agents calculate the resultant con�dence values. Based on the con�dence values

Agent 2 and Agent 3 withdraw their hypotheses. After Agent 1 has agreed, the

others accept H3. What has been gained is the broad acceptance of the hypothesis

H3 which is less speci�c than H1 and less general than H2.

6.6 Conclusions

Summary. This chapter concentrated on the area of learning in multiagent sys-

tems. It was argued that this area is of particular interest to DAI as well as ML.

Two principal categories of learning|centralized and decentralized learning|were

distinguished and characterized from a more general point of view. Several concrete

learning approaches were described that illustrate the current stage of development

in this area. They were chosen because they re
ect very well the current method-

ological main streams and research foci in this area: learning and activity coordina-

tion; learning about and from other agents; and learning and communication. It is

very important to see that these foci are not orthogonal, but complementary to each

other. For instance, agents may learn to cooperate by learning about each other's

abilities, and in order to learn from one another the agents may communicate with

each other. It is stressed that several interesting and elaborated approaches to learn-

ing in multiagent systems other than those described here are available. Space did

not allow us to treat them all, and the reader therefore is referred to the literature

mentioned thoughout this chapter.

Open research issues. Learning in multiagent systems constitutes a relatively

young area that brings up many open questions. The following areas of research

are of particular interest:
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MODIFY(H1, H3, 0.55)

MODIFY(H1, H2, 0.5)

[H1 - 0.775]

CONFIRM(H2, 0.6)

CONFIRM(H3, 0.6)

CONFIRM(H3, 0.5)

[H3 - 0.8]

MODIFY(H2, H3, 0.45)

[H2 - 0.78]

WITHDRAW(H1)

WITHDRAW(H2)

AGREED(H3, 0.8)

ACCEPT(H3)

ACCEPT(H3)
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Figure 6.6 An example of an interaction sequence.

The identi�cation of general principles and concepts of multiagent learning.

Along this direction questions arise like What are the unique requirements and

conditions of multiagent learning? and Are there general guidelines for the design

of multiagent learning algorithms?

The investigation of the relationships between single-agent and multiagent learn-

ing. This necessitates to answer questions like Do centralized and decentralized

learning qualitatively di�er from each other? and How and under what

conditions can a single-agent learning algorithm be applied in multiagent con-

texts?

The application of multiagent learning in complex real-world environments.

Going in this direction helps to further improve our understanding of the bene�ts

and limitations of this form of learning.
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The development of theoretical foundations of decentralized learning. This

ranges from convergence proofs for particular algorithms to general formal mod-

els of decentralized learning.

An overview of challenges for ML in cooperative information systems is presented in

[51]. In this overview a useful distinction is made between requirements for learning

about passive components (e.g., databases), learning about active components (e.g.,

work
ows and agents), and learning about interactive components (e.g., roles and

organizational structures).

Pointers to relevant related work. As already mentioned, this chapter is

restricted to learning in multiagent systems. The reader interested in textbooks on

single-agent learning is referred to [28] and [34]. There is a number of approaches

to distributed reinforcement learning that are not covered by this chapter; see, e.g.,

[12, 30, 41, 65]. Moreover, there is much work in ML that does not directly deal

with learning in multiagent systems, but is closely related to it. There are three

lines of ML research that are of particular interest from the point of view of DAI:

Parallel and distributed inductive learning (e.g., [10, 40, 50]). Here the focus is

on inductive learning algorithms that cope with massive amounts of data.

Multistrategy learning (e.g., [33]). Here the focus is on the development of

learning systems that employ and synthesize di�erent learning strategies (e.g.,

inductive and analogical, or empirical and analytical).

Theory of team learning (e.g., [25, 52]). Here the focus is on teams of independent

machines that learn to identify functions or languages, and on the theoretical

characterization|the limitations and the complexity|of this kind of learning.

Research along these lines is much concerned with the decentralization of learning

processes, and with combining learning results obtained at di�erent times and/or

locations.

Apart from ML, there is a considerable amount of related work in economics.

Learning in organizations like business companies and large-scale institutions con-

stitutes a traditional and well-established subject of study. Organizational learning

is considered as a fundamental requirement for an organization's competitiveness,

productivity, and innovativeness in uncertain and changing technological and mar-

ket circumstances. With that, organizational learning is essential to the 
exibility

and sustained existence of an organization. Part II of the Bibliography provided in

[63] o�ers a number of pointers to this work.

There is also a large amount of related work in psychology. Whereas economics

mainly concentrates on organizational aspects, psychology mainly focuses on the

cognitive aspects underlying the collaborative learning processes in human groups.

The reader interested in related psychological research is referred to [2] and, in

particular, to [13]. A guide to research on collaborative learning can be found in [14].

Interdisciplinary research that, among other things, is aimed at identifying essential
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di�erences between available approaches to multiagent learning and collaborative

human-human learning is described in [67].

These pointers to related work in ML, economics, and psychology are also

intended to give an idea of the broad spectrum of learning in multiagent systems. In

attacking the open questions and problems sketched above it is likely to be helpful

and inspiring to take this related work into consideration.

6.7 Exercises

1. [Level 1] Consider a group of students who agreed to work together in

preparing an examination in DAI. Their goal is to share the load of learning.

Identify possible forms of interactive learning. How do the forms di�er from

each other (e.g., w.r.t. e�ciency and robustness) and what are their advantages

and disadvantages? What abilities must the students have in order to be able

to participate in the di�erent forms of learning? Do you think it is possible

to apply the di�erent forms in (technical) multiagent contexts? What are the

main di�culties in such an application?

2. [Level 2] Design domains with varying agent couplings, feedback delays, and

optimal strategy combinations, and run experiments with isolated reinforce-

ment learners. Summarize and explain the success and failures of developing

coordinated behaviors using isolated, concurrent reinforcement learners in the

domains that you have investigated.

3. Consider the algorithms ACE and AGE.

(a) [Level 2] Calculate and compare the computational complexities per

action selection cycle of both algorithms.

(b) [Level 2] Evaluate the scale up in speed of both algorithms with increasing

number of agents in the group.

(c) [Level 3] How could the complexity be reduced? Do you see any possibility

to reduce the number of activity contexts to be considered by the agents?

Implement and test your solution.

4. [Level 2/3] Implement and experiment with 0, 1, and 2-level agents in an

information economy. How does 2-level buyer agent bene�t compare to 1-level

buyer agents when the seller agents are 0-level agents? How does 2-level buyer

agent bene�t compare to 1-level buyer agents when the seller agents are 1-level

agents?

5. Consider the problem of learning an opponent strategy.

(a) [Level 2] Formulate this problem in a two player zero-sum game as a

reinforcement learning problem.

(b) [Level 3] Implement a reinforcement learning algorithm to learn the

opponent strategy in a simple two-player zero-sum game. Show how
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the learned opponent model can be used to exploit weaknesses in the

strategies of a weaker player.

6. A popular multiagent learning task is block pushing. As described in this

chapter, this task requires that (at least) two agents learn to work together in

pushing a box from a start to a goal position, where the box chosen is large

enough so that none of the agents can solve this problem alone. This learning

task becomes especially challenging under two reasonable assumptions: each

agent is limited in its sensory abilities (i.e., its sensors provide incomplete

and noisy data), and learning feedback is provided only when the agents are

successful in moving the block into the goal position (i.e., no intermediate

feedback is provided).

(a) [Level 2/3] Assume that both agents are capable of Q-learning and

that they select and perform their actions simultaneously. Furthermore,

assume that (i) the agents do not communicate and (ii) that at each

time each of the agents knows only its own position, the goal position,

and the position of the block. Implement this learning scenario and run

some experiments. What can be observed?

(b) [Level 3/4] Now assume that the agents are able to communicate with

each other. What information should they exchange in order to improve

their overall performance? Implement your ideas and compare the results

with those gained for non-communicating learning agents. Do your ideas

result in faster learning? What about the quality of the learning results

and the complexity of learning?

7. Another popular learning task is multiagent foraging. This task requires

that multiple agents learn to collect food in a con�ned area (their \living

environment") and take it to a prede�ned region (their \home"). An agent

receives positive learning feedback whenever it arrived at home with some food

(each agent is able to collect food without requiring help from the others).

(a) [Level 1] What are the essential di�erences between this learning task

and the block pushing task?

(b) [Level 2/3] Assume that the agents are capable of Q-learning. Implement

this learning scenario and run some experiments.

(c) [Level 3/4] Additionally assume that that there are two di�erent types of

food: food of type A can be carried by a single agent, while food of type

B must be carried by two agents. Furthermore assume that the learning

feedback for collecting food of type B is four times higher than for type

A, and that some agents are better (e.g., faster) in collecting food of type

A while others are better in collecting (together with others) food of type

B. What information should the agents exchange and what communi-

cation and coordination mechanisms should they use in order to collect

both type-A and type-B food as fast as possible? Think about equipping

the individual agents with the ability to learn about other agents. Im-
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plement your ideas, and compare the results with those achieved by the

more primitive non-communicating agents (i.e., agents that do neither

communicate nor learn about each other).

8. [Level 3/4] Consider Exercise 14 of Chapter 1 (vacuum world example).

Instead of implementing chains of sample passing agents, the agents themselves

could learn to form appropriate chains. (Alternatively, the agents could learn

to appropriately divide the vacuum world into smaller sections that are then

occupied by �xed sets or teams of agents.) Identify criteria according to which

the agents can decide when and how to form chains. Run experiments with

the learning agents and analyze, e.g., the orientation and the position of the

chains learned. Identify criteria according to which the agents can decide when

and how to dissolve chains. Again run experiments. Give particular attention

to the learning feedback (immediate vs. delayed) and the communication and

negotiation abilities of the agents.

9. [Level 3/4] Consider Exercise 11 of Chapter 2 (package-moving robots). How

could the robots learn to build appropriate roadways and drop-o� points?

(What exactly does appropriate mean in this example? What communication

and negotiation abilities should the robots possess?) Implement your ideas,

and compare the results achieved by learning and non-learning robots.

10. [Level 3/4] Consider Exercise 8 of Chapter 4 (multiagent LRTA* algorithm).

How could the agents learn to coordinate their activities? What activities

should be coordinated at all? What information must be exchanged by the

agents in order to achieve a higher degree of coordination? Choose one of the

search problems described in Chapter 4, and run some experiments.

11. [Level 3/4] Consider Exercise 8 of Chapter 5 (lookahead in contracting).

Choose one of the contracting scenarios described in that chapter; alternatively,

you may choose the multiagent foraging scenario (see Exercise 7 above), the

vacuum world scenario (Exercise 8), or the package-moving domain (Exercise

9). Give examples of criteria for deciding about the depth of lookahead in

contracting. Implement an algorithm for lookahead contracting, where the

depth of lookahead is adapted by the agents themselves.
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7 Computational Organization Theory

Kathleen M. Carley and Les Gasser

7.1 Introduction

From the hospital, to the schoolroom, to the boardroom people �nd that the actions

they take a�ect and are a�ected by various organizations, and the norms, proce-

dures, culture, and members of those organizations. In order to navigate through an

organizational world, agents (human and arti�cial) need social and organizational

intelligence. This organizational intelligence comprises many dimensions, including

communication capabilities, knowledge about who knows what, knowledge about

norms, procedures, and culture of the organization, and more.

The ability of an organization to act is certainly dependent on the intelligence of

the agents within it. However, organizations, and multiagent systems in general,

often show an intelligence and a set of capabilities that are distinct from the

intelligence and capabilities of the agents within them. It is not di�cult to �nd

multiagent systems that display non-random and repeated patterns and processes

of action, communication, knowledge, and memory (beyond the lifetime of a single

agent) regardless of whether or not the agents are human. Said another way,

many multiagent systems exhibit characteristics of organization, and sometimes

of intentional organization design. Organization designs may emerge spontaneously

or be imposed, and they can can structure activities and attention within a system

or control the actions of a system as a corporate entity.

From country to country, culture to culture, task to task, and agent type to agent

type, we �nd both di�erences and commonalties in the patterns and processes con-

necting individual agents and in the forms organizations take. In order to navigate

through environments and achieve results not achievable by individual agents, or

to exhibit capabilities not held by individual agents, organizations (and indeed all

multiagent systems) need to act as intelligent information processors, capable of

responding as a single corporate entity, and to coordinate individual agents using

organizing principles or designs. Research in the computational organization area

employs computational techniques to theorize about and analyze organizations and

the processes of organizing.

The goal of this chapter is to describe what can be done and what others have

done in this area: the underlying principles, assumptions, concerns, and the major
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streams of work. After reading this chapter you will have gained insight into

the aims, �ndings and new possibilities of this �eld. Further, after reading this

chapter you should have developed a preliminary understanding of the nature of

computational organizational models and developed some of your own ideas about

how to construct virtual experiments using such models.

7.1.1 What Is an Organization?

A classic response to the question \What is an organization?" is \I know it when

I see it." Indeed, every text book in organizational theory provides a de�nition

of organizations. Unfortunately, there is no wide consensus on the de�nition of

\organization," and indeed as theorists reason about organizations trying to answer

fundamentally di�erent questions, they construct di�erent de�nitions of the basic

phenomenon. While there is no single de�nition of organizations that is uniformly

agreed to, there are general tenets that are more or less shared. In general,

organizations are characterized as:

large-scale problem solving technologies

comprised of multiple agents (human, arti�cial, or both)

engaged in one or more tasks; organizations are systems of activity

goal directed (however, goals can change, may not be articulable, and may not

be shared by all organizational members)

able to a�ect and be a�ected by their environment

having knowledge, culture, memories, history, and capabilities distinct from any

single agent

having legal standing distinct from that of individual agents

One rationale for the existence of organizations qua organizations is that they

exist to overcome the limitations of individual agency.1 From this viewpoint, there

are four basic limitations: cognitive, physical, temporal, and institutional.

1. Cognitive Limitations { Agents as boundedly rational actors have cognitive

limitations and therefore must join together to achieve higher-levels of perfor-

mance.

2. Physical Limitations { Agents are limited physically, both because of their

physiology and because of the resources available to them, and therefore

must coordinate their actions, e.g., to achieve higher-levels of productivity.

All action takes place situated in speci�c space-time locations, and agents are

limited (e.g. by relativity limits) in their access to other space-time locations;

this fundamental locality means that distributed action is fundamentally a

1. Other rationales include human needs for social a�liation, and the simple non-

teleological emergence of patterns of activity in complex environments. However, in this

chapter the focus is on the standard information processing approach.
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multiagent|and hence potentially organized|phenomenon.

3. Temporal Limitations { Agents are temporally limited and therefore must join

together to achieve goals which transcend the lifetime of any one agent.

4. Institutional Limitations { Agents are legally or politically limited and there-

fore must attain organizational status to act as a corporate actor rather than

as an individual actor.

There is a plethora of ways in which organizations are constituted to overcome

limitations of individual agency. Researchers in various areas refer to the way in

which an organization is organized as the form, structure, architecture or design

of that organization. Decades of research in this area have repeatedly shown that

there is no single correct or proper organizational design. Field and survey research

on actual human organizations, laboratory experiments on human groups, virtual

experiments using computational models, and analyses using mathematical mod-

els all point to the same conclusion. There is no single organizational design that

yields the optimal performance under all conditions. Which organizational design

is optimal depends on a variety of factors including the speci�c task or tasks be-

ing performed, the intelligence, cognitive capabilities, or training of the agents, the

volatility of the environment, legal or political constraints on organizational design,

and the type of outcome desired (e.g., e�ciency, e�ectiveness, accuracy, or minimal

costs). The recognition by researchers of how organizational performance di�eren-

tially depends upon multiple factors has led to the development of \contingency

theories" of organization. From an organizational engineering perspective, locating

an optimal organizational design for a speci�c, multidimensional situation is key.

Whereas, from a theoretical perspective locating the general principles and tradeo�s

underlying organizational design in a multidimensional space is key.

Consequently, research in this area has often focused on the search for general

principles of organizing and the conditions under which these principles do or

do not apply. For example, two such linked principles are specialization and the

division of labor. Specialization of task or occupation refers to the principle that

individuals can become more e�ective when they are expert in particular activities

requiring particular and limited types of knowledge. Division of labor refers to

the principle that appropriate division of tasks, knowledge, and skills among

agents in an organization can improve organizational performance; e.g., by limiting

task and knowledge dependencies. In general, organizations which employ speci�c

and productive instances of these principles are able to overcome the limitations

of individual agency, coordinate individual actions, and leverage training costs,

skill development, and resources in such a way that the organization as a whole

achieves higher levels of performance than are otherwise achievable. However,

over-specialization and excessive division can reduce performance and 
exibility

by de-skilling individuals, decreasing attention due to boredom, and increasing

decision making time, and by actually increasing coordination costs in situations of

uncertainty or failure.
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7.1.2 What Is Computational Organization Theory?

Researchers in the �eld of Computational Organization Theory (COT) use mathe-

matical and computational methods to study both human and automated organi-

zations as computational entities. Human organizations can be viewed as inherently

computational because many of their activities transform information from one form

to another, and because organizational activity is frequently information-driven.

COT attempts to understand and model two distinct but complementary types

of organization. The �rst is the natural or human organization which continually ac-

quires, manipulates, and produces information (and possibly other material goods)

through the joint, interlocked activities of people and automated information tech-

nologies. Second, COT studies arti�cial computational organizations generally com-

prised of multiple distributed agents which exhibit collective organizational proper-

ties (such as the need to act collectively, an assignment of tasks, the distribution of

knowledge and ability across agents, and constraints on the connections and com-

munication among agents). Researchers use computational analysis to develop a

better understanding of the fundamental principles of organizing multiple informa-

tion processing agents and the nature of organizations as computational entities.

The general aims of research in this area is to build new concepts, theories, and

knowledge about organizing and organization in the abstract, to develop tools and

procedures for the validation and analysis of computational organizational mod-

els, and to re
ect these computational abstractions back to actual organizational

practice through both tools and knowledge.

Research in this area has resulted in a large number of models, each with its

own special characteristics. Many of these models focus on speci�c aspects of

organizational behavior. Some research projects with particular illustrative models

are listed in Table 7.1. These models di�er in the way in which individual cognition

is modeled. For example, in the Organizational Consultant there are no individual

cognitive agents; in Sugarscape, the agents have physical positions and follow

simple rules to respond to each other and their environment; in VDT agents are

modeled as simple processors with in- and out-boxes; in CORP a simple model

of experiential learning is used; in ORGAHEAD both experiential learning and

annealing are used to model the decision process; and in Plural-Soar and TAC

Air Soar a fully articulated model of human cognition is used. Further, di�erences

in these models are e�ected by whether or not the agents within them can learn

(see also Chapter 6). These models di�er in the degree to which the organizational

design is captured; e.g., in Sugarscape organizational design is not considered, but

emergent patterns and structures of activity are an outcome of the model; the

Organizational Consultant covers design in terms of a set of features; the Garbage

Can model, AAIS, the CORP model, and the Cultural Transmission model all

consider only a small set of designs; whereas HITOP-A, ACTION, ORGAHEAD,

and VDT admit a wide range of explicitly parameterized designs. Models also di�er

on the extent to which speci�c features of tasks are modeled. In the Garbage Can

model the task is generic and simply requires energy, in the Cultural Transition
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Model Author

Garbage Can Cohen, March and Olsen (1972)

AAIS Masuch and LaPotin (1989)

CORP Carley (1992)

HITOP-A Majchrzak and Gasser (1992)

Plural-Soar Carley et al. (1992)

VDT Cohen (1992), Levitt et al. (1994)

TAC Air Soar Tambe (1997)

Organizational Consultant Baligh, Burton and Obel (1990, 1994)

ACTION Gasser, Majchrzak, et al., (1993,94)

ORGAHEAD Carley and Svoboda (1996)

TAEMS Decker (1995,1996)

Sugarscape Epstein and Axtell (1996)

Cultural Transmission Harrison and Carrol (1991)

Table 7.1 Illustrative Models

model shared knowledge rather than the task itself is considered, in CORP and

ORGAHEAD a detailed classi�cation task is used as a generic simulation activity;

ACTION captures features of 141 generic manufacturing tasks; In VDT speci�c

features of routine design tasks in which the precedent ordering among subtasks

and needed skills can be explored, and TAEMS extends this to non-routine tasks

as well.

Research in this area has also resulted in several "generalist" models that can

be used in a number of applications in addition to their use in organizational

theory. For example, one useful general model of information-seeking, decision

making, and problem-solving activity in organizations is distributed search. Since

formal computational models of search are well understood, modeling organizational

activity as search can provide a clear and tractable explanatory framework (see

Chapter 4). New approaches to control or task allocation in distributed search

frameworks can, by analogy, provide suggestive new approaches to these problems

in human organizations, e.g., in the development of new organizational forms or for

reasoning about the e�ects of alternative strategic decisions. In the end, distributed

search models provide just one type of abstraction that is useful for reasoning about

problems of both human organizations and computational ones, and so help to unify

thinking about both types.

Computational organization theories are most often grounded in existing cogni-

tive, knowledge-based, information-processing theories of individual behavior. How-

ever, COT extends this to an organizational level [60, for example] and gives preci-

sion to the notion of bounded rationality by specifying the nature of the boundaries

[7]. The original information processing perspective basically argued simply that

agents were boundedly rational, that information is ubiquitous in the organization,

and that the organization itself becomes a computational system. Today there is

a neo-information processing perspective on organizational behavior that extends
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and re�nes this early view. The basic tenets of this neo-information processing

perspective on organizations are:

Bounded rationality: Organizational agents are boundedly rational. There are

two types of bounds|limits to capabilities and limits to knowledge. Capabilities

depend on the agents' cognitive, computational, and/or physical architecture.

Knowledge depends on the agents' ability to learn and the agents' intellectual

history. The agents' position in an organization in
uences to which information

an agent has access. Thus, an agents' knowledge of how to do speci�c tasks, of

how its speci�c organization operates, and indeed of how organizations operate

in general, is a function of what positions the agent has held.

Information ubiquity: Within organizations large quantities of information in

many di�erent forms are widely distributed across multiple agents. The infor-

mation may not necessarily be correct.

Task orientation: Organizations and the agents within them are continually en-

gaged in performing tasks. The tasks in which an organization and its constituent

agents are engaged require these agents to communicate, build on, analyze, adapt

or otherwise process organizational information using various technologies, and

to search out new information and new solutions.

Distributional constraints: Organizational performance is a function of what

information is shared by whom, when, and of the process of searching for that

information. An organization's culture is the distribution of the knowledge and

processes across the agents within it. This distribution a�ects the extent and

character of socially shared cognition, team mental models, group information

processing, and concurrent information analysis.

Uncertainty: Uncertainty about task outcomes, environmental conditions, and

about many other aspects of organizational life in
uences organizational activity.

Distributed computational models such as distributed search or distributed con-

straint satisfaction pose distribution itself as a source of uncertainty: distribution

can render critical uncertainty-reducing information less available because of the

cost of seeking, transmitting, or assimilating it, and because of the overhead of

coordinating information needs across agents.

Organizational intelligence: Organizational intelligence resides in the distribution

of knowledge, processes, procedures across agents and the linkages among agents.

Organizations redesign themselves and their vision of their environments on the

basis of the information available to them, with the aim of enabling them to

better search for or process information. Such redesign is part of organizational

learning processes. It can alter an organization's intelligence, and may or may

not improve organizational performance.

Irrevocable change (path dependence): As agents and organizations learn, their

intelligence is irrevocably restructured. This one-directional evolution means

that the kind and order in which things are learned|particular histories|can

have dramatic consequences.
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Necessity of communication: In order to function as a corporate unit, agents

within an organization need to communicate. This communication may take

place explicitly by sending and receiving messages or implicitly by perceiving

the actions of others.

In addition to this neo-information-processing view of organizations researchers

in this area share a series of implicit background assumptions. These are:

Modelability: Organizational phenomena are modelable.

Performance di�erential: It is possible to distinguish di�erences in organizational

performance.

Manipulability: Organization are entities that can be manipulated and trans-

formed.

Designability: Organizations are entities that can be designed. This is not to say

that organizations do not evolve, nor that they cannot be found in nature, for

assuredly both events occur. However, they can also be consciously designed and

redesigned: organizational transformations can be purposeful and principled.

Practicality: Organizational transformations (based on the design or manipula-

tion of models) can be transferred into and implemented in actual practice.

Pragmatism: The costs of modeling and researching organizations using com-

putational methods are relatively lower than the costs of manipulating or re-

searching similar aspects of actual organizations in vivo, and the bene�ts gained

outweigh the costs.

These assumptions that underlie the research in computational organization the-

ory are the result of a fundamentally interdisciplinary intellectual history. Research

in this area draws on work in distributed arti�cial intelligence (DAI), multiagent

systems, adaptive agents, organizational theory, communication theory, social net-

works, and information di�usion. One of the foundational works in this area is The

Behavioral Theory of the Firm [13] in which a simple information processing model

of an organization is used to address issues of design and performance. While the

strongest roots are in the information processing [60, 48, 64, 19, 13]. and social in-

formation processing [59], tradition, current models also have roots in the areas of

resource dependency [54], institutionalism [56], population ecology [31], and sym-

bolic interaction [21]. Formalisms and speci�c measures of organizational design

are drawn from the work in the areas of coordination [45], social networks [65], and

distributed control [12, 16, 41].

7.1.3 Why Take a Computational Approach?

Organizations are heterogeneous, complex, dynamic nonlinear adaptive and evolv-

ing systems. Organizational action results from interactions among adaptive sys-

tems (both human and arti�cial), emergent structuration in response to non-linear

processes, and detailed interactions among hundreds of factors. As such, they are



306 Computational Organization Theory

poor candidates for analytical models. Because of the natural complexity of the

object of study, existing models and theories of organization are often vague, in-

tuitive, and under-speci�ed. Scienti�c progress will be more readily achievable if

the theories are more explicit and well de�ned. Computational theorizing helps to

achieve this.

Computational analysis is an invaluable tool for theory building and examining

issues of organizational dynamics as it enables the researcher to generate a set of

precise, consistent and complete set of theoretical propositions from basic princi-

ples even when there are complex interactions among the relevant factors. Com-

putational models allow researchers to show proofs of concept and to demonstrate

whether or not completely modelable factors can generate certain phenomena. In

this way, computational models can be used to show the potential legitimacy of

various theoretical claims in organization science.

Theoretical computational models can be used to demonstrate lower bounds

or tractability of organizational information processing phenomena (e.g., minimal

information necessary to reach distributed agreement or awareness [29], or the

tractability of an organizational decision or negotiation processes [57]. Experimental

and empirically-based models can also provide computationally-plausible accounts

of organizational activity [36, 15].

7.2 Organizational Concepts Useful in Modeling Organizations

In order to model an organization the following factors are generally modeled at

Organizational 
Model

Design

Task
(Environment)

Agent

Technology

Stressors
Time

. . .

time pressure
deadlines
turnover
change in
  legislation

...

Figure 7.1 Necessary elements in an or-

ganizational model.

some level of detail: agents comprising

the organization, the organization's de-

sign or structure, tasks the organiza-

tion carries out, any environment of the

organization, the organization's mate-

rial transformation and/or information

processing technology, and any stres-

sors on the organization (see Figure

7.1). Organizations can use di�erent

con�gurations of agents, designs, tasks,

and technology to accomplish the same

goal|this is the concept of \equi�nal-

ity." In fact, one of the major issues

in the computational organization area

is determining what organizational de-

signs make sense when and what are

the relative costs and bene�ts of these

various con�gurations that exhibit de-

grees of equi�nality.
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Models in the COT area vary dramatically in the level of detail in which agents,

designs, tasks, and technology are modeled. The better or more detailed these

underlying models, the more precise the predictions possible, but the greater the

computational and modeling resources required. Models run the gamut from sim-

ple abstract models of generic decision making behavior (such as the Garbage Can

Model and CORP) to detailed models of speci�c organizational decisions or decision

making processes (such as VDT, HITOP-A and ACTION). For example, ACTION

represents literally tens of thousands of organizational relationships among 14 dif-

ferent categories of organizational elements [23]. The simpler more abstract models

are typically referred to as \intellective" models. These simpler models allow the

researcher to use the model to simulate the general behavior of classes of organiza-

tions, policies, technologies, tasks or agents. For these models a central research goal

is theory building: to discover general principles underlying organizational behavior.

The more detailed models are often referred to as \emulation" or \engineering"

models. These detailed models may allow the researcher to use the model to emulate

speci�c organizations by entering speci�c detailed parameters such as authority

structures, detailed organizational procedures, or speci�c skill requirements. For

these models a key research goal is organizational engineering: to examine whether

or not the performance of a speci�c organization will be a�ected by making some

speci�c change such as re-engineering the task in a particular way or adding a new

technology.

7.2.1 Agent and Agency

In most COT models, organizations are composed of agents.2 These agents may

be human, arti�cial, or both. Agents take action, are constrained by their organi-

zational role, and agents can make decisions. The actions of which the agents are

capable, and the decisions that they make, depend on their capabilities and knowl-

edge, the situation in which they are embedded, and the task(s) they are performing

(see Figure 7.2).

Figure 7.2 is an adaptation of a scheme provided by Carley and Newell (1994)

for thinking through the nature of agents and models employing such agents.

In organizations, agents have some level of cognitive capability and occupy at a

position in their organization. This position de�nes what task(s) the agent performs,

with whom the agent must communicate, to whom the agent reports, who reports

to the agent, and so forth. Agents have speci�c knowledge, skills, and capabilities.

Classes of agents can be de�ned on the basis of di�erences in position, knowledge,

skills, capabilities, or organizational roles. For example, one class of agents are

2. This need not be the case in general, and other approaches are being investigated.

Most models take agents as the starting point, and compose organizations out of them.

Some models, however, treat agents themselves as the emergent outcome of organizing

processes. This is a conceptual necessary step to handle hierarchies of organizations and

dynamic-organizations-as-agents. See further discussion below, and, e.g., [25, 33].
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manager agents, another might be worker agents. Importantly, an agent's knowledge

is potentially comprised not just of task-based or technical knowledge but also of

social or organizational knowledge. Classes of agents, di�ering in their cognitive

architecture and/or knowledge, would be capable of di�erent actions.

From an arti�cial agent standpoint, what actions an agent can take is a function

of the agent's cognitive capabilities and knowledge. Figure 7.2 is based on Carley

and Newell's (1994) argument that the cognitive architecture serves to constrain

what the agent can know and when the agent can know what and so constrains

what types of actions are needed. Knowledge about the social and organizational

world constrains what types of actions are possible. In Figure 7.2 as you move

down each column the cognitive architecture becomes increasingly well speci�ed

and creates increasing need for more types of actions. As you move across each

row the context becomes increasingly realistic and increasingly knowledge rich. An

agent, in a particular cell, should be capable of taking all the actions to the left and

up of its position. The MODEL SOCIAL AGENT, which is capable of all human

actions, would be in the bottom right corner. Computational organizational models

can be contrasted one with the other in terms of where they are at in this matrix

of possibilities. For example, all models mentioned in Table 1 are positioned in the

relevant cell in Figure 7.2.

Today, advances in the computational organization area are being achieved

through the use of multiagent modeling techniques (see Chapters 1 and 2). In most

organizational models, these multiple agents are viewed as cooperating together

to achieve some collective goal such as producing more widgets, �nding the best

path through a maze, �lling orders, or classifying objects (see Chapters 3 and

4). However, organizational agents need not be cooperative. Competition among

agents may emerge for a variety of reasons. One of the most common examples

is that of an organizational accounting system that reimburses individuals on the

basis of individual contribution or performance and rather than on the overall

organization performance. Moreover, competition among agents may even improve

overall organizational performance on some tasks. Similarly, in most organizational

models agents are viewed as essentially honest and as not knowingly communicating

incorrect information or decisions. However, this need not be the case, particularly

in organizations of people or in cases of information warfare. Ironically, for many

organizational tasks, the task itself may be so ambiguous, that the agent may not

be able to detect whether or not other agents are lying. Or, the task may be so

constraining that lying is immediately obvious. MAS/DAI researchers have begun

to investigate incentive models that link the rationality of truthfulness to the task

structure of the domain and the constraints of the environment [57] but to date

these models have not been incorporated into COT models.

Models of organizations have represented organizations as single decision makers

and as collections of decision makers. Within the multiagent organizational models

agents have been modeled in a variety of ways. For example, in the Garbage Can

Model agents are characterized by a small set of parameters and vectors such as

their energy, what problems they consider salient, what problems they can act on,
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and so forth. In this case the agent's abilities are represented as numerical arrays or

values. For example, what problems are salient to an agent is represented by which

cells in an agent by problem matrix are ones, and agent energy is simply a numeric

value. In VDT the agent is modeled as an in-box, an out-box, a set of preferences for

how to handle information, a set of skills, and so forth. In Plural-Soar each agent is

modeled as a separate Soar agent. In this case the agent's knowledge is a set of rules

in a series of problem spaces. In very sophisticated models, such as TAC Air Soar

and Plural-Soar, agents are represented as complex, multilevel search processes,

which have several interleaved levels and timescales of reasoning, and include both

strategic and tactical modes.

7.2.2 Organizational Design

An organization's design can be conceptualized as a speci�c con�guration of param-

eters that control the organization's behavior. The types of parameters generally

considered include all of the con�guration elements noted above (tasks, roles, orga-

nization structure, etc) as well as speci�c model-dependent parameters (inbox-sizes

and delays for VDT, critical process variances for ACTION, etc.) Taken together,

the parameters with their ranges of potential values de�ne a parameter space, which

in turn de�nes a space of potential organization designs. The process of designing

an organization is in essence a process of re�ning and constraining that space to a

single point (or to a set of points for a dynamically-restructurable organization).

Other commonly modeled design-oriented parameters include procedures and

rules that embody organizational knowledge and the set of connections linking

agents and tasks. Typical procedures and rules range from task-based rules, to

accounting procedures, to procedures for hiring, �ring, promoting, and moving

agents about. The set of linkages among agents and tasks are often described as

structures or networks. There can be many such structures in the organization. The

structure perhaps most familiar to people who have worked organizations is the

authority and communications structure. This is often represented in speci�c terms

by an organization chart. However, the organization chart is most often simply

the formal representation structure. In addition, there is a myriad of other inter-

linked structures that constrain and provide opportunities for action, and which are

typically not perceived by those who work in the organization. One set of additional

structures is the informal structure: the networks of interactions among agents

such as friendship networks, and advice networks. In addition to these structures

is are task structures (hierarchical and precedence ordering among subtasks, see

also Chapter 3), task-resource structures (de�ning which resources are needed for

which task), task-skill structures (de�ning what skills are needed for which task),

resource access structures (de�ning which agent has access to which resources),

skill structures (de�ning which agent has which skills), task assignment structures

(de�ning which agent is assigned or is allowed to work on which subtasks), and

so on. Modeling these structures in concert so as to account for and explain their

interactions is a daunting and complex task for COT models.



7.2 Organizational Concepts Useful in Modeling Organizations 311

Within the COT area the two most typical ways of conceptualizing the organi-

zation's design is as a set of attributes (such as centralized or decentralized com-

munication, authority, skill, or other structures, or density of communication ties)

or as a set of matrices. The attribute approach is used in HITOP-A, the Organi-

zational Consultant, and AAIS. The matrix approach is used in the Garbage Can

Model, CORP, VDT and ACTION. Illustrative structures in both their matrix and

graphical network form are shown in Figure 7.3.

Resource Access/Decision/Skill Structure

agents
resources or
choices or
skills

SEGREGATED/SPECIALIZED HIERARCHICAL

Authority Structure Or Communication Structure

Requirements Structure

COLLABORATIVE TEAM HIERARCHY
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UNSEGMENTED

agents agents
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111111111
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111111111
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111111111
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000011000
000000110
000000001

000000000
100000000
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010000000
010000000
010000000
001000000
001000000
001000000

agents
resources or
choices or
skills

resources or
choices or skills

tasks

Figure 7.3 Illustrative structures that

comprise an organization's design.

In Figure 7.3 two examples of each

of three of the types of structures that

comprise the overall design of an or-

ganization are shown. The resource ac-

cess structure (top) links agents to re-

sources; the decision access links agents

to possible decision choices, and the

skill structure links agents to their

skills. Such structures show what is

possible for each agent. A segregated or

specialized structure implies that each

agent is unique. This can imply little

or no overlap in their mental models.

A hierarchical structure at this level

implies that there is one agent who

has comprehensive access to, or knowl-

edge about, the items in question. The

authority and/or communication struc-

tures (middle) link agents to agents. In

the authority structure the links show

who has authority over whom and thus

who reports to whom. In the commu-

nication structure the links show who

talks to whom. In a collaborative struc-

ture all links are possible, in a hierarchy there is a central or apex agent. Finally,

the requirements structure (bottom) links resources or skills with tasks. This struc-

ture shows what is needed to meet a certain task based goal. In the segregated

or specialized structure each task has di�erent requirements. In the unsegmented

structure each task potentially requires all resources or skills. The structures shown

are illustrative. Many other types of structures are possible. By thinking in terms

of agents, resources (decisions or skills), tasks, and the linkages between them it

is possible to describe analytically the set of possible designs and the designs as

enacted by an organization.

Over time, researchers have begun to embed knowledge about organizations'

structures in the agents so that it constrains the sharing of results and other infor-

mation among organizational agents (see Chapter 3). In early organization design

experiments with the Distributed Vehicle Monitoring Testbed (DVMT) [16] struc-
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ture was embedded in each agent by (1) temporarily restricting its problem-solving

capabilities (i.e., \skills") to a subset of its full set of available capabilities by

\shutting o�" some|this established a specialized \role"; (2) providing communi-

cation and reasoning mechanisms that linked current problem-solving capabilities

(the current role) to agents and thus drove communications dynamically, and (3)

providing strategic-level mechanisms for dynamically recon�guring agent roles and

role-to-agent maps (selectively activating and deactivating agent skills), thus imple-

menting changes in the organization structure simply by changing the knowledge

and skills of the agents.

In other cases, an organization's structure is represented as a series of rules for

when to communicate what to whom and how to structure the communication.

Representing organization's structure as a series of procedures or rules also facili-

tates linking up models of structure with models of intelligent agents. This approach

is taken in the team (or multiagent) Soar work [37, 62, 63, 6]. In much of this work,

organizational structure changes in response to changes in the environment because

built into the agent's knowledge base are a set of standard operating procedures

for how to restructure the communication under various conditions.

7.2.3 Task

The organization and its members are engaged in one or more tasks at any point in

time. Further, over time, the organization repeatedly engages in a sequence of often

quite similar tasks. These tasks may be composed of subtasks which may themselves

be further subdivided. These tasks may have dependencies among them. Thompson

identi�ed three such dependencies|pooled (the results from two or more tasks are

jointly needed to perform a di�erent task), sequential (two or more subtasks must

be performed in a speci�ed sequence), and reciprocal (two tasks depend jointly on

each other). Organizations are expected to improve their performance if they match

the rest of their structures to the underlying task structure. (This concept of high

performance as structural alignment is a characteristic explicitly represented in the

mutual alignment approach of the ACTION model.)

The set of tasks faced by the organization can be thought of as its environment

(or problem space). For example, in the car industry, the task can be viewed as

a repeated design task. Each year, the industry generates new models that are

more or less similar to the year before through a process of design and redesign.

Task environments vary in many dimensions. Among the most important of these

dimensions are degree of repetition, volatility, bias, and complexity. Some of these

concepts are illustrated graphically in Figure 7.4.

Repetition: whether the set of tasks are repetitive (agents do the same thing over

and over), quasi-repetitive (agents do the same type of thing repeatedly but the

speci�c instances or details are di�erent), or non-repetitive (each task is unique).

This is shown graphically in Figure 7.4 by each task being composed of a set of

bricks, and the pattern of bricks being di�erent for each task.

Volatility: the rapidity with which the task environment changes. For example, in
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Figure 7.4 when the task environment oscillates between two types of tasks (such as

selling swimming pools in the summer and selling Christmas goods in the winter),

this oscillation can be rapid (high volatility) or slow (low volatility).

Bias: the extent to which all possible tasks, regardless of task features, have

the same outcome or solution. For example, in the binary choice task, a biased

environment would be one where most outcomes were to choose 1 (as opposed to

an unbiased environment where 1's and 0's would be equally likely).

Complexity: the amount of information that needs to be processed to do the

task. For example, in the warehouse task, as the number of items on the order, the

number of stacks, and the number of items per stack increases the complexity of

the task increases.

Time

Repetitiveness:  degree of similarity

stream of tasks in task environment

Environmental Change

step change

oscillating

gradual change

Volatility

high

low

environment 1

environment 2

environment 1

environment 2
environment 1

environment 2

environment 1

environment 2

Figure 7.4 Characteristics of the task

environment.

Typical task environment changes

are step change, oscillating, and grad-

ual (see Figure 7.4). In a \step change"

environment, a discontinuity caused by

legislation or technology alters the en-

vironment faced by the organization.

For example, when a new manufac-

turing technology is introduced �rms

change from one task to another that is

quite di�erent. In an \oscillating" envi-

ronment tasks or sets of tasks are cho-

sen alternately from two di�erent sets.

Seasonal �rms, for example, face oscil-

lating environments. One such seasonal

�rm is the �rm which sells swimming

pools in the summer and Christmas

goods in the winters. In an environment

of gradual change, minor changes result

in a gradual shift in the types of tasks

faced by the organization. For example,

the gradual aging and learning of stu-

dents results in gradual changes in the

types of problem sets the teachers must

devise.

The performance of an organization can be measured with respect to the task

or tasks it is performing. Three types of performance measures are commonly

employed: e�ectiveness (is the task being performed well), e�ciency (is the task

being performed in such as way that output is maximized relative to some input),

and perceived e�ectiveness (is the organization perceived as performing well by

one or more stakeholders such as the general public, the government, the board

of directors, or the media). For many tasks in which the product is generated by

the group as a whole, while it might be possible to measure an organization's

overall performance, in real human groups it is often impossible to objectively
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measure the actual contribution of any one member. Three aspects of e�ectiveness

are: relative performance (how well is the organization performing compared to

other organizations), accuracy (how many decisions are being made correctly), and

timeliness (how rapidly are decisions begin made). For particular tasks or industries

there are often entire literatures on how speci�cally to measure performance in

speci�c situations. In general, for most models, multiple measures of performance

are be gathered.

Within the COT area there are two strands of research on tasks. Some models,

such as VDT, o�er the capability of modeling a wide variety of organizational tasks,

focusing on dependencies among subtasks but leaving the speci�c content of what is

done in any particular subtask otherwise unspeci�ed. In contrast, other models such

as CORP are constrained to highly stylized and speci�c experimental tasks that,

although retaining key features of actual tasks, di�er in detail and complexity from

those done in actual organizations. These highly stylized tasks are often referred to

as canonical tasks, and they are valuable as research vehicles because researchers

can share them among di�erent modeling systems and environments and can more
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Figure 7.5 Illustrative tasks.

easily compare results. A set of such

tasks is emerging for COT research.

This set includes: the sugar-production

task, the maze task, the binary classi-

�cation task, the radar task, the ware-

house task, the PTC task (production,

transportation, and consumption), and

the meeting scheduling task. In Figure

7.5 the binary choice task [5] and the

warehouse task [6] are illustrated.

The warehouse task (Figure 7.5 top)

is a simpli�ed version of the more gen-

eral search task. The key element of a

search task is that there are a set of

things being searched for, a set of lo-

cations where those things might be,

and the organization must �nd all of

the items. Organizational performance

is based on the rapidity with which

items are found and the e�ort spent

in locating them. If the items cannot

be depleted and the rule linking items

to location does not change, then this

problem, for a single agent, is simply

a matter of remembering where things

are. The task is complicated by agents being too boundedly rational to remember

where things are or to act rapidly enough, by items being depleted or moved, and

by information errors in what items are asked for and how items are represented at
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the various locations.

The binary choice task (Figure 7.5 bottom) is a simpli�ed version of the more

general classi�cation choice task. The key element of a classi�cation choice task is

that there is a set of incoming information, a set of possible outcomes, and the

organization must classify the incoming information to determine which outcome

is most likely to be correct, and then the organization is told what was the correct

classi�cation. Organizational performance is based on the rapidity and accuracy

with which a problem is classi�ed. If the rule linking incoming information to

choice does not change dynamically, then this problem for a single agent, is simply

a matter of remembering what outcome is associated with which incoming pattern

of information. This task is complicated by agents being too boundedly rational

to be able to handle all of the information, by information errors or incomplete

information, and by errors or latency in the feedback.

For both tasks, the goal is not to �nd the optimal way of solving this task.

Rather, the goal of a computational organization theory model is to do the task as

an organization would and to show the relative tradeo�s between di�erent types of

organizational designs, the relative impact of various communication technologies,

or the relative bene�ts of di�erent mixtures of agents.

From an organizational perspective, the question is how to structure a group

of agents (what resource structure, what authority structure, what task structure,

etc...) so that the organization as a whole exhibits high performance despite these,

and other, types of complications (or stressors).

7.2.4 Technology

Research on organizational behavior needs to account for the role of information

and telecommunication technologies. Most COT models ignore issues of technol-

ogy within the organization. In a few cases, researchers have begun to look at how

di�erent technologies for processing, storing, retrieving, or communicating infor-

mation might a�ect the actions of the individuals within the organization and/or

the organization's overall performance. Two di�erent approaches to examining the

impact of technologies have appeared: technology as tool and technology as agent.

One approach to modeling technology is to treat it as a tool and to di�erentiate

tools in terms of the attributes such as access, speed, synchronicity, and record-

ability. This approach is taken in the Virtual Design Team (VDT) [42, 35]. Within

VDT, the organizational agents have a suite of communication technologies avail-

able to them like telephone, face-to-face meetings, and email. The agent also has

a preference to send certain information via certain technologies. Using VDT the

researcher can begin to examine how altering the way in which memos are sent,

e.g., by paper or email, may a�ect the speed with which the organization solves a

task and the amount of rework that needs to be done.

A second approach to modeling technology is to treat it as an arti�cial agent (and

as altering the information processing capabilities of existing human agents who

have access to the technology). This approach is taken in the constructural model
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[36]. Within the constructural model the agents have an information processing or

communication technology available to them which a�ects how many other agents

they can simultaneously communicate with, whether the communicated message

must be the same to all receivers, how much information the agent can retain,

and so on. The technology itself may act as an agent with particular information

processing and communicative capabilities. For example, a book as an arti�cial

agent can interact with many other agents at the same time, send a di�erent message

to each receiver, can survive longer in the population than human agents, and, unlike

human agents, cannot learn. As another example, a website as an arti�cial agent

can interact with many other agents at the same time, send a di�erent message to

each receiver, has a shorter lifespan than its creator, and can "learn" by a speci�c

subset of interactants adding information to the site. Within a computational model

of an organization, such arti�cial agents can be represented simply as a separate

class of agents with capabilities and knowledge that di�er from humans and each

other in systematic ways.

7.3 Dynamics

Many of the key issues in the COT area center around organizational dynamics.

How do organizations learn? How do organizations evolve? What new organiza-

tional designs will emerge in the next decade or century? To examine such issues

researchers use many tools, ranging from empirical observation and explanation

of the behavior of complex agent-based models such as the DVMT, TAEMS, or

Plural-Soar on dynamically-evolving tasks, to complex adaptive approaches or op-

timization approaches, such as genetic algorithms, genetic programming, neural

networks, and simulated annealing. This work demonstrates that interactions be-

tween agent architecture, the way agents are coordinated, and the way the agents

and the coordination structure adapt and change over time a�ect organizational

behavior. Another common result is that for collections of even minimally intelli-

gent agents organization often spontaneously emerges. Indeed, many studies show

how structures that can be characterized as hierarchies sometimes spontaneously

emerge.

Organizations are seen to be potentially dynamic in many ways. Organizations

are capable of being redesigned or re-engineered moving the organization in a

con�guration space, making changes such as what agent reports to what other

agent, or which agent handles what tasks. Agents within an organization are capable

of changing; e.g., by learning or, in the case of arti�cial agents, by recon�guring

themselves or acquiring new knowledge. The processes, communications, or types

of interactions can change, and so forth. There is a variety of processes that a�ect

an organization's ability to adapt. For example, in order to achieve new levels of

performance organizations often need to engage in an exploration process where

they examine new technologies, new ways of doing business, new designs, and so



7.3 Dynamics 317

on. However, organizations can also improve performance by exploiting current

knowledge and technologies and getting better at what they do best. Exploration

and exploitation are somewhat at odds with each other and organizations need to

balance these two forces for change [46]. Organizational change is not guaranteed to

improve performance. Organizations are typically more likely to redesign themselves

when they are new and such changes may in turn cause the organization to fail.

Such early failure is referred to as the liability of newness.

A variety of di�erent approaches to organizational dynamics has been taken. To

illustrate some of the issues involved two di�erent approaches to will be brie
y

described. The �rst approach is based on the idea of 
exible agents|agents which

can restructure themselves in response to changes in the environment. The second

approach is based on the idea of dual-level learning|organizations in which agent

level and structural level learning occur in response to changes in the environment.

Ishida, Gasser and Yokoo [33, 34] (see also [25]) demonstrated the potential for


exible organizational structures to emerge from 
exible agents. The basic idea

underlying their approach is that the agents are 
exible entities and knowledge

interactions are the stable foundation of social grouping. Agents were modeled as

sets of problem-solving production rules; i.e. mappings of individual rules to rule-

collections. These mappings were 
exible|rules could migrate from collection to

collection (from agent to agent). Knowledge interactions were modeled as individual

production rules. That is, an individual production rule is a way of saying that under

certain meta-level control (rule-�ring) conditions, certain particular knowledge

(modeled as a LHS clause or input) interacts with certain other knowledge (another

speci�c LHS clause or input) to produce speci�c additional knowledge (a particular

RHS clause). This new RHS clause maps into (interacts to produce) an LHS

clause for another rule or to an output. These production rules never changed.

Agents 
exibly emerged out of a fabric of interactions|production rules|which

got mapped and re-mapped to rule collections. Agents re-con�gured their local

knowledge and the structure or pattern of interactions among themselves, in

response to changes in the environment. The actual number and character of agents

changed over time as did the organizational structure. Which agents reported to

which other agents was clearly not �xed, since the content and boundaries of agents

themselves were not �xed. Experimental simulations showed that highly e�ective

organizations tended to learn adaptations over time; i.e., on repeated exposure to

similar (oscillating) environmental changes these organizations went through fewer

adaptations over time. In this sense the organizations of agents learned how to

learn.

Carley and Svoboda [9] used the ORGAHEAD model of organizational change to

demonstrate the importance of learning histories and that organizations in which

both the agents and the structure were 
exible and could learn over time were

not guaranteed to improve their performance. The ORGAHEAD model is based

on the social conception of organizations as inherently complex, computational and

adaptive in which knowledge and learning occurs at multiple levels. Within ORGA-

HEAD organizational action results from both the behavior of multiple agents and
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the structure (or network) connecting these agents and the way in which knowl-

edge is distributed among these agents. Agents learn through gaining new knowl-

edge through experience. This is implemented using a standard experiential learning

model in which agents add new knowledge to old knowledge and continually update

the probability with which they take certain actions based on the likelihood that

the proposed action led to the desired outcome in the past. Learning occurs at the

structural level|by altering procedures and linkages among the agents and tasks

(such as who reports to whom and who does what)|as the organization redesigns

and restructures itself. This strategic learning is implemented as a simulated an-

nealing algorithm. In this case there is a chief executive o�cer (the annealer) that

proposes a change, evaluates the potential impact of this change on the organization

by trying to anticipate what will happen in the future, and then decides whether

or not to accept the change according to the Metropolis criteria. According to the

Metropolis criteria the change is always accepted if it is anticipated to improve

performance and is accepted but with decreasing likelihood over time if the change

is risky and is anticipated to decrease performance. The results from these studies

show that not all change is advantageous. Individual and structural learning clash;

e.g., organizations re-engineer themselves for better performance only to lose the

lessons of experience learned by various agents as those new agents are moved to

di�erent tasks or leave the organization. Because of such learning clashes change of-

ten results in maladaptation. The history of how and when the organization changes

is as much a determinant of the organization's performance as the organization's

design. And, truly adaptive organizations, those whose performance actually im-

proves over time are those organizations which engage in a meta-learning to balance

change due to learning at the structural level with change due to gathering new

experiences at the individual agent level.

7.4 Methodological Issues

There are numerous methodological issues involved in the development and testing

of computational models of organizations and organizing. There are three, however,

that require special mention. The �rst, is the use of virtual experiments to examine

the implications of the computational model. The second, has to do with validation,

veri�cation and the relation of the computational models to data on organizations.

The third, has to do with the role of development tools and frameworks to mitigate

the costs of developing these models.

7.4.1 Virtual Experiments and Data Collection

Unlike early models in this area, such as the Garbage Can Model, today's com-

putational models of organizations are often su�ciently complex that they cannot

be completely analyzed. For example, the parameter space of set of options is fre-
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quently so extensive that the researcher cannot explore all possible input combi-

nations to determine the performance of the system. Nevertheless, a large number

of combinations need to be explored as the performance of the system may change

drastically for di�erent combinations of inputs. One of the reasons that modern

models are so complex is that organizations themselves are complex. Another, is

that models are often designed by representing process. As such, the same model

can be used to address a number of questions about organizations and organizing.

To address this problem, researchers in this area run virtual experiments. A

virtual experiment is an experiment in which the results are gathered via simulation.

In running a virtual experiment the researcher sets up a series of simulations to

address a speci�c question. For the virtual experiment the researcher chooses a

small set of parameters|perhaps three|and then varies these systematically over

some range. All other parameters are typically held constant or allowed to vary

randomly in classic Monte Carlo fashion. Statistical procedures for designing and

analyzing the resulting data can be used for virtual experiments just as they can

for experiments using humans in the laboratory.

For example, imagine that the computational organizational model allows the

researcher to control the number of agents, the way agents make decisions (following

standard operating procedures or based on experience, how the agents can send

messages (such as face-to-face one-on-one or group meetings, email to one other

agent or to all other agents), the complexity of the task, the complexity of the

organization's authority and communication structure, and a variety of other

parameters or options. Such a model could be used to address a number of research

questions including: (1) How large does the organization need to be to reap the

bene�ts of email? And (2) for the same task are there di�erent combinations of

technology, authority structure, and communication structure that lead to the

same level of performance? To address the �rst question the researcher might

vary the size of the organization from say 2 to 200 in increments of 20 (11 cells)

and may consider all four communication technologies. This would by a 11x4

experimental design. To address the second question the researcher might consider

all four communication technologies, two di�erent authority structures (e.g., team

and hierarchy), and two di�erent communication structures (e.g., a completely

connected structure like everyone-to- everyone and one that follows the authority

structure (only communication is to or from manager). This would be a 4x2x2

design. In each case some number of simulations would be needed to be run for

each cell, with the number chosen based on the required power of the test.

7.4.2 Validation and Veri�cation

Computational organization theory is a type of grounded theory [28]. That is, the

models that embody the theory are informed by and tested against empirical data.

This grounding is done using various validation and veri�cation procedures. In the

COT area three types of validation are particularly important: theoretical, external,

and cross-model. Theoretical veri�cation has to do with determining whether the
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model is an adequate conceptualization of the real world for assessing the key issue

being addressed. The adequacy of the conceptualization is often determined on

the basis of whether or not a set of situation experts consider the model to have

captured the main factors that they observe in organizations. External validation

has to do with determining whether or not the results from the virtual experiments

match the results from the real world. Finally, cross-model validation has to do

with determining whether or not the results from one computational model map

on to, and/or extend, the results of another model.3

For both theoretical and external validation the real world may be a human

organization, a laboratory experiment, or an organization of arti�cial agents, and

so on. Organizations leave \traces" of their activities such as accounting records,

stockholder reports, technical connections among parts, operating procedures, web

pages, etc. These can be analyzed using computational methods. Such data can also

be captured, mapped, analyzed, and linked to other computational models either

as input or as data against which to validate the computational models. Such data

helps to form and test computational theories of organization and organizing.

7.4.3 Computational Frameworks

One of the pressing issues in the COT area is the development of a general testbed or

framework that has the appropriate building blocks to minimize the time required

to develop organizational and social models. A variety of tools are beginning to

appear; as yet, however, no one tool dominates. Among the existing tools are:

MACE, SDML, Multiagent Soar, and SWARM.

MACE

MACE [20, 21] was one of the �rst general (domain-independent) testbeds for

modeling multiagent systems. It was one of the �rst truly concurrent distributed

object systems built. MACE introduced the idea of using agents for all phases of

system construction, user interaction, and management of experiments, as well as

for the basis of the modeled system itself. For example, \user interface agents" were

used as actual asynchronous user-to-system and system-to-user representatives,

interpreters, translators, displayers, managers, and so forth. This feature meant

that the testbed and the experiment were an integrated multiagent organization

for interacting with the experimenter and for testing ideas about the structure of

organizations of arti�cial agents.

MACE also included explicit social modeling concepts drawn from sociological

theory. One such idea was the notion of recursive composition of agents so that

a group can itself be treated as an agent with distributed internal structure.

In other words, agents, groups and groups of groups all have \agency"; i.e., a

3. Cross-model validation is also called docking [2].
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set of specialized knowledge and a set of possible actions that can be taken.

The second idea is that of the \social worlds." Herbert Blumer, Anselm Strauss,

and other symbolic interactionists introduced the notion that individual people

negotiate their lives by operating within social worlds which constrain both what

they need to know and with whom they interact. In MACE, social worlds were

operationalized as knowledge-based agent boundaries. Each agent de�ned a set of

\acquaintances." This acquaintanceship knowledge, rather than explicit constraints,

laws or testbed programming structures, de�ned the boundaries of communication

and interaction, and hence the social structure. This concept provides a clean

semantic model for 
exible agent organizations. Finally, MACE used \modeling

other agents" as its foundation of social knowledge and social structure, drawing

on the ideas of G.H. Mead and the symbolic interactionists. Here the concept of

'taking the role of the other' served as a unifying principle for mind, self, and

society over time. Acquaintances were also based on Hewitt's [32] ideas of Actor

acquaintances (which were a much simpler notion, basically just message addresses

for actors). MACE included speci�c facilities to model a number of features of

other agents (including goals, roles, skills, etc.) in special a acquaintance database,

and it used these to structure individual interactions and thus to establish social

structure de�ned as patterns of interaction over time. This idea of modeling others

and acquaintances has now become commonplace within MAS and DAI research;

however, few researchers recognize the link they are making to social theory.

SDML

SDML (Strictly Declarative Modeling Language) [53, 17, 52] is a multiagent object-

oriented language for modeling organizations. SDML is particularly suited for mod-

eling multiagent systems in which the agents interact in a team (
at) or hierarchical

organizational structure. SDML is e�ectively theory-neutral with respect to the cog-

nitive capabilities of the agent. It is 
exible enough to represent both simple agents

and more sophisticated agents as well as the linkages among them. SDML currently

includes various libraries for alternate architectures such as genetic programming

and Soar. These libraries facilitate exploring the interaction between agent cogni-

tion and organizational design.

Key social ideas are captured in the SDML architecture. For example, social

agents are capable of distinguishing between explanation and action. The declara-

tive representation within SDML makes this possible. Within SDML agents in the

same class can be represented by sharing rules between them. Another key idea in

organizations is that within the organization there are prede�ned linkages among

agents and prede�ned roles in which knowledge is embedded and that constrain be-

havior. From this perspective, structure is patterns of positions or roles over time.

This notion of structure is integral to SDML as within SDML the structure of the

multiagent system is represented as a container hierarchy. For example, agents may

be contained within divisions which are contained within organizations. Containers

and their associated agents are also linked by an inheritance hierarchy. Change in
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agents and in the linkages among them is made possible by controlling the time

levels associated with agent and container data bases.

Multiagent Soar

Soar is a computational architecture for general intelligence [38]. Agents are goal

directed and can be characterized in terms of their goals, problem spaces, states,

operators, and associated preferences. Preferences can be used to represent shared

norms or cultural choices about the existence of, acceptability of, or relative ranking

of goals, states, problem spaces and operators. The agent's goals need not be

articulable and can be automatically generated or consciously selected by the agent

as deliberation ensues. The agent's long term knowledge base is a set of rules. The

agent's short term memory is the set of information currently in working memory.

Soar was designed as a speci�cation of key psychological ideas such as bounded

rationality. As such, Soar can be thought of as a uni�ed theory of cognition.

Indeed, empirical research on Soar suggests that in many instances its behavior

is comparable to that of humans both in how well it does and in what errors are

made.

Multiagent Soar is an approach to modeling teams as collections of Soar agents

[37, 62, 63, 6]. The current Soar system facilitates inter-agent communication and

does not require each agent to be a separate processor. Multiagent soar is built

around three core social ideas: internal models of other agents, cognitive social

structures, and communication. In multiagent Soar models, each team member is

a Soar agent with a mental model of what other agents either know or will do in

certain circumstances. This knowledge may include expectations about the other

agents' goals, preferences, and so forth and allows the agent to anticipate what it

thinks others will do. Further, each Soar agent in the team has embedded in its

knowledge (its set of rules) a cognitive social structure. A cognitive social structure

is an agent's perception of who interacts with whom, how, and about what. Finally,

each Soar agent in the team has knowledge about how to communicate and what

to communicate when and to whom, and how to compose and parse messages.

Communication in these models is handled by passing communique's with speci�c

task-related content. Within the multiagent Soar models, agent's typically monitor

their environment and so can be interrupted by communications from other agents,

changes in the environment, or changes in what other agents are present.

SWARM

SWARM is a multiagent simulation language for modeling collections of concur-

rently interacting agents in a dynamic environment [61, 51, 1]. SWARM emerged

from of work in computational biology. As such, SWARM is particularly suited to

exploring complex systems composed of large numbers of relatively simple agents

which interact as they seek to optimize some function. Within SWARM the agents

can, to an extent, dynamically restructure themselves to accommodate changes in
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the input data and the objective function. In a SWARM model it must be possi-

ble to de�ne the objective function. SWARM agents can act either synchronously

and asynchronously. Consequently, many di�erent technological or biological con-

straints on communication and adaptation can be modeled within SWARM. One of

the intended applications of SWARM is to arti�cial life applications. That is, one

of the goals of SWARM models is to demonstrate that certain complex group level

behaviors can emerge from concurrent interactions between agents who by them-

selves are not capable of exhibiting that complex behavior. One of the intents of

a SWARM model is to \grow" realistic looking social behaviors. Todate, there has

been little attempt to empirically validate whether the behaviors grown in SWARM

models are comparable to those seen in human systems.

The key social idea that is captured in SWARM is the logic of collective intel-

ligence. That is, over time systems of SWARM agents come to exhibit collective

intelligence over and above the simple aggregation of agent knowledge. This notion

of emergent intelligence is central to the science of complexity. A second key idea

that is captured in SWARM is evolution. That is, there are large populations of

agents who can engage in reproductive activities and cease to exist.

7.5 Conclusions

Computational organization theory (COT) is the study of organizations as compu-

tational entities. As noted, the computational organization is seen as taking two

complementary forms: [1] the natural or human organization which is replete with

information and the need to process it and [2] computational systems composed of

multiple distributed agents which have organizational properties. Computational

analysis is used to develop a better understanding of organizing and organizations.

Organization is seen to arise from the need to overcome the various limitations on

individual agency|cognitive, physical, temporal, and institutional. Organizations,

however, are complex entities in which one or more agents are engaged in one or

more tasks and where knowledge, capabilities and semantics are distributed. Thus,

each organization has a design, a set of networks and procedures linking agents,

tasks, resources, and skills that describes these various distributions.

Computational organizational models are grounded operational theories. In other

words, unlike traditional DAI or multiagent models COT models draw on and have

integrated into them empirical knowledge from organization science about how

human organizations operate and about basic principles for organizing. Much of

this work follows in the information processing tradition. Many of the COT models

are models composed of other embedded models. In these multi-level models, the

traditional distinction between normative and descriptive often becomes blurred.

For example, the models may be descriptive at the individual level|describing

individuals as boundedly rational, with various built in cognitive biases|but

normative at the structural level|�nding the best organizational design subject
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to a set of task based or procedural constraints.

Computational analysis is not simply a service to organizational theorizing;

rather, computational organizational theorizing is actually pushing the research en-

velope in terms of computational tools and techniques. COT makes contributions

to mainstream AI and CS, including fostering progress on such issues as: large

scale qualitative simulation, comparison and extension of optimization procedures

(particularly procedures suited to extremely complex and possibly changing per-

formance surfaces); aggregation/disaggregation of distributed objects; on-line/o�-

line coordination algorithms; organizational and multiagent learning; semantic het-

erogeneity; and understanding/managing the tradeo� between agent quantity and

computational complexity. Research in this area requires further development of

the scienti�c infrastructure including developing: easy-to-use cost-e�ective compu-

tational tool kits for designing and building computational models of organiza-

tions, teams, and social systems (e.g., a multiagent oriented language with built in

task objects and communication); multiagent logics; intelligent tools for analyzing

computational models; validation procedures, protocols, and canonical data sets;

managerial decision aids based on computational organization models; and proto-

cols and standards for inter-agent communication. Key theoretical concerns in this

area center around determining: what coordination structures are best for what

types of agents and tasks; whether hybrid models (such as a joint annealer and

genetic programming model) are better models for exploring organizational issues

and for locating new organizational designs; representations for, and management

of, uncertainty in organizational systems; the interactions among, and the relative

advantages and disadvantages of various types of adaptation, evolution, learning,

and 
exibility; measures of organizational design; the existence of, or limitations of,

fundamental principles of organizing; the tradeo�s for system performance of task-

based, agent-based, and structure-based coordination schemes; representations for

information and communication technology in computational models; and the re-

lation between distributed semantics and knowledge on teamwork, organizational

culture and performance.

Three directions that are particularly important for future research are organiza-

tional design, organizational dynamics and organizational cognition. The key issue

under organizational design is not what is the appropriate division of labor, nor

is it how should agents be coordinated. Rather, there is a growing understanding

that there is a complex interaction among task, agent cognition or capabilities, and

the other structural and procedural elements of organizational design. As such, the

issue is �nding what combinations of types of agents, structures (patterns of in-

teractions among agents), and ways of organizing the task are most likely to meet

the organization's goal. The key issue for organizational dynamics is not whether

or not organizations adapt. Rather, the issues center on how to encourage e�ective

learning, how to change to improve performance, how to retain capabilities and

knowledge as the organization changes to address changes in the environment, and

what new designs are possible. As to organizational cognition (perception, memory)

there are a variety of issues ranging from how to represent organizational knowl-
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edge, to what level of sharing (of knowledge, procedures, or semantics) is necessary

and by which agents to ensure e�ective organizational performance.

7.6 Exercises

1. [Level 1] Provide a critical discussion of the following statement. You do not

need to know organizational theory to create good models of organizations.

Anyone who has ever worked in an organization can develop such models.

2. [Level 1] Provide a critical discussion of the following questions. How does

the organizational design and the task bound the agent? What are typical

constraints and opportunities a�orded the agent by the design and task?

Provide at least �ve examples for both design and task.

3. [Level 1] For an organization that you are familiar what types of agents exist

in that organization, what are their limitations.

4. [Level 1] Develop a measure of coordination based on structures like those

shown in Figure 7.3.

5. [Level 2] Develop a simple model of a small group of agents (1,2 or 3) trying

to collectively solve a simple canonical task such as the binary choice task or

the maze task. What additional issues are involved, and what extra features

does the model need, as you move from 1 to 2 to 3 agents working together

to do the task? How is performance a�ected by the increase in the number of

agents?

6. [Level 3] Reimplement and extend in one or more ways the garbage can

model of organizational choice [11]. There are many possible extensions, some

of which have been discussed in the literature. Possible extensions include,

but are not limited to the following: adding a formal organization authority

structure, having agents work on multiple tasks simultaneously, altering the

task so that it requires speci�c skills and not just energy to be completed,

and allowing agent turnover. Show that your model can replicate the original

results reported by Cohen, March and Olsen (i.e., dock the models [2]). Then

show which results are altered, or what additional results are possible, given

your extension.

7. [Level 3] Reimplement and extend in one or more ways the CORP model of

organizational performance [43]. There are many possible extensions, some of

which have been discussed in the literature. Possible extensions include, but

are not limited to the following: adding an informal communication structure,

having agents work on multiple tasks simultaneously, allowing agents to be

promoted, altering incoming information so that it is potentially incomplete

or erroneous, altering the nature of the feedback (e.g., by delaying it or making

it more ambiguous), and making the agents competitive (e.g., make agents try

to maximize the performance relative to other's performance). Show that your
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model can replicate the original results reported by Lin and Carley (i.e., dock

the models). Then show which results are altered, or what additional results

are possible, given your extension.

8. [Level 3] For a small organization (5 to 30 people) develop a description of its

design. What is the formal organization chart? What is the informal advice

network (who goes to whom for work related advice)? What are the main

tasks and subtasks being accomplished? Develop a task dependency graph

matrix. What are the skills or resources needed to do those tasks? Develop a

resource/skill access matrix and a resource/skill requirements matrix. What

were the major di�culties you encountered in locating this information for an

actual organization?

9. [Level 4] Develop a comprehensive representation scheme for task or a multia-

gent language for doing task based models of organizations. Consider how task

is represented in various organizational models. What are the limitations or

features of the various representation schemes? What features should be built

into your approach? Demonstrate the strength of your approach by reimple-

menting one or more existing COT models.

10. [Level 4] Develop a general purpose approach for modeling telecommunication

and information processing technologies in the organization. What are the

critical features or components of these technologies that must be modeled?

How does your approach contrast with the technology as agent approach and

the technology as feature approach? What are the limitations and advantages

of your approach?
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8 Formal Methods in DAI:

Logic-Based Representation and Reasoning

Munindar P. Singh, Anand S. Rao, and Michael P. George�

8.1 Introduction

It is clear from a reading of the other chapters that agent applications are becoming

ever more important. Agents are being deployed in increasingly complex production

environments, where the failure or misbehavior of an agent might easily cause loss of

life or property. Accordingly, a major challenge is to develop techniques for ensuring

that agents will behave as we expect them to|or at least, will not behave in ways

that are unacceptable or undesirable.

Of course, ensuring correctness is a challenge for all of computer science. Previous

work in computer science has studied formal methods as a good basis for creating

systems with minimal errors. These methods have found useful application, but

much remains to be understood in terms of specifying complex systems in the

�rst place. Agents are desirable for the very reason that they provide higher-

level abstractions for complex systems. These abstractions can lead to simpler

techniques for design and development, because they o�er an approach to sidestep

the complexity inherent in the larger applications.

Formal methods in DAI and elsewhere o�er an understanding of the systems

being designed at a level higher than their speci�c implementation. They can

provide a way to help debug speci�cations and to validate system implementations

with respect to precise speci�cations. However, the role of formal methods in

DAI|like in the rest of computer science|is somewhat controversial. Despite the

above potential advantages, some practitioners believe that formal methods do

not assist them in their e�orts. This might indeed be true in many cases. Formal

methods, because of their call for precision, naturally lag the ad hoc, quick-and-

dirty approaches to system construction, which are often e�ective in the short

run. Although several powerful formalisms exist, �nding the right formalism is a

nontrivial challenge. Such a formalism would provide a level of expressiveness that

su�ces for the practical problems at hand, but would nevertheless be tractable.

Also, formal methods are the most e�ective when included in tools and used

by specially trained designers. For that reason, just as software engineers have

discovered, there is no substitute for good tools nor for education in formalmethods.
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Despite the above controversy, there is general agreement that formal methods

do help in the long run, in helping developing a clearer understanding of problems

and solutions. Indeed, over the years, a number of formal techniques developed in

DAI have found their way into practical systems. They usually do not constitute

the entire system, but provide key functionality.

This chapter covers the major approaches to formal methods for describing and

reasoning about agents and their behavior. It puts a special emphasis on how these

methods may be realized in practical systems. It discusses the state of the art

in theory and practice, and outlines some promising directions for future research.

This chapter is primarily focused on formalizations that involve variants of symbolic

logic. Some other mathematical techniques are discussed in Chapters 5 and 12.

Although this chapter is self-contained, some familiarity with logic would help the

reader.

8.2 Logical Background

In general, formalizations of agent systems can be, and have been, used for two

quite distinct purposes:

as internal speci�cation languages to be used by the agent in its reasoning or

action; and

as external metalanguages to be used by the designer to specify, design, and ver-

ify certain behavioral properties of agent(s) situated in a dynamic environment.

The �rst class of approaches is more traditional in DAI. It presupposes that the

agents have the capability to reason explicitly. Such agents are commonly referred

to as cognitive, rational, deliberative, or heavyweight|some of this terminology is

introduced in Chapter 1. The second class of approaches is more recent in the study

of agents, although it is more traditional in the rest of computer science. This is to

use the formalism to enable a designer to reason about the agent. The agent may

or may not be able to reason itself when it is deployed in the �eld.

Fortunately, although the conceptual basis of the two approaches is radically

di�erent, the underlying mathematics is not always as di�erent. We exploit this

similarity by presenting most ideas in terms of what reasoning is required and

how it may be performed, and only secondarily treating its actual realization as a

component for the agent, or as a tool for its designer. Ideally, one would like to have

the same logical language serve both of the above purposes. However, the trade-

o� between expressiveness and computability makes this ideal somewhat infeasible

in general. The real-time constraints on agents situated in dynamic environments

require the internal language to be computationally e�cient, while the variety of

complex behaviors that are possible in a system of distributed autonomous agents

requires the external language to be more expressive.
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We begin with the formalizations of distributed agents from the designer's

perspective. We then move on to describe some of the practical tools and systems

that have been built by reducing the expressive power of these languages to make

them more feasible for direct execution by distributed agents.

8.2.1 Basic Concepts

The techniques used in formalizing DAI concepts make extensive use of proposi-

tional, modal, temporal, and dynamic logics. We now review these logics, which

have been used in classical computer science to give the semantics of concurrent

programs. For reasons of space, we avoid many details of the logics, instead accret-

ing concepts that are of special value to DAI. We combine these into a single logic,

which we study in somewhat more detail.

Simply put, there are three aspects to a logic. The well-formed formulas of the

logic are the statements that can be made in it. These are speci�ed as a formal

language that underlies a given logic. The proof-theory includes the axioms and rules

of inference, which state entailment relationships among well-formed formulas. The

model-theory gives the formal meaning of the well-formed formulas. The language

and proof-theory are called the syntax; the model-theory is also called the semantics.

An important practical consideration is to make the semantics natural. Since logic

is used to formalize our intuitions about computational systems, their interactions

with each other, or with the environments in which they exist, it is crucial that the

formulas refer to the meaning that we wish to formalize.

The purpose of the semantics is to relate formulas to some simpli�ed represen-

tation of the reality that interests us. This simpli�ed version of reality corresponds

to the nontechnical term \model." However, in logic, a model means more than

just any simpli�ed version of reality|it is one that is closely related to the formal

language that underlies the given logic. Fundamentally, logic can handle only one

kind of meaning, namely, the truth or falsity of a given formula. Since models are

often quite large and structured, we often need to specify a suitable component of

a model with respect to which the truth or falsity of a formula would carry the

intuitive meaning one seeks to formalize. We use the term index to refer to any

such component, be it a piece of the world, a spatial location, a moment or period

in time, a potential course of events, or whatever is appropriate.

A formula is satis�ed at a model and some index into it if and only if it is given

the meaning true there. For a model M , index i, and formula p, this is written as

M j=i p. A formula is valid in a modelM if and only if it is satis�ed at all indices

in the model; this is written as M j= p.

The following exposition de�nes a series of formal languages to capture some

pretheoretic intuitions about concepts such as truth, possibility, action, time,

beliefs, desires, and intentions. The typical formal languages of interest are context-

free, and hence can be speci�ed in the traditional Backus-Naur Form (BNF) [1,

chapter 4]. However, for simplicity, and in keeping with most works on logic, we

specify their syntax as a set of informal rules. Also, for most of the logics we present,
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syntactic variants are possible, but it won't be worth our while to discuss them here.

Along with each language, we will de�ne a class of formal models that have the

requisite amount of detail. Further, we will give meaning postulates or semantic

conditions de�ning exactly where in the model (i.e., at what indices) a formula is

true. A well-known caveat about logic in general is that the informal meanings of

di�erent terms may not be fully captured by the formalization. Sometimes this is

because the informal meanings are not mutually consistent, and the formalization

helps remove harmful ambiguity. However, sometimes this is because certain nu-

ances of meaning are di�cult to capture. If these nuances are not worth the trouble,

then nothing is lost; otherwise, one should to consider an alternative formalization.

8.2.2 Propositional and Predicate Logic

Propositional logic is the simplest and one of the most widely used logics to

represent factual information, often about the agents' environment. Formulas in this

language are built up from atomic propositions, which intuitively express atomic

facts about the world and truth-functional connectives. The connectives ^, _, :,

and ! denote \and," \or," \not," and \implies," respectively. The reader may

consult a textbook, such as [26] for additional details.

Example 8.1

The facts \it rains" and \road is wet" can be captured as atomic propositions rains

and wet-road, respectively. The implication that \if it rains, then the road is wet"

can be captured by the propositional formula rain !wet-road.

LP is the language of propositional logic. It is given by the following rules. Here

we assume that a set � of atomic propositions is given.

Syn-1.  2 � implies that  2 LP

Syn-2. p; q 2 LP implies that p ^ q, :p 2 LP

Let M0
def
= hLi be the formal model for LP . We use h i brackets around L to

highlight similarities with the later development. Here L � � is an interpretation

or label. L identi�es the set of atomic propositions that are true. This gives us the

base case; the meanings of the nonatomic formulas are recursively de�ned.

Sem-1. M0 j=  i�  2 L, where  2 �

Sem-2. M0 j= p ^ q i� M0 j= p and M0 j= q

Sem-3. M0 j= :p i� M0 6j= p

The atomic propositions and boolean combinations of them are used to describe

states of the system. They do not consider how the system may evolve or has

been evolving. Two useful abbreviations are false � (p ^ :p), for any p 2 �, and

true � :false. As is customary, we de�ne p_q as :(:p^:q), and p!q as :p_q.

With reference to the caveat mentioned above, the logic operators and their

natural language counterparts are di�erent notions. For example, p!q is true if
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p is false irrespective of q|thus it identi�es potentially irrelevant connections.

Alternative, more faithful, formalizations of \implies" do exist, e.g., in relevance

logic [2]. We will refer to a simple variant in Section 8.2.3. However, most current

research in logic and computer science ignores the subtlety and uses the above

de�nition.

Although we do not use predicate logic in the speci�cation languages, we do use it

in the metalanguage, which is used in the semantic conditions. The universal (8) and

existential (9) quanti�ers are used to bind variables and make claims, respectively,

about all or some of their possible values. A variable that is not bound is free. Let

Q(x) be some expression involving a free variable x, e.g., x < y. (8x : Q(x)) holds

if Q(l) holds for each possible object l that may be substituted for x in the entire

expression Q. (9x : Q(x)) holds if Q(l) holds for some possible object l substituted

throughout for x.

8.2.3 Modal Logic

Recall the remark in Section 8.2.1 that logic treats truth or falsity of a formula as

its exclusive notion of meaning. Modal logic has been used extensively in arti�cial

intelligence to refer to other kinds of meaning of formulas. In its general form,

modal logic was used by philosophers to investigate di�erent modes of truth, such

as possibly true and necessarily true. In the study of agents, it is used to give

meaning to concepts such as belief and knowledge. In modal languages, classical

propositional logic is extended with two modal operators: 3 (for possibility) and 2

(for necessity). The modal language LM is de�ned as follows:

Syn-3. the rules for LP (with \LM" substituted for \LP")

Syn-4. p 2 LP implies that 3p, 2p 2 LM

Example 8.2

We can capture \it is possible that it rains" as 3rain, and \it is necessary that

the sun rises in the east" as 2sun-rises-in-the-east.

Models for modal logic require additional structure beyondM0. The semantics of

modal logics is traditionally given in terms of sets of the so-called possible worlds.

A world can be thought of in several di�erent ways. A simple idea is that a world

is a possible state of a�airs, corresponding roughly to an interpretation, as in the

semantics for LP . However, a world can also be treated as a history, i.e., a sequence

of states of a�airs. It can even be treated as a set of all possible histories starting

from a given state. The above views|as a history or set of histories|are more

common in the philosophical literature. However, in this chapter, we treat a world

(in the technical sense) usually as a state of a�airs, and sometimes corresponding

to a possible history.

With sets of worlds as primitive, the structure of the model is captured by relating

the di�erent worlds via a binary accessibility relation [54]. Intuitively, this relation

tells us what worlds are within the realm of possibility from the standpoint of a
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given world. A condition is possible if it is true somewhere in the realm of possibility;

a condition is necessary if it is true everywhere in the realm of possibility.

Let M1
def
= hW;L;Ri, where W is the set of worlds, L :W 7! 2� gives the set of

formulas true at a world, and R � W �W is an accessibility relation. Here, since

the model is structured, the relevant index is the possible world with respect to

which we evaluate a formula.

Sem-4. M1 j=w  i�  2 L(w), where  2 �

Sem-5. M1 j=w p ^ q i� M1 j=w q and M1 j=w q

Sem-6. M1 j=w :p i� M1 6j=w p

Sem-7. M1 j=w 3p i� (9w0 : R(w;w0)&M1 j=w0 p)

Sem-8. M1 j=w 2p i� (8w0 : R(w;w0)) M1 j=w0 p)

Example 8.3

Modal logics enable us to represent strict conditionals, which o�er a more accurate

formalization of natural language implication than the propositional operator.

2(p!q) holds not merely when p is false, but if p and q are appropriately related

at all possible worlds.

Importantly, algebraic properties of the accessibility relation translate into entail-

ment properties of the logic. Some common algebraic properties are the following.

R is re
exive i� (8w : (w;w) 2 R)

R is serial i� (8w : (9w0 : (w;w0) 2 R))

R is transitive i� (8w1; w2; w3 : (w1; w2) 2 R&(w2; w3) 2 R) (w1; w3) 2 R)

R is symmetric i� (8w1; w2 : (w1; w2) 2 R) (w2; w1) 2 R)

R is euclidean i� (8w1; w2; w3 : (w1; w2) 2 R&(w1; w3) 2 R) (w2; w3) 2 R)

We leave it to the reader to verify that models that satisfy the above properties

validate the following formulas, respectively.

2p!p

2p!3p

2p!22p

p!23p

3p!23p

Since the above formulas do not depend on p, they are properly viewed as schemas

that apply to any condition. In the literature, these are termed the T , D, 4, B, and

5 schemas, respectively [12].

8.2.4 Deontic Logic

Deontic logic is about what ought to be the case or what an agent is obliged to do.

Traditional deontic logic introduces an operator Obl for obliged, whose dual is Per
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for permitted. Deontic logic is speci�ed as a modal logic with the main axiom that

Oblp!:Obl:p, i.e., the agent is obliged to bring about p only if it is not obliged

to bring about :p. The rest of the logic is fairly straightforward. Unfortunately,

this formulation su�ers from a number of paradoxes. We shall not study it in detail

here, nor the more sophisticated approaches of dyadic deontic logic and logics of

directed obligation. Instead, we refer the reader to some important collections of

essays on this subject [40, 41, 62].

8.2.5 Dynamic Logic

Dynamic logic can be thought of as the modal logic of action [53]. Unlike traditional

modal logics, however, the necessity and possibility operators of dynamic logic are

based upon the kinds of actions available. As a consequence of this 
exibility, it has

found use in a number of areas of DAI.

We consider the propositional dynamic logic of regular programs, which is the

most common variant. This logic has a sublanguage based on regular expressions

for de�ning action expressions|these composite actions correspond to Algol-60

programs, hence the name regular programs. We de�ne LD along with LR as an

auxiliary de�nition. Here, B is a set of atomic action symbols.

Syn-5. the rules for LP applied to LD

Syn-6. � 2 B implies that � 2 LR

Syn-7. a; b 2 LR implies that a; b; (a+ b); a� 2 LR

Syn-8. p 2 LD implies that p? 2 LR

Syn-9. a 2 LR and p 2 LD implies that [a]p; haip 2 LR

Intuitively, the atomic actions are what the agent can perform directly. The

program a; b means doing a and b in sequence. The program a + b means doing

either a or b, whichever works. This is nondeterministic choice|although it might

sound a little unintuitive at �rst, it is logically clean and one gets to appreciate it

after some experience. However, a nondeterministic program may not be physically

executable, because it can require arbitrary lookahead to infer which branch is

really taken. The program p? is an action based on con�rming the truth value of

proposition p. If p is true, this action succeeds as a noop, i.e., without a�ecting the

state of the world. If p is false, it fails, and the branch of the action of which it is

part is terminated in failure|it is as if the branch did not exist. The program a�

means 0 or more (but �nitely many) iterations of a.

Example 8.4

The Algol-60 program if q then a else b endif is translated as ((q?; a) +

((:q)?; b)). If q holds, the (:q)? branch fails, so a must be performed. Otherwise b

must be performed.

The semantics of dynamic logic is given with respect to a model that includes a

set of states (or worlds) related by possible transitions based on the actions in B.
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Let M2
def
= hW;L; �i, where W and L are as before. � � W � B �W is a transition

relation. It is convenient to de�ne a class of accessibility relations based on LR.

Rp-1. R�(w;w
0) i� �(w; �;w0)

Rp-2. Ra;b(w;w
0) i� (9w00 : Ra(w;w

00)&Rb(w
00; w0))

Rp-3. Ra+b(w;w
0) i� Ra(w;w

0) or Rb(w;w
0)

Rp-4. Ra�(w;w
0) i� (9w0; : : : ; wn : (w = w0)&(w

0 = wn)&(8i : 0 � i <

n) Ra(wi; wi+1)))

Sem-9. M2 j=w haip i� (9w0 : Ra(w;w
0)&M2 j=w0 p)

Sem-10. M2 j=w [a]p i� (8w0 : Ra(w;w
0)) M2 j=w0 p)

We refer the reader to the survey by Kozen & Tiurzyn [53] for additional details.

8.2.6 Temporal Logic

Temporal logic is, naturally enough, the logic of time. There are several variants.

Of these, the most important distinctions are the following:

Linear versus Branching: whether time is viewed as a single course of history or

as multiple possible courses of history. The branching can be in the past, in the

future, or both.

Discrete versus Dense: whether time is viewed as consisting of discrete steps (like

the natural numbers) or as always having intermediate states (like the rationals

or reals).

Moment-Based versus Period-Based: whether the atoms of time are points or

intervals.
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Figure 8.1 An example structure of time.
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Although there are advantages to each of the above variants, we will concentrate

on discrete moment-based models with linear past, but consider both linear and

branching futures. Let us consider an informal view of time before we enter into a

formalization. This view is based on a set of moments with a strict partial order,

which denotes temporal precedence. Each moment is associated with a possible

state of the world, identi�ed by the atomic conditions or propositions that hold at

that moment. A path at a moment is any maximal set of moments containing the

given moment, and all moments in its future along some particular branch of <.

Thus a path is a possible course of events. It is useful for capturing many intuitions

about the choices and abilities of agents to identify one of the paths beginning at a

moment as the real one. This is the path on which the world progresses, assuming

it was in the state denoted by the given moment. Constraints on what should or

will happen can naturally be formulated in terms of the real path. Figure 8.1 has a

schematic picture of this view of time.

Example 8.5

Figure 8.1 is labeled with the actions of two agents. Each agent in
uences the

future by acting, but the outcome also depends on other events. For example, in

Figure 8.1, the �rst agent can constrain the future to some extent by choosing to

do action a or action b. If it does action a, then the world progresses along one of

the top two branches out of t0; if it does action b, then it progresses along one of

the bottom two branches.

The important intuition about actions is that they correspond to the granularity

at which an agent can make its choices. The agent cannot control what exactly

transpires, but it can in
uence it to some extent through its actions.

Example 8.6

In Figure 8.1, the �rst agent can choose between t1 and t2, on the one hand, and

between t3 and t4, on the other hand. However, it can choose neither between t1

and t2, nor between t3 and t4.

Linear Temporal Logic

LL is a linear-time temporal language.

Syn-10. the rules for LP

Syn-11. p; q 2 LL implies that pUq, Xp, Pp 2 L

pUq is true at a moment t on a path, if and only if q holds at a future moment on

the given path and p holds on all moments between t and the selected occurrence of

q. Fp means that p holds sometimes in the future on the given path and abbreviates

trueUp. Gp means that p always holds in the future on the given path; it abbreviates

:F:p. Xp means that p holds in the next moment. Pq means that q held in a past

moment.

The semantics is given with respect to a model M3
def
= hT; <; [[ ]]i, where T is

the set of moments, < the temporal ordering relation, and [[ ]] gives the denotations
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of the atomic propositions. It is convenient to use [[ ]], which is the dual of the

interpretation L: w 2 [[ ]] i�  2 L(w).

Sem-11. M3 j=t Pp i� (9t0 : t0 < t and M3 j=t0 p)

Sem-12. M3 j=t Xp i� M3 j=t+1 p

Sem-13. M3 j=t pUq i� (9t0 : t � t0 and M3 j=t0 q and (8t00 : t � t00 �

t0) M3 j=t00 p))

For the later formal development, it is useful to keep in mind thatM3 is linear, i.e.,

< here is a total ordering.

Branching Temporal and Action Logic

LB is a branching-time temporal and action language. It builds on top of LL
and LD, and especially uses the ideas of the well-known language CTL* [24]. LB
captures the essential properties of actions and time that are of value in specifying

agents.

Formally, L is the minimal set closed under the rules given below. Here Ls is

the set of \path-formulas," which is used as an auxiliary de�nition. Here X is a

set of variables and A is a set of agent symbols. We give intuitive meanings of the

constructs of this formal language after the following syntactic de�nitions.

Syn-12. the rules of LP

Syn-13. p; q 2 LB and implies that Pp, (
W
a : p) 2 LB

Syn-14. LB � Ls

Syn-15. p; q 2 Ls, x 2 A, and a 2 B implies that p^ q, :p, pUq, Xp, x[a]p, xhaip

2 Ls

Syn-16. p 2 Ls implies that Ap;Rp 2 LB

Syn-17. p 2 (Ls n LB) and a 2 X implies that (
W
a : p) 2 Ls

The formulas in LB refer to moments. The formulas in Ls refer to paths as in

the models of LL. Although LB � Ls, the formulas in LB get a unique semantics.

The branching-time operator, A, denotes \in all paths at the present moment."

Here \the present moment" refers to the moment at which a given formula is

evaluated. A useful abbreviation is E, which denotes \in some path at the present

moment." In other words, Ep � :A:p.

Example 8.7

In Figure 8.1, EFr and AF(q_ r) hold at t0, since r holds on some moment on some

path at t0 and q holds on some moment on each path.

The reality operator, R, denotes \in the real path at the present moment." R is

not included in traditional temporal logics, but here helps tie together intuitions

about what may and what will happen.
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Example 8.8

In Figure 8.1, RFq holds at t0, since q holds on some moment on the real path

identi�ed at t0.

LB also contains operators on actions. These are adapted and generalized from

LD, in which the action operators essentially yield state-formulas, whereas in LB

they yield path-formulas. The operators in LB capture the operators of LD. x[a]p

holds on a given path S and a moment t on it, if and only if, if x performs a on S

starting at t, then p holds along S at the moment where a ends. The formula xhaip

holds on a given path S and a moment t on it, if and only if, x performs a on S

starting at t and p holds at the moment where a ends.

Example 8.9

In Figure 8.1, Ehbir and A[a]q hold at t0, since r holds at the end of b on one path,

and q holds at the end of a on each path. Similarly, A[d](q _ r) also holds at t0.

Also, A[e]true holds at t0, because action e does not occur at t0.

The construct (
W
a : p) means that there is an action under which p becomes

true. The action symbol a typically would occur in p and would be replaced by the

speci�c action which makes p true.

Example 8.10

In Figure 8.1, (
W
e : Exheitrue ^Ax[e]q) holds at t0. This means there is an action,

namely, a, such that x performs it on some path starting at t0 and on all paths

on which it is performed, it results in q being true. In other words, some action is

possible that always leads to q. This paradigm is used in formalizing know-how.

Let M4
def
= hT; <; [[ ]];Ri be a formal model for LB . Unlike M3, M4 is branching,

and its [[ ]] also applies to actions. In other words, < is branching. It might partition

T into a number of connected components, each of which would then correspond

to worlds as traditionally understood. For an atomic proposition, p, [[p]] is the set

of moments where p holds; for an action a and an agent x, [[a]]x is the set of periods

over which a is performed by x. These periods are notated as [S; t; t0] such that a

begins at t and ends at t0, where t; t0 2 S. R picks out at each moment the real

path at that moment. This is the notion of relativized reality alluded to above, and

which is highlighted by a bold line in Figure 8.1.

For simplicity, we assume that each action symbol is quanti�ed over at most

once in any formula. Below, pjab is the formula resulting from the substitution of

all occurrences of a in p by b. We also assume that agent symbols are mapped to

unique agents throughout the model. Formally, we have:

Sem-14. M4 j=t  i� t 2 [[ ]], where  2 �

Sem-15. M4 j=t p ^ q i� M4 j=t p and M4 j=t q

Sem-16. M4 j=t :p i� M4 6j=t p

Sem-17. M4 j=t Ap i� (8S : S 2 St) M4 j=S;t p)

Sem-18. M4 j=t Rp i� M4 j=R(t);t p
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Sem-19. M4 j=t Pp i� (9t0 : t0 < t and M4 j=t0 p)

Sem-20. M4 j=S;t Xp i� M4 j=S;t+1 p)

Sem-21. M4 j=t (
W
a : p) i� (9b : b 2 B and M4 j=t pj

a
b), where p 2 L

Sem-22. M4 j=S;t (
W
a : p) i� (9b : b 2 B and M4 j=S;t pj

a
b ), where p 2 (Ls n L)

Sem-23. M4 j=S;t pUq i� (9t0 : t � t0 and M4 j=S;t0 q and (8t00 : t � t00 �

t0) M4 j=S;t00 p))

Sem-24. M4 j=S;t x[a]p i� (8t0 2 S : [S; t; t0] 2 [[a]]x) M4 j=S;t0 p)

Sem-25. M4 j=S;t xhaip i� (9t0 2 S : [S; t; t0] 2 [[a]]x&M4 j=S;t0 p)

Sem-26. M4 j=S;t p ^ q i� M4 j=S;t p and M4 j=S;t q

Sem-27. M4 j=S;t :p i� M4 6j=S;t p

Sem-28. M4 j=S;t p i� M4 j=t p, where p 2 L

8.3 Cognitive Primitives

As discussed in Chapter 1, in many cases of interest, the agent metaphor is

most useful when the agents are given high-level cognitive speci�cations. This is

described as taking an intentional stance toward agents [60] or viewing agents at

the knowledge level [63]. There is sometimes disagreement as to the similarity of the

two doctrines, but for our purposes, they are essentially interchangeable. The high-

level cognitive speci�cations involve concepts such as beliefs, knowledge, desires,

and intentions (the terms intentional stance and knowledge level apply to more

than just intentions and knowledge). They are high-level, because they enable us to

de�ne the current state of an agent, what the agent might do, and how the agent

might behave in di�erent situations without regard to how the agent is implemented.

Speci�cations derived from cognitive notions are perhaps the most signi�cant of the

AI contributions to agents.

Such high-level speci�cations serve as natural scienti�c abstractions for agents.

However, to be used e�ectively, cognitive notions must be given rigorous de�nitions

in general models of action and time. If they are to �nd broad application, DAI

approaches must meet the standards of traditional disciplines such as distributed

computing. Much of the material we discussed in Section 8.2 originated in con-

current or distributed computing. Here we build on it by including the concepts

of belief, desire, and intention (BDI), and giving them formal de�nitions. The re-

sulting logics can then be used to reason about agents and the way in which their

beliefs, intentions, and actions bring about the satisfaction of their desires. To this

end, we introduce the modal operators Bel (belief), Des (desire), Kh (know-how),

and Int (intention). The language LI is based on LB.

Syn-18. p 2 Ls and x 2 A implies that (xIntp); (xKhp); (xKtp); (xDesp) 2 LI

The semantics for LI is given with respect to M5
def
= hT; <; [[ ]];R;B;D; Ii. The
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semantics for the part of LI that uses the constructs of LB is as given using M4.

Example 8.11

Consider an agent who has the desire to win a lottery eventually and intends to buy

a lottery ticket sometime, but does not believe that he will ever win the lottery. The

mental state of this agent can be represented by the following formula: DesAFwin

^ IntEFbuy ^ :BelAFwin.

8.3.1 Knowledge and Beliefs

B, a belief accessibility relation, is introduced to give the semantics of the belief

operator, which behaves as a modal necessity operator, such as 2 above. B assigns

to each agent at each moment the set of moments that the agent believes possible

at that moment. Knowledge (know-that) is customarily de�ned as a true belief.

Traditionally, to model belief, B is assumed to be serial, symmetric, and euclidean

(as de�ned in Section 8.2.3). To model knowledge, it is in addition also assumed to

be re
exive. In that case, it becomes an equivalence relation, resulting in Kt being

an S5 modal logic operator [12].

When 2 is treated as belief (or knowledge), the schemas 4 and 5 of Section 8.2.3

have an interesting interpretation. The former means that if an agent believes a

condition, it believes that it believes it. The latter means that if an agent does

not believe a condition, it believes that it does not believe it. Therefore, these

schemas are referred to as positive and negative introspection, respectively. Negative

introspection is a particularly strong assumption for limited agents.

Sem-29. M5 j=t xBelp i� (8t0 : (t; t0) 2 B(x; t)) M5 j=t0 p)

B depends on the given moment. Thus the agent can change its beliefs over time.

8.3.2 Desires and Goals

D associates with each moment a set of moments to represent the desires of the

agent. The agent has a desire � in a given moment if and only if � is true in all the

D-accessible worlds of the agent in that moment.

Sem-30. M5 j=t xDesp i� (8t0 : (t; t0) 2D(x; t))M5 j=t0 p)

In the philosophical literature, desires can be inconsistent and the agent need not

know the means of achieving these desires. Desires have the tendency to `tug' the

agent in di�erent directions. They are inputs to the agent's deliberation process,

which results in the agent choosing a subset of desires that are both consistent and

achievable. Such consistent achievable desires are usually called goals. As a great

simpli�cation, the desires as presented here are logically consistent.
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Figure 8.2 Intentions.

8.3.3 Intentions

At each moment in the model, I assigns to each agent a set of paths that the agent

is interpreted as having selected or preferred. Roughly, intentions are de�ned as

the conditions that inevitably hold on each of the selected paths. Here we consider

achievement intentions in that these intentions are about achieving various con-

ditions. However, intentions can be de�ned for maintaining certain conditions as

well. Whereas achievement intentions are useful for liveness reasoning, maintenance

intentions are useful for safety reasoning. For reasons of space, we will not discuss

the latter in this chapter. We now turn to the fairly simple formal de�nition of

achievement intentions:

Sem-31. M j=t xIntp i� (8S : S 2 I(x; t)) M j=S;t Fp)

Example 8.12

Consider Figure 8.2. Assume that :r and :q hold everywhere other than as shown.

Let the agent x (whose actions are written �rst in the �gure) at moment t0 prefer

the paths S1 and S2. Then, by the informal de�nition given above, we have that x

intends q (because it occurs eventually on both the preferred paths) and does not

intend r (because it never occurs on S2).

The above de�nition validates several useful properties of intentions. Some of

these were obtained with an entirely di�erent formal structure in [76]|the present

development uses fewer conceptual primitives but ignores certain abstraction issues.

IC1. Satis�ability:

xIntp!EFp

This says that if p is intended by x, then it occurs eventually on some path.

That is, the given intention is satis�able. This does not hold in general,
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since the sets of paths assigned by I may be empty. We must additionally

constrain the models so that I(x; t) 6= ;.

IC2. Temporal Consistency:

(xIntp ^ xIntq)!xInt(Fp ^ Fq)

This says that if an agent intends p and intends q, then it (implicitly)

intends achieving them in some undetermined temporal order: p before q, q

before p, or both simultaneously. This holds because the function I assigns

exactly one set of paths to each agent at each moment. Thus if both p and

q, which are path-formulas, occur on all selected paths, then they occur in

some temporal order on each of those paths. The formula (Fp ^ Fq) is true

at a moment on a path precisely when p and q are true at (possibly distinct)

future moments on the given path.

IC3. Persistence does not entail success:

EG((xIntp) ^ :p) is satis�able

This is quite intuitive: just because an agent persists with an intention does

not mean that it will succeed. Technically, two main ingredients are missing.

The agent must know how to achieve the intended condition and must act

on its intentions. We include this here to point out that in the theory of

[15], persistence is su�cient for success (p. 233). This is a major conceptual

weakness, since it violates the usual understanding that intentions do not

entail know-how [75]. The need to state the conditions under which an agent

can succeed with its intentions is one of the motivations for the concept of

know-how.

Other important constraints on intentions include (a) the absence of closure of

intentions under beliefs, (b) the consistency of intentions with beliefs about reality,

and (c) the non-entailment of beliefs about reality. Of these, (a) and (b) are jointly

termed the asymmetry thesis by Bratman [5, p. 38]. He argues that they are among

the more basic constraints on the intentions and beliefs of rational agents.

8.3.4 Commitments

As presented, goals and intentions are quite similar in their semantic structure. The

di�erence in these modalities arises in their relationships with other modalities and

in terms of how they may evolve over time. One of the properties that separates

them is commitment.

An agent is typically treated as being committed to its intentions [5]. Such

commitments apply within a given individual agent, and are accordingly also termed

psychological commitments [10, 74]. An agent's commitment governs whether it will

persist with its intentions and if so, for how long. There is general agreement that

commitment be treated as constraining how intentions are revised and updated,

and resides in their processing rather than in their core semantics [36, 65, 76]. A

contrasting approach is to include commitment in the core semantical de�nition of
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intentions [15]; this approach is criticized by [65, 73, 75]. Constraint IC4 shows

how commitment may be expressed in the present framework. This version of

commitment is purely qualitative.

IC4. Persist while succeeding:

This constraint requires that agents desist from revising their intentions as

long as they are able to proceed properly. If an agent selects some paths,

then at future moments on those paths, it selects from among the future

components of those paths:

(S 2 I(x; t) and [S; t; t0] 2 [[a]]x)) (8S0 2 I(x; t0)) (9S00 2 I(x; t) and

S0 � S00))

However, it is believed that handling commitment and the update of intentions

will involve greater subtlety than the above, e.g., see [34, 81] for logic-based and

probabilistic approaches, respectively.

8.3.5 Know-How

Intentions have an obvious connection with actions|agents act to satisfy their

intentions. However, intentions do not ensure success; IC3 above showed that even

persistence is not su�cient for success. A key ingredient is know-how, which we

now formalize.

Example 8.13

Consider Figure 8.2. At t0, x may do either action a or action b, since both can

potentially lead to one of the preferred paths being realized. However, if the other

agent does action d, then no matter which action x chooses, x will not succeed with

its intentions, because none of its preferred paths will be realized.

We propose that an agent, x, knows how to achieve p, if it is able to bring about

p through its actions, i.e., force p to occur. The agent's beliefs or knowledge must

be explicitly considered, since these in
uence its decision. For example, if an agent

is able to dial all possible combinations of a safe, then it is able to open that safe:

for, surely, the correct combination is among those that it can dial. On the other

hand, for an agent to really know how to open a safe, it must not only have the

basic skills to dial di�erent combinations on it, but also know which combination

to dial.

A tree of actions consists of an action, called its radix, and a set of subtrees. The

idea is that the agent does the radix action initially and, then, picks out one of the

available subtrees to pursue further. In other words, a tree of actions for an agent

is a projection to the agent's actions of a fragment of T. Thus a tree includes some

of the possible actions of the given agent, chosen to force a given condition. Let �

be the set of trees. Then � is de�ned as follows.

T1. ; 2 � (; is the empty tree)
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T2. a 2 B implies that a 2 �

T3. f�1; : : : ; �mg � �, �1; : : : ; �m have di�erent radices, and a 2 B implies that

ha; �1; : : : ; �mi 2 �

Now we extend the formal language with an auxiliary construct. This extension

is only meant to simplify the de�nitions.

Syn-19. � 2 �, x 2 A, and p 2 LI implies that x[(� )]p 2 LI

x[(� )]p denotes that agent x knows how to achieve p relative to tree � . As usual,

the agent symbol can be omitted when it is obvious from the context. To simplify

notation, we extend
W
to apply to a given range of trees. Since distinct trees in each

such range have distinct radix actions, the extension of
W

from actions to trees is

not a major step.

Sem-32. M j=t [(;)]p i� M j=t Ktp

Sem-33. M j=t [(a)]p i� M j=t Kt(Ehaitrue ^ A[a]Ktp)

Sem-34. M j=t [(ha; �1; : : : ; �mi)]p i�

M j=t Kt(Ehaitrue ^A[a](
W

1�i�m �i : ([(�i)]p)))

Thus an agent knows how to achieve p by following the empty tree, i.e., by doing

nothing, if it knows that p already holds. As a consequence of this knowledge, the

agent will undertake no speci�c action to achieve p. The nontrivial base case is

when the agent knows how to achieve p by doing a single action: this would be the

last action that the agent performs to achieve p. In this case, the agent has to know

that it will know p immediately after the given action.

It is important to require knowledge in the state in which the agent �nally

achieves the given condition, because it helps limit the actions selected by the

agent. If p holds, but the agent does not know this, then it might select still more

actions in order to achieve p.

Lastly, an agent knows how to achieve p by following a nested tree if it knows

that it must choose the radix of this tree �rst and, when it is done, that it would

know how to achieve p by following one of its subtrees. Thus know-how presupposes

knowledge to choose the next action and con�dence that one would know what to

do when that action has been performed.

Sem-35. M j=t xKhp i� (9� :M j=t x[(� )]p)

Example 8.14

Consider Figure 8.3. Let x be the agent whose actions are written �rst there.

Assume for simplicity that each moment is its own unique alternative for x (this is

tantamount to assuming that x has perfect knowledge|the above de�nition does

not make this assumption). Then, by the above de�nitions, xKtq holds at t3 and

t4. Also, xKhq holds at t1 (using a tree with the single action a) and at t2 (using

the empty tree). As a result, at moment t0, x knows that if it performs a, then it

will know how to achieve q at each moment where a ends. In other words, we can
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Figure 8.3 Know-how.

de�ne a tree, ha; a; ;i, such that x can achieve q by properly executing that tree.

Therefore, x knows how to achieve q at t0.

A number of technical approaches to concepts of the know-how family exist. Some

of the leading ones are Segerberg's bringing it about [68] and Belnap & Perlo�'s

seeing to it that (STIT) [4] theories.

8.3.6 Sentential and Hybrid Approaches

The above approaches have used modal logics to formalize various cognitive con-

cepts. Although technically intuitive and elegant, modal approaches have the un-

desirable feature that they over-estimate the reasoning capabilities of an agent. For

example, an agent who knows (or intends) p is automatically assumed to know (or

intend) all logical consequences of p. For knowledge, this is termed the problem

of logical omniscience [42]. Real-life agents cannot be logical omniscient. Conse-

quently, alternative approaches have been proposed to formalizing the cognitive

concepts. These approaches include the explicit representations that an agent has

for its beliefs or intentions, e.g., [50, 51]. Unfortunately, although these approaches

solve the problem of logical omniscience, they do not naturally support any infer-

ences among the cognitive concepts. This too is undesirable, and has accounted for

the lack of attention paid to these approaches. Some hybrid approaches the give a

possible worlds semantics, but restrict it via some representational mechanism have

also been developed, e.g., [27, 82], but these two have not been intensively pursued

in the literature.

One way to understand the above issue is as a natural consequence of the

knowledge level [63]. Newell observed that the knowledge level (corresponding to

the modal approaches) would be inherently inaccurate, whereas the more accurate

symbol level (corresponding to the representational approaches) would be more
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accurate, but only as a lower-level, procedural level of discourse.

8.3.7 Reasoning with Cognitive Concepts

Section 8.2 described two main roles for formal methods in DAI. The concepts

introduced above may be used in each of those roles. In either case, there is

need for e�cient reasoning techniques. In the �rst use, the agent itself applies

the logic, and needs methods such as theorem proving to decide its actions. In the

second use, the designer applies the logic to specify and validate the design of an

agent, and needs methods such as theorem proving and model checking to relate

logical speci�cations to the construction of the agent. The two uses di�er in their

complexity requirements. Although both bene�t from improved techniques, the �rst

use is by far the more demanding, because it requires an answer in less time than

the agent has to respond to its environment or to other agents. For this reason, the

second use is the more practical one, at least when the logic is expressive.

There are two main approaches for reasoning with a logic. The more traditional

one in logic and AI is theorem proving, which essentially involves establishing

that a given formula (the purported theorem) follows through a �nite sequence of

applications of axioms and inferences rules of a given logic [26]. The other approach,

which was invented in logics of programs and is �nding increasing application in AI,

is model checking. This involves checking if a given formula is satis�ed at a given

model and index. For certain logics, model checking can be a lot more tractable

than theorem proving [24, 14]. However, model checking requires additional inputs

in the form of the model and index. This does not prove to be a problem in several

cases, where one if trying to validate a given agent design in a given environment.

The model can be derived given knowledge of the agent and its environment.

Temporal logics and modal logics of knowledge have been studied for some time,

and their complexity issues are well-understood. We lack the space to discuss

complexity issues in much detail here, and refer the reader to [24, 28, 53] for details.

The �-calculus is a logical language that has explicit operators for computing

greatest and least �xpoints [24, 52]. This can be used to specify various modal

and temporal logics in uniform framework, which can be naturally used for model

checking [9, 14].

Both of the above classes of techniques are now being extended and applied in

DAI. Rao has developed some tableau-based decision procedures for variants of the

above BDI logics [64]. The �-calculus is recently being applied to reasoning about

the actions of agents [17, 79].

8.4 BDI Implementations

We now consider some possible ways to realize the above theories of BDI concepts

in a computational system.
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8.4.1 Abstract Architecture

We �rst characterize a BDI architecture abstractly and then show how a concrete

practical instantiation may be obtained.

A Basic Interpreter

We now describe a basic abstract interpreter for situated systems. The architecture

makes use of the underlying concepts of BDI architectures, but implements the

entities de�ned by the modal operators directly as data structures.

The inputs to the system are events, received via an event queue. The system can

recognize (on its event queue) both external (environmental) and internal events.

External events may directly generate particular internal events, such as updating

some component of the system state. We assume that the events are atomic and

are recognized upon completion (and not during occurrence).

The outputs of the system are atomic actions, which are performed by an execute

function. The system may, but is not required to, recognize events corresponding

to the successful or unsuccessful execution of actions. Based on its current state

and the events in its queue, the system selects and executes options, which cor-

respond to subroutines, production rules, tasks, plans, �nite automata, or circuit

networks. Correspondingly, the option-invoking events would be subroutine calls or

the assertion of antecedents of a production rule.

The abstract interpreter is given below. We assume the procedures and functions

appearing in the interpreter operate on the system state, denoted by S. The

interpreter continually performs the following. First, it determines the available

options. Next, it deliberates to commit to some options. It then updates its state

and executes appropriate atomic actions. Finally, the event queue is updated to

contain all those recognizable events that have occurred during the cycle. Since

events are recognized (and thus acted upon) only once per cycle, the system's

reaction time is bounded from below by the time taken to perform a cycle.

basic-interpreter

initialize-state();

do

options := option-generator(event-queue, S);

selected-options := deliberate(options, S);

update-state(selected-options, S);

execute(S);

event-queue := get-new-events();

until quit.

This abstract interpreter can be used as a basis for di�erent situated systems,

including those in which most of the deliberation is precompiled [67].
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An Abstract BDI Interpreter

We now consider the special case of a BDI architecture by re�ning both the sys-

tem state and interpreter. The system state comprises three dynamic data struc-

tures representing the agent's beliefs, desires, and intentions. For simplicity, we

assume that the agent's desires are mutually consistent, although not necessarily

all achievable. Such mutually consistent desires are called goals. The data struc-

tures support query and update operations, which include b-add, b-remove, g-add,

g-remove, i-add, and i-remove. The update operations are subject to compati-

bility requirements, captured in the functions b-compatible, g-compatible, and

i-compatible. These functions are critical in enforcing the constraints on the

agent's mental attitudes.

The interpreter is re�ned as follows. Here get-new-external-events returns

the external events that have occurred since its last invocation. At the beginning

of a cycle, the option generator reads the event queue. It returns a list of the best

options for further deliberation and possible execution. Next, the deliberator selects

a subset of options and adds them to the intention structure. If there is an intention

to perform an atomic action now, the agent executes it. Any external events that

have occurred during the interpreter cycle are then added to the event queue.

Internal events are added as they occur. Next, the agent modi�es the intention and

goal structures by dropping all successful goals and satis�ed intentions, as well as

impossible goals and unrealizable intentions.

BDI-interpreter

initialize-state();

do

options := option-generator(event-queue,B,G,I);

selected-options := deliberate(options,B,G,I);

update-intentions(selected-options,I);

execute(I);

get-new-external-events();

drop-successful-attitudes(B,G,I);

drop-impossible-attitudes(B,G,I);

until quit.

This interpreter extends the basic interpreter mainly in the last three procedures,

which eliminate a number of options that would otherwise be carried over to the

next cycle.

8.4.2 Practical System

The above abstract architecture is a useful abstraction of the preceding theoretical

model. It illustrates the main components of practical reasoning: option generation,

deliberation, execution, and intention handling [5].

However, it is not practical. The architecture assumes a (logically) closed set
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of beliefs, goals, and intentions. It is not speci�ed how the option generator

and deliberation procedures can be made su�ciently fast to satisfy the real-

time demands placed upon the system. We now make a number of additional

representational choices which, while constraining expressive power, provide a more

practical system. The resulting system is a simpli�ed version of the Procedural

Reasoning System (PRS) [46].

Beliefs and Goals

The system operates only on explicit beliefs and goals and not on their consequential

closure. Further, we identify a subset of the agent's beliefs and goals, which we call

current. These are taken to be ground literals (rather like atomic propositions, but

actually predicates applied to constants). Ground literals can be negated, but do

not include any binary operators such as disjunction or implication. Intuitively,

they represent beliefs and goals that are currently held, but which can be expected

to change over time.

It may seem that such a language is too simple to be of practical use. However,

implications and variables can be introduced through the plan constructs, resulting

in little loss of expressiveness, but for a substantial gain in control.

Plans

The above abstract interpreter represents information about means and options as

beliefs. These can be more directly represented as plans. A plan has a name or

type. The body of a plan is the method for executing it, and is speci�ed by a plan

graph, which is a rooted, directed, acyclic graph whose edges are labeled with simple

plan expressions. A simple plan expression is either an atomic action or a subgoal.

The invocation condition (a triggering event) and precondition specify when the

plan may be selected. The add list and delete list of a plan respectively specify the

atomic propositions to be believed or not believed upon its successful execution.

Plans represent a number of beliefs corresponding to complex modal formulas.

Having a plan means that its body is believed to be an option whenever its

invocation condition and precondition are satis�ed. A plan represents the belief

that, whenever its invocation condition and precondition are satis�ed and its body

successfully executed, the propositions in the add list will become true. Since the

preconditions are conditions on the agent's beliefs, the agent can execute plans to

compute new consequences. These consequences can trigger further plans to infer

further consequences. This gives the agent greater control as to when to compute

consequences of its current beliefs, goals, and intentions.

Example 8.15

Suppose John acquires a goal to quench his thirst. He believes he has two ways

to satsify it. One, perform a sequence of two atomic actions: open the tap and

drink water from the tap. Two, satsify a subgoal (obtain a soda bottle) and then

perform an atomic action (drink soda from the bottle). The subgoal can be satis�ed
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(a)

Type: drink-soda
Invocation:
g-add(quenched-thirst)

Precondition: have-glass
Add List:fquenched-thirstg
Body: h1

have-soda
?h2

drink
?h3

(b)

Type: drink-water
Invocation:
g-add(quenched-thirst)

Precondition: have-glass
Add List:fquenched-thirstg
Body: h1

open-tap
?h2

drink
?h3

(c)

Type: get-soda
Invocation:
g-add(have-soda)

Precondition: true
Add List: fhave-sodag
Body: h1

open-fridge
?h2

get-soda
?h3

Figure 8.4 Plans for quenching thirst.

by opening the refrigerator and removing a soda bottle. These plans are shown in

Figure 8.4.

Intentions

Plans provide a hierarchical structure and allow tractable real-time option genera-

tion and means-end reasoning. The options are, in fact, plans. As they are adopted,

they are added to the intention structure. Thus, intentions are represented as sets

of hierarchically related plans.

To achieve an intended end, the agent forms an intention towards a means for this

end; namely, the plan body of an appropriate plan. This means-end pair, together

with information about variable bindings and control points, is called an intention

frame. An intention towards a means results in the agent adopting another end

(subgoal) and the means for achieving this end, thus creating another intention

frame. This process continues until the subgoal can be directly executed as an

atomic action. The next subgoal in the plan is then attempted.

An intention stack is used to keep track of variable bindings and control points.

Each intention stack represents a separate process or task. These intention stacks

are organized into an intention structure, which places various ordering constraints

on them. Intention stacks can also be created for any event that appears in the

invocation condition of a plan. This enables the system to be responsive to external

events without mediating everything through goals.

A Practical Interpreter

A practical interpreter can be derived from the above. The main loop for this inter-

preter is as above. However, as the system is embedded in a dynamic environment,

the procedures appearing in the interpreter must be fast enough to satisfy the

real-time demands of the appropriate applications.
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Given a set of trigger events from the event queue, the option generator iter-

ates through the plan library and returns those plans whose invocation condition

matches the trigger event and whose preconditions are believed by the agent. The

provability procedure involves simple uni�cation with the beliefs.

option-generator(trigger-events)

options := fg;

for trigger-event 2 trigger-events do

for plan 2 plan-library do

if matches(invocation(plan),trigger-event) then

if provable(precondition(plan),B) then

options := options [ fplang;

return(options).

The deliberate procedure's execution time should conform with the time con-

straints of the environment. Under certain circumstances, random choice may be

appropriate. Sometimes, however, it is necessary to carry out lengthy deliberation.

Such deliberation can be achieved by including metalevel plans in the plan library.

Thus the deliberate procedure may select, and thus form an intention towards,

metalevel plans for performing more complex deliberation than it itself is capable.

We give a simpli�ed version of the procedure implemented in PRS [32].

deliberate(options)

if length(options) � 1 then return(options);

else metalevel-options := option-generator(b-add(option-set(options)));

selected-options := deliberate(metalevel-options);

if null(selected-options) then

return(random-choice(options));

else return(selected-options).

Note that there can be more than one metalevel option, which results in the

procedure being called recursively until at most one option remains. If no metalevel

options are available, the deliberator chooses randomly.

Option generation can be simpli�ed by inserting post-intention-status at

the end of the loop. This procedure delays posting events on the queue to avoid

the work caused by spurious changes otherwise sent to the event queue. In the

abstract interpreter, commitment is achieved by reducing the options generated.

Since the options depend on the events in the queue, post-intention-status

determines the elements of the intention structure that are carried forward. Thus,

post-intention-status can yield various notions of commitment, which result in

di�erent behaviors of the agent. One variant is given next.

post-intention-status()

if null(I) then

for goal 2 G do

event-queue := event-queue [ g-add(goal);



8.4 BDI Implementations 355

else for stack 2 I do

event-queue := event-queue [ g-add(means(top(stack))).

Bel Goal Int done succeeded

glass { { { {

unchanged quench { { g-add(quench)

unchanged unchanged f soda; drinkg { g-add(soda)

: remove-soda unchanged { fridge fridge,

g-add(quench)

unchanged unchanged f drinkg tap tap

quench { { drink drink

Table 8.1 Trace of practical BDI interpreter.

Example 8.16

Consider Example 8.15 with plans as shown in Figure 8.4. Assume that the event

g-add(quench) has just been added to the event queue. As the invocation conditions

of drink-soda and drink-water match with the trigger event and their context

conditions are believed, the option generator returns both these plans as suitable

options.

Assume that the deliberator �rst selects the drink-soda option. As this option is

to satisfy a new goal, rather than a subgoal of a previous intention, a new intention

stack is created. The end (goal) for the top intention frame of the stack is quench

and the means are given by the drink-soda plan. Since the �rst action in this plan

is not atomic, no action is executed. Assume that no external events occur on this

cycle. Thus the event queue contains only the internal event corresponding to the

creation of the intention for the chosen option. As the system has not succeeded

in any of its goals nor discovered that any intentions are impossible, it posts the

current intention status. This results in g-add(soda) being added to the event

queue.

In the next cycle, the option generator selects the plan for getting soda. This is

adopted, and its frame added to the intention stack. The agent opens the refrigerator

door, but at the next moment discovers that no soda is present. It is thus forced to

drop its intention. Finally, the initial goal is reposted by post-intention-status.

On the next cycle, the option to drink water is selected, and the plan is completed

successfully over further cycles. Table 8.1 shows the trace.

In the above we showed how the logics of the BDI concepts can be mapped into

realistic implementations of systems. Although we didn't discuss the interactional

aspects in the above, those can be worked in as well [36, 66]. We now our attention

to some direct ways of capturing the interactional aspects of multiagent systems.
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8.5 Coordination

Coordination is one of the key functionalities needed to implement a multiagent

system. This is especially so when the component agents are heterogeneous, i.e.,

of diverse constructions and internal structures, and autonomous, i.e., making

decisions without regard to the other agents.

A number of techniques for coordination have been developed in DAI. These are

discussed in Chapter 3. A thorough logical account of these techniques, however,

remains to be developed. A logical account would have the usual bene�ts of

formal methods: a declarative, high-level speci�cation independent of its ultimate

realization, and the possibility of rigorously validating the implementations with

respect to the speci�cations.

One formal approach to coordination was developed by Singh [77]. This approach

represents each agent as a small skeleton, which includes only the events or

transitions made by the agent that are signi�cant for coordination. Coordination

requirements are stated as temporal logic formulas involving the events. Formulas

have been obtained that can capture the coordination requirements that arise in

the literature.

The speci�c approach uses a temporal logic that is a variant of the linear temporal

logic of Section 8.2.6. For that logic, it is possible to compile the speci�cation in

such a way as to localize most decision-making information on the individual agents.

E�ectively, the agents relinquish part of their autonomy (or their designers do it

for them) when they decide to be coordinated. This leads to constraints on some

of their events. If the agents respect these constraints, then the system as a whole

behaves in the desired coordinated manner.

Sometimes, the term coordination is taken to mean a bit more than the above.

In such cases, coordination involves the agents' beliefs and intentions. We discuss

such cases under collaboration below.

8.5.1 Architecture

We now discuss the architecture that underlies a distributed coordination scheme

based on temporal logic. We assume that agents are designed autonomously, and

their internal details may be inaccessible. Also, that agents act autonomously and

may unilaterally perform certain actions within their purview. However, in order to

be able to coordinate the agents at all, the designer of the multiagent system must

have some limited knowledge of the designs of the individual agents. This knowledge

is in terms of their externally visible actions, which are potentially signi�cant for

coordination. We call these the signi�cant events of the agent. In other words, the

only events we speak of are those publicly known|the rest are of no concern to the

coordination service. These events are organized into skeletons that characterize

the coordination behavior of the agents. The idea of using events and skeletons is

well-known from logics of programs [25].
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Event Classes

We allow four classes of events, which have di�erent properties with respect to

coordination. Events may be


exible, which the agent is willing to delay or omit

inevitable, which the agent is willing only to delay

immediate, which the agent performs unilaterally, that is, is willing neither to

delay nor to omit

triggerable, which the agent is willing to perform based on external request.

The �rst three classes are mutually exclusive; each can be conjoined with trigger-

ability. We do not have a category where an agent will entertain omitting an event,

but not delaying it, because unless the agent performs the event unilaterally, there

must be some delay in receiving a response from the coordination service.

Agent Skeletons

It is useful to view the events as organized into a skeleton to provide a simple rep-

resentation of an agent for coordination purposes. This representation is typically

a �nite state automaton. Although the automaton is not used explicitly by the

coordination service during execution, it can be used to validate speci�ed coordina-

tion requirements. The set of events, their properties, and the skeleton of an agent

depends on the agent, and is application-speci�c. The coordination service is inde-

pendent of the exact skeletons or events used in a multiagent system. Examples 8.17

and 8.18 discuss two common skeletons in information search.

g
error

Failed
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H
H
HY

g

g
6

start

�
�
�
�
�*

Executing

Succeeded

Not executing

respond

g

Figure 8.5 Skeleton for a simple querying agent.

Example 8.17

Figure 8.5 shows a skeleton that is suited for agents who perform one-shot queries.

Its signi�cant events are start (accept an input and begin), error, and respond

(produce an answer and terminate). The application-speci�c computation takes

place in the node labeled \Executing." We must also specify the classes of the

di�erent events. For instance, we may state that error and respond are immediate,

and start is 
exible and triggerable.
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Figure 8.6 Skeleton for an information �ltering agent.

Example 8.18

Figure 8.6 shows a skeleton that is suited for agents who �lter a stream, monitor a

database, or perform any activity iteratively. Its signi�cant events are start (accept

an input, if necessary, and begin), error, end of stream, accept (accept an input, if

necessary), respond (produce an answer),more (loop back to expecting more input).

Here, too, the application-speci�c computation takes place in the node labeled

\Executing." The events error, end of stream, and respond are immediate, and all

other events are 
exible, and start is in addition triggerable.

8.5.2 Speci�cation Language

LC is a language for specifying coordinations. It is a variant of LL, the linear-time

language, with some restrictions. LC is LP augmented with the before (�) temporal

operator. Before is related to the until operator of LL: it is used because it is easier

to process symbolically for the purpose at hand. The literals denote event types,

and can have parameters. Here we only consider the nonparameterized case, for

simplicity. Also, in LC negation applies only on the atoms, and is written as a

(bar) to highlight this fact. Further, the atoms are interpreted as events, such as

are listed in the agent skeletons.

Syn-20.  2 � implies that  ;  2 LC

Syn-21. p; q 2 LC implies that p ^ q, p _ p, p � q 2 LC

The semantics of LC is given with respect to a model M6
def
= hT; <; [[ ]]i.M6 has

the same structure as M3. However, we restrict M6 further so that it consists of

paths or traces, which are consistent. By a consistent trace, we mean one on which

no event is repeated and an event and its complement do not both occur. The

following semantic de�nitions take as their index a given trace, � , not a speci�c

moment on it, as for the previous semantic de�nitions. The motivation for this is

that in giving a speci�cation we only care about the behavior of the system as given

by a trace, not by what may or may not have transpired at a given moment. When



8.5 Coordination 359

we execute the coordinations, we do care about the speci�c moments, of course, but

that is not the concern of the speci�er. The operator � denotes concatenation of two

traces, the �rst of which is �nite. The following semantics looks at speci�c indices

of a trace (as in �i). This substitutes for the labeling function or [[ ]] used previously,

and emphasizes the fact that each event happens at a particular moment.

Sem-36. M6 j=�  i� (9i : �i =  ), where  2 �

Sem-37. M6 j=�  i� (9i : �i =  ), where  2 �

Sem-38. M6 j=� p ^ q i� M6 j=� p and M6 j=� q

Sem-39. M6 j=� p _ q i� M6 j=� p or M6 j=� q

Sem-40. M6 j=� p � q i� (9�; 
 : (� = � � 
)&M6 j=� p&M6 j=
 q)

 refers to the complement of  . From the above, it is possible that a trace � may

satisfy neither  nor  . In this way, negation in LC is stronger than in traditional

logics.  means that it is de�nite that  will never occur. Consequently, maximal

traces will satisfy  _  .

Singh [77] presents a set of equations that enable symbolic reasoning on LC to

determine when a certain event may be permitted, prevented, or triggered.

8.5.3 Common Coordination Relationships

Coordinations are speci�ed by expressing appropriate relationships among the

events of di�erent agents. LC allows a variety of relationships to be captured.

Table 8.2 presents some common relationships. Some of the relationships involve

coordinating multiple events. For example, R8 captures requirements such as that

Name Description Formal

notation

R1 e is required by f If f occurs, e must occur before

or after f

e _ f

R2 e disables f If e occurs, then f must occur

before e

e _ f _ f � e

R3 e feeds or enables f f requires e to occur before e � f _ f

R4 e conditionally feeds f If e occurs, it feeds f e _ e � f _ f

R5 Guaranteeing e en-

ables f

f can occur only if e has oc-

curred or will occur

e ^ f _ e ^ f

R6 e initiates f f occurs i� e precedes it e ^ f _ e � f

R7 e and f jointly require
g

If e and f occur in any order,
then g must also occur (in any

order)

e _ f _ g

R8 g compensates for e

failing f

if e happens and f does not,

then perform g

(e_f_g)^(g_e)^
(g _ f)

Table 8.2 Example relationships.
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if an agent does something (e), but another agent does not match it with something

else (f), then a third agent can perform g. This is a typical pattern in applications

with data updates, where g corresponds to an action to restore the consistency of

the information (potentially) violated by the success of e and the failure of f . Hence

the name compensation.

8.6 Communications

Communications are a natural way in which the agents in a DAI system may

interact with one another other than through incidental interactions through the

environment. Communications is discussed in detail in Chapter 2.

Speech act theory, which originated in the philosophy of language, gives the basis

for communications. Speech act theory is founded on the idea that with language

you not only make statements, but also perform actions [3]. For example, when

you request something you do not just report on a request, but you actually e�ect

the request; when a justice of the peace declares a couple man and wife, she is not

reporting on their marital status, but changing it. The stylized syntactic form for

speech acts that begins \I hereby request . . . " or \I hereby declare . . . " is called a

performative. With a performative, literally, saying it makes it so! [3, p. 7]. Inter-

estingly, verbs that cannot be put in this form are not speech acts. For example,

\solve" is not a performative, because \I hereby solve this problem" just does not

work out|or Math students would be a much happier lot! For most computing

purposes, speech acts are classi�ed into assertives (informing), directives (request-

ing or querying), commissives (promising), permissives, prohibitives, declaratives

(causing events in themselves, e.g., what the justice of the peace does in a marriage

ceremony), expressives (expressing emotions and evaluations).

Austin identi�ed three main aspects of a speech act. The locution refers to the

lowest level of the speech act, namely, the string that is transmitted. The illocution

refers to the intrinsic meaning of the speech act. The perlocution refers to the

possible e�ects of the speech act on the recipients. The locution can be varied

and the perlocutions depend on the recipient. However, the illocution tells us the

meaning that is conveyed. For this reason, studies of communication in DAI focus

primarily on the illocutions.

8.6.1 Semantics

Formalizing the semantics of communications has proved a longstanding challenge.

This is partly because more than one view of what can be formalized is possible. The

earliest work was carried out in computational linguistics, and sought to determine

the conditions under which the intended meaning of a speech act might be inferred.

For example, given a locution in the form of a question (e.g., \can you pass the

salt?"), one might infer an illocution that is a request (e.g., \please pass the salt").
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There is considerable subtlety involved in this reasoning, but for the most part, it

is speci�c to human languages and can be avoided in DAI.

A di�erent approach was developed by Singh [78]. This approach sought to give

the objective criteria under which speech acts of di�erent illocutionary forces could

be said to be satis�ed. The idea was to identify the conditions in a framework

that highlighted the proof-obligations of a designer in showing that di�erent speech

acts were satis�ed. Following Hamblin [38], Singh de�ned a notion of whole-hearted

satisfaction. This was formalized using a modal operator; truth conditions for this

operator corresponded to satisfaction conditions for the corresponding speech acts.

An example condition is that a directive for p is whole-heartedly satis�ed if and

only if the recipient adopts and intention to satisfy p, has the know-how to achieve

p, and acts resulting in p.

Recently, Labrou & Finin have developed a formal semantics for communications

and conversations (consisting of a series of communications) that considers the

preconditions and postconditions for each speech act. These conditions are stated

in terms of the beliefs and wants of the participating agents.

Fundamentally, communication is a social phenomenon. Although this fact is

noted in informal discussions, existing approaches have not recognized it in their

theoretical development. We believe that the study of social primitives (discussed

below) has advanced enough that directly social semantics of communications can

now be explored. We leave the development as a signi�cant open research problem

in DAI.

8.6.2 Ontologies

An ontology is a representation of some part of the world. Ontologies are thus of

interest to knowledge representation. Although ontologies in themselves are not a

social concept, they can provide a shared \virtual world" that can serve as the

basis for communications [44]. In fact, when many people talk of the \semantics"

of a communication, they mean understanding the concepts and terms used in it.

Ontologies provide a natural, declarative way of identifying concepts and terms. If

two agents agree on the upper nodes of a taxonomy, they can jointly traverse the

taxonomy till they �nd the location of a newly introduced concept. Thus, they can

build a shared understanding of their content language. It is this fact that makes

ontologies interesting. They found much application in DAI systems, especially

those involving access to, or interactions among, information systems and databases

[22, 90]. Consequently, ontologies are included in several multiagent architectures.

Ontologies are amenable to formal methods in two main places. One place is

in the algorithms for processing ontologies, which exploit the connection between

lattice theory and taxonomies [43]. Another place is in approaches to help interlink

ontologies developed by di�erent vendors, or incorporated by di�erent agents, who

must reconcile them in order to communicate. An interesting class of approaches

may be based on algebraic techniques [89]; however, this work is still in its infancy.
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8.7 Social Primitives

Arguably, it is the active use of social concepts in its design and implementation that

distinguish a DAI system from a traditional distributed computing system [31]. We

lump into the category of social primitives those that concern societies of agents as

well as those that concern smaller and more heavily structured organizations. Some

related social concepts are introduced in Chapter 2, and organizational concepts in

Chapter 7.

8.7.1 Teams and Organizational Structure

A group or multiagent system is a system of agents that are somehow constrained in

their mutual interactions. Typically, these constraints arise because the agents play

di�erent roles in the group, and their roles impose requirements on how they are to

behave and interact with others. A team is a group in which the agents are restricted

to having a common goal of some sort. Typically, team-members cooperate and

assist each other in achieving their common goals. Groups and teams prove to be

a fertile ground for the development of formal theories in DAI, especially theories

that are unlike the theories in traditional AI or computer science. We emphasize,

however, that some of this work is still in an early stage, and the descriptions below,

although moderately stable, should not be taken as �nal.

Some good work has focused on formalizing cooperative problem solving [92],

and the representations needed for e�ective cooperation [21].

8.7.2 Mutual Beliefs and Joint Intentions

One of the oldest ways of lifting single-agent concepts to multiagent concepts is

through the use of mutual beliefs. A set of agents is said to have a mutual belief

that p if they each (a) believe p, (b) believe that condition (a) holds of the others

(that they believe p), (c) believe that condition (b) holds of the others, and so

on. Mutual belief thus provides a means to achieve the e�ect of a perfectly shared

mental state. It has been argued the mutual beliefs can account for various aspects

of human communication [13, 39] and social conventions [58].

Levesque & Cohen developed an approach that generalizes the notion of inten-

tions to joint intentions [57]. This theory is extremely complicated, and our pre-

sentation can at best be thought of an intuitive approximation of the original. A

joint intention for p exists among a group of agents if they (a) each have a goal

that p, (b) each will persist with this goal until it is mutually believed that p has

been achieved or that p cannot be achieved, (c) conditions (a) and (b) are mutually

believed.

Grosz & Kraus develop a formal theory of shared plans [35]. This theory relates

the cooperative activities of agents via their individual and shared plans. A distinc-

tion is sometimes made between an agent intending to achieve something and an
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agent intending that some condition be obtained. Usually, actions and propositions

are closely related, although they are often treated di�erently in human languages.

Grosz & Kraus adapt this idea to develop a framework in which the agent is itself

committed to performing the intentions toward actions, but depending on the situ-

ation can act on the intentions for propositions that are held by its team-members

(and, similarly, can expect others to take on the propositions it intends).

On the one hand, mutual beliefs play a role in several theories; on the other hand,

it is well-known that if communications among the agents are not reliable (in terms

of delivery and delay), then mutual beliefs cannot be attained [11, 37]. In other

words, the mutual beliefs are limited to the beliefs that the designer hard-wires

into the agents at the start, but additional mutual beliefs cannot be attained.

This con
ict between some theoretically appealing properties of mutual beliefs

and their infeasibility in practical situations has led some researchers to explore

alternative ways to achieve the same e�ect. It has been suggested that social

primitives, appropriately formalized, might provide a more direct means to capture

the social aspects of multiagent systems, which apparently are the ones that mutual

beliefs seek to capture.

8.7.3 Social Commitments

Section 8.3.4 introduced psychological commitments. Here we consider social com-

mitments, which are the commitments that an agent toward another agent [10, 74].

Such commitments related to directed obligations [55] as studied in deontic logic

(see Section 8.2.4). Social commitments are a genuinely multiagent concept, since

they have no analog in a single-agent system. Social commitments can potentially be

used to give clear speci�cations at the social level of how the agents in a multiagent

system ought to interact; such speci�cations will not delve into implementational

details, and give maximal freedom to diverse designers to implement agents that

can behave together cohesively.

Although concepts such as social commitments have long been identi�ed, this

topic has drawn much interest recently [10, 16, 23, 66, 80]. Castelfranchi introduced

the idea of a witness of a commitment, which certi�es to its creation [10]. Singh

generalizes notion to a context group, which is usually the multiagent system within

which the given commitment exists [80]. The formalization of social commitments

involves de�ning an independent primitive. They also involve the description of

associated notions such as the roles that may exist in the given multiagent system,

and what capabilities and authorities (or authorizations) agents would need to play

speci�c roles. This work is still in its infancy, but we encourage the reader to peruse

the cited works for some open research problems.

8.7.4 Group Know-How and Intentions

There is a view that multiagent systems can themselves be treated as agents. These

are then referred to as groups and distinguished from ordinary individual agents.
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In many interesting cases, when an agent interacts with another entity, it may

have no knowledge or concern that the other entity is an individual or a group. It

may have expectations about the other entities as usual, and may enter into social

commitments with it. Thus the other entity is justi�ably treated as an agent.

A natural question is how may we de�ne the beliefs, knowledge, know-how, and

intentions of groups. Some conventional approaches were mentioned in Section 8.7.2.

An alternative approach is to de�ne the structure of a group explicitly, and de�ne

the intentions and know-how of the group as based on its structure and the

intentions and know-how of its members. The structure may itself be formalized in

several ways. One way is through a combination of the reactive and the strategic

interactions among the members that are called for by the group [71, 72].

For reasons of space, we only consider group intentions below. Recall the sce-

narios selected by the model component I in formalizing intentions. With reactive

interactions, the selected scenarios are restricted to those that satisfy some ad-

ditionally speci�ed temporal (path) formulas, which intuitively correspond to the

habits of interaction of the di�erent members. Similarly, strategic interactions re-

strict the selected scenarios to those in which the speci�ed communications among

the members are satis�ed. For example, a group could require that all directives

issued by an agent playing the role of leader must be satis�ed, or that all commit-

ments created through explicit promises must be discharged. These requirements

eliminate unacceptable scenarios, leading to a stronger notion of intentions than if

we considered the agents individually. However, this notion is potentially weaker

than traditional notions, which always require some form of mutual belief among

the members.

Interestingly, when formalized, the above de�nitions lead to some algebraic

properties of group intentions that relate to the underlying structure of the given

groups [71].

8.8 Tools and Systems

Now we present a variety of implemented tools and systems for DAI that bear

some signi�cant connection with the formal techniques introduced above. We have

three categories of these tools and systems: those that follow the above approaches

closely; those that are essentially traditional techniques applied to DAI, and those

that were informally in
uenced by the DAI approaches.

8.8.1 Direct Implementations

We now review some of the popular systems that are fairly directly based on the

above ideas.
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PRS and dMARS

The Procedural Reasoning System (PRS) [33] was one of the �rst implemented

systems to be based on a BDI architecture. As described in the foregoing, PRS

provides goal-oriented as well as reactive behavior. It was implemented in LISP

and has been used for a wide range of applications in problem diagnosis for the

Space Shuttle [46], air-tra�c management [59], and network management [46].

dMARS is a faster, more robust reimplementation of PRS in C++. It has been

used in a variety of operational environments, including paint shop scheduling in car

manufacturing, air combat simulation, resource exploration, malfunction handling

on NASA's space shuttle, and management of business processes in Internet and

call center applications [49].

COSY

COSY is also a BDI architecture, and bears several similarities to PRS and dMARS

[36]. It involves the same concepts, and uses plans as its core representation.

However, in addition, COSY has gives importance to both psychological and social

commitments. COSY has a strong component of cooperation, which is based on

formal protocols built on top of an agent communication language. The formation

of commitments is declaratively captured in various rules. The above protocols

involve commitments among the agents, and include rules through which tasks

may be delegated to and adopted by di�erent agents.

Agent-Oriented Languages

The concepts discussed in the chapter are also �nding their way into programming

language constructs. Shoham [69] in his proposal for an agent-oriented language

called AGENT0 made extensive use of notions such as beliefs, commitments, and

know-how. The language was subsequently extended by Thomas [88] to include

planning capability similar to that of BDI architectures.

Agent-oriented languages based on alternative formalisms are also gaining

ground. Golog and ConGolog [56] are logic programming languages that allow

explicit reasoning about actions. The system is based on situation calculus to rep-

resent and reason about change [61]. As the Golog interpreter can reason about

actions it can avoid \dead paths" that the BDI interpreter cannot. However, it does

not o�er the reactivity o�ered by the BDI architecture because of its inability to

indirectly invoke the execution of plans.

Concurrent MetateM

An alternative approach uses temporal logic to specify the behavior of agents. A

Concurrent MetateM system [29] consists of a set of objects each executing temporal

speci�cations. A rule in this language is of the form \past and present formula"
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implies \present or future formula." As a result, execution of this rule involves

matching the antecedent of these rules against the history of incoming messages

and then executing the present and future-time consequents. Enhancements with

explicit BDI operators are beginning to be developed [30].

ARTIMIS

Breiter & Sadek have implemented a formal theory of beliefs and intentions in the

ARTIMIS system [7]. The ARTIMIS system carries out intelligent dialogue with a

user in assisting the user in tasks such as information access. This system, being

designed as a user interface, applies the Gricean maxims, whereby the computer

attempts to infer the user's intentions and act accordingly. It also uses an agent

communication language, Arcol, to carry out a dialogue with the user.

DEPNET

DEPNET is an interpreter for agents who can perform social reasoning [70]. Agents

in DEPNET represent knowledge about one another to determine their relative

autonomy or dependence for various goals. Dependence leads to joint plans for

achieving the intended goals. The underlying theory is based on dependence rather

than social commitments. Thus it is more amenable to processing by the agents

individually, but is also more limited because it cannot easily capture the normative

aspects of social interaction among agents. However, this tool shows how social

notions can be realized in tools for simulating and analyzing multiagent systems.

TFM-CAA: Coordinating Autonomous Agents

TFM-CAA is an implementation of a customizable coordination service based on

the approach described in Section 8.5. This service (a) takes declarative speci�ca-

tions of the desired interactions, and (b) automatically enacts them. This approach

enacts the coordination requirements in a distributed manner with minimal intru-

sion into the design of the agents being coordinated.

8.8.2 Partial Implementations

These are systems that do not involve a full implementation of the theoretical

concepts, but were in
uenced by the theories and used them in designing their

solutions. They are, however, full systems in their own right.

STEAM

STEAM is an architecture for teamwork by agents [87]. STEAM o�ers abstractions

for teams, based on the work on joint intentions and shared plans. STEAM also

uses some coordination abstractions. One of STEAM's features is the speci�cation of
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team plan operators in terms of role operators|that is, plan operators for member

agents. Three role-monitoring constraints are de�ned, through which STEAM can

infer the potential achievability of a team operator. If a team operator becomes

unachievable because of a role-monitoring failure, it can be repaired by examining

the roles that caused the failure. STEAM is being enhanced with functionality using

which an agent can compare its behavior to that of its peers and thereby determine

if a failure has occurred. STEAM has been applied in domains such as military

helicopter missions and simulated soccer.

Carnot

Carnot was a research project primarily focused on accessing and updating in-

formation from heterogeneous databases, such as are common in large enterprises

[91]. Carnot was applied on accessing information from legacy databases, automat-

ing work
ow for service-order processing, and retrieving related information from

structured and text databases [83]. In these applications, Carnot adapted formal

techniques for ontology management [43] and transaction management [84]. The

latter were a precursor of the formal theory later extended to coordinating au-

tonomous agents, as described in Section 8.5.

ARCHON

The ARCHON project developed a domain-independent architecture of multiagent

systems, which was applied in an electricity transportation management system

and a particle accelerator [48]. This architecture emphasized the role of cooperation

among agents through a declarative representation of cooperation, which was rea-

soned about explicitly. The agents autonomously detected the need to cooperate|

this generalizes distributed problem solving, and enhances the autonomy of the

agents. The agents maintain self models and acquaintance models to e�ectively

decide when and how to cooperate. This system adapted the notion of joint inten-

tions mentioned above. It also included a framework for information access similar

to Carnot's.

maDes

Ishizaki develops maDes, a multiagent model of dynamic design. Design is under-

stood as the creative activity in which a designer constructs a suitable represen-

tation for a message [47]. Ishizaki's model is interesting to the design community,

because it emphasizes the dynamic or active aspects of modern media, such as com-

puters. It is interesting to the agent community, because it �nds a novel application

of agents. It considers a number of agents with di�erent abilities who come together

to create a composite design. This model uses the theory of group ability as its basis

for de�ning the reactive interaction among design agents [72].
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8.8.3 Traditional Approaches

This section reviews some formal approaches that initially were designed for tra-

ditional software engineering, but which are being applied to DAI systems. We

include these here, because as we have maintained in this Chapter, DAI requires

the careful synthesis of traditional and new techniques.

DESIRE

Design and Speci�cation of Interacting Reasoning Components, better known as

DESIRE, is a framework for the design and speci�cation of multiagent systems [6].

DESIRE can be thought of as an object modeling framework with enhancements

for DAI. The primary unit of representation in DESIRE is a task. The user can

specify task composition, sequencing of tasks, and task delegation, in addition to the

information exchanged between agents and the knowledge structures that capture

the domain knowledge. Tasks are similar to PRS plans, except that when it comes

to execution plans are executed indirectly by posting an event to achieve a goal,

rather than directly. This has the advantage that any external events can be handled

during the execution of a plan.

The Z Speci�cation Language

The Z language was developed for the formal speci�cation of software systems [86].

It has found application in DAI as well. One class of uses of Z involves formally

specifying properties such as the autonomy and dependence of agents in multiagent

systems, as well as the cognitive concepts discussed above [20]. Another use involves

formalizing existing systems after the fact to give a mathematical characterization of

their behavior that may be more faithful than a pure knowledge-level BDI treatment

[19].

8.9 Conclusions

As DAI matures and its applications expand into increasingly critical settings,

we will need sophisticated approaches for engineering DAI systems. As in other

branches of computer science, these approaches will involve a combination of tools

and methodologies. E�ective tools and methodologies must not only support a

rich variety of powerful abstractions, but also be founded on and respect rigorous

treatments of the abstractions they support.

DAI systems involve a variety of concepts. Some of these are the BDI concepts

that have been studied for the longest time in DAI. Other relevant concepts involve

communications among agents as well as a wide range of coordination and social

primitives. Consequently, formal methods in DAI inherently involve mathematical
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structures that explicate these notions. Although formal methods in DAI are still

in their infancy, some interesting results have been obtained. The formal techniques

have also been used to in
uence a variety of practical systems.

However, an important caveat is that most of the present-generation systems

that \implement" various theories have only limited �delity to those theories. They

need to go beyond the theories to a signi�cant extent. This deviation is essential

because current theories tend to be incomplete in their coverage and somewhat

simplistic and top-heavy. Consequently, more than in traditional systems, DAI

systems require a greater contribution of insights from their developers. Although

the insights are valuable, their insertion detracts from the formal underpinnings of

the work, because the insights are typically ad hoc, and do not facilitate establishing

the kinds of properties that make formal methods attractive.

This speaks to the need for carefully engineered, tractable logics that may not be

expressive in general, but have the power needed for a speci�c class of tasks. Full

automation may not be essential, especially at design time, if the insights a human

may o�er are from a well-understood set of patterns. But, of course, that is what

tools and methodologies are all about. Consequently, a range of future challenges

is to develop well-honed formal theories that cover the phenomena that emerge in

practice, are more accurate in their treatment of real systems, and can be used to

analyze and design them.

8.10 Exercises

1. [Level 1] Formalize the following conditions in propositional logic:

(a) it is cold

(b) it is cold in room 1344

(c) room 1344 has an air conditioner

(d) the agent x feels cold

(e) if it is raining, it is cold

2. [Level 1] Formalize the following conditions in temporal logic:

(a) room 1344 will always be cold

(b) if room 1344 gets cold, it will stay cold forever

(c) room 1344 will repeatedly be getting cold and hot

3. [Level 1] Formalize the following conditions in dynamic logic:

(a) turning on the air conditioner makes room 1344 cold

(b) turning o� the air conditioner does not make room 1344 hot

4. [Level 2] Formalize the following conditions in predicate logic [26] (requires

extra reading):

(a) every room with an air conditioner is cold
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(b) the agent x feels cold in every room that has an air conditioner

(c) some agent feels cold in every room that has an air conditioner

5. [Level 2] Verify the correspondence between the properties on accessibility

relations and inferences in modal logic, as mentioned in Section 8.2.3.

6. [Level 2] Translate while loops from Algol-60 into regular programs.

7. [Level 2] Relate partial and total correctness of programs (as de�ned in any

introductory text on analysis of programs) with the dynamic logic operators.

8. [Level 2] Prove or disprove the following properties about LL:

FFp!Fp

Gp!Fp

GGp!Gp

GGp!GFp

GFp!FGp

FGp!GFp

FGFp � GFp

9. [Level 2] Prove or disprove the following properties about LB:

EXtrue

AGAGp!AGAFp

E(pUq)!(q _ p ^ EX(E(pUq)))

(q _ p ^ EX(E(pUq)))!E(pUq)

10. [Level 2] Establish the results mentioned in the context of Constraints cons-i-

sat, IC2, and IC3 in Section 8.3.3.

11. [Level 2] Prove or disprove the following properties about know-how (the agent

is omitted):

Khp!KhKhp

Khp!(Ktp _ (
W
a : Ehaitrue ^ A[a]Khp))

(Ktp _ (
W
a : Ehaitrue ^A[a]Khp))!Khp

12. [Level 3] Implement a BDI interpreter based on the architecture described

above.

(a) Make turning on the air conditioner makes room 1344 cold

(b) turning o� the air conditioner does not make room 1344 hot

13. [Level 3] Implement a deliberation component of a BDI interpreter based on

heuristic graph search.

14. [Level 4] What might be the nature of a social-level semantics for agent

communication languages? Give such a semantics.

(a) reconcile it with conventional approaches based on the BDI notions
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(b) develop a scheme for testing compliance with your semantics of imple-

mentations by di�erent vendors.
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9 Industrial and Practical Applications

of DAI

H. Van Dyke Parunak

9.1 Introduction

Successful application of agents (as of any technology) must reconcile two perspec-

tives. The researcher (exempli�ed in the preceding chapters) focuses on a particular

capability (e.g., communication, planning, learning), and seeks practical problems

to demonstrate the usefulness of this capability (and justify further funding). The

industrial practitioner has a practical problem to solve, and cares much more about

the speed and cost-e�ectiveness of the solution than about its elegance or sophisti-

cation. This chapter attempts to bridge these perspectives. To the agent researcher,

it o�ers an overview of the kinds of problems that industrialists face, and some ex-

amples of agent technologies that have made their way into practical application.

To the industrialist, it explains why agents are not just the latest technical fad, but

a natural match to the characteristics of a broad class of real problems.

This chapter is both broader and narrower than its title suggests. It is broader be-

cause it includes selected development projects that are not yet industrial strength,

but embody industrially important concepts or are being conducted in a way likely

to lead to deployable technology. It is narrower in that it emphasizes agent appli-

cations in manufacturing and physical control over other �elded industrial applica-

tions such as Web-based information-gathering agents ([50]; Appendix G of [12]),

network management, or business planning agents (e.g., the ADEPT project [45,

47, 48, 60]). This focus has three motivations: I am better acquainted with the

domain of manufacturing and control, the problems of interfacing agents to the

environment are more challenging, and the evidence of success or failure is clearer

when a system must directly confront the laws of physics.

Section 9.2 describes the main industrial motivations for choosing an agent

architecture for a particular problem. Section 9.3 describes the concept of a system

life cycle. Section 9.4 and uses this concept to organize case studies of industrial

agent-based systems, and Section 9.5 uses it to examine the process of constructing

an industrial system. Section 9.6 reviews some development tools that will hasten

deployment of agent technology in industry. Section 9.7 summarizes some basic

insights.
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9.2 Why Use DAI in Industry?

Agents are not a panacea for industrial software. Like any other technology, they are

best used for problems whose characteristics require their particular capabilities.

Agents are appropriate for applications that are modular, decentralized, changeable,

ill-structured, and complex [44]. In some cases, a problem may naturally exhibit

or lack these characteristics, but many industrial problems can be formulated in

di�erent ways. In these cases, attention to these characteristics during problem

formulation and analysis can yield a solution that is more robust and adaptable

than one supported by other technologies.

Modular. As de�ned in more detail in Chapter 1, agents are pro-active objects,

and share the bene�ts of modularity enjoyed by object technology. They are best

suited to applications that fall into natural modules. An agent has its own set of

state variables, distinct from those of the environment. Some subset of the agent's

state variables is coupled to some subset of the environment's state variables to

provide input and output. An industrial entity is a good candidate for agent-hood

if it has a well-de�ned set of state variables that are distinct from those of its

environment, and if its interfaces with that environment can be clearly identi�ed.

The state-based view of the distinction between an agent and its environment

suggests that functional decompositions are less well suited to agent-based systems

than are physical decompositions. Functional decompositions tend to share many

state variables across di�erent functions. Separate agents must share many state

variables, leading to problems of consistency and unintended interaction. A physical

decomposition naturally de�nes distinct sets of state variables that can be managed

e�ciently by individual agents with limited interactions. The choice between func-

tional and physical decomposition is often up to the system analyst. Emphasizing

the physical dimension enables more modular software. Because the agent charac-

terizes a physical entity, that entity can be redeployed with minimal changes to the

agent's code. As a result, the cost of software recon�guration drops dramatically,

and reusability increases.

Decentralized. An agent is more than an object; it is a pro-active object, a

bounded process. It does not need to be invoked externally, but autonomously

monitors its own environment and takes action as it deems appropriate. This

characteristic of agents makes them particularly suited for applications that can be

decomposed into stand-alone processes, each capable of doing useful things without

continuous direction by some other process.

Many industrial processes can be organized in either a centralized or a decen-

tralized fashion. Centralized organizations go back to the imperial governments of

ancient Egypt, Assyria, China, and Babylon, with their focus on a central demigod

and an elaborate bureaucracy to manage the 
ow of control down and informa-

tion back up. The popularity of this structure can be traced through the army of
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Alexander the Great, the Roman legions, and the rival empires of pre-modern Eu-

rope down to the structure of modern Fortune 500 companies and industrial control

architectures [2].

There is an alternative approach. The power of decentralization has been made

clear in recent years in the contrast in performance between a centralized economic

system (the former Soviet Union) and a decentralized one (free-market capitalism).

In fact, a European observer suggests that one of the forces leading to the growing

popularity of multiagent systems is \the rise of the American style of liberalism

and individualism" [80].

Modern industrial strategists seek to eliminate excessive layers of management

and push decision-making down to the very lowest level, and are developing the

vision of the \virtual enterprise," formed for a particular market opportunity from

a collection of independent �rms with well-de�ned core competencies [58]. It is

increasingly common for the manufacturer of a complex product to purchase half

or even more of the content in the product from other companies. For example,

an automotive manufacturer might buy seats from one company, brake systems

from another, air conditioning from a third, and electrical systems from a fourth,

and manufacture only the chassis, body, and powertrain in its own facilities. The

suppliers of major subsystems (such as seats) in turn purchase much of their

content from still other companies. As a result, the \production line" that turns

raw materials into a vehicle is a network, or \supply chain," of many di�erent �rms.

Agent-based architectures are an ideal �t to such an organizational strategy.

Changeable. Agents are well suited to modular problems because they are objects.

They are well suited to decentralized problems because they are pro-active objects.

These two characteristics combine to make them especially valuable when a problem

is likely to change frequently. Modularity permits the system to be modi�ed one

piece at a time. Decentralization minimizes the impact that changing one module

has on the behavior of other modules.

Modularization alone is not su�cient to permit frequent changes. As Figure 9.1

suggests, in a system with a single thread of control, changes to a single module

can cause later modules, those it invokes, to malfunction. Decentralization decouples

the individual modules from one another, so that errors in one module impact only

those modules that interact with it, leaving the rest of the system una�ected. (The

original version of this �gure was created by Seiichi Yaskawa of Yaskawa Electric

Corporation, Tokyo, Japan, and is used with his kind permission.)

From an industrial perspective, the ability to change a system quickly, frequently,

and without damaging side e�ects is increasingly important to competitiveness.

In manufacturing, the product that pleases the most customers has a tremendous

advantage. One of the most e�ective means to determine the features that customers

like is to turn out as many di�erent product variations as quickly as possible,

sampling customer response and adjusting new o�erings accordingly. This strategy

is responsible for the precipitous drop in the time-to-market for many products.

The time from product concept to �rst production in automotive used to be 60
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Figure 9.1 Modularity + Decentralization ! Changeability

months. Now world-class performance requires 30 months, and some vehicles have

been produced in even less time. Much of the cost of a new manufacturing facility

is in its software. Agent-based architectures permit reuse of much existing code and

self-con�guration of large portions of the system, reducing both the cost and the

time needed to bring up a new factory.

Ill-structured. An early deliverable in traditional systems design is an architecture

of the application, showing which entities interact with which other entities and

specifying the interfaces among them. For example, installation of a conventional

system for electronic data interchange (EDI) among trading partners requires

that one know the providers and consumers of the various goods and services

being traded, so that orders can be sent to the appropriate parties. Sometimes,

determining this information in advance is extremely di�cult or even impossible.

Consider an electronic system to support open trading, where orders are made

available to any quali�ed bidder. Requiring the system designer to specify the sender

and recipient of each transaction would quickly lead to \paralysis by analysis." From

a traditional point of view, this application is ill structured. That is, not all of the

necessary structural information is available when the system is designed.

Agents naturally support such an application. The fundamental distinction in an

agent's view of the world is between \self" and \environment." \Self" is known and

predictable, while \environment" can change on its own within limits. Other agents

are part of this dynamic, changing environment. Depending on the complexity of

individual agents, they may or may not model one another explicitly. Instead of

specifying the individual entities to be interconnected and their interfaces with

one another, an agent-based design need identify only the classes of entities in

the system and their impact on the environment. Because each agent is designed to

interact with the environment rather than with speci�c other agents, it can interact

appropriately with any other agent that modi�es the environment within the range

of variation with which other agents are prepared to deal.
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Some applications are intrinsically under-speci�ed and thus ill structured, and

agents o�er the only realistic approach to managing them. Even where more detailed

structural information is available, the wiser course may be to pretend that it isn't.

A system that is designed to a speci�c domain structure will require modi�cation

if that structure changes. Agent technology permits the analyst to design a system

to the classes that generate a given domain structure rather than to that structure

itself, thus extending the useful life of the resulting system and reducing the cost

of maintenance and recon�guration.

Complex. One measure of the complexity of a system is the number of di�erent

behaviors it must exhibit. For example, a manufacturing job shop might produce

a given part in several di�erent ways, depending on which machines are used and

in which order. The number of possible behaviors in this simple example depends

exponentially on the number of di�erent machines in the shop. For a shop with only

a few machines, one might code a separate subroutine for each possible routing, but

this approach quickly becomes prohibitive as the shop grows.

This example shows combinatorial complexity. The number of di�erent inter-

actions among a set of elements increases much faster than does the number of

elements in the set. By mapping individual agents to the interacting elements,

agent architectures can replace explicit coding of this large set of interactions with

generation of them at run-time. Consider 100 agents, each with ten behaviors, each

behavior requiring 20 lines of code. The total amount of software that has to be

produced to instantiate this system is 20,000 lines of code, an extremely modest

undertaking. But the total number of behaviors in the repertoire of the resulting

system is on the order of ten for the �rst agent, times ten for the second, times ten

for the third, and so forth, or 10100, an overwhelmingly large number. Naturally,

not all of these will be useful behaviors, and one can imagine pathological agent

designs in which none of the generated behaviors will be appropriate. However, ap-

propriately designed agent architectures can move the generation of combinatorial

behavior spaces from design-time to run-time, drastically reducing the amount of

software that must be generated and thus the cost of the system to be constructed.

Modi�cation of a system during its life can increase its complexity as well as

making it ill structured. By adopting an agent approach at the outset, systems

engineers can provide a much more robust and adaptable solution that will grow

naturally to meet business needs.

9.3 Overview of the Industrial Life-Cycle

Industrial people tend to view what they do in terms of a life cycle, made up of

a series of stages: requirements analysis, design, implementation and deployment,

operation, logistics and maintenance, and decommissioning. Any industrial activity



382 Industrial and Practical Applications of DAI

follows such a pattern, whether it be building a product, putting in place the process

for making a product, supplying a service, or creating a piece of infrastructure.

The life cycle perspective raises two questions about industrial multiagent sys-

tems. First, to what stages in the life cycle of an industrial activity (say, an automo-

bile) have agents been applied? Second, since an industrial agent-based system will

itself be constructed according to a life cycle, what constraints does the industrial

environment place on each of the life-cycle phases of such a system?

In this exposition, the term \project" represents a speci�c system or activity.

Two projects are discussed: a physical system (a new automobile), and a software

system (a new factory scheduling system). Figure 9.2 shows how the physical system

bifurcates at the design phase into two systems, one concerned with the product

itself, the other concerned with the process that manufactures the product. A

generic life cycle has eight phases, some of which may not be appropriate in a

given project.

Requirements De�nition de�nes the set of needs or requirements that the

project must satisfy. The focus is on why an e�ort is needed in the �rst place,

not on what the project will do or how it will do it.

Physical: Market analysis reveals that we are losing sales to competitors who

are o�ering sport utility vehicles, a niche in which we currently have no product

o�ering.

Software: We have benchmarked our production facilities against world class

performance, and found that we are below the 75% level in every major category,

including throughput, machine utilization, order tardiness, and work-in-process

levels.

Positioning de�nes the project's relationship to other projects in the enterprise.

This phase identi�es potential overlaps, synergies, or con
icts among di�erent

projects early enough that their impact can be managed.

Physical: Our current product divisions are luxury auto, economy auto, minivan,

and light truck. The minivan and light truck divisions seem the best candidates

to host the new o�ering. Further study shows that we are aiming for a consumer

market, not an industrial one, so the new vehicle is positioned as a new product

in the minivan division.

Software: Shop-
oor control can be approached from the perspective either

of controls (a bottom-up view) or of manufacturing information systems (a

top-down view). In our company, the information department is notoriously

insensitive to plant needs, and their data is usually wrong, so we have no

con�dence that a scheduling project that grows out of our existing information

systems will solve the requirements. However, the controls group has been

remarkably successful in solving a wide range of integration problems, so we

will try to address our problems from the controls perspective.
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Figure 9.2 The life cycle for physical products bifurcates.

Speci�cation spells out the functions that the project will support. The speci-

�cation tells what the project will do, but not how it does it. The functions in

a successful speci�cation will satisfy the needs identi�ed in Requirements De�ni-

tion and interface appropriately with other relevant components of the enterprise

identi�ed in Positioning.

Physical: We benchmark the performance of our competitors' o�erings to deter-

mine what customers do and do not like, and to identify features we can add to

di�erentiate our product in the marketplace. The result is a list of the features

and performance characteristics of the new vehicle.

Software: A collection of shop-
oor war stories highlights a set of issues that

can explain the poor performance, including no way to schedule preventive
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maintenance (leading in turn to reduced maintenance and increased machine

failure), operating policies that permit upstream workstations to produce parts

for which there is no downstream demand, release of jobs to the 
oor before

both raw materials and tooling are available, and job classi�cations that prevent

operators from helping one another as demands shift across the factory.

Design maps the functions (\what") identi�ed in Speci�cation to implementation

strategies that tell how the project will be executed to provide those functions.

Physical: The product engineering department develops a design for the new

vehicle, including chassis, seating system, powertrain, suspension, climate con-

trol, sound system, and beverage cooler. Concurrently, the process engineering

department designs the factory that will manufacture the new vehicle. At this

point the automotive project actually becomes two projects: one to produce the

vehicle, the other to produce the process that will make the vehicle.

Software: The manufacturing systems group decides to adopt an agent-based

approach to shop scheduling. It identi�es the classes of agents that will be

required, and re�nes these classes and their interactions through role-playing

and simulation.

Implementation is the phase of the life cycle in which the system is actually

constructed. If the project is an activity rather than a system, it may move directly

form Design to Commissioning without an intervening Implementation.

Physical (Process): Purchasing negotiates contracts for the equipment needed

to construct the new vehicle. A plant is selected to house the new line, the old

equipment is removed, and the new equipment is installed.

Physical (Product): Purchasing negotiates contracts for the raw materials and

preassembled subsystems that will be purchased from vendors

Software: The systems group codes the agents that will make up the new

scheduling system. The modular decentralized nature of agent-based software

makes it possible to extend some design activities, such as system simulation,

into implementation by running newly coded real agents against a simulation of

the part of the system not yet implemented. The emergent nature of agent-based

systems makes this approach necessary to avoid unexpected global behaviors.

In Commissioning, the project is placed into use. Commissioning usually includes

system shakedown, training activities, and transition of operations from previous

systems or methods.

Physical (Process): The factory produces its �rst sports utility vehicle.

Physical (Product): Each unit of the product is commissioned when a dealer

sells it to a customer.

Software: The scheduling agents are released onto the shop 
oor.
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Operation maintains the project in regular productive use. It is during this

phase that the project actually satis�es the needs identi�ed during Requirements

De�nition. Operation includes three speci�c activities: routine operation, mainte-

nance and repair, and incremental upgrading. In the life cycle of a product, this

phase also includes customer support and maintenance.

Physical (Process): The factory continues to produce vehicles.

Physical (Product): The dealer network services the vehicles already in the �eld.

Software: The systems group adjusts the behavior of individual agents based on

feedback from the operators and changes in the �rm's business environment.

Decommissioning removes the project from service, either because the needs it

satis�ed no longer exist or because a replacement project is about to be commis-

sioned. The growing importance of ecologically friendly or \green" manufacturing

is placing increasing emphasis on this phase as the point at which reuse or recycling

is applied.

Physical (Process): After about ten years, this model is phased out, and the

factory and equipment that produced it are recon�gured for a new product.

Physical (Product): Vehicles that have completed their useful life are recycled.

Software: Because the scheduling system is agent-based, there is no sharp line

when it is decommissioned as a system. Individual agents are replaced over the

years as equipment changes and new functionality is required, but the changes

are incremental.

9.4 Where in the Life Cycle Are Agents Used?

In principle, agents can support many di�erent stages in the life cycle of a system

or product. For example, agents might help design a new vehicle, operate the plant

that manufactures it, and maintain it when it fails. This section begins by outlining

a series of questions that are useful in comparing di�erent agent applications. Then

it describes three areas in which agents have been used e�ectively: product design,

process operation at the planning and scheduling level, and process operation at

the lower level of real-time equipment control.

9.4.1 Questions that Matter

When comparing di�erent agent-based applications, some questions arise repeat-

edly. This section groups these questions in three categories: those that pertain to

individual agents, those that concern the community of agents, and a single question

dealing with the maturity of the application.
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The building blocks of agent-based systems are the individual agents. Three

questions are important here. Chapter 1 explores a number of these details in greater

depth.

What in a system becomes an agent? Classical software engineering tech-

niques lead many systems designers toward \functional decomposition." For ex-

ample, manufacturing information systems typically contain modules dedicated to

functions such as \scheduling," \material management," and \maintenance," sug-

gesting that these functions should be assigned to distinct agents [6, 32]. The func-

tional approach is well suited to centralized systems, but unprecedented in naturally

occurring distributed systems, which divide agents on the basis of distinct entities

in the physical world rather than functional abstractions in the mind of the designer

[71]. Experience with agent-based prototypes supports this principle, with two ex-

ceptions. Most industrial agent applications are additions to existing systems, and

functionally oriented legacy systems may be most easily attached by encapsulating

them as (functional) agents. A watchdog agent may usefully monitor the behavior

of a population of physical agents for important system states that local agents

cannot perceive.

How Does each agent model the world? Any agent that functions in a

changing world must model that world internally [40]. However, agents di�er in

the sophistication of the knowledge representation and reasoning they use for

this task. Some agents model aspects of their world explicitly, so that they can

reason about the model. In other agents, these models are hard-wired and often

distributed throughout the agent's architecture [26]. In addition to the implicit-

explicit distinction, agents di�er in the scope of what they model (for instance,

whether they individuate other agents or not) and whether they model the world

as it is now, or as the agent wishes the world to be. The BDI architecture discussed

in Chapter 1 recommends explicit models that include both the present (beliefs)

and the future (desires).

How are agents structured internally? The di�erent agents in a system may be

identical, heterogeneous, or sharing some common modules and di�ering in others.

They may or may not remember past states, and their internal code may or may

not change over time.

The next �ve questions have to do with the community that the agents form.

Chapter 2 discusses many of these issues in more detail.

How many agents are there? Both the number of di�erent agent species and the

total number of individual agents are important characteristics of a given system,

as well as whether the agent population can change while the system is running.

What communication channels do agents use? The channels through which

information moves from one agent to another can di�er in medium (the shared

physical environment vs. a digital network), addressing (broadcast, subject-based,
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agent-to-agent), whether messages persist after being sent, and locality (whether

agents need to move \close" to one another in order to exchange messages).

What communications protocols do agents use? A communications protocol

determines how conversations among agents are structured. Some agents simply

give orders to one another and expect them to be received. Others vote, negotiate,

or engage in more complex dialogues based on speech-act theory.

How is the con�guration of agents relative to one another established?

The con�guration of an agent community describes the immediate acquaintances

of each agent and the resulting topology over which information and material move

among them. This topology may be set in advance by the system implementer and

remain unchanged as the system operates, or the agents may be able to discover

new relationships and recon�gure themselves while running.

How do agents coordinate their actions? Agents are autonomous in that they

do not have to be invoked in order to execute. However, in a useful system they are

not anarchical, but coordinate with one another. In hierarchical coordination, com-

mands 
ow down from higher levels and status information 
ows back up. In egal-

itarian or heterarchical coordination [37], coordination emerges from the dynamics

of agent interaction, through mechanisms such as dissipative �elds (currency-based

markets [15], pheromones in insect societies) or constraint propagation.

The �nal question is \How mature is the application?" It is useful to distin-

guish six levels of maturity:

1. Modeled: The system exists as an architecture or a theoretical model.

2. Emulated: The system has been demonstrated against a simulation of its

intended domain environment.

3. Prototype: The system has been demonstrated on real domain hardware, but

in a controlled laboratory environment.

4. Pilot: The system has been demonstrated in a commercial environment.

5. Production: The system is used in regular commercial practice.

6. Product: The system is sold and supported as a commercial product.

9.4.2 Agents in Product Design

Design systems help teams of designers, often in di�erent locations and working for

di�erent companies, to design the components and subsystems of a complex prod-

uct, using many di�erent analysis tools. As suppliers take increasing responsibility

for the detailed design of the subsystems they supply, design becomes increasingly

decentralized.

Designers begin with a picture of what is required but no details on how it

is to be produced. Often the \what" that is desired turns out to be prohibitively
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Table 9.1 Design systems.

expensive when the \how" is understood in more detail, leading to frequent changes

in the design. The more ambitious the product vision, the less well its structure

is understood at the outset, and the more valuable recon�gurable agents are to

represent the various components, designers, and tools. The increased complexity

embodied in modern products also favors the combinatorial bene�ts of an agent-

based system. State-of-the-art agent concepts have been demonstrated in three

design systems at the prototype level of maturity. Each of these systems decomposes

the world into agents in a di�erent way, as summarized in Table 9.1.

RAPPID illustrates how agents can help human designers coordinate their work

more e�ectively. Figure 9.3 illustrates how di�erent people are responsible for the

components and subsystems that make up a product. Con
icts arise when di�erent

teams disagree on the relation between the characteristics of their own functional

pieces and the characteristics of the entire product. Some con
icts are within the

design team: How much of a mechanism's total power budget should be available

to the sensor circuitry, and how much to the actuator? Other con
icts set design

against other manufacturing functions: How should one balance the functional

desirability of an unusual machined shape against the increased manufacturing

expense of creating that shape?

It is easy to represent how much a mechanism weighs or how much power it

consumes, but there is seldom a disciplined way to trade o� (say) weight and

power consumption against one another. The more characteristics are involved in

a design compromise, the more di�cult the trade-o� becomes. The problem is

the classic dilemma of multivariate optimization. Analytical solutions are available

only in specialized and limited niches. In current practice such trade-o�s are

sometimes supported by processes such as Quality Functional Deployment [38] or

resolved politically, rather than in a way that optimizes the overall design and its

manufacturability. The problem is compounded when design teams are distributed

across di�erent companies.

RAPPID explores two innovative techniques for coordinating the actions of
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Figure 9.3 The RAPPID ecosystem includes both components and characteris-

tics.

di�erent agents (designers): market dynamics and set-based reasoning [77, 78].

In RAPPID, designers buy and sell the various characteristics of a design. Each

characteristic agent is a computerized agent that maintains a marketplace in that

characteristic. In the current implementation, the agents representing components

are interfaces for human designers, who bid in these markets to buy and sell

units of the characteristics. A component that needs more latitude in a given

characteristic (say, more weight) can purchase increments of that characteristic from

another component, but may need to sell another characteristic to raise resources

for this purchase. In some cases, analytical models of the dependencies between

characteristics help designers estimate their relative costs, but even where such

models are clumsy or nonexistent, prices set in the marketplace de�ne the coupling

among characteristics.

To drive the design process toward convergence, RAPPID uses set-based reason-

ing. Most design in industry today follows a point-based approach, in which the

participating designers repeatedly propose speci�c solutions to their component or

subsystem. The chief engineer is expected to envision the �nal product at the out-

set, specifying to the designers what volume in design space it should occupy and

challenging them to �t something into that space. Inevitably, as illustrated in Fig-

ure 9.4, some of the chief engineer's assumptions turn out to be wrong, requiring

designers to reconsider previous decisions and compromise the original vision. This

approach is analogous to constraint optimization by backtracking. Because mech-

anisms for disciplined backtracking are not well developed in design methodology,

this approach usually terminates through fatigue or the arrival of a critical market

deadline, rather than through convergence to an optimal solution.
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Figure 9.4 Point-based design requires backtracking.

Figure 9.5 Set-based design converges to the solution.

Toyota has pioneered another approach, set-based design [89]. In this approach,

illustrated in Figure 9.5, the chief engineer's task is not to guess the product's lo-

cation in design space, but to guide the design team in a process of progressively

shrinking the design space until it collapses around the product. Each designer

shrinks the space of options for one component in concert with the other mem-

bers of the team, all the while communicating about their common dependencies.

This approach directly re
ects consistency algorithms for solving constraint prob-

lems. If the communications among team members are managed appropriately, the

shrinking design space drives the team to convergence.

Here is how RAPPID answers the questions introduced earlier in this section.

Agent Mapping and Modeling: Component agents are computer-assisted humans

and thus maintain extensive as-is and to-be models of the other agents and the

non-agented environment. Characteristic agents model the component agents that

have an interest in them, and use these models to recommend future action.

Agent Structure: Characteristic agents are structurally identical to one another.

Their code does not change over time, but they do aggregate information from

recent bids as a guide to future activity. Component agents vary as widely as the

humans they represent. If a component is to be selected from a catalog, RAPPID
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Table 9.2 Comparing planning and control.

provides a catalog module that automates much of the problem of selecting the

appropriate o�ering, and thus subsumes some of the functionality of ACDS. If a

component is to be designed from the ground up, the RAPPID interface hides the

idiosyncrasies of the various tools the human may use in the design process, and

thus subsumes some of the functionality of PACT.

Population: A realistic application of RAPPID will have one or two dozen com-

ponent agents and on the order of a hundred characteristic agents. In the current

implementation, agents are not created, destroyed, divided, or fused during opera-

tion, but as the system matures, designers will need a way to add both component

and characteristics agents to the community as a design is re�ned.

Communication Channels and Protocols: Agents communicate digitally, and cur-

rently use point addressing. Messages do not persist outside of agents, and agents

do not move over the network. RAPPID uses a �xed market protocol, but also

provides for the humans behind component agents to communicate directly with

one another using Standard Legacy-Oriented Work Habits (SLOWH mechanisms).

Con�guration: The initial con�guration of component agents and characteristic

agents is de�ned when the system is initialized, but component agents can engage

in markets for other characteristics as the system runs.

Coordination: RAPPID combines dissipative and constraint-based egalitarian co-

ordination.

Maturity: RAPPID has been piloted in the high-level design of a military vehicle

at the U.S. Army's Tank and Automotive Command (TACOM) at Warren, MI.

9.4.3 Agents in Planning and Scheduling

Both this section and the next deal with the problem of monitoring a system's tra-

jectory through state space over time and adjusting operating parameters to make

that trajectory satisfy some overall criterion. The di�erence between the two is one

of time constants and the kind of information manipulated, as summarized in Table

9.2. Planning and scheduling is longer-term, usually on a scale that humans can

handle, and involves the manipulation of concepts through semantically-grounded

symbols. Control handles the detailed real-time interface with the world, and usu-

ally happens too fast for direct human supervision.
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The fundamental challenge in applying agents to both planning and control is

satisfying a global criterion on the basis of parallel local decisions. In spite of the

natural bene�t that centralization has in dealing with control criteria, the cases in

these two sections show that many users have found agents an even better approach.

Operational systems must be maintained, and it is much easier and safer to main-

tain a set of well-bounded modules than to make changes to a large monolithic

program. The move toward supply chains means that the manufacturing system

is geographically distributed, and agent decentralization reduces communication

bottlenecks and permits local parts of the enterprise to continue operation during

temporary lapses in connectivity. Competitiveness increasingly depends on adjust-

ing a system's operation frequently to track customer requirements, bene�ting from

the changeability of agent systems. The ability of agents to deal with ill-structured

systems is less important in the operation of an engineered system than in its de-

sign. However, the ability of agents to deal with dynamically changing structures

means that computers can now be applied to manage systems (such as networks of

trading partners) that formerly required extensive manual attention. The increased

complexity that agents can manage also extends the scope of operational problems

to which they can be applied.

Table 9.3 summarizes four examples of planning and scheduling systems. The

Daewoo scheduling system produced by Metra Corp. is a mature example (in

regular production use) of the most promising approach to agent-based scheduling

and control. It schedules the press shop at Daewoo Motors' integrated automobile

production facility in Korea.

Most of the exterior components of an automobile, and many structural compo-

nents as well, are manufactured by stamping sheet metal between shaped metal dies

in hydraulic presses exerting hundreds or thousands of tons of pressure. The pro-

cess of setting up and running such a press is daunting. Sheet metal arrives in coils

that must be unrolled and cut into blanks before being stamped. Di�erent parts re-

quire di�erent kinds of sheet metal, from di�erent coils. The dies weigh thousands of

pounds, and must be transported from a storage area and aligned precisely with the

press before parts can be made. Dies wear with use, requiring periodic refurbishing.

The type of part being produced (and thus the setup) must change frequently to

provide the vehicle assembly operation with the right components for the vehicles

currently being manufactured.

The Daewoo shop supplies all stamped body parts for �ve di�erent car models,

as well as parts for several o�-site assembly plants. The shop operates three shifts

per day and produces more than 500 di�erent parts, using more than 2000 dies.

E�cient operation requires careful scheduling of the presses, sheet metal stock, and

dies.

Agent Mapping: Research on agent-based factory planning and scheduling di�ers

widely on what is represented as an agent. ISCM assigns an agent to each traditional

manufacturing function (such as Order Acquisition, Logistics, Scheduling, Resource

Management, Dispatching, Transportation, and Plant Management). Evidence from
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Table 9.3 Planning and scheduling systems.

natural systems suggests that it may be more e�ective to assign agents to physical

entities in the system. Even here there is considerable variation. Agents have

represented levels in a hierarchical decomposition of the factory [11, 67, 87],

resources [3, 39, 74, 84], and parts [20, 53]. AARIA has developed a comprehensive

ontology, summarized in Figure 9.6. It includes both agents that persist from one

operation to another (such as part types, unit processes, and resources) and agents

with much shorter lifetime (including individual parts and engagements between a

unit process and the resources it requires). In terms of this ontology, manufacturing

processes occur when the 
ow of parts and the 
ow of resources intersect at a unit

process.

Daewoo uses a subset of the AARIA ontology. Task agents (corresponding

to sets of unit processes) represent individual work orders, and resource agents
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Figure 9.6 AARIA agents represent entities in the shop.

represent manufacturing resources such as machines. These domain-oriented agents

are clustered into communities, and each community has several service agents:

a bidding agent that handles all transactions among domain agents, a constraint

propagation agent that propagates task dependencies and does some constraint

satisfaction, and a meta agent that registers the skills of the domain agents in the

community.

Agent Modeling: Critical information in manufacturing is usually organized by

physical entities. Agents that represent these entities are the natural locus for

maintaining this information. At Daewoo a resource agent caches information

regarding previous bidding and the utilization of other compatible machines to

guide subsequent bidding in directions that maximize overall goals and minimize

later backtracking. In AARIA, resource agents also store maintenance and reliability

information, while part type agents model the supply and demand of their parts

over time. At Daewoo, each domain agent has a friend module in which it caches

information about its colleagues that it obtains in the course of interaction. Each

agent also has access to information about its community indirectly through the

meta agent, and directly through a community-wide blackboard. The community

information includes both present state and future objectives.

Agent Structure: All agents of a given class are the same. There are some shared

modules (e.g., the friend module to store information about acquaintances). Agents
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do not change as they run, but do maintain state information.

Population: The Daewoo application has 30 machine agents and 700 task agents,

together with the community's three service agents. Machine agents join the com-

munity when they are on-line and leave it when they go o�-line. Task agents join

the community when they are released to the shop, and leave it when they are

completed.

Communication Channels: Agents communicate with one another electronically in

two ways. The meta-agent provides a publish and subscribe service that agents

can use to identify potential collaborators. Once one agent knows the identity of

another, it communicates directly on the basis of information it has cached in

its friend module. At Daewoo, messages do not persist, and agents do not travel.

AARIA does use traveling agents to model parts as they move between part type

agents and unit processes, and engagements as they move between resources and

unit processes.

Communication Protocols: Daewoo uses a contract net negotiation protocol.

Con�guration: Relations among agents are de�ned dynamically as a result of

negotiation.

Coordination: The bidding process propagates constraints among the agents. Mar-

ket interactions among agents generate a dissipative 
ow of currency to which the

agents orient themselves, making e�cient use of scarce resources.

Maturity: This system is in production use at Daewoo Motors in Korea.

9.4.4 Agents in Real-Time Control

Control systems operate faster and with more semantically constrained information

than do planning and scheduling systems. They must provide real-time response,

which is discussed further in Chapter 11.

Current technology for industrial process control o�ers many examples of coor-

dinated pro-active objects that can usefully be viewed as agent-based systems. A

typical chemical plant contains hundreds of PID control loops. PID stands for \pro-

portional, integral, derivative," and describes the three functions that the agent can

apply to the stream of data from a sensor. Each loop is a separate computer that

adjusts some actuator as a function of various sensors. Because the action of one

such loop changes physical quantities that will a�ect the behavior of other loops in

the system, these loops can be viewed as (analog) agents that communicate through

a shared environment. Table 9.4 summarizes six control systems that use digital

agents.

The Zone Logic system applies agents to real-time control. Complicated manu-

factured parts such as engine blocks are often manufactured on a machine called

a transfer line. Such a machine moves workpieces sequentially through a series of

stations. At each position, individual mechanisms perform some speci�c task. For
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Table 9.4 Real-time control systems.

example, the �rst station might bore a hole, the second might thread the hole, and

the third might screw a hardened insert into the threaded hole.

A transfer line permits higher processing rates than discrete machines served

by separate material transport systems. It contains a large number of mechanisms

that must be controlled and coordinated. A typical transfer line may be a hundred

meters long and contain dozens of stations with hundreds of mechanisms and more

than 1500 degrees of freedom in movement overall. Traditional control schemes for

such systems require the software engineer to understand the relations among all

these mechanisms. When the system fails, identifying the responsible mechanism

and the reason for the failure can be very time consuming. As a result, transfer

lines often are down for maintenance more than half of the time. When the system

is restarted after a failure, the various stations must be reset to a standard initial

state, often requiring the scrapping or manual reprocessing of parts in process at the

time of the failure. Because of the complex interactions among their mechanisms,

transfer lines are notoriously di�cult to keep operating. In many environments, 50%

productivity is the most that can be achieved. By giving mechanisms autonomy, a
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Table 9.5 Rules for Zone Logic slide agent.

Zone Logic-controlled machine can readily achieve 90% productivity.

Agent Mapping: Zone Logic makes each mechanism in the transfer line (e.g., clamp,

slide, transfer bar, probe) an agent that expects a certain range of conditions and

knows what to do in each. This same mapping of agents onto basic physical entities

in the control system is a common strategy for agent-based control, and appears

also in AMROSE (where each link in a segmented robot arm is an agent), the

GM Paint Booth system, and Xerox PARC's market-based climate control. These

�ne-grained agents that represent physical entities contrast with coarse-grained

functional agents in the ARCHON and ADS systems. ADS is an older system,

and probably owes its functional orientation to traditional methods of software

design. ARCHON's functional structure re
ects its mission to integrate pre-existing

functional expert systems. In both cases, the functional approach re
ects the

transition from traditional software architectures, while physical decomposition

seems to be the most direct approach to a new design.

Agent Modeling and Structure: Each mechanism maintains a rule base listing the

state conditions it recognizes and what action it should take in each case, illustrated

in Table 9.5. There are no explicit models of other agents and no explicit goals. For

example, a slide mechanism includes two power switches (one to energize the motor

that advances the slide, another to energize the motor that returns it) and two

limit switches (one at the fully advanced position, the other at the fully returned

position). The slide's state space thus includes 24 = 16 possible states, only nine of

which are physically possible. The other seven states re
ect an error condition. For

example, if both motors are energized or both limit switches are on, the mechanism

has entered an error state and requires attention from an operator. For each allowed

state or \zone," the mechanism's rule table lists the maximum amount of time the
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mechanism can spend in that zone and the allowable next zones it can enter. If

the mechanism exhausts its time in a zone or if one of its state variables changes,

it searches the list of next zones for one that it can enter by changing an output

variable (e.g., actuating a motor), and makes the transition. If no speci�ed next

zone is accessible, it enters the error state and requests operator attention.

For example, if the slide is Advancing from Returned (state 3), the Returned

limit switch should go o� within one second. If it does not, the mechanism enters

the error state and turns o� both motors. Otherwise, it should next be found either

in state 4 (Advancing Between) or state 2 (Returned), in case the advance motor

shuts o� before the slide leaves the Returned limit switch), and any other state

defaults to Error.

Population: Each mechanism has its own agent, so a typical transfer line consists

of hundreds of agents.

Communication Channels: Zone Logic agents communicate both physically and

electronically. Individual mechanisms use physical sensors to determine the state

and location of the part, thus adapting their behavior to what did or did not

happen at earlier stations. Point-to-point non-persistent electronic communication

between mechanisms guards against interference between mechanisms that may

need access to the same physical space. The preferred design for agent-based control

is to maximize interaction through the physical environment and minimize such

explicitly coded dependencies between mechanisms, because explicit linkages make

systems susceptible to failure when one mechanism is modi�ed. Zone Logic agents

are assigned to speci�c physical mechanisms installed at �xed locations on the line,

and so do not need to migrate over a network.

Communication Protocols: Agent interaction in Zone Logic is directive. Both sensor

information and interference signals are conditions in agent rules that lead reac-

tively to action. Reactive protocols are especially well suited to low-level control

environments, in which the digital logic must keep pace with physical events in

the real world. At higher levels of control, exempli�ed by ARCHON, more complex

protocols are useful.

Con�guration: Agents are assigned to mechanisms when the transfer line is con-

structed. Which agents are active on a given part depends on an electronic process-

ing �le that accompanies the part through the system.

Coordination: one Logic agents coordinate their activity by propagating constraints.

Market mechanisms are another candidate for real-time control, as seen in the Xerox

market-based climate-control system.

Maturity: Zone Logic is deployed as a commercial product in several automotive

manufacturing facilities.
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9.5 How Does Industry Constrain the Life Cycle of an Agent-Based System?

The industrial life cycle poses restrictions and constraints on developing an agent-

based system that are not present in most research environments. The cases in this

section deal more with the tools and techniques used in constructing agent-based

systems and less with the characteristics of the agent-based systems themselves.

The role of tools and methods de�nes an important distinction between industrial

and academic projects. Academic laboratories often construct their own tools and

methods, for two reasons.

1. Tools and methods may not exist to meet the challenges they explore.

2. Their educational mission is advanced by having students design and build

tools.

In an industrial setting, a technology without supporting tools and methods has

little hope of deployment, again for two reasons.

1. An industrial system is a means to an end, not an end in itself, and will be

approved only if the �rm can estimate its cost in advance and justify that cost

against expected bene�ts. Well-de�ned tools and methods are the cornerstone

of such a cost justi�cation exercise.

2. The designers and implementers of industrial systems are �rst of all experts

in the problems these systems are intended to solve, not in agent-based

technology, and rely on tools and methods that package best practice in a

way that they can use without becoming agent experts.

9.5.1 Requirements, Positioning, and Speci�cation

The classical view of these phases of the life cycle is that they concern only why a

system is needed and what it must do, not how its objectives are accomplished. On

this view, the fact that the system will be implemented with agents is irrelevant,

and �rms should feel comfortable using traditional techniques for these phases.

Thus little thought has been given to agent-speci�c mechanisms. Two caveats are

in order.

1. Agents permit application of computers to highly-distributed, ill-structured

problems that previously would not have been candidates for automation.

Requirements can now be drafted for problems that would not have been

addressed before. Engineers need to understand the bene�ts of agent-based

systems over centralized monolithic systems, at least at a high level, to

appreciate what kinds of problems such systems can address.

2. Agents establish a new paradigm for human-computer interaction that is less

like the traditional master-slave relationship and more like a partnership. As
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a result, the kinds of system-level behaviors that need to be speci�ed will

look more like speci�cations for a business process among people than does a

traditional information system speci�cation.

System behavior is one issue that needs to be determined in the requirements and

speci�cation phase. Others include interface constraints, performance constraints,

operating constraints, life-cycle constraints (e.g., maintainability), economic con-

straints, and political constraints [82]. A complete design method for agent-based

systems must take account of all these issues. This chapter focuses on the require-

ments that concern the behavior of the system.

At a high level, desired system behavior may be of several kinds. The system

may maintain some set of state variables in a speci�ed relationship with one

another, thus exhibiting homeostasis . The system may be a transducer that converts

speci�ed stimuli into corresponding responses. Or the system may learn over time

in response to its experience. At least two criteria are involved in a good behavioral

speci�cation.

It should be speci�c enough to know if it has been achieved. A qualitative

speci�cation is usually adequate for role-playing, but we need a quantitative

one to support simulation. For example, in a process control environment,

\homeostasis" by itself is too vague. \Balance temperature and pressure" is

OK for role-playing. Simulation requires specifying the quantitative link desired

between pressure and temperature.

It should be amenable to solution by architectural decisions. For example, the

behavior \Have tooling available when needed" might be satis�ed better by

buying more tools than by expecting magic from agents. A better speci�cation

might be \Get high-value parts through the system �rst," \Identify relative

scarcity of tool types," or \Reduce overall tool idleness."

The design team needs a concise statement of the problem to be solved and the

constraints that must be observed. For example:

What is the desired overall system behavior?

What can be varied in the e�ort to achieve this behavior?

What must not be touched?

What approach is currently taken to solving the problem?

Why is a new solution being contemplated? (Are there obvious shortcomings of

the current solution? Is a change needed that is beyond the scope of the current

solution?)

These questions are not exhaustive, but illustrate the kind of information that the

requirements and speci�cation process should produce.
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Table 9.6 What needs to be designed?

9.5.2 Design: The Conceptual Context

Design of an engineered artifact (such as an agent-based system) is a process

that takes place within a conceptual context . In the agent research community,

the \conceptual context" is often called an \agent architecture," and this subject

has received considerable attention. Relatively less attention has been paid to the

important question of the processes that designers go through. Industrial users will

use agents more readily if basic principles and guidelines are available in both areas.

There is growing agreement among agent researchers on the set of issues that

need to be resolved in order to design an agent-based system. Chapters 1 and 2

summarize a number of these. The common insight of all these proposals is that

design must address both the individual agent and the community of which it is

a part. Table 9.6 summarizes the various subcategories distinguished by one or

another of these approaches.

9.5.3 Design: The Process

An iterative re�nement approach is useful in designing agent-based systems [75].

The four stages outlined in Table 9.7 lead from a rough initial sketch of the

community and its interactions to the point that software engineers can begin

implementation. The stages are not strictly linear. Role-playing may show the need

to rethink what agents are needed and what they should do individually; formal

analysis may uncover a need for a revised organizational structure that requires

more role-playing; and implementation design may raise further questions that

require additional simulation. Still, there is a rough time ordering of these activities,

in that conceptual analysis is the �rst to begin and implementation design is the

last to complete.

Conceptual Analysis

The speci�cation phase has de�ned what the system as a whole will do. Conceptual

analysis gives an initial vision of what agents will be involved and how they will

behave.

One widely-used technique for identifying objects in an object-oriented systems
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Table 9.7 Stages in designing multiagent systems.

analysis [83] is to extract the nouns from a narrative description of the desired

system behavior. A re�nement of this approach is based on linguistic case theory

[16, 27, 68]. Each verb has a set of named slots that can be �lled by other items,

typically nouns. Each slot describes the semantic role of its �ller with respect to

the verb. Thus the case role of a noun captures basic behavioral di�erences among

entities in the domain, and is a candidate for an agent class.

To complete the preliminary decomposition, these categories are reviewed and

possibly revised against overall system requirements and general principles of agent-

based systems. Naturally occurring agent systems have proven remarkably robust

and adaptable, and suggest a set of useful engineering principles [71].

Thing vs. Function. This chapter has repeatedly emphasized the natural prece-

dents and practical bene�ts of physical rather than functional decomposition in

agent-based systems. In most cases, deriving agents from the nouns in a narrative

description of the problem to be solved yields things rather than functions. Legacy

systems and watchdogs (agents that monitor the overall system for emergent be-

haviors) are two exceptions to this principle.

Small in Size. Natural systems like insect colonies and market economies are

characterized by many agents, each small in comparison with the whole system.

Such agents are easier to construct and understand than large ones, and the impact
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of the failure of any single agent will be minimal. In addition, a large population of

agents gives the system a richer overall space of possible behaviors. (Very roughly,

system state space is exponential in the number of agents.) The same bene�ts apply

to arti�cial systems. Keeping agents small often means favoring specialized agents

over more general ones, using appropriate aggregation techniques. For example,

rather than writing a single agent to represent a complete manufacturing cell,

consider an agent for each mechanism in the cell (e.g., one for the �xture, one

for the tool, one for the load-unload mechanism, one for the gauging station).

Decentralized. Natural systems are not centralized as arti�cial systems often are.

There are several reasons for imitating this tendency. A central agent is a single

point of failure that makes the system vulnerable to accident. It can easily become

a performance bottleneck. More subtly, it tends to attract functionality and code

as the system develops, pulling the design away from the bene�ts of agents and

regressing to a large software artifact that is di�cult to understand and maintain.

Centralization can sometimes creep in when designers confuse a class of agents with

individual agents. For example, one might be tempted to represent a bank of paint

booths as \the paint agent," because \they all do the same thing." Certainly, one

would develop a single class for paint-booth agents, but each paint booth should

be a separate instance of that class.

Diversity and Generalization. Natural communities of agents balance diversity

(which enables them to monitor an environment much larger than any single agent)

with generalized mechanisms (enhancing their interaction with one another and

reducing the need for task-speci�c processing). For example, pheromones enable

insects not only to map out paths to food sources, but also to coordinate nest

construction. Conventional class inheritance mechanisms support generalization

across agents, but the hard part is identifying appropriate generalizations in the

�rst place. Early designs typically multiply di�erences among agents, while later

re�nements make more e�ective use of inheritance.

With a candidate set of agents in hand, the next step is to hypothesize their

individual behaviors and the classes of messages they can exchange, keeping in

mind the desired overall system behavior. This process is intuitive, not algorithmic.

Some behaviors may be obvious, but there will always be subsystems where only

simulation of example agent behaviors (�rst in role-playing, later on a computer)

can verify the right behaviors. At this point, the main concern is to identify the

decisions each agent needs to make and the other agents with which it needs to

make them rather than on the details of each agent's internal reasoning. Again,

principles observed in naturally occurring systems help evaluate candidate agent

dynamics and interactions.

Concurrent Planning and Execution. Traditional systems alternate planning

and execution. For example, a �rm develops a schedule each night for its manu-

facturing operations the next day. The real world tends to change in ways that
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invalidate advance plans. Natural systems do not plan in advance, but adjust their

operations on a time scale comparable to the environment's rate of change. Watch

out for behaviors that involve extensive up-front planning.

Currency. Naturally occurring multiagent systems often use a 
ow �eld, such as

the 
ow of money in a market economy and the evaporation of pheromones in

insect communities. These mechanisms accomplish two purposes. They provide an

\entropy leak" that permits self-organization (reduction of entropy) at the macro

level without violating the second law of thermodynamics overall, and they generate

a gradient �eld that agents perceive and reinforce and to which they can orient

their actions, thus becoming more organized [51]. Wherever possible, arti�cial agent

communities should include such a 
ow.

Local Communication. Agents need to limit the recipients of their messages [86].

Wherever possible, instead of \broadcast X," de�ne more precisely the audience

that needs to receive the message.

Information Sharing. Agents often need to share information across both time

and space. (\Learning" thus becomes a special case of information sharing.) Phylo-

genetic learning is not nearly as demanding as the ontogenetic mechanisms devel-

oped in classical AI, and sociogenetic mechanisms can be even simpler

Role-Playing

With agents identi�ed and tentative behaviors described, the emergent behavior of

selected subsystems can be explored by having people play the roles of the various

agents. Such a rehearsal does not show the full dynamic behavior expected from

a complete population of agents operating at computer speed, but does validate

the basic behaviors needed and provides a basis for de�ning some internal details

of computerized agents. Where computer agents supplement the activity of human

operators, the role-playing exercise also helps capture the techniques, knowledge,

and rules that the humans have been using to ensure that the computer agent

augments this behavior appropriately [8].

Many of the individual behaviors for most of the agents will be fairly obvious.

This situation is fortunate, since role-playing a complete system as small as 50 or

100 agents can be slow, tedious, and inconclusive. To explore the emergent behaviors

of the system in regions that are not obvious, analysis focuses on subsystems of a

dozen or so agents where there are signi�cant questions about the match between

individual and system behaviors.

Role-playing requires both identi�ed subsystems and several scripts of the desired

system behavior. For example, role-playing a system with homeostasis requires a

list of the state variables that can independently change, the range of variation that

they can expect, and the corresponding corrections needed in other variables. These

scripts guide the role-playing activities. Because of the time and e�ort constraints
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of role-playing, they will sample the overall space of desired system behaviors only

sparsely, and should be chosen to explore widely separated regions of this space.

A separate person should represent each agent in the subsystem identi�ed in

the conceptual analysis phase. When there are many more agents than people

available, a single person may handle a complete class of agents. In this case one

must distinguish carefully between the behavior of the agent class and what a single

agent of that class can know. Agents, even those of the same class, do not have direct

access to one another's variables, and people representing them in a role-play need

to be careful not to \leak" information among them.

The environment in which agents live is not necessarily passive, but may have

state and processes associated with it. In addition to the agents proposed for the

system being engineered (the \system agents"), someone should play the role of

the environment. This person raises external conditions as called for in the script,

receives actuator outputs from the system agents, and integrates these outputs

into their overall e�ect on the environment, thus monitoring the system's ability to

achieve the required changes. The facilitator can represent a simple environment.

When the environment is more complicated, its representative may need to do more

extensive reasoning, and should be separate from the facilitator.

The primary responsibility of participants in role-playing is to �gure out the

rules that should guide the behavior of the agent for which they are responsible.

The structure of the conversation among agents will emerge naturally from the

interaction, and can be retrieved by post-hoc analysis, but the internal rules need

to be developed by the participants themselves. A stochastic process (such as rolling

a die or 
ipping a coin) is used to choose among internal agent decisions that later

will be the subject of detailed computation. (By treating a penny, a dime, a nickel,

and a quarter as successively higher bit positions, up to 24 alternatives can be

represented.)

All actions among role-players are recorded for later analysis. These actions may

be either speech acts (messages to other agents) or non-speech acts (in
uences on

the environment). The agents record these actions on cards that are then given to

the participant representing the receiving agent (for a message) or the environment

(for a physical action). Each card records �ve pieces of information, in addition to

the actual content of the message:

1. The identity of the sending agent

2. The identity of the receiving agent

3. The time the card is sent

4. The identity of the agent whose card stimulated this one

5. The time that the card stimulating this one was sent

This information enables reconstruction of the thread of conversation among the

agents. The time entries capture the order in which messages are generated. Ideally,

one could assign a unique sequence number to all cards, but the task of maintaining

such a number across all participants is burdensome and prone to error. By placing
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a digital desk clock in full view, it is easy to maintain an unambiguous ordering of

the cards.

A facilitator who is not one of the agents oversees the execution of each script.

There are three phases in this responsibility.

1. Initiate: The facilitator announces that a new script is starting. If the facili-

tator and environment are not the same person, the facilitator makes sure the

correct script drives the environment.

2. Run: While the participants are running the script, the facilitator carries

message cards between agents, watches for possible cross-talk (\Isn't your

action based partly on what B said a few moments ago to C? Should you have

been included on the distribution for that message?"), and (if also serving as

the environment) simulates exogenous inputs to the system and accounts for

the e�ect of outputs.

3. Debrief: After completing a script, the facilitator helps participants synthesize

important conclusions from the session. For example: What operational deci-

sions could not be resolved locally? What state information does each agent

need to maintain? How complex do agents need to be? Are participants con-

scious of internal state shifts?

Enhanced Dooley Graphs [69] can help analyze conversations in agent-based

systems. Each node in the graph represents an agent in a role. A given agent may

appear at di�erent nodes if it changes roles in the course of the conversation. These

roles suggest units of behavior that can often be reused across an agent community.

Thus they provide a �rst-level decomposition of individual agents into behaviors,

and guide the initial coding of the system.

Formal Analysis

Brainstorming and role-playing are 
exible, creative ways to explore possible agent

designs, but their results need to be checked more formally before implementation

begins. Two important tools are formal modeling and simulation. With a rudimen-

tary design in place, a logician can develop a formal model of the individual agents

and their interactions over time. Logical manipulation of this model can then test

for consistency and completeness against project requirements. The research pro-

gram of the DESIRE team [22] is one example among many of this approach. Like

the \correctness proof" approach to program development, formal analysis of an

agent design is complex and expensive, and should be used selectively. Simulation

is a more broadly used tool, and a more necessary one. It enables the designer to

observe and evaluate the emergent behavior of the entire community, and to test

how the behavior seen in a role-play scales up to a full population. The growing ac-

ceptance of genetic methods in industry opens the door for using simulation to grow

agents, avoiding the need to program them manually. The code of the simulated
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agents can serve as a detailed design for the �nal implementation.

Implementation Design

In preparation for implementation, the designer selects the deployment platforms

and tools that will be used in the �elded system. Sometimes these choices are known

at the outset. In other cases, the results of the earlier steps of design may guide

implementation design, as when simulation studies show that the required level of

performance requires agents to execute on separate processors.

9.5.4 System Implementation

The various tools described in this section vary widely in their functionality and

capabilities. Often the tool needed for a given application will depend on the details

of the design that has been developed using the methods of the last section.

Hardware

General-purpose computers dominate agent research, but many industrial applica-

tions are better served by parallel architectures that can assign a single processor

to each agent. Such an architecture supports real-time control applications much

better than do general-purpose operating systems such as UNIX or Windows, and

most of the examples here permit processors to be distributed physically so that

software agents can be embedded in physical devices.

The simplest products in this category are single-chip or single-board microcom-

puters, such as the Basic Stamp [66] or Z-World's C-based o�erings [94], with a

dozen or so I/O points and a supporting PC-based development environment. Such

platforms require additional peripheral support for inter-agent communication over

any signi�cant distance. The next level of sophistication is represented by LonWorks

[21], which is built around a single-chip computer that includes LonTalk, a com-

plete 7-layer OSI protocol. The product line includes a wide variety of transceivers

for a variety of interconnections among individual chips, and interfaces to other

networks.

An example of the high end of dedicated agent hardware for industrial appli-

cations is the Flavors PIM (Parallel Inference Machine) [25], a centralized parallel

computer that is available either as a board for a Macintosh with four powerPC604e

processors, or in a VME format with up to 125 68040 processors. Each processor

supports 125 virtual \cells" or virtual processors, in a real-time operating environ-

ment.
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Standards

Broadly accepted standards bring users and developers together into a critical mass.

If the requirements of various users di�er widely from one another, developers will

not have a large enough market for any single technology to justify the expense

of bringing it to commercial status. If the o�erings of di�erent developers do not

work together, users will not be able to assemble the full suite of tools that they

require. To the extent that agent standards agree with standards currently deployed

in the pre-agent environment, they enable incremental introduction of agents, an

approach that is less painful and more likely to be accepted by management than

requiring a wholesale redesign of the factory to accommodate agents.

Two organizations are devoted speci�cally to the de�nition and promulgation of

standards for agent-based systems. The National Industrial Information Infrastruc-

ture Protocols program (NIIIP) [59] is a consortium of U.S. companies addressing

the problem of enabling manufacturers and their suppliers to interoperate as e�ec-

tively as if they were part of the same enterprise. FIPA [13], the Foundation for

Intelligent Physical Agents, is a world-wide consortium devoted to agent standards

in general.

Commercial developers of agent tools draw on a wide variety of standards for

distributed systems and networking. The following examples begin with the lowest

levels of agent communication and extending to the high-level de�nition of agent

behavior.

Physically moving bytes around can be a problem in an industrial environ-

ment. Electromagnetic interference from arc welders, induction furnaces, and motor

starters can overwhelm many network structures that are completely adequate for

laboratory work. Until recently, industrial control relied on point-to-point wiring

of I/O between a controller and the devices being controlled, with separate con-

ductors for each device. Control-area networks such as DeviceNet [63] replace these

unwieldy tangles with multiplexed communications, and are engineered to cope

with potential interference.

Once an electronic pathway exists between agents, they need to be able to

�nd one another. Heterogeneous platforms are the rule rather than the exception

in many factories: a shop-
oor server running on a DEC machine may support

machine controllers from Fanuc, Rockwell Automation, and Modicon, and a number

of applications built on an industrially-hardened personal computer platform.

CORBA [64], the Common Object Request Broker Architecture, de�nes a standard

mechanism by which objects written in di�erent languages and executing in a

distributed environment can make requests of, and respond to, one another.

After �nding one another, agents need to be able to exchange information and

express themselves about it. Chapter 2 discusses in detail two important standards

that support inter-agent communication: KIF [34], the Knowledge Interchange

Format, and. KQML [28], the Knowledge Query and Manipulation Language. KIF

expresses the content of a proposition, while KQML expresses the agent's attitude

toward the proposition.
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Sometimes it is not enough for agents to talk to one another over the network. If

their interactions are intensive, they should share the same processor. A part agent

may need to move from one machine agent to another during its residency in the

shop. Java [85] enables agent behavior to travel from one processor to another, and

thus provides a way for agents themselves to travel over networks and execute on

diverse platforms.

These standards provide interoperability between di�erent computer systems.

Another category of standards enables people to communicate e�ectively with

agents. Industrial engineers have evolved their own conventions for specifying

and implementing systems, and they will accept agent technologies more readily

if an agent system supports these conventions. For example, Grafcet [9] is an

international standard (IEC 848) for a graphical control language based on Petri

nets. Petri nets are a powerful mechanism for representing the internal logic of an

agent [26], and Grafcet enjoys widespread industrial use as a representation for

control logic, making it a good candidate for implementing industrial agents.

Tools

A growing array of software tools is available for developers of agent-based systems.

Section 9.6 discusses several examples.

9.5.5 System Operation

Little speci�c case information is available at this time concerning the operation

of industrial agent-based systems, but the nature of agent technology suggests two

important issues that will make the di�erence between successful and unsuccessful

systems.

Agent Dynamics. One of the great bene�ts of agent-based systems is their ability

to generate complex system-level performance from relatively simple individual

agents. This system-level behavior often cannot be predicted analytically from the

descriptions of individual agents, but must be observed in simulation or real-life.

As a result, the detailed behavior of an implemented system may not be known

in advance, and individual agent behaviors may need to be modi�ed in real time

as the system runs. The tools to support the monitoring, analysis, and adjustment

of an agent-based system in operation are the same ones needed to design the

system in the �rst place. Thus one expects that the more successful development

tools discussed in the previous section will take on more and more features of

operational interfaces, such as simplicity for use by non-programmers, alarm and

emergency management, and data logging and archiving.

Humans and Agents. Agent-based systems require closer interaction between

human and computer than do traditional systems, even as they enable automation
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of many tasks that previously required human attention. The reason for this paradox

is that the autonomy of agents, one of their main strengths, moves them from a

position of an obedient slave to that of a cooperating partner. One can tolerate

bad manners on the part of a slave, but people who relinquish decision-making

ability to a silicon peer expect a certain level of etiquette on the part of their new

associates. The problem is more complex because people can learn to recognize

their own bad habits and modify their behavior accordingly, but at the present

state of technology, acceptable demeanor must be programmed into computer

agents. Successful operations requires systems that embody not only advanced

computational science but also sophisticated psychological understanding of how

people work together and what makes teams successful.

9.6 Development Tools

Development tools are one of the most powerful ways to move a new technology

into widespread use. Object-oriented programming was possible before the advent of

speci�c object-oriented languages, but each team had to de�ne its own conventions

and rely on the expertise of individual developers to enforce them. Wide-spread

industrial acceptance came only with languages such as Smalltalk, C++, and

Objective C that package an agent model and enforce a set of best practices about

how to use it. The lack of commercially supported development environments has

been a major roadblock to wider agent deployment in industry [70].

Several products have recently emerged to address this need. Since one function

of a tool is to enforce best practice, it is not surprising that each of these tools

emphasizes its own view of what an agent is and what kind of resources agent

developers need. This section groups example tools under �ve such views, ordered

roughly from simplest to most complex. Unless otherwise noted, the tools described

in this section are commercially available and supported. Chapter 1 discusses several

tools that are more oriented toward research.

An Agent as a Single Reactive Process. IBM's Agent Building Environment

[41] is an extensible C++ library for constructing rule-based forward chaining

agents, and is designed for applications such as monitoring a network informa-

tion source and informing a human when certain conditions are satis�ed. ABE

represents its facts and rules in KIF. The core reasoning engine can be attached

to procedures external to itself. These procedures, which can be written in C++

or Java, provide the means of sensing conditions in the environment, taking action

in the environment, and triggering inferencing activity in the underlying engine.

Attached procedures are packaged into \adapters," and the ABE distribution in-

cludes a number of prede�ned examples: an alarm clock that can trigger time-based

events, a USENET News monitor, an HTTP monitor, an adapter that can observe

and manipulate �les, an Email sender, and an example of an adapter that fetches
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stock quotes from a WWW site. ABE is designed to support isolated intelligent

agents rather than multiagent systems.

Agents as Capitalists. Dissipative mechanisms such as currency 
ows are a pow-

erful way to coordinate a decentralized system. Agorics is a software development

company that applies market mechanisms to real-world problems. Agorics is de-

veloping Joule, a programming language for distributed concurrent asynchronous

systems, that supports market-based computing with the encapsulation of resources

and the management of access to them [1]. Joule raises the communication channel

between agents to �rst-class status as a \channel," a unidirectional route with two

\ports." Agents (called \servers" in Joule) place messages into a channel's accep-

tor port and read them from a distributor port. These ports can be passed from

one agent to another, thus controlling access to the services provided by a given

server. The message objects themselves handle authentication and other security

concerns. Currently, Joule is not distributed externally, but is used within Agorics

on industrial projects for its clients.

Agents as Travelers. Some agents can migrate from one processor to another.

This capability permits agents that must conduct a high-bandwidth conversation to

move to a common processor so that the network as a whole is not burdened with the

tra�c between them. It also permits local communities of agents to interact with one

another even when the processor on which they are located is disconnected from the

rest of the network. The earliest widely publicized tool for mobile agents is General

Magic's proprietary Telescript language [90-92], which models the world as places

(processors) and agents (processes). Several �rms are implementing these concepts

in Java to avoid the need for a proprietary language interpreter on each processor

that an agent might wish to visit. IBM's Aglets [42] are Java objects that can

move from one host to another. The Java Aglet API (J-AAPI) de�nes the methods

necessary to create aglets, handle messages, and manage the course of the aglet's life.

Danny Lange, the lead developer of Aglets, has joined General Magic, and is now

a member of the Odyssey team that is producing a Java version of Telescript [33].

ObjectSpace's Voyager [62] provides a Java-based Object Request Broker (ORB)

designed for mobile agents. ObjectSpace o�ers a detailed comparison of Aglets,

Odyssey, and Voyager [61]. All three tools are available free for noncommercial use,

and Voyager is freely available for commercial use as well.

Agents as Members of a Community. The next level of sophistication in

agent tools provides explicit support at the level of the community, with special

emphasis on communication mechanisms. As functionality is added to the Java-

based frameworks discussed in the previous section, they will come to look more

like these tools as well.

Gensym's Agent Development Environment (ADE) [35] builds on its widely ac-

cepted G2 object-oriented environment, a robust real-time platform for industrial

deployment of AI techniques. The ADE provides a prede�ned class hierarchy of
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agents and agent parts, agent communications \middleware," a graphical speci�ca-

tion and programming language for agent behavior based on the Grafcet standard

for industrial-strength Petri nets, and a simulation tool for performing simulations

of (distributed) agent-based applications. ADE supports agents running on a dis-

tributed network of computers as well as on a single machine. Each agent has

a network-wide unique identi�er, and agents can be grouped into nested \environ-

ments," each of which is also an agent. ADE itself provides a basic direct addressing

message service, to which users can add additional functionality (such as guaran-

teed delivery or subject-based addressing). An agent uses messages not only to

communicate with other agents but also to queue up events for its own subsequent

activity.

In support of the AARIA project described in Section 9.4.3, Intelligent Automa-

tion, Inc., the AARIA prime contractor, created the �rst version of Cybele, a NeXT-

based agent infrastructure [24]. Based on the requirements analyzed in [52], Cybele

supports agent creation and deployment over a network of varied platforms, a mes-

sage addressing scheme for agent communication that is independent of the loca-

tion of a sending or receiving agent, the accumulation of messages intended for a

currently busy recipient agent, the proper conversion of message data across plat-

forms, multicasting, broadcasting, and peer-to-peer messaging, and the migration

of agents across processors for performance optimization and/or fault tolerance.

Building on the lessons learned in the initial implementation, Cybele is currently

being reimplemented in Java.

Metra's UNITY Agent [54] is a Java-based agent environment that builds on

the three-level \tactical, operational, strategic" agent hierarchy of [10]. Agents

are grouped into communities, themselves agents, each with a Meta Agent that

monitors the identity and capabilities of agents in the community. The framework

supports communication via direct addressing, subject-based addressing, and black-

boards. The base agent class includes capabilities for modeling self and other agents,

performing situation assessment, managing local tasks, negotiating for resources,

and competitive bidding to resolve con
icts. Users con�gure a new agent by spec-

ifying the agent's attributes, de�ning trigger events, writing actions to be taken

on a trigger event in Java, and binding trigger events and actions in rules. The

interface to the external world is CORBA-based and supports standard database

access. UNITY Agent is the environment underlying the Daewoo scheduling system

described in Section 9.4.3.

Agents as Intelligent Processes.Much agent research grows out of the Arti�cial

Intelligence community, and assumes that individual agents aspire to some level of

intelligence. The tools described thus far do not provide any explicit support for

individually intelligent agents, and are appropriate for systems of relatively simply

agents whose interactions produce intelligent system-level behavior. The tools in

this section embody speci�c models of individual intelligence, and illustrate how a

well-crafted tool can make complex techniques accessible to a wide range of users.

dMARS [36], a descendant of SRI's Procedural Reasoning System, is an instan-
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tiation of the BDI model of agents, according to which agents should explicitly

model their Beliefs, Desires, and Intentions. Each dMARS agent includes a Belief

Database of current beliefs about the world, a Goal Database of objectives or de-

sires to be realized, a Plan Library of context-sensitive procedures that the agent

can use to achieve goals and react to situations, an Intention Structure of tasks

to be performed, and a Task Manager that repeatedly selects a Plan based on the

agent's Beliefs and Goals, places it in the Intention Structure, and manages its ex-

ecution. Plans can be conditioned either on external conditions or on the state of

the agent's internal databases, and so can support re
ective planning and dynamic

reprogramming of the agent.

D-Muse [93] is a distributed version of an earlier commercial AI toolkit, MUSE.

Based on the PopTalk object language, MUSE o�ers a complete frame representa-

tion system with forward and backward chaining that supports real-time operation.

D-Muse provides a layered set of communication capabilities that enable the inter-

action of individual MUSE-based agents. Agents interact mainly through mirrored

objects. One agent (the publisher) creates a master object that is then made visible

to one or more subscriber agents by being copied as a slave object within the sub-

scriber. Whenever the publisher modi�es the master object, D-Muse synchronizes

the slaves. A subscriber cannot modify a slave object, but can attach demons or

relations to it, match rule patterns to it, or manipulate it in any other way that

would be possible within the native MUSE environment.

The Agent Building Shell (ABS) [5, 7] at the University of Toronto is a set

of object classes and supporting tools that implement a four-layer architecture

for coarse-grained agents. The knowledge management layer provides general-

purpose representation and inference mechanisms that agents can use to model

their knowledge and beliefs about the problem domain, the environment (including

other agents), and themselves. The ontology layer uses the knowledge management

layer to construct the speci�c models that an agent maintains of its domain, its

environment, and itself. The cooperation and con
ict layer supports two services to

manage shared knowledge between agents: a subscription-based information service

that enables agents to be noti�ed automatically when information of interest to

them is posted, and mechanisms for managing an agent's beliefs when it receives

contradictory information from other agents. The coordination and communication

layer is supported by the Coordination Language (COOL) and provides inter-

agent communication using a superset of KQML, de�nition of arbitrary inter-agent

protocols, and integration of legacy applications. While the Agent Building Shell

is not o�ered commercially, it embodies techniques of knowledge representation

and automated inferencing that have been deployed commercially in expert system

shells such as KnowledgeCraft and KEE, and shows how classical AI methods are

migrating into agent tools.
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9.7 Conclusions

This brief survey of industrial agent systems suggests two ways in which such

systems di�er from research systems: the systems must be practical, and the tools

used to develop them must be packaged.

Industrial systems are driven by the need to solve a practical problem, rather

than curiosity about the possibility of some technology. The criterion for success in

an industrial project is not how clever the technology is, or what one has learned

about that technology, but how well the system solves the problem that it addresses.

The entire life cycle of an industrial system is shaped by this unrelenting pressure

to make a di�erence to the �rm's e�ectiveness. At �rst glance this focus on pro�t

and practical results strikes some researchers as con�ning and unimaginative. In

fact, the complexity of real-world problems o�ers intellectual challenges every bit

as stimulating as the more theoretical challenges of the research laboratory, and

the unforgiving nature of the business environment provides a much clearer sense

of success or failure than can be achieved in a more abstract domain.

The methods of designing, building, operating, and maintaining agent-based

systems must be packaged if they are ever to �nd wide-spread deployment in the

industrial world. The orientation to practical problems means that engineers in

industry must be �rst of all experts in the products they manufacture, the processes

they control, or the services they render. Agent technology is for them a means to an

end, a tool. The more the tool fades into the background and lets them concentrate

on the requirements of the problem at hand, the more likely they are to use it.

The PAAM (Practical Application of Intelligent Agents and Multiagent Technol-

ogy) conferences [88] are more oriented toward applications than other agent con-

ferences, and their proceedings are a good source of further readings. As with other

technologies, detailed application issues are more likely to be discussed in venues

associated with the application domain than in those dedicated to the underlying

technology, and as a result the best case studies will be scattered throughout a wide

range of conference proceedings and journals. Ultimately, application expertise is

best communicated by hands-on experience rather than by papers, and readers

eager to learn more about this area should establish joint projects with industrial

partners around application problems of industrial scope and complexity, where the

objective is to improve the industrial partner's operations rather than to generate

research reports.

The big open issue in applications of DAI is the instantiation of the techniques

that researchers develop in standards and development tools that make them

accessible to industrial users. The best techniques will not be widely used unless

they are embedded in commercially supported tools. Now that multiple products

are becoming available, market forces will join technical excellence in determining

the platforms on which industry will build in the future. Researchers who are alert

to these market forces and who pay special attention to packaging and deployment

of their results will see their work have the most lasting impact on the �eld.
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9.8 Exercises

1. [Level 3] The deployed agent-based systems described in this chapter focus on

the design and operation phases of the life cycle. Why is this the case? Make

friends with some industrialists, identify the main challenges in each phase of

the life cycle of some process or product of interest to them, and see if you can

propose an application for agents in some of the neglected phases.

2. [Level 4] Formulate a project proposal to do an agent application in one

of these neglected phases, in partnership with your industrial acquaintance.

Obtain funding for the project and execute it.

3. [Level 2] Analyze a recent or upcoming research project in your laboratory

according to the life cycle pattern outlined in this chapter. To which steps

do you usually devote attention? Which ones are novel or unusual in your

environment? For each of these steps that is not part of your usual project

cycle, identify the di�erence between an industrial setting and your own that

makes it important to an industrial user.

4. Software packages that support an industrial team as they work their way

through the life cycle are called \work 
ow" packages, and research concerning

them is centered in the discipline of computer-supported collaborative work.

(a) [Level 1] Conduct a literature review on work
ow packages. Compare and

contrast the ways di�erent solutions decompose the problem.

(b) [Level 2] Design an agent-based work
ow program. Explain how your

decomposition into agents supports the industrial requirements outlined

in Section 9.2.

(c) [Level 3] Implement your program.

(d) [Level 4] Field-test your program with an industrial partner. If the test

is successful, start a company to market it.

5. [Level 1] Compare the agent architecture used in your work with that discussed

in Section 9.4.2 above. Which categories do you design explicitly, and which are

left implicit? Are there other categories, not discussed here, which industrial

agent designers should consider?

6. [Level 2] Itemize the development tools that you use in your projects. For each

tool that is developed in your own laboratory, answer the following questions:

What philosophy of agents does this tool impose on your work?

What functionality does it provide that is not yet available in the market?

What functionality of more widely available tools does it duplicate?

How does the capability of this tool, and the availability (or lack of

availability) of commercial sources for this capability, impact the prospect

for transferring your discovers to industrial practice?



416 Industrial and Practical Applications of DAI

7. [Level 4] Implement your next project in a commercial development environ-

ment that meets as many of your requirements as possible. Explore ways to

package the additional functionality you require as extensions to this environ-

ment. Transfer these extensions to the vendor of the development environment

for them to make available in the next release of their product.
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10 Groupware and

Computer Supported Cooperative Work

Clarence Ellis and Jacques Wainer

10.1 Introduction

Groupware is hardware and software technology to assist interacting groups. Com-

puter Supported Cooperative Work (CSCW) is the study of how groups work, and

how we can implement technology to enhance group interaction and collaboration.

This chapter presents de�nitions, concepts, examples, and issues related to group-

ware and CSCW. It is written as an overview for the non-specialist, and primarily

emphasizes the technical perspective. The material is presented and discussed in

the context of a functional 4-part groupware classi�cation. The four categories

described within the classi�cation are keepers, coordinators, communicators, and

team-agents. This classi�cation is also convenient for the investigation of middle-

ware, and of low level issues of groupware. It also facilitates a discussion of social

and organizational implications.

10.1.1 Well-Known Groupware Examples

One way to answer the question of what is groupware is via examples. Groupware

comes in many shapes and styles. Most everyone is familiar with electronic mail,

and understands that this is a technology used at di�erent times, and di�erent

places by its participants. The sender does not expect an immediate reply from

the receiver. This can be contrasted with face-to-face electronic meeting room tech-

nology, sometimes called group decision support systems (GDSS.) These systems

typically consist of the following networked technology in a single room:

presentation technology (large screen projector, or electronic whiteboard), and

computation technology (a workstation or portable PC for each participant),

and

group process technology (voting tools, brainstorming tools, etc.)

Notice that in contrast to electronic mail, a GDSS is designed to support real-

time face-to-face interaction among people, so it is called same time, same place

technology.
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Another well-known groupware example is video conferencing, which allows

participants in di�erent locations to see and hear each other for a same time,

di�erent place collaboration. There are many systems and products of this type

available. For example, MBone [40] tools are available and free to allow meeting

attendees in di�erent locations to have a distributed meeting over the Internet.

Participants in various locations can see (VIC), and hear (VAT) each other, and

share a group window on their screens (Whiteboard.) This same time, di�erent

place technology is in the same category as MUDs and MOOs (chat rooms,) and

group virtual realities.

Our �nal groupware example is work
ow. A work
ow management system is a

networked control system that assists in analyzing, coordinating, and executing

business processes. A work
ow management system typically has two sub-systems:

(1) A modeling subsystem which allows organizational administrators and analysts

to construct a procedural models of the 
ow of work among people and tasks. This

model is embedded in the network system to drive the enactment subsystem. (2) An

enactment subsystem which uses the model to coordinate task executions by various

participants at various workstations connected to a network. It initiates tasks in

their correct order, and keeps track of completed work. Since a work
ow system has

a representation of work procedures, and knows which actors at which workstations

are assigned to do what, it is called \organizationally aware groupware." This is a

potentially powerful system which can download appropriate programs and data to

users' workstations as needed; assist in task execution; send reminders when and if

a user misses a deadline; automatically �ll out electronic forms when needed; and

generally act as coordinator, historian, and process overseer.

The above groupware examples suggest that there is a wide variety of systems.

Some are same time, same place; some are di�erent time, di�erent place like work-


ow; and some fall in between these. But we see that all of these groupware systems

aim to assist people in their communication, coordination, and collaboration.

10.2 Basic De�nitions

10.2.1 Groupware

As stated above, groupware is technology to assist groups. Before presenting our

elaborated de�nition of groupware, we discuss the notion of group. In this document,

we de�ne groups very generally as collaborating communities of participants. A

group may be very small (e.g. two designers working via an electronic whiteboard,)

or very large (e.g. all citizens of a large country participating in electronic voting.)

A group may be very close knit, sharing goals and tasks and common knowledge

and preferences and etc; or it may be a very amorphous group with no knowledge

of other group members and no explicit shared goals. This latter type of group is
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of interest because it is commonly found on the Internet. Terms such as teams,

organizations, corporations, communities and societies all fall within our notion of

groups; thus groupware may be applicable to these quite varied entities.

When one thinks about typical groupware, electronic mail and video conferencing

come to mind as typical examples. In fact, there are many single user tools which

have been upgraded to be \group enabled." For example, a single user text editor

which has an add-on electronic mail feature integrated into its latest release is

groupware, or at least it has a groupware aspect. Thus, when examining the utility

of groupware, we must specify which aspects of it we are focusing upon. This chapter

suggests a four part classi�cation of groupware according to its aspects.

It is clear that some groupware are much more useful to groups than others. For

example, ordinary electronic mail is not as useful as enhanced electronic mail that

�lters, sorts into various mailboxes, and is multimedia. The �ltering helps prevent

information overload, the sorting helps to categorize messages into conversations|

thereby providing context for messages, and the multimedia allows much more of

the group spirit, emphases, and social background to be captured. This document

therefore suggests that the question of \Is that technology groupware?" may

not have a simple YES or NO answer, but depends upon the aspect of the

technology that we are focusing upon, and is best represented by a spectrum.

Some technological tools are high on this spectrum, meaning that they incorporate

powerful and appropriate aids for group work. Others are considered low on the

spectrum because they provide weak or inappropriate aids for group work. Ordinary

email is much lower on the spectrum than enhanced email. Fax is also groupware,

but it is quite low on the scale. Many group enabled systems tend to be lower on

the scale than systems which were initially designed as group support systems.

We are now ready to state our de�nition of groupware: Groupware (also some-

times called collaboration technology) is de�ned as computing and communications

technology based systems that assist groups of participants, and help to support a

shared environment.

10.2.2 Computer Supported Cooperative Work (CSCW)

CSCW is the name of the research area that studies the use of computing and

communications technologies to support group activities. Associated with this are

are questions such as \How do people interact and collaborate?" and \How can

technology facilitate and enhance this interaction and collaboration?" The emerging

new focus on groupware presents opportunities for new paradigms, new types

of systems, and new ways of working. Along with these opportunities come new

problems and new intellectual challenges. Research methodologies utilized in this

area include �eld studies, laboratory experiments, ethnographic studies, systems

prototyping, simulation, and conceptual modeling. There have been a large number

of studies, utilizing a wide variety of techniques. The techniques, technologies, and

�ndings in this area have been useful to enhance interactions ranging from real time

face to face meetings, to asynchronous organizational work
ows.
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In this area, it has been the case that technology tends to change and progress at a

much faster rate than our understanding of human interaction phenomena. We need

a much deeper understanding of the social and organizational factors, and their in-

teraction with technology, than currently exists. There is an important component

of the CSCW area concerned with theories, frameworks, and mathematical models.

Thus, CSCW includes the theoretical development of models of teams, organiza-

tions, and social systems. This e�ort supports the analysis, prediction, and design of

social structures taking into account the participants' information, communication

possibilities, objectives, relationships, and incentive mechanisms. In constructing

such theories, the area draws upon diverse disciplines including social psychology,

organizational design, economics, computer science, and management science. As

information technologies drive the underlying factors such as communication possi-

bilities, the theoretical models provide a means to evaluate the e�ects of alternate

designs, and a guide to shaping both the technology and the social systems for

bene�cial outcomes.

10.3 Aspects of Groupware

In this section we propose a classi�cation of groupware systems that, we believe,

is more interesting than previous taxonomies both in terms of its pedagogical

advantages and in terms of its ability to direct future research in the area.

Other researchers have proposed taxonomies of groupware systems based upon

a same/di�erent time/space distinction [31], based upon areas of application [17],

and based upon other criteria such as group size. We propose a classi�cation based

upon underlying functionalities of groupware. We introduce four classes, which we

call aspects. Brie
y, the �rst aspect, keeper, groups functionalities that are related

to storage and access to share data; the second aspect, coordinator, is related to

the ordering and synchronization of individual activities that make up the whole

process; the third aspect, communicator, groups functionalities related to uncon-

strained and explicit communication among the participants; and �nally the forth

aspect, team-agent, refers to intelligent or semi-intelligent software components that

perform specialized functions and help the dynamic of a group.

This classi�cation is neither complete, in the sense that not all functionalities fall

within one of such aspects, nor it is categorical, in the sense that it is always possible

to say when a functionality falls within one or other aspect. In fact there will be

functionalities that seem to lay on the intersection of di�erent aspects. But despite

these problems, we believe that the aspect taxonomy is helpful to understand the

past and present of the �eld, and to suggest directions for the future.

It turns out that most current groupware systems have functionalities that fall

overwhelmingly within one of the �rst three aspects. In this sense, we will talk about

typical keeper systems, typical coordinator systems and typical communicator

systems.



10.3 Aspects of Groupware 429

10.3.1 Keepers

Sometimes the collaboration among a group of people is centered on the access

and change of a shared set of data. Sometimes the goal of the collaboration is the

construction of this shared data, which we will call the artifact. The keeper of the

artifact, or keeper for short, is the set of functionalities related to the storage and

manipulation of the artifact.

Two examples of non computer-mediated keepers are the white board in a

brainstorming session in which three engineers are drafting a new circuit, and the

draft of a business contract that is circulating among some executives who write

their comments about the contract on the margins.

These two examples re
ect an important distinction among keepers: there are

keepers that allow for more than one user at the same time to alter the artifact,

such as the white board, whereas some other keepers do not.

In groupware systems some typical keepers are:

systems that allow for revision of documents [41]. In such systems, a single person

writes a document and then submits it to be reviewed by others. The reviewers

may attach comments to segments of the document, or propose changes to it.

Then the original author receives the comments, proposals of change, and so on,

and changes the document, which may be again submitted to more reviews.

concurrent editors [16], that allow more than one user to change the same

�le/document at the same time.

computer aided design (CAD) and computer aided software engineering (CASE)

tools [6].

Functionalities that fall within the keeper are:

control access rights to the objects. Not all participants have the same rights

to the objects that make up the artifact or the same rights to perform certain

operations onto these objects. For example in a document reviewing groupware,

the reviewers do not have the right to change the real document, they only

have the right to attach comments and substitutions to it. In some systems one

reviewer do not have the right to read other reviewer's comments, whereas in

others, the reviewers can both read and comment each other's contributions.

control of simultaneous access to the artifact. Some groupware allow for simul-

taneous changes to the artifact. This poses the problem of maintaining the con-

sistency of the artifact: if two simultaneous and contradictory changes are sub-

mitted to the keeper, how will it perform them?

versioning of the artifact. In some applications it is important to store stable

situations of the artifact during the process and to allow the artifact to be

restored to such stable situations.

storage of time stamp and author information on objects of the artifact. Some

groupware allow a user to view just the changes performed since she last logged
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on, or the changes made by another participant.


oor control. Some groupware systems use a mechanism of 
oor control to avoid

simultaneous access to the artifact, for example a classroom blackboard. At each

time only one user has the right to change the artifact (the participant that has

control of the 
oor). Other users may request the 
oor which will be granted by

the system as soon as the participant that has the 
oor relinquishes it.

Ontological Model | Model for Keepers

The ontological model is a description of the objects and operations that can be

used to construct and manipulate the artifact; the semantics of such objects and

how they should be used.

Sometimes, a precise description of how the objects should be used is the essence

of a groupware system. That is the case of QuestMap [44]. QuestMap product

evolved from the experimental gIBIS [11] system, and as with the other members

in the IBIS family it supports decision making by structuring the discussions. It

implements the IBIS model of discussion and decision developed during the early

1970 [35]. The IBIS model proposes that decision making about \wicked problems"

should be performed in three phases: divergence, when solutions to the problems

are creatively suggested, convergence when after listing all alternatives the group

converges to a few of them, and decision when all in the group are convinced of

the solution to be adopted. Of these three phases the IBIS model considers the �rst

as the most important and proposes that in that phase the participants make a

clear distinction between the questions, the solution for those questions, and the

arguments in favor or against those proposed solutions. Questions are named issues

in IBIS and solution are named positions.

QuestMap is a tool to support the divergence phase: the discussion is the

collective construction of a graphical map that contains nodes to represent issues,

positions and arguments; and di�erent links connecting these nodes. By clicking on

a node, the user accesses the content of the node: the statement of an issue, position,

or argument. Each user can add new objects to the discussion and can delete objects

created by herself. All users can access and change the map simultaneously, and

their changes will be transmitted to all other participants, or they can access and

change the map asynchronously.

Another component of the ontological model is its concurrency control : how

are simultaneous access and change requests to the artifact dealt with. Some

systems would not allow for concurrent change to the artifact because either their

collaboration model does not allow for concurrent activities that may access the

artifact, or because their mechanism of 
oor control is restrictive. There are many

varieties of 
oor control. Many systems implement a 
oor control mechanism in

which only one participant at a time has the right to perform changes to the artifact

or artifact attributes. Those changes may occur in a fashion that is immediately

visible to all group members. A common feature of concurrent systems is the

existence of a group window (for example GROVE, a concurrent group editor [16])
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in which the same view is displayed to all participants. The region of the artifact

that is being viewed in all group windows is controlled by one of many possible


oor control mechanisms.

In some other systems, there is no 
oor mechanism but there is some form of

locking: a participant protects a region of the artifact by placing a lock that prevents

other users from making changes within that region (for example REDUCE [10]).

Some other systems accept all operations from the participants and deal with

inconsistent ones in an application dependent way.

Another component of the ontological model is currency : how up-to-date are the

views that each participant has of the artifact. Depending on the implementation,

some systems may present an out-of-date view of the artifact to the participants.

In such cases the model may specify a mechanism allowing a participant to request

the current version of the artifact, or if this is done automatically, how frequent

is the update. Also the model has to specify what happens with changes that are

performed on out-of-date views of the artifact. Many options exist. For example,

they may remain local, they may be later merged into the current version of the

artifact, or they may be sent to the current version immediately. Another issues is

how are inconsistencies due to the lack of currency dealt with.

10.3.2 Coordinators

Sometimes collaborating is each participant of the group performing some activity,

possibly but not necessarily an individual activity, in a previously de�ned order.

The coordinator of activities, or coordinator for short is the set of functionalities

related to this temporal evolution of the system, the enabling of an activity after

all its preceding activities are terminated.

A prototypical non-computer-mediated coordinator is the production line in a

factory. In the production line, the process of constructing, say a car, was carefully

and previously divided into a set of individually performed and temporally ordered

activities. This example also shows one of the limits of our aspect model: in a line

of production, the point is the construction of the artifact, that is the car. In fact

there is almost always some data involved in a coordinator system: people frequently

perform their activity upon some data that is passed along to the person that will

perform the next activity in line. But we claim that in most coordinators this data

is not really shared, the data 
ows overwhelmingly in one direction, that is, as soon

as someone has terminated her activity and performed all the changes in the data,

that person will not receive that data again in the process. Keepers to store and

control such data are simple (or uninteresting) because the changes to the data are

linear and predictable. We claim that for such systems, the coordinator aspect is

much more interesting than the keeper aspect, and thus we call them coordinators.

Other non-computer mediated coordinators are techniques for meeting manage-

ment such as the Delphi method [37].

Some typical groupware with strong coordinator components are:
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work
ow management systems [30]

software process management systems [19, 22].

some examples of meeting coordinators and group decision support systems [51]

The basic functionalities of a coordinator are centered on the execution (or

enactment) of a plan, or a sequence of activities (sometimes called a procedure

or a process). The coordinator is responsible for insuring that an instance of a

process follows its prede�ned plan. This is also referred as enacting the plan or

model for that process. Some functionalities related to enactment are:

enabling an activity once its preceding activities have terminated.

noti�cation to the users that they may start a particular activity or that a

particular activity is late.

inspecting the current stage of a process. Some systems allow privileged users to

obtain various information about the process state, such as which activities have

been completed, and when, and by who, and which activities are being carried

on.

dynamic alteration of a process description to cope with surprises. Very few of

the existing coordinators allow for changes on the plan of a process. Changes

to the plan are important in dealing with unexpected situations, that were not

taken into consideration when the plan was conceived.

helping participants to manage their work. Some systems, such as work
ow

systems, deal with more than one process at a time. For example, John's purchase

order and Bill's travel reimbursement may both be processed under the control

of the same work
ow system although they are instances of di�erent processes.

In such cases there will usually be many activities attributed to a single actor,

and the work
ow management system may help that actor by displaying the

list of activities to be performed by that actor, displaying the deadlines, and

allowing the user to choose which activity she wants to perform.

Another important group of functionalities of coordinators centers on de�ning the

plan itself. This is also referred as modeling. In general terms, the plan or model

is a description of the sequence of activities that should be performed, who will

perform them, when they must terminate, and so on. Most coordinators allow for

some form of de�nition of the plan. Meeting support systems sometimes have a

prede�ned sequence of activities, but allow the users to de�ne who will perform

them and when should they be �nished. Work
ow systems and software process

management systems allow for the de�nition of not only who will perform the

activities and when, but also what activities will be performed, which supporting

tools and environment will be available for each activity, and in what order the

activities should be executed.
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Coordination Model

The main concept of the coordination model is that of an activity. Other important

concepts are role and actor. An activity is a potential set of operations (and the

corresponding objects) that an actor playing a particular role can perform, with a

de�ned goal. In general, an actor may be a user, a computer system, or a group.

The actor carrying out the activity is called the performer of the activity. A set of

activities and the ordering among them make up a procedure. Some coordinators

are designed for a single procedure, for example software inspection, others, such as

work
ow systems deal with multiple processes, such as \order processing procedure"

and \travel reimbursement procedure" for example.

More than one instance of each procedure may be \executing" at the same time:

there may be many order processing jobs being carried out simultaneously in a

company for many di�erent customers. Each of this instances of the procedure will

be called an endeavor.

The coordination model has two components, as indicated above: a component

that deals with the modeling of the process and one that deals with the enactment.

The plan is a prede�ned speci�cation on how an endeavor will or should proceed.

The plan speci�es the activities and their goals, who perform them, the objects

and operations available in each activity, the order in which the activities should be

performed, when should the activities end, etc. We will call the part of the plan that

de�nes which activities should be performed and in what sequence as the activity

plan. The component that describes who will perform what activity is the actor

assignment, and the component that de�nes deadlines as the temporal plan.

The coordination model has to specify which of these components are �xed

and which can be set by the user. Some systems have a �xed activity plan, but

both the actor assignment and temporal plan can be set by the user. In such

systems, the �xed activity plan re
ects a methodology that is embedded into the

system. Document reviewing systems is an example of a coordination model with

�xed activity plan. Other coordinators that have a �xed activity plan are meeting

management systems.

Other coordinators allow for all parameters of a plan to be de�ned by the user.

Work
ows and software process management systems are examples in this category.

Such systems are limited by the language used to de�ne the activity plans, the actor

assignment and so on.

The enactment component of the coordination model de�nes the relationship

between the plan and the execution of an endeavor: is the plan a speci�cation

of what will happen with the endeavor, or just a suggestion. In other words, is

it possible, at enactment time, to change the plan for a particular endeavor or

not. This replanning for a particular endeavor may be important to deal with

unplanned, unexpected, or exceptional situations. In a work
ow system, the order

processing endeavor for a particular case may have to follow a di�erent plan than the

one prede�ned because, for example, that customer, which is the most important

customer of the company, needs to receive the goods ordered in a very short time.
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In this case, the plan for that endeavor may be altered to skip some activities.

Another aspect at the enactment level is whether the system controls/monitors

more than one endeavor at the same time. For example a document review system

may not be designed to monitor more than one endeavor. In this case, although

many documents can be reviewed at the same time, each document is being

controlled by a separate instance of the document reviewing system, and each

instance does not know about the others. In such a case, the system (or better

an instance of the system) cannot know that a particular reviewer is overburdened

with �ve other reviews.

Multiple-endeavor systems may also help users manage their work. Since the

system knows about all activities that are assigned to a particular actor, it can

provide the actor with information such as which activities are urgent, and which

are late.

10.3.3 Communicators

Communication is a basic aspect of any collaborative endeavor. In a mainly keeper

application there is (implicit) communication when one participant changes the

artifact, and that is known to the others. Also, in a mainly coordinator application

there is (implicit) communication when one participant �nishes an activity and

that enables another participant to start the next activity. But many times there is

need for explicit communication among people. The communicator aspect groups

the functionalities that allow di�erent users to communicate explicitly among

themselves.

Two non-computer mediated examples of communicator are telephone and let-

ters. These two examples also illustrate an interesting distinction among commu-

nicators: whether they are same time (real-time) or di�erent time (o�-line).

Typical groupware communicators are:

e-mail.

desktop conferencing systems (for example [43, 46]). These systems allow a

group of people to communicate through audio and/or video from their desktop

computers. Some systems allow for all users to both transmit and receive, while

others allow only one person to transmit while the others only receive.

chat and muds/moos (for example [36]). These systems allow for a group of

people to interact mainly through text. Participants send their contributions

either to the whole group or privately to some subset of the whole group, and

each participant sees all messages sent to the group or to her privately.

white-boards (for example [46, 40]).

Typical functionalities of communicators are:

sending and receiving a message.

joining and leaving a conference.
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management help functions and abbreviations, such as mailing lists, alias, and

so on.

Conference and Conversational Models

The conference and conversational models are the underlying models of commu-

nicators. The conference model describes whether only two or more people can

communicate and how that communication is initiated, and if more than two party

conferences are allowed, how new people join the conversation, whether it is possi-

ble within a multi-party conversation to talk privately to some subset of the group,

and so on. The conference model must also specify whether all participants can

transmit/receive, and if not how one switches from transmitting to receiving.

The conversational model describes what are the conversational moves allowed in

the communication, how participants take turns in performing these conversational

moves, what are appropriate conversational replies to the moves, how the groupware

can help the user manage each conversation, and manage multiple conversations.

In real time communicators the emphasis is on the conference model. It is as-

sumed that the participants themselves will manage the conversation. For example,

in a video-conference system once the participants \get together" in a conference

(following the system's particular conference model) it is assumed that the par-

ticipants will understand when someone's contribution is a question, for example,

because the participants will use the group/culture/language appropriate markers

and intonations to convey the question. In other words, it is usually left to the par-

ticipants, and not to the system, to interpret the conversational moves and follow

(or not) the appropriate cultural/group protocols for such moves.

In some video-conference systems, such as IVS [29] all participants transmit

video but only one transmits sound, while the others listen. Once the participant

terminates her contribution she releases the sound control to others. In CU-SeeMe

[14] all participants can transmit video and sound, and each participant chooses

which video and sound transmissions to receive.

In o�-line communicators, the emphasis is on the conversational model. Because

there may be a long period between one conversational message and its reply,

the groupware system, if it incorporates an appropriate conversational model, may

provide help to its users. It may help a user that just received a message to �gure

out its context, that is, what are the other conversational messages that preceded

this one, and what are the appropriate replies to it. The system may help the user

by listing all messages that need reply, and what kind of reply is appropriate for

each of them, list all conversations that have not yet reached a �nal state, list all

previous conversations, and so on.

Furthermore the conversational model may state that some types of messages

need no reply but should be processed automatically. For example, let us assume

that the conversation model speci�es that a message of acknowledgment of receipt

should be sent in response for a message in which the �eld \acknowledge-receipt" is

set. The communicator not only can send this acknowledgment upon receiving an
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incoming message with the �eld set, but can also process incoming acknowledgments

and alert the user of messages that the user sent more that 2 days ago and for which

there has been no acknowledgment.

An communication system that has an elaborate and explicit conversation model

is The Coordinator [52, 21]. The Coordinator implements Winograd and Flores'

model of conversation for actions. In the model a conversation is started by a

request (to do something, before some time). The recipient may accept the request,

may refuse it, or may negotiate. If the request is accepted, maybe after negotiations,

and performed, the recipient of the request declares it completed, which is accepted

or not by the original sender. Each message identi�es itself as a particular message

type called a \conversational move" in an ongoing conversation. For example the

user would understand that a particular message is user B's modi�ed request after

a �rst round of negotiations and that this user appropriate response would be

to accept, reject, or re-negotiate this new request. Furthermore, The Coordinator

would assist the user to manage her obligations: the user would be able to list which

requests from others she has accepted and still has to perform, and when are they

due, which request the user has not answered yet, which of her requests has not

been performed until now and so on.

The clarity of the Coordinator's conversational model has caused a large impact

in groupware research, and there has been much discussion, debate and study about

the usage of this type of system [49, 15].

10.3.4 Team-Agents

Team agents are arti�cial participants that perform specialized functions within a

group setting. Besides groupware modules which must be concerned with the opera-

tion of the entire groupware system, there are frequently modules which are built to

perform speci�c non-global subtasks. These frequently involve specialized domain

knowledge; we call these modules team agents. Examples include the \performance

specialist" within a software engineering team, and the \social mediator" within an

electronic meeting. Neither of these examples is concerned with the overall workings

of the system, but each contributes useful functionality in a specialized domain as

part of a group. Thus each is a team agent. Ideally, team agents act as if they were

full 
edged, actively participating members of the group.

An important distinction within the category of team agents is autonomous

agents versus single user agents versus group agents. Autonomous agents primarily

work alone on an independent subtask; single user agents (e.g. user interface

agents) interact with, and work for a single participant within the group; group

agents interact and collaborate with the various members of the group as a true

colleague. Group agents thus need a good understanding of the goals, structures,

and personalities of the group, and of their role within the group.
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Group Critic

Some (single-ware) computer aided design (CAD) systems have critics that com-

ment or check the user's designs. Critics are AI programs that tap into an artifact

being developed and reports problems with the design. For example, the critic de-

scribed in [20] warns the designer of problems in kitchen design such as a stove too

close to a window and so on. Although at the time of the writing of this chapter

there was no group-CAD that incorporated critics, it is conceivable that they will

in the short future. Such critics would be good examples of team-agents.

As a team agent, and more speci�cally as a group agent, a group critic must be

aware that the problems it �nd in the design are the result of di�erent users acting

on di�erent goals and all are responsible for the problem. For example, if the critic

detects that the stove is too close to the window it must warn the user that placed

the window and the user that placed the stove, even if placing the stove was done

last.

Appointment Scheduler

A popular groupware application is group calendaring and scheduling of meetings

[50]. Such softwares allow one to schedule a meeting among a group of people

by selecting a free time slot for all meeting participants. In order to do that, the

scheduler must have access to each participant's individual calendar. An interesting

scheduler would also know about peoples' preferences for meeting hours, and in case

of a cancellation of a meeting this system could re-arrange some of the meetings so

the participants would be happier with their times.

The appointment scheduler, specially the implemented ones are mainly au-

tonomous agents. But depending on the functionalities it may also be a single

user agent. An appointment scheduler that knows about its user's preferences and

pro-actively tries to satisfy those preferences is certainly acting on behalf of its user.

10.3.5 Agent Models

It is important to notice that the use of the term agent in this chapter is broader

than its use in most of the other chapters in this book. Agent is any automatic

process; it does not need to be \intelligent" or \autonomous" in the sense used in

other chapters.

In particular, for the purposes of this chapter, an autonomous agent is a program

that runs independently, and has no interaction with any user. An autonomous

agent may tally the votes in a decision meeting, it may compile a program in

a software development work
ow, it may print an acceptance letter based on a

template and data available in a database, and so on. None of these activities

are considered intelligent. But an autonomous agent may choose a particular

methodology and tool for a meeting, based on the problem [1], or another agent may

plan the sequence of activities to be performed based on the goals to be achieved
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[12]; these are more \intelligent" activities.

A model of an autonomous agent will not be developed in this chapter. The

theories and models put forth in the other chapters are all relevant to de�ne, classify

and model autonomous agents.

Group agents are programs that interacts with all participants and thus \should

behave like a participant" therefore group agents should incorporate a model that at

least describes what is \to behave like a participant." But there are no implemented

group agent and thus there is not enough experience to abstract into a group-agent

model.

User Agent Models

Groupware re
ects a change in emphasis from using the computer to solve problems

to using the computer to facilitate human interaction. Users can best take advantage

of this changed emphasis via systems with user-interfaces especially designed for

groupware. We call these group user-interfaces. The issues that designers of group

user-interfaces face are challenging and are signi�cant extensions of the usual issues

of interfaces for single-user systems. Thus the user interface conceptual model is

highly concerned with representation of human-human interaction, and signi�cantly

transcends single user interface models. The model has four components:

views of information objects and operators

views of process and communication;

views of participants;

views of shared context.

Firstly, the user interface for a participant in a groupware session must be capable

of presentation of the objects and operations embodied in the ontological model as

previously de�ned in this chapter. Since di�erent participants may have di�erent

abilities (or di�erent perspectives), the user interface model includes the concept

of multiple views of objects and the concept of local operations which are typically

not present in single user models.

Besides the ontological model data, the user interface in a groupware system may

have to deal with other \meta objects". Examples include telepointers and group

windows [16]. For example, on systems that allow for inspection of the stage, the

user-interface has to display this information.

Views of objects derives from the fact that di�erent participants may want to have

di�erent views of the same objects of the system. For example, in a GDSS, an object

may be semantically an array of numbers, but one participant may opt to view it

as a bar chart, another may prefer to see it as a pie graph, or as a table. All these

di�erent representations are views of the same object, and in principle it should be

an issue related to the user interface. Furthermore, if one of the operations allowed

upon this generic array object is to alter the values of its elements, the operation

has to be translated appropriately to each view of the object. In the bar chart view
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of the table, one could change the corresponding element by stretching the height

of the bar corresponding to the element. In a table view, one could type the element

index and change its value using the keyboard.

Similarly, in an IBIS one participant may want to view the network of issues,

positions and arguments as a graphic network of connected nodes. Another may

want to view it as linearized text, indented appropriately to di�erentiate issues from

positions from arguments.

The concept of local operations derives from the observation that group editing

is a common and necessary operation in many groupware systems, but all edits

need not be seen immediately by all participants. There are decisions or options

that must be built into each groupware system concerning granularity of edits and

locality and when to transmit to others. If an edit operation is part of a real time

synchronous interaction, then a WYSIWIS (\what-you-see-is-what-I-see") system

may transmit the edit immediately to all participants. Alternatively, within an

asynchronous system, edits may not be transmitted to other participants until a

save operation is executed. For many existing systems, when entering data through

the keyboard, the system considers all key presses as local operations until the

return key is pressed. Thus composing a line is an atomic operation. Finally, it

should be pointed out that in some systems, operations on meta objects, e.g. pointer

movement, are permanently local operations which are never transmitted to other

participants.

In a group editor system, for example, if the participant realizes that he mistyped

the last character, he would press the backspace key and erase it. If we were to

consider that within a real time interaction, it might be transmitted immediately.

In GROVE and the Unix talk program, backspace key presses are object level

operations, and are transmitted immediately. Clearly the level of granularity of

operations depends upon the application and the group environment.

In a synchronous system, understanding who is simultaneously doing what is

useful, and should be presented to users. In an asynchronous system, it is useful to

understand who did what since the user last signed on. This leads to the notion of

\view of the process." Work
ow systems are a clear example where it is useful to

have answers to questions of what step preceded mine, and what follows. The user

should be able to see upon demand, a simple view of which workcases are in which

stages. As exceptions arise in processing, formal and informal communication ought

to be facilitated. Maps of who holds which positions, and who talks to whom help

to make communication visible.

Groupware is much more concerned with assisting people to people communica-

tion than single-user systems. Providing some convenient means of knowing other

participants, and what they are doing is an important aspect of our model. The

identity of a participant is not directly related to the completion of the endeavor,

but this information can be extremely helpful to the other participants in evalu-

ating the situation of the group dynamics. For example, knowing that Smith is in

a group long-distance discussion mediated by an IBIS, may lead the other partici-

pants to formulate their contributions in di�erent ways than if Smith was absent.
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GROVE, for instance, provides this context information by displaying the pictures

of the participants at the bottom of each group window. Systems of video windows,

video walls, virtual rooms, and virtual realities may display the real time video im-

ages of participants which helps with the evaluation of everybody's attention and

mood during the session. ClearBoard, for example, allows shared video drawing,

while super-imposing the image of the collaborating colleague [28]. This allows eye

contact and gaze awareness, while still focusing on the work artifact.

In addition to displaying participants, it is possible to present, in an unobtrusive

manner, relevant status, background, and preferences of participants. Benford

discusses concepts of auras, nimbus, focus, and adapters [3], all of which are within

the scope of the group user interface model. Group information such as the social

network of who talks to whom can be presented, and the view of this can be tailored

to the viewing participant. For example, if there is a relevant and signi�cant shared

previous experience between Smith and me, then I would like to be reminded, and

associate this with Smith.

Other possible forms of participant context information are: group opinion on

relevant issues, extent to which participants know each other, status of the commu-

nications technology, how are the participants geographically distributed; informa-

tion from a database on relevant aspects of each participant; etc. The information

on the geographical distribution of participants may help long distance participants

to realize that the subgroups that are in the same place may have developed other

protocols of communication besides the one enforced by the collaboration model

of the system. Remote response time information may help the division of labor

among the group members so that the tasks of a long-distance participant should

not depend on high currency. Finally, information about other participants may

help a user to place the context of the other participants contributions.

Another area of presentation that should be dealt with by a group user interface

is all of the useful background material that we call context. The choice of what

and how to present contextual information is a challenge, and that context may

include items as diverse as the time of the next meeting, the current weather, and

the presence of new mail messages from other participants.

We categorize contextual information as structural, social, or organizational,

Structural context includes what and where data, such as the set of interactions in

which I am currently participating, and temporal information such as what data

has changed since I last accessed this hypertext web. Within a software engineering

project, useful context may include languages and case tools used, status of various

code and documentation �les, and future milestones.

Social context includes items such as group norms, group metrics, and social

history of the group. One proposed metaphor of shared virtual reality is that

di�erent projects would take place in dramatically di�erent virtual rooms. Thus,

the group's di�cult design project would take place in a Tahitian hut, and the

formal election processes always takes place in a London House of Lords; just the

act of re-entering these contexts might trigger much useful contextual information in

the heads of the participants. The research work on GroupAnalyzer [38] explored
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the e�cacy of providing an electronic meeting barometer for groups in face to

face interaction. This is an excellent example of the utility of graphical context

presentation.

Organizational context can apply to small groups, large corporations, countries,

or international organizations. It potentially includes formal reporting and respon-

sibility structures of the group such as the organization chart. Also included are

other items such as rules of the organization (procedures manuals, etc.,) and inter-

organizational data (competitive edge, mergers, etc.) In general, it must be un-

derstood that a meeting or any interaction is not an event in isolation, so these

contextual clues provided by the user-interface can make the di�erence between a

successful interaction versus a failure.

Finally, we note that participants are not context! Context connotes objects and

conditions that are in the background. A primary function of groupware is support

of communication and collaboration among participants, so participants are in the

foreground.

10.3.6 An Example of Aspect Analysis of a Groupware

Let us discuss some di�erent possible implementations of whiteboards which mix

aspects from communicators and keepers. Whiteboards are group drawing tools,

somewhat like a group Paint. Whiteboards have a strong communicator component,

specially the conference model. People may join and leave a ongoing whiteboard

session.

The simpler whiteboard has one cursor for each participant. The participant by

moving the cursor around sets some pixels to, say, black, and each participant

sees the composition of all contributions. The canvas can be seen as a keeper, but a

trivial one. The objects maintained buy the keeper are pixels and the only operation

available is to set them on. There is no problem of concurrent access to the same

pixel, and the currency of each participant's view is not critical.

In a more elaborate whiteboard, each participant still has her own cursor but

each cursor paints the canvas in a di�erent color. The objects maintained by the

keeper are a little more complex, pixels with colors, but still very simple. An even

more elaborate whiteboard in terms of its keeper model would be one in which each

participant paints on her own transparent canvas, and each participant can choose

whose canvas or canvases she wants to see. Now the ontology model is yet more

complex. Finally, let us assume that the system is also used asynchronously, and

that each participant can choose to see only the changes made by some particular

participants since she last logged into the system. Now the ontology model includes

objects like canvas, time and author stamps, and so on. But all these versions of a

whiteboard are simple in regard to object coordination, or concurrency control.

A whiteboard system that is more complex in terms of concurrency control, even

though it has a very simple ontological model, is the �rst whiteboard modi�ed so

that there is only one cursor for the whole group. The cursor is the resource that

needs to be controlled by the keeper, and some way of passing this control must be
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planned. It could be a �rst come �rst serve 
oor control with explicit release (the

one that holds the cursor must explicitly release it, and control will pass to the �rst

one waiting in line for it), or release by timeout (after a period of inactivity the

cursor goes to the next in line). Or the cursor may be owned by some privileged

participant that may pass temporarily the control of the cursor to one participant,

but may regain its control any time she wants.

10.4 Multi-Aspect Groupware

The aspects model of groupware is interesting because not only does it serve as

a guide to the designers and users of groupware systems but it also allows for a

perspective on the past research on groupware and we believe can point the way to

future research in the �eld.

Most Groupware research done until the 90's were single-aspect systems, that is,

a system in which functionalities within one aspect overwhelm the functionalities

within other aspects. But there are some exceptions, such as document reviewing

systems (for example [42]) which mix keepers with coordinators. Another such

system is The Coordinator [52, 21], which mixes communicators with coordinators.

We will describe below the Chautauqua work
ow system, which mixes all the

four aspects described above.

10.4.1 Chautauqua | A Multi-Aspect System

Chautauqua is an Internet based collaboration management system designed and

implemented within the Collaboration Technology Research Group [13] at the Uni-

versity of Colorado, USA, and the Center for Informatics (ZID) at the University

of Arts, Austria. This exploratory prototype, which has been in test usage since

1995, illustrates the possibilities and advantages of tight integration of coordinator,

keeper, communicator, and agents. At its base, this system is a work
ow manage-

ment system. However, unlike conventional work
ow systems, this system carefully

incorporates functionality for goal based reasoning, for real time interaction, and

for 
exible, human controlled dynamic change [18].

The history of work
ow products in corporate America has been mixed; more

systems have silently died than been successful [24]. Work
ow has been heavily

criticized because of its typically in
exible and dictatorial nature compared to

the way that o�ce workers really accomplish tasks. Chautauqua attempts to

address these criticisms by being strictly a subservient system|it incorporates

novels features including 
exible exception handling mechanisms, representation of

inconsistent concurrently updated information, assistance for simultaneous group

editing, and powerful, veri�able dynamic change capability. All of these features

are accessible to any and all users with appropriate access rights.

Thus, the information concerning procedural speci�cations associated with the
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coordination aspect, which we call organizational awareness, is the artifact main-

tained by the sophisticated Chautauqua keeper. This information is available (in

graphical, easy to use form) to all users for seeing and understanding the procedures,

and also for making changes to the procedures. The keeper must support simulta-

neous editing of this information, and must be capable of mediating and merging

inconsistent information entered by di�erent users. The keeper is thus integrally

integrated with the coordinator.

Techniques implemented by Chautauqua for assisting with the above mediation

include the concept of \town meetings" and \group decision sessions". Clearly some

of the tasks such as problem solving and decision making can be facilitated if the

system can schedule and initiate real time video conferences. Being organizationally

aware, the work
ow system is in a good position to do this. Thus, Chautauqua

integrally integrates a communicator.

The dynamic change feature goes far beyond application data update capability

to allow open change to control 
ow and to organizational structures. Furthermore

this change can take place in the midst of system enactment without stopping

and restarting, or aborting work cases in progress. This feature is implemented

via \Change Agents" that have certain global knowledge about the state of the

executing system and which work cases are where. Consider a procedure in which

task A is speci�ed to execute before task B. If the dynamic structural change is to re-

specify that A and B should be done in parallel, then work that is \inside of task A"

at the time of change (the change taking e�ect immediately and instantaneously)

may accidentally never execute task B. This is a simple example of potentially

complex inconsistencies that can occur if dynamic change is not carefully managed.

In general, the change agent can work with the users and utilize its global

knowledge to analyze changes for potential problems. Note that a change can be

permanent, or a temporary one time change. Thus, exception handling falls within

the dynamic change category. The change agent in Chautauqua is integrally woven

into the design of the Chautauqua system, and uses an analytic method based upon

graph grammar rules applied to Petri nets to do this change analysis e�ciently

and e�ectively. This is yet another example of the importance of designing in the

multiple aspects of a groupware system rather than attempting to add on an agent

or a keeper as an after-thought.

10.5 Social and Group Issues in Designing Groupware Systems

On designing a groupware system, one has to be aware of multiple levels of issues.

At the top most level, one has to be aware that because groupware systems deals

with groups, intuitions and experiences appropriate for singe-ware may not be

appropriate for groupware.

For example, [23] discusses that group appointment schedulers are used in real

work situations far less than the intuitions of someone that had to schedule
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a meeting among a couple of people would suggest. Grudin suggests that the

explanation for that is that in real, hierarchic work situations there is a strong

separation between the people that bene�t from the existence of the system (the

ones that can call a meeting) and the people that, because of the system, has to do

extra work (the ones that have to enter their schedules into the system). If someone

fails to mark all her appointments in the system she risks the possibility that the

system will schedule a meeting during those unmarked but otherwise busy time

slots. On the other hand, it is very to sabotage the system by blocking all time

slots; by marking all time slots as busy, one will not have to enter one's detailed

schedule, nor risk having a meeting scheduled at a busy time slot.

Thus for such a system to be successful the users have to have an incentive to use

the scheduler by itself, despite its group bene�ts. Thus the real issue on the success

of failure of a group scheduler is not centered in the group part: �nding a free

time slot, communication protocols that would allow users in di�erent computer

to schedule a meeting and so on. The central issue is providing functionality that

pleases the user when using the system as a single-ware. If that is resolved, then the

designer has to deal with the next level of issues, in this case the ones that relates

to the group functionalities. If the user decides to use the system as his calendar

tool, then this user will probably not be happy if his daily appointments were made

known to other users when they try to schedule a meeting with her. Thus the issue

of privacy, which is a very important issue when dealing with groups, becomes

relevant at this level.

Because groupware systems have to be used by all participants, there is an

all/nothing or sometimes critical-mass characteristic to the adoption of such sys-

tems. Using the scheduler example above, if one of the team members decides not

to use the scheduler, either because she does not like the user-interface or the func-

tionalities, the whole team cannot use system as intended.

In other cases the issue is not whether a whole team adopts or not a groupware

system, but whether a single user decides to adopt a new technology that would

allow her to participate in some collaboration. This shows a critical mass charac-

teristics: it is only attractive to adopt a new communication technology, say voice

electronic mail, if enough of the people one wants to talk has voice electronic mail.

In order for a groupware systems to be adopted and accepted its designer must

be aware of the issues above, but even more important, he must be aware of how

the people for whom the system is being build really work. There is a di�cult and

moving line between wanting to improve how people work together by means of a

groupware system and not violating how the work is done without such system [15].

More and more research reported in Groupware conferences are analysis of work

practices, the in
uence of technology in these practices, the in
uence of a particular

groupware system on a team, aspects of the adoption (or not) of a groupware system,

and so on. For example [5] describes the use of anthropology to understand the work

practices of a group as part of the methodology to design a particular groupware

system. [47] describes the two distinct views about work in organizations and its

impacts on the design of groupware systems.
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10.6 Supporting Technologies and Theories

We believe that the espoused taxonomy of keepers, coordinators, communicators,

and agents is not only useful at the application level, but also at the middleware

(resource managers, protocols, etc.) level and at the underware (hardware, basic

resource providers, etc.) level. In this section, we discuss supporting technologies,

where technology is interpreted in the broad sense to include hardware underpin-

nings, software underpinnings, and conceptual underpinnings. Thus, communica-

tions hardware, software construction kits, toolboxes, protocols, and underlying

theories are included.

We also note in passing that any lower level category of technology may be

useful for the implementation of several di�erent categories at higher levels. Thus,

for example, low level technology such as Ethernet, which is in the communicator

category, is very useful and important to implement higher level communicators,

but also to implement items in the high level coordinator category. Otherwise there

is no vehicle for synchronization signals to get from one module to another.

10.6.1 Keepers

At the bottom underware level there are numerous examples such as RAID disks

and CD-ROM technologies that form data storage underpinnings for groupware

applications. At the middleware level, examples include �le and database systems,

particularly distributed ones. We should also mention conceptual middleware such

as object oriented and relational database schema technology. All of these tech-

nologies help to support generic application level groupware such as organizational

memory and electronic librarians; also groupware in the keeper category targeted

toward a speci�c application, such as group CAD systems.

10.6.2 Coordinators

Coordinators may range from work
ow systems to GDSS to the UNIX Make

software. Middleware that greatly facilitates the construction of this includes the

ISIS synchronizer [7], work
ow meta-systems such as ADONIS [33], and at a lower

level, network operating systems. At the lowest levels, we �nd interrupt hardware

as a primitive that handles coordination at the lowest level. Kernel schedulers

are software just above the interrupt hardware that would also be categorized

as coordination underware. Although ATM transmission technology is within the

communicator category, the ATM switch is a sophisticated technology that is

strictly concerned with synchronization|it is within the coordination underware

category.

Some of the conceptual underpinnings for coordination seem to fall close to

the boundary between middleware and underware. We feel that the speech act

primitives [48] are indeed conceptual primitives and fall within the underware
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category. On the other hand, process description languages such as ICNs, and

fundamental models of coordination such as Petri nets seem to fall within the

middleware category because they are really concerned with the description and

management of coordination.

10.6.3 Communicators

Communicators at the application level may range from generic email and video

conferencing systems to very application speci�c systems. Increasingly more and

more remote collaboration is performed over the Internet using the MBone tech-

nology [34, 40], and modern successors to it [46]. On the one hand, the speci�c

tools for MBone video, audio, and whiteboard are at the application level. On the

other hand, the underlying multicast protocols are middleware, and the hardware

systems which allow implementation of e�cient MBone multicast protocol are un-

derware. At the communication underware level, many examples such as Ethernet

exist. And below this there is much work on wireless transmission, and on satellite

transmission, and etc. As previously mentioned we de�nitely consider conceptual

technologies within our categories. Thus, there are many communication protocols

which fall within the communication middleware category. The well-known ISO

seven layer communication protocol is an example. Of course the lowest layer of

this is clearly underware, and the highest, 7th layer, is clearly and strictly at the

application level, but all other layers are middleware. Finally, we remark that the

Internet and the WWW when viewed from our taxonomy, are not synonymous with

groupware (contrary to some vendors claims.) In fact the Internet is simply one of

many possible communication vehicles, and the various parts of this technology

need to be placed in various sub-categories. Thus, HTTP, the hypertext transport

protocol, is simply one of many choices of middleware for implementation of group-

ware. This needs to be clearly distinguished from HTML, the hypertext markup

language, which is not concerned with communication but with presentation to the

user. It thus falls in the category of user agent technology which is discussed next.

10.6.4 Team-Agents

As previously described, we divide agents into categories of autonomous agents,

(single) user agents, and group agents. The other chapters in this book describe

both technological and conceptual underpinning of the agents. In the domain of

agents supporting users, UIMS's (user interface management systems) and user

interface implementation toolkits have been well used to construct sophisticated

user agents.

An interesting category which is much less visible is the group agent category.

However, one domain where rapid progress is being made is virtual reality for groups

of participants. These systems allow multiple participants connected via a network

to a virtual reality system to also see (or sense) and interact with each other. These

systems sometimes implement the metaphor of a room, a shared desktop, or perhaps
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a castle or dungeon with dragons. New middleware that can be used to implement

these types of systems includes NetE�ect, a distributed server based toolkit for

multi-user virtual worlds on the Internet [8]. As conceptual middleware, HTML

and VRML (virtual reality markup language) are available. At the underware level,

multimedia hardware and virtual reality hardware are proliferating. We see this

team agents category as an under-represented one where exciting research and

development is now happening.

10.7 Other Taxonomies of Groupware

10.7.1 Space/Time Matrix

[32] classi�es groupware systems based on the same space, di�erent space, same

time, di�erent time distinction. GROVE and IVS for example, would be both

same-time, di�erent-space groupware. Sometimes this distinction is more pro�table

applied to certain activities or functions within particular groupware rather than to

the system as a whole. Let us consider a software inspection system which supports

a single programmer writing the code, supports the simultaneous and concurrent

inspection of the code by three reviewers that attach comments to segments of

the code, and supports the programmer changing the code to suit the reviewers'

comments, or discussing with that reviewer why the code is correct as it is, and

�nally supports the reviewers veri�cation that all their concerns were addressed

by the programmer. Is this system same-time or di�erent-time? In fact, its both!

But at di�erent stages. This is becoming more prevalent as the needs of groups are

becoming better understood.

Furthermore the distinction of whether the activities were performed at the same

time or at di�erent times is sometimes not appropriate. In the example above, one

could assume that the system would also support that the review activities were

performed at di�erent times. What is important is whether the system necessarily

requires some activities to be performed at di�erent times, or necessarily require

that they are performed at the same time. In the example above, the activity of

reviewing and the activity of changing the code had to be performed at di�erent

times. That may be because limitations on the keeper component of the application,

or it may be because the coordination model so requires: it is reasonable to require

that the programmer should not have access to the reviews until they are done, in

order to avoid unnecessary argumentation and confusion.

10.7.2 Application Area

It is also reasonable to classify groupware systems according to application domains

[17]: group editing and reviewing, work
ow, group decision support, real-time

communication, distance learning, etc. It turns out that groupware systems for
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some of these application areas fall clearly within one or another aspect. Group

editing and reviewing, for example, are typical keeper systems. Work
ow systems

are typically coordinators.

The application area in which there is some interesting diversity in terms of

aspects and models is group decision support, or meeting support. In this area the

goal is to provide methodological and technological support for meetings.

In some way meetings can be seen as the most unstructured form of collaboration;

however activities within meetings, such as voting, are frequently very rigid and

structured. Some systems propose to support meeting by temporally structuring

well de�ned activities, and thus are mainly coordinators with �xed activity plans.

Each activity has some prede�ned goals and need some speci�c tools, which may

be communicators or keepers. For example, many meeting methodologies propose

at least an activity of brainstorming [25], in which all participants are encourage to

contribute many possible solutions to the problem at hand. An appropriate tool for

such activity is a backboard-like communicator, to which the participants submit

contributions, usually anonymously [43]. A few other systems, such as those in the

IBIS tradition, choose to structure the meeting \spatially" and thus are mainly

keepers.

10.8 Groupware and Internet

At the time of the writing of this chapter, the word Groupware is frequently

accompanied with the word Internet especially in the non academic press. This

section tries to elicit the relationship between these two concepts.

In order to do that, we need to model the architecture of a typical groupware

system/application. The user will interface with the system through a software

component that we will call user software component (USC ). The USC runs in the

user's computer, but its functionalities are varied: the USC may include all or just

part of the user interface, it may host part, or the whole, or a version of that artifact

if the system is mainly a keeper, and so on. The USC must communicate/exchange

information with other software components that are, typically, in other computers.

Thus if the groupware is a teleconference system, each USC needs to communicate

with other USCs and there may be a server component.

In order for the USC to communicate with components in other computers it

must make use of services provided by another software components, the network

software component (NSC ). It is unimportant whether the NSC is part of the

operating system of the user's computer, or if it is implemented explicit as part of

the USC. The relevant issue is that the NSC runs in the user machine and it is

either provided by that machine or implemented in the USC itself.

Given this abstract architecture of a groupware system, one can elucidate two

possible relations between Groupware and the Internet. The �rst relation, which

we call Internet as infrastructure, the Internet implements the NSC. In the second
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relation, which we call Internet as presumed user software, the Internet implements

the USC.

10.8.1 Internet as Infrastructure

The idea behind the Internet as infrastructure is that computers that are on the

Internet must have software that allows for some/all of the functionalities required

from the NSC. A computer is \connected" to the Internet when it is able to send

and receive information according to the many standard protocols (UDP, TCP,

FTP, SMTP, NNTP, HTTP, and so on).

Thus, by using the user's computer's own Internet software as NSC, the designer

of the groupware avoids having to design the groupware's own NSC (which may be

extremely di�cult since the services provided by the NSC must necessarily interact

with the computer's low level software and hardware), or avoids having to assume

that the user's computer has a particular non-standard NSC incorporated into the

operating system.

First, it is important to notice that using the Internet as NSC is not the only

option available for the designer: computers in a local network may use other

protocols that are not available in the Internet; even if the computers are not

in a local network, the designed has the option of having one computer phone the

other and use non-standard protocols over this phone connection, or the distant

computers may be part of a private non-Internet network with its own protocols.

But in all these alternatives, the designer has to assume that the user computer

will be on the local network, or will have access to a phone line, or will be part of

the private wide-area network, and in many of the cases the designer will have to

write the NSC herself.

The Internet has some peculiarities that must be taken into account by the

groupware designer: it is unreliable, that is messages may not get to their recipients,

and it is insecure. Furthermore, at the time of the writing of this chapter, the

Internet is still weak concerning protocols for real-time transmissions, and multi-

casting.

10.8.2 Internet as Presumed Software

The second frequent relation between Internet and groupware is that the Internet

implements the USC altogether. One Internet software popular for this task is the

WWW browser; at the time of the writing of this chapter, to \be in the Internet" is

to have access to a WWW browser. By implementing the USC by a WWW browser,

all Internet members are potential participants in the groupware. By pointing the

browser toward the server in which the applications runs, one becomes a participant

in that system.

The advantages of implementing the USC by a WWW browsers are many for

the user: there is no need to buy/install a separate USC to become a participant

in a system; the user has to deal with a single interface, the same software (WWW
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browser) can be used for many applications.

But using a WWW browser as the USC has some problems and limitations.

The limitations can be separated into three categories: user interface, client-server

architecture, and system interface limitations [4].

The WWW browser can display a large variety of information in di�erent media:

text, di�erent picture formats and so on. Furthermore for most browsers it is

possible to de�ne external programs that will display media types that are not

internally dealt with by the browser. These media types include many audio and

video formats and also application speci�c formats, such as postscript, and text

editors internal formats. But as an input device, the WWW browser is very limited;

it accepts text typed into the �ll-in �elds, selection of radio buttons and prede�ned

lists, and mouse click on prede�ned regions of text and on prede�ned images. No

other gestures, such as mouse movement, and single and double clicks are supported.

This poses some severe limitations for some applications; it is not possible to write

an application in which the users freely draw a diagram, or changes a diagram by

dragging some of its components, or build a diagram by placing prede�ned shapes

onto a canvas.

The client-server limitation is also central for the designer of groupware systems.

WWW was designed as a typical client-server protocol: it is stateless, that is the

server does not remember any of the previous history of communication with the

client, and only the client can initiate communication. The �rst limitation has been

long solved in the WWW community either by using cookies [45] or by encoding

the state of the communication in the information sent by the client to the server.

When the client requests new information, the encoded state is also transmitted

and used by the server.

The real problem is the fact that the WWW server was originally designed as

\pull" technology. This means that the server cannot initiate communication with

the client. This limits applications in which the currency must be high. In a keeper

application, for example, if other participants change the artifact, the server cannot

warn the client that the artifact has changed unless the server is \push" technology.

The user system limitations are less severe. They refer to the browsers ability to

communicate and operate changes into the user's system. WWW browsers typically

allow for �les to be downloaded, from server to browsers, but not uploaded.

If the user has locally made changes onto the artifact, using software that runs

on the user environment, it may not be possible to easily upload it to a central

repository or to the other users

The use of JAVA seems to be a solution for all this problems, but at a price.

By writing a JAVA program (or applet) that runs on the user's environment the

groupware designer is able to overcome the three problems mentioned above. For

example the designer may write a program that accepts user's gestures as inputs,

or a program that communicates with other components of the system using its

own protocol, instead of using the client-server model underlying HTTP. But in

the �rst case the designer will have to write at least the interface components of

the USC, and in the latter case, the NSC. The advantage is that the designer does
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not need to make presuppositions about the user's environment; if JAVA indeed

becomes a widely accepted standard then the designer may assume that the user's

WWW browser will both be able to run the program and serve as interface to the

user's environment. Thus the same USC program will run in di�erent hardware,

operating systems and network environments.

10.9 Conclusions

The authors believe that future research on groupware will be centered on agents

and multi-aspect groupware. There are many forms of mixing aspects into a single

system. Let us discuss some.

10.9.1 Incorporating Communicators into Keepers

Sometimes participants working in a keeper must communicate to each other

directly to understand points of view, to synchronize actions and so on. Some of

these communications will be about the artifact and for these communications

it would be important to be able to refer to parts of the artifact within the

communication, in similar ways that pronouns such as this, and that are used in

conversation to refer to outside entities.

This could be accomplished, for instance, by incorporating a video conference tool

within a keeper that would allow synchronous communication among participants,

plus some form of telepointer, which would allow the participants to make references

to parts of the artifact. The solution is less clear if one also wants to provide o�-line

communication among the designers.

10.9.2 Incorporating Keepers and Communicators into Coordinators

There is a very common view associated with coordinators that the whole process

should be decomposed into sub-processes and so on, until one reaches an \atomic"

sub-process, usually called a task or an activity, which cannot (or need not) be

further decomposed and which is to be performed by a single actor. The model of

the production line is a good example of this \decomposition until the individual

task" idea. But there are activities which should not be further decomposed and are

not individual. In a work
ow system, one may have, for example, a \write proposal"

activity which is to be performed by a team. This activity should not be further

decomposed into smaller activities because that would constrain too much the team

creativity to write the proposal.

To support these collective activities within a coordinator, one needs an appro-

priate keeper. For example in the \write proposal" activity one needs a keeper

that would allow all the actors to work on the proposal. Probably one would also

need communicators so that the participants can interact beyond the limits of the
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ontological model of the keeper for that activity.

10.9.3 Future Research on Agents

Future research in agents in groupware will follow two directions: (autonomous or

group) agents to act on the domain and agents that act on the interaction. Domain

agents are similar to the group critic described above: they know about the domain

of the collaboration. The kitchen group critic knows about kitchens and stoves and

so on. A group critic on bridge building may know about material strength and

stress; a group critic on software development may know about coding and naming

conventions, or about proving a program correct in relation to its speci�cation, and

so on.

An interaction agent does not need to know about the domain of the collaboration

but knows about interaction/collaboration itself. These agents could play a role

similar to human facilitators in meetings. Such facilitators do not necessarily know

about the topic that will be discussed in the meeting but they understand meetings,

they know when the discussion is becoming too polarized, when an intermission is

appropriate, when there are people and views that could not be expressed because

of the dynamics of the meeting, and so on.

An interaction agent would analyze the state of the interaction and propose

activities for the participants. For example, given the number of alternatives to

answer an issue, an interaction agent may propose one of many voting procedures.

Or given the statistics of the messages being exchanged (mainly from a few

participants), the agent may propose a di�erent methodology for the discussion.

More ellaborate interaction agents may understand some aspects of the messages

being exchanged and help to categorize the group in terms of its group dynamics

[2].

10.9.4 Future Research on Keepers

Another area in which future development would be interesting are the speci�able

keepers. Keepers embed an ontology model that is usually �xed, and de�ned a priori

by the groupware designer. But it would be interesting if the users themselves could

de�ne or adapt the ontology of the keeper. In the same way that work
ow systems

are speci�able coordinators, there is a need for speci�able keepers.

In fact Lotus Notes [39], is a speci�able keeper. In a simplistic view, Lotus Notes

is a free form database; users (or the system administrators) can de�ne and provide

semantics (attach programs) for particular �elds of the documents and thus adapt

Lotus Notes to particular applications. However, it is not at all easy for naive users

to de�ne and adopt.

There is very little research on the languages and primitives appropriate to specify

or parameterize an ontology model.
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10.10 Exercises

1. [Level 2] CSCW and Groupware typically complement and help each other.

However, sometimes CSCW studies technological mismatch in which certain

groupware is inappropriate for certain work situations. Concoct a work situa-

tion, and a groupware technology in which this mismatch might occur. Explain

why you think that the groupware technology is inappropriate for your con-

cocted work situation.

2. [Level 2] De�ne the terms collaboration, cooperation, and coordination in a

way which you feel is clear and useful for the CSCW community. Justify your

de�nitions, and compare / contrast the three terms.

3. [Level 2] This chapter also introduced a time-space taxonomy. Criticize this

taxonomy. Should there be any further cells than the four which are presented?

Are there any further dimensions which should be added to the simple 2X2

matrix?

4. [Level 2] Two family of applications were not mentioned in the aspect section.

They are multi-user action games, such as DOOM and QUAKE [26], and

shared window [53]. Discuss if these systems fall overwhelmingly into one

aspect or another, of if they are multi-aspect systems, of if they show that

the aspect classi�cation is not complete because it does not capture what is

essential in these two softwares.

5. [Level 2] There are a fewWWW-based chat services available. In most of them,

the user �lls a form with her utterance and after submitting it, she receives

back a page with all recent interactions in the chat. Thus a user cannot \lurk"

at the chat, that is, listen to the other conversations without making herself a

contribution. But some chat pages allow for real-time chat, in the sense that

the page will change to re
ect the recent interactions even though the user has

not send her contribution. Which non standard WWW technology does these

pages use, and what is the network impact of using them.

6. [Level 2] Besides WWW-based chats there are many other examples of Group-

ware applications that use WWW as infrastructure. In particular INOTE [27]

is an image annotation system, and BSCS [9] is a central repository of arti-

facts. Discuss which of the problems mentioned in section 10.8.2 these systems

faced and how did they solve them.

7. [Level 2] There is a view that the collection of WWW pages available in the

Internet is a Groupware system. Discuss this view. If that is true, what are

the main aspects of this system? Describe the model underlying this of these

aspects? Is it an elaborate model or a trivial one?

8. [Level 3] In some places in this chapter we mentioned virtual reality. Inves-

tigate if there are groupware applications that use virtual reality as a way
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of interfacing with the user. Doesn't current technology VR has some of the

problems discussed in using WWW as the underlying infrastructure of group-

ware? Is VRML, for example, an appropriate technology for non-client-server

applications?

9. [Level 3] In engineering design there is a strong movement towards \Con-

current Engineering," which state that many specialists in areas such as as

marketing, manufacturing, cost, materials, maintenance, and so on, must take

part in the design of engineering artifacts. Investigate what groupware tools are

being used by concurrent engineering practitioners, specially what multi-user

support does CAD systems provide.

10. [Level 4] In the writing of this chapter, the authors did not use very elaborated

groupware. We divided the chapter into sections and for each section one of

us had the writing role, while the other had the reviewing and commenting

role. In the beginning we would take turns, once a section was written the

author would wait for the reviewers changes and comments before working

on that section again. By the end of the writing the interaction became more

intense and there times when an author would make changes in a section before

receiving the comments, and thus the comments and changes would be out-

of-date. We use e-mail to send the LATEX �le from one to the other, that is

we used a communicator as the means of our collaboration. Specify a keeper

that would be appropriate for the task and for our mode of working. Take

into consideration that each of us have di�erent preferences as to which text

editor to use, that Internet connection between us was slow and unreliable.

The keeper should be appropriate for both the turn-taking and the \closer-to-

deadline" working patterns.

11. [Level 4] Design a group spreadsheet in which the four aspects described in

this chapter are carefully taken into account and articulated. Create a design

speci�cation that includes description of spreadsheet operations, multi-user

features, group user interface, centralized versus distributed implementation,

access control, and concurrency control. Emphasis of your design should be

on the groupware aspects and features that allow a group to all use the

spreadsheet at the same time, and also at di�erent times. Do not spend much

e�ort on the single user features that are identical to those of single user

spreadsheets. State clearly any assumptions or extensions that you make; feel

free to suggest creative ideas and innovative designs.
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11 Distributed Models for

Decision Support

Jose Cuena and Sascha Ossowski

11.1 Introduction

The outside world is full of systems which are governed by complex laws of behavior.

Independently of whether these systems are made of unanimated entities, governed

by the laws of physics, organizations of humans with prede�ned arti�cial process

rules or a mixture of both, often there is a need to in
uence their dynamics

and to bias their evolution into a desired direction. The consequences of natural

disasters, such as 
oods, can be alleviated if the spill gates of dams are managed to

distribute the water volume in the watershed basin, keeping rivers and channels from

over
owing. In industrial plants the production processes need to be monitored and

adapted in order to ensure the quality of the �nal product, economic e�ciency and

security. Faults in chemical industries require actions that restore normal conditions

and prevent the formation of toxic clouds. Computer networks have to be managed

in order to maintain a certain quality of service to the users, which requires upper

bounds on message delays etc. In much the same way, companies are interested

in maintaining their business processes e�ective and robust. The 
ow of work in

an o�ce is to be kept smooth despite the illness of employees; material 
ow on

car assembly lines should not be disrupted by any kind of contingencies. Tra�c

domains comprise a mixture of natural and arti�cial laws of behavior: road tra�c


ows have to be in
uenced so as to avoid tra�c jams, to reduce travel times etc.

In air tra�c control, the primary concern is to in
uence the planes' routes so as to

avoid accidents. This list could be extended easily.

The above examples motivate that it is a major challenge|for both economic and

social reasons|to take the adequate control decisions to maximize the e�ciency

of the systems and to minimize the negative impact of faults. Sometimes one

single person, but usually a group of control personnel is in charge of taking such

decisions and is responsible for their e�ects. This implies to monitor continuously

the system to be managed and requires to take decisions respecting changes

in control variables, usually in real time. The increasing data volume and the

decreasing time horizon within which control decisions have to be taken, have

generated a need for computer applications that support the responsible persons
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in this task. These decision support systems (DSS) acquire data about the system

state either directly or through a (real-time) database, on top of which they device

an intelligent monitoring system that warns the control personnel of undesired

evolution and answers their questions concerning potential reasons, e�ects and

therapies. For instance, DSSs assist hydrology engineers to decide upon actions

on spill gates, chemical engineers to manage modi�cations on valves etc. and

network administrators on con�guring routers, leasing lines and identifying faulty

equipment; support to business managers is rendered by suggesting modi�cations

in the usual work process, e.g. by reassigning work tasks or by modifying the route

of some product through a jobshop; advice for tra�c engineers may consist in

suggesting which road tra�c signals should be set or which air corridors should be

assigned to certain 
ights.

This chapter is concerned with the principled construction of such DSSs. In

particular, it points out how distributed arti�cial intelligence (DAI) models and

architectures can be applied to the domain of Decision Support (DS). In addition,

some re
ections on the adequacy of DAI models for DS problems are presented: do

DAI models and multiagent architectures really produce an \added value" for DSSs;

or can everything that DAI systems contribute to the design and implementation

of DSS be achieved better and cheaper by carefully engineered systems which are

based on a conventional centralized approach?

Section 11.2 characterizes DS problems formally and informally and motivates

the potential role of multiagent DS architectures in this domain. Section 11.3

presents a model for distributed DSS and a simple but powerful architecture

for the agents that constitute it. The main body of this chapter is section 11.4,

where this multiagent architecture is applied to the domains of environmental

emergency management, energy management and tra�c management. For any

of these cases the characteristic domain features are highlighted �rst, then the

generic agent architecture is instantiated to the domain, and �nally the dynamics

of the distributed DSS is illustrated by \simulating" the agent interactions that an

example problem scenario generates. Section 11.5 summarizes the conclusions that

can be drawn from these case studies.

11.2 Decision Support Systems

This section provides a model of the DS problem and introduces the knowledge-

based approach to DSS design. Finally, the adequacy of a distributed approach to

DS, based on a multiagent architecture, is discussed.

11.2.1 The Decision Support Problem

DSSs render support to the personnel that is in charge of managing natural or

arti�cial systems, each governed by its particular physical and/or organizational

behavior laws. So, the \area of interest" of DSS designers spreads from Control
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Theory for industrial installations up to Computer Supported Cooperative Work

(CSCW) in organizations and groups. Given this diverse nature of the DS domains,

it does not surprise that the requirements for DS applications are as manifold as

there are complex systems to control. Still, the core of the problem faced by DSS

is captured by the following simple model:

A set of world states S

The relevant state of the world with respect to a DS problem is given by the

values of the state and control variables of the managed system.

A set of ideal states S+and/or a set of undesired states S�, where S+; S� � S

Ideal and undesired states determine con�gurations of values for state and

control variables that shall be achieved or are to be avoided respectively.

A notion of preference � on states

The notion of preference expresses \how close" one state is to another. It can

be expressed either in qualitative (e.g. a partial order) or in quantitative (e.g. a

metric) fashion.

A set � of control actions

Control actions can be performed on the system to be controlled which change

the values of certain control variables directly. State variables are modi�ed

indirectly during the evolution of the system as implied by its behavior laws.

In real-world DS applications ideal states are almost never fully achievable.

Instead, the objective of a DSS is to generate sets or sequences of control plans

� so as to transform the current world state s into a state s0 that is \as close as

possible" with respect to � to some ideal state s+
i
and \as far away as possible"

with respect to � from any undesired state s�
i
.

The above semi-formal model is useful to characterize the problem that DSSs

face in a less ambiguous way. Still, a whole bunch of quite di�erent domains could

be described by a similar formalism. This is because certain characteristic features

of DS problems cannot be expressed easily in a formal fashion:

Critical domains: some of the complex systems to be monitored are sensitive with

respect to failures: wrong management decisions may have disastrous economic

or environmental consequences.

Understandable results and explanations: the responsible persons must assume

the impact of the management actions that are taken on the system. They will

be more inclined to accept suggestions from a DSS that explains its proposals

using reasoning schemes and concepts that it is familiar with.

Heterogeneous information and knowledge sources: The data, that the system

needs to cope with, usually ranges from huge amounts of numeric data streams

arriving in real time from a variety of di�erent sensors, over visual information

from video cameras, to quite informal messages such as telephone calls: incom-

plete, erroneous or even contradictory data may arrive. In much the same way, a

DSS needs to integrate the di�erent and even partially contradictory knowledge

and reasoning methods, elicited from several di�erent experts.
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Environmental contingencies: DSSs are embedded in dynamic domains, whose

state changes due to events that cannot be anticipated. As a result, a DSS

continuously needs to monitor its predictions and plans in order to maintain

them in line with the current world state.

Although the degree of automation in the area is increasing, DSSs|as the

name indicates|rarely implement control actions, in the sense that they seldom

manipulate the world directly. Rather, they are expected to interact with the control

personnel which is �nally in charge of taking certain actions. Though a DSS needs to

generate warnings proactively, its main functionality is to assist in the development

of an adequate set of control actions and this is done on request of the control

personnel. In consequence, the functionality of DSSs is greatly determined by the

questions that can be put to a system and the kind of answers that they are able

to supply. Crucial questions in the area of DS include [15]:

What is happening?

The system needs to analyze a situation and \understand" it by identifying

advantageous and problematic aspects.

What may happen?

In many domains, there has to be an ability to reason about the evolution of the

systems if no intervention takes place, i.e. in case that no management actions

are performed. The main objective of this question is to foresee the decay of the

present circumstances into an undesirable future situation, in order to be given

the possibility to undertake appropriate counteractions. A variant of this type

of question is what may happen if... some decision scenarios are undertaken.

What should be done?

The �nal aim of a DSS is to answer the questions respecting which are the most

convenient actions to improve the results of system operation.

11.2.2 Knowledge-Based Decision Support

Keeping in mind the above peculiarities of DS, it becomes clear that the design

of such systems actually \calls for" a knowledge-based approach. Knowledge-based

systems model the expertise of the control engineers and explicitly represent it in

a declarative fashion. By this, the system is not just capable of generating under-

standable explanations, but it also allows the designer to incrementally improve

the expertise model, which has shown to be crucial in complex real world domains.

Simulating the control personnel's reasoning process, which has proved to work well

in the domain at hand, the system manages to cope with heterogeneous information

and knowledge sources and to react adequately to environmental contingencies.

Modern methodologies for the construction of large-scale knowledge systems sug-

gest that the expertise is organized in accordance with some structuring principle,

in order to facilitate knowledge acquisition and the maintenance of knowledge mod-
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Figure 11.1 An example of a task-methods-subtasks tree.

els on the basis of a \divide and conquer" strategy1. The task-oriented stance is

a way to express the result of such knowledge structuring. A task is an abstract

description of how the world (or the \mental model" that the intelligent system

maintains of it) needs to be transformed in order to achieve a desired behavior

or functionality. Obviously, the top-level task of a DSS is to manage a complex

system, answering any of the aforementioned questions that the control personnel

might pose to it. Problem solving methods are used to cope with the tasks. They

indicate how a task is achieved, by describing the di�erent steps by which its inputs

are transformed into its outputs. Simple tasks can be attained directly by means of

basic methods. They rely on a conceptual vocabulary (or \ontology"), which de�nes

the entities that the methods deal with, together with a knowledge base modeling

the declarative domain knowledge, that describes how these entities are related.

The method enactment uses these relations to solve elementary tasks. Still, the

complexity of the DS task requires compound problem-solving methods that decom-

pose the task into subtasks. These subtasks may again be decomposed by some

method etc., giving rise to a task-methods-substasks (TMST) tree, whose leaves

are given by basic methods. Figure 11.1 illustrates this approach, which is widely

accepted as a general knowledge structure description. [7] [5]

1. The resulting structural model is often called a knowledge-level model, based on the

idea of the knowledge level, as introduced by Newell [21]. A knowledge-level model of

intelligent behavior does not focus on how it is achieved, but rather on what knowledge a

system needs to be endowed with, so as to be able to reproduce that behavior, given that

the knowledge is applied in a \rational way". The actual represention of the model and

its \mechanization" through reasoning procedures is done at the symbol level.
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When modeling a knowledge-based DSS from a task-oriented stance, the following

set of tasks can usually be identi�ed:

The classi�cation task takes as an input all available data about the state of the

world and classi�es the situation with respect to its desirability (i.e. its distance

to S� resp. S+ with respect to �). Its output comprises the set of problematic

features of the current situation. For instance, a tra�c management system will

receive numerical data from road sensors, on the basis of which it may classify

situations as \
uid", \slight delays at junction x" or \medium congestion in area

�".

On the basis of the problematic features, the \symptoms" that indicate that

something is going wrong in the modelled system, the diagnosis task comes up

with an explanation that identi�es the causes of such undesirable behavior. For

instance, diagnosis might explain the \medium congestion in area �" by an

incident at the outlets of that area.

The prediction task evaluates how the state s of the modelled system will evolve

into a state s0 given certain values for the control variables. For instance, this

task might conclude that if no actions are taken, the congestion in area � will

become heavy, or that a change in the tra�c light cycles will lighten the problem.

The option generation task generates a set of plans (i.e. sequences of actions out

of �) that are considered to be adequate to overcome the problems identi�ed

previously. In the example, this will be the di�erent plans' tra�c guidance that

deviate tra�c from area �.

The action selection task decides which of the potential plans proposed previ-

ously will be the outcome of the management process.

A major research line in the knowledge-based systems community is concerned

with building up libraries of generic problem-solving methods (e.g. the European

KADS project [5]). Ideally, for any concise task description, the library should con-

tain methods to cope with it. So, the design process for a traditional \monolithic"

knowledge-based DSS can be sketched as follows: �rst, the fundamental tasks for

a speci�c domain are identi�ed; subsequently, adequate problem-solving methods

are selected; then, the knowledge types necessary for de�ning the functionality of

the basic methods are elicited; and �nally the knowledge is represented and the

reasoning procedures of the basic methods operationalized.

11.2.3 Distributed Decision Support Models

So far, the use of a knowledge-based approach to DS has been motivated and a

formalism to express the structure of the knowledge of the resulting DSSs has

been introduced. Still, it remains to be shown where this structure comes from.

In order to design complex DSSs there needs to be a decomposition criterion, that

determines the shape of the TMST tree. The traditional solution is a hierarchical

decomposition of the tasks via methods which require other tasks to be performed
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by other methods, etc. until a basic level is attained where the modules are simple

enough. This is a version of the traditional functional decomposition standard in

AI for many years.

When distributed models were considered, taking into account the low e�ciency

of the available hardware, this hierarchical organization was adapted in structures

specialized in di�erent tasks that may be computed in parallel. In some cases,

however, this functional organization may not be easily understandable, which

makes the process of knowledge modeling di�cult, because the analogy between the

agents' contents and the commonsense understanding of the expert is insu�cient.

The search for a good modular structure in the applications is traditional in

computer science. The �rst approach was a hierarchical functional decomposition

with the already commented drawbacks. In order to improve the integration of

di�erent functionalities in understandable and maintenable entities, the following

step towards modularization was the concept of object, where a collection of

functions sharing data structures were integrated in a module. Still, although the

organization in objects is an adequate organization for conventional software units,

in many cases it turned out not to be intuitive enough from the point of view of

knowledge models .

Multiagent Decision Support

Agent-based structuring introduces a more complex notion of modularity to com-

puter science. This idea has evolved from Hewitt's actors concept [19] to the modern

concept of agents which integrates a collection of functionalities, achieved by the

interplay of both knowledge about certain problem types and about the environ-

ment in which the agent operates. By this, the agent can react to the environment

situation and can interact with other agents to look for solution to its problems.

The notion of agents allows a design of modules that balance two aspects:

Level of specialty

it is possible to model a detailed functional decomposition by designing agents

that specialized in basic functions.

Level of autonomy

it is possible to integrate in an agent a signi�cant set of the functions required

for the whole application but limited in scope (for instance, in time if the agent

performs in speci�c periods or in space if the agent acts on a reduced spatial

environment).

In fact, the idea of agents represents the highest level in modularity that is used in

computer science so far. It gives rise to a new generation of application structures,

with a high degree of antropomorphy and, hence, understandability by the users.

Additionally, the fact that agents embody a collection of functions that may serve

in di�erent societies is a design principle supporting the potential reuse of these

advanced modules. Moreover, the generality of the agent concept allows to use

human principles for structuring organizations as design criteria: an agent is an
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entity specialized in playing a social role in an organization which is a new basis

for design provided by the social science area.

The experience with DSSs build so far prove that it is feasible to design the

local problem-solving capabilities of agents by means of TMST trees in a principled

fashion. Still, methods for modeling the interaction between agents, in order to

ensure an intelligent global response of the whole society for certain tasks, are still

maturing. This is the challenge of this type of models: to achieve intelligence by

means of an adequate level of coordination.

The Coordination Problem

As shown in Figure 11.2, to achieve intelligent coordination a special coordinator

agent can be designed, that is responsible for detecting interdependencies between

the local agents' activities at successive levels of abstraction. This approach is

contrasted by a decentralized stance, depicted in Figure 11.3, where no such special

agent exists and agents interact laterally: agents are endowed with the knowledge

to discover inconsistencies between their intended actions and interchange messages

to mutually adapt their local decisions, so as to converge on one or several sets of

consistent local control plans. The former coordination model leads to a hierarchical

integration of control plans as determined by the upper level functions, while in the

latter this integration emerges from agent interactions as implied by the agents'

social knowledge. From an abstract point of view both approaches seem feasible.

However, the �rst seems more reliable with respect to operation, while the second

appears more adequate from a design perspective.
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Once the knowledge to reason at the upper levels is elicited, the centralized

approach provides a model of predictable behavior where all possible cases of

inconsistencies are all analyzed a priori and are taken into account by the upper level

modules. However, the bottleneck of this type of models is precisely the knowledge

elicitation of the di�erent inconsistencies: in many cases it is di�cult to identify

the precise way in which methods and domain models need to be integrated in

order to solve a problem. In addition, once such a centralized model is built,

the maintenance process is complex because, if additional lower level models are

introduced, a sequence of changes has to be produced in the upper level models to

take into account the potential modi�cation of the situations produced by the new

element.

The decentralized approach promises systems that are easier to build, because

the model needs to be de�ned very accurately only at the local level, where it

is more feasible to elicitate the knowledge to solve the speci�c problems of each

agent. Normative coexistence knowledge for coordination may be de�ned in a more

abstract way. Once both elements are su�ciently tuned to cope with the problems,

the system may be maintained easily because the norms of coexistence are stable

and independent of the number of agents in society and, if a new agent is introduced

in the society, the only thing to be done is to include norms as a part of the external

world model for the agent. No problems of propagation to upper levels appear. The

problem of this decentralized approach is the quality of the intelligence of the whole

society of agents, as it is di�cult to identify the impact of normative knowledge in

the quality of the global task achievement.

11.3 An Agent Architecture for Distributed DSSs

This section outlines an architecture for distributed DSSs. In particular, it is

concerned with an \anatomy" of agents which, as in society, are capable of solving

DS problems. The architecture does not pay special attention to computational and

e�ciency considerations, but comprises just features that are necessary to describe

the di�erent case studies, that will be presented in section 11.4, from a unifying

view 2. In line with the recommendations concerning design structures for agent

architectures that are presented in chapter 1 of this book, the architecture is built

around three major components, which are summarized in Figure 11.4.

a perception subsystem allows the agent to be situated in the environment by

data acquisition and in the society by perceiving agent messages. It implements

the function see, described in chapter 1.

2. We assume that the reader is familiar with basic knowledge representation techniques

and reasoning methods from symbolic AI, such as rules used by forward and backward

chaining or frames used by pattern matching. An introduction to these issues is given in

[26] and [27] .



468 Distributed Models for Decision Support

Problem-solving Knowledge

Case Information

Perception 
Subsystem

Action 
Subsystem

Cognition 
Subsystem

task agenda
conversation 

agenda

basic 
methods

local 
choice 
rules

norms of 
coexistence

messages

perceptions

messages

actionslocal PS state

motivation compound 
methods

collective PS state

Strategic Knowledge

local social

problem-
soving

control

acquaintance
models

social 
methods

Intelligence
subsystem

Figure 11.4 Agent architecture for a DS agent.

an intelligence subsystem manages the di�erent aspects of information processing

as well as individual and social problem-solving. It implements functionality

similar to chapter 1's function next.

an action subsystem enacts the plans produced by the intelligence subsystem,

displaying messages to the control personnel, sending messages to other agents or

activating robotic e�ectors. In terms of chapter 1, it models the function action.

The subsequent description of the architecture focuses on the intelligence sub-

system. First, the knowledge requirements of the DS agent will be presented. Sub-

sequently, the structure of its information model is sketched, and �nally the control

model that makes the above components operational is described.

11.3.1 Information Model

The agents' dynamic beliefs about the world itself and the others are stored in

the information model. The perception subsystem writes data on it according to

perceptions and received messages, when the intelligence subsystem's knowledge is

enacted, the information model is modi�ed, while the action subsystem reads from

it. We can distinguish two types of information in this model:

Problem-solving information refers to inputs, outputs and intermediate results

of tasks. Depending on whether the information refers to tasks pursued by the
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agent itself or by members of the society, local problem-solving tasks information

and social problem-solving information can be distinguished.

The second important part of the model contains control information, specifying

in an agenda what is \intended" to be done. Respecting the agent itself there

is a task agenda that keeps track of the tasks that are to be achieved locally.

The conversation agenda keeps track of the \conversations" (see below) that the

agent participates in, i.e. the social method in which it is involved somehow.

11.3.2 Knowledge Model

Agent knowledge can be classi�ed from two perspectives. On the one hand, problem-

solving knowledge, which is used to determine which actions to take, is distinguished

from strategic knowledge that helps to choose among di�erent options (the tasks

or conversations, see below) that the intelligence subsystem is to process next.

This knowledge may also be classi�ed according to its role: there is individual

agent knowledge, modeling the capacity of an agent to propose decisions and

social knowledge, modeling the interaction knowledge framework representing the

regulation of the society of agents.

For the DS problem, the individual knowledge comprises the following areas of

knowledge:

Motivation knowledge. It will be described by a collection of patterns modeling

di�erent classes of events considered by the agent as relevant in the external

world. They are formulated by a collection of frames where the slots are classes

of values of the information variables provided by the perception subsystem.

When the perceptions have modi�ed the information model in a way that some

motivation frame can be matched against it, then this frame is activated. It

represents an undesirable scenario in the world from the point of view of the

agent. The di�erence between this undesirable situation and some no problem

scenario, de�nes the task that the agent creates.

Local problem-solving knowledge. The agent is endowed with the knowledge

necessary to enact problem-solving methods so as to achieve tasks. This will

be organized in the following form:

Basic methods perform elementary functions which are implemented either by

speci�c algorithms or in terms of some knowledge representation and reason-

ing formalism as rules, frames or constraints. In addition, conceptual vocab-

ularies model the entities that are manipulated by basic methods. A domain

ontology, which comprises the di�erent conceptual vocabularies together with

the declarative relations between concepts, supports the inference operation

of the di�erent simple and composed methods.

Compound methods describe how a task is coped with by solving its subtasks.

Thus, they establish a task-methods relations which, for each problem to be

solved, gives rise to a TMST tree of the type shown in Figure 11.1. Compound
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methods can be represented as rules, where the antecedent represents some

intermediate state of task execution (e.g. the result of a previously executed

subtask) and the consequent a sequence of subtasks to be executed in conse-

quence, and relations that establish how the inputs and outputs of subtasks

are related. As an alternative, this procedure might just be hard-coded in a

simple algorithm.

Local Strategic knowledge. This type of knowledge has as main goal to guide

the process of generation of the TMST tree by selecting at every level and for

every task the adequate method to be used for its performance. Then, it will

be organized by a priority list of methods for the di�erent types of tasks. The

method of reasoning will recommend at a given level of the TMST tree to select

the adequate options to continue tree formation.

Social knowledge comprises all expertise respecting the interaction between

agents. Its components are:

Acquaintance models. Knowledge about other agents is stored in these models,

which can be supported by a frame base. Each frame comprises what is known

about others in a collection of slots. Most important, such slots will represent

features of every method known of a given agent (every agent models its

acquaintances by its problem-solving capacity, i.e. in terms of characteristics

such as levels of inference of the methods, the classes of subtasks that require to

be supported, the kind of domain models supporting the basic methods, etc.).

By application of a pattern matching method it can be deduced whether and

up to which degree some acquaintance provides some desired characteristics.

For instance, some task can be matched against the method slots of some

acquaintance's frame, in order to evaluate its adequacy to perform that task.

Social methods. These methods constitute the social problem-solving knowledge

of the agent. As in the case of compound individual methods, a social method

copes with a task by solving its subtasks (which will usually be handled by

di�erent agents). Still, social methods just specify at a very high level how

these subtasks are to be integrated. Essentially, they con�gure an interaction

protocol, which determines a set of meaningful conversations between agents

[31]. A simple way of specifying such conversations is by means of a �nite state

automaton, whose nodes determine conversation states (in which some agents

are supposed to perform tasks) and whose transitions are labelled with messages.

Still, usually more 
exible and more powerful techniques are used [25] [4].

Social methods usually need to specify which agent has to solve a certain subtask,

when and to whom to send task-related information and how to integrate the

outcomes of tasks. So, social methods usually comprise three \meta tasks":

Task assignment. Through the individual selection of an agent, when several

of them may be available to perform the same task. This may be done in

di�erent ways: by direct order, when one agent is endowed with acquaintance

knowledge to choose the most suitable agent; by a \contract net," where
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one agent asks all potential executors of a task for their adequacy and then

grants the task to the best agent etc. In the remaining part of this chapter,

it is assumed that tasks are assigned directly.

Task synchronization. Once tasks are assigned, the 
ow of information be-

tween them needs to be con�gured and constraints on their execution posed.

For instance, it needs to be speci�ed what information needs to be present in

order to initiate a tasks, and to which other tasks the result of one task are

to be sent.

Solution integration. Contrary to compound methods, whose subtasks have

been de�ned in a way that their solutions neatly �t together and make up a

solution for the task, the results of subtasks of a social method often need to

be adapted to each other in order to constitute a consistent whole. As this

adaptation usually leads to di�erent alternatives, some choice mechanism

needs to be present. Again this can be done in di�erent ways: one agent can

impose its preference in a dictatorial fashion, or a process of group decision

making can be initiated (e.g. voting or negotiation).

Social strategic knowledge. If there are several conversations in course, this

knowledge determines the next one to work on. Again, this type of knowledge

has as main goal to guide the process of generation of the TMST tree that, when

several agents are involved, integrates methods of di�erent agents integrated as

a result of the conversation among agents.

11.3.3 Control Model

The mode of operation of the agent model is given by a simple reasoning cycle. It

contains the following steps:

1. the perception subsystem captures percepts and messages from other agents,

and updates the information model accordingly;

2. the conversation agenda is updated and reordered in accordance with the social

strategic knowledge. As a result of the selection of some conversation, new tasks

are added to the task agenda;

3. the motivation is matched against the information model and eventually more

new tasks are created on the task agenda;

4. Using the local strategic knowledge the task agenda is reordered and some

tasks are chosen for execution;

5. for every task two approaches are to be followed:

(a) the local problem-solving approach where, using the knowledge about

relation between tasks and methods, a method is chosen for execution.

Usually, basic methods are preferred to compound methods, and the latter

are given priority over social methods;
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(b) the delegation approach, if in the previous process no method is available

in the internal problem-solving knowledge to cope with a task. In this case,

the agent consults its acquaintance models and identi�es a collection of

agents that may perform the required tasks. The agent then assigns the

task to the most adequate agent;

6. the action subsystem performs actions and sends messages as indicated by the

intelligence subsystem in the information model.

This pattern of operation will be simulated and illustrated in the following

examples.

11.4 Application Case Studies

The objective of this section is to illustrate the possibilities of the distributed ap-

proach for DSS design. Three examples of distributed DS in the domains of environ-

mental emergency management, energy management and tra�c management are

provided, instantiating the previously described agent architecture to the particular

domain and illustrating the modes of operation of the resulting multiagent DSS.

You might see the agent and interaction model as the result of some multiagent

design methodology, as discussed in chapter 9 of this book. This chapter also gives

an overview of the architecture and operation of other industrial DAI applications.

The examples to be presented in the sequel go back to real-world designs and

systems: they try to capture the \spirit" of the applications that they are based on.

The reader be warned, however, that the presented models and modes of operation

need not be identical with the original systems, due to lack of published information

on the one hand and for educational purposes on the other.

11.4.1 Environmental Emergency Management

The Problem

Environmental emergency management is concerned with events that alter the usual

mode of operation of an installation, having a negative impact on its environment.

Often, even human and material damages and losses may be produced. Examples

of such events are forest �res, river 
oods or gas dispersions from chemical plants.

The current state of sensor and communication technology allows for a dramatic

change in the mode of management of these catastrophic events. Today it is possible

to get on-line information about the wind state, temperatures and smoke in a forest

data grid for �re control purposes, or to obtain directly data respecting rainfall and

water levels in a watershed where 
oods may happen. On this basis, a decision-

maker can evaluate the current situation (what is happening?) as well as its short

term evolution (what may happen if... ?) within di�erent scenarios, and elaborate

potential action plans to apply (what to do?), so that an adequate real-time risk
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management is performed. So, in summary, the emergency management problem

consists in generating an \understanding" of a potentially problematic situation

and in elaborating consistent action proposals in time, so as to avoid damages when

this is possible and to reduce their e�ects when no control action is applicable to

eliminate them.

The nature of the problem comprises centralized aspects (the services to support

large areas are usually located in a central place) and distributed aspects (the

impacts of problems are spatially distributed, as in the case of 
oods).

Advanced systems can greatly improve the e�ciency of environmental emergency

management. In [10] the application of AI models to 
ood management is proposed,

which have been developed along the sixties [1] [11]. Current advances in knowledge

modeling promise to improve these techniques, as they support a better structuring.

The European Union has promoted this line of applications in several projects such

as ARTEMIS [17] in the area of Telematics for Environment, which is concerned

with the management of heavy gas dispersions and river 
oods. In [2] a cooperation

architecture for chemical plant emergencies is proposed.

A simple architecture is proposed in the following paragraph taking into account

both features.

The Agent Architecture

Setting out from this problem description, the following types of agents can be

identi�ed:

The Local Emergency Management Agent (LEMA), responsible for understand-

ing the problem situation in a prede�ned area, and for proposing local decisions

respecting initial management plans on this basis.

The Dam Management Agent (DMA), responsible for taking decisions about

dam control, on the basis of the needs of other agents as well as the situation of

the dam and its water resources.

The Fire Brigade Management Agent (FBMA), responsible for population evac-

uation as well as for the provision of manpower and other resources for protection

works.

Transport and Ambulance Management Agent (TAMA), responsible for the

viability in the road transport network and ambulance resources management.

In line with these concepts an intelligent system for emergency management

is designed by de�ning an instance of the Local Emergency Management Agent

for every area where damages may be done to the population and the surrounding

region where 
oods may impact. Furthermore, there is one agent of each of the above

types, i.e. one Dam Management Agent, one Fire Brigade Management Agent and

one Transport and Ambulance Management Agent (i.e. if there are nine endangered

areas, a model of 12 agents is required).
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Figure 11.5 Summary of agent interactions in emergency management.

The society con�guration is a simple one (summarized in Figure 11.5): every

LEMA maintains two-way communications with any of the FBMA, TAMA and

DMA agents. In general, no communication is designed between the latter three

agents.

According with these design criteria the strategic knowledge will be based on:

Local choice rules at the LEMA where the tasks to be provided by every general

agent will be de�ned (given the degree of specialization of the general agents

this knowledge will be expressed by statements of assignment of tasks to general

agents).

Local choice rules at the level of general agents where the preferences between

the di�erent LEMAs are established for sending messages according with general

considerations of the agents and types of messages to be communicated.

Norms of coexistence establish the preferences of some agents for task perfor-

mance. In this case, given the specialty of every agent by function and by loca-

tion, there are no doubts respecting which agent will perform a task.

The social methods in this case are also general enough:

Task assignment, will be based on the specialty of every agent de�ned by the

corresponding rule set.
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Task synchronization and solution integration. As will be commented later the

general agents perform a task of activity integration constrained by the limitation

of resources of the corresponding agent. A dialogue will be established between

the LEMAs and the general agents where some proposed tasks by the LEMAs

may be proposed to modify (see Figure 11.5).

In the following paragraphs the internal knowledge structure for every type of

agent will be commented. Finally, an example of LEMA agent reasoning integrated

in the society may serve to clarify the proposed speci�cations outline.

Every agent will receive total or partial information from the environment and

from the society of agents. In the following paragraphs some features of information

and knowledge operating in every agent will be described:

Local Emergency Management Agent (LEMA):

The information received by the agent about the situation is the state of a

collection of variables of rainfall and water levels that may in
uence the area

controlled by the agent.

The motivation knowledge is used to detect if a current situation is problem-

atic for the area. This knowledge may be described by a domain model of

frames of situations describing patterns of potential damages together with a

pattern matching method to infer the potentially activated problem frames

for a given situation.

The local problem solving knowledge will propose local action plans to solve

the detected problems:

� Diagnosis knowledge. Once a subset of frames is activated by a given

situation, the knowledge of diagnosis is based on a method of simulation

and a rule base proposing potential causes in such a way that a procedure of

generate and test supported by the simulator is applicable until a collection

of explanatory factors is identi�ed as likely enough.

� Repair knowledge. Once a collection of causes has been identi�ed this area

of knowledge de�nes plans of actions. The objective is to eliminate the

causes or, if this cannot be achieved entirely on the basis of local actions,

to alleviate the e�ects through protection actions such as building 
ood

walls or evacuating people.

The domain model will be described by a library of plans together with a

rule base for plan selection and a method of progressive plan re�nement

such as proposed by [6]. The kind of basic actions to be included in the

plan are protection works to retain the water or transport actions using some

available resources such as vans and ambulances to send people to hospital. To

perform a transport action of this type requires an answer from the transport

and ambulance agent about the accessibility between the desired origin and

destination.
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Social knowledge. This knowledge has to be built based on the unsolved task

resulting from the planning phase in the problem solving knowledge. In fact,

when the agent tries to look for a solution using its own knowledge, it tries

to build a task method tree to act on the causes of problems. Still, when

this is not feasible there will be unsolved task nodes, so there is a need the

help of other specialized agents such as the dam control agent, the transport

ambulance or �re brigade. To cope with this type of problems a domain model

will describe for every unsolved task which messages will be sent to these three

types of agents. For instance, if there is a problem of evacuation that cannot

be solved by the local resources transport, there will be a message to the �re

brigade establishing the conditions of the task to be performed.

In this case the knowledge will be very simple because the only task to be

performed is the preference attribution to the possible agent of the same task.

The Fire Brigade Management Agent and Transport and Ambulance Manage-

ment Agent. Both agents have a similar structure so the general description of

their contents will be the following:

Information:

� Receives data about the state of its resources in terms of machinery vehicles

and manpower.

� Receives from the LEMA demands on manpower or transport according

with the resulting needs in the local analysis.

Knowledge:

� Motivation knowledge. After the reception of the environment situation

and the other agent demands it may happen that a major complex event

is inferred (if many demands come from one area it may be inferred that

some catastrophe is happening). Accordingly, domain knowledge de�ning

this type of global events may be included.It will be used by a method of

pattern matching to detect its occurrence in a given situation.

� Problem solving knowledge. The domain model will be described by a

constraint set representing the condition of resource application for every

local task (or for the more global task inferred as major event). The

reasoning method will infer possible answers to the questions compatible

with the constraint base. After this �rst step of reasoning it may happen

that no feasible solution exists capable of giving a compatible answer to

the current demand of the di�erent agents. In these cases, the reasoning

method will be able to propose alternative options by introducing adequate

delays. To decide these delays the knowledge about control and social

knowledge will be applied to reformulate the constraint base until some

solutions are found (i.e. it may happen that the model answers in terms

of no provision of a task now but is positive for the same task after some

prede�ned delay). The type of constraint modi�cation will be the object



11.4 Application Case Studies 477

of the conversation with the corresponding LEMA agents in a loop that

will end up in an acceptable and feasible solution.

� Social knowledge. This knowledge will model the preferences between the

LEMA agents' demands to perform the delay generation described before.

� Control knowledge. This knowledge will select options to guide the process

of constraint reformulation.

The Dam Management Agent:

Information. Receives data about the state in the dam system of the water

levels and spill 
ows in every dam. Receives from LEMA limitations of the

out
ows from dams proposed by the LEMA according with its 
ooding

problems.

Knowledge.

� Motivation knowledge. As with the other agents, it may happen that some

major event such as a dam break or a local 
ood must be detected, so

a collection of frames with the corresponding pattern matching methods

will be designed modeling this type of events.

� Problem solving knowledge. The main task to be performed by this agent

is to decide the out
ows from every dam including the case of spill null.

The way of performing this task will be similar at the previous agent

by de�ning a domain model using constraint and rules representing the

exploitation conditions of the dam system in such a way that if there

is a solution according with the demands of the di�erent agents the

reasoning method will produce it or if there is not a solution guided by the

control knowledge or social knowledge there will be a process of constraint

relaxation introducing modi�cations in the demands of the LEMAagents

according with their category until a solution is met.

Example of Operation

Figure 11.6 summarizes the mode of operation of a LEMA agent. As commented

before, this agent is primarily concerned with management tasks for its area: (1)

what is happening, (2) why it happens and (3) what to do.

The what is happening task may be performed by the event detection method

of the agent supported by the domain model of a collection of prede�ned event

patterns. The explanation of the detected events is also obtained using the internal

knowledge of the agent based on a generate and test method supported by a

production rule base and a simulator. The what to do task is to be performed

by a more complex method using social and individual resources. Two options for

action are considered:

The damage suppression option where it is possible by applying actions from the

agent and the society to eliminate the causes of damage. The �gure shows the

option of the LEMA problem solving method and the option to call DMA to help
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Figure 11.6 The LEMA general reasoning method.

by providing dam control actions. Two results are possible: (1) the DMA actions

are su�cient to suppress damage; in this case the process is �nished, (2) the DMA

cannot attend totally the needs of the LEMA and proposes actions which solve

the problem partially. In this case a conversation between both agents is started

as commented previously in the DMA description, where several proposals are

interchanged in terms of constraint size and delay until a balanced situation is

obtained according with the LEMA social method.

The damage limitation option where an estimate of damages and the needs

to support its e�ects is provided by LEMA to the FBMA and TAMA agents.

As in the previous case a dialogue is established depending on the available

resources in FBMA and TAMA together with the norms of coexistence with

LEMA (both agents propose reduced answers in time and size and the LEMA

proposes alternative options).

In Figure 11.6 the conversation e�ect has been represented by loops of arrows

derived from the LEMA synthesis task execution by using the conversation social

method.

In this section, a simple model of agent interaction has been considered for

illustration purposes. In the following case studies more complex interactions will

be considered.
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11.4.2 Energy Management

Energy management aims to assure a permanent and high quality supply of

electrical energy. It is a crucial factor for the maintenance and success of modern

economies.

Electricity is generated at power plants, as the result of the transformation of

(thermal, nuclear, solar etc.) raw energy. For a variety technical, economical and

political reasons, power plants have grown in size and generation capacity, so that

the �nal electricity consumption takes place rather far away from the place of its

production. In consequence, in nowadays electricity infrastructure, producer and

consumers may be separated by several thousands of kilometers, so there is a need

for an electricity network that connects the end users to the generation sites. Two

types of such networks may be distinguished:

Electricity transport networks

Transport networks cover wide areas and assure that all regions of a country are

connected to electricity supply. These networks are run at high-voltage (132 kV

or more) in order to minimize losses during transportation. At transmission

substations di�erent high-voltage lines may be joined and electricity is fed

from the transport network to the regional low voltage electricity distribution

networks.

Electricity distribution networks

Distribution networks cover a much smaller geographical area than the transport

network, but are more dense, as it needs to deliver electricity to all customers.

They are usually run at lower voltage levels for security reasons and to reduce

installation costs (lower voltages allows for \thinner" lines and thus save copper).

Furthermore, as di�erent classes of customers need di�erent voltage levels, the

network comprises a series of transformers that sustain a variety of di�erent

voltages on the net. For instance, in the UK large industries are connected to 33

kV lines, commercials and smaller industries are fed by 11 kV, while domestic

customers are connected to a 240 V part [30].

Generation, transportation and distribution of electrical energy to industrial and

domestic customers needs must be saved from damages due to equipment damage

due to wind icing, lightning and other disasters, which are unpredictable and thus

have to be coped with in real-time when they occur, there are quite frequent factors

that might unbalance the network state and which allow for an extenuation of their

e�ects well in advance [30]: 
uctuations of temperature may cause changes of load;

the overall demand changes according to the time of the day and of the week, to the

season and the weather; maintenance work requires to check, exchange and install

equipment safely etc.

Some of the above circumstances just a�ect the quality of supply (voltage peaks

etc.), but others may imply real emergency situations, where problematic areas

need to be isolated from the rest of the net as soon as possible: short circuits, for

instance, may produce a chain reaction: an overload in a certain line increases the
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load in neighboring lines, giving rise to a new overload situation etc.; the situation

deteriorates even more if power stations become disconnected, as this will cause

an imbalance in the network's power. Still, it also has to be assured that the

corresponding black-out area is minimal, that is, that as few customers as possible

are a�ected by the incident.

Electricity networks are usually managed from a control room. High voltage

distribution networks are usually telemetered so that the control engineers are

provided with on-line information. They are endowed with protection equipment

that can be operated remotely from the control room. In low voltage networks, this

is often too expensive. So, information respecting deviant network states is usually

obtained by observations from a �eld engineer and by telephone call of customers,

reporting loss of supply. Work on the network is also performed \manually" by

the �eld engineer. Distributed DSSs have been developed for both high-voltage and

low-voltage networks [9].

The Problem: Fault Management in Electricity Transport Networks

This section is concerned with an almost fully telecontroled high-voltage electricity

transport network. The model of such a network, that will be developed in the

sequel, sets out from a set of substations. Each such substation hosts one or several

busbars. Two busbars can be connected either by a switch or by a conductor line.

For security reasons, in the latter case both edges of the line are to be connected to

circuit breakers, that interrupt electricity 
ow on the line when opened. Breakers

usually come with a protection (relay), which automatically opens the breaker in

case of a short circuit. Such a distribution of breakers makes it possible to disconnect

every single line or busbar from the rest of the network and, in theory, this isolation

is done automatically through the protections. The �ring of breakers and protections

causes alarm messages to be sent to a control room. From there, control engineers

have the possibility to control the state of breakers remotely.

Figure 11.7 shows a transport network modelled in these terms. It actually

represents a part of the high voltage distribution network of the Iberdrola company,

which supplies large regions of northern and central Spain with electricity. This

network with a generation capacity of 16.715 MW and a maximum demand of

10.000 MW is managed from the control room, located in Bilbao in the Basque

Country. The transport network comprises three voltage levels and amounts to 401

busbars, 296 lines, 294 transformers, 939 breakers and 2322 switches. [20]

Emergency situations in this network are usually caused by a short circuit in

a line or busbar, which is coped with immediately by isolating the a�ected area

as soon as possible. The e�ects of such an incident can become worse in case

of equipment malfunctioning: if a breaker fails to open, the a�ected area out of

service is much bigger. The �nal objective of fault management is to restore supply

for a maximum number of customers as fast as possible. As there are di�erent

\routes" along which electricity may be delivered, according to current network

topology (which is determined by the state of breakers and switches), this is done
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Figure 11.7 A snapshot of a high-voltage transport network in the Basque Coun-

try (adapted from [3]).

by establishing alternative routes (by operating breakers and switches) that skip

the faulty devices. More speci�cally, the tasks comprise:

to identify malfunctioning in switches and protective relays;

to generate a fault diagnosis that explains all received alarm messages;

to generate an e�cient and safe switching plan, i.e. to restore supply for a

maximum number of customers under the condition that the network is always

in a consistent state (in all intermediate states the load on equipment is within

acceptable ranges etc.).

The available information sources for this enterprise are also twofold. While

snapshots provide a comprehensive picture of the current state of all components in

the network, the alarm messages indicate how the state of the components changes

over time, i.e. they describe the network's transition from one state to another. The

former can be produced quickly, whereas it may take minutes until the latter arrive

at the control room.

The Multiagent Architecture

In the frame of the ARCHON project [20] the distributed power transportation

DSS has been built for parts of electricity distribution network as described above.

The preexisting management infrastructure of Iberdrola had a crucial in
uence in
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the �nal shape of the multiagent system that has been developed. The assumptions

made in this section are similar to those encountered by the ARCHON project.

There are essentially two design constraints [20]:

The supplier company was using stand-alone DS tools to ease the workload of

the control engineers. The functionality of DS should be augmented on the basis

of these preexisting systems, but without modifying them, as they have evolved

to work e�ciently and reliably in the Iberdrola network. Instead, preexisting

applications should interact with new functionality in the frame of a distribution

intelligent system.

the current con�guration of the data transmission network had to be maintained.

In particular, this con�guration assigns a low priority to messages containing

temporal information, giving rise to two di�erent classes of alarm messages:

Non-chronological alarm messages (NAM) contain abstracted information

about the state changes in the network and are timestamped at the time of

arrival at the control center. Thus, NAMs arrive at the control center rather

fast, but important information respecting the sequence of events is lost.

By contrast, chronological alarm messages (CAM) receive their timestamp

at the substations. So, they contain precise chronological information at the

cost of a greater delay in their availability at the control center and a higher

error probability due to synchronization problems between the substations'

clocks.

The design of an agent society for the electricity transport network management

DSS sets out from the de�nition of the constituting agents. In the sequel, the six

agents that have been identi�ed will be described, but with simpli�ed knowledge

and services for illustrative purposes.

The preexisting applications have been \wrapped" into two agents:

Alarm Analysis Agent (AAA)

On the basis of NAMs, the AAA detects the occurrence of a disturbance, deter-

mines the type of fault and establishes hypotheses respecting the malfunctioning

equipment. The AAA to provides the following basic methods:

on the basis of the NAMs the basic method simple classify of the AAA detects

new disturbances and classi�es them into categories such as short circuit,

overload etc. The conceptual vocabulary on which this process is based will

minimally contain a list of possible NAMs as well as of classes of situations

(e.g. short circuit, overload and manoeuvre). The knowledge can be given in

terms of rules that directly associate sets of NAMs with these classes.

cover NAMs takes NAMs and their classi�cation in order to output a set of

hypotheses about faults that \explain" them. As conceptual vocabulary the

domain's NAMs, network elements and fault types need to be given. A rule

base uses these concepts for a shallow hypothesis generation.
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The only compound method is cover and di�erentiate by NAMs. It speci�es that

�rst a fault hypothesis needs to be generated that explains all symptoms. Then,

the determine BOA subtask is set up, that determines what would have been the

detected symptoms if the hypothesis were true. The fault hypothesis is re�ned

until real and simulated symptoms are consistent.

Control System Interface (CSI)

The CSI constitutes the application's front end to the control system computers.

Besides serving as an interface to the conventional management system applica-

tion programs, its main objective is to acquire and distribute network data to

other agents. It o�ers two basic methods:

acquire data detects, preprocesses and formats NAMs and CAMs for their

future use within the system; this is done by a fast hard-wired formatting

algorithm.

simulate e�ects calculates the power distribution in the system given a cer-

tain state of devices (breakers etc.). For this, a numerical simulator applies

knowledge about the physics of load distribution in electrical installations

to the distribution network which is described on the basis of a conceptual

vocabulary de�ning the network lines, busbars, breakers and their character-

istics.

The compound method classify situation speci�es that in order to cope with

the disturbance detection task, it is necessary �rst to perform alarm detection

and then to do alarm classi�cation. In addition, it o�ers the social method

coordinate classi�cation, which determines where the results of the CAM and

NAM classi�cations should be sent to, and that no integration of the di�erent

classi�cations is necessary.

The CSI's motivation detects situations in which logical coherent sequences of

alarm messages have arrived (probably all messages that have been caused by

one network event). In this case, it sets up a disturbance detection task.

In addition to the above preexisting applications, four new agents have been

developed to cover all tasks that the system speci�cation requires.

Blackout Area Identi�er (BAI)

The BAI uses NAM in order to identify which network elements are initially

out of service. It o�ers just one basic method: determine BOA. Given a network

state and faults, a rule base that constitutes a causal model of the network deter-

mines what the results of such a scenario would be. The conceptual vocabulary

necessary for this will minimally contain a list of faults and alarms.

Breakers and Relays Supervisor (BRS)

The BRS is a new alarm analysis expert system that works on the basis of CAMs.

It detects the occurrence of a disturbance, determines the type of fault and

establishes hypotheses respecting the malfunctioning equipment. The following

basic methods are provided:
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on the basis of CAMs the basic method simply classify of the BRS detects new

disturbances and classi�es them into categories such as short circuit, overload,

manoeuvre etc. As in the case of the AAA, the conceptual vocabulary on

which this process is based will minimally contain a list of possible CAMs as

well as of classes of situations. The declarative domain model can be given in

terms of rules that directly associate sets of CAMs with these classes.

cover CAMs takes CAMs and their classi�cation uses a rule base in order to

provide a shallow fault hypothesis that explains all received CAMs.

The only compound methods is cover and di�erentiate by CAMs, which speci�es

that �rst a fault hypothesis needs to be generated that explains all symptoms and

then it is simulated which symptoms would have been produced if the hypothesis

were true. The fault hypothesis is re�ned until real and simulated symptoms are

consistent.

Service Restauration Agent (SRA)

The objective of the SRA is the elaboration of a safe service restauration plan

after a blackout has taken place. On the basis a snapshot of the current network

state and information about malfunctioning equipment, it o�ers the following

basic methods:

propose switching plan devises an initial service restauration plan given the

alarm messages and the results of the diagnosis process. On the basis of net-

work model as described by the conceptual vocabulary, heuristic knowledge

is used to construct a sequence of operations that �nally make up a switching

plan.

modify switching plan uses rules that, depending on plan critique, indicate

how a certain plan is to be modi�ed. Again, this is done on the basis of a

vocabulary that expresses the network model.

User Interface Agent (UIA)

The UIA serves as an interface between the users of the multiagent system and

the agent society for presenting data (e.g. to browse through the list of alarm

messages), the result of the di�erent tasks that are resolved within the system

(e.g. to display the results of diagnosis together with an explanation) and the

e�ect of control actions (e.g. the simulated e�ect of the enactment of a certain

service restauration plan). In addition, the UIA provides compound methods

propose and revise for service restauration, by means of which the user controls

how long the cycle of proposal generation, critique and revision should be run.

In addition, the social method coordinate diagnosis sets up guidelines for the

coordination of the diagnose by CAM and diagnose by NAM tasks.

The motivation of the UIA speci�es that no disturbance classi�ed as \short

circuit" should be kept untreated and generates a diagnosis task in consequence.

In much the same way, it requires that a diagnose fault should be overcome, so

that a service restauration task is set up.
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Agent Simple Methods Compound Methods Social Methods

CSI acquire data classify situation coordinate classi�cation

simulate e�ects

BRS classify CAMs cover & di�erentiate

cover CAMs

AAA classify NAMs cover & di�erentiate

cover NAMs

BAI determine BOA

SRA propose switching plan

revise switching plan

UIA propose & revise coordinate diagnosis

Table 11.1 Overview of Methods for Energy Management

The methods of the agents are summarized in table 11.1. For the purpose of

this example, it is assumed that each agent is endowed with a model of any other

acquaintance (although this is not necessary for the model to work well). So, in

each agent this model comprises six frames, that contain the methods shown in

table 11.1. Besides the method type (simple, compound or social), the acquaintance

model contains information about the competence with which the method can be

applied. For instance, the cover and di�erentiate method of the BRS can diagnose

breaker, busbar and clock faults, while the AAA's cover and di�erentiate method

is just competent to diagnose breaker and busbar failures. Control knowledge is not

speci�ed in this example, as the characteristics of tasks and agents imply a certain

determinism in the problem-solving process.

An Example Operation

Consider the situation shown in Figure 11.7. The following CAMs and NAMs have

occurred.
10:10:10 BRK OYA 1 10:10:09.34 PRT ADU 1

10:10:10 PRT OYA 1 10:10:09.36 BRK ADU 1

10:10:10 BRK ADU 1 10:10:09.41 PRT ORM 1

10:10:10 PRT ADU 1 10:10:09.43 BRK ORM 1

10:10:10 BRK ORM 1 10:10:09.43 PRT HER 7

10:10:10 PRT ORM 1 10:10:09.45 BRK HER 7

10:10:10 BRK ARK 3 10:10:09.46 PRT OYA 1

10:10:10 PRT ARK 3 10:10:09.46 BRK OYA 1

10:10:10 BRK HER 7 10:10:09.49 PRT ARK 3

10:10:10 PRT HER 7 10:10:09.51 BRK ARK 3

10:10:12 BRK ABA 3 10:10:09.54 PRT SSE 1

10:10:12 PRT ABA 3 10:10:09.56 BRK SSE 1

10:10:12 BRK SSE 1 10:10:10.04 PRT ABA 3

10:10:12 PRT SSE 1 10:10:10.07 BRK ABA 3
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Figure 11.8 Task structure generated by the society of energy management

agents.

Figure 11.8 shows the TMST tree that is generated when these alarms arrive

at the CSI. In the sequel, we illustrate how this tree is constructed following the

general control method.

The CSI's motivation frames match the representation of these messages in the

information model, and a disturbance detection task is generated and put on the

agenda. The agent notices that it is endowed with the classify situation method,

and puts the resulting subtasks on its agenda. In a next cycle, it notices that

the alarm detection task can be coped with by the basic method acquire data,

which formats alarm messages. The resulting alarm strings are passed upwards,

until the classify situation method speci�es that they serve as input to the alarm

classi�cation task. The alarm classi�cation task is coped with by the social method

coordinate classi�cation of the CSI. It requires direct task assignment and, according

to the agent's capabilities contained in the acquaintance models, messages are sent

to BRS and AAA, assigning the tasks classi�cation by CAM to the former and

classi�cation by NAM to the latter. Once any of these tasks have �nished, the

results of the classi�cation of alarm messages are passed upwards to the classify

situation task. A message with the resulting classi�cation (a short circuit occurred)

is sent to the UIA.
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As a result, the UIA's information model is modi�ed in such a way that it matches

a motivation frame. So, a diagnose task is activated and put on the UIA's agenda.

The agent copes with it by activating the social coordinate diagnosis method,

which directly assigns the tasks diagnose by CAM and diagnose by NAM to the

BRS and the AAA respectively. Furthermore it speci�es that in case of di�ering

resulting diagnosis, the \more knowledgeable" diagnosis should be given preference.

The AAA chooses this task and assigns the compound cover and di�erentiate by

NAM method to it, giving rise to the subtasks hypothesis creation and hypothesis

validation. First, the AAA generates its hypothesis on the basis of the NAM. The

rule base assigned to the simple cover CAM method, makes it initially suspect that

each �ring of a protection has been caused by a fault in the adjacent lines and

busbars, which leads to the following list of hypotheses respecting faulty devices:

fault(fl7, HerA, l3, l5g)

As the AAA is not capable of resolving the hypothesis validation task, the control

cycle looks for an acquaintance frame with a method slot that matches that task.

The BAI does and so it asssigns this task to the BAI.

The BAI tackles this task by the determine BOA method, which infers what

the e�ects of the occurrence of the hypothesis would have been: given the initial

situation, it concludes that the following events would have occurred in case of the

faults:

l7 ) (fSSe1, Aba3, Her5g),

l3 ) (fHer1;Ark3, Oya1g),

l5 ) (fOrm1, Adu1, Her3g)

HerA ) (Her7, Oya1, Adu1, Ark3, Orm1, SSe1, Aba3)

The AAA receives this answer and reconsiders its hypothesis. By default, the AAA

suspects that breaker failures are more likely than simultaneous faults in di�erent

devices, so it re�nes its initial hypothesis, giving rise to the following list which is

ordered by decreasing con�dence in them

fault(fHerAg), fault(fl5, Her3g, fault(fl3, Her1g), fault(fl7, Her5g).

Again, each of these fault hypotheses covers all alarm mesasages. It sends these

hypotheses to the BAI and receives the answer that each of them explains the

received NAM.

Suppose that the BRS generates its initial hypothesis in the same way as the

AAA, but on the basis of the CAMs, so it arrives at the same fault hypothesis. A

hypothesis validation task is created and passed to the BAI. As in the case of the

AAA, the BRS receives the di�erentiating information from the BAI and starts to

reconsider its hypothesis. As clock severe synchronization failures are rather rare,

the BRS reorders its list of validated hypothesis in the following way:

fault(fl5, Her3g), fault(fHerA, Aduclock, Ormclockg),

The BAI con�rms that each of these faults covers all received alarms. Still, it has

also received the diagnosis from the AAA and notices a di�erence of opinions. As

indicated by the social coordinate diagnosis method, the BRS does its part in the

solution integration searching its acquaintance models and discovering that the

AAA does not know about clock failures, which means that it is not competent to
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reject the BRS's diagnosis. So, it maintains its diagnosis and sends it to the AAA

and the UIA. The AAA, after receiving that diagnosis, performs a similar reasoning

with its acquaintance models and, as a result, adapts its own by integrating the

clock fault hypothesis. Finally, it also sends this adapted diagnosis (which is now

consistent with the diagnosis of the BRS) to the UIA.

Again, these messages modify the UIA's information model, a motivation frame

applies and a service restauration task is created. The UIA assigns the propose and

revise method to cope with it, which results in the proposal generation, proposal

critique and proposal revision subtasks. The UIA has no method for any of them,

so after consulting its acquaintance model, the �rst task that the method requires

to be executed, proposal generation, is assigned to the SRA. The SRA generates

the following switching plan

plan(open(Her3), close(Ark3), close(Oya1), close(Her7) , close(SSe1), close(Aba3))

which it returns to the UIA. The proposal critique subtask is delegated to the

CSI, which applies the simulate e�ects methods, returning characterizations of

all intermediate states of the potential switching plan to the UIA. As the last

intermediate state is not considered to be safe, the UIA delegates the revise

switching plan task to the SRA, which revises it by exchanging the last two actions:

plan(open(Her3), close(Ark3), close(Oya1), close(Her7) , close(Aba3), close(SSe1))

Again, the UIA sends the revised plan to the CSI. Its simulation proves that the

modi�ed switching plan is acceptable, and the propose and revise method returns

it as a result.

The above example describes a complete reasoning cycle of the energy man-

agement multiagent DSS. The functionality of a �ctitious top-level task manage

distribution network has been generated \bottom-up" by communication among

agents and their adequate motivations. Other types of events may lead to other

task distributions between agents. Note that every agent decision may be explained

to the responsible engineers using the trace of the reasoning methods.

11.4.3 Road Tra�c Management

The increasing popularity of road transport and the incessant rise of the number of

vehicles have caused a tremendous growth of the magnitude of tra�c 
ows on public

roads. Especially in urban areas, where the road network is dense and the tra�c

volume in peak situations is enormous, signi�cant economic losses are produced

by enduring and recurrent congestions. Still, it is precisely in these urban areas

where there are severe obstacles to the expansion of traditional infrastructure, due

to the scarcity of space and resources as well as for environmental reasons. As a

consequence, urban road tra�c management has become an increasingly important

task: strategies to guide tra�c 
ows are essential in order to avoid collapses of

individual transport and the corresponding losses for the local economy.

In big cities, tra�c control centres (TCC) are in charge of managing urban trans-

port. A TCC's responsibilities cover a wide range of di�erent tasks. In particular,

tra�c engineers within a TCC are to supervise the current road tra�c situation,
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detect problems and take actions to overcome them, so as to maintain and restore


ows of vehicles adequate for the network capacity. Information about the current

tra�c state is obtained from many di�erent sources, the most important of which

include:

messages transmitted from human observers, which constitute a classical source

of information for tra�c control centres. In most cases, such information is

provided by urban police or members of related public organisms;

visual control of certain problematic areas is possible by means of TV cameras.

They are especially useful to assess unusual and emergency situations, such as

the gravity of accidents etc.;

sensors, which are installed in strategic parts of the network and generate a

continuous 
ow of numerical data about tra�c conditions at a certain point.

There are di�erent types of sensors with di�erent costs and capabilities. One of

the classical sensors are loop detectors that usually provide information about

speed (mean velocity of the vehicles detected by the sensor), 
ow (average

number of vehicles that pass through a certain road section per time unit) and

occupancy (the average time that vehicles are spotted by the sensor).

On the basis of such heterogeneous tra�c information (informal, visual and

numeric data) a tra�c control engineer identi�es potential problems and decides

upon signal plans to overcome them. Such signal plans comprise a coherent set of

uses of control devices that the TCC can act upon. The most popular devices for

urban road tra�c management are the following:

Variable Message Signs (VMS), that allow to in
uence tra�c behavior by

dynamically setting, modifying or deleting tra�c signals. The most advanced

VMS are panels which are installed above the road. They allow to display

arbitrary messages that inform drivers about the network situation downstream.

In addition to this, they can display pictograms and tra�c signs, thereby

announcing warnings, speed limits, prohibitions to overtake etc. Older types

of VMS support just a small collection of di�erent tra�c signs or constrain the

set of messages that can be displayed due to technical limitations;

tra�c lights, by means of which the access of vehicles to certain parts of a

road network, typically junctions, is controlled. Di�erent features of tra�c light

signaling can be modi�ed: the relative amount of green time can be increased or

decreased, the overall length of a cycle may be changed and the time o�set

between di�erent cycles is modi�ed. Ramp meters are special tra�c lights

that are positioned on the entry ramps of motorways. They enable the tra�c

controller to regulate the amount of vehicles entering the motorway.

Figure 11.9 depicts a typical tra�c management installation. The task of tra�c

management performed in the TCC is to generate signal plans for control devices

in order to alleviate tra�c problems that have been identi�ed on the basis of the

collected tra�c information.
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Figure 11.9 A typical tra�c control infrastructure: tra�c information from vehi-

cle detectors and TV cameras is transmitted to the Tra�c Control Center, which

acts upon road tra�c by displaying messages on Variable Message Panels.

The Problem: Urban Highway Tra�c Control

This section is concerned with road tra�c management of the urban highway

network around Madrid. It consists of two beltways and 8 adjacent highways is

endowed with about 100 VMS panels, 50 cameras and over 300 loop detectors.

These devices are connected to the Madrid tra�c control center via �ber optics

communication links. Certain parts of the network support peak load of over 6.000

vehicles per hour.

Figure 11.10 depicts part of the highway network of eastern Madrid. It shows

the eastern part of the two beltways M30 and M40 as well as the three adjacent

highways NII, NIII and NIV. Data sources such as loop detectors are not shown,

but the �gure indicates the location of the nine VMS that are installed in this area.

The objective of tra�c management is to ensure the \smooth 
ow of tra�c" which

can be expressed along measures such as travel times or \length" of congestions

etc. It is pursued by enacting signal plans, which|in the example of Figure 11.10|

coincide with coherent sets of messages to be displayed on the di�erent VMS. These

messages inform drivers about the tra�c situation downstream. This guidance

in
uences the \size" of tra�c 
ows in the network (thereby reducing the tra�c load

in congested areas), as some drivers will choose a di�erent \route" from their origin

to their destination. More speci�cally, tra�c management comprises the following

tasks:

to identify problematic situations, classifying their type (incident congestion,
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Figure 11.10 Part of the motorway network of eastern Madrid (adapted from

[12].)

overload congestion etc.) and location;

to diagnose the causes of the problems in terms of the tra�c 
ows that contribute

to it;

to generate a legal signal plan proposal on such a way that the causes of problems

be eliminated or alleviated enough to improve the tra�c conditions.

The Multiagent Architecture

In the frame of the European KITS [12] and the Spanish TRYS projects [13] [14]

agent-based tra�c management systems have been built for the road network of

di�erent towns. The structure of the systems was crucially determined by the fact

that the human operators, from which tra�c management knowledge had to be

elicited, analyzed tra�c 
ows in terms of problem areas. Problem areas usually

re
ect special characteristics of the network topology, but also comprises empirical

behavior rules for certain parts of the town. In consequence, one tra�c control

agent was built for each problem area. Agents are homogeneous, in the sense that

they share the architecture and the reasoning structure, but the knowledge they

are endowed with is pertinent to the speci�c problem area they are responsible for

(e.g. empiric knowledge about area behavior rules).

In the example of Figure 11.10 there are seven tra�c control agents|M30a,

M40a, M30b, M40b, NIIa, NIIIa and NIVa |whose problem areas comprise the

highway section between two highway junctions, including all entries and exits that

connect this section with the ordinary road network. Each of them is to generate

local signal plan proposals that help to overcome tra�c problems in their area. For

this. it is endowed with the following basic methods:
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data abstraction takes as input raw sensor data, �lters out noisy data, calculates

aggregate values such as temporal and spatial gradients and �nally determines

qualitative measures for di�erent system variables (e.g. the average speed may

be high, medium, or low).

problem type identi�cation takes all the data generated through data abstraction

in order to identify problems, such as incident congestions, overload congestions

etc. This is done by matching the data against problem scenario frames. Each

such frame characterizes a speci�c problem situation by relating the type of

problem to patterns of abstracted tra�c data.

solution re�nement speci�es the identi�ed problem in further details.

demand estimation determines the tra�c demand between some arbitrary origin

and some arbitrary destination in the network. Obviously, this varies temporally

(peak hours etc), so that this basic method uses a frame base that associates

temporal patterns (hour, day of the week etc) with demands for the di�erent

origin/destination pairs.

e�ect estimation determines the e�ect that certain tra�c 
ows have on a

problem. This is done by means of distribution scenario frames that relate

three types of information: tra�c problems, the state of control devices and

the contribution of certain routes to the problem. By matching the current state

of control devices and the tra�c problem against these frames, the \�nal causes"

of the problem are found in the tra�c 
ows that contribute to it.

signal plan selection aims to generate a proposal of how a problem can be

overcome. It also uses the distribution scenario frames, but in another way. All

scenarios that match the tra�c problem are potential signal plans.

short term prediction estimates the result of a change in tra�c 
ows within the

network. It uses a simple assignment algorithm to do this.

These are used by the following compound methods:

heuristic classi�cation is a classical problem-solving method [8], which comprises

three subtasks, which are executed sequentially: abstract state determines rele-

vant aggregate information for the classi�cation, which is done by the match

problem subtask. The result is re�ned in the following re�ne problem subtask.

contributor di�erentiation determines how much each of a set of potential causes

contributes to a problem. In order do assure this, it �rst generates the subtask

�nd contributors and then estimate contribution. This is repeated until all

contributors are evaluated.

generate and test �rst sets up a generate proposal subtask, which produces a set

of tentative signal plans. These are judged subsequently within the test proposal

subtask. If a plan is not considered to be su�ciently adequate, a now proposal

is generated.

local management just indicates that tra�c control of the local area consists of

�rst identifying tra�c problems, then diagnosing its causes in order to �nally
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Figure 11.11 Centralized and decentralized multiagent tra�c control architec-

tures: in the former there is a special coordinator agent in charge of harmonizing

local control proposals of the tra�c control agents, while in the latter this func-

tionality emerges among tra�c agent interaction in the frame of a social method.

con�gure signal plans to overcome them.

Still, the subdivision of the road network is made on the basis of empirical

(logical) criteria, so the spatial division of the network is not perfect, i.e. the

areas are not disjointed, but rather constitute a set of overlapping zones. So,

local signal plan proposals use to be interdependent. There may be either physical

con
icts between them, when the proposals of two agents require to display di�erent

messages on the same panel, or logical con
icts when one agent's signal plan

proposal hinders or even cancels the e�ectiveness of another. In consequence, the

agents' proposals need to be coordinated. As Figure 11.11 depicts this can be either

done by means of a dedicated coordinator agent, or laterally through peer-to-peer

communication. It has shown to be di�cult to elicit explicit coordination knowledge,

so in the sequel the second option will be discussed.

In this domain, the acquaintance models are also given by frames. Still, such a

frame does directly represent information concerning methods that another agent

can perform or tasks that it can cope with (as the agents are, in principle, self-

su�cient for the management of their local area). Rather it describes the actions

that the acquaintance can take, specifying which resources they require (causing

potential physical con
icts), and which e�ects they may have (causing potential

logical con
icts).

An agent'smotivation matches the information model once complete sequences of

new data have arrived. In consequence, it generates manage 'local area' task. This

task is similar to those generated by a social method. Although no synchronization

with the acquaintance's tasks is necessary, it is required that local signal plans be

sent to those agents with which there might be a con
ict (e.g. those with overlapping

problem areas). In case of con
icts, the agent with the most severe problem will be

allowed to maintain its signal plan.
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Figure 11.12 Task structure generated by the society of tra�c management

agents.

An Example

Consider the tra�c situation shown in Figure 11.10. There are three problems: in

the area of M30a at O'Donell, in the area of M30b at Mendez Alvaro and in the

NIII area at Conde de Casal. Figure 11.12 shows the TMST tree that the society

of tra�c control agents generates from this situation.

The reasoning process of the M30b agent will be described as an example.

The arrival of new data makes its motivation create the manage M30b task. The

management M30b method is found to be an adequate means to cope with it. Its �rst

subtask, identify problem, is solved by heuristic classi�cation, which �rst performs

data abstraction by completing possibly erroneous sensor data and calculating

temporal and spatial gradients etc. The M30b then agent matches this information

against its frames, representing typical problem scenarios, and identi�es that there

is an overload problem at Mendez Alvaro. In a solution re�nement step, it detects

that the overload problem manifests itself in a saturated o� ramp.3

The management method then requires a diagnosis task to be solved, which is

done by the contributor di�erentiation method. First, the current tra�c demand

between entry and exit points in the network is determined (demand estimation

method), in order to estimate then by means of pattern matching (e�ect estimation

method) how much each 
ow between each origin and destination contributes to

3. Note that this problem identi�cation already comprises certain aspects of diagnosis.
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VMS M30a M30b NIII

P1 C. at O'Donell C. at Mendez Alvaro

P2 C. in M30 at O'Donell

P3 C. at Mendez Alvaro

P4 C. in M30 at O'Donell

P5 C. at Mendez Alvaro

P7 C. at Conde de Casal

P8 C. at Conde de Casal

Table 11.2 Local signal plan proposals (\C." stands for \Congestion").

the problem.

Once this has been done the con�gure signal plan task is set up, which is coped

with by a generate and test method. First, a proposal is generated by matching

distribution scenario frames against the problem situation, deducing a potential

signal plan and the corresponding change in tra�c 
ows. The subtask test proposal

gives rise to the execution of a short term prediction method, which estimates the

e�ectiveness of the potential signal plan. It is selected or rejected accordingly.

Other agents perform similar local reasoning. As a result of this reasoning process,

just the agentsM30a, M30b and NIII have identi�ed problems and generated signal

plan proposals shown in table 11.2.

The agentM30b detects a physical con
ict withM30a, because the latter proposes

to display a message on the panel P1, which M30b already wants to access with

a di�erent message. The agent NIII detects a logical con
ict with M30a, as the

message shown on P3 will make drivers on M30 leave this beltway and turn into

Madrid by NIII, aggravating the problem at Conde de Casal. In much the same

way, agentM30a detects the physical con
ict with M30b as well as a logical con
ict

with NIII, as the message on P7 induces drivers on NIII heading towards downtown

Madrid to use alternative entrances, thereby worsening the problem at Mendez

Alvaro.

The agents notice that the physical con
ict at P1 can be solved by merging

the proposals to a \Congestion from O'Donnell to Mendez Alvaro" message. In

addition, the agents M30a and NIII interchange information about the gravity of

their problems. As a result, and according to the distributed coordinate method,

M30a gets preference, as its problem is more severe: Panel P3 will show as proposed

\Congestion at Mendez Alvaro," while P7 will be switched o�. This �nal proposal

is presented to the control personnel.

As in the electricity management domain, the agents' motivations have been

designed in a way that is equivalent to a hypothetic social method coordinate

eastern Madrid agents. Still, the way in which solution integration is performed

relies on knowledge about a \preference ordering" (the more severe problem is given

precedence) which all agents share. But this is precisely that kind of knowledge that

a �ctitious central coordinator agent (see Figure 11.11) would be endowed with; it
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is just replicated among many agents.

Other, more decentralized modes of coordination can be achieved by augmenting

the degree of autonomy of the tra�c control agents. For instance, the designer can

set out from the notion of self-interested agents, whose autonomy to manage the

tra�c in their area is only bounded by the existence of its acquaintances. In such

a design, agents behave sel�sh and, in principle, are only interested in the tra�c

state of their problem area. Still, the interactions between their local signal plans

makes it rational from them to coordinate with others.

However, although the agents may bene�t from coordinating their signal plans,

they have a con
ict of interest respecting which global plan should be agreed

upon. The compromise that is reached in such situations of mutual dependence will

certainly depend on the agents' \social position," i.e. as to how far an agent can

help or harm others, and up to which degree others may in
uence in the e�ectivity

of an agent's local signal plan proposals.

One way of modeling decentralized coordination in such a scenario is to see

the compromise reached (or: the social equilibrium) as being biased towards the

less dependent agent: the \stronger" an agent is, the more \weight" will have

its individual preferences in a potential compromise. The designer can in
uence

this social equilibrium by means of prescriptions, which prohibit or permit certain

agents to use certain control panels, thereby increasing or decreasing their degree

of dependence [24], [22].

The formal representation and operationalization of such models will most prob-

ably be based on some model of distributed rational decision making, which are

discussed in detail in chapter 5 of this book. Cooperative bargaining models, for

instance, are strong candidates for this enterprise [23]. An example of the appli-

cation of these ideas is given by the decentrally coordinated tra�c management

system which has been built on top of the ProsA2 architecture described in [24].

Such approaches, however, are still an area of research and their potentials and

drawbacks in di�erent real-world applications have to be tested.

11.5 Conclusions

This chapter has outlined the potential of DAI models for decision support. The DS

problem has been described by means of a semi-formal model and the knowledge-

based approach to DSS design explained. The application of DAI techniques to DS

problems has been motivated, and the design and operation of such distributed

DSSs has been illustrated by presenting an abstract agent architecture and by

simulating the reasoning and interaction processes within problem-solving societies

of such DS agents in di�erent domains.

From an abstract point of view, the concept of an agent has been used as modu-

larization principle for the DSSs' software and knowledge. The principle by which

agents were formed re
ected an a priori distribution in the domain. Emergency
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management agents were built in line with preestablished organizational entities. In

the electricity distribution example, agents were created around preexisting expert

systems. In the road tra�c management example, the agenti�cation was implied by

the control engineer's understanding of a town's tra�c behavior in terms of problem

areas which, to a certain degree, re
ect a logical distribution of the domain.

It has been argued, that such a non-functional distribution implies a need for

additional coordination that standard problem-solving methods cannot cope with

in a natural way. The notion of a social method has been introduced in order to

cope with coordination problems.

The intersection of the areas of Knowledge Modeling and DAI is a busy and

exciting research area. Once the concept as well as structuring and enactment

principles of social knowledge have further evolutioned, libraries of distributed

interaction methods might be developed that will greatly ease the development

of distributed DSSs.

11.6 Exercises

In this section two example scenarios for decision support are presented. Each such

scenario constitutes the basis for several exercises. Do not be driven back by the

large introductory texts; they will help you to cope with the subsequent exercises.

1. Consider the following emergency management scenario for 
ood prevention.

There is an area with a high risk of 
ooding, whose structure is shown in

Figure 11.13. Six watershed basins collect rainfall and produce a runo� to four

major water streams, which lead into two reservoirs created by dams located

downstream the rainfall collection areas. The dams are endowed with spill

gates and discharge pipes by means of which the water retention capacity of

the dams can be controlled. Consider the relation between discharge capacity,

water level and the state of spill gates to be given in a table.

Downstream the dams there are two villages within 
oodable areas, where

damage can potentially be done to people. In every such area civil protection

works can be performed (e.g. to reinforce 
ood walls), in order to improve

the security against 
oods. Three levels of civil protection can be planned:

\low," \medium," and \high." For every level of protection di�erent amounts

of human resources are required, which are available either locally or from

the next main town which is located within a secure area. Furthermore, the

availability of resources changes with the time of the year.

According to the situation, it is possible to infer a relation between the

acceptable out
ow from the reservoirs and the level of protection works to be

performed in every village. The following two extreme emergency management

strategies are possible:

minimum 
ow limitation in dams (i.e. wide opening of spill gates) together

with maximum protection works;
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maximum 
ow limitation in dams with minimum protection works;

Eventually, these plans need to go in line with evacuation actions, which are to

be provided by the village transport resources and additional central services

from the main town (e.g. given a situation where defenses have a limited

capacity it may happen that some subset of population requires evacuation).

Local emergency management may be supported through the help of the

following organisms:

the water management authority, which determines the amount of 
ow to

be discharged from dams within the next hours, given the current remaining

capacity of the reservoir and the predicted in
ows.

the �re brigade which manages manpower to provide capacity for protection

works. Limited resources will be de�ned in terms of available vehicles of

known capacity and available human resources.

the sanitary and ambulance authority that is responsible for population

evacuation and medical treatment where also a limited number of ambu-

lance vehicles and persons are available.

Any of the above organisms receives requests for support from the endangered

areas and determines as to how far to grant help on the basis of a prede�ned

policy of preferences.

The aim of the exercise is to design an agent-based DSS for this domain. It is

recommended to de�ne the following agents:

two LEMA agents, which perform local emergency management in the

endangered areas, i.e. LEMA-P for area P and LEMA-Q for area Q,

one DMA agent, responsible for dam control on reservoirs A and B;

one FBMA and one TAMA agent for central resource management con-

cerning protection and evacuation works respectively.

In the sequel we will provide descriptions of two types of these agents, leaving

the design of the remaining agents to the reader. The following knowledge

components of a LEMA agent can be identi�ed:

The motivation knowledge must be applied to react to the meteorology

conditions. A classi�cation method will be applied supported by a domain

model, which is based on prede�ned patterns which consist of two parts. The

�rst part is de�ned by slots representing the current state and the recent

trend in the variables. For instance, for area P the slots will include the

measures of the state of the rainfall basins 1,2 and 5 as well as the situation

in reservoir A; for area Q the patterns include slots for all six rainfall basins

and both reservoirs. Either on the basis of available expertise or through

simulation, di�erent emergency situations are characterized by assigning

characteristic values to the slots. The second part includes slots that

characterize the estimated impact in 
oodable areas in terms of waterlevel

excess and over
ows entering the area. So, the patterns relate meteorology

situations with their potential impacts. In consequence, a pattern matching
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Figure 11.13 A Flood Management Scenario.

method can be used to generate hypotheses about potential impacts, whose

negative e�ects need to be avoided.

The local problem-solving methods are used to repair or to alleviate the

potential damages predicted previously. Essentially two local problem-

solving methods are enacted sequentially:

on the basis of water-level excess and over
ows entering the area the

impact speci�cation deduces the a�ected area and the number of a�ected

persons using a rule based classi�cation.

the impact alleviation knowledge estimates the protection actions in

terms of dam control actions, the level of protection works or the

magnitude of population evacuation. First, a sequence of actions leading

to impact alleviation is constructed. This is a planning problem, which

may be coped with by a hierarchical classi�cative planner as proposed

by Brown and Chandrasekaran [6] for routine design. Local resources are

assigned to the plan on the basis of a rule base. External resources are

assigned using social methods.

The acquaintance models for DMA, FBMA and TAMA contain slots de-

scribing the kind of help that any of these agents can supply together with

an estimation of its maximal amount.

The social methods used by the LEMA are of quite simple structure.

Depending on the type of resource required, the task of determining the

help to be granted to a LEMA is assigned to DMA, FBMA or TAMA.

After accomplishing the task its results are sent to the LEMA.
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The norms of coexistence determine the order in which the LEMA's ac-

quaintances are asked for help. They can be modelled by rules, e.g.:

IF rainfall in basins 1,2,5 = very high AND

rainfall in basins 3,4,6 = medium THEN

preference = (DMA, LEMA, FBMA)

In consequence, the following sequence of conversations may arise:

the LEMA asks the DMA to reduce water level excess totally;

the DMA answers with an alternative, expressed by a range of admissible

reductions;

the LEMA estimates the civil protection works necessary for any of these

options. If external help is required it asks the FBMA for additional

manpower;

the FBMA responds with the range of possibilities to satisfy the LEMA's

help request, specifying the amount of manpower and the required waiting

time;

�nally, in accordance with the previous answer, the LEMA infers evacuation

needs and asks the TAMA to provide the necessary resources;

The knowledge contents of the remaining agents determines their behavior

within these conversations. Concerning the DMA agent the following observa-

tions can be made:

As in the case of the LEMA agent, the DMA's motivation knowledge is

expressed in terms of a frame base of patterns, which characterize storms

that act on rainfall areas and relate them to possible undesirable impacts

that have to be avoided.

The problem-solving knowledge aims to �nd reasonable values for the

opening of spill gates and discharge pipes at the dams so as to avoid the

aforementioned undesirable impacts of meteorology conditions, taking into

account the limiting criteria on water storage and the maximum water
ow

downstream that the reservoir's outlets may produce. To meet this goal a

generate-and-test method is applied:

a rule knowledge base generates reasonable values for openings on the

basis of the current data and the default impact estimation that the

motivation frame base provided;

� a simulator determines the impact of this decision, using an arti�cially

generated rainfall series and the structure of the drainage network

(knowledge for the operationalization of a simulator can be derived

from 
ow routing methods in hydrology engineering);

� in an evaluation step it is determined whether the short-term e�ects

of dam management actions as estimated by the simulator satisfy the

safety constraints mentioned above. If this is not the case, another

action proposal is generated and the generate-and-test cycle reiniti-

ated.
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The behavior of the DMA in social interactions with a LEMA agent is based

on its current situation and a priority evaluation of the di�erent LEMAs. It

determines the amount of help that can be granted in the current situation

(negative impacts of rainfall as determined by the motivation knowledge

in relation to security constraints). The amount of help that is granted to

each LEMA agent in response to its request is determined by a priority rule

base.

The reader may proceed by the following steps:

(a) [Level 2] Specify knowledge models|analogous to those presented for

LEMA agents|for DMA, TAMA and FBMA.

(b) [Level 3] Propose a detailed contents of the knowledge bases for the four

types of agents.

(c) [Level 1] Perform a \manual" simulation of agent reasoning and agent

interaction.

2. Consider the urban tra�c management domain as described in section 11.4.3.

A �ctitious road-network is given, consisting of one beltway and three adjacent

highways as shown in Figure 11.14. Highways hit the beltway at junctions J1,

J2 and J3 respectively, and meet each other in the center of the town at

junction J4. The entry and exit points to the network are labelled by E1,

E2 and E3. There are three tra�c management agents, A-I to A-III, each

responsible for the swift 
ow of tra�c in a di�erent beltway section. The

agents act upon the tra�c by means of messages to be displayed on any of the

nine VMS P1 to P9.

The di�erent VMS messages and their e�ects are as follows:

switch o�

all drivers take the shortest path to their destination. For instance, if the

amount of vehicles going from E1 to E2 increases by 500 veh/h, the beltway

area of A-I will support an additional load of 500 veh/h.

\to <exit> on beltway by <junction>"

80% of the drivers follow the recommended route, while 20% still try the

shortest path. In the above example, the message \to E2 on beltway by J3"

will result in an additional load of 100 veh/h for the A-I and 400 veh/h for

the A-II and A-III areas.

\to <exit> by center"

just half of the drivers will obey the message and pass through the center,

while the rest still tries the direct path. In the above example, the message

\to E2 by center" will result in an additional load of 250 veh/h in the A-I

area and another 250 veh/h in the center.

If one agent wants to display some messages M on a VMS while another would

like the same panel to be switched o�, message M will be displayed. Messages

\to X by Z" and \to Y by Z" can be merged into a message \to X and Y by

Z." All other combinations of messages on the same panel are incompatible.
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Figure 11.14 Tra�c scenario.

Consider a scenario with a medium size congestion in the area of A-I and

a severe congestion in the area of A-III as shown in Figure 11.14. In the

downtown and A-II areas there is only light tra�c; these areas can absorb

further tra�c load without generating problems.

(a) [Level 1] Which are the di�erent alternative local signal plans generated

by the agents A-I and A-III? They should be ordered by their e�ectivity

in the eyes of A-I and A-III.

(b) [Level 3] Develop knowledge models for the A-I and A-III agents based on

the agent architecture presented in this chapter. Enacting this knowledge

agents should come up with the local signal plans mentioned above.

(c) [Level 1] Simulate the social method coordination performing \severity-

based" integration of local signal plans as in section 11.4.3. What is the

resulting global signal plan?

(d) [Level 2] What \compromise solutions" are possible as global signal plans.

What criteria could a social method use so as to ensure that its outcome

is such a compromise solution?

(e) [Level 4] Develop a formal framework by means of which you specify the

precise meaning of your notion of a \compromise solution." How can such

solutions be computed in a distributed fashion? You may want to borrow

from part one of this book (especially the chapters 4 and 5) to accomplish

this.
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12 Concurrent Programming for DAI

Gul A. Agha and Nadeem Jamali

12.1 Introduction

The increasing performance and decreasing cost of processors and computer net-

works have continued to fuel an explosion of interest in solving larger problems

using concurrent computing. In particular, agent-based programming has emerged

as a promising paradigm which may help realize Arti�cial Intelligence through dis-

tributed problem solving. Agents are persistent and goal directed entities that may

move between hosts in response to changes in requirements such as security and

e�ciency, and that would normally be limited in the computational resources they

may employ in pursuing their goals. Such resources include processor time, memory,

and network bandwidth.

A key challenge in concurrent computing is the di�culty of programming paral-

lel and distributed architectures. Many models of concurrency are rather low-level.

For example, shared variable models often violate data encapsulation, an essential

feature for modular software development. A promising approach to address this

di�culty is the use of concurrent objects in a re
ective architecture. In particu-

lar, actors provide a formal model for building and representing the behavior of

concurrent objects and thus serve as a foundation for concurrent object-oriented

programming.

The de�nition of actors corresponds to that of agents given in Chapter 1. Actors

are autonomous, interacting computing elements, which encapsulate a behavior

(data and procedure) as well as a process. Di�erent actors carry out their actions

asynchronously and communicate with each other by sending messages. The basic

mechanism for communication is also asynchronous and bu�ered; however, other

forms of message passing can be de�ned in the context of the model. Finally,

actors may be dynamically created and recon�gured, which provides considerable


exibility in organizing concurrent activity.

Actors are a model for specifying coordination in a distributed system. Because

the internal behavior of an actor is encapsulated and cannot be observed directly,

the Actor model supports heterogeneous, variable grained objects. Speci�cally, the

behavior of individual actors may be de�ned using any programming language.
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There are two advantages to using actors for building multiagent systems. First,

actors provide a logically distributed programming model which allows systems

to be decomposed into autonomous, interacting components without the need for

managing the concurrency explicitly. Second, by using actor implementations on

parallel and distributed architectures, performance gains will allow larger problems

to be solved.

In this chapter, we discuss a powerful concurrent programming paradigm for

DAI; the paradigm is based on abstractions built using extensions of the basic

Actor model.

12.2 De�ning Multiagent Systems

De�ning agents has been an elusive problem. A common type of agent is the various

personal assistants that have recently become commercially available; such agents

perform a large number of light weight queries in search of some information. Per-

sonal assistants perform functions such as �nding the best travel fares, monitoring

product or stock prices, or searching academic articles related to a certain area of

research. Often these agents have the decision making authority to make binding

contracts on behalf of a user, such as by purchasing something using a credit card

number. Another type of agent uses a variety of �ltering mechanisms to make the

huge amount of information available over (say) the Internet more manageable for

human consumption. All these can be seen as examples of personal agents that act

for or on behalf of a user.

A study of personal agents is limited in a fundamental way. Because there is

a 1-to-1 correspondence between interests and agents, each agent competes or

cooperates with others on the basis of its own interest. Although some notion of

a \cooperation instinct" can be coded into the interests of agents, it may come at

the cost of reduced code re-usability.

A common limitation comes from either not addressing the issue of mobility, or

not doing so in the context of an open system. In an open system, mobile agents

would be able to migrate from one node to another looking for desired computation

environments at a�ordable costs, and to spawn child agents to pursue subtasks.

There is no interesting model available to help control the resources that such

mobile agents serving some particular interest could use. Even in the case of a

single node, there is no way of preventing agents pursuing a particular task from

monopolizing the entire system's resources.

Let us consider the example of a system of mobile agents spread over a large

network, related to the construction industry. There will be agents for clients

looking for contractors, agents for contractors looking for potential clients, and

agents for smaller sub-contractors at di�erent levels. Each agent shops around and

tries to negotiate the best deal for its own interest. But, unless controlled, any

number of overly aggressive (say) contractor agents could spawn hundreds of child

agents looking for potential clients in parallel, potentially bringing the entire system
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down. Worse, even well-meaning agents do not have the means to decide what is a

reasonable use of the available resources.

Similarly, there is a possibility of multiple child agents working for the same

agent (i.e. serving the same interest) to take competing postures. Even if means

are provided for some sort of coordination to emerge at a higher level, such agents

may still be competing for computational resources at the scheduler level.

These reasons make it important to study ways of controlling ensembles of agents.

On the one hand, we need a bounded resources model to control the amount of

computational resources consumed by agents serving an interest; on the other, we

need a bounded autonomy model for allowing coordination among agents. In the

following sections, we will develop a model for studying systems of such agents,

that addresses these issues.

We represent agents as actors; speci�cally, we extend the actor model to explicitly

model the location of agents on location on particular hosts and the fact that agents

have bounded computational resources. Hosts are actors that manage physical and

logical resources and o�er them to agents interested in paying for them. A uniform

currency is used to pay for the cost of these resources. The behavior of an actor

may be interpreted in a suitable framework for agents, e.g., the belief, desire, intent

model [28]. In any event, agents are persistent, have relatively long-lived goals

describing the functional aspect of what they are doing, and have computational

engines which serve as mechanisms for achieving these goals. These computational

engines include a resource utilization strategy. Of course, all these aspects of an

agent may evolve dynamically.

Although the description of goals and procedures falls largely in the domain of

conventional AI, explicit resource modeling is a need speci�c to multiagent systems.

Control is not based solely on programming structures, as agents may create or

invoke other autonomous agents. The resource consumption model provides the

basis for an economic model that is needed to provide mechanisms to bound use of

computational and network resources.

An agent which has a model of its own behavior and that of the environments

in which it may be executed, may improve its resource consumption by using

mobility. Moreover, because an agent may execute in new contexts which do not

satisfy its requirements, the agent may need to systematically customize behavior

of the underlying execution environment. Such agent requirements include security,

rendering software, device drivers, etc.

A model of computational re
ection [22] provides a formal basis for an agent

to have a representation of its own behavior. In general, re
ection models enable

interaction of higher level operations, such as real-time constraint enforcement, and

lower level information about the execution environment, such as load distribution

over a group of processors, available network bandwidth, etc. Speci�cally, re
ection

allows an agent to have a continuous interaction with its environment in order to

determine available resources and relate such resources to the agents' own state;

thus the use of re
ection can support evolving resource utilization strategies.
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12.3 Actors

Actors are self-contained, interactive, autonomous components of a computing

system that communicate by asynchronous message passing [1, 5]. The basic actor

primitives are:

send(a; v) creates a new message:

with receiver a, and

contents v

newactor(e) creates a new actor:

which is evaluating the expression e, and

returns its address

ready(b) captures local state change:

alters the behavior of the actor executing the ready expression to b

frees that actor to accept another message.

These primitives form a simple but powerful set upon which to build further

abstractions. Thus actors are a natural basis for a low-level language that supports

a wide range of higher level abstractions and concurrent programming paradigms.

The actor newactor primitive extends the dynamic data creation capability in

sequential programming languages by allowing creation of processes. The ready

primitive gives actors a history-sensitive behavior necessary for shared data objects,

by delineating a group of actions as atomic. This is in contrast to a purely

functional programming model and generalizes the Lisp/Scheme/ML style sharing

to concurrent computation. The send primitive is the asynchronous analog of

function application. It is the basic communication primitive, causing a message

to be put in an actor's mailbox (message queue).

Using the three basic actor primitives, actor systems can be dynamically con-

�gured. New actors can be created and connections between actors can be made

and broken as computation proceeds. Thus the model does not require that the

structure or shape of a computational problem be completely determined, or that

the execution resources be �xed, before work on solving it can be initiated.

Actors provide a natural extension of the object-oriented paradigm to concurrent

and distributed computation. They support encapsulation, description as behavior

templates, and re-usability via libraries accessed using message-passing protocols.

The locality properties of actors guarantee that changes of representation and

elaborations can be made independent of the interaction with, and behavior of,

other actors. Thus actors can support local instrumentation and monitoring which

provide important tools for analysis and debugging.
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Figure 12.1 Actors encapsulate a thread and state. The interface is comprised of

public methods which operate on the state.

Example 12.1 Filtered Search

Consider the problem of a parallel multi-ary tree search, where we want to use a

function filter to determine what subset of a set of results obtained is useful,

before sending them on to the client. There are two di�erent behaviors being

de�ned. FILTERSEARCH has a single method (hence, not named) that takes two

parameters, the identity of the customer cust and the tree to be searched tree.

Assume that the number of subtrees and a list of the subtrees can be obtained

by using functions num-children and children respectively; content returns the

content of the root. After checking for the base case, the behavior FILTERSEARCH

creates a join continuation actor jc with behavior COLLECT with its client's

identity cust and the number of subtrees num-children tree as acquaintances.

Next, the actor creates a new actor with its own behavior for each of the tree's

subtrees, and sends each new actor the identity of the join continuation actor as its

client, and one of the subtrees to search. Once this is done, it gets ready to service

another request.

(defActor FILTERSEARCH ()

(let ((filter (lambda (list)

... )))

(method (cust tree)

(if (= (num-children tree) 0)

(send cust (content tree))

(let ((jc (newActor COLLECT
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(cust (num-children tree)

(list (content tree)) filter))))

(map (lambda (x)

(let ((f (newActor FILTERSEARCH ())))

(send f jc x)))

(children tree))

(ready FILTERSEARCH ()))))))

An actor with behavior COLLECT is created with acquaintances cust, n, and

results to represent the customer, the number of values to expect, and the list

of results collected so far, respectively. After receipt of each new result, the actor

gets ready to receive more results with the same behavior acquaintances modi�ed

to represent state change. When all results have been received, it uses the function

filter to eliminate unwanted results, and sends the remaining to its client. Finally,

the actor changes into a SINK which ignores all messages.

(defActor COLLECT (cust n results filter)

(method (res)

(cond ((> n 1)

(ready COLLECT (cust (- n 1) (append res results))))

((= n 1)

(send cust (filter (append res results)))

(ready SINK ())))))

Here is how a typical FILTERSEARCH actor would be created and invoked.

(let ((FS (newActor FILTERSEARCH ())))

(send FS self tree)) 2

12.3.1 Semantics of Actors

It is possible to extend any sequential language with the actor constructs described

above. For example, the call-by-value �-calculus is extended in [4].

Instantaneous snapshots of actor systems are called con�gurations; actor com-

putation is de�ned by a transition relation on con�gurations. The notion of open

systems is captured by de�ning a dynamic interface to a con�guration, i.e. by ex-

plicitly representing a set of receptionists which may receive messages from actors

outside a con�guration and a set of actors external to a con�guration which may

receive messages from the actors within.

De�nition (Actor Con�gurations): An actor con�guration with actor map,

�, multi-set of messages, �, receptionists, �, and external actors, �, is written




� �

���
�

where �; � are �nite sets of actor addresses, � maps a �nite set of addresses to their

behaviors, � is a �nite multi-set of (pending) messages. Let A = Dom(�), i.e., the
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domain of �, then:

(0) � � A and A \ � = ;,

(1) if a 2 A, then FV(�(a)) � A[�, where FV(�(a)) represents the free variables

of �(a); and if <v0 ( v1> is a message with content v1 to actor address v0, then

FV(vi) � A [ � for i < 2.

For an actor with address a, we indicate its state as [e]a , where it is busy

executing e; e represents the actor's current (local) processing state.

We can extend the local transitions de�ned for a sequential language (
�
7!), by

providing labeled transitions for the actor program as follows (assume that R is the

reduction context in which the expression currently being evaluated occurs). For

brevity, we skip writing the labels corresponding to each transition unless needed.

De�nition (7!):

e
�
7!Dom(�)[fag e

0
)




�; [e]a �

���
�
7!




�; [e0]a �

���
�




�; [R[[newactor(e)]]]a �

���
�
7!




�; [R[[a 0]]]a ; [e]a0 �

���
�

a 0 fresh




�; [R[[ready(v)]]]a �; <a ( v>

���
�
7!




�; [app(v ; v)]a �

���
�




�; [R[[send(v0; v1)]]]a �

���
�
7!




�; [R[[nil]]]a �; <v0 ( v1>

���
�




� �;m

���
�
7!




� �

���0

�

if m = <a ( v>, a 2 �, and �0 = � [ (FV(v) \ Dom(�))




� �

���
�
7!




� �;m

���
�[(FV(v)�Dom(�))

if m = <a ( v>, a 2 � and FV(v) \ Dom(�) � �

12.3.2 Equivalence of Actor Systems

Based on a slight variant of the transition system described above, a rigorous theory

of actor systems is developed in [4]. Speci�cally, various notions of testing equiva-

lence on actor expressions and con�gurations are designed and studied. The model

provides fairness, namely that any enabled transition eventually �res. Thus fairness

implies three things. First, every busy actor eventually makes progress. Second, ev-

ery actor that is ready to receive a message will eventually receive a message,

provided there is a message pending for it. Finally, if an actor does not become

\stuck," i.e. is ready in�nitely often, it will eventually process every message sent

to it. Fairness is an important requirement for reasoning about eventuality proper-
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ties. It is particularly relevant in supporting modular reasoning: if we compose one

con�guration with another which has a nonterminating computation, computation

in the �rst con�guration may nevertheless proceed as before, for example, if actors

in the two con�gurations do not interact.

The notion of equivalence is de�ned by adding an observable distinguished event

to the set of transitions. This technique is a variant of operational equivalence

de�ned in [23]. Two actor expressions may be plugged into a context to see if the

event occurs in one or the other case. Two expressions are considered equivalent if

they have the same observations over all possible contexts.

The nondeterminism in the arrival order of the messages in an actor computation

gives rise to three notions of observation over a computation tree. Notice there are

many computational paths in the tree. Now it is possible that the event occurs in

every computational path (must happen); occurs in some but not all computational

paths (may happen), or never occurs.

Three distinct well-known equivalence relations may now be de�ned. In may

equivalence, always occurs is as good as sometimes occurs (that is, either is a

su�cient condition for proving equivalence); in must equivalence never occurs is

as good as only sometimes occurs. Convex equivalence requires the two sets to

coincide (the intersection of the two equivalences). An important result is that, in

the presence of fairness, the three forms of equivalence collapse to two, namely,

may and convex. Thus, while fairness makes some aspects of reasoning harder|we

cannot simply use co-induction in proofs|it simpli�es others.

Methods for proving laws of equivalence and proof techniques that simplify

reasoning about actor systems have been developed. Finally, the composition of

con�gurations de�nes an algebra.

Note that the model we have de�ned thus far does not capture mobility of

code. Speci�cally, �-abstractions cannot be communicated. Since behaviors are

modeled as �-abstractions, this implies that remote creation and migration cannot

be explicitly modeled.

12.3.3 Actors and Concurrent Programming

In addition to the asynchronous message passing paradigm used by the Actor

model, other paradigms have also been used for implementing concurrent systems.

A detailed treatment of these can be found in [6]. In the shared variable paradigm,

processes communicate by writing to and reading from memory locations shared by

them. Although the apparent simplicity of this paradigm is appealing, it violates

principles of abstraction and encapsulation, making it di�cult to implement large

systems reliably. Among the issues such implementations have to address include

support for mutual exclusion, the ability to disallow all but one process to access

a set of shared variables, and condition synchronization, requiring that a piece of

code in some process be not executed until some condition is met.

A classic problem in concurrent programming is called the critical section prob-

lem, in which n processes execute inde�nitely long alternating between sections
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of code that do and those that do not access some shared variables. The part of

code that does access these variables is called the critical section. The objective is

to provide mutual exclusion, while preventing deadlock/livelock or an unnecessary

delay, and ensuring that every process attempting to enter its critical section does

eventually do so.

A construct that can be used to solve the critical section problem and many other

synchronization problems for shared variable systems is semaphores. Semaphores

provide a disciplined way for supporting condition synchronization by using values

of shared counters to control whether a section of code can or cannot be executed.

Conditional critical regions are an abstraction that groups together shared resources

and allows only conditional access to such groups.Monitors abstract this further by

limiting access to shared variables strictly through use of a �xed set of procedures.

The actor model abstracts over issues of low-level synchronization by encapsu-

lating the state of an object and its execution thread, and limiting communication

to asynchronous message passing. Actors thus provide an abstract level at which

to program and reason about agents. Synchronous communication and other more

complex communication mechanisms can be built on top of the basic asynchronous

communication mechanism [5]. Moreover, as we will see later in this chapter, high-

level commit protocols can be used for agent-level synchronization.

12.4 Representing Agents as Actors

In developing multi-agent systems, a key issue to be addressed is mobility. Mobility

allows an agent to migrate from one node in the distributed system to another,

seeking a \better" execution environment. The increased 
exibility raises some

other important issues.

It may be desirable for an agent to migrate to a di�erent physical location for

a variety of reasons. These reasons may include lower cost of execution compared

to the current location, or improved quality of service. The need to migrate can

also be task speci�c. For example, if an agent needs to access huge amounts of data

at di�erent locations, it may make sense to migrate to those locations in order to

exploit better locality.

The above examples essentially assume that mobile agents are clients. On the

other hand, it is also possible to have server agents that roam around the network

looking for hospitable execution environments attempting to sell their services. This

may even take the shape of a partnership whereby server agents are allowed to exist

on nodes, and the nodes can advertise the additional services thus made available

to attract other clients.

To support a system where agents can use resources available \elsewhere" in

a satisfactory way, it is important to have some notion of an economy. Such an

economy would provide the basis on which nodes would allow agents to use their

resources, and would serve as an environment that would enable nodes and agents

to get into binding contracts about the services needed.
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A complementary issue to limiting the resources consumed by an agent is that of

supporting an agent or an ensemble of agents in pursuit of their goals. The system

must provide means for agents serving the same interest to cooperate, or otherwise

not impede each other's progress.

12.4.1 Mobility of Actors

Because Actor semantics is location transparent, systems based on the model (e.g.,

[18]), do not allow actors to reason about their locations. This limits the use of

migration to system level decisions where only system level goals such as load

balancing can be considered. To take advantage of agents' ability to autonomously

decide whether, when and where they want to migrate, we need to extend the Actor

model with notions of location and mobility.

A precursor to true migration is the ability to create an actor at a remote site. The

Actor programming language Hal [3] uses annotations to govern actor placement

at creation.

Example 12.2 Distributed Filtered Search

Consider a variation of the Filtered Search example we saw earlier, where the tree

is distributed over many nodes. New actors for searching the subtrees are created

at nodes hosting the roots of the respective subtrees. We assume that the tree is

non-empty.

(defActor FILTERSEARCH ()

(let ((filter (lambda (list)

... )))

(method (cust tree)

(if (= (num-children tree) 0)

(send cust (content tree))

(let ((jc (newActor COLLECT

(cust (num-children tree)

(list (content tree)) filter))))

(map

(lambda (x)

(let ((f (newActor FILTERSEARCH ())

@ (host-of x)))

(send f jc x)))

(children tree))

(ready FILTERSEARCH ()))))) 2

A similar construct, called trojan-multisend, sends new actors to a collection

of remote locations, along with the �rst messages that each will process [3].

True migration must allow an actor to migrate to a di�erent node while it is

in the middle of its execution. We will describe a speci�c way of providing this

functionality.



12.4 Representing Agents as Actors 515

First, we de�ne some important changes in the actor naming scheme that is

used, to allow migration to be represented. Because actors can migrate, we need to

identify an actor's current location. Speci�cally, we change the naming scheme for

identifying individual actors for the purpose of sending messages: an actor name is

now h:a, where a is a globally unique identi�er for any actor, and h identi�es the

node at which it currently resides. The important implication is that a name a at

any node in the system corresponds to the same actor. Practical implications of the

new name representation will be discussed shortly.

The message send that simply resulted in creation of a message from the standard

Actor semantics, now creates such a message locally in the host node's queue,

necessitating keeping track of which node a message is physically located at, at any

time. The transfer of a message from its current location to the target actor's node

is handled separately.

Migration can be represented in two ways: the agent language can provide a

migration primitive, or it could provide an agent with a way to grab its own state

and send it over (inside a message) to a remote node to create a duplicate with

that state; the original actor can then become a forwarder. Because a migration

primitive introduces greater semantic complexity, we choose to study the latter. A

ccf primitive can be introduced to grab the local state of an actor by enclosing

the actor's reduction context inside a �-abstraction. Using this primitive, we can

represent higher level operations as macros.

Example 12.3 Migration

A construct for migration, called migrate@h, may be de�ned as a macro. Without

loss of generality, assume that each host also has a manager actor h:m that acts

on behalf of the host and manages the host's resources. The ccf primitive is

used for grabbing the current continuation of the actor. Unlike Lisp/Scheme, here

continuations are local to a single actor; in Scheme, the continuation represents the

state of the entire sequential program|typically a much larger object. The function

given to ccf �rst sends a move request to the remote host's manager h.m to create

a new actor with the same personal name as the actor requesting migration, using

the reduction context enclosed in y as its behavior. It then changes the requesting

actor's behavior to WAIT-ACK. Assume we have a procedure getkey to generate

a new key every time it is invoked; personal-name returns the name of an actor

minus the host's identi�er.

(let ((k (getkey)))

(ccf (lambda (y)

(seq (send h.m move self y k (personal-name self))

(ready WAIT-ACK (h m k (personal-name self)))))))

Assuming that a move method is a part of h.m's behavior, it would accept the

message, create a new duplicate actor, and return an acknowledgment. The behavior

WAIT-ACKwaits for an acknowledgment from the remote host manager, containing

identities of the host and its manager, and a copy of the key sent with the request.



516 Concurrent Programming for DAI

(defActor WAIT-ACK (h m k a)

(lambda (ret-h ret-m ret-k)

(if (and (= h ret-h) (= m ret-m) (= k ret-k))

(ready FORWARDER (h.a))))))

To avoid the blocking semantics, the actor may add the method WAIT-ACK

to its current behavior rather than replacing with it. In such a case, until the

acknowledgment message is received the actor would keep acting as usual. Once

the message is received, it would change its behavior into that of a FORWARDER.

Note that because actor names are globally unique, there is no need to transmit

the complete name of the new actor. If a particular name is in use at multiple nodes,

only one of them corresponds to an actual actor; others have to be forwarders. An

important implication of this is that if an actor migrates to a node where the name

is already in use, it must be in use as a forwarder which can be safely overwritten

by the actual actor. 2

Example 12.4 Remote Creation

A construct for remote creation, remote-actor(e)@h, may similarly be de�ned as

a macro. As above, assume that h.m is the manager actor for the host h. Here,

the function given to ccf sends a newactor request to the remote host's manager

h.m to create a new actor with name a and behavior e, and changes the requesting

actor's behavior to WAIT-ADDR.

(let ((k (getkey)))

(ccf (lambda (y)

(seq (send h.m newactor self e k)

(ready WAIT-ADDR (h m y k))))))

Behavior WAIT-ADDR waits for the address of the new actor created remotely,

and after verifying all the information, it inserts the new address in the reduction

context contained in y.

(defActor WAIT-ADDR (h m y k)

(lambda (ret-h ret-m ret-k a)

(if (and (= h ret-h) (= m ret-m) (= k ret-k))

(ready (y h.a)))))

To avoid the blocking semantics in this case, the actor could perform a local

newactor to create a local actor with a migrate expression preceding rest of the

desired behavior. This would be facilitated by the fact that actor names do not

change as actors move from node to node. 2

Semantics of Mobile Actors

Transitions presented in Section 12.3.1 can now be modi�ed to address support

for migration. To identify an actor's current location, a superscript is added to the
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actor state representation that identi�es the host; recall that the subscript identi�es

the actor itself.

De�nition (7!):

e
�
7!Dom(�)[fag e

0
)




�; [e]h

a
�
���
�
7!




�; [e0]h

a
�
���
�

We assume that all creation is local and that only messages co-located on the

same host as an actor are consumed. Remote messages, actor migration, and remote

creation will be dealt with separately.

We keep track of which node a message is physically located at by attaching

a superscript to each message, identifying the host of the intended recipient. A

separate transition is added to represent the transfer of a message from its current

location to the target node.




�; [R[[newactor(e)]]]ha �

���
�
7!




�; [R[[h:a 0]]]ha ; [e]

h
a0 �

���
�

a 0 fresh




�; [R[[ready(e)]]]ha �; <a ( v>h

���
�
7!




�; [app(e; v)]ha �

���
�




�; [R[[send(h2:a2; v)]]]

h1
a1

�
���
�
7!




�; [R[[nil]]]h1a1 �; <h2:a2 ( v>h1

���
�




� �; <h2:a( v>h1

���
�
7!




� �; <h2:a( v>h2

���
�

The two transitions for interaction with actors outside the system remain un-

changed, except for the fact that the receptionists � and the external actors � now

contain actors as well as host managers.

The following last transition provides access to the local state of an actor,

which is needed to support migration. It introduces the primitive ccf, which grabs

the continuation by putting the reduction context R inside a �-abstraction, and

applying it to the given function v.




�; [R[[ccf(v)]]]h

a
�
���
�
7!




�; [app(v; �x:R[[x]])]h

a
�
���
�

x =2 FV(R[[nil]])

Although these semantics explain the process of migration, note that to establish

the need to migrate, an agent must be able to observe its own state. The model of

computational re
ection provides a formal basis for an agent to have a representa-

tion of its own behavior. We will discuss re
ection in Section 12.5.1.

12.4.2 Resource Model

Resource allocation in multiagent systems is a problem that raises issues of reci-

procity as well as performance and security concerns. Nodes in a multiagent system

over the worldwide web, for instance, may be willing to be part of a multiagent

system if they receive something in return for allowing foreign agents to use their

resources. From the performance and security perspective, agents migrating to a

node may exhibit undesirable resource consumptive behaviors, either individually,
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or as ensembles. Similarly, network channels are a scarce resource requiring controls

on how they may be used.

We may use an economic model to protect against resource consumptive behavior

of agents in a multiagent system. Recall that control in agent systems is not based

solely on programming structures, as agents may create or invoke other autonomous

agents. Such autonomy makes it important to devise explicit mechanisms for

controlling the extent to which an expanding group of agents, working on a

single task, can utilize a system's resources. In an open distributed system, the

problem is compounded by the ability of agents to exist in a resource space not

entirely dedicated to their computations alone. We need mechanisms to support

bounding the resource utilization of individual agents, or ensembles of agents

working together, according to the terms under which they are allowed access to

those resources.

Example 12.5 Bounded Distributed Filtered Search

Consider a variation of the Distributed Filtered Search application described earlier,

where we want to control the amount of resources that can be consumed in pursuit

of the goal. The typical message send to an actor with behavior FILTERSEARCH

will contain a value res representing the resources allocated for the task:

(let ((FS (newActor FILTERSEARCH ())))

(send FS self tree res))

The system will strip the value res from the message, and keep track of the

resources remaining at any time. The agent would have read access to the current

value of this quantity by asking the system.

The application keeps creating new agents to search subtrees as long as it has

resources, and stops when only delta remains. We assume that delta represents

su�cient resources for transmitting results to the client. part represents the agent's

consumption strategy that tells it what portion of the available resources may be

allocated to a sub-task.

Because there isn't a way to know how many messages jc should expect at the

time of its creation, its initial behavior is set to TELLCOLLECT, which waits

for a count of the number of responses to expect. After receiving that message, a

TELLCOLLECT actor uses the value in replacing its behavior with COLLECT.

(defActor FILTERSEARCH ()

(let ((filter (lambda (list)

... )))

(method (cust tree)

(if (= (num-children tree) 0)

(send cust (content tree))

(let ((jc (newActor TELLCOLLECT ()))

(count 0))

(map

(lambda (x)
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(if (> (my-resources) delta)

(let ((f (newActor FILTERSEARCH ())

@ (host-of x)))

(send f jc x (part (my-resources)))

(setf count (+ count 1)))))

(children tree))

(send jc cust count (content tree)

(part (my-resource)) filter)

(ready FILTERSEARCH ()))))))

This example does not account for resources needed for agents to survive on a

node while they are inactive.

Note that an agent's resource consumption strategy is independent of the system's

ability to pull the plug when the resources run out. Needless to add, any attempt

to send more resources to another agent than it possesses, would be trapped by the

run-time system. 2

To implement an economic model, we will use the notion of a universal currency.

Speci�cally, resource allocation will be measured in a common currency called gcu

(for global currency unit). Every computational activity would be allocated some

gcu's which can be used in completing the task. Because activity in message-based

systems is triggered by a message send, these gcu's can be allocated at message

send time. But note that what is counted as resources is the physical and logical

computational resources needed to service a message. This is not the only use of

resources; agents residing at a host waiting for something to happen, for instance,

also use resources such as memory. Thus, the notion of computational resources

must be broad enough to include all entities in the system whose use by one agent

can a�ect the performance of rest of the system. The amount of time devoted to an

agent by the processors, the memories, the disks and the channels, are all resources

which need to be paid for. The analog of renting resources seems to apply more

accurately than that of purchasing.

In addition to the resources consumed while progressing towards accomplishing

their goals, individual agents may sometimes be waiting for information from

elsewhere, or for reasons of coordination. Such waiting consumes memory resources

which must be accounted for. At the same time, an agent should not have to pay

if the idle wait is increased by the host's scheduling choices. Thus, it is important

to represent resources both in terms of individual agents as well as in terms of the

larger application they are serving at a particular hosting node. Only the delays

caused by co-agents in an application should be charged.

Similarly, it is important to distinguish between economic boundaries in an open

distributed system and the physical boundaries between computational nodes. Al-

though resources such as network bandwidth usage depend on physical boundaries,

costs of other resources would more logically vary as one crosses economic bound-

aries.
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Semantics of Resource Bounded Agents

In developing the semantics for representing resource allocation, we add a value r to

the agent state (we now use the term agent instead of actor), to represent the units

of universal currency (gcu's) available to the agent. The con�guration also includes

� to represent the system map, which includes all the host agents representing the

nodes, and the network connecting these nodes. [s]h says that the host agent h

has state s. We treat the host agents separately because they are not mobile, and

because the fact that a host's state may determine the cost of its computational

resources, makes it important to keep track of its state changes.

We are also introducing two new functions. Tst is a function that takes the current

state of a host and the transition being applied, to give the next state. This function

is applied to all members of � being e�ected by a transition. Tres(a;h) is a function

that represents a contract between an agent a and the node h hosting it, and

determines the cost (in gcu's) of performing a transition t when the host is in

state s (
t
7! will be used to represent transitions, where t is a variable representing

the speci�c transition taking place). Such a contract would be reached at after a

process of negotiation between the agent and the host. Note that this function is

very general because it allows the cost of the services to vary as the host's state

changes.

De�nition (7!):

e
�
7!Dom(�)[fag e
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�; [e; r]h

a
�; [s]h �

���
�

t
7!




�; [e0; r � Tres(a;h)(t ; s)]

h

a
�; [Tst(t ; s)]h �

���
�

if r � Tres(a;h)(t ; s)

The transitions for newactor and ccf expressions remain identical to those for

mobile actors, except that the actor is charged for the cost of performing the

transitions.

Because it is the send primitive that initiates a new activity, a certain number of

gcu's has to be sent along with the message for pursuing the activity. So, in addition

to the cost of the transition, the wealth of the sending actor is also reduced by r0.

As the activity is entirely local, only the local host's state changes.

The complementary activity of transferring a message from one node to another

represents change in states of both the nodes as well as the state of the network

sn. We make a convention that the cost of this transfer is always incurred by the

sender. Because of this, it is important to identify the sender of the message, for

which we add a subscript to the messages to represent the sender's identity. The only

amount charged for transferring a message is the network cost Tnet(h1; h2; j v j; sn)

of transferring a message of size j v j. We assume that any cost of handling the
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message at both ends of the channel is negligible in comparison and can be ignored.




�; [R[[send(h2:a2; v ; r
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���
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Receipt of a message simply results in addition of the gcu's sent in the message

to the wealth of the receiving agent.




�; [R[[ready(e)]]; r]h
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Following are the two transitions representing communication with the outside

world in the form of transfer of a message to or from the system. Because the cost of

such a transfer is to be incurred by the sender, there is no need to represent a cost

in the transition when a message is received from outside the system. Transferring a

message out of the system does result in a cost that will be incurred by the sending

agent. The host state changes occur in the network, the local host h1, and in the

host h2 of the external actor, but because the external host is itself not included in

�, its state change is not represented in the transition.
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�; [e; r � Tnet(h1; h2; v ; sn)]

h1
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���0

�

if h2:a2 2 �, and �0 = � [ (FV(v) \ Dom(�))
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���
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if h1:a1 2 � and FV(v) \Dom(�) � �

Finally we need a transition rule to represent the cost of an inactive agent residing

at a host. As explained earlier, this cost is complicated by the fact that we do not

want to charge an agent if the wait is caused by factors associated purely with the

host itself. Essentially, we want to charge the agent if there is no message in the

system for it, for the time that its co-agents are executing. This would make sense

if the host's scheduler would schedule an application scheduler for each application,
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rather than scheduling individual agents directly. In this way, the rent for the

memory being used can be charged only for the time for which the application

is scheduled.




�; [R[[ready(e)]]; r]h1a1 �; [s]h1 �
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�; [R[[ready(e)]]; r � �]h1a1 �; [Tst(t ; s)]h1 �
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if <h:a ( [v; r0]>h2
h2:a2

=2 � for any v; r0; a2 and h2

and t is a transition in some co-agent of a1

12.5 Agent Ensembles

Individual agents are not much more powerful than conventional sequential pro-

grams. However, by exploiting parallelism, distribution and mobility, ensembles of

agents promise orders of magnitude greater computational power than conventional

programs. Before the promise can be realized, the dynamicity and uncertainty in

such systems poses a number of problems. To allow agent ensembles to operate

e�ectively, we need to provide the ability to organize groups of agents in interesting

ways. Speci�cally, there are two kinds of concerns we have to address. First, the

contexts in which they execute and interact need to be dynamically customizable.

Second, the interactions of di�erent, potentially overlapping groups of agents, need

to be mediated to ensure shared protocols. We describe the programming model

that has been developed to provide the requisite 
exibility.

12.5.1 Customizing Execution Contexts

An agent traveling from node to node seeking a�ordable resources may �nd itself in

environments that by default do not meet some of its requirements for execution.

For example, an agent may need some helper agents that could be asked to perform

specialized tasks, as is the case with a library of plug-ins. In order to ensure the

appropriate execution context, the agent could ensure that an acceptable context

already exists at the host before migrating there. Alternately, it could customize

the context at arrival.

In some cases, the execution of an agent needs to be mediated, contained,

scheduled, etc., to meet requirements such as security, real-time, or Quality of

Service (QoS). Because the implementation of such requirements is dependent on

the physical and logical resources available, the underlying architecture supporting

agents must be customizable. It is essential for the ability to customize the execution

context that the code for requirements such as QoS be implemented separately from

the code for the application functionality. For example, if the agents encoding an
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Figure 12.2 Computational Re
ection

application are assigning their own priorities and schedules, it is not very feasible

to schedule them in order to satisfy real-time requirements.

Customization of the execution context is accomplished using a technique called

re
ection [22]. Re
ection allows an application to monitor the execution of the

underlying system and to modify it dynamically (Figure 12.2).

Re
ection

In general, models of re
ection enable interaction of higher level operations, such as

real-time constraints, and lower level information about the execution environment,

such as load distribution over a group of processors, available network bandwidth,

etc.

Because the Actor model allows the state of the computation to be modeled

directly, the computation environment called the meta-level architecture can be

represented at an appropriate level of abstraction using the same base language [32].

Speci�cally, this allows use of re
ection enabling an agent to have a continuous

interaction with the environment to determine available resources and relate it to

its own state to provide evolving resource consumption strategies.

In Rosette [31], a commercially developed object-oriented implementation of an

Actor architecture, the architecture has an interface layer and a system environ-

ment. The interface layer provides mechanisms for monitoring and control of ap-

plications, where the system environment contains actor communities which im-

plement resource management policies, providing monitoring, debugging, resource

management, system simulation, and compilation/transformation facilities.

To support re
ection of the interface layer, Rosette uses three classes of resource

actors to abstractly implement an actor: container, processor, andmailbox. Contain-
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ers model the storage local to actors, in a way similar to frames in knowledge-based

systems. Each container is a set of associations (slots) of keys with values, which

are both other actors. Additions and deletions of slots model allocations and deal-

locations of storage. Processor actors determine how to determine the method for

responding to a message. Mailbox actors bu�er incoming messages until they can

be processed.

Suppose we want to ensure the availability of some agent where its absence may be

catastrophic. We may replicate the service to ensure availability when the original

server fails. In the following example adapted from [2], we will see how such a

replication service may be provided.

Example 12.6 Replicated Service

We can use meta-actors called dispatchers to trap out-going messages, and mail-

queue meta-actors to trap in-coming messages, for every actor. When a service

request arrives for the server, its dispatcher can forward a copy of the request to

the alternate servers too. When the servers respond with results, their responses are

tagged with an identi�er for the request. At the client end, the mail-queue meta-

actor can use the tag to discard extra copies of any response. A manager in charge

of replicating a service takes the following actions to achieve the state shown in

Figure 12.3:

A

B

C

serveMailq serveDis

b2b1 b 3

repDis repDis repDis

MailQueue

Dispatcher

Key:

Message send

Causal Connection

Figure 12.3 When a message is sent by the clients A or C to the replicated service

B, the message is received by B's mail queue serveMailq (1). The message is then

sent to each of the replicas (2).
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1. The speci�ed server is replicated by a manager by creating actors with the

same behavior and acquaintance list.

2. A mail queue is installed for the original server to make it act as the distributor

described above. Messages destined for the original server are broadcast to the

replicas. A broadcast using ssends (synchronous sends) is done so that all

replicas receive messages in the same order and thus solve the same task.

3. The dispatcher of the original server is modi�ed to act as the collector de-

scribed above. The �rst message out of each set of replica responses is selected

to be passed to the destination.

4. The dispatchers of the replicas are changed to forward all messages being sent

to the original server's dispatcher. In addition, the messages are tagged so

that the original server's dispatcher can eliminate multiple copies of the same

message.

The new mail queue for the original server is described using the following behaviors:

(defActor SERVEMAILQ (data members)

(method get (who)

... )

(method put (msg)

;; A bcaster actor broadcasts msg to members

(bsend (newActor bcaster msg) members)))

(defActor BCASTER (msg)

(method (l)

(if (not (null? l))

(ssend (car l) msg)

(send self (cdr l)))))

Note that message order is being preserved in the broadcast. We use ssend

function to guarantee consistent state at each replica. bsend is a remote procedure

call (blocking send). Figure 12.3 shows the resulting actions occurring when a

message is sent to the replicated service. The original server is actor B. When

a message is received by the distributor, serveMailq (B's new mail queue), the

message is broadcast to the replicas b1, b2, b3. Each of the replicated actors has

the same base-level behavior as B. Therefore, upon receipt of the message, each

bi responds in the same way B would have. However, if the replicas respond

to the message, the message destinations would be rerouted by the dispatchers

repDis to the original server's dispatcher, serveDis (serving as the collector). For

each response, serveDis gets three messages, one from each replica. It processes

the three messages and sends out a single response to the original destination.

Note that the base-level actor B does not receive any messages now since all the

incoming messages are redirected to the replicas by its mail queue serveMailq and

the outgoing messages are sent by the dispatchers of the replicas directly to its

dispatcher serveDis. 2
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12.5.2 Interaction Protocols

Ability of the system to cope with new kinds of failures of a few nodes or parts of

the network is essential in a distributed system. A variation of the problem appears

when we are dealing with systems where \failure" is the norm, such as distributed

systems using wireless communications where the network connectivity is essentially

dynamic [15].

When introducing mechanisms for fault-tolerance, it is important to separate the

fault-tolerance aspects of the code from the application for reasons of modularity

and reusability. In this section we will discuss an abstraction over the primitive Ac-

tor model called interaction policies. Interaction policies determine what protocols

to use in dealing with a failure situation.

An interaction policy may be expressed in terms of the interfaces of actors

and implemented by using appropriate protocols to coordinate actors. A protocol

imposes a certain role on each participating actor. In essence it mediates the

interactions between actors to ensure that each relevant actor implements its end

of the interaction policy.

Notice that the implementation of such protocols can be quite involved: it involves

exchanging a number of messages between participating actors. Current techniques

for developing distributed software require developers to implement interaction

policies and application behavior together, signi�cantly complicating code. The lack

of modularity not only makes it hard to reason about code; it limits its reusability

and portability. Moreover, the resulting code is brittle: modifying an interaction

policy to satisfy changing requirements requires modifying the code of each relevant

component and then reasoning about the entire system, essentially from scratch.

In the �rst place, in standard programming models, we cannot even express an

interaction protocol as a program module; to do so we require the ability to write

meta-programs with distributed scope. An interaction protocol imposes a role for

each actor, speci�cally, trapping and tagging incoming and outgoing messages to

implement the protocol. Such customization of an individual actor's mail system

may be further limited only for the duration of an interaction.

Sturman and Agha have developed a language for describing and implementing

interaction policies [29, 30]; using this language, a protocol abstraction may be

instantiated by specifying a particular group of actors and other initialization

parameters. The runtime system must then support speci�c forms of re
ection,

which are su�ciently powerful to enable dynamic modi�cation of the mail system

and to store and retrieve actor states, or other parts of the meta-architecture.

Now notice that the semantics of actor systems in the presence of protocols is

quite di�erent from the semantics of ordinary (the so-called base-level) actor sys-

tems. Our pragmatic experience suggests that reasoning about distributed applica-

tions is simpli�ed by our meta-programming system; after all, code size is reduced

by at least an order of magnitude, and the application is decomposed into more intu-

itive units corresponding to the requirements speci�cation. However, the semantics

of meta-level operations remains poorly understood. Recent research based on ac-
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Component

Component

Interaction Policy

Figure 12.4 A distributed system consists of a set of components carrying out

local computations and interacting in accordance with a set of policies.

tors has made progress on the problem of reasoning in the presence of meta-actors,

speci�cally, by de�ning a reasoning system and using it to prove the correctness of

a meta-level algorithm for taking a global snapshot of a running distributed system

of actors [32].

12.5.3 Coordination

Dynamic, virtual organization of agents can be accomplished by using coordination

mechanisms to express a wide variety of interactions. Coordination is a key design

concern for a multiagent system. Since each problem-solving agent possesses only

incomplete information which represents a local view of the overall system, and

limited computational power, it must coordinate with other agents to achieve

globally coherent and e�cient solutions. Coordination can be viewed from three

di�erent perspectives: the information content, the exercise of control, and the

coordination mechanisms [26]. The information used for coordination can be data,

new facts discovered, partial solution/plan, preferences, or constraints. What one

would like to develop are reusable abstractions for coordination which allow agents

to play a richer variety of roles.

As a gross simpli�cation, temporal coordination can be seen as an abstraction of

synchronization, the problem of determining when actions take place rather than

what individual actors do. Hence, coordination constraints are an abstraction of

synchronization constraints, constraints on the order of actions.

It turns out that two types of synchronizations are often useful. The �rst type im-

poses precedence constraints on otherwise asynchronous events at di�erent actors,

and the other requires such events to be atomic (loosely speaking, to co-occur). By

providing a language abstraction, called synchronizer to express these two types of
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constraints, we are able to show that the task of distributed programming may be

further simpli�ed [10]. Because synchronizers may be superimposed, and may be

dynamically added or removed, implementing such a system e�ciently proves to

be a fairly challenging but is nevertheless feasible. The following example is due to

Frolund [11].

Example 12.7 Coordinating Robots

Consider two coordinating robots. Each robot has an arm and a hand, and it can

grab a widget with its hand, and lift and move it using its arm.

A single robot can be modeled as a part-whole hierarchy where the robot object

serves as an interface between a user and the robot components. When told to move

a widget from point p1 to point p2, the interface tells the arm the hand to p1, tells

the hand to grab the object, tells the arm to move the hand to p2, and �nally tells

the hand to release the object. At the completion of any request, the component

(hand or arm) informs the robot object about the completion. For instance, the

hand would send the message releaseDone

Here, we'll consider the case where two robots are to cooperate in moving widgets.

The top level object is a logical robot composed that serves as an interface for the

composed physical robots. These composed robots are allowed to share a widget

that is at a position reachable to both. A request may involve movement of a single

robot or it may need cross-robot movement. To service a latter type of request to

move a widget from p1 to p2, the interface robot would tell robot closer to p1 (the

passer) to move it from p1 to psh, the shared position, and next tell the other robot

(the receiver) to move it from psh to p2. The passer would in turn communicate

with passerHand and passerArm and so on. Depending on the physical details of

the environment, cross-robot movement may have integrity requirements, such as:

Totality: The top level message must send a move message to both or neither of

the robots. If only one robot can be dispatched, the widget may get \stuck" at

the shared position, preventing cross-robot movement involving other widgets.

Collision avoidance: At most one widget may occupy the shared position at any

time.

Sequencing: During a cross-robot movement, the �rst robot must release the

widget before the second robot grabs it.

A synchronizer to coordinate cross-robot movement would have to represent each of

these requirements. The totality and collision-avoidance requirement are satis�ed

by putting an atomicity constraint, that requires move requests to both robots to be

dispatched at the same time. The sequencing requirement is satis�ed by disabling

receiver's hand from grabbing the widget while passer is active, and by installing

triggers that would alternate the value of passerActive between T and nil, as

it is dispatched move and releaseDone messages (by composed and passerHand,

respectively).
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(defSynch robots (passer receiver receiverHand start end shared)

(let ((passerActive nil))

(atomic (request-when (passer.move from to)

(and (= from start) (= to shared)))

(request-when (receiver.move from to)

(and (= from shared) (= to end))))

(disable (request-when receiverHand.grab passerActive)

(trigger (-> (request-when (passer.move from to)

(and (= from start) (= to shared)))

(setf passerActive T)))

(-> (request-when passer.releaseDone T)

(setf passerActive nil)))))

The robots synchronizer template is instantiated by the top-level object

composed for each cross-robot movement. 2

Synchronizers can be very e�ective in enforcing system level coordination require-

ment such as the need to avoid redundant work. Note that in a multiagent system,

multiple agents serving the same interest often end up performing the same execu-

tion sequences without knowing about each other. At the system level, such redun-

dant activity could be avoided by using appropriate synchronization constraints to

disable requests for an activity following the �rst one.

Example 12.8 Real-Time Constraints

RTsynchronizers [24] o�er one way of implementing real-time constraints using

an abstraction similar to that for the declarative coordination constraints discussed

earlier. RTsynchronizers are objects that enforce real-time constraints by constrain-

ing whether or not messages of a certain type can be delivered to an actor at a

certain point in time.

Consider a variation of the Producer/Consumer problem where the produced

object must lie in the bu�er for a certain amount of time before being removed

Producer(){

methods:

put();

other();

}

Consumer(){

methods:

get();

other();

}

Cons.get

RTs

Cons.Prod.

Constraint

Constraint Context

Prod.put

Figure 12.5 Producer/Consumer with Time-Bounded Bu�er.
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by the consumer. A Time Constrained Producer/Consumer problem can be im-

plemented by writing writing the code for the usual Producer/Consumer problem

without explicitly considering the time constraint (Figure 12.5). Then, separately

an RTsynchronizer can be declared with the time constraint that would prevent

the Consumer's get request to be delivered until the required amount of time has

elapsed. The declaration are translated into the correct scheduling of actors, if such

a translation is feasible. 2

12.5.4 Naming and Groups

In multiagent systems, it is important to be able to access new services that become

available and to know when existing servers no longer exist. This necessitates a

pattern based naming scheme that identi�es agents as being members of groups

and allows communication with agents that are not individually known. These

group identi�ers can also be used in de�ning protocols.

Groups of agents are an important unit of representation; for example, in de�ning

protocols we can assign roles to a group of agents rather than an individual agent.

Moreover, it is often necessary to communicate with agents whose address is not

previously known. In other words, we need support for a Yellow Pages service to �nd

addresses of agents of a given type. Traders in object request broker architecture

perform a similar function.

The ActorSpace model allows an abstract speci�cation of a group of actors [7].

An actorspace associates an actor with speci�c attributes; the sender of a message

speci�es a destination pattern which is pattern-matched against the attributes of

actors in the actorspace. The model may also be seen as providing a distributed

version of the blackboard [8] system for broadcast communication. A simple analogy

Car

Customer

St.  Wheel Manufacturers

Wheel Manufacturers
Seat Manufacturers

Chassis Manufacturers

Request
Supply

Assembly

Figure 12.6 A car assembly factory. The assembly sends requests to actorspaces

whose membership may dynamically change.
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with set theory illustrates the di�erence between naming in actors and actorspaces.

A set may be de�ned by enumerating its elements, or by specifying a characteris-

tic function which de�nes a subset in a domain. The �rst method is analogous to

actor communication (where an explicit collection of mail addresses of actors must

be speci�ed), whereas the second method corresponds to actorspace communica-

tion. Of course, in conventional mathematics the two ways of characterizing sets

are equivalent since the properties of mathematical objects are static; by contrast,

actors may dynamically change their attributes. Actorspace provides a transparent

way of managing groups of actors. It generalizes the notion of ports in process cal-

culi, where object identity is also not uniquely de�ned, but pattern are degenerate.

Figure 12.6 shows a simple example of an actorspace. A car assembly requires

certain types of parts which may be available through di�erent vendors, sets that

may themselves be changing over time. Which vendor �lls a request may not be

germane to the assembly process. Such requests may be mediated through an

actorspace. Finally, meta-level operations may be associated with an actorspace.

For example, an actorspace manager may transparently schedule requests to ensure

load balancing.

12.6 Related Work

There are two aspects to programming multiagent systems|the mechanisms de�n-

ing an individual agent's behavior (its computational engine), and mechanisms

to support coordination between agents. Computational engines of individual au-

tonomous agents in DAI have traditionally piggybacked on advances in conventional

AI. In addition, DAI research has addressed issues related to communication and

coordination among agents. At the linguistic and system level, a focus of the DAI

research has been to provide the abstractions and tools necessary to develop agents.

We will call a system providing such linguistic and system level support an agent

architecture.

One of the earliest testbeds for building agent architectures was provided by

the MACE system [12], which executed in a distributed memory multiprocessing

environment. Based on the experience of this research, Les Gasser [13] outlined the

avenues of cooperation between the areas of DAI and concurrent programming, and

how the two �elds can be brought closer to each other. The current proposal draws

part of its inspiration from the insights obtained by that research. More recently,

an actor-based DAI system called InfoSleuth [35] has been developed at MCC.

Genesereth [14] de�nes an agent as an entity that is able to communicate correctly

in an agent communication language, thereby emphasizing the expressiveness of

such a language. Programs may be converted into software agents by rewriting them

so that they have the needed communication ability, or by employing transducers or

wrappers to achieve such functionality. Facilitators keeping track of capabilities of

agents implement a federated system of communication providing a pattern-based

message sending facility.
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The Knowledge Query and Manipulation Language (KQML) [9, 21], described

in detail in Chapter 2, is a message-handling protocol that aims to provide an

e�ective platform for agent communication by addressing fundamental components

of (i) a common language, (ii) a common understanding of exchange knowledge, and

(iii) an ability to exchange the two. KQML messages communicate an attribute

called attitude along with the message content. The language primitives, called

performatives, de�ne actions permissible to agents in communication. There are

special agents called facilitators that provide support in identifying agents and

services, brokering agreements, etc.

The term Agent Oriented Programming has been coined by Shoham [27] to refer

to a specialization of Object Oriented Programming (as in actor programming),

where the state of an actor (now called an agent) contains beliefs, capabilities,

choices and similar mental notions, and the computation consists of agents' social

interactions with each other, such as informing, o�ering, accepting, rejecting,

competing, assisting, and so on. The latter idea is derived from speech act literature

(e.g.[25]) which categorizes speech in similar ways. Each agent runs a loop in which

it �rst reads the current message, updating its mental state, and then executes the

commitments for the current time. Munindar Singh [28] has developed a theoretical

framework for reasoning about intentions, know-how and communications.

A multi-level architecture for multiagent systems is described by Werner [33]

where a meta-architecture is de�ned to formalize users', programmers' or designers'

interactions with an open system. Michael Kolb's CooL (Cooperation Language)

[19] provides a higher level of abstraction with respect to agent design than the actor

paradigm, but it gives a knowledge and execution perspective on agents rather

than employing mental states. It is possible to give a high level speci�cation of

cooperation by negotiating a cooperation object (e.g. goal, plan, schedule) or by

synchronizing mutual execution of a plan.

Another context in which the term agent has recently been used is the world wide

web (WWW), and there has been an explosion of interest in building agents, in this

community too. The use of the term agent in DAI and in WWW has di�erent but

related meanings. In both contexts, agents are mobile, persistent pieces of code that

execute autonomously. In DAI systems, agents may be more complex pieces of code

exhibiting intelligence, either individually or collectively; while in the context of the

WWW, this is not necessary. We give two examples to illustrate such agents.

A popular language that provides support for concurrent programming is Java.

This language, however, is not based on any formal model of concurrency. It

allows multiple threads to run concurrently, but unlike actors, Java objects and

threads are separate entities, and its passive object model fails to abstract over

units of concurrency. The synchronize primitive provided for enabling safe usage

of concurrent threads is a very low-level facility and its overuse by paranoid

programmers often results in deadlocks. This separation of object and thread also

creates a problem for migration. By providing Actor primitives in the form of a

library, the Actor Foundry [20] developed at OSL attempts to put a discipline for

system development in Java.
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The Mobile Agent Facility Speci�cation by the Object Management Group

[17] makes a case for standardizing areas of mobile agent technology to promote

interoperability. These include agent management, transfer, naming (agent as well

as agent system), agent system types and location syntax.

Telescript [34] addresses using a public network as a platform on which third-

party developers can build their applications. This platform is based on a remote

programming paradigm that uses Mobile Agents (MA) that can migrate from a

client to a remote server and execute remotely on behalf of the client.

Cybenko's group at Dartmouth [16] addresses the issues in implementing mobile

agents in an environment consisting of computers, which are often disconnected

from the network. Cybenko's mobile agent system, AgentTcl reduces migration to

a single instruction, provides transparent communication among agents (hiding all

transmission details), and provides a simple scripting language as the main agent

communication language while allowing straightforward addition of new languages

and transport mechanisms.

12.7 Conclusions

The ability to coordinate the behavior of agents in agent ensembles is a key challenge

for Distributed AI. We are just beginning to understand the concept of agent and the

requirements for supporting their execution. A platform for supporting multiagent

ensembles needs to provide scalable mechanisms for safe and e�cient execution over

open networks of computers. No such architectural platform currently exists today.

We have presented some basic notions that are necessary to support programming

agents for DAI, but it is by no means the complete picture. In particular, the un-

derlying platform must control ways in which resources are accessed and managed.

The chapter has described how resource allocation policies may be represented at

the agent level. Research on techniques for resource allocation continues and will be

able to borrow from previous work in subject areas as diverse as operating systems

and economics.

Our current understanding of agent semantics is still primitive. For example,

there is no well developed equational theory of agents. Because such a theory would

allow rigorous reasoning about the behavior of agents, it is very important to the

problem of security. Speci�cally, nodes must be protected against malicious or buggy

agents. One idea is that a host could verify the relevant properties of an agent before

admitting the host in a less protected mode. Because �nding a proof of a program is

computationally very expensive (it can be intractable), agents could carry proofs of

their programs that the hosts check. Checking an existing proof is computationally

much less expensive.

Another approach to security is to sandbox the agents. This technique, partially

employed by the programming language Java, physically separates the space occu-

pied by an important piece of code (such as that for an agent), to prevent it from



534 Concurrent Programming for DAI

a�ecting the node's operation in any undesirable way. However, because Java's

sandboxing model does not limit the physical or logical resources consumed by

imported code, it is insu�cient for preventing deleterious agents. A third possibil-

ity is authentication of agents. Hosts would allow access to agents based on prior

knowledge or by checking certi�cation provided by trusted registries.

From a di�erent perspective, because agents can spawn other agents, multiagent

systems must also be able to control the activity of ensembles of agents. The

behavior of an individual member of an agent ensemble may be quite reasonable, but

the behavior of a group of agents can be chaotic. We have a number of examples

where the outcome of collections of autonomous processes result in this kind of

phenomena. Consider two of them. A ferry sunk as all the passengers rushed to one

side in response to a perceived emergency. A power outage in a small area caused a

cascading outage. Economic models of control, such as those in markets, may be one

approach here. However, for reasons that are apparently not entirely understood,

the short term behavior of markets with human players can itself be quite chaotic.

The development of programming language constructs to allow high-level descrip-

tion of behavior for scalable agent ensembles must await a better understanding of

what we need to represent. What is now better understood is how to separate the

description of agents functional actions from that of other aspects such as naming,

scheduling, and synchronization. These modularity and abstraction mechanisms

that have been developed in concurrent programming in general go a long way

towards providing the basis for designing and experimenting with powerful agent

systems.

12.8 Exercises

1. [Level 1] Security is an important concern in multiagent systems. Systems

may be threatened by harmful activities of individual agents or by ensemble

of agents a�ecting system performance by their collective activity. One such

concern, resource consumptive behavior, has been discussed at some length in

this chapter. Describe other speci�c ways in which security is threatened in

such systems by collective behavior of agent ensembles.

2. [Level 1] Download an Actor system and use it to implement a parallel

search of a distributed n-ary tree. You can �nd a Java-based Actor system

at <http://osl.cs.uiuc.edu>.

3. [Level 1] Describe at least three di�erent schemes for implementing actors in

Java. Discuss the advantages and disadvantages of the design decisions in each

scheme.

4. [Level 2] Implement an interpreter for an actor language and develop a single

processor simulation of actors for executing programs written in this language.

5. [Level 2] Extend the semantics developed in this chapter to incorporate a yel-

low pages service. Speci�cally, provide a way of representing and maintaining
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ActorSpaces, and write new transition rules needed to express communication

in a system employing ActorSpaces.

6. [Level 3] In an actual implementation of an agent architecture, it may be

unreasonable to assume that the resources needed to complete a task can be

predicted reliably, requiring a more complex mechanism by which agents may

request more resources from, or return unused resources, to a sponsor. These

sponsors may be created by client agents as managers of resources available

to a task. Extend the semantics described in this chapter to incorporate a

reasonable scheme employing such sponsors. Note that potential frequency of

sponsor-agent communication may preclude having remote sponsors; similarly,

a naive scheme may result in the sponsors becoming a bottle-neck.

7. [Level 3] Agents in a multiagent system may be organized in di�erent ways. An

example would be a group of agents learning to solve an optimization problem

using the genetic algorithm. Implement such a system and study its ensemble

level behavior.

8. [Level 3] Consider several representative types of organizations of agents and

study potentially chaotic behaviors that may result at the level of ensembles.

Speci�cally, analyze systems organized as markets and �rms. What types of

desirable emergent behaviors can you expect to result from such organizations.

9. [Level 4] Design and implement an agent architecture. Document the assump-

tions you make about how agents and agent ensembles would use the archi-

tecture.
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13 Distributed Control Algorithms for AI

Gerard Tel

13.1 Introduction

Centralized intelligence currently makes place for networked, or distributed intel-

ligence. The Webster program on my computer illustrates it all: it has no built-in

dictionary, but responds my queries by Internet access to an American server, yet

outperforms any lookup in a paper version. Collecting resources in any computer is

uneconomical, specialized resource servers are easier to maintain, and access cost

is low due to cheap communication technology.

Network Computations. Computations in networks of processing nodes, each

holding a part of the inputs and/or resources initially, can roughly be classi�ed into

centralized, duplicated, or distributed computations. A centralized solution relies on

one node being designated as the computer node and possessing the resources to

process the entire application locally. All input data and relevant resources are sent

to this node, and after local processing the computer sends the relevant output data

to each of the other nodes. A duplicated solution sends all input data to each node,

after which each node processes the entire application and throws away all output

data except those it needs itself. The 
agrant waste of computing resources can be

economically justi�ed only if the output data (which is not transported here) far

exceeds the input data in size. Duplicated computation is used to compute routing

tables in the Internet [24, Sec. 5.5].

This chapter concerns distributed solutions, where the processing steps of the

application are divided among the participating nodes. Even when not explicitly

based on a sequential algorithm, each distributed solution can be seen as containing

a sequential one consisting of the combined computation steps of the participants. In

addition the distributed solution contains communication actions for the exchange

of intermediate results and coordination; our goal is to minimise communication

and computation cost.

Afek and Ricklin [1] observe cost bene�ts of an intermediate strategy where

computation is concentrated in several computing centres. Awerbuch and Peleg [4]

reach similar conclusions, but a discussion of such solutions, though we would still

consider them as distributed, is not possible in this chapter.
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13.1.1 Model of Computation

The distributed model is characterised by a collection of autonomous processing

elements, called nodes. In addition to some computing and storage resources, each

node has the possibility to exchange information with some of the other nodes;

these are referred to as its neighbors and the communication takes place through a

link (also called edge).

We denote by n the number of nodes (or size) of the network and by m the

number of links and thus the network can be represented as an undirected graph

on n vertices and with m edges. We use D for the diameter of this graph. We

assume the graph to be connected, which implies m � n � 1. It is not assumed

that the nodes know this graph; representing it in every node would be costly, and

contradicts the aim of processing each bit of input where it belongs. Storing some

derived topological information, such as n, m, or the diameter of the graph, would

be feasible, but it is usually super
uous.

The neighbour relation can be de�ned by the hardware, for example in processor

networks where the neighbors are those processors to which the node is physically

connected. Alternatively, the application can de�ne this relation, for example, in

Belief Networks [31], where each node stores information about a stochastic variable

and communicates with nodes storing some related variables.

Symmetry. In this chapter it is not necessary to make a distinction between nodes

on the basis of their resources (computing or storage nodes) or role (such as clients or

servers), but we do assume two distinctions. First, nodes are identi�ed by unique,

uninterpreted tags (names) and initially each node knows its own tag and those

of its neighbors (neighbourhood knowledge is assumed). Second, a single node is

distinguished to act as an initiator of computations; this only means that this node

executes a special program (usually just an additional start procedure), not that is

has extra capabilities or resources.

These assumptions are natural because they can be met at low cost when

implementing a distributed system; distributed algorithms research has investigated

their in
uence on the power of the model.

In terms of network computing power, one of these assumptions su�ces and they

are equivalent [28]. If only identities are given, we may use an election program

to choose one node as an initiator; such a program should of course not rely on

the existence of an initiator, and would output, for example, the largest identity

[13, 29]. If no initial identi�ers are known while an initiator is distinguished, it may

start a network traversal to assign unique names. A di�erent situation arises in

anonymous networks, where neither identities nor initiator are given; Rosenstiehl

et al. [21] established 25 years ago that these networks can compute fewer functions.

No function that requires to break symmetry can be computed deterministically;

with randomised algorithms, naming and election can be performed, but only if the

nodes initially know the size of the network [27, Chap. 9].
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Communication. In this chapter, the communication between nodes is bymessage

passing and has two operations, send and receive. Parameters for the send are: the

recipient, which is a neighbors of the calling node, and the message, which is some

piece of information; it will be transported to the mailbox of the recipient. The

receive operation removes a message from the node's mailbox; it can complete only

if a message is available, and returns the message and its sender. If there are no

messages the operation is suspended; if there is more than one message, either of

them can be returned.

We further assume that communication is asynchronous, which means that the

completion of a send operation does not imply that the message has been received,

or even, that it was delivered in the recipient's mailbox. All we assume is that it

will eventually be available for reception because we assume reliable communication.

The time between sending a message and its delivery at the receiver is unpredictable

and may vary between channels and even between messages.

Only one temporal relation can be derived, namely, that the message is sent

before it is received; we also assume that each message is received only once. This

distinguishes message passing from communication by writing and reading a shared

variable; it is cumbersome to ensure that each item written to such a variable is

read (and processed) by the reading node exactly once.

13.1.2 Complexity Measures

The asynchrony in the communication causes the execution model to be non-

deterministic; indeed, a distributed program may allow di�erent executions on the

same data depending on the scheduling of the events. When discussing complexity

we shall always consider the worst case over all possible schedules.

Communication, Time, and Storage. The �rst goal in analysis of distributed

algorithms is to compute the amount of communication by the algorithm; usually,

as the number of messages exchanged in a computation. Only if messages in some

solution are exceptionally large (contain more than, say, a few data items), we must

be more precise and count the bits in each message, for example, in the \linear"

depth-�rst search algorithm of Section 13.2.1.

The time complexity represents the duration of the computation, and is expressed

in terms of the slowest message in the computation. This compares with the

classical sequential time complexity, which does not really measure time but instead

counts consecutive operations. The parallelism in the distributed model complicates

matters slightly. Consider node p sending messages m1 and m2 to neighbors q and

r, respectively; after receiving m1, node q sends message m3 to r and this message

arrives at r before message m2. This small example, illustrated by the space-time

diagram of Figure 13.1, contains a message chain of length 2, namely message

m1 followed by m3 (sent after receipt of the former). However, the entire chain is

formed during the transmission of the single message m2, and hence we say the

time complexity of the example is 1.
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Figure 13.2 The local processing controversy.

We ignore local processing when computing time complexities; the time involved

in processing is considered \small compared to the transmission delays." Two small

examples may illustrate the controversy; see Figure 13.2. First, a server p polls k

neighbors one by one by sending a message and receiving a reply; each request

being sent upon receipt of the previous reply. The time complexity is 2k because

polling each neighbors costs 2 time units, one for the request and one for the reply,

and this repeats k times. Ignoring the processing time between receiving a message

and sending the next one appears acceptable, because no waiting is involved, and

it does not change the asymptotical complexity.

Alternatively the server may poll its neighbors in parallel by sending a request to

each and then collect the answers; now the time complexity is 2 because all requests

are sent without waiting, and the last reply must arrive at the server after at most

2 time units. The de�nition of time complexity assumes that the time for sending

the k requests, and the time for processing the k replies, is negligible.

The storage complexity expresses the amount of memory used by the algorithm;

sometimes computed in bits, but it is usually convenient to assume larger units,

\words," each capable of storing an identi�er or integer.

Discussion. We might be tempted to compare the complexity of a distributed

algorithm to the complexity of sequential algorithms for the same problem. When

comparing, sequential time should not be compared to distributed time, but to

message complexity. Indeed, in the sequential model, \time" actually measures the

total amount of \work" because time actually counts the instructions executed

sequentially. In the distributed model, \work" corresponds to messages, because

the work performed by nodes can usually be charged to sending and receiving
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messages; see Algorithm 13.15{13.18 for an example. Distributed time accounts for

the speedup that is achieved by the parallelism inherent in the model, but also

penalizes for nodes that must wait for data before continuing their execution.

It is usually observed that the communication complexity for processing the

network topology is at least linear in m, which is the input size for topological

problems. For graph exploration, for example, this can be shown formally [27,

Chap. 6] because each link must carry at least one message. Task that require

processing a constant amount of information for each node (such as a sum of

distributed inputs, see Alg. 13.11) can be performed with O(n) messages using

spanning trees or cycles. A message complexity below O(n) is not possible for tasks

that require cooperation of each node.

The worst case w.r.t. time complexity occurs when all messages are exchanged

one after the other, and the time complexity then equals the message complexity.

A straight-forward distribution of a sequential algorithm (see Section 13.2.1) often

results in both message and time complexity being equal to the sequential time

complexity (i.e., �(m)). If all processing for each node can be performed in constant

time, the overall time complexity becomes linear in the size of the network (n) and

this is often possible, as we will see.

A fast algorithm is one that uses sub-linear (i.e., o(n)) time. Fast computing is

not easy; Garay et al. [11] present an algorithm for Minimal Spanning Tree that

runs in O(D + n0:614) time, but the solution appears a bit arti�cial. The message

complexity of the fast solution is large (unknown though), while message optimal

solutions (exchanging O(n logn +m) messages) exist with linear time complexity

[3, 10]. We shall discuss a distributed depth-�rst search algorithm whose time is

proportional to the depth of the DFS tree, while again message complexity rises

sky-high.

The network diameter serves as a time lower bound for all tasks that require

coordination between all nodes (including every task that requires consensus in the

output), because no information can be communicated across the network in o(D)

time. Linial [15] gives examples of tasks (Maximal Independent Set, Colouring) that

can be solved by local computations, i.e., in sub-diameter time, and Litovsky et al.

[16] have further investigated the power of local computations.

13.1.3 Examples of Distributed Architectures in AI

Distribution may be driven by several factors, such as the wish to speed up

computations by using more hardware, or the availability of resources.

Multiprocessor computers. Sometimes an application can be processed by a

single computer (in a sequential model) but this is just too slow. The solution

is a multiprocessor computer, such as an array of 16, 128, or more processors

connected by a high-speed communication network. The steps of the computation

must be allocated over the available machines, but as the architecture does not

match the application, this is usually a di�cult task. The ideal allocation shares
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the computation load as good as possible, while achieving a low communication

overhead (due to the exchange of intermediate results). See Section 13.4.5.

Resource distribution. In some situations distribution is not a choice, but is

enforced by the availability of necessary resources at di�erent locations. Consider,

for example, the problem of planning several university committee meetings. Com-

mittees that share a professor may not overlap their meetings, but to decide if

some date is available, the member's agenda must be consulted. Finding out if the

members can go from one meeting to the other in time requires inspection of bus

and train time tables. To see if rooms are available, the cooperation of the room

reservation systems at the various universities is necessary.

Each of the mentioned resources runs at a �xed location, so the planning

application must include distributed problem solving; we shall consider distributed

constraint satisfaction in Section 13.4.

Belief Networks. A Belief Network models hypotheses and statistical dependen-

cies between them in a graph. The computations to update the information in this

network are naturally distributed over the nodes, where each node may need in-

formation from its neighbors to do the update. Each node in the graph can be

described as a process, communicating with its neighbors processes. The physical

location of the processes then becomes irrelevant: for the application it does not

matter if all nodes are on the same machine, or distributed over various machines.

In Section 13.5 we show that processing the network structure (computation of a

loop cutset) can be described in the same model.

13.2 Graph Exploration

This section describes algorithms to compute spanning trees in an undirected

network, that is, partition the set of edges into tree edges (these will be directed

from parent to child) and non-tree edges. At the end no node will see the entire

tree, but only the status of its own links (tree or non-tree).

The problem of computing weight-minimal trees has received attention in the

literature [10], but where unit-cost links are assumed all trees are weight-minimal

and we shall not address this problem. We illustrate the algorithms by giving

pseudocode with Pascal-like (mostly self-explanatory) syntax set in typewriter font.

As a convention we shall use a subscript u when reasoning about a variable of node

u (as in lau), but because in a distributed algorithm a node can access only its own

variables, the subscript is omitted from the pseudocode.

13.2.1 Depth-First Search

In the sequential setting, depth-�rst search has been in wide use since the late

1950's, especially in Arti�cial Intelligence, as a technique for exploring solution
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var visited[u]: bool init false ;

procedure dfs(u):

if not visited[u]

then begin visited[u] := true ;

forall v in Neigh[u] do dfs(v)

end

Start the algorithm: dfs(u0)

Algorithm 13.1 Sequential depth-�rst search.

spaces for problems. Its importance for graph processing was recognised by Hopcroft

and Tarjan and results from the simplicity of the algorithm (O(m) sequential time)

combined with an attractive structural property of the constructed tree, namely,

that the two endpoints of any non-tree edge are connected by a directed path in the

tree.

Sequential depth-�rst search is implemented by a short recursive procedure

(Alg. 13.1); the �rst call of dfs(u) recurses on all neighbors, while subsequent calls

return immediately. Calls to node umay be nested, i.e., a second call to u may occur

while the �rst one is still active, but in this case the second call returns immediately

because visited [u] is set when entering the procedure. The start node u0 is the root

of the constructed tree, and each other node becomes a child of the neighbor from

which the �rst call of dfs(u) was made (this is not shown in Alg. 13.1). Alg. 13.1

makes two recursive calls through each edge.

First distributed solution. In the distributed model, control is passed from one

node to the other by exchange of a message, so each recursive call uses two messages:

one for the call and one for the return. Some saving can be achieved; node u will

not place a call to its father, and node u will not call the procedure on neighbour v

if a call was earlier received from v and returned. The reason is in both cases that

the neighbour has already been visited and would return the call immediately.

To describe the operation of node u in more detail, consider the receipt of a

message from neighbour v. If u has sent a message to v earlier, the received message

is a return message and u selects a next neighbour for placing a call; when the

neighbors are exhausted, u sends a return message to its father or, if u is the

initiator, terminates. Otherwise, the message is a call from v; if this is the �rst call

for u, designate v as the father and send a message to another neighbour. If a call

was received before, a return message is sent to v immediately.

Alg. 13.2 uses variable statusu[v] to indicate if the link from u to v is unused,

father, or cal or ret if a call or return was sent through the link. It is not necessary

to use di�erent messages for a call and a return because the nature of the message

can be derived from the context as argued above. Consequently, the algorithm uses

only a single type of message, denoted [dfs].
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var visited bool init false ;

status[v] init unused (* for each neighbor *)

Start the algorithm (initiator only!):

visited := true ;

for some w in Neigh do

begin send [dfs] to w ; status[w] := cal end

Upon receipt of [dfs] from v:

if not visited then

begin visited := true ; status[v] := father end ;

if status[v] = unused then

begin send [dfs] to v ; status[v] := ret end

else if there is a w with status[w] = unused then

begin send [dfs] to w ; status[w] := cal end

else if there is a w with status[w] = father then

begin send [dfs] to w end

else (* initiator *) stop

Algorithm 13.2 Distributed depth-�rst search (for u).

At the end, the link status is interpreted as follows. Each non-initiator has one

father link, leading to its father in the constructed dfs tree. A ret link was used

for returning a second or later call and hence indicates a non-tree link leading to

a descendant in the dfs tree. A cal link was used for placing a call, and this link is

either a tree link (if the call was the �rst one made on the neighbour) or a non-tree

link leading to an ascendant. If nodes must be able to distinguish between downward

tree links and upward non-tree links, this can be done by using two di�erent return

messages for returning the �rst and the subsequent calls.

Regarding the complexity of the algorithm, we observe that two messages are

exchanged through each link, hence the communication complexity is 2:mmessages.

As they are exchanged one after the other, the time complexity is also 2:m. The

algorithm uses in each node a number of bits proportional to its degree.

Awerbuch's linear-time solution. Exactly n�1 of the edges become tree edges,

so in the case that m signi�cantly exceeds n, the time complexity of the algorithm

is dominated by the calls and returns through non-tree edges. These calls do not

construct edges of the dfs tree; so if node u could be aware of its neighbour v being

visited already, the call to v could be skipped without a�ecting the outcome, and

the time complexity would be reduced signi�cantly.

This is exploited in Awerbuch's algorithm [2]; each node informs its neighbors

when it is visited for the �rst time, before forwarding any recursive calls. Of

course we still communicate through each edge, but informing the neighbors can

be parallelized and we save on time. When forwarding calls, the node now skips

neighbors that are known to be visited already (status done); see Alg. 13.3.
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Start the algorithm (initiator only!):

visited := true ;

forall x in Neigh do send [visit] to x ;

forall x in Neigh do receive [ack] from x ;

for some w in Neigh do

begin send [dfs] to w ; status[w] := cal end

Upon receipt of [visit] from v :

status[v] := done ; send [ack] to v

Upon receipt of dfs from v:

if not visited then (* �rst dfs is �rst call *)

begin visited := true ; status[v] := father ;

forall x in Neigh { fvg do send [visit] to x ;

forall x in Neigh { fvg do receive [ack] from x

end ;

if there is a w in Neigh with status[w] = unused then

begin send [dfs] to w ; status[w] := cal end

else if there is a w in Neigh with status[w] = father then

begin send [dfs] to w end

else (* initiator *) stop

Algorithm 13.3 Awerbuch's distributed depth-�rst search.

It uses three types of messages, namely [dfs] as before for the calls and returns,

[visit] messages to indicate that the sender was visited, and [ack] messages

to acknowledge these. The status of a link can be unused, father, cal, or done to

indicate that no [dfs] message was exchanged, but the neighbour has been visited.

The ret status is not used because no node ever receives a second call message; the

corresponding clause of Alg. 13.2 is removed from the response to a [dfs] message.

The algorithm still communicates only a constant number of bits per edge, but

the message complexity is now 4:m, which is seen as follows. On a tree edge uv, u

informs v about being visited at the expense of two messages, and the call on v by

u costs two messages; no [visit] message is sent by v to its father. On a non-tree

edge uv the nodes u and v mutually inform each other of being visited, both at the

cost of two messages.

The algorithm exchanges 2 [dfs] messages through n � 1 links, to a total of

2n�2 messages and these are exchanged in a chain. Each time a node is visited for

the �rst time the 
ow of [dfs]messages is interrupted for exchanging [visit] and

[ack] messages, which takes two time units. Hence the time complexity is bounded

by 4n� 2. A slightly better result was obtained by Cidon [6].

Linear-message solution. Calls and returns through non-tree edges can be

avoided without sending additional messages; see H�elary et al. [12]. In these

solutions a node is not informed about a neighbour being visited by receiving from

that neighbour, but instead the call and return messages include a complete list
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Start the algorithm (initiator only!):

S := f u g ;

for some w in Neigh do

begin send [dfs,S] to w ; status[w] := cal end

Upon receipt of [dfs,S] from v :

if not (u in S) then (* �rst message is �rst call *)

begin S := S + fug ; status[v] := father end ;

if (exists w in Neigh with w notin S) then

begin send [dfs,S] to w ; status[w] := cal end

else if (exists w in Neigh with status[w] = father) then

begin send [dfs,S] to w end

else (* initiator *) stop

Algorithm 13.4 Linear-message depth-�rst search (node u).

of nodes already visited. Indeed, placing a call on any neighbour is avoided if that

neighbour occurs in the list; see Algorithm 13.4, where we eliminated the visited

variable because a node can inspect the message to �nd out if it was visited before.

The algorithm illustrates various observations regarding communication complex-

ity and its relation to \amount of work." The total number of messages is reduced

to 2(n� 1), but at the expense of having very long messages; indeed the very last

message received by the initiator contains the full list of all nodes. The total length

of all transmitted lists is at least n2 � 1 and at most 3

2
n(n � 1) node names; we

observe a signi�cant di�erence between counting messages (message complexity)

and weighing them (bit complexity).

It is not reasonable to assume that Algorithm 13.4 requires only a constant

amount of local processing per sent or received message, because the search for an

unvisited neighbour requires to compare the received list of node names to the set

of neighbors. Finally, the algorithm requires a lot of local storage to represent the

S set. Concluding, the high bit complexity and the considerable local processing

and storage, make the algorithm unpractical in most realistic situations.

Fast solution. The fastest algorithm for distributively computing a depth-�rst

search tree is not obtained by simulating the sequential dfs algorithm, but by

exploiting a characterisation of the resulting type of tree.

De�nition 13.1

A rooted spanning tree of a graph satis�es the dfs property if for each edge uv,

either u is an ancestor of v or v is an ancestor of u.

(The usual de�nition of dfs trees is based on the construction procedure, from which

this property can be derived.)

Now assume an ordering on node names is available, and represent a path from

the initiator to a node as a string enumerating the nodes in the path.
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var la : string init infty ;

For the initiator only:

la := u ;

forall x in Neigh do send [path,la] to x

Upon arrival of a [path,rho] message from v:

receive [path,rho] from v ;

if rho.u < la then

begin la := rho.u ;

forall x in Neigh s.t. x not in la

do send [path,la] to x

end

Algorithm 13.5 The Relaxation algorithm.

Lemma 13.1

The set of edges formed by combining for all nodes u the lexically minimal simple

path (lmsp) from the initiator to u is a dfs tree.

Proof (Sketch!) The selected edges connect the graph because for each node at

least one path from the initiator is included. It is a tree because any pre�x of the

lmsp to u, say ending in vertex v, is the lmsp for v; this also implies that the tree

path from the initiator to u is the lmsp to u.

To show that the dfs property is satis�ed, consider neighbors u and v and let their

lmsp's be lmsp(u) and lmsp(v), respectively; assume without loss of generality that

lmsp(u) < lmsp(v). If node v is in lmsp(u), the pre�x of lmsp(u) up to v is a path

to v that is lexically smaller than lmsp(u), so assuming lmsp(u) < lmsp(v), v is not

contained in lmsp(u).

But then lmsp(u) concatenated with v, denoted lmsp(u) � v, is a simple path

to v and this implies lmsp(v) � lmsp(u) � v. Consequently, lmsp(u) < lmsp(v) �
lmsp(u) � v, which implies that lmsp(u) is a pre�x of lmsp(v), and u is an ancestor

of v.

As a consequence, a dfs tree can be constructed with a variation of Chandy and

Misra's algorithm [27, p. 120] for shortest path computation; see Alg. 13.5. Variable

lau is node u's approximation of its lmsp; the approximations are initialized to

1, a string exceeding all other strings, and remain conservative in the sense that

lau � lmsp(u).

The approximation is decreased when node u obtains information about a simple

path to u that is lexically smaller than lau; that is, upon receipt of a [path, �]

message such that � � u < lau. The updated lau is propagated to the neighbors

because the smaller path to u may result in a smaller path to the neighbour also.

This propagation and the subsequent processing of the message is called a relaxation

over the edge to the neighbour.
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Only �nitely many messages are exchanged by the algorithm, because the mes-

sages sent by any node correspond to smaller and smaller paths, all of bounded

length (n�1 hops) because they are simple. It is not particularly hard to construct

an example where exponentially many messages are exchanged.

We call node u ready if lau = lmsp(u); no changes in lau occur after u becomes

ready, because no path smaller than lmsp(u) is ever proposed to u. It can be shown

that, for v the second last node in lmsp(u), if edge vu is relaxed after v becomes

ready, then u is ready also.

Lemma 13.2

Within t time units after the initialization by u0, every node with an lmsp of length

t or smaller is ready.

Proof This is done by induction on t; indeed, because no string starting with u0
is ever lexically smaller than the string u0, the initiator is ready immediately at the

initialization.

Assume u has an lmsp of t+1 hops, with second last node v. Node v has an lmsp

of t hops, hence at some point, within t time units after initialization, there is a

relaxation that makes v ready. At this moment, v sends its new estimate lav , now

lmsp(v), to u and this message is received within a time unit. After this relaxation,

that is, within t+ 1 time units from initialization, u is ready.

We conclude that the algorithm constructs a dfs tree exchanging a large, but

�nite, amount of messages in time proportional to the depth of the tree. The

algorithm can be fast in some cases, but other graphs have a dfs tree of linear

depth.

The relaxation algorithm introduces another problem in distributed computing,

namely that no node can directly observe the termination of the construction.

Indeed, all nodes will end in the receiving state, where their approximations equal

the actual minimal paths, but the nodes are never sure that no smaller paths will

ever be proposed. We study the termination detection problem in Section 13.3.

The algorithm can also be used without prior de�nition of an initiator; if all

nodes execute the initiating code, the network will converge towards a spanning

tree with the smallest node as the root. Indeed, the paths starting in this node

are all lexically smaller than the paths starting in any other node, so every node

eventually accepts a path from the smallest node as the lexically minimal one.

Breadth-�rst search. A spanning tree has the breadth-�rst search property if the

tree path from the root to each node is a shortest path in the network. Sequential

computation of such a tree is very e�cient (O(m) work) but makes use of a data

structure, a queue, to temporarily store nodes that have been discovered, but were

not yet visited. The data structure plays an important role to ensure that the nodes

are visited in the correct order and the use of this queue makes breadth-�rst search

surprisingly di�cult to distribute.

The simplest algorithms explore the network by sending an explore message

through each edge (2m messages). To synchronise the exploration, coordination
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var rec : integer ;

father : neighbour ;

Algorithm for the initiator:

rec := 0 ;

forall v in Neigh do send [echo] to v ;

while rec < jNeighj do

begin receive [echo] ; rec := rec + 1 end

Algorithm for other nodes:

receive [echo] from w ; father := w ; rec := 1 ;

forall v in Neigh { fwg do send [echo] to v ;

while rec < jNeighj do

begin receive [echo] ; rec := rec + 1 end ;

send [echo] to father

Algorithm 13.6 The Echo algorithm (for node u).

from the root takes place after each level (of which there can be D) at the expense of

a linear number of messages. Consequently, the communication for the coordination

is of order D:n. In the worst case, D is linear in n, so the overhead is quadratic and

dominates the message complexity.

By exploring l levels between successive synchronisation rounds the number of

coordination messages is reduced to D:n=l but l exploration messages may be sent

through each edge. The resulting D:n=l +ml message complexity is minimised top
D:n:m with l =

p
D:n=m; choosing the best l requires a priori knowledge of D

and m. Even more sophisticated algorithms are known, but their complexity still

exceeds the complexity of the sequential algorithm signi�cantly.

The bottom line is that in the design of distributed algorithms, breadth-�rst

search should be avoided if possible; fortunately, there are alternatives.

13.2.2 Pseudo-Fast Exploration: the Echo Algorithm

In practice, a very fast exploration and spanning tree construction algorithm is

obtained if each node forwards exploration messages to all its neighbors in parallel.

The algorithm (Alg. 13.6) 
oods [echo] messages to all nodes, exchanges them

over non-tree edges, and \echoes" them back through tree edges.

In more detail, the Echo algorithm (Alg. 13.6) operates as follows. The initiator

start the exploration phase of the algorithm by sending messages to its neighbors.

Upon receipt of the �rst message, a non-initiator forwards messages to all neighbors

except the sender of that �rst message, thus messages are 
ooded to all nodes in the

network. Each node stores the neighbour from which the �rst message was received,

and the corresponding links form a spanning tree in the network.

The echo phase of the algorithm consists of the replies sent by each non-initiator

to its father; a node replies to its father after receiving one message from each
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neighbour (condition recu = jNeigh
u
j). It must be shown that node u eventually

receives a messages from each neighbour; for u's father this is obvious (it is u's �rst

message) and for the non-tree links it is easy to see. Indeed, if uv is a non-tree link,

then v sent a message to u upon its �rst receipt, hence u eventually receives this

message.

We can now show that the echo phase starts from the leaves of the tree and

propagates upwards to the initiator. Indeed, the leaves have no children and hence

will send to their father by the argument in the previous paragraph. Then the nodes

whose children are leaves can send to their fathers, and so on. This reasoning shows

not only that all nodes will eventually receive from each neighbour, but also that

the order in which this happens at the various nodes is determined by the tree

shape, and the initiator is the last node to terminate.

The echo algorithm constructs an arbitrary spanning tree (it can be shown that

every spanning tree of the network can be the result of the non-deterministic

exploration), which limits its applicability. On the other hand, the algorithm is fast

in practice; its time complexity in our model has frequently been misunderstood.

Because the exploration phase forwards [echo] messages immediately, all nodes

are reached by the exploration within D time units after initialization. The echo

phase returns messages over the same paths, and it is easy to be mislead in thinking

that this phase will also terminate in O(D) time. It is easy to show that the time

consumption is O(D) under very weak additional assumptions about the timing of

messages, and this explains why the algorithm is empirically fast; see the exercises 4

and 5.

Unfortunately, our theoretical model allows for worse executions [27, p. 217]. The

O(D) construction time of the tree does not imply that its depth is O(D) because

exploration messages over a long path may bypass messages over shorter paths.

That the echo phase sends messages over the same path does not imply that they

take the same time, because our model does not induce relations between various

transmission delays over the same link. Exploiting the �rst observation yields an

execution where a tree of depth �(n) is constructed in O(D) time, after which the

echo phase takes linear time.

13.2.3 Searching for Connectivity Certi�cates

We have seen that the construction of a spanning tree requires at least 
(m)

communication; it was recently discovered that the same amount of communication

can result in a much richer structure. This subsection de�nes (edge) connectivity

certi�cates of networks, and we shall show how to construct certi�cates sequentially

and distributively. We also give applications of certi�cates.

Connectivity and Connectivity Certi�cates. The local connectivity of nodes

u and v in G, denoted �G(u; v), is de�ned as the maximal number of edge disjoint

paths connecting u and v. (This function is related to transport capacity and

reliability as explained at the end of this subsection.) A connectivity certi�cate

is a subset of the edges preserving connectivity to a certain degree.
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De�nition 13.2

A subset E0 � E is a k-connectivity certi�cate if, with G0 = (V; E0), for all nodes

u; v 2 V �G0(u; v) � min(k; �G(u; v)).

For example, a maximal forest preserves 1-connectivity, because nodes that are

connected (through a path) in G are also connected in a maximal forest; nodes

in di�erent components of G remain unconnected in the forest, of course. Nodes

joined by multiple paths in G are joined by only a single path in the forest, so

higher connectivities are not certi�ed by the forest. Now extend the forest to a set

E0 of edges such that every edge contained in a cycle in G is also contained in a

cycle in E0. Then, if u and v are joined by two paths in G, the set E0 also contains

two such paths, and hence E0 is a 2-certi�cate.

It is most attractive to have small size certi�cates, but the computation of

minimal certi�cates is NP-Complete; a k-certi�cate is sparse if its size is O(k:n).

Computation of Sparse Certi�cates. Nagamochi and Ibaraki have shown

that sparse k-certi�cates can be computed e�ciently, namely by computing and

removing a maximal forest k times.

Theorem 13.1 [19]

Let Ei be any maximal forest in (V;E n [j<iEj); then [j�kEj is a sparse k-

connectivity certi�cate.

Computing k maximal forests can easily be done in O(k:(n + m)) time but

Nagamochi and Ibaraki achieved an O(n + m) algorithm by cleverly combining

the construction of the various forests.

Computing a maximal forest. A maximal forest is obtained by starting with no

edges (E0 = ;) and applying test(e) to every edge e (in arbitrary order), where

test(e) means:

if e introduces no cycle in E'

then E' := E' + {e} else reject e

Regardless of the test order the obtained structure is a maximal forest, but di�erent

test orders may yield di�erent forests.

In general it could require some e�ort to see if e introduces a cycle, but this e�ort

is eliminated by suitable test order strategy. Call a node active if it has untested

edges, and call a non-trivial tree of the forest active if it contains active nodes; the

test strategy guarantees at most one active tree at any moment. The strategy is: if

there is an active tree T , then select an active node u from it and test all its untested

edges; testing all untested edges of u is called a visit to u. Then, if there is an active

tree, adding some edges of u to E0 only extends T but does not introduce an extra

active tree, and only if there is no active tree, adding an edge may introduce one.

The uniqueness of the active tree implies that in a visit to u, edge uv introduces

a cycle if and only if v is adjacent to an edge in E0. Indeed, v is adjacent to the

untested edge uv, hence active, and so if it has an E0 edge it is in an active tree;
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because there is only one active tree, v is already connected to u through T . The

construction of the forest is: repeatedly select and visit an unvisited node, if possible

one that already has an adjacent E0 edge. The visit to u is: consider its untested

edges uv and include them if and only if v has no E0 edges yet.

Computing all forests simultaneously. We start the construction with all forests

empty (Ei = ;) and apply a basic ranking step rank(e) to every edge, where rank(e)

adds e to the �rst forest where e does not introduce a cycle.

i := smallest value s.t. e does not create a cycle in Ei ;

Ei := Ei + {e}

The ranking order will imply, as above, that every forest has at most one active

tree, hence edge uv creates a cycle in Ej if and only if v already has an edge ranked

j. Thus, when edge uv is ranked during a visit to u, its rank is the smallest rank at

which v has no adjacent edges yet. A crucial property follows: if any node has an

edge ranked i, it also has edges ranked j for all j < i; the highest rank of an edge

of a node will be called the level of that node.

Each forest will have at most one active tree, and the mentioned property implies

that a node active in forest i is also active in forest j for all j < i. Hence it su�ces to

select a node of maximal level and rank all its adjacent edges in order to construct

the required sequence of maximal forests.

Nagamochi and Ibaraki have shown that the entire ranking can be completed

in O(n +m) time in the sequential model. Their solution uses a centralized data

structure to store all unvisited nodes according to their level; the next visited node

is selected from it in O(1) time. Ranking an edge requires the data structure to be

updated, because an unvisited node is increased in level; moving the node from one

list to the list of next level is also done in O(1) time.

Distributed Certi�cate Algorithm. At �rst sight the centralized data structure

frustrates a distributed implementation, just as it is the case for breadth-�rst search.

However, Evens et al. [9] showed that the central data structure can be replaced

by a recursive search for unvisited nodes through the branches of the tree of the

highest active level. To this end, if node u receives a search message through an

edge of rank i, it forwards the message through all unsearched edges of rank i and

higher, highest ranks �rst.

In Algorithm 13.7, node u stores the rank of its adjacent edge uv in ranku[v] (0

if the edge is unranked), and the 
ag searchu[v] indicates if the search must still

be forwarded to v. Verweij [32] shows that this search procedure indeed visits at

each time the unvisited node of highest label. We summarise the properties of the

algorithm.

Theorem 13.2

Algorithm 13.7 exchanges 4m messages in 4m time and assigns a rank to each

edge in such a way that for each k, the edges with ranks 1 to k form a sparse

k-connectivity certi�cate.
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var rank[v] : int init 0 ;

visited : bool init false ;

search[v] : bool init true ;

procedure Visit:

begin visited := true ;

forall v s.t. rank[v] = 0

do begin send [rnk] to v ;

receive [ranked,i] from v ;

rank[v] := i

end

end

procedure Search(v):

begin if not visited then Visit ;

forall w s.t. search[w] and rank[w] >= rank[v],

in decreasing order of rank[w]

do begin search[w] := false ; send [srch] to w ;

receive [return] from w

end ;

if v = u (* Initiator! *)

then construction is terminated

else send [return] to v

end

Upon receipt of [rnk] from v:

rank[v] := smallest i>0 s.t. u has no edge ranked i ;

send [ranked,rank[v]] to v

Upon receipt of [srch] from v:

Search(v)

To initiate the search (Only the initiator!):

Search(u0)

Algorithm 13.7 The distributed certi�cate algorithm (for node u).

Ranking the unvisited edges of u (in procedure Visit) can be done in parallel to

reduce the time complexity to 2m+2n. If only a certi�cate for one given value of k

is required, the edges ranked higher than k need not be searched and the algorithm

uses 2k:n+ 2n time.

Applications. In communication networks, the local connectivity of u and v has

two important operational meanings, related to capacity and to reliability. First, if

each edge has a given data rate �, the existence of k disjoint paths between u and v

implies that an overall data 
ow of k:� can be transported from u to v. Second, the

edge disjointness of the paths implies that, as long as k � 1 or fewer links fail, at
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least one path between u and v remains una�ected. Consequently, �G(u; v) equals

both the maximal data 
ow between u and v, and the number of link failures that

can partition u from v.

Determining local connectivity. The local connectivity of u and v can be computed

by repeatedly searching for an augmenting path in the graph, until no more paths

are found. As this search may cost O(m) messages, this way of computing the

connectivity costs about O(�:m) messages (� = �G(u; v)).

A better complexity is obtained with certi�cates; after ranking all the edges, the

�rst uv path is searched in the edges of rank 1. The second augmenting path is

searched among the edges ranked 1 and 2, and the ith augmenting path is searched

among edges of rank up to i. Indeed, if i paths exist in G, the certi�cate property

guarantees that they exist in the union of the �rst i forests, so the restricted search

does not terminate inappropriately. Because the ith path is searched in a restricted

network with less than i:n edges, the total cost is O(�2:n), which is usually smaller

than �:m.

Testing global connectivity. Algorithms for computing 2- or 3-connected components

may pro�t from execution on a 2- or 3-connectivity certi�cate [14]. The certi�cate

can be computed in O(m) time and messages, and guarantees that the subsequent

connectivity algorithm has to consider only O(n) edges.

13.3 Termination Detection

A distributed algorithm terminates when it reaches a global state (con�guration)

in which no event of the algorithm is applicable. However, such a terminal con�gu-

ration does not imply that each node is in a terminal state, that is, a (local) state

from which no events are applicable, as is illustrated by Algorithm 13.5. Each node

awaits the arrival of messages in a receiving state, and reacts to their arrival by

sending some (possibly zero) messages. While a node always returns to a receiving

state (hence not explicitly terminated) the computation as a whole halts when all

nodes are simultaneously in this state and no messages are in transit.

This section discusses techniques to make termination explicit by distributively

detecting that the program has reached a terminal con�guration. A description of

the problem is given in Section 13.3.1, and we discuss two classes of solutions in

Sections 13.3.2 and 13.3.3.

13.3.1 Problem De�nition

The description of the termination detection problem abstracts away from the

purpose and operations of the computation in question, but concentrates on the

aspects relevant for termination. A node is assumed to be in either an active or a

passive state, where in an active state the node may send messages and in a passive

state it may not. (In Alg. 13.5 a node receiving a message immediately sends the
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var state : (act, pas) ;

Su: f state = act g
send [mes]

Ru: f A message [mes] arrives at u g
receive [mes] ; state := act

Iu: f state = act g
state := pas

Algorithm 13.8 Steps of distributed computation (node u).

resulting message and becomes receiving (passive) again. Here we model a slightly

more general situation where a node may already receive while still processing

previous messages.) The transition from active to passive may occur spontaneously

(namely, when the active node �nishes its current activities), but a passive node

can only be awakened by receiving a message. The operation is modelled by the

transitions in Alg. 13.8; again, the actual computation as well as the content of the

exchanged message are abstracted away from.

Receiving messages is impossible if no messages are in transit, and sending mes-

sages is impossible if all nodes are passive; becoming passive is clearly also impos-

sible in this case, and hence termination of Alg. 13.8 occurs when simultaneously

all nodes are passive and all channels are empty.

A termination detection algorithm is added to a distributed computation and

requires to make termination explicit. Detection requires executing some extra

statements with the operations of the computation, as well as exchanging some

extra messages for the detection purpose only. (These additional control message

do not render a passive node active, of course.) Correctness requires that (1) if the

computation terminates, this is detected within �nite time thereafter (liveness) and

(2) termination is not detected prematurely (safety).

The detection algorithms roughly fall in two categories. Tracing algorithms

follow the computation 
ow by tracing active nodes along the message chains

that activated them, and call termination when all traced activity has ceased.

Probe algorithms rely on global (coordinated) scans of the network state and call

termination when no activity is found. The distinction can be compared to that

between reference counting and mark-and-sweep type garbage collectors [30].

13.3.2 Tracing Algorithms

A tracing algorithm relies on knowledge of the set of initially active nodes, because

all activity of the computation originates from these nodes by message chains.

Dijkstra and Scholten's algorithm [8] assumes that initially exactly one node is

active; we call this node the root node.
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var state : (act, pas) init if u=u0 then act else pas ;

cc : integer init 0 ;

fat : node init if u=u0 then u else undef ;

Su: f state = act g
send [mes] ; cc := cc + 1

Ru: f A message [mes] from v arrives at u g
receive [mes] ; state := act ;

if fat = undef then fat := v

else send [sig] to v

Iu: f state = act g
state := pas

Au: f A message [sig] arrives at u g
receive [sig] ; cc := cc { 1

Tu: f cc = 0 and state = pas and fat != undef g
if fat = u (* Root node! *)

then Detect

else send [sig] to fat ; fat := undef

Algorithm 13.9 Dijkstra and Scholten's algorithm (node u).

Global description: Computation tree. The detection algorithm maintains,

during the distributed computation, a computation tree T , whose vertices are nodes

of the network and messages in transit; the root node is the root of T . Steps of the

computation trigger updates in the tree structure aimed at preserving the crucial

property of T :

at any time, all active nodes as well as all [mes] in transit are vertices of T .

In addition, control messages and passive nodes may be in T , but their presence

serves the maintenance of the tree rather than the correctness of the algorithm

directly. In view of this property, termination can be concluded if the root node is

passive and has no children. Indeed, the root node having no children implies T

contains only the root, so no [mes] are in transit and no node other than the root

is active; if the root is also passive we have termination.

Detailed description. Variable fat
u
is undef if u is not in the tree, points to u

itself if u is the root node, and points to u's father if u is a non-root tree node;

ccu counts the children of u in T . When active node u sends a [mes], this message

becomes a child of u hence ccu is incremented (action Su in Alg. 13.9). When u is

activated (action Ru) its membership of T must be ensured and this can be done

by assuming the sender of the [mes] as its father; the father cc is unaltered as

u replaces the [mes] as a child. If u is already in the tree, the [mes] is removed
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var la : string init infty ;

cc : integer init 0 ;

fat : node init undef ;

For the initiator only:

la := u ; fat := u ;

forall x in Neigh

do begin send [path,la] to x ; cc := cc + 1 end

Upon arrival of a [path,rho] message from v:

receive [path,rho] from v ;

if fat = undef then fat := v

else send [sig] to v ;

if rho.u < la then

begin la := rho.u ;

forall x in Neigh s.t. x not in la

do begin send [path,la] to x ; cc := cc + 1 end

end

Au: f A message [sig] arrives at u g
receive [sig] ; cc := cc { 1

Tu: f cc = 0 and fat != undef g
if fat = u (* Root node! *)

then Detect: construction completed

else send [sig] to fat ; fat := undef

Algorithm 13.10 Relaxation with Termination Detection (node u).

from the tree and a [sig] message is sent to its father to decrease the cc. Observe

that a passive node remains in the tree if it has children, and a childless node

remains in the tree if it is active; only if a passive, childless node is in the tree the

withdrawal action Tu takes place. A non-root node sends a [sig] to its father so

as to decrement the latter's cc, while the root node calls termination in this case.

Correctness, variations, discussion. It is far from trivial to �rmly establish

that the algorithm is correct and operates as described above, even under the

most exotic scenarios of the computation and its timing. The basic techniques

(invariant properties and variant functions) and their application to this algorithm

are discussed in [27, Sec. 8.1] but are outside the scope of this chapter. Actually,

the termination detection problem and the publication of several incorrect solutions

strongly motivated research in veri�cation techniques for distributed algorithms.

The algorithm can be applied to computations like Alg. 13.5, where the active

state is not explicit. The resulting fast DFS algorithm with termination detection is

shown as Alg. 13.10. The requirement that only one node initiates the computation

was relaxed by Shavit and Francez [22]; in their algorithm each initiator of the

computation traces a subset of the activity, and one round of global communication
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Figure 13.3 Compensated behind-the-back activation.

is used to determine that all traced activity has ceased.

The number of exchanged control messages equals the number of messages

exchanged by the underlying computation, and this was shown to be optimal in

the worst case. If a computation is started from a single node and the number of

exchanged messages is relatively small (linear in n orm, say), the Dijkstra{Scholten

algorithm is the termination detector of choice.

13.3.3 Probe Algorithms

Probe algorithms repeatedly scan the entire network for active nodes and compu-

tation messages; they are based on the principle laid out by Dijkstra, Feijen, and

Van Gasteren [7]. For simplicity of explanation we shall assume a special node (the

controller) to coordinate detection; the controller exchanges status reports with all

nodes.

In order to establish the absence of computation messages, each node maintains

a message de�cit, being the number of messages it has sent so far minus the number

of messages it received so far. At any time, the number of messages in transit equals

the sum of all de�cits, hence empty channels mean zero de�cit sum. In reply to a

request ([req] message) from the coordinator, each node sends a status report

([stat, m, c] message), but defers sending it until it is passive.

It is tempting to believe that, because the nodes were passive when sending

the report, the controller can detect termination if it receives status reports from

all nodes and the de�cits add to zero. However, unsafety results from the status

reports being produced at di�erent times, as is illustrated in the space-time diagram

of Figure 13.3. Node w was activated \behind-the-back" of the controller, but

the activating message m2 causes no negative de�cit because the de�cit was

compensated for by receiving m3 from w! Message m2 crosses the probe because it

was sent before the status report of its sender, but received after the status report

of its receiver, and m3 is said to cross the probe backwards.

Taking the status reports can be coordinated so as to prevent any message

from crossing the probe backwards, which would render the algorithm safe; the

status reports would then form a consistent snapshot cf. [5]. It is easier however,

to detect the possibility of any compensated behind-the-back activation; to this

end, each node also includes in its status report, whether any [mes] message was
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var state : (act, pas) ;

md : int init 0 ;

rec : bool init false ;

Su: f state = act g
send [mes] ; md := md + 1

Ru: f A message [mes] arrives at u g
receive [mes] ; state := act ;

rec := true ; md := md { 1

Iu: f state = act g
state := pas

Au: f state = pas and a [req] message has arrived. g
send [stat,md,rec] to controller ; rec := false

Code for the controller:

repeat t := false ; s := 0 ;

forall u do send [req] to u ;

forall u do

begin receive [stat,m,r] ;

t := (t and r) ; s := s+m

end

until ( t = false and s = 0 ) ;

Detect termination

Algorithm 13.11 Probe based termination detection (node u).

received since sending the previous report. If this is the case, termination is not

concluded; thus the receipt of a compensating backward message prevents detection;

the resulting algorithm is shown as Alg. 13.11.

Variations, complexity, discussion. The various probe based algorithms di�er

considerably, mainly in their treatment of in-transit messages, and the collection

of the status reports [25, 26]. Instead of counting messages as we have shown,

acknowledgements or time-outs can be used.

Instead of direct communication with the controller as in Alg. 13.11, probe

propagation through a Hamiltonian Cycle, or the Echo algorithm can be used for

status communication. To implement the latter possibility, the controller acts as the

initiator in the Echo algorithm. Status reports are sent upward in the constructed

spanning tree in an accumulated fashion, i.e., each node reports the sum over all

mdu and the conjunction over all recu of the nodes u in its subtree.

Instead of having an additional controller, one of the nodes of the computation

will perform the controller task in addition to the computation proper. In this way

it is not necessary to add either nodes or channels to the network solely for the

purpose of detection.
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Figure 13.4 The detection delay.

Probe algorithms are the detectors of choice in computations that exchange a lot

of messages, especially if many are exchanged in parallel. The reason is that probe

algorithms exchange a �xed number of control messages per probe, independent of

the number of basic messages. A good balance between detection overhead and

detection delay can be achieved by starting probes under the control of a timer (as

in [20].) Assume a �xed delay of � is introduced between the end of an unsuccessful

probe and the start of the next one, and that the duration of the probe is small

compared to �. After termination occurs, some of the nodes may have rec = true

so that the �rst probe started after termination fails to detect. The next probe �nds

all nodes with rec = false and thus termination is detected after at most 2� delay.

13.4 Distributed Arc Consistency and CSP

To demonstrate the application of the distributed algorithm techniques to dis-

tributed AI problems, we shall now study the distributed Arc Consistency algo-

rithm DisAC4; see also [20]. The Constraint Satisfaction Problem and consistency

�lters were also discussed in Chapter 4.

The Constraint Satisfaction Problem (CSP) and Arc Consistency (AC) are de-

�ned in Section 13.4.1, and the sequential AC4 algorithm is outlined in Sec-

tion 13.4.2. We then consider a resource distributed model, where the resources

for checking the consistency of a variable are located at a particular node. Sec-

tion 13.4.3 gives the resulting algorithm, where each node is assumed responsible

for one model variable, and Section 13.4.4 discusses termination detection for this

version. An alternative computational model, a multiprocessor computer, where

each node holds a subset of the variables, is considered in Section 13.4.5. Sec-

tion 13.4.6 discusses how the distributed AC algorithm can be extended to be used

in distributed backtracking CSP algorithms.

13.4.1 Constraint Satisfaction and Arc Consistency

A Constraint Satisfaction Problem is de�ned by a set of variables Z = fx1; : : : ; xng,
where xi must be assigned a value vi from a domain Di but subject to constraints.

The constraints are a collection of binary predicates Cij where Cij(v; w) indicates

if assigning v to xi is legitimate w.r.t. Cij if value w is assigned to xj . A solution to
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the problem is an assignment that is simultaneously legitimate for all constraints,

or, equivalently, in which no constraint is violated. It is usually assumed that

constraints are symmetric (that is, Cij(v; w) = Cji(w; v)), but symmetry is not

used in the algorithms of this section.

Finding a solution is computationally hard (the problem is NP complete) and

generally involves testing all or many possible assignments. The size of each domain

is assumed �nite (in order to express complexities we assume a uniform upper bound

jDij � a), but the number of possibilities is still exponential in n.

Arc Consistency is a polynomial technique that may help to reduce the search

space considerably; it deletes a value from a domain if some constraint is seen

to be unful�llable with this value. More speci�cally, consider constraint Cij and

assume that for some v 2 Di there is no w 2 Dj for which Cij(v; w) is true.

As Cij can not be ful�lled with xi = v, the value v in Di is redundant and

can be eliminated for further consideration. This elimination may lead to other

values becoming redundant in turn. A problem is called arc consistent if it has no

redundant domain values. The Arc Consistency problem is to restrict all domains

in a constraint satisfaction problem, so as to make the problem arc consistent but

without eliminating possible solutions.

Formally, given domains D1 through Dn, the Arc Consistency problem requires

to �nd D0
1
through D0

n
such that:

1. The domains are restricted: D0
i
� Di.

2. The restricted problem is arc consistent: No D0
i
contains a redundant value.

3. The output is maximally arc consistent: if sets D00
i
with D0

i
� D00

i
� Di are arc

consistent, then D00
i
= D0

i
for each i.

The third requirement implies that no solutions are eliminated: if (v1; : : : ; vn) is a

satisfying assignment, then vi 2 D0
i
for each i.

Usually not every pair of variables has a non-trivial constraint (a constraint

di�erent from true). The problem is modelled as a directed graph where the variables

are the nodes, and there is an edge from xi to xj if Cji is non-trivial. Let Succi
denote the successors and Pred i the predecessors of i in this graph and m the

number of edges.

13.4.2 The AC4 Algorithm

Mohr and Henderson [18] proposed the following data structures and algorithm for

detecting redundant values; see Alg. 13.12. For each xi, and each v 2 Di, an array

of counters is maintained, where the counter cnt [i; v; j] exists for each j for which

a constraint Cij exists. The counter cnt [i; v; j] expresses the number of values

w 2 Dj for which Dij(v; w) is true. When some counter cnt [i; v; j] equals zero,

the value v is redundant and is removed from Di. As a result, cnt [j; w; i] should

be decremented for all j; w such that Cji(w; v) and to this end the pair (i; v) is

queued for later processing. In this processing it is not necessary to evaluate the
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(* Initialize counters and support structures *)

forall Cij

do forall v in Di

do forall w in Dj

do if Cij(v,w)

then begin cnt[i,v,j] +:= 1 ;

Insert( Supp[j,w], <i,v> )

end ;

(* Check for initially redundant values *)

forall Cij

do forall v in Di

do if cnt[i,v,j] = 0

then begin Enque (Q,<i,v>) ; Delete(Di, v) end ;

(* Main loop *)

while not Empty(Q)

do begin Deque(Q, <j,w>) ;

forall <i,v> in Supp[j,w]

do if v in Di

then begin cnt[i,v,j] := cnt[i,v,j] { 1 ;

if cnt[i,v,j]=0

then begin Enque (Q,<i,v>) ;

Delete( Di, v)

end

end

end

Algorithm 13.12 Sequential AC4.

Cji predicate again, because all relevant information is stored in additional support

data structures Supp[j; w]. The set Supp[j; w] contains all pairs hi; vi for which

Cij(v; w) is true, or, equivalently, for which w is counted in cnt [i; v; j]. The main

loop of Alg. 13.12 shows how the relevant counters are decremented and how this

may make other values redundant in turn.

The size of the cnt arrays is at most m:a integers because (i; j) ranges over edges

of the graph. The size of the support structure is larger because for each constraint

Cij , all values in Dj may support all values in Di, in which case the Supp lists

together have m:a2 pairs. As each pair (i; v) is queued at most once, the queue

never holds more than n:a pairs. Thus, the storage complexity of AC4 is dominated

by the support structures.

Initialization of the data structures costs m:a2 time, the initial check for redun-

dant values takes m:a time, and the main loop may again take m:a2 time. The

resulting O(m:a2) time complexity is optimal for Arc Consistency [18].
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13.4.3 The Distributed AC4 Algorithm

In this subsection we shall describe a distributed implementation of the AC4

algorithm, �rst assuming that there is one computing node for each variable. Thus,

node i maintains the domain Di and holds the resources for evaluating Cij ; this

makes node i the place of choice to maintain cnt [i; v; j] as well. Neighbouring nodes

will communicate the elimination of nodes in order to enforce decrementing the

counters.

We shall now discuss the storage of the support structures. One possibility is

to store Supp[j; w] in node j and have j send a message to node i for each hi; vi
found in Supp[j; w]. However, if node j sends just one message to node i when

w is eliminated, node i must still evaluate Cij to �nd out for which v cnt [i; v; j]

must be decremented. If j sends a list of values v for which this is the case, the

communication complexity becomes very high.

Another possibility is to split Supp[j; w] over the various neighbors: the pairs

hi; vi are stored in node i. When node j eliminates w it will inform node i with a

single message, and on receipt of this message node i must consider all its pairs of

Supp[j; w]. This possibility is chosen in [20].

However, we observe that the support structure can be eliminated completely

without signi�cantly increasing the computational complexity of the algorithm.

Indeed, for each j; w the set Supp[j; w] is read just at most once, namely, when j

is eliminated from Dj . Our distributed implementation therefore uses a di�erent

decrement policy. When w is eliminated from Dj , rather than enumerating a stored

set Supp[j; w], we will test for each i; v if Cij(v; w) is true, and, if so, decrement

cnt [i; v; j],

The queue of the sequential algorithm is distributed over all nodes as the receive

queues (RQ) and send queues (SQ). Whenever node i detects v to be redundant, v

is placed in the local send queue SQi. An independent subprocess Si is responsible

for taking all values out of this queue and informs the neighbors by sending a

[remove, v] message. Incoming messages are bu�ered in the receive queue; an

independent subprocess Ri inserts all received values in this queue, and the worker

process Wi reads its input from this queue.

The elimination of support data structures reduces the storage requirements:

Algorithm 13.13 stores an array of a counters cnt i[�; j] (in node i) for each constraint
Cij , hence the overall storage requirement is O(m:a).

The initialization requires O(m:a2) time (as does the sequential algorithm) and

exchanges no messages. (If �i is the in-degree of node i, the computation for node

i is O(�i:a
2).) To this end we assume that node i knows the initial domain Dj ,

denoted as D0

j
, and counts, for each v, the number of supporters in this initial

domain.

To assess the communication and computation cost of the processing phase, �rst

observe that each value w 2 D0

j
is deleted from Dj and queued in SQj at most once

because of the test in procedureRedundant . Consequently, each arc in the constraint

graph carries at most a messages, to a total message complexity of O(m:a). Each
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var D init Di (* Domain *)

cnt[v,j] (* Count support *)

SQ,RQ (* Send and Receive queue *)

procedure Redundant (v):

if v in D then

begin Delete(D, v) ; Enque(SQ, v) end

Initialization (for each node):

forall j in Pred

do forall v in D

do begin cnt[v,j] := 0 ;

forall w in Dj^0

(* Node i knows the initial set Dj *)

do if Cij(v,w)

then cnt[v,j] := cnt[v,j] + 1 ;

if cnt[v,j] = 0

then Redundant(v)

end

Wi: f Receive queue RQ is not empty g
Deque (RQ, <j,w> ) ;

forall v in D

do if Cij(v,w)

then begin cnt[v,j] := cnt[v,j] { 1 ;

if cnt[v,j] = 0

then Redundant (v)

end

Ri: f receive [remove,w] from node j g
Enque (RQ, <j,w> )

Si: f SQ is not empty g
Deque ( SQ, v) ;

forall j in Succ do send [remove,v] to j

Algorithm 13.13 Distributed AC4 Algorithm (node i).

value received is enqueued for later processing, and this processing (action Wi)

consists of a loop over (at most) a values in Di. The local computation cost is

therefore bounded by O(m:a2) steps, hence the initialization phase still dominates

the computation.

The distributed time complexity is O(n:a); indeed, at most this many values are

eliminated altogether, and the redundancy of some value is detected at most one

time unit after its last supporter was eliminated.
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13.4.4 Termination Detection

Termination of Alg. 13.13 is implicit, because after the elimination of all redundant

values the nodes will be in a receiving state, ready to receive and process further

[remove, �] messages. Fortunately, application of the results of Section 13.3 is

straightforward. De�ne pas(i) to be the following predicate:

SQi is empty ^ RQi is empty ^ initialization is completed in node i

We observe the following.

1. If pas(i) holds, it can be falsi�ed only by the receipt of a [remove, w] message.

After initialization, the only steps for node i areWi, Si, andRi, but processing

and sending are not possible when the receive and send queue are empty. So

only receipt is possible in this case, and will place a value in the receive queue,

thereby falsifying pas(i).

2. If pas(i) holds, node i cannot send a [remove, �] message. The empty send

queue disables the send action.

3. If simultaneously for all i pas(i) holds and no channel contains a [remove, �]
message, the algorithm has terminated. In this case, no processing or sending

is possible because all queues are empty, and no receiving is possible because

no messages are in transit.

Thus the assumptions for the termination detection problem are satis�ed, and

we can apply the algorithms of Section 13.3 to make termination explicit. The

tracing algorithm (Alg. 13.3.2) is not appropriate here. First, it requires that there

is exactly one initiator, which is not the case in Alg. 13.13 (generalizations to more

initiators exist, though). The main reason is the overhead of control messages;

tracing algorithms double the communication, while probe algorithms can have a

much lower communication overhead if the distributed computation exchanges a

lot of messages in parallel.

Thus, the Distributed AC4 algorithm should be combined with a probe based

termination detection algorithm, such as Alg. 13.11. We shall not give the combined

algorithm here.

On termination of the distributed AC4 algorithm, the remaining domains Di are

maximally arc consistent and two special situations deserve our attention.

1. Contradiction: On termination, some Di is empty.

Clearly, the product space is also empty, and because no solution to the

problem is eliminated by the Arc Consistency algorithm, this condition implies

that there exists no assignment satisfying all constraints.

2. Solution: On termination, each Di is reduced to a singleton fvig.
In this case the product space contains just a single assignment, namely

(x1; : : : ; xn) = (v1; : : : ; vn). Because the domains are arc consistent, this

assignment is easily seen to satisfy all constraints. Indeed, consider constraint
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Cji and observe that, because vi was not removed from Di, there is at least

one w in Dj for which Cji(w; vi) is true. But Di is the singleton fvjg, so
Cji(vj ; vi) is true.

Evaluating these conditions can easily be done by augmenting the termination

detection algorithm; in addition to reporting the reci and md i information, node i

states if Di is a singleton, and if Di is empty.

13.4.5 Partitioning for Multiprocessor Computers

We have so far assumed that there is a given, one-to-one correspondence between

nodes and variables; a natural assumption if the resources for checking consistency

are distributed and expensive to reallocate. Other applications may allow to freely

allocate variables of the problem to processing nodes, for example, when a multi-

processor machine is used to solve a CSP (with all resources at hand).

We �rst discuss the execution of Algorithm 13.13 in this case, especially if

more than one variable is assigned to any machine node. Node u maintains the

administration for a collection Zu � Z and will execute all computations of

Alg. 13.13 for the relevant variables, with only two twists that are not completely

trivial. First, if node i sends a message to node j while i and j are in the same

machine, no message is sent but the eliminated value is placed in the queue locally.

Second, a machine can use a single receive queue, rather than a separate one for

each of the variables it holds.

Thus the execution of the Arc Consistency itself is not very complicated, but the

interesting question is to �nd a good allocation of variables over nodes. This distri-

bution should have a favourable processor load, and need as little communication

as possible. Fortunately, as a result of the analysis in the previous subsection, the

load and communication of a distribution can be computed.

Let node i of the Arc Consistency Problem be allocated to processor p(i) of

the machine. As node i of the problem requires O(�i:a
2) work, the total load of

processor p is
P

i:p(i)=p
�i:a

2. As O(a) messages are exchanged through each edge

of the problem, the total amount of communication will be O(a):jfij 2 E : p(i) 6=
p(j)gj. Minimising load and communication (over all allocations) is NP-hard, so an

approximation algorithm is needed; see for example the work by Lo [17].

13.4.6 Distributed Constraint Satisfaction Algorithm

We shall now brie
y discuss how Distributed Arc Consistency can be used in

distributed solutions for Constraint Satisfaction Problems. A CSP is usually solved

by backtracking, where parts of the solution space are eliminated from search by

hypothesis generation. A hypothesis for variable xi speci�es a subset of the domain

Di and restricts the search to tuples for which xi is in the subset. The current

problem instance is narrowed down with the additional restriction that xi is in the

subset, yielding a new problem instance. More generally, a hypothesis can itself be
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a binary predicate assuming a constraint on combinations of xi and xj values.

If solution occurs in the restricted search space, the problem is solved and

the found tuple is the solution. (It satis�es all the original constraints plus the

current collection of hypotheses.) If contradiction is found, a backtracking step

is taken: the hypothesis is replaced by its negation because the hypothesis is found

to be inconsistent with the problem (including earlier hypotheses) and search is

continued. If neither of these situations occurs, a next hypothesis is generated to

narrow down the search space further.

The evaluation of the problem instances uses Arc Consistency: after each gener-

ation of a hypothesis or its replacement by its negation, the domains are further

restricted by the Arc Consistency algorithm. We have seen that the AC algorithm

reduces the domains to the maximally arc consistent subsets, and allows to conclude

if solution or contradiction occurs.

A distributed CSP solver alternates hypothesis generation, hypothesis evaluation

(by means of arc consistency), and hypothesis elimination (backtracking) in a

coordinated way. To decide what hypothesis to generate, we assume that each node

can locally evaluate the attractiveness of hypotheses it can generate. For example,

generating a hypothesis concerning a variable with 20 possible values may be less

attractive than one concerning a variable with 2 possible values. After termination

of each arc consistency phase, the controller coordinates a global search for the node

with the most attractive hypothesis. This does not require that the controller has

access to all information or even that it can communicate with each node directly.

In the next section we show (in the context of a graph processing algorithm) how

such an evaluation is possible in a network of arbitrary topology using broadcasts

and convergecast over a spanning tree.

More detailed description. When detecting termination of the arc consistency

phase, the controller also evaluates if solution or contradiction occurs and

informs the nodes.

If the search space is still too large, all nodes stack the current value of their

domain Di and the support structures cnt i[v; j]. They evaluate the attractiveness

of any hypothesis they can generate, and report the most attractive one. The

convergecast allows the coordinator to �nd the most attractive hypothesis, and

informs the node that submitted this hypothesis. This hypothesis is added to the

constraints, after which Arc Consistency is started again.

In case of solution, the computed assignment is the output of the problem and

the whole algorithm is terminated.

In case of contradiction, a backtrack step is taken. All nodes restore the previous

values of Di and cnt i[v; j] and in addition, the node that generated the most

recently added hypothesis replaces it by its negation. After this, arc consistency is

started again.
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C := empty ;

while V != empty

do begin if there is v in V with deg(v) = 1

then remove v from G

else begin K := f v in V j indeg(v) <= 1 g ;

v := node of highest degree in K ;

C := C + fvg ;

remove v from G

end

end

Algorithm 13.14 Suermondt and Cooper Loop Cutset.

13.5 Distributed Graph Processing

We shall demonstrate various techniques for distributed processing of the network

topology by a distributed algorithm that has the topology as the input graph. The

example worked out is the computation of a loop cutset in a Belief Network, which

is a necessary preprocessing stage for the application of loop cutset conditioning in

these networks. The aim of this section is to show how a sequential algorithm (by

Suermondt and Cooper [23]) can be modi�ed for distributed execution.

13.5.1 The Problem: Loop Cutset

A Belief Network is a directed acyclic graph in which the nodes represent various

hypotheses and the arcs represent known statistical dependencies. Let ~G = (V; ~E)

denote the directed graph, and G = (V; E) the underlying undirected graph. The

algorithms for updating the probability distribution of the hypotheses assume that

G is free of cycles, and hence to apply these algorithms, cycles must be eliminated.

A vertex in an undirected cycle is called a pit if both of its adjacent cycle arcs are

incoming, and we require each cycle to be broken by the removal of at least one

non-pit vertex.

De�nition 13.3

A loop cutset is a subset C � V such that for each cycle in G, C contains at least

one node of the cycle that is not a pit of that cycle.

Algorithm of Suermondt and Cooper. For e�ciency reasons, the cutset should

be small, but computation of an optimal cutset is NP hard. The best-known

heuristic for computing small cutsets (Suermondt and Cooper [23]) includes vertices

in C one by one, trying to choose vertices that cut as many loops as possible. This
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is done by choosing a vertex with maximal degree, but to avoid cutting a cycle by

removal of a pit, the chosen node must have in-degree zero or one. Because nodes

of degree one are never part of a cycle, these nodes are removed (repeatedly) before

searching for a cut-node; see Alg 13.14.

13.5.2 Distributed Execution of the Algorithm

The distributed algorithm does not represent the cut set in any central place;

instead, at the end each node will know whether it is itself a cutnode or not.

Algorithm 13.14 is simulated by two alternating phases, each under control of

a coordinating node, which is the root of a spanning tree in the network. The

spanning tree is used for control purposes, and an edge of the network can be

part of it regardless whether it was already eliminated by the Suermondt/Cooper

algorithm.

A leaf trim phase removes as many degree-one nodes as possible, and repeatedly;

that is, if the removal of a node causes the degree of another node to drop to one,

the latter is removed in the same phase. A cut node search is initiated when there

are no more leaves, and searches the network for the highest degree node (with

in-degree zero or one). When identi�ed, the cut node becomes the new controller;

a shift controller phase moves the root of the spanning tree to this node and hands

control to the next leave trim phase. This phase has no counterpart in Alg. 13.14,

and neither has the initial phase that constructs the control spanning tree.

Part one: Variables and leaf trim. Algorithm 13.15 shows the variables and

constants used by the node u. The constants Inu and Outu represent the incoming

and outgoing neighbors of u in the graph; in the algorithms, x and y will range over

neighbors of u, i.e., over Inu [Outu.

To construct and maintain the control tree, each adjacent edge ux has a link

control status lcsu[x] with the following meaning. The initial status is basic; when x

is a child or the father of u the status is son or fat; and when the edge was rejected

for the spanning tree, its status is frond.

The removal of edges and nodes by the Suermondt/Cooper algorithm is repre-

sented by the link activity status and node activity status lasu[x] and nasu. Initially

the link is active (status is yes) but upon removal of x or u, lasu[x] becomes no.

The nodes are also initially active (nasu = yes), but they can be removed either as

a leaf or as a cut node, and nasu becomes either noncut or cut.

The variables mydeg
u
, bestdeg

u
, and bestbranchu are used to determine the next

cut node; mydeg
u
is the degree of u, bestdeg

u
the highest degree in u's subtree, and

bestbranchu points to the location in the tree where the highest degree is found.

Algorithm 13.15 also presents the procedures for removal of leaves. The TrimTest

procedure veri�es if u has degree one, and if so, u becomes noncut; a [remove]

message is sent to the only neighbour to inform it of the removal, and the procedure

terminates after receipt of an acknowledgement [sig]. Receipt of the [remove]

message causes the carrying edge to be non-active (las = no), and the node performs
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cons In (* Incoming neighbors *) ;

Out (* Outgoing neighbors *) ;

var lcs[x] init basic (* Link control status *) ;

las[x] init yes (* Link activity status *) ;

nas init yes (* Node activity status *) ;

mydeg (* Compute degree of u *) ;

bestdeg (* Highest degree in subtree *) ;

bestbranch (* Point to best degree *) ;

procedure TrimTest:

if j f x : las[x] = yes g j = 1

then begin x := neighbour s.t. las[x] = yes ;

nas := noncut ; las[x] := no ;

send [remove] to x ;

receive [sig] or [remove] from x

(* Optimisation, see text *)

end

Upon receipt of [remove] from y:

las[y] := no ; TrimTest ; send [sig] to y

Algorithm 13.15 Variables and Leaf Trim.

TrimTest itself. If a [remove]message is sent as a result, the replying [sig]message

is deferred until a reply was received, according to the Dijkstra/Scholten principle. A

slight twist is the possibility to receive a [remove] message instead of a [sig]; this

will happen where two nodes (v and w) connected by a single edge remain at some

point in the execution. Both nodes call TrimTest and decide to remove themselves

and send a [remove] message over the edge. Rather than having both nodes reply

to the other's message with a [sig], each one treats the received message as the

reply, thus saving the two extra messages. I do not know how many messages are

saved in this way, but with this modi�cation it is possible to compute the overall

number of messages easily; see Section 13.5.3.

Part two: Control tree construction. The initial control tree is constructed

by executing the echo algorithm from the initiator; this is shown in Alg 13.16.

Procedure ConstructSubtree sends [construct, 0] messages through all basic

edges and awaits the receipt of a [construct, i] message. The construct messages

of the exploration stage have i = 0, while the replies to the father have i = 1; thus

upon receipt of the message, the edge is recognised as either son or frond. Upon

completion of the subtree a message (with i = 1 of course) is returned to the father.

Nodes run TrimTest in parallel with the construction of the subtree and await

its return before replying to the father. Consequently, when the construction

terminates at the initiator, the �rst round of leaf elimination was completed, and

the search for the node of highest degree is initiated by calling the procedure
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procedure ConstructSubtree:

forall x s.t. lcs[x] = basic

do send [construct,0] to x ;

while exists x : lcs[x] = basic

do begin receive [construct,i] from y ;

if i=0 then lcs[y] := frond

else lcs[y] := son

end

The initiator starts the algorithm:

pardo ConstructSubtree & TrimTest odrap ;

InitSearchCutnode

The others, upon arrival of the first [construct,i] message:

(* i=0 in the �rst message, because the

�rst message is certainly NOT a reply. *)

receive [construct,0] from x ; lcs[x] := fat ;

pardo ConstructSubtree & TrimTest odrap ;

send [construct,1] to x

Algorithm 13.16 Construction of control spanning tree.

InitSearchCutnode.

Part three: Search for cut node. The procedure NodeSearch, called in node u,

computes the highest node degree in the subtree of u (with the restriction, of course,

that only nodes with in-degree zero or one are taken into account). This procedure

computes the degree of u itself and initiates a recursive computation in the subtrees

by sending [search]messages to the sons of u. The procedure terminates only after

receipt of a [bestis, d]message from each child; the order in which these messages

arrive is not relevant. While processing the replies, u maintains the highest degree

seen in the variable bestdeg
u
and bestbranchu points to either u itself or to the

subtree reporting the highest degree.

This computation and the exchange of [search] and [bestis, d]messages over

a spanning tree are a typical example of the broadcast/convergecast mechanism. By

changing the local computation, the same mechanism can be used to compute other

functions, such as summation or conjuntion and disjunction, as the application

requires.

The coordinator of the round initiates the search by calling InitSearchCutnode,

and all other nodes become involved upon receipt of a [search]message (from their

father necessarily). In the latter case, after completion of NodeSearch the result

value is sent to the father in a [bestis, d] message, where d is the computed

degree (bestdeg
u
). When the NodeSearch procedure terminates in the coordinator,

the stored value is the overall highest degree. A value 0 at this point indicates

that there are no nodes left with in-degree bounded by 1; actually a termination

condition for the algorithm, as any non-empty directed acyclic graph has such
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procedure NodeSearch:

if j f x in In : las[x] =yes g j <= 1

then mydeg := j f x : las[x] =yes g j
else mydeg := 0 ;

bestdeg := mydeg ; bestbranch := u ;

forall x s.t. lcs[x] = son

do send [search] to x ;

forall x s.t. lcs[x] = son

do (* in order of message arrival !! *)

begin receive [bestis,d] from x ;

if d > bestdeg

then begin bestdeg := d ;

bestbranch := x

end

end

procedure InitSearchCutnode:

NodeSearch ;

if bestdeg = 0 then Terminate

else ChangeRoot

Upon receipt of [search] from x:

(* x is the father *)

NodeSearch ;

send [bestis,bestdeg] to x

Algorithm 13.17 Search for cut node.

nodes. If NodeSearch leads to a positive value, this is the maximal node degree, and

a node of this degree can be chosen as the next cut node. To pass control to such

a node, the current coordinator calls the procedure ChangeRoot.

Part four: Controller shift. Because the newly selected cutnode is at the center

of the leaf-trim activity of the next round, we prefer to make it the new controller.

After the execution of NodeSearch, each node u has the pointer bestbranchu
pointing to the highest degree node in the subtree of u. The procedure ChangeRoot

is called only in nodes for which the subtree contains the globally highest degree.

Indeed, the �rst call to ChangeRoot occurs in the controller (after completion of

NodeSearch) and the subtree of the controller contains the entire network.

We now consider the procedure ChangeRoot; if bestbranchu = u, then the

maximum over u's subtree occurs at u, and because this maximum equals the global

maximum, node u itself is chosen as the next cut node. Otherwise a [changeroot]

message is sent to the son that reported the highest degree (pointed by bestbranchu)

because this subtree must contain the globally maximal degree. The direction of

all control tree edges through which the [changeroot] message is forwarded is

reversed so that the new controller becomes the root of this tree.

Finally we discuss the removal of the cut node from the network. The node
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procedure ChangeRoot:

if bestbranch = u

then begin nas := cut ;

(* Coordinate next round *)

TrimFromNeighbors ;

InitSearchCutnode

end

else begin lcs[bestbranch] := fat ;

send [changeroot] to bestbranch

end

Upon receipt of [changeroot] from x:

lcs[x] := son ; ChangeRoot

procedure TrimFromNeighbors:

forall x s.t. las[x] = yes

do send [remove] to x ;

forall x s.t. las[x] = yes

do (* In order of arrival of the messages *)

begin receive [sig] or [remove] from x ;

las[x] := no

end

Algorithm 13.18 Controller shift.

becomes a cut node (nasu := cut) and informs its neighbors about its removal by

calling TrimFromNeighbors. If removing one of the edges decreases the degree of a

neighbour to 1, trimming of this new leaf is performed immediately, and termination

of the whole procedure is detected as before.

Observe that before removal of the cut node there were no leaves (as a result of

the previous trimming round), and only the neighbors of the cut node decrement

their degree. Consequently, if there are any leaves at this point, they are contained

in the neighbors of the cut node, and hence TrimTest need only be initiated in these

neighbors.

After termination of this trimming round the controller initiates the search for

the next cut node by calling InitSearchCutnode.

13.5.3 Complexity and Conclusions

To evaluate the complexity of the distributed algorithm, we introduce some pa-

rameters; n and m are the number of nodes and edges of G as usual, let s be the

size of the computed cutset, and d the diameter of the control tree (worst case:

n � 1). We then observe that in all procedures of the algorithm, at most a con-

stant amount of work is associated with receiving or sending a message. Thus, the

computation complexity of the algorithm is asymptotically equal to the number of

messages exchanged by the algorithm. As remarked before, this is usually the case

in distributed graph algorithms.
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For the communication complexity we consider how many messages of each

type are exchanged. For the construction of the control tree, two [construct, i]

messages are sent through each edge of the graph to a total of 2m messages. Each

edge is deactivated exactly once at the expense of two messages, so the total amount

of [remove]/[sig] messages is also 2m. The evaluation of the highest degree node

requires the exchange of one [search] and one [bestis, :::]message through each

edge of the control tree, which is 2(n�1) messages. This evaluation is performed s+1

times (the last evaluation yields 0 but is used to detect the end of the algorithm), so

the overall number of [search] and [bestis, d]messages is 2(s+1)(n�1). Finally,
the execution shifts the controller s times, which requires [changeroot] messages

to be sent through a path in the control tree; the total number of [changeroot]

messages is bounded by s:d. We thus see that 2m + 2m + 2(s + 1)(n � 1) + s:d

messages are exchanged, which is about 4m+ 2s:n.

When evaluating the amount of time used by the algorithm we must realize that

we have no guarantee of any actual parallelism occurring in the trimming of leaves.

If we ignore leaf trimming, the construction of the control tree takes at most 2d

time, a search for a cut node takes at most 2d time, and changing the root to the

new cut node takes at most d time. These procedures together take (3s+4):d time,

but their progress can be delayed when nodes wait for leaf trimming to terminate.

However, in the worst case all trimming is done sequentially and the exchange of

[remove]/[sig] messages takes 2 time units per node, so the other procedures are

delayed at most (n � s):2 time units, and the overall time complexity is bounded

by (3s+ 4):d+ 2(n� s).

Our example of a distributed graph processing algorithm was taken from the

Arti�cial Intelligence domain, namely loop cutset computation. Other graph algo-

rithms can be treated in a similar way to yield distributed versions; known examples

include Shortest Path [27, Sec. 4.2], Minimum Spanning Tree [10], Maximum Flow

[32], Connectivity problems [14].

13.6 Conclusions

This chapter gives an overview of the most important techniques of distributed al-

gorithm design for Distributed Arti�cial Intelligence applications. Important issues

in this domain are the distributed control of computations, and the distributed

processing of the network graph.

We have seen two important control paradigms. Termination detection is nec-

essary to observe when some subcomputation has ended, and a new phase of the

application can start. Examples included termination of arc consistency in dis-

tributed Constraint Satisfaction, and the leaf trimming sub-phase of Suermondt

and Cooper's loop cutset algorithm. Distributed coordination can be issued by a

controller using broadcast and convergecast over a spanning tree. Such a tree can

be constructed using the echo algorithm, and can be used to broadcast computation
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states, to convergecast maximal values or sums, and the root of the tree can move.

All these techniques were used in Suermondt and Cooper's algorithm, and are ap-

plicable to the distributed CSP algorithm outlined in Section 13.4.6. The interested

reader is referred to [27] to read about more paradigms, such as leader election, con-

trol for anonymous networks, snapshots, synchronous algorithms; I consider them

of lesser importance for the AI community.

Distributed graph processing is based on sequential techniques for the same

problem, and distributed graph exploration is an important step. We have seen

several depth-�rst search algorithms, and studied an algorithm for connectivity

certi�cates. Breadth-�rst search is notoriously di�cult to implement in distributed

algorithms.

We have not addressed any issues related to failure and recovery of nodes; fault

tolerance is an important area in distributed algorithms research, but the results

are not easily transferred to the Arti�cial Intelligence application domain.

13.7 Exercises

1. [Level 2] Prove that the time complexity of a distributed algorithm is bounded

by its message complexity.

2. [Level 1] Prove that the total length of the 2n � 2 lists exchanged by Algo-

rithm 13.5 is between n2 � 1 and 3

2
n(n� 1).

3. [Level 1] How does the Relaxation Algorithm (Alg. 13.5) prevent the formation

of paths that are not simple?

4. [Level 1] Prove that the time complexity of the Echo algorithm (Alg. 13.6) is

O(D=�) if message delay is not only upper bounded by one time unit, but also

lower bounded by � time units (0 < � � 1).

5. [Level 2] Prove that the time complexity of the Echo algorithm (Alg. 13.6) is

O(D:�) ifthe ratio between the delays, su�ered by two messages sent through

the same link (even in di�erent directions) is bounded by a constant �.

6. [Level 2] The detection delay of a termination detection algorithm is the

maximum time that can elapse between termination and its detection. Prove

that the detection delay of the Dijkstra{Scholten algorithm is �(n). Prove that


(D) is a lower bound on the detection delay.

7. [Level 2] Algorithm 13.11 is not exactly fault-tolerant: it will already fail in

case of a single error where one node erroneously increments its md counter

without sending a message. Describe what happens in this case, and argue

why this behaviour is inevitable for termination detection algorithms.

8. [Level 4] Develop termination detection algorithms that can work even if nodes

may crash. You will �nd out that detecting termination in spite of t possible

crashes requires that a passive node can only be activated by receiving at least

t+ 1 activation messages.
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9. [Level 3] Work out all the details and give a complete algorithm for the

distributed Constraint Satisfaction Problem.

10. [Level 2] Write a distributed algorithm to test if the network graph is bipartite

(2-colorable) and uses O(m) messages and O(n) time.

11. [Level 3] Write a distributed algorithm to construct a Maximal Independent

Set (MIS) in the network graph.

12. [Level 3] Develop a distributed algorithm that works on a directed acyclic

graph and computes a topological sort. At the end, each node knows its

sequence number in the topological sort.

13. [Level 4] The Distributed Cutset Algorithm (Alg. 13.15{13.18) can be im-

proved. A change of a node's degree during a leaf-trim round occurs only if it

is a neighbor of a node trimmed in that round. Consequently, the global search

for the highest-degree node (Alg. 13.17) can be replaced by a contest between

neighbors of trimmed leaves and the previously highest-degree nodes. Develop

an improved algorithm along these lines and analyse its complexity (messages

and time).
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Glossary

The Glossary is a joint e�ort of the chapter authors. The initials in the square

brackets indicate the names of the contributing authors as listed at the end of this

glossary. If multiple authors contributed to the same entry, then the di�erent contri-

butions were combined by the editor. The glossary overviews relevant terms in the

�eld of multiagent systems and DAI. References to related literature can be found

for most entries via the subject index. A list of DAI systems and tools is presented

in the Readings in Distributed Arti�cial Intelligence, ed. by Alan H. Bond and Les

Gasser, Morgan Kaufmann Publ., pp. 41{42, 1988. A list of agent-speci�c key terms

and systems is provided in Intelligent Agents, ed. by Wooldridge and Jennings,

Springer-Verlag, Lecture Notes in Arti�cial Intelligence, Vol. 890, pp. 22{28, 1995.

AAIS { An expert system which predicts organizational performance from a set of rules

about the interaction among various organizational design features. [KMC,LG]

Accessible Environment { An environment in which an agent can obtain complete,

accurate, up to date information about the environment's state. [MW]

ACL { Agent Communication Language. See also KQML, KIF.

ACT { A plan content language structured to be shared between independent plan

generation and plan execution subsystems. [EHD]

ACTION { The successor to (see) HITOP-A: a highly detailed, industry-used analysis

and design system for exploring interactions between managerial strategy and TOP-

integrated organizational con�guration, developed with a $10M 5-year investment

from major industrial sponsors. See also TOP-MODELER. [KMC,LG]

Actors { Autonomous, interacting computing elements, which encapsulate a behavior

(data and procedures) and a process, and communicate by message-passing. Some-

times \actor" and (see) \agent" are used synonymously. [GAA,NJ]

ActorSpace { A naming model for abstract speci�cation of groups of (see) actors.

ActorSpace allows communication between actors who do not know previously know

each other. [GAA,NJ]

Adaptation { Broadly speaking, the change in the behavior of a system so that it

becomes suitable to a new situation. See learning. [SS,GW]

Agent { An autonomous, reactive, pro-active computer system, typically with a central

locus of control, that is at least able to communicate with other agents via some

kind of communication language. Another common view of an agent is that of
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an active object or a bounded process with the ability to perceive, reason, and

act. Various attributes are discussed in the context of agent-based systems: see,

e.g., autonomy, benevolence, introspection, mobility, pro-active, rational, reactive,

situatedness, social ability, veracity. See also actor, agent architecture, body, head,

information agent, interface agent, software agent. [MNH,LNS,MW]

Agent0 { A prototype agent-oriented programming language, developed by Yoav

Shoham. [MW]

Agent Architecture { A particular methodology for building agents. More generally,

the term is used to denote a particular arrangement of data structures, algorithms,

and control 
ows, which an agent uses in order to decide what to do. Agent archi-

tectures can be characterized by the nature of their decision making. Example types

of agent architecture include logical-based architectures (in which decision making

is achieved via logical deduction), reactive architectures (in which decision making

is achieved via simple mapping from perception to action), belief-desire-intention

architectures (in which decision making is viewed as practical reasoning of the type

that we perform every day in furtherance of our goals), and layered architectures

(in which decision making is realized via the interaction of a number of task accom-

plishing layers). See also BDI architecture, deliberative architecture, INTERRAP,

IRMA, layered architecture, reactive architecture, subsumption architecture. [MW]

Agent Oriented Programming { An approach to building agents, which proposes

programming them in terms of mentalistic notions such as belief, desire, and

intention. See also Agent0, behavior language, mental attitude. [MW]

All-Pay Auction { Auction protocol where all bidders have to pay some amount even

if they do not win the item. [TS]

Architecture { See agent architecture, organizational structure.

Arrow's Impossibility Theorem { A result regarding truthful voting that states

that no social choice rule has a particular set of intuitively desirable features. [TS]

Asynchronous Search Algorithm { An algorithm for solving a search problem

represented by a graph. An asynchronous search algorithm solves a problem by

accumulating local computations for each node in the graph. The execution order

of these local computations can be arbitrary or highly 
exible, and can be executed

asynchronously and concurrently. [TI,MY]

Auction { See all-pay auction, common values auction, correlated values auction, de-

scending (Dutch) auction, �rst-price open-cry (English) auction, �rst-price sealed-

bid auction, private values auction, revenue equivalence, second-price sealed-bid

(Vickrey) auction.

Autonomy { Generally, autonomy means \under self-control." More speci�cally, the

assumption that, although we generally intend agents to act on our behalf, they

nevertheless act without direct human or other intervention, and have control over

their internal state and actions. [MW]

Axiomatic Bargaining { An approach to solving bargaining problems by postulating

desiderata, and proving that a particular solution (uniquely) satis�es them. [TS]



Glossary 585

Bargaining { See axiomatic bargaining, Nash bargaining solution, Rubinstein bargain-

ing model, strategic bargaining.

BDI Agent { An agent with a (see) BDI architecture.

BDI Architecture { A type of (see) agent architecture containing explicit represen-

tations of beliefs, desires, and intentions. Beliefs are the information an agent has

about its environment, which may be false; desires are those things that the agent

would like to see achieved, and intentions are those things the agent is either com-

mitted to doing (intending to) or committed to bringing about (intending that).

The architecture addresses how the beliefs, desires, and intentions of the agents are

represented, updated, and processed to determine the agent's actions. In BDI ar-

chitectures, decision-making mirrors the practical reasoning that we each carry out

every day in furtherance of our goals. See also belief, desires, intentions. [MW]

BDI Concepts { The concepts of (see) belief, (see) desire, and (see) intention, as

applied in the modeling of agents in DAI. See also BDI architecture, hybrid

approaches, modal approaches, sentential approaches. [MPS,ASR,MPG]

Behavior Language { Generally, a language for specifying an agent in terms of its

(desired) behavior. An example is the BEHAVIOR LANGUAGE developed at MIT

in the context of the (see) subsumption architecture. [GW]

Belief { A concept describing the states of the world that the agent cannot discriminate

among. See also BDI architecture, mutual belief. [MPS,ASR,MPG]

Benevolence { The assumption that an agent always does, or tries to do, what is asked

of it by other agents or humans. [GW]

Binary Protocol { Voting protocol where the candidates are voted on pairwise, and

the loser is always eliminated. [TS]

Blackboard { An information processing structure composed of several cooperating

knowledge sources (each containing any kind of algorithm, rules, data, and so forth),

a separate control element (determining the order in which the knowledge sources

are executed), and the blackboard itself (the locus of communication and global

memory). [GW]

Blackboard Architecture { Speci�cally, an agent architecture built according to

the blackboard paradigm; see blackboard. Generally, an agent architecture whose

centerpiece is a shared repository called a blackboard, which permits undirected

information exchanges between independent knowledge sources. [EHD]

Block Pushing { An application involving multiple agents (typically two robots) which

must push a box from a starting to a goal location. The box is assumed to be large

enough so that none of the individual agents can solve this task.

Body { The portion of an agent not responsible for communication. See also head.

[HVDP]

Borda Protocol { Voting protocol where each voter can give jOj votes to one candi-

date, jOj � 1 votes to another, and so on. The candidate with the highest sum of

votes gets chosen. [TS]
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Broadcast/Convergecast { Technique to exercise control in a network where a

spanning tree is available. The root of the tree initiates sending request messages

down all branches of the tree (broadcast). Each reply message summarizes the

information of the entire subtree of the sender. Before replying, each node awaits

the replies from all of its children. [GT]

Case Theory { A linguistic model of sentence structure that focuses on the roles

supported by each verb and the nouns that can �ll those roles. [HVDP]

CFG { (See) Characteristic Function Game.

Characteristic Function Game (CFG) { An abstract, common setting for study-

ing (see) coalition formation. Each potential coalition has a value associated with

it. That value is assumed independent of the actions of nonmembers. [TS]

Cluster (C) Contract { Contract where more than one item is moved atomically

from an agent to another. See also OCSM-contract. [TS]

Coalition { A set of agents that work together to solve a joint problem. Often used

as a synonym for (see) ensemble, (see) group, and (see) team. See also coalition

formation. [GW]

Coalition Formation { The process where agents form (see) coalitions that work to-

gether to solve a joint problem via coordinating their actions within each coalition.

Each agent belongs to exactly one coalition. Coalition formation includes three ac-

tivities: (see) coalition structure generation, optimization within each coalition, and

payo� division among agents. Forming a coalition has much to do with �nding an ap-

propriate (see) organizational structure. See also characteristic function game, coali-

tion structure generation, COALITION-STRUCTURE-SEARCH-1, core, merging

algorithm, Shapley value, splitting algorithm. [TS]

Coalition Structure Generation { The process of partitioning agents into exhaus-

tive, disjoint (see) coalitions. [TS]

COALITION-STRUCTURE-SEARCH-1 { A particular anytime algorithm for

(see) coalition structure generation. Motivated by the goal of minimizing the worst

case ratio bound from optimum. [TS]

Cognitive Concepts { Concepts applied in DAI that are inspired from folk psychol-

ogy. These include the three (see) BDI concepts, but also others such as know-how

and (see) commitments. [MPS,ASR,MPG]

Cognitive Primitives { Any of the concepts borrowed from psychology. [MPS,ASR,

MPG]

Coherence { The property or state of acting as a unit. A measure of how well a system

behaves as a unit. Evaluation criteria for coherence are, e.g., e�ciency, solution

quality, and graceful degradation in the presence of failure. See also competence.

[MNH,LNS,GW]

Collaboration { Generally, \working together." Collaboration often refers to forms

of high-level (see) cooperation that require (the development of) a mutual under-

standing and a shared view of the task being solved by several interacting entities.
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Sometimes the terms collaboration and cooperation are used in the same sense. See

also competition, coordination, interaction. [GW]

Collaborative Technology { See groupware.

Commitments { Pledges by an agent to undertake a speci�ed course of action. Com-

mitments may be (see) psychological or (see) social. See also conventions. [MNH]

Common Knowledge { Same as (see) mutual belief, but where it is (see) knowledge

that is nested all the way. [MPS,ASR,MPG]

Common Object Request Broker Architecture (CORBA) { Interoperable

architecture promoted and standardized by the OMG (Object Management Group)

consortium. This architecture de�nes client/server middleware that allows objects

to interoperate. [GW]

Common Values Auction { Auction setting where each agent's valuation is com-

pletely determined by (same as) the others' valuations. [TS]

Communication { How information is exchanged among agents but discount in-

cidental interactions through the environment. The intentional exchange of in-

formation on the basis of a shared system of signs. See also head, ontology.

[MPS,ASR,MPG,GW]

Communication Complexity { Amount of communication necessary to execute an

application, or to solve a problem; usually expressed as the number of messages

exchanged (message complexity). To give long messages a higher weight than short

messages, the communication can be expressed in terms of the overall number of

bits or words in the messages (bit complexity). [GT]

Communityware { The methodologies and tools for creating, maintaining, and evolv-

ing social interaction in communities. Communityware supports diverse and amor-

phous groups of people. Compared with (see) groupware, communityware focuses

on an earlier stage of collaboration: group formation from a wide variety of people.

See also computer supported collaborative work. [TI]

Competence { The ability to do a task well. Contrasted with (see) coherence which is

the ability to work together well, regardless of whether the work is useful. [EHD]

Competition { A variety of (see) coordination in which the success of one participant

implies the failure of others. See also cooperation, interaction. [HVDP]

Computer Supported Cooperative Work (CSCW) { Research area that stud-

ies the use of computing and communications technologies to support group activi-

ties. This area concerns both software development and social factors in group work.

See also communityware, groupware. [CSE,JW]

Computational Economics (Agent-Based) { The computational study of eco-

nomies. Often it is assumed that the economies are modelled as evolving distributed

systems of interacting (see) agents. [GW]

Computational Organization Theory (COT) { Computational theorizing about

organizations or organizing. See also organizational structure. [KMC,LG]
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Concordia { A commercial Java-based mobile agent platform from Mitsubishi. See also

Odyssey, Voyager. [TS]

Concurrent METATEM { A logic-based agent programming language, in which

agents are programmed by giving them a temporal logic speci�cation of the be-

haviour that it is intended they should exhibit; agents directly execute their speci-

�cation in order to generate their behaviour. [MW]

Connection Problem { The problem of �nding an appropriate assignment between

available agents and tasks to be executed. [GW]

Constraint Propagation { May be viewed as a mechanism for coordination that

involves the passing of symbolic information among entities. [HVDP]

Constraint Satisfaction Problem (CSP) { The problem of �nding an assignment

of values (taken from �nite, discrete domains) to variables such that constraints

among the variables are satis�ed. Backtracking algorithms and consistency algo-

rithms can be used for solving constraint satisfaction problems. See also distributed

constraint satisfaction problem, search. [TI,MY]

Content Language { The language in which the contents of message structures are

encoded. [EHD]

Contingency Contract { Contract where the obligations are made conditional on

future events. Enables contracts and improves their Pareto e�ciency. Requires an

event veri�cation mechanism and knowledge of possible future events. [TS]

Contingency Planning { The development of conditional plans in which responses

to possible contingencies have been accounted for and included. See planning. [EHD]

Contract { An agreement between several agents on carrying out or refraining from spe-

ci�c activities. Usually contracts are task-oriented, and imply (see) commitments.

See contract net protocol, leveled commitment contract. [GW]

Contract Net Protocol { An in
uential protocol for supporting the search for con-

necting tasks to be done with agents (contractors) that are willing and able to

do them. \Contract net" usually refers to a negotiation-based task allocation algo-

rithm. See also contingency contract, leveled commitment contract, mutual selec-

tion, OCSM-contract. [EHD,TS]

Conventions { Mechanisms for managing (see) commitments in changing circum-

stances. [MNH]

Conversation { A series of (see) communications among di�erent agents; typically

following a (see) protocol and with some purpose. [MPS,ASR,MPG]

Cooperation { (See) coordination among nonantagonistic agents. A variety of coor-

dination in which the participants succeed or fail together. See also competition,

interaction. [MNH]

Cooperative Planning { The formation of a plan through the cooperative e�orts of

multiple planning specialists, each of whom contributes to the overall plan. See

planning. [EHD]
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Cooperative Protocol { A (see) protocol that speci�es how agents have to cooperate

in order to achieve a common goal. See cooperation. [GW]

Cooperative State-Changing Rules { Rules of \good citizenship" that guide

agents into taking actions that contribute to the collective rather than to self-

interest. [EHD]

Coordination { Refers to the state of a community of agents in which actions of some

agents �t in well with each other, as well as to the process of achieving this state.

The degree of coordination is the extent to which they avoid extraneous activity

by reducing resource contention, avoiding livelock and deadlock, and maintaining

applicable safety conditions. Much work in DAI is concerned with coordination as

a speci�c form of (see) interaction. Two manifestations of coordination that play

particularly important roles in DAI are (see) competition and (see) cooperation. See

also collaboration, constraint propagation, dissipative �eld, heterarchy, hierarchy,

negotiation, synchronization. [MNH,LNS,GW]

CORBA { (See) Common Object Request Broker Architecture.

Core { A criterion of dividing payo� among agents in (see) coalition formation (CFGs) in

a way that the resulting payo� con�guration is stable. Guarantees that no subgroup

of agents is motivated to move out of the coalition structure. In some games the

core is empty, i.e. no stable payo� division exists. [TS]

CORP { A simple intellective model of organizational performance in which each agent

can learn through experience or follow standard operating procedures, are organized

into either a team or hierarchical structure, and and in which the set of agents are

working in a distributed fashion on a classi�cation task. [KMC,LG]

Correlated Values Auction { Auction setting that has both private value and com-

mon value features. [TS]

COT { (See) Computational Organization Theory.

Credit-Assignment Problem { Also known as the fundamental learning problem.

The problem of determining the degree to which each activity in a set of activities

(carried out by a single or several agents in sequence or in parallel) deserves credit

or blame for the �nal outcome. In the context of DAI systems, this problem can

be decomposed into the (see) inter-agent credit-assignment problem and the (see)

intra-agent credit-assignment problem. See learning. [GW]

CSCW { (See) Computer Supported Cooperative Work.

CSP { (See) Constraint Satisfaction Problem.

Cultural Transmission { An intellective model of organizational performance which

explores the relation between knowledge, culture, and organizational design.

[KMC,LG]

DAI { (See) Distributed Arti�cial Intelligence.

DARES { A distributed theorem proving system.

DCHS { (See) Distributed Constrained Heuristic Search.
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DCSP { (See) Distributed Constraint Satisfaction Problem.

DD { (See) Distributed Delivery.

Decision Making (Distributed, Rational) { Distributed decision making is the

process of making decisions by, and usually for, multiple agents. This is di�cult

because agents often have di�erent preferences and incomplete information. Dis-

tributed decision making is useful because many situations are not zero-sum games,

and the social welfare can be increased by joint decision making that leads to more

desirably coordinated actions. Key techniques include voting, auctions, bargaining,

market mechanisms, contracting, and coalition formation. [TS]

Decision Support System (DSS) { A decision support system provides an infor-

mation environment that assists the decison-making of personnel in control of com-

plex natural or arti�cial systems such as installations or organizations, with the aim

of maximizing e�ciency and minimizing the negative impact of faults. Knowledge-

based decision support systems use symbolic representations of expert knowledge

to (i) analyze a given situation by identifying its advantageous and problematic as-

pects; (ii) predict the short-term behavior of the system in di�erent scenarios; and

(iii) recommend and justify plans of control actions. [JC,SO]

Deliberative { Based on or requiring the manipulation of symbols. Usually contrasted

with (see) reactive. [GW]

Deliberative Architecture { An (see) agent architecture that requires an agent to

manipulate symbols. Usually contrasted with (see) reactive architectures. [GW]

Descending (Dutch) Auction { Auction protocol where the price starts high, and

is lowered by the auctioneer. The auction stops when some bidder takes the item at

the current price. [TS]

Design-To-Time Algorithm { An algorithm that is tailored to the execution time

that is at its disposal. [TS]

Desires { The states of a�airs toward which the agent has a positive disposition. See

also BDI architecture [MPS,ASR,MPG]

Deterministic Environment { An environment in which there is no uncertainty

about the e�ect an action will have. Few real-world environments are deterministic.

[MW]

Dialogue { Same as (see) conversation.

Discrete Environment { An environment in which percepts and actions are discrete,

as opposed to continuous. [MW]

Dissipative Field { A mechanism for coordination in which agents sense the gradient

or 
ow of a scalar value and orient themselves accordingly. [HVDP]

Distraction { The phenomenon of changing the course of an agents search due to

received messages. Usually considered undesirable (negative distraction), although

positive distraction also can occur. [EHD]
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Distributed Arti�cial Intelligence (DAI) { Most broadly construed, the study

and construction of systems composed of interacting, intelligent entities. DAI is

much concerned with (see) agents and (see) coordination. [HVDP,GW]

Distributed Constrained Heuristic Search (DCHS) { A combination of dis-

tributed constraint satisfaction and heuristic search, where heuristics guide the vari-

able and value ordering decisions. Applied to distributed scheduling. See distributed

constraint satisfaction problem. [EHD]

Distributed Constraint Satisfaction Problem (DCSP) { A (see) constraint

satisfaction problem where variables and constraints are distributed among agents.

Solving such a problem can be considered as achieving (see) coherence among the

agents. [TI,MY]

Distributed Delivery (DD) { An application involving multiple delivery robots

which must make timely deliveries without excess travel and without colliding.

Distributed Hierachical Planning { An extension of hierarchical planning (i.e.,

planning at di�erent levels of abstraction) into a distributed environment. See

planning. [EHD]

Distributed Meeting Scheduling { An application involving multiple calendar

managers that must cooperatively search for a meeting time.

Distributed Sensor Network Establishment (DSNE) { An application in

which a selection of geographically-distributed sensors is chosen in order to monitor

an overall region.

Distributed Vehicle Monitoring (DVM) { An application in which geograph-

ically-distributed sensors cooperatively map the movements of vehicles across their

sensed regions.

Dominant Strategy { An agent's (see) strategy that is best for the agent no matter

what others do. [TS]

DSNE { (See) Distributed Sensor Network Establishment.

DSS { (See) Decision Support System.

DVM { (See) Distributed Vehicle Monitoring.

Dynamic Logic { Propositional logic enhanced with a regular expression language of

actions or programs, which can be used to model the necessary and possible results

of performing di�erent programs. [MPS,ASR,MPG]

Echo Algorithm { Technique to construct an arbitrary spanning tree in a network by


ooding messages through all edges. Each node acknowledges the �rst message it

received, but only after receipt of a message through each other channel. Information

can be dispersed and collected as in the (see) broadcast/convergecast technique.

[GT]

EDI { Electronic Data Interchange. A set of (see) protocols for exhanging business data

electronically among trading partners. [HVDP]
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Ensemble { A multiagent system, especially one whose agents pursuing a collective

goal. Often used as a synonym for (see) coalition, (see) group, and (see) team.

[GAA,NJ]

Environment { See accessible environment, deterministic environment, discrete envi-

ronment, episodic environment, static environment. See also reactive, situatedness.

Episodic Environment { An environment in which an agent's tasks are divided into a

number of discrete episodes, with the performance of the agent in one episode having

no e�ect on other episodes. Episodic environments simplify an agent's decision

making process, as they relieve the agent of the need to reason about the interaction

between current and future behaviour. [MW]

ESPRIT { The joint R&D program of the European Community.

Favor Relations { Opportunities in which one agent can accomplish a goal that

another agent desires. [EHD]

Feedback (Learning Feedback) { A measure indicating the level of performance

achieved so far by a learning system. See learning. [SS,GW]

FIPA { Foundation for Intelligent Physical Agents; a consortium that is developing

standards for agents.

First-Price Open-Cry (English) Auction { Auction protocol where each bidder

is allowed to keep raising his bid based on others' bids. The auction ends when no

one wants to raise, and the highest bidder gets the item at the price of his bid. [TS]

First-Price Sealed-Bid Auction { Auction protocol where each bidder is allowed

to send in a bid without seeing the others' bids. The highest bidder gets the item

at the price of his bid. [TS]

Focal Points { Landmarks in a solution space that stand out as candidate solutions

that are more likely to be mutually chosen. [EHD]

Functionally Accurate Cooperation { In contrast to completely accurate, inde-

pendent problem solving, functionally-accurate cooperation assumes agents might

make mistakes when solving their tasks and need to engage in a cooperative ex-

change of results to overcome their individual errors and converge on an acceptable

solution. [EHD]

Garbage Can { An intellective model of organizational behavior in which problems,

choices, and solutions 
ow through the system. [KMC,LG]

General Equilibrium { A solution for a market where supply meets demand on each

commodity, consumers maximize their preferences within their budget, and pro-

ducers maximize pro�ts within their production possibilities. Not a game theoretic

solution concept. See Newtonian price tâtonnement algorithm, price-taking assump-

tion, price tâtonnement algorithm, quantity-based algorithms. [TS]

Gibbard-Satterthwaite Impossibility Theorem { A result regarding insincere

(strategic) voting. It basically states that with unrestricted preferences, each de-

terministic protocol that has truth-telling as the dominant strategy, is dictatorial.

[TS]
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Goals { A mutually consistent set of (see) desires. [MPS,ASR,MPG]

Grafcet { A graphical language for describing the control of a distributed system, based

on Petri nets. [HVDP]

Group { A multiagent system, especially one that is viewed (or acts or is intended to

act) as a single agent. Often used as a synonym for (see) coalition, (see) ensemble,

and (see) team. [MPS,ASR,MPG]

Group Intention { An intention that is shared by a group of agents. [MPS,ASR,MPG]

Groupware { Computing and communications technology based systems that assist

groups of participants, and help to support a shared environment. The term col-

laborative technology is of used in this sense. See also communityware, computer

supported cooperative work. [CSE,JW]

Head { That portion of an agent that enbles it to communicate with other agents. See

also body. [HVDP]

Heterarchy { A structure of (see) coordination in which an agent may constrain the

same other agents by which it is itself constrained. See also hierarchy. [HVDP]

Hierarchical Behavior-Space Search { A coordination strategy where agents rep-

resent themselves to each other in terms of how they will behave at an abstract level,

and then iteratively exchange more details only in relevant parts of their behavior

descriptions. Coordination can occur at any level of behavioral abstraction. [EHD]

Hierarchy { A structure of (see) coordination in which an agent does not constrain

those agents by which it is itself constrained See also heterachy. [HVDP]

HITOP-A { A detailed industry-funded organizational design and analysis tool focus-

ing on tight integration of technology, organizational and people (TOP) perspec-

tives. See ACTION. [KMC,LG]

Host { A physically or economically distinct boundary (e.g., a processor) on which an

entity (e.g., a (see) software agent) may reside and execute. [GAA,NJ]

Hybrid Approaches to the BDI Concepts. { Semantical approaches that are

based on a combination of modal logics and explicit representation of sentences of

a formal language. See BDI concepts. [MPS,ASR,MPG]

IBIS { (See) Issue Based Information System.

Illocution { The aspect of a (see) speech act that deals with its core meaning; in

between its locution and perlocution. [MPS,ASR,MPG]

Information Agent { Information agents are (see) that have access to multiple, po-

tentially heterogeneous and geographically distributed information sources. Infor-

mation agents have to cope with the increasing complexity of modern information

environments, ranging from relatively simple in-house information systems, through

large-scale multidatabase systems, to the visionary Infosphere in the Internet. One of

the main tasks of the agents is an active search for relevant information in non-local

domains on behalf of their users or other agents. This includes retrieving, analyz-

ing, manipulating, and integrating information available from di�erent information

sources. [GW]



594 Glossary

Insincere Voting { Voting where agents lie about their preferences if that increases

their expected utility. [TS]

Intentions { (See) goals that the agent is currently working on, i.e., those leading to

the agent's actions. See also BDI architecture, group intention. [MPS,ASR,MPG]

Interaction { Generally, everything that occurs \between" agents (agent-agent interac-

tion) and \between" agents and their environment (agent-environment interaction).

Agents can interact directly via|verbal|(see) communication (by exchanging in-

formation) and indirectly via their (see) environment (by passively observing one

another or by actively carrying out actions that modify the environmental state).

Interaction may result in changes in the (see) internal state and the future course

of activity of an agent. Interaction can be characterized according to its frequency,

persistence, pattern, purpose, and so forth. A common distinction is that between

deliberative and reactive interaction (see deliberative, reactive). Much work in DAI

is concerned with interaction between agents. Forms of interaction that play an

important role in DAI are (see) cooperation and (see) competition. A type of inter-

action that plays an important role in human contexts, but not in technical systems,

is para- and non-verbal communication (e.g., by intonation and gesture). [GW]

Interaction Analysis { During plan merging, the process of identifying con
icting

interactions among the plan steps of di�erent agents. See planning. [EHD]

Interaction Protocol { See protocol.

Inter-Agent Credit-Assignment Problem { The problem of assigning credit or

blame for overall system performance to the external actions carried out by the

system components. See credit-assignment problem. [GW]

Interface Agent { An agent, typically a (see) software agent, that supports its user(s)

in ful�lling certain tasks. For instance, an interface agent may hide the complexity

of a di�cult task, train and teach a human user, and perform sub-tasks on a user's

behalf. The terms software assistant and personal assistant are often used in this

sense. Interface agents also play an important role in (see) computer supported

cooperative work. [GW]

Internal State { See mental attitude.

Internet { The collection of computers, networks, and routers that use the TCP/IP

suite and function as a single large internetwork. In the groupware context, the

Internet can be described in terms of the hardware that supports it, the software

that facilitates it, and the demographics of the people that populate it. [CSE,JW]

INTERRAP { A vertically layered two-pass (see) agent architecture. [MW]

Intra-Agent Credit-Assignment Problem { The problem of assigning credit or

blame for a particular action carried out by a system component to the compo-

nent's internal inferences and decisions leading to this action. See credit-assignment

problem. [GW]

Introspection { The ability of an agent to examine and re
ect its own thoughts, ideas,

plans, goals, and so forth. [GW]

IRMA { An in
uential (see) BDI agent architecture. [MW]
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Issue Based Information System (IBIS) { Amodel and methodology for system

design and decision making in which strict argumentation categories are utilized.

The decision making methodology consists of three phases, divergence, convergence,

and decision. The model supports argumentation via a clear separation between

issues, positions, and arguments. [CSE,JW]

JAAPI { Java Aglet API. An object framework developed by IBM that is built on top

of Java and that supports the construction of mobile (see) software agents. [GW]

Job Shop { A manufacturing facility in which the routing of a part from one machine

to another is not physically �xed. [HVDP]

KIF { Knowledge Interchange Format. A computer-oriented language for the inter-

change of knowledge among disparate programs. It has declarative semantics and is

logically comprehensive. Moreover, it provides for (i) the representation of knowl-

edge about the representation of knowledge, (ii) the representation of non-monotonic

reasoning rules, and (iii) the de�nition of objects, relations, and functions. KIF is

part of the (see) Knowledge Sharing E�ort. [GW]

Know-How { The ability of an agent to knowingly achieve some (typically intended)

state of a�airs. [MPS,ASR,MPG]

Knowledge { From the point of view of logics, knowledge is often de�ned as true

(see) belief or, more speci�cally, true justi�ed belief. See also common knowledge.

[MPS,ASR,MPG]

Knowledge Level { A level of describing the knowledge and reasoning of an individual

agent that abstracts away from the form and mechanisms used to represent this

knowledge; the level below the (see) social level. [HVDP]

Knowledge Sharing E�ort (KSE) { Sponsored by the Advanced Research Projects

Agency (ARPA). A consortium and initiative to develop methodology and software

for the sharing and reuse of knowledge. Examples of major outcomes of the Knowl-

edge Sharing E�ort are (see) KIF, (see) KQML, and (see) Ontolingua. [GW]

KQML { Knowledge Query and Manipulation Language. A language and protocol for

exchanging information and knowledge. KQML can be thought of as consisting of

three layers. The content layer bears the actual content of the message. The com-

munication layer encodes message features which describe low-level communication

parameters (e.g., identity of sender). The message layer determines the kind of in-

teractions one can have with a KQML-speaking agent, and its primary function is

to identify the (see) protocol to be used for message delivery and to supply the (see)

speech act attached to the content. KQML is part of the (see) Knowledge Sharing

E�ort. [GW]

Layered Architecture { An (see) agent architecture that is structured into a number

of layers, each of which typically represents an increased level of abstraction from

the layer beneath it. Two types of layered architectures can be distinguished:

horizontally layered (i.e., each layer is directly connected to the sensory input and

action output), and vertically layered (i.e., sensory input and action output are dealt

with by at most one layer each). Examples include (see) TOURINGMACHINES and

(see) INTERRAP. [MW]
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Learning (Distributed) { Broadly speaking, learning refers to self-improvement of

future behavior based on past experience. \Distributed" means that several entities

(agents) are involved in the same learning process, where each entity contributes

to the solution of the overall learning task according to its individual abilities or

preferences. The distribution may concern the identi�cation of sub-tasks of the

overall learning task, their execution, or both. See also adaptation, credit-assignment

problem, feedback, multiagent learning, organizational adaptation. [GW]

Legacy System { A existing system that is not included within the scope of a new

system development e�ort, but that must interoperate with the new system. [HVDP]

Leveled Commitment Contract { Contract where each party can decommit by

paying a prenegotiated penalty. Enables contracts and improves their Pareto ef-

�ciency. Does not require an event veri�cation mechanism or knowledge of possible

future events. See contract. [TS]

Life Cycle { A series of stages through which an industrial project passes, from the

time it is �rst considered until it has been retired from service. [HVDP]

Linkages (in an Organization) { The set of relations among nodes in a (see) net-

work. For example, if the nodes are people the linkages might be friendship, advice,

or works with. Such linkages are often called ties by organizational theorists and

arcs by mathematicians. [KMC,LG]

Locution { The surface form of a (see) speech act; that which is actually transmitted.

[MPS,ASR,MPG]

Logic { See dynamic logic, modal logic, predicate logic, propositional logic, temporal

logic. [MPS,ASR,MPG]

MACE { A domain-independent modeling and simulation testbed for multiagent sys-

tems. MACE embodies a high-level social theory and uses concurrent agents for all

phases of system construction and simulation. [KMC,LG]

Mental Attitude { A property ascribed to an agent describing its internal state. It

is usually distinguished between information or cognitive states (e.g., belief and

knowledge), deliberative or conative states (e.g., intention and commitment), and

motivational or a�ective states (e.g., desire, choice, preference, and goal). [GW]

Merging Algorithm { A particular anytime algorithm for (see) coalition structure

generation. Starts from agents operating individually, and constructively builds

coalitions. See also splitting algorithm. [TS]

Message { Generally, a piece of data, the elementary unit of communication. More

speci�cally, a piece of data which possibly includes the representation of an (see)

actor behavior, that is sent from one actor to another. See also communication

complexity, space-time diagram. [GAA,NJ]

Message-Passing { A communication paradigm where entities interact by sending

explicit messages to each other. See also communication, interaction. [GAA,NJ]

Meta-Level Organization { An organizational structure specifying agents' (see)

roles in the coordination process. See also coordination. [EHD]
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Migration { Transfering a possibly active computation from one processing unit (e.g.,

a computer or agent) to another. [GAA,NJ]

Mobility { An agent's ability to change its physical position. [GW]

Modal Approaches to the BDI concepts { Semantical approaches that are based

on (see) modal logics. See BDI concepts. [MPS,ASR,MPG]

Modal Logic { The logic of necessity and possibility. This forms the basis of a number

of the logics of (see) BDI concepts. [MPS,ASR,MPG]

MRP { Manufacturing Resource Planning; a widely-used process for planning the avail-

ability of parts and machines in manufacturing. [HVDP]

Multiagent (M) Contract { Contract where tasks are atomically reallocated among

more than two agents. See also OCSM-contract. [TS]

Multiagent Foraging { An application involving multiple agents which have to col-

lect food in a con�ned area and take it to a prede�ned region.

Multiagent Learning { In its stronger meaning, this term refers to situations in which

several agents collectively pursue a common learning goal. In its weaker meaning,

this term broadly refers to situations in which an agent pursues its own learning

goal, but is a�ected in its learning by other agents (e.g., their knowledge, beliefs,

intentions, and so forth). See learning. [GW]

Multiagent Soar { Any of the models of organizational behavior in which each of the

agents is modeled as a Soar agent. See also Soar. [KMC,LG]

Multiagent System { A system composed of multiple, interacting (see) agents. See

also interaction. [GW]

Multistage Negotiation { Negotiation-based cooperative resolution of con
icts,

where several cycles or \rounds" take place in which the participants e.g. send

requests, locally examine solutions, and generate alternative views. An advanced

form of distributed problem solving and planning. See negotiation. [GW]

Murmuring { To counter possible message losses, murmuring means that agents pe-

riodically repeat themselves until they receive evidence that the message has been

received. [EHD]

Mutual Belief { A (see) belief about a proposition that is shared by a set of agents in

such a way that the agents (i) belief the same proposition, (ii) believe that each of

the others believes it, and (iii) have similar nested beliefs about each other's beliefs

to an arbitrary level of nesting. [MPS,ASR,MPG]

Mutual Selection { When an agent that passes a task to another, and the other that

is accepting the task, each chooses to engage in this transaction. Usually used to

describe the (see) contract net protocol. [EHD]

Nash Bargaining Solution { A particular solution in the family of axiomatic bar-

gaining solutions. The product maximizing solution. [TS]

Nash Equilibrium { A pro�le of (see) strategies (one for each agent) such that no

agent is motivated to change its strategy given that others do not change. See also

strong Nash equilibrium. [TS]
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Negotiated Search { An approach in which multiple agents can propose partial or

complete solutions, from which agents engage in iterative elaboration and critiquing.

In overconstrained situations, agents can compromise by relaxing their solution

requirements. See negotiation. [EHD]

Negotiation { (See) interaction among agents based on (see) communication for the

purpose of coming to an agreement. Negotation has much to do with distributed

con
ict resolution and decision making, and requires that the agents use a common

language (see agent communication language). In the course of negotiation an agent

makes a proposal which then is commented (e.g., re�ned, criticized, or refuted)

by other agents. Negotiation may be interpreted as (see) coordination among

competitive or simply self-interested agents. Another common interpretation of

negotiation is that of a distributed, communication-based (see) search through

a space of possible solutions. See also multistage negotiation, negotiated search.

[MNH,LNS,GW]

Network (Organizational) { A collection of nodes and the relations among them.

Within the organization there are many networks, including the social network (who

likes or communicates with whom) and the task network (which subtasks must be

done before or simultaneously with which other subtasks). See linkages. [KMC,LG]

Newtonian Price Tâtonnement Algorithm { A variable step size (see) price

tâtonnement algorithm. [TS]

NII { National Information Infrastructure (US).

NIIIP { National Industrial Information Infrastructure Project (US).

Observation-Based Plan Coordination { The use of observations about others

actions, rather than explicit (see) communication, to sychronize and otherwise

coordinate plans. [EHD]

OCSM-Contract { Powerful complex contract type that allows moving from any task

allocation to any other. See cluster (C) contract, multiagent (M) contract, original

(O) contract, swap (S) contract. See also contract net protocol. [TS]

Odyssey { A commercial Java-based mobile agent platform from General Magic. See

also Concordia, Voyager. [TS]

OEM { Original Equipment Manufacturer; the company at the top of a supply chain,

which manufactures the �nished product. [HVDP]

Ontolingua { A set of tools, written in Common Lisp, for analyzing and translating

ontologies (see ontology). It uses (see) KIF as the interlingua and is portable over

several representation systems. It includes a KIF parser and syntax checker, a cross

reference utility, a set of translators from KIF into implemented representation

systems, and a HTML report generator. Ontolingua is part of the (see) Knowledge

Sharing E�ort. [GW]

Ontology { Generally, A speci�cation of the objects, concepts, classes, functions and

relationships in an area of interest. For a given area, the ontology may be explicitly

represented or implicitly encoded in an agent. More speci�cally, to support the
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sharing and reuse of formally represented knowledge among AI systems, it is useful

to de�ne the common vocabulary in which shared knowledge is represented; a

speci�cation of such a common vocabulary for a shared domain of discourse is called

an ontology. See also ontolingua, ontology sharing problem. [GW]

Ontology Sharing Problem { The problem that agents need a shared (see) ontology

to be able to communicate meaningful. [GW]

Open System { A system composed of a variable number of parts that interact al-

though typically they are developed independently, that act concurrently and asyn-

chronsously, that have a decentralized control, that possess limited knowledge, and

that have limited and potentially inconsistent views of the overall system. [GW]

ORGAHEAD { An intellective model in which the agents learn from experience as

they work in distributed fashion on an classi�cation or assessment task, and the chief

executive o�cer (modeled as an annealer) also learns how to alter the organization's

structure as the set of tasks potentially changes. [KMC,LG]

Organization { A system composed of interacting agents, together with the relation-

ships that exist between them. See also organizational structure. [GW]

Organizational Adaptation { A change in the organization or its personnel that

results in the maintenance of or improvements in performance regardless of whether

or not there are changes in the environment. See learning. [KMC,LG]

Organizational Consultant { A detailed expert system for exploring the potential

impact of di�erent organizational designs and tasks on various aspects of perfor-

mance from a management choice perspective. [KMC,LG]

Organizational Design { The organization's design is the set of processes and (see)

networks that comprise the organization. [KMC,LG]

Organizational Structure { Generally, the \architecture" of a multiagent system,

the pattern of information and control relationships between agents. Speci�cally, a

speci�cation and assignment of (see) roles and responsibilities to participants in a

cooperative planning and/or problem- solving endeavor. The set of (see) networks

that comprise the organization. See also coalition formation. [KMC,EHD,LG,GW]

Original (O) Contract { Contract where one item is moved from an agent to an-

other. See also OCSM-contract. [TS]

OSI { Open Systems Interconnection; a standard layered architecture for computer

communications. [HVDP]

PACT { Palo Alto Collaboration Testbed. PACT is a laboratory for joint experiments

in computer-aided concurrent engineering being pursued by research groups at Stan-

ford University, Lockheed, Hewlett-Packard, and Enterprise Integration Technolo-

gies.

Pareto E�ciency { A criterion for evaluating outcomes. A solution is Pareto e�cient

(Pareto optimal) if there exists no other solution where no agent is worse o� and

some agent is better o�. [TS]
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Parallel Search for Insincere Agents { A method for motivating self-interested

agents to follow a particular global search strategy. [TS]

Partial Global Planning (PGP) { A coordination approach in which agents iter-

atively form, coordinate, and execute their plans, which allows changing goals and

plans, tolerates inconsistent views of collective e�ort, and supports task passing. See

planning. [EHD]

Partial Order Planner { A planner that constructs a partial order plan, in which the

temporal ordering of plan steps is only committed to to the minimal extent needed

to ensure proper performance. See planning. [EHD]

Path-Finding Problem { The problem of �nding a path from a start node to a goal

node in a graph. A graph consists of a set of nodes, each of which represents a state,

and a set of directed links between nodes, each of which represents an operator

available to a problem solving agent. See search. [TI,MY]

Perlocution { The aspect of a (see) speech act dealing with its e�ect upon a recipient.

[MPS,ASR,MPG]

Personal Assistant { A (see) software agent that acts for and on behalf of one or

several users. To be able to do so, personal assistants often are intended to model

their users' interests, intentions, goals, and so forth. See interface agent. [GW]

Petri Net { A modeling technique for distributed systems. [HVDP]

PGP { (See) partial global planning.

Plan Combination Search { A distributed planning approach in which agents in-

dividually formulate feasible sets of plans for their goals, and then engage in dis-

tributed search to prune these sets to converge on an acceptable combination of

their individual plans. See planning. [EHD]

Plan Merging { A distributed planning approach in which each agent formulates is

desired plan, and then these plans are merged into a collective plan. See also

planning. [EHD]

Plan Synchronization { The insertion of synchronization actions into plans to avoid

con
icting actions. See also planning. [EHD]

Planning (Distributed) { Generally, the formulation of a scheme (plan) for the

attainment of a goal. Planning can be thought of as a specialization of (see) problem

solving, where the problem to be solved is to �nd an appropriate plan. \Distributed"

planning means that several entities are involved in plan formulation, plan execution,

or both. See also ACT, contingency planning, cooperative planning, distributed

hierachical planning, interaction analysis, multistage negotiation, observation-based

plan coordination, partial global planning, partial order planner, plan combination

search, plan merging, plan synchronization, team plan. [EHD,GW]

Plural-Soar { An intellective model of organizational performance in which each agent

is a Soar agent and the agents are working collectively to �ll orders from the goods

in a warehouse. See also Soar. [KMC,LG]



Glossary 601

Plurality Protocol { Voting protocol where the candidates are voted on all at once,

and the one with the most votes wins. [TS]

Pragmatics { How the symbols of communication are interpreted. [MNH,LNS,LNS]

Predicate Logic { (See) propositional logic enhanced with variables and quanti�ers

to make statements about all or some objects in a given domain of discourse.

[MPS,ASR,MPG]

Price-Taking Assumption { Assumptionmade in general equilibrium theory. Agents

are assumed to act as if their supply and demand decisions did not a�ect the mar-

ket prices. Becomes approximately valid as the agent's size in the market becomes

negligible. [TS]

Private Values Auction { Auction setting where each agent's valuation is indepen-

dent of others' valuations. [TS]

Price Tâtonnement Algorithm { An iterative search algorithm for �nding a gen-

eral equilibrium. At every iteration, the auctioneer increases the price of goods that

were over-demanded, and decreases the price of goods that were under-demanded.

[TS]

Pro-Active { Capable of taking the initiative; not driven solely by events, but capable

of generating goals and acting rationally to achieve them. [MW]

Problem Solving (Distributed) { Generally, the identi�cation and execution of a

sequence of activities that transform a start state into a desirable state. \Dis-

tributed" means that the identi�cation, the execution, or both, are distributed over

several entities. See result sharing, result synthesis, task accomplishment, task allo-

cation, task decomposition, task sharing. See also multistage negotiation, planning,

search. [EHD,GW]

Propositional Logic { The simplest form of logic dealing with elementary facts and

boolean combinations of them. [MPS,ASR,MPG]

Protocol { A structured exchange of messages leading to some de�ned outcome. The

rules of the interaction that describe what actions each agent can take at each time.

A protocol prescribes how (see) communication and (see) synchronization between

a group of agents takes place. See also Borda protocol, binary protocol, cooperation

protocol, interaction, plurality protocol, strategy. [GAA,EHD,TS,NJ]

Psychological Commitments { The extent to which an agent will not reconsider its

beliefs or intentions. These appear suboptimal in the narrow sense, but give stability

to the agent's actions, and are essential for agents of limited reasoning power. See

commitments. [MPS,ASR,MPG]

Quantity-Based Algorithms { Search algorithms for �nding a general equilibrium.

They can be constructed to operate as anytime algorithms where feasibility is

maintained at every iteration. See also search. [TS]

QuestMap { A commercial (see) groupware product implementing a version of (see)

IBIS as a graphical shared hypertext map. Each graphical map, constructed and

edited in an ongoing fashion by end users, contains nodes representing issues,
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positions, and arguments which are variously connected by colored graph links.

[CSE,JW]

Rational { To behave in a way that is suitable or even optimal for goal attainment.

[GW]

Reactive { (Of agent behaviour) Capable of maintaining an ongoing interaction with

the environment, and responding in a timely fashion to changes that occur in it.

(Of agent architectures.) An architecture that includes no symbolic representations

and does no symbolic reasoning. [MW]

Reactive Architecture { A (see) agent architecture that does not rely on symbol

manipulation. Usually contrasted with (see) deliberative architectures. [GW]

Remote Creation { Creating a new actor or agent at a remote (see) host. [GAA,NJ]

Resources { Physical resources (processor, memory, etc.) and logical resources (chan-

nels, threads) that are used in the course of a computation. [GAA,NJ]

Result Sharing { Cooperative problem solving through iterative exchange of partial

results in the search for an overall result to a problem. [EHD]

Result Synthesis { The stage in distributed problem solving where agents are com-

bining partial results of others (and themselves) into more comprehensive results.

[EHD]

Revelation Principle { A central principle in mechanism design. It says that any

outcome that can be supported in equilibrium with a complex protocol, can be

supported in (truth-telling) equilibrium via a single-shot protocol. [TS]

Revenue Equivalence { Theorem regarding auctions. It says that with risk neutral

bidders in private value auctions, a large number of auction protocols surprisingly

have the same expected revenue to the auctioneer, despite the fact that the bidding

strategies are di�erent. [TS]

Role { The functional or social part which an agent, embedded in a multiagent environ-

ment, plays in a (joint) process like problem solving, planning, or learning. Typically

roles include permissions and responsibilities, and are associated with speci�c be-

havioral patterns. Roles are often thought of as being de�ned through (see) social

laws or (see) strategies. See also meta-level organization, organizational structure,

team. [GW]

Rubinstein Bargaining Model { An alternating o�ers bargaining protocol used in

conjunction with subgame perfect equilibrium analysis. [TS]

SDML { Strictly Declarative Modeling Language, can be used with multiple agent

models and has facilities for examining team interaction. [KMC,LG]

Search { An umbrella term for various problem solving techniques in AI, where the

sequence of actions required for solving a problem is not known in advance but

must be determined by a trial-and-error exploration of alternatives. Search problems

may be divided into three classes: (see) path-�nding problems, (see) constraint

satisfaction problems, and (see) two-player games. See also asynchronous search

algorithm, problem solving, quantity-based algorithms. [TI,MY]
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Second-Price Sealed-Bid (Vickrey) Auction { Auction protocol where each

bidder is allowed to send in a bid without seeing the others' bids. The highest

bidder gets the item at the price of the second highest bid. [TS]

Semantics { What the symbols of communication denote. [MNH]

Sentential Approaches to the BDI Concepts { Semantical approaches that are

based on the explicit representation by the agent of sentences of a formal language.

See BDI concepts. [MPS,ASR,MPG]

Shapley Value { A way of dividing payo� among agents in coalition formation (CFGs).

The Shapley value exists for every characteristic function game, but does not

guarantee as strong stability as the core. [TS]

Sincere Voting { Voting where agents reveal their true preferences. [TS]

Situatedness { An agent's ability to continuously interact with, or to be embedded in,

its environment. [GW]

Soar { A general, rule-based problem solving architecture. [GW]

Social Ability { The ability to interact with other agents, typically by exchanging

information via some language. [GW]

Social Commitments { The broad class of (see) commitments referring to the obli-

gation of an agent to another agent. They may involve witnesses or context groups.

[MPS,ASR,MPG]

Social Concepts { Concepts applied in DAI that are inspired from sociology. for

instance, (see) group, (see) role. [GW]

Social Laws { Generally, behavior-prescribing speci�cations. Rules that specify how

an agent embedded in a society of agents should behave. More speci�cally, a set of

constraints on individual actions in particular contexts such that, if all agents follow

the laws, the agent system will avoid undesirable states. See also role, strategy.

[EHD,GW]

Social Level { A level of describing the interactions of multiple agents that abstracts

away from their individual cognitive processes; one level higher than the (see)

knowledge level. [HVDP]

Social Primitives { Any of the concepts borrowed from sociology. [MPS,ASR,MPG]

Software Agent { An agent that is implemented in software. See also interface agent.

[GW]

Software Assistant { See interface agent.

Softbot { SOFTware roBOT.

Space-Time Diagram { Graphical representation of the interaction between several

nodes by the exchange of messages. The diagram shows the execution of each

involved node as a straight line and the exchanged messages as arrows. [GT]
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Spawn { A distributed operating system where computation is allocated based on a

repeated Vickrey auction (see second-price sealed-bid auction). [TS]

Speech Act { A communication viewed as a combination of its (see) locution, (see)

illocution, and (see) perlocution. [MPS,ASR,MPG]

Speech Act Theory { The view of natural language as actions. The basic claim is

that utterances are actions that result in (or are intended by the speaker to result

in) changes in the internal state (see mental attitudes) of a hearer. \Verbal actions"

of this kind are called (see) speech acts. [MNH,LNS,GW]

Splitting Algorithm { A particular anytime algorithm for (see) coalition structure

generation. Starts from all agents operating together, and splits o� coalitions. See

also merging algorithm. [TS]

Static Environment { An environment that is guaranteed to change only via the

action of the agent in it. [MW]

Strategic Bargaining { An approach to solving bargaining problems by de�ning the

protocol and carrying out game theoretic equilibrium analysis. [TS]

Strategy { Agent's mapping from state history to action; a way to use the (see) protocol.

See also dominant strategy, Nash equilibrium, role, social law. [TS]

STRIPS Operator { A speci�cation of an action in terms of the preconditions that

must hold for the action to apply, and the e�ects the action has on the state of the

world once it is executed. [EHD]

Strong Nash Equilibrium { A solution concept for games that requires that no

subgroup is motivated to change their strategies in a coordinated manner. See Nash

equilibrium. [TS]

Subsumption Architecture { Developed by Rodney Brooks, a reactive (see) agent

architecture in which agent decision making is achieved through the interaction of a

number of task accomplishing \behaviors," each of which is an independent activity-

producing system in its own right. Layers typically interract by \inhibition" and

\suppression," and are extremely economical in computational terms, making no

use of symbolic representation or reasoning mechanisms. [MW]

Sugarscape { An arti�cial life model in which very simple agents consume resources,

migrate, and reproduce. [KMC,LG]

Swap (S) Contract { Contract where agents swap a pair of tasks atomically. See also

OCSM-contract. [TS]

SWARM { A multiagent simulation language for modeling collections of concurrently

interacting agents in a dynamic environment. [KMC,LG]

Synchronization { A speci�cation of the constraints on the order of events occuring

in a system. Synchronization may be viewed as an elementary (see) coordination

mechanism. [GAA,NJ,GW]

Syntax { How the symbols of comunication are structured. [MNH,LNS]
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TAC Air Soar { A model of distributed teamwork in which each of the agents are

modeled in (see) Soar and the organizational structure is embedded as a set of

prede�ned procedures in the knowledge base. [KMC,LG]

TAEMS { A system for modeling, analyzing, and simulating multiagent systems based

on the structure of the multiagent tasks and the relationships between the dis-

tributed subtasks. [EHD]

Task Accomplishment { The stage in distributed (see) problem solving where agents

are accomplishing their own local tasks. [EHD]

Task Allocation { The stage in distributed (see) problem solving where agents are

deciding where tasks will be done. [EHD]

Task Decomposition { The stage in distributed (see) problem solving where agents

are breaking large tasks into smaller tasks to be distributed to others. [EHD]

Task Sharing { Cooperative (see) problem solving through the decomposition of large

tasks and the enlistment of other agents to accomplish the subtasks. [EHD]

Team { A multiagent system, especially one whose members play di�erent (see) roles

and work together to achieve some common goals. Often used as a synonym for

(see) coaliltion, (see) ensemble, and (see) group. [MPS,ASR,MPG]

Team Plan { An explicit representation of how multiple agents should work together

in accomplishing a goal. [EHD]

Telescript { A commercial development environment for agent-based applications from

General Magic. [GW]

Temporal Logic { (See) propositional logic augmented with operators to make claims

about the truth of di�erent conditions at di�erent times. [MPS,ASR,MPG]

Termination Detection { The determination that a distributed computation has

come to a halt. The issue is not always trivial because termination could be a

property of the global state, while each node only observes its own local state.

Detection then requires a mechanism to ensure that communication channels are

empty, and exchange of information about the local states. [GT]

ToH { (See) Tower of Hanoi.

TOP-MODELER { The commercial, PC-based tool developed from (see) ACTION.

[KMC,LG]

TOURINGMACHINES { A horizontally layered (see) agent architecture. See lay-

ered architecture. [MW]

Tower of Hanoi (ToH) { A classic AI problem involving moving a stack of disks

from one peg to another under constraints on actions. The space of possible plans

is exponential. [EHD]

TRACONET { TRAnsportation COoperation NEt. The system that introduced a

sound marginal cost-based decision making criterion into the contract net protocol.

A distributed implementation that was tested on a real world multienterprise vehicle

routing problem with 771 tasks and 77 vehicles. [TS]
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Two-Player Game { For instance, chess and checkers. A two-player game can be

represented by a tree called a game tree, which represents the sequence of possible

moves. The minimax procedure is a method for �nding a good move by creating

only a reasonable portion of a game tree, and the alpha-beta pruning method can

be used to speed up the minimax procedure without any loss of information. See

search, asynchronous search algorithm. [TI,MY]

Vacuum Cleaning World Application { An application involving multiple agents

which have to clean up a prede�ned region (e.g., a house).

VDT { An emulation model of performance for teams dealing with routine design tasks.

[KMC,LG]

Veracity { The assumption that an agent is truthful and does not provide information

of which it thinks that it is false. [GW]

Voting { See Arrow's impossibility theorem, Gibbard-Satterthwaite impossibility theo-

rem, sincere voting, Insincere (strategic) voting, protocol.

Voyager { A commercial Java-based mobile agent platform from ObjectSpace. See also

Concordia, Odyssey. [TS]

Walras { (1.) L. Walras, economist. Forefather of general equilibrium theory. (2.) A

simulated computational market economy based on general equilibrium theory, and

a variant of the price tâtonnement algorithm. [TS]

Watchdog { An agent whose sensory scope is wider than that of most other agents

in the community, but whose only action is raising signals to which other agents

respond. [HVDP]

Whiteboard { Shared writing and drawing surface that allows multiple participants to

view and work upon an information artifact simultaneously, without inhibiting each

other. See also blackboard. [CSE,JW]

Work
ow Management System { Networked control system that assists in ana-

lyzing, coordinating, and executing business processes. It typically consists of two

sub-systems:(1) A modelling subsystem which allows organizational administrators

and analysts to construct procedural models of the 
ow of work among people and

tasks; and (2) An enactment subsystem which uses the model to coordinate task

executions by various participants at various workstations connected to a network.

[CSE,JW]

Wrapper { Software (and possibly dedicated hardware) that enables a system con-

structed according to one architecture to interoperate with a system of a di�erent

architecture. [HVDP]

WWW { The World Wide Web.

W3C { The World Wide Web consortium hosted at MIT.
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