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Preface

Gerhard Weiss

The Subject of This Book

Multiagent systems are systems composed of multiple interacting intelligent
agents. An agent is a computational entity such as a software program or a
robot that is situated in some environment and that to some extent is able to
act autonomously in order to achieve its design objectives. As interacting enti-
ties, agents do not simply exchange data but are actively engaged in cooperative
and competitive scenarios; they may communicate on the basis of semantically
rich languages, and they achieve agreements and make decisions on the basis of
processes such as negotiation, argumentation, voting, auctioning, and coalition
formation. As intelligent entities, agents act flexibly, that is, both reactively and
deliberatively, in a variety of environmental circumstances on the basis of pro-
cesses such as planning, learning, and constraint satisfaction. As autonomous
entities, agents have far-reaching control over their behavior within the frame of
their objectives, possess decision authority in a wide variety of circumstances, and
are able to handle complex and unforeseen situations on their own and without the
intervention of humans or other systems. And as entities situated in some envi-
ronment, agents perceive their environment at least partially and act upon their
environment without being in full control of it. Concrete multiagent systems and
their environments have several relevant attributes in which they can differ; the
table below (on page xxxvi) indicates the wide range of possible instantiations of
these attributes.

Since its inception in the late 1970s, the field of multiagent systems has
evolved impressively and today it is an established and vibrant field in computer
science. The field has a profound and broad conceptual and theoretical foun-
dation, drawing on and bringing together results, techniques, and tools not only
from computer science and artificial intelligence (which traditionally has dealt
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attribute range

number from two upward
uniformity homogeneous . . . heterogeneous
goals contradicting . . . complementary

agents flexibility purely reactive . . . purely deliberative
abilities (sensors,
effectors, cognition) simple . . . advanced

autonomy low . . . high
frequency low . . . high
persistence short-term . . . long-term
level signal-passing . . . knowledge-intensive
language elementary . . . semantically rich

interaction pattern (flow of
data and control) decentralized . . . hierarchical

variability fixed . . . changeable
purpose competitive . . . cooperative
predictability forseeable . . . unforseeable
accessibility
and knowability unlimited . . . limited

environment dynamics fixed . . . variable
diversity poor . . . rich
availability of
resources restricted . . . ample

Variety of multiagent systems and their environments.

with single-agent systems) but also from mathematics, logics, game theory, and
other areas. The multiagent systems field is multidisciplinary in nature. Examples
of disciplines to which the field is related are cognitive psychology, sociology,
organization science, economics, and philosophy.

A main reason for the vast interest and attention multiagent systems are receiv-
ing is that they are seen as an enabling technology for applications that rely on dis-
tributed and parallel processing of data, information, and knowledge in complex –
networked, open, and large-scale – computing environments. With advancing
technological progress in interconnectivity and interoperability of computers and
software, such applications are becoming standard in a variety of domains such
as e-commerce, logistics, supply chain management, telecommunication, health
care, and manufacturing. More generally, such applications are characteristic of
several widely recognized computing paradigms known as grid computing, peer-
to-peer computing, pervasive computing, ubiquitous computing, autonomic com-
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puting, service-oriented computing, and cloud computing. In a sense multiagent
technology is complementary to and cuts across these paradigms. Another rea-
son for the broad interest in multiagent systems is that these systems are seen as
a technology and tool that helps to analyze and develop models and theories of
interactivity in large-scale human-centered systems. Research motivated by this
interest is mainly based on computer-based experimental analysis and simulation
rather than mathematical studies. The general goal of this line of research is to
gain a deeper understanding of complex organizational, societal, economic, and
political phenomena (including their underlying mechanisms and observable dy-
namics) for which the individual abilities and traits of the involved humans are
crucial and thus cannot be neglected.

Main Features of This Book

The book offers several features that support its use as a textbook and reference
volume:

• Scope – It captures the state of the art in the field in breadth and depth.

• Theory – It conveys the theoretical foundations and underpinning of multi-
agent systems.

• Clarity – It provides many illustrations and examples.

• Practice – It includes many exercises of varying degrees of difficulty.

• Expertise – Its chapters are written by leading experts and authorities in the
field.

It is worth saying a few words about the last-mentioned feature. This feature
ensures that the book is built on an outstanding, broad, and profound basis of
knowledge and experience. As the readers will also see, tremendous effort has
been invested in carefully coordinating the individual chapters and in ensuring
overall coherence of the book. In a way, there is no approach to writing a book
on multiagent systems that is more natural and obvious than the multi-author ap-
proach taken for this book. A list of the thirty-one contributing authors is provided
on pages xliii–xlviii.

Readership and Prerequisites

The book is primarily intended for use in undergraduate, graduate, and postgradu-
ate courses and is also suited for self-study. The main academic audiences are stu-
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dents and teachers of artificial intelligence, computer science, information tech-
nology, and related fields. Because of the multidisciplinary nature of multiagent
systems (both as a technology and a field), it can also serve as a course text for
students and teachers from disciplines such as psychology, economics, sociology,
and philosophy. Moreover, because of its breadth and depth, the book can serve
as a basic reference volume for both researchers who want to branch out beyond
their own subfields and professionals from industry who want to explore potential
usages of multiagent technology in their application areas.

As far as possible, the chapters are written so they can be understood without
advanced prior knowledge. The main prerequisite for making the most of the book
and for understanding its contents in detail is familiarity with basic concepts of
computer science (especially algorithms and programming) and mathematics (es-
pecially logics and game theory) at the freshman level. Some useful background
in logics and game theory is supplied in Part VI of this book.

Changes from the First Edition

The first edition appeared in 1999, and since then the field of multiagent systems
has developed considerably. Some topics and themes that were characteristic of
the field some twelve years ago play only a minor role today, and some of today’s
core topics played no or only a marginal role at that time. This second edition
captures all these changes and shows the current state of the art in the field. Much
more work was necessary in creating the new edition other than just rewriting
or restructuring some of the first-edition chapters. Only one of the seventeen
chapters was already included in the first edition (some passages of the chapter
have been rewritten and some material has been added); the other sixteen chapters
are entirely new.

What remained unchanged is the unique conception and vision behind the
book: to have a high-quality course book and reference volume on multiagent
systems whose parts are all written by acknowledged authorities in the field.

Structure and Chapters

This book is divided into six parts:

• Part I introduces basic concepts and principles of computational agency and
covers key issues of both individual agents (Chapter 1) and agent organiza-
tions (Chapter 2).



Preface xxxix

• Part II focuses on communication among agents and discusses agent com-
munication languages (Chapter 3) as well as two forms of agent-agent inter-
action – negotiation and bargaining (Chapter 4) and argumentation (Chapter
5) – for which communication is particularly crucial.

• Part III focuses on coordination among agents from different perspectives,
including social choice (Chapter 6), mechanism design and auctions (Chap-
ter 7), coalition formation (Chapter 8), and trust and reputation (Chapter
9).

• Part IV focuses on distributed cognition in multiagent systems and deals
with several basic cognitive abilities, namely, learning (Chapter 10), plan-
ning and decision making (Chapter 11), and constraint handling and opti-
mization (Chapter 12).

• Part V focuses on the development and engineering of multiagent systems
and deals with programming (Chapter 13), specification and verification
(Chapter 14), and agent-oriented software engineering (Chapter 15).

• Part VI provides relevant and useful background knowledge in logics
(Chapter 16) and game theory (Chapter 17).

Each chapter starts with a motivating introduction, then delves into its topic,
and concludes with considerations on the current state of the art, open challenges,
and latest developments. The chapters provide a number of pointers to relevant
literature and put particular emphasis on providing examples and illustrations.
Moreover, each chapter comes with various exercises.

The Exercises

At the end of each chapter, exercises of varying difficulty are provided, which
concern relevant theoretical and practical aspects of multiagent systems. The fol-
lowing four levels of difficulty are distinguished to roughly indicate the amount
of effort required for solving the exercises:

• Level 1 Simple test of comprehension or slightly more subtle problem,
solvable within a few hours or days. (Appropriate for Bachelor education)

• Level 2 Much harder problem (e.g., requires writing a non-trivial program);
solving it could take several days or weeks. (Bachelor)

• Level 3 Even harder problem, typically related to a “hot” topic of current
research; solving it could take weeks or months. (Bachelor/Master)
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• Level 4 An open research question; solution cannot be expected within a
few months or could even be a topic of a PhD. (Master/PhD)

I recommend addressing as many Level-1 and Level-2 exercises as possible and
dealing with at least a few of the Level-3 and Level-4 exercises. Most of the
Level-1 and Level-2 exercises can be solved with the knowledge provided in this
book, whereas Level-3 and Level-4 exercises typically require additional literature
studies and extensive theoretical and/or experimental studies. Carefully working
through Level-1 and Level-2 exercises will reward a reader with a real under-
standing of the material treated in the chapters, and solving Level-3 and Level-4
exercises will turn a reader into a real expert!

How to Use This Book

The book can be used for teaching as well as self-study. The chapters and thus
the overall book are designed to be self-contained and understandable without
additional material. Of course, there are many relationships between the chapters,
but in principle they can be treated independently and read in any sequence. In
general, I recommend starting off with Part I (i.e., Chapters 1 and 2) in order to set
up a proper contextual understanding, especially if the reader is new to this field.

All chapters together can easily fill two one-semester courses. There are sev-
eral ways to use the book. One possibility is to work linearly through the book
from front to back, thereby covering each of the individual chapters fully or just
partially. Another possibility, resulting from the self-containment of the chapters,
is to tailor a course to specific needs and interests by using only some selected
chapters in any preferable order while dropping the others. The book can also be
employed as a complementary text for courses on “classical” (single-agent) AI in
order to selectively cover elements of multi-agency. For instance, if such a course
deals with machine learning, then an obvious option is to include also one or an-
other multiagent learning algorithm. Last but not least, the chapters in this book
can be used as supportive material for specialized courses on topics such as elec-
tronic auctions, smart devices, cooperative information systems, and autonomous
systems engineering.

The book contains a number of exercises that allow readers to test and further
deepen their knowledge. Course instructors may find them helpful and inspiring
in view of formulating review questions, in-class exercises, homework problems,
or course exams. Some exercises are fairly simple and are intended to make sure
that basic material provided in the chapters is mastered. Others are more difficult
and challenging and may serve as subjects of class discussion or advanced team
work.
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Throughout the book numerous references to relevant literature are provided.
They enable interested students to further explore specific aspects, and they sup-
port teachers in choosing additional course material.

Slides and More – The Website of the Book

This book is accompanied by the website accessible via

• http://mitpress.mit.edu/multiagentsystems

The site is intended to provide useful teaching material for students and teachers.
The website starts with lecture slides for the chapters (prepared by the respective
chapter authors) and some other resources such as copies of the figures and a list
of exercises in the book. I hope to extend the supplementary material once this
book is in use.

Teachers, students, and industrial professionals are invited and encouraged to
contribute additional resources based on the contents of the book. Examples of
such additional resources are

• exercises, lab projects, and exam papers,

• alternative slides and lecture videos,

• descriptions/syllabi of courses employing this book, and

• errors slipped in the book (errata).

Teachers using the book are asked to notify me of their courses (with URLs).
I will maintain an online list of these courses. The material I receive will be
made available on the website so that all readers and the multiagent community
as a whole can benefit from it. Additional resources and related questions can be
mailed to gerhard.weiss@maastrichtuniversity.nl
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Chapter 1

Intelligent Agents

Michael Wooldridge

1 Introduction

Computers are not very good at knowing what to do: every action a computer per-
forms must be explicitly anticipated, planned for, and coded by a programmer. If a
computer program ever encounters a situation that its designer did not anticipate,
then the result is ugly – a system crash at best, loss of life at worst. This mun-
dane fact is at the heart of our relationship with computers. It is so self-evident to
the computer literate that it is rarely mentioned. And yet it comes as a complete
surprise to those programming computers for the first time.

For the most part, we are happy to accept computers as obedient, literal,
unimaginative servants. For many applications, it is entirely acceptable. How-
ever, for an increasingly large number of applications, we require systems that
can decide for themselves what they need to do in order to achieve the objectives
that we delegate to them. Such computer systems are known as agents. Agents
that must operate robustly in rapidly changing, unpredictable, or open environ-
ments, where there is a significant possibility that actions can fail, are known as
intelligent agents, or sometimes autonomous agents. Here are some examples of
recent application areas for intelligent agents:

• When a space probe makes its long flight from earth to the outer planets, a
ground crew is usually required to continually track its progress, and decide
how to deal with unexpected eventualities. This is costly, and if decisions
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are required quickly, it is simply not practicable. For these reasons, orga-
nizations such as NASA and the European Space Agency are interested in
the possibility of making probes more autonomous – giving them richer
onboard decision-making capabilities and responsibilities.

• Searching the Internet for the answer to a specific query can be a long and
tedious process. So, why not allow a computer program – an agent – do
searches for us? The agent would typically be given a query that would
require synthesizing pieces of information from various different Internet
information sources. Failure would occur when a particular resource was
unavailable (perhaps due to network failure), or where results could not be
obtained.

This chapter is about intelligent agents. Specifically, it aims to give you an in-
troduction to the main issues associated with the design and implementation of
intelligent agents. After reading it, you will understand:

• what intelligent agents are (and are not), and how agents relate to other
software paradigms – in particular, expert systems and object-oriented pro-
gramming; and

• some of the main approaches that have been advocated for designing and
implementing intelligent agents, the issues surrounding these approaches,
their relative merits, and the challenges that face the agent implementor.

The chapter is structured as follows. First, Section 2 describes what is meant by
the term agent. Section 3 then discusses architectures for agents. The various
major design approaches that one can follow in implementing an agent system
are outlined in this section. In particular, logic-based architectures, reactive ar-
chitectures, belief-desire-intention architectures, and finally, layered architectures
for intelligent agents are described in detail.

2 What Are Agents?

An obvious way to open this chapter would be by presenting a definition of the
term agent. The definition presented here is adapted from [60]:

An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order
to achieve its delegated objectives.
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Figure 1.1: An agent in its environment. The agent takes sensory input in the
form of percepts from the environment, and produces as output actions that affect
it. The interaction is usually an ongoing, non-terminating one.

There are several points to note about this definition. First, the definition refers to
“agents” and not “intelligent agents.” The distinction is deliberate: it is discussed
in more detail below. Second, the definition does not say anything about what type
of environment an agent occupies. Again, this is deliberate: agents can occupy
many different types of environment, as we shall see below. Third, we have not
defined autonomy. Like agency itself, autonomy is a somewhat tricky concept to
tie down precisely. In this chapter, it is used to mean that agents are able to act
without the intervention of humans or other systems: they have control both over
their own internal state and over their behavior. In Section 2.3, we will contrast
agents with the objects of object-oriented programming, and we will elaborate this
point there. In particular, we will see how agents embody a much stronger sense
of autonomy than objects do.

Figure 1.1 gives an abstract, top-level view of an agent. In this diagram, we can
see the action output generated by the agent in order to affect its environment. In
most domains of reasonable complexity, an agent will not have complete control
over its environment. It will have at best partial control, in that it can influence
it. From the point of view of the agent, this means that the same action performed
twice in apparently identical circumstances might appear to have entirely different
effects, and in particular, it may fail to have the desired effect. Thus agents in
all but the most trivial of environments must be prepared for the possibility of
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failure. We can sum this situation up formally by saying that environments are
non-deterministic.

Normally, an agent will have a repertoire of actions available to it. This set of
possible actions represents the agent’s effectoric capability: its ability to modify
its environment. Note that not all actions can be performed in all situations. For
example, an action “lift table” is only applicable in situations where the weight
of the table is sufficiently small that the agent can lift it. Similarly, the action
“purchase a Ferrari” will fail if insufficient funds are available to do so. Actions
therefore have preconditions associated with them, which define the possible sit-
uations in which they can be applied.

The key problem facing an agent is that of deciding which of its actions it
should perform in order to best satisfy its delegated objectives. Agent architec-
tures, of which we shall see several examples later in this chapter, are software
architectures for decision-making systems that are embedded in an environment.

The complexity of the action selection process can be affected by a number
of different environmental properties. Russell and Norvig suggest the following
classification of environment properties [55, p. 46]:

• Accessible vs. inaccessible

An accessible environment is one in which the agent can obtain complete,
accurate, up-to-date information about the environment’s state. Most mod-
erately complex environments (including, for example, the everyday phys-
ical world and the Internet) are inaccessible. The more accessible an envi-
ronment is, the simpler it is to build agents to operate in it.

• Deterministic vs. non-deterministic

As we have already mentioned, a deterministic environment is one in which
any action has a single guaranteed effect – there is no uncertainty about
the state that will result from performing an action. The physical world
can to all intents and purposes be regarded as non-deterministic. Non-
deterministic environments present greater problems for the agent designer.
As Russell and Norvig observe [55, p. 46], if an environment is sufficiently
complex, then the fact that it is actually deterministic is not much help: to
all intents and purposes, it may as well be non-deterministic.

• Episodic vs. non-episodic

In an episodic environment, the performance of an agent is dependent on a
number of discrete episodes, with no link between the performance of an
agent in different scenarios. An example of an episodic environment would
be a mail sorting system [56]. Episodic environments are simpler from the
agent developer’s perspective because the agent can decide what action to
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perform based only on the current episode – it need not reason about the
interactions between this and future episodes.

• Static vs. dynamic

A static environment is one that can be assumed to remain unchanged except
for the performance of actions by the agent. A dynamic environment is
one that has other processes operating on it, and which hence changes in
ways beyond the agent’s control. The physical world is a highly dynamic
environment.

• Discrete vs. continuous

An environment is discrete if there are a fixed, finite number of actions and
percepts in it. Russell and Norvig give a chess game as an example of a
discrete environment, and taxi driving as an example of a continuous one.

The most complex general class of environments are those that are inaccessible,
non-deterministic, non-episodic, dynamic, and continuous.

2.1 Examples of Agents

At this point, it is worth pausing to consider some examples of agents (though not,
as yet, intelligent agents):

• Any control system can be viewed as an agent. A simple (and overused)
example of such a system is a thermostat. Thermostats have a sensor for
detecting room temperature. This sensor is directly embedded within the
environment (i.e., the room), and it produces as output one of two signals:
one that indicates that the temperature is too low, and another that indi-
cates that the temperature is OK. The actions available to the thermostat are
“heating on” or “heating off.” The action “heating on” will generally have
the effect of raising the room temperature, but this cannot be a guaranteed
effect – if the door to the room is open, for example, switching on the heater
may have no effect. The (extremely simple) decision-making component of
the thermostat implements the following rules:

too cold −→ heating on
temperature OK −→ heating off

More complex environment control systems, of course, have considerably
richer decision structures. Examples include autonomous space probes, fly-
by-wire aircraft, nuclear reactor control systems, and so on.
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• Most software daemons (such as background processes in the UNIX oper-
ating system), which monitor a software environment and perform actions
to modify it, can be viewed as agents. An example is the venerable X Win-
dows program xbiff. This utility continually monitors a user’s incoming
e-mail, and indicates via an icon on the user interface whether or not they
have unread messages. Whereas our thermostat agent in the previous ex-
ample inhabited a physical environment, the xbiff program inhabits a
software environment. It obtains information about this environment by ex-
ecuting software commands (e.g., system programs such as ls on a UNIX

operating system, for example), and the actions it performs are also com-
puter programs. Notice that the decision-making component in xbiff is
just as simple as the one in our thermostat example.

To summarize, agents are simply computer systems that are capable of au-
tonomous action in some environment in order to meet objectives that are del-
egated to them by us. An agent will typically sense its environment (by physical
sensors in the case of agents situated in part of the real world, or by software sen-
sors in the case of software agents), and will have available a repertoire of actions
that can be executed to modify the environment, which may appear to respond
non-deterministically to the execution of these actions.

2.2 Intelligent Agents

We do not think of thermostats or UNIX daemons as agents, and certainly not as
intelligent agents. So, what properties would we demand of a system in order to
call it an “intelligent agent”? For the purposes of this chapter, we consider an
intelligent agent to be an agent that exhibits the following types of behavior in
order to meet its delegated objectives [60]:

• proactiveness: intelligent agents are able to exhibit goal-directed behavior
by taking the initiative in order to satisfy their delegated objectives;

• reactivity: intelligent agents are able to perceive their environment, and re-
spond in a timely fashion to changes that occur in it in order to satisfy their
delegated objectives;

• social ability: intelligent agents are capable of interacting with other agents
(and possibly humans) in order to satisfy their design objectives.

These properties are more demanding than they might at first appear. To see why,
let us consider them in turn. First, consider proactiveness: goal-directed behavior.
It is not hard to build a system that exhibits goal-directed behavior – we do it every
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time we write a procedure in PASCAL, a function in C, or a method in JAVA. When
we write such a procedure, we describe it in terms of the assumptions on which
it relies (formally, its precondition) and the effect it has if the assumptions are
valid (its postcondition). The effects of the procedure are its goal: what the author
of the software intends the procedure to achieve. If the precondition holds when
the procedure is invoked, then we expect that the procedure will execute correctly:
that it will terminate, and that upon termination, the postcondition will be true, i.e.,
the goal will be achieved. This is goal-directed behavior: the procedure is simply
a plan or recipe for achieving the goal. This programming model is fine for many
environments. For example, its works well when we consider functional systems –
those that simply take some input x, and produce as output some function f (x) of
this input. Compilers are a classic example of functional systems.

But for non-functional systems, this simple model of goal-directed program-
ming is not acceptable, as it makes some important limiting assumptions. In par-
ticular, it assumes that the environment does not change while the procedure is
executing. If the environment does change, and in particular, if the assumptions
(precondition) underlying the procedure become false while the procedure is ex-
ecuting, then the behavior of the procedure may not be defined – often, it will
simply crash. Also, it is assumed that the goal, that is, the reason for executing
the procedure, remains valid at least until the procedure terminates. If the goal
does not remain valid, then there is simply no reason to continue executing the
procedure.

In many environments, neither of these assumptions are valid. In particu-
lar, in domains that are too complex for an agent to observe completely, that are
multi-agent (i.e., they are populated with more than one agent that can change the
environment), or where there is uncertainty in the environment, these assumptions
are not reasonable. In such environments, blindly executing a procedure without
regard to whether the assumptions underpinning the procedure are valid is a poor
strategy. In such dynamic environments, an agent must be reactive, in just the way
that we described above. That is, it must be responsive to events that occur in its
environment, where these events affect either the agent’s goals or the assumptions
which underpin the procedures that the agent is executing in order to achieve its
goals.

As we have seen, building purely goal-directed systems is not hard. As we
shall see later in this chapter, building purely reactive systems – ones that contin-
ually respond to their environment — is also not difficult. However, what turns
out to be hard is building a system that achieves an effective balance between
goal-directed and reactive behavior. We want agents that will attempt to achieve
their goals systematically, typically by making use of complex procedures. But
we don’t want our agents to continue blindly executing these procedures in an
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attempt to achieve a goal either when it is clear that the procedure will not work,
or when the goal is for some reason no longer valid. In such circumstances, we
want our agent to be able to react to the new situation, in time for the reaction to
be of some use. However, we do not want our agent to be continually reacting,
and hence never focusing on a goal long enough to actually achieve it.

On reflection, it should come as little surprise that achieving a good balance
between goal-directed and reactive behavior is hard. After all, it is comparatively
rare to find humans that do this very well. How many of us have had a manager
who stayed blindly focused on some project long after the relevance of the project
was passed, or it was clear that the project plan was doomed to failure? Sim-
ilarly, how many have encountered managers who seem unable to stay focused
at all, who flit from one project to another without ever managing to pursue a
goal long enough to achieve anything? This problem — of effectively integrating
goal-directed and reactive behavior – is one of the key problems facing the agent
designer. As we shall see, a great many proposals have been made for how to
build agents that can do this.

Finally, let us say something about social ability, the final component of flex-
ible autonomous action as defined here. In one sense, social ability is trivial:
every day, millions of computers across the world routinely exchange information
with both humans and other computers. But the ability to exchange bit streams
is not really social ability. Consider that in the human world, comparatively few
of our meaningful goals can be achieved without the cooperation of other people,
who cannot be assumed to share our goals – in other words, they are themselves
autonomous, with their own agenda to pursue. To achieve our goals in such sit-
uations, we must negotiate and cooperate with others. We may be required to
understand and reason about the goals of others, and to perform actions (such as
paying them money) that we would not otherwise choose to perform in order to
get them to cooperate with us, and achieve our goals. This type of social ability is
much more complex, and much less well understood, in computational terms than
simply the ability to exchange binary information. Social ability in general (and
topics such as negotiation and cooperation in particular) are dealt with elsewhere
in this book, and will not therefore be considered here. In this chapter, we will
be concerned with the decision making of individual intelligent agents in environ-
ments that may be dynamic, unpredictable, and uncertain, but do not contain other
agents.

2.3 Agents and Objects

Programmers who are familiar with object-oriented languages such as JAVA and
C++ sometimes fail to see anything novel or new in the idea of agents. When one
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stops to consider the relative properties of agents and objects, this is perhaps not
surprising.

Objects are defined as computational entities that encapsulate some state, are
able to perform actions, or methods, on this state, and communicate by message-
passing. While there are obvious similarities between agents and objects, there
are also significant differences. The first is in the degree to which agents and
objects are autonomous. Recall that the defining characteristic of object-oriented
programming is the principle of encapsulation – the idea that objects can have
control over their own internal state. In programming languages like JAVA, we can
declare instance variables (and methods) to be private, meaning they are only
accessible from within the object. (We can of course also declare them public,
meaning that they can be accessed from anywhere, and indeed we must do this
for methods so that they can be used by other objects. But the use of public
instance variables is usually considered poor programming style.) In this way, an
object can be thought of as exhibiting autonomy over its state: it has control over
it. But an object does not exhibit control over its behavior. That is, if a method m
is made available for other objects to invoke, then they can do so whenever they
wish – once an object has made a method public, then it subsequently has no
control over whether or not that method is executed. Of course, an object must
make methods available to other objects, or else we would be unable to build a
system out of them. This is not normally an issue, because if we build a system,
then we design the objects that go in it, and they can thus be assumed to share a
“common goal.” But in many types of multiagent systems (in particular, those that
contain agents built by different organizations or individuals), no such common
goal can be assumed. It cannot be taken for granted that an agent i will execute
an action (method) a just because another agent j wants it to – a may not be in
the best interests of i. We thus do not think of agents as invoking methods upon
one another, but rather as requesting actions to be performed. If j requests i to
perform a, then i may perform the action or it may not. The locus of control with
respect to the decision about whether to execute an action is thus different in agent
and object systems. In the object-oriented case, the decision lies with the object
that invokes the method. In the agent case, the decision lies with the agent that
receives the request.

Note that there is nothing to stop us from implementing agents using object-
oriented techniques. For example, we can build some kind of decision making
about whether to execute a method into the method itself, and in this way achieve
a stronger kind of autonomy for our objects. The point is that autonomy of this
kind is not a component of the basic object-oriented model.

The second important distinction between object and agent systems is with re-
spect to the notions of reactive, proactive, social, and autonomous behavior. The
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standard object model has nothing whatsoever to say about how to build systems
that integrate these types of behavior. Again, one could object that we can build
object-oriented programs that do integrate these types of behavior. But this ar-
gument misses the point, which is that the standard object-oriented programming
model has nothing to do with these types of behavior.

The third important distinction between the standard object model and our
view of agent systems is that agents are each considered to have their own thread
of control – in the standard object model, there is a single thread of control in
the system. Of course, a lot of work has recently been devoted to concurrency in
object-oriented programming. For example, the JAVA language provides built-in
constructs for multithreaded programming. There are also many programming
languages available that were specifically designed to allow concurrent object-
based programming. But such languages do not capture the idea we have of agents
as autonomous entities. Perhaps the closest that the object-oriented community
comes is in the idea of active objects:

An active object is one that encompasses its own thread of control
[. . . ]. Active objects are generally autonomous, meaning that they
can exhibit some behavior without being operated upon by another
object. Passive objects, on the other hand, can only undergo a state
change when explicitly acted upon. [5, p. 91]

Thus active objects are essentially agents that do not necessarily have the ability
to exhibit flexible autonomous behavior. Objects in the standard object-oriented
sense are simple passive service providers.

To summarize, the traditional view of an object and our view of an agent have
at least three distinctions:

• agents embody a stronger notion of autonomy than objects, and in partic-
ular, they decide for themselves whether or not to perform an action on
request from another agent;

• agents are capable of reactive, proactive, social behavior, and the standard
object model has nothing to say about such types of behavior; and

• a multiagent system is inherently multithreaded in that each agent is as-
sumed to have its own thread of control, and is continually executing.

2.4 Agents and Expert Systems

Expert systems were the most important AI technology of the 1980s [25]. An
expert system is one that is capable of solving problems or giving advice in some
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knowledge-rich domain [26]. A classic example of an expert system is MYCIN,
which was intended to assist physicians in the treatment of blood infections in
humans. MYCIN worked by a process of interacting with a user in order to present
the system with a number of (symbolically represented) facts, which the system
then used to derive some conclusion. MYCIN acted very much as a consultant:
it did not operate directly on humans, or indeed any other environment. Thus
perhaps the most important distinction between agents and expert systems is that
expert systems like MYCIN are inherently disembodied. By this, we mean that
they do not interact directly with any environment: they get their information not
via sensors, but through a user acting as a middle man. In the same way, they do
not act on any environment, but rather give feedback or advice to a third party. In
addition, we do not generally require expert systems to be capable of co-operating
with other agents. Despite these differences, some expert systems (particularly
those that perform real-time control tasks) look very much like agents. A good
example is the ARCHON system [27].

2.5 Sources and Further Reading

A view of artificial intelligence as the process of agent design is presented in [55],
and, in particular, Chapter 2 of [55] presents much useful material. The definition
of agents presented here is based on [60], which also contains an extensive review
of agent architectures and programming languages. In addition, [60] contains
a detailed survey of agent theories – formalisms for reasoning about intelligent,
rational agents – which is outside the scope of this chapter. This question of “what
is an agent?” is one that continues to generate some debate; a collection of answers
may be found in [42]. The relationship between agents and objects has not been
widely discussed in the literature, but see [21]. Other readable introductions to the
idea of intelligent agents include [28] and [13].

3 Architectures for Intelligent Agents

In this section, we will introduce the main approaches to building agents. Specif-
ically, we consider four classes of agents:

• logic-based agents – in which the decision about what action to perform is
made via logical deduction;

• reactive agents – in which decision making is implemented in some form
of direct mapping from situation to action;
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• belief-desire-intention agents – in which decision making depends upon the
manipulation of data structures representing the beliefs, desires, and inten-
tions of the agent; and finally,

• layered architectures – in which decision making is realized via various
software layers, each of which is more or less explicitly reasoning about the
environment at different levels of abstraction.

In what follows, we will use a little light notation to help explain the main ideas.
We use A = {a,a′, . . .} to denote the set of possible actions that the agent can
perform, and S = {s,s′, . . .} to denote the set of states that the environment can be
in.

3.1 Logic-Based Architectures

The “traditional” approach to building artificially intelligent systems (known as
symbolic AI) suggests that intelligent behavior can be generated in a system by
giving that system a symbolic representation of its environment and its desired
behavior, and syntactically manipulating this representation. In this section, we
focus on the apotheosis of this tradition, in which these symbolic representations
are logical formulae, and the syntactic manipulation corresponds to logical de-
duction, or theorem proving.

The idea of agents as theorem provers is seductive. Suppose we have some
theory of agency – some theory that explains how an intelligent agent should be-
have. This theory might explain, for example, how an agent generates goals so
as to satisfy its delegated objectives, how it interleaves goal-directed and reac-
tive behavior in order to achieve these goals, and so on. Then this theory ρ can
be considered as a specification for how an agent should behave. The traditional
approach to implementing a system that will satisfy this specification would in-
volve refining the specification through a series of progressively more concrete
stages until finally an implementation was reached. In the view of agents as the-
orem provers, however, no such refinement takes place. Instead, ρ is viewed as
an executable specification: it is directly executed in order to produce the agent’s
behavior.

To see how such an idea might work, we shall develop a simple model of
logic-based agents, which (following Genesereth and Nilsson [22]) we shall call
deliberate agents. Such agents are assumed to maintain an internal database of
formulae of classical first-order predicate logic, which represents in a symbolic
form the information they have about their environment.

For example, an agent’s belief database might contain formulae such as the
following:
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Open(valve221)
Temperature(reactor4726,321)
Pressure(tank776,28)

It is not difficult to see how formulae such as these can be used to represent en-
vironment properties. The database is the information that the agent has about
its environment. An agent’s database plays a somewhat analogous role to that of
belief in humans. Thus a person might have a belief that valve 221 is open – the
agent might have the predicate Open(valve221) in its database. Of course, just
like humans, agents can be wrong. Thus I might believe that valve 221 is open
when it is in fact closed; the fact that an agent has Open(valve221) in its database
does not mean that valve 221 (or indeed any valve) is open. The agent’s sensors
may be faulty, its reasoning may be faulty, the information may be out of date, or
the interpretation of the formula Open(valve221) intended by the agent’s designer
may be something entirely different.

Let L be the set of sentences of classical first-order logic. The internal state
of a deliberate agent – the agent’s “beliefs” – is then a subset of L, i.e., a set of
formulae of first-order logic. We write Δ,Δ1, . . . to denote such belief databases.
An agent’s decision-making process is modeled through a set of deduction rules,
ρ. These are simply rules of inference for the logic. We write Δ �ρ ϕ if the first-
order formula ϕ can be proved from the database Δ using only the deduction rules
ρ.

The pseudo-code definition of the action selection process for a deliberate
agent is then given in Figure 1.2. This function action(· · ·) takes as input the be-
liefs of the agent (Δ) and deduction rules (ρ) and returns as output either an action
(in which case this is the action selected for execution) or else null (indicating that
no action can be found).

The idea is that the agent programmer will encode the deduction rules ρ and
database Δ in such a way that if a formula Do(a) can be derived, where a is a
term that denotes an action, then a is the best action to perform. Thus, in the first
part of the function (lines (3)–(7)), the agent takes each of its possible actions a
in turn, and attempts to prove the formula Do(a) from its database (passed as a
parameter to the function) using its deduction rules ρ. If the agent succeeds in
proving Do(a), then a is returned as the action to be performed.

What happens if the agent fails to prove Do(a), for all actions a ∈ A? In this
case, it attempts to find an action that is consistent with the rules and database, i.e.,
one that is not explicitly forbidden. In lines (8)–(12), therefore, the agent attempts
to find an action a ∈ A such that ¬Do(a) cannot be derived from its database
using its deduction rules. If it can find such an action, then this is returned as the
action to be performed. If, however, the agent fails to find an action that is at least
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1. function action(Δ,ρ) returns an action

2. begin

3. for each a ∈ A do

4. if Δ �ρ Do(a) then

5. return a
6. end-if

7. end-for

8. for each a ∈ A do

9. if Δ ��ρ ¬Do(a) then

10. return a
11. end-if

12. end-for

13. return null
14. end function action

Figure 1.2: Action selection in deliberate agents.

consistent, then it returns a special action null (or noop), indicating that no action
has been selected.

In this way, the agent’s behavior is determined by the agent’s deduction rules
(its “program”) and its current database (representing the information the agent
has about its environment).

To illustrate these ideas, let us consider a small example (based on the vacuum
cleaning world example of [55, p. 51]). The idea is that we have a small robotic
agent that will clean up a house. The robot is equipped with a sensor that will tell
it whether it is over any dirt, and a vacuum cleaner that can be used to suck up dirt.
In addition, the robot always has a definite orientation (one of north, south, east,
or west). In addition to being able to suck up dirt, the agent can move forward
one “step” or turn right 90◦. The agent moves around a room, which is divided
grid-like into a number of equally sized squares (conveniently corresponding to
the unit of movement of the agent). We will assume that our agent does nothing
but clean – it never leaves the room, and, further, we will assume in the interests of
simplicity that the room is a 3×3 grid, and the agent always starts in grid square
(0,0) facing north.

To summarize, our agent can receive a percept dirt (signifying that there is dirt
beneath it), or null (indicating no special information). It can perform any one of
three possible actions: f orward, suck, or turn. The goal is to traverse the room,
continually searching for and removing dirt. See Figure 1.3 for an illustration of
the vacuum world.
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dirt dirt

(0,0) (1,0) (2,0)

(0,1)

(0,2)

(1,1) (2,1)

(2,2)(1,2)

Figure 1.3: Vacuum world.

First, note that we make use of three simple domain predicates in this exercise:

In(x,y) agent is at (x,y)
Dirt(x,y) there is dirt at (x,y)
Facing(d) the agent is facing direction d

Now we can move on to the rules ρ that govern our agent’s behavior. The rules
we use have the form

ϕ(. . .)−→ ψ(. . .)

where ϕ and ψ are predicates over some arbitrary list of constants and variables.
The idea being that if ϕ matches against the agent’s database, then ψ can be con-
cluded, with any variables in ψ instantiated.

The first rule deals with the basic cleaning action of the agent: this rule will
take priority over all other possible behaviors of the agent (such as navigation).

In(x,y)∧Dirt(x,y)−→ Do(suck) (1.1)

Hence if the agent is at location (x,y) and it perceives dirt, then the prescribed
action will be to suck up dirt. Otherwise, the basic action of the agent will be
to traverse the world. Taking advantage of the simplicity of our environment, we
will hardwire the basic navigation algorithm, so that the robot will always move
from (0,0) to (0,1) to (0,2) and then to (1,2), to (1,1), and so on. Once the agent
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reaches (2,2), it must head back to (0,0). The rules dealing with the traversal up
to (0,2) are very simple.

In(0,0)∧Facing(north)∧¬Dirt(0,0) −→ Do( f orward) (1.2)
In(0,1)∧Facing(north)∧¬Dirt(0,1) −→ Do( f orward) (1.3)
In(0,2)∧Facing(north)∧¬Dirt(0,2) −→ Do(turn) (1.4)

In(0,2)∧Facing(east) −→ Do( f orward) (1.5)

Notice that in each rule, we must explicitly check whether the antecedent of rule
(1.1) fires. This is to ensure that we only ever prescribe one action via the Do(. . .)
predicate. Similar rules can easily be generated that will get the agent to (2,2),
and once at (2,2) back to (0,0).

At this point, let us step back and examine the pragmatics of this logic-based
approach to building agents. Probably the most important point to make is that
a literal, naive attempt to build agents in this way would be more or less entirely
impractical. To see why, suppose we have designed our agent’s rule set ρ such that
for any database Δ, if we can prove Do(a), then a is an optimal action – that is, a
is the best action that could be performed when the environment is as described in
Δ. Then imagine we start running our agent. At time t1, the agent has generated
some database Δ1, and begins to apply its rules ρ in order to find which action
to perform. Some time later, at time t2, it manages to establish Δ1 �ρ Do(a) for
some a ∈ A, and so a is the optimal action that the agent could perform at time t1.
But if the environment has changed between t1 and t2, then there is no guarantee
that a will still be optimal. It could be far from optimal, particularly if much
time has elapsed between t1 and t2. If t2− t1 is infinitesimal – that is, if decision
making is effectively instantaneous – then we could safely disregard this problem.
But in fact, we know that reasoning of the kind our logic-based agents use will
be anything but instantaneous. (If our agent uses classical first-order predicate
logic to represent the environment, and its rules are sound and complete, then
there is no guarantee that the decision-making procedure will even terminate.)
An agent is said to enjoy the property of calculative rationality if and only if
its decision-making apparatus will suggest an action that was optimal when the
decision-making process began. Calculative rationality is clearly not acceptable
in environments that change faster than the agent can make decisions – we shall
return to this point later.

One might argue that this problem is an artifact of the pure logic-based ap-
proach adopted here. There is an element of truth in this. By moving away from
strictly logical representation languages and complete sets of deduction rules, one
can build agents that enjoy respectable performance. But one also loses what is ar-
guably the greatest advantage that the logical approach brings: a simple, elegant,
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logical semantics.
There are several other problems associated with the logical approach to

agency. First, there is the problem of “translating” raw data provided by the
agent’s sensors into an internal symbolic form. For many environments, it is
not obvious how the mapping from environment to symbolic form might be re-
alized. For example, the problem of transforming an image to a set of declarative
statements representing that image has been the object of study in AI for decades,
and is still essentially open. Another problem is that actually representing prop-
erties of dynamic, real-world environments is extremely hard. As an example,
representing and reasoning about temporal information – how a situation changes
over time – turns out to be extraordinarily difficult. Finally, as the simple vacuum
world example illustrates, representing even rather simple procedural knowledge
(i.e., knowledge about “what to do”) in traditional logic can be rather unintuitive
and cumbersome.

To summarize, in logic-based approaches to building agents, decision-making
is viewed as deduction. An agent’s “program” – that is, its decision-making strat-
egy – is encoded as a logical theory, and the process of selecting an action reduces
to a problem of proof. Logic-based approaches are elegant, and have a clean (log-
ical) semantics – wherein lies much of their long-lived appeal. But logic-based
approaches have many disadvantages. In particular, the inherent computational
complexity of theorem proving makes it questionable whether agents as theorem
provers can operate effectively in time-constrained environments. Decision mak-
ing in such agents is predicated on the assumption of calculative rationality – the
assumption that the world will not change in any significant way while the agent
is deciding what to do, and that an action that is rational when decision making
begins will be rational when it concludes. The problems associated with repre-
senting and reasoning about complex, dynamic, possibly physical environments
are also essentially unsolved.

3.1.1 Sources and Further Reading

My presentation of logic-based agents is based largely on the discussion of delib-
erate agents presented in [22, Chapter 13], which represents the logic-centric view
of AI and agents very well. The discussion is also partly based on [33]. A number
of more or less “pure” logical approaches to agent programming have been de-
veloped. Well-known examples include the GOLOG system of Reiter, Lespérance,
and colleagues [34, 52] (which is based on the situation calculus [39]) and the
METATEM and Concurrent METATEM programming languages developed by
Fisher and colleagues [3, 20] (in which agents are programmed by giving them
temporal logic specifications of the behavior they should exhibit). Note that these
architectures (and the discussion above) assume that if one adopts a logical ap-
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proach to agent-building, then this means agents are essentially theorem provers,
employing explicit symbolic reasoning (theorem proving) in order to make deci-
sions. But just because we find logic a useful tool for conceptualizing or spec-
ifying agents, this does not mean that we must view decision making as logical
manipulation. An alternative is to compile the logical specification of an agent into
a form more amenable to efficient decision making. The difference is rather like
the distinction between interpreted and compiled programming languages. The
best-known example of this work is the situated automata paradigm of Rosen-
schein and Kaelbling [54]. A review of the role of logic in intelligent agents may
be found in [59]. Finally, for a detailed discussion of calculative rationality and
the way that it has affected thinking in AI, see [56].

3.2 Reactive Architectures

Problems with symbolic/logical approaches to building agents led some re-
searchers to question, and ultimately reject, the assumptions upon which such
approaches are based. These researchers have argued that minor changes to the
symbolic approach, such as weakening the logical representation language, will
not be sufficient to build agents that can operate in time-constrained environments:
nothing less than a whole new approach is required. In the mid to late 1980s, these
researchers began to investigate alternatives to the symbolic AI paradigm. It is dif-
ficult to neatly characterize these different approaches, since their advocates are
united mainly by a rejection of symbolic AI, rather than by a common manifesto.
However, certain themes do recur:

• the rejection of symbolic representations, and of decision making based on
syntactic manipulation of such representations;

• the idea that intelligent, rational behavior is seen as innately linked to the
environment an agent occupies – intelligent behavior is not disembodied,
but is a product of the interaction the agent maintains with its environment;

• the idea that intelligent behavior emerges from the interaction of various
simpler behaviors.

Alternative approaches to agency are sometimes referred to as behavioral (since
a common theme is that of developing and combining individual behaviors), sit-
uated (since a common theme is that of agents actually situated in some environ-
ment, rather than being disembodied from it), and finally – the term used in this
chapter – reactive (because such systems are often perceived as simply reacting to
an environment, without reasoning about it).
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3.2.1 The Subsumption Architecture

This section presents a survey of the subsumption architecture, which is arguably
the best-known reactive agent architecture. It was developed by Rodney Brooks –
one of the most vocal and influential critics of the symbolic approach to agency to
have emerged in recent years.

There are two defining characteristics of the subsumption architecture. The
first is that an agent’s decision making is realized through a set of task accomplish-
ing behaviors; each behavior may be thought of as an individual action selection
process, which continually takes perceptual input and maps it to an action to per-
form. Each of these behavior modules is intended to achieve some particular task.
In Brooks’s implementation, the behavior modules are finite-state machines. An
important point to note is that these task accomplishing modules are assumed to
include no complex symbolic representations, and are assumed to do no symbolic
reasoning at all. In many implementations, these behaviors are implemented as
rules of the form

situation−→ action

which simply map perceptual input directly to actions.
The second defining characteristic of the subsumption architecture is that

many behaviors can “fire” simultaneously. There must obviously be a mecha-
nism to choose between the different actions selected by these multiple actions.
Brooks proposed arranging the modules into a subsumption hierarchy, with the
behaviors arranged into layers. Lower layers in the hierarchy are able to inhibit
higher layers: the lower a layer is, the higher is its priority. The idea is that higher
layers represent more abstract behaviors. For example, one might desire a behav-
ior in a mobile robot for the behavior “avoid obstacles.” It makes sense to give
obstacle avoidance a high priority – hence this behavior will typically be encoded
in a low-level layer, which has a high priority.

To illustrate in more detail how the subsumption architecture works, we will
show how subsumption architecture agents were built for the following scenario
(from [58]):

The objective is to explore a distant planet, more concretely, to collect
samples of a particular type of precious rock. The location of the rock
samples is not known in advance, but they are typically clustered in
certain spots. A number of autonomous vehicles are available that
can drive around the planet collecting samples and later reenter the
mothership spacecraft to go back to earth. There is no detailed map
of the planet available, although it is known that the terrain is full
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of obstacles – hills, valleys, etc. – which prevent the vehicles from
exchanging any communication.

The problem we are faced with is that of building an agent control architecture for
each vehicle, so that they will cooperate to collect rock samples from the planet
surface as efficiently as possible. Luc Steels argues that logic-based agents, of the
type we described above, are “entirely unrealistic” for this problem [58]. Instead,
he proposes a solution using the subsumption architecture.

The solution makes use of two mechanisms introduced by Steels. The first
is a gradient field. In order that agents can know in which direction the mother-
ship lies, the mothership generates a radio signal. Now this signal will obviously
weaken as distance to the source increases – to find the direction of the mother-
ship, an agent need therefore only travel “up the gradient” of signal strength. The
signal need not carry any information – it need only exist.

The second mechanism enables agents to communicate with one another. The
characteristics of the terrain prevent direct communication (such as message-
passing), so Steels adopted an indirect communication method. The idea is that
agents will carry “radioactive crumbs,” which can be dropped, picked up, and
detected by passing robots. Thus if an agent drops some of these crumbs in a
particular location, then later, another agent happening upon this location will be
able to detect them. This simple mechanism enables a quite sophisticated form of
cooperation.

The behavior of an individual agent is then built up from a number of behav-
iors, as we indicated above. First, we will see how agents can be programmed to
individually collect samples. We will then see how agents can be programmed to
generate a cooperative solution.

For individual (non-cooperative) agents, the lowest-level behavior (and hence
the behavior with the highest “priority”) is obstacle avoidance. This behavior can
be represented in the rule:

if detect an obstacle then change direction. (1.6)

The second behavior ensures that any samples carried by agents are dropped back
at the mothership.

if carrying samples and at the base then drop samples. (1.7)

if carrying samples and not at the base then travel up gradient. (1.8)

Behavior (1.8) ensures that agents carrying samples will return to the mothership
(by heading toward the origin of the gradient field). The next behavior ensures
that agents will collect samples they find.



Chapter 1 23

if detect a sample then pick sample up. (1.9)

The final behavior ensures that an agent with “nothing better to do” will explore
randomly.

if true then move randomly. (1.10)

The precondition of this rule is thus assumed to always fire. These behaviors are
arranged into the following hierarchy:

(1.6)≺ (1.7)≺ (1.8)≺ (1.9)≺ (1.10)

where the left-most behavior is the lowest in the hierarchy (i.e., highest priority),
and the right-most behavior is the highest in the hierarchy (i.e., lowest priority).

The subsumption hierarchy for this example ensures that, for example, an
agent will always turn if any obstacles are detected; if the agent is at the mother-
ship and is carrying samples, then it will always drop them if it is not in any
immediate danger of crashing, and so on. The “top level” behavior – a random
walk – will only ever be carried out if the agent has nothing more urgent to do.
It is not difficult to see how this simple set of behaviors will solve the problem:
agents will search for samples (ultimately by searching randomly), and when they
find them, will return them to the mothership.

If the samples are distributed across the terrain entirely at random, then equip-
ping a large number of robots with these very simple behaviors will work ex-
tremely well. But we know from the problem specification, above, that this is not
the case: the samples tend to be located in clusters. In this case, it makes sense
to have agents cooperate with one another in order to find the samples. Thus
when one agent finds a large sample, it would be helpful for it to communicate
this to the other agents, so they can help it collect the rocks. Unfortunately, we
also know from the problem specification that direct communication is impossi-
ble. Steels developed a simple solution to this problem, partly inspired by the
foraging behavior of ants. The idea revolves around an agent creating a “trail”
of radioactive crumbs whenever it finds a rock sample. The trail will be created
when the agent returns the rock samples to the mothership. If at some later point,
another agent comes across this trail, then it need only follow it down the gradient
field to locate the source of the rock samples. Some small refinements improve the
efficiency of this ingenious scheme still further. First, as an agent follows a trail to
the rock sample source, it picks up some of the crumbs it finds, hence making the
trail fainter. Secondly, the trail is only laid by agents returning to the mothership.
Hence if an agent follows the trail out to the source of the nominal rock sample
only to find that it contains no samples, it will reduce the trail on the way out, and
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will not return with samples to reinforce it. After a few agents have followed the
trail to find no sample at the end of it, the trail will in fact have been removed.

The modified behaviors for this example are as follows. Obstacle avoidance
(1.6) remains unchanged. However, the two rules determining what to do if car-
rying a sample are modified as follows.

if carrying samples and at the base then drop samples. (1.11)

if carrying samples and not at the base
then drop 2 crumbs and travel up gradient. (1.12)

The behavior (1.12) requires an agent to drop crumbs when returning to base
with a sample, thus either reinforcing or creating a trail. The “pick up sample”
behavior, (1.9), remains unchanged. However, an additional behavior is required
for dealing with crumbs.

if sense crumbs then pick up 1 crumb and travel down gradient. (1.13)

Finally, the random movement behavior (1.10) remains unchanged. These behav-
iors are then arranged into the following subsumption hierarchy:

(1.6)≺ (1.11)≺ (1.12)≺ (1.9)≺ (1.13)≺ (1.10)

Steels shows how this simple adjustment achieves near-optimal performance in
many situations. Moreover, the solution is cheap (the computing power required
by each agent is minimal) and robust (the loss of a single agent will not affect the
overall system significantly).

In summary, there are obvious advantages to reactive approaches such as
Brooks’s subsumption architecture: simplicity, economy, computational tractabil-
ity, robustness against failure, and elegance all make such architectures appealing.
But there are some fundamental, unsolved problems, not just with the subsump-
tion architecture but also with other purely reactive architectures:

• If agents do not employ models of their environment, then they must have
sufficient information available in their local environment for them to de-
termine an acceptable action.

• Since purely reactive agents make decisions based on local information,
(i.e., information about the agents’ current state), it is difficult to see how
such decision making could take into account non-local information – it
must inherently take a “short-term” view.
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• A major selling point of purely reactive systems is that overall behavior
emerges from the interaction of the component behaviors when the agent is
placed in its environment. But the very term “emerges” suggests that the
relationship between individual behaviors, environment, and overall behav-
ior is not understandable. This necessarily makes it very hard to engineer
agents to fulfill specific tasks. Ultimately, there is no principled methodol-
ogy for building such agents: one must use a laborious process of experi-
mentation, trial, and error to engineer an agent.

• While effective agents can be generated with small numbers of behaviors
(typically less than ten layers), it is much harder to build agents that con-
tain many layers. The dynamics of the interactions between the different
behaviors become too complex to understand.

3.2.2 Markov Decision Processes

One very active area of development in the reactive agents area over the past
decade is the use of Markov models [44]. Markov models were originally de-
veloped by the Russian mathematician Andrei Markov as models of stochastic
processes – that is, dynamic processes whose behaviors are probabilistic. Markov
models in their various forms represent one of the fundamental models used in op-
erations research for modeling stochastic processes, and they are now very widely
used in AI for environments in which a sequence of decisions must be made over
time. In this section, we will very briefly survey the principles of Markov models,
and, in particular, we will present the basic concepts and algorithms of Markov
Decision Processes (MDPs), upon which most work in the area builds.

The basic components of Markov models are as follows. We assume there is
an agent in an environment that can be any of a set S of states, and that the agent
can modify its environment by performing actions from a set A. A fundamental
assumption in Markov models is that the behavior of a system is stochastic, in the
sense that the result of performing a particular action in a particular state is not
uniquely determined. We write p(s′ | s,a) to denote the probability that state s′ will
result if action a∈A is performed in state s. Thus p(· · ·) defines, for every state s∈
S and action a ∈ A, a probability distribution over states. Next, MDP models make
use of the notion of reward. We let r(a,s) ∈ R denote the reward obtained from
performing action a ∈ A in state s ∈ S. If the reward is negative, i.e., r(a,s) < 0,
then the reward can be interpreted as the cost of performing the action a in state s.
Notice that the behavior of a system (defined by the probability function p(s | s,a))
and the rewards obtained by performing actions within it (defined by the reward
values r(a,s)), depend solely on the state in which an action is performed – not
on what states or actions occur before or afterward. This property is so central to
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Markov models that it is called the Markov assumption.
Now, solving a Markov decision problem defined by state set S, action set A,

probability function p, and reward function r, means finding a policy for choosing
actions in the MDP. A policy (sometimes called a decision rule) is essentially a
conditional plan: it defines an action to perform for every possible state. Formally,
a policy can be understood as a function d : S → A. So, given an MDP 〈S,A, p,r〉,
which policy should we choose? Intuitively, we want the one that maximizes the
expected reward that we would obtain should we choose to follow the policy.

One obvious difficulty is that, as formulated here, MDPs are non-terminating: a
policy dictates an action for every state, and so we just carry on choosing actions
to perform in each state we find ourselves. So, it may well be that executing a
policy will result in infinite expected reward; and how are we to compare two
putatively optimal policies when both yield infinite expected rewards? A standard
solution is to use a discount factor, λ, where 0 ≤ λ < 1. The idea is to use λ to
discount rewards obtained in the future, so that rewards obtained soon are valued
more highly. With this idea, we can now define an approach to finding an optimal
policy.

The approach to finding an optimal policy that we describe here is called value
iteration, and it is one of the two standard approaches to finding optimal policies
in MDP s. Finding an optimal policy using value iteration proceeds in two steps.
First, we compute the value function, v∗ : S → R, which gives the value v∗(s) of
every state s ∈ S. The value v∗ of state s ∈ S is the expected reward that would
be obtained from executing the optimal policy in that state. Now, given the value
function v∗, we can then easily “extract” the optimal action from s, in a way that
we will describe shortly.

So, first we show how to compute the value function v∗. The algorithm for this
is given in Figure 1.4; the idea is to iteratively approximate v∗ using two variables
v (the “old” approximation to the optimal policy) and v∗ (the “new” approximation
to the optimal policy). We continue to iterate until the difference between the old
and new approximation is sufficiently small.

We have not defined in this algorithm what “sufficiently close” means. A
number of answers are possible. A standard approach is to define some conver-
gence threshold ε, and to stop when the maximum difference between v and v∗ is
ε. When ε = 0, we are requiring exact convergence. Now, it can be shown (we
will not do it here) that this algorithm does indeed converge on an optimal value
function.

So, after executing this algorithm, we will have in v∗ the value of every state,
i.e., the expected value that would be obtained by executing the optimal policy
from that state. How does this give us the optimal policy itself? Trivially, simply
observe that the optimal policy d∗ will satisfy the following property:
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1. function value_iteration(S,A, p,r,λ) return optimal policy v∗
2. initialize v∗ randomly

3. repeat

4. v := v∗
5. for each s ∈ S do

6. v∗(s) := max
a∈A

(
r(a,s)+λ ∑

s′∈S
p(s′ | s,a)v(s′)

)
7. end-for

8. until v and v∗ are sufficiently close

9. return v∗
10. end function value_iteration

Figure 1.4: The value iteration algorithm for Markov decision processes.

d∗(s) = argmax
a∈A

(
r(s,a)+λ ∑

s′∈S
p(s′ | s,a)v∗(s′)

)

Now, since at this stage we will have the values for r(s,a), p(s′ | s,a), and v∗(s′),
this equation can be directly applied to find the optimal policy d∗(s).

3.2.3 Sources and Further Reading

Brooks’s original paper on the subsumption architecture – the one that started all
the fuss – was published as [9]. The description and discussion here is partly based
on [14]. This original paper seems to be somewhat less radical than many of his
later ones, which include [10, 11, 12]. The version of the subsumption architecture
used in this chapter is actually a simplification of that presented by Brooks. The
subsumption architecture is probably the best-known reactive architecture around
— but there are many others. The collection of papers edited by Pattie Maes [36]
contains papers that describe many of these, as does the collection by Agre and
Rosenschein [2]. Other approaches include:

• the agent network architecture developed by Pattie Maes [35, 37, 38];

• Nilsson’s teleo reactive programs [43];

• Rosenchein and Kaelbling’s situated automata approach, which is particu-
larly interesting in that it shows how agents can be specified in an abstract,
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logical framework, and compiled into equivalent, but computationally very
simple, machines [29, 31, 53, 54];

• Agre and Chapman’s PENGI system [1];

• Schoppers’ universal plans – which are essentially decision trees that can
be used to efficiently determine an appropriate action in any situation [57];

• Firby’s reactive action packages [18].

Kaelbling [28] gives a good discussion of the issues associated with developing
resource-bounded rational agents, and proposes an agent architecture somewhat
similar to that developed by Brooks.

Markov decision processes are a huge research topic in computer science and
operations research, going much further than the simple framework and algo-
rithms we have described here. The definitive reference to MDPs and their endless
variations is [44]; a good introduction to Markov models in AI is [30].

3.3 Belief-Desire-Intention Architectures

In this section, we shall discuss belief-desire-intention (BDI) architectures. These
architectures have their roots in the philosophical tradition of understanding prac-
tical reasoning — the process of deciding, moment by moment, which action to
perform in the furtherance of our goals.

Practical reasoning involves two important processes: deciding what goals
we want to achieve, and how we are going to achieve these goals. The former
process is known as deliberation, the latter as means-ends reasoning. To gain
an understanding of the BDI model, it is worth considering a simple example of
practical reasoning. When you leave university with a first degree, you are faced
with a decision to make – about what to do with your life. The decision process
typically begins by trying to understand what the options available to you are. For
example, if you gain a good first degree, then one option is that of becoming an
academic. (If you fail to obtain a good degree, this option is not available to you.)
Another option is entering industry. After generating this set of alternatives, you
must choose between them, and commit to some. These chosen options become
intentions, which then determine the agent’s actions. Intentions then feed back
into the agent’s future practical reasoning. For example, if I decide I want to be
an academic, then I should commit to this objective, and devote time and effort to
bringing it about.

Intentions play a crucial role in the practical reasoning process. Perhaps the
most obvious property of intentions is that they tend to lead to action. If I truly
have an intention to become an academic, then you would expect me to act on
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that intention — to try to achieve it. For example, you might expect me to apply
to various PhD programs. You would expect to make a reasonable attempt to
achieve the intention. Thus you would expect me to carry out some course of
action that I believed would best satisfy the intention. Moreover, if a course of
action fails to achieve the intention, then you would expect me to try again –
you would not expect me to simply give up. For example, if my first application
for a PhD program is rejected, then you might expect me to apply to alternative
universities.

In addition, once I have adopted an intention, then the very fact of having this
intention will constrain my future practical reasoning. For example, while I hold
some particular intention, I will not entertain options that are inconsistent with
that intention. Intending to become an academic, for example, would preclude the
option of partying every night: the two are mutually exclusive.

Next, intentions persist. If I adopt an intention to become an academic, then I
should persist with this intention and attempt to achieve it. For if I immediately
drop my intentions without devoting resources to achieving them, then I will never
achieve anything. However, I should not persist with my intention for too long —
if it becomes clear to me that I will never become an academic, then it is only
rational to drop my intention to do so. Similarly, if the reason for having an
intention goes away, then it is rational of me to drop the intention. For example,
if I adopted the intention to become an academic because I believed it would be
an easy life, but then discover that I would be expected to actually teach, then the
justification for the intention is no longer present, and I should drop the intention.

Finally, intentions are closely related to beliefs about the future. For example,
if I intend to become an academic, then I should believe that I will indeed become
an academic. For if I truly believe that I will never be an academic, it would be
nonsensical of me to have an intention to become one. Thus if I intend to become
an academic, I should at least believe that there is a good chance I will indeed
become one.

From this discussion, we can see that intentions play a number of important
roles in practical reasoning:

• Intentions drive means-ends reasoning.

If I have formed an intention to become an academic, then I will attempt to
achieve the intention, which involves, among other things, deciding how to
achieve it, for example, by applying for a PhD program. Moreover, if one
particular course of action fails to achieve an intention, then I will typically
attempt others. Thus if I fail to gain a PhD place at one university, I might
try another university.
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• Intentions constrain future deliberation.

If I intend to become an academic, then I will not entertain options that are
inconsistent with this intention. For example, a rational agent would not
consider being rich as an option while simultaneously intending to be an
academic. (While the two are not actually mutually exclusive, the probabil-
ity of simultaneously achieving both is infinitesimal.)

• Intentions persist.

I will not usually give up on my intentions without good reason – they will
persist, typically until either I believe I have successfully achieved them, I
believe I cannot achieve them, or else because the purpose for the intention
is no longer present.

• Intentions influence beliefs upon which future practical reasoning is based.

If I adopt the intention to become an academic, then I can plan for the
future on the assumption that I will be an academic. For if I intend to be
an academic while simultaneously believing that I will never be one, then I
am being irrational.

A key problem in the design of practical reasoning agents is that of achieving a
good balance between these different concerns. Specifically, it seems clear that
an agent should at times drop some intentions (because it comes to believe that
either they will never be achieved, they are achieved, or else because the reason
for having the intention is no longer present). It follows that, from time to time,
it is worth an agent stopping to reconsider its intentions. But reconsideration has
a cost – in terms of both time and computational resources. But this presents us
with a dilemma:

• an agent that does not stop to reconsider sufficiently often will continue
attempting to achieve its intentions even after it is clear that they cannot be
achieved, or that there is no longer any reason for achieving them;

• an agent that constantly reconsiders its intentions may spend insufficient
time actually working to achieve them, and hence runs the risk of never
actually achieving them.

This dilemma is essentially the problem of balancing proactive (goal-directed) and
reactive (event-driven) behavior, that we introduced in Section 2.2.

There is clearly a trade-off to be struck between the degree of commitment
and reconsideration at work here. The nature of this trade-off was examined by
David Kinny and Michael Georgeff in a number of experiments carried out with
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a BDI agent framework called dMARS [32]. They investigate how bold agents
(those that never stop to reconsider) and cautious agents (those that are constantly
stopping to reconsider) perform in a variety of different environments. The most
important parameter in these experiments was the rate of world change, γ. The
key results of Kinny and Georgeff were as follows.

• If γ is low (i.e., the environment does not change quickly) then bold agents
do well compared to cautious ones, because cautious ones waste time recon-
sidering their commitments while bold agents are busy working towards –
and achieving – their goals.

• If γ is high (i.e., the environment changes frequently) then cautious agents
tend to outperform bold agents, because they are able to recognize when in-
tentions are doomed, and also to take advantage of serendipitous situations
and new opportunities.

The lesson is that different types of environments require different types of de-
cision strategies. In static, unchanging environments, purely proactive, goal-
directed behavior is adequate. But in more dynamic environments, the ability
to react to changes by modifying intentions becomes more important.

The process of practical reasoning in a BDI agent is summarized in Figure 1.5.
As this figure illustrates, there are seven main components to a BDI agent:

• a set of current beliefs, representing information the agent has about its
current environment;

• a belief revision function (br f ), which takes a perceptual input and the
agent’s current beliefs, and on the basis of these, determines a new set of
beliefs;

• an option generation function (options), which determines the options avail-
able to the agent (its desires), on the basis of its current beliefs about its
environment and its current intentions;

• a set of current options, representing possible courses of actions available
to the agent;

• a filter function ( f ilter), which represents the agent’s deliberation process,
and which determines the agent’s intentions on the basis of its current be-
liefs, desires, and intentions;

• a set of current intentions, representing the agent’s current focus – those
states of affairs that it has committed to trying to bring about;
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Figure 1.5: Schematic diagram of a generic belief-desire-intention architecture.

• an action selection function (execute), which determines an action to per-
form on the basis of current intentions.

It is straightforward to formally define these components. First, let Bel be the set
of all possible beliefs, Des be the set of all possible desires, and Int be the set
of all possible intentions. For the purposes of this chapter, the content of these
sets is not important. (Often, beliefs, desires, and intentions are represented as
logical formulae, perhaps of first-order logic.) Whatever the content of these sets,
it is worth noting that they should have some notion of consistency defined upon
them, so that one can answer the question of, for example, whether having an
intention to achieve x is consistent with the belief that y. Representing beliefs,



Chapter 1 33

desires, and intentions as logical formulae permits us to recast such questions as
problems of determining whether logical formulae are consistent – a well-known
and well-understood problem. The state of a BDI agent at any given moment is,
unsurprisingly, a triple (B,D, I), where B⊆ Bel, D⊆ Des, and I ⊆ Int.

If we denote the set of possible percepts that the agent can receive by P, then
an agent’s belief revision function is a mapping

br f : 2Bel ×P→ 2Bel

which on the basis of the current percept and current beliefs determines a new
set of beliefs. Belief revision is out of the scope of this chapter (and indeed this
book), and so we shall say no more about it here.

The option generation function, options, maps a set of beliefs and a set of
intentions to a set of desires.

options : 2Bel ×2Int → 2Des

This function plays several roles. First, it must be responsible for the agent’s
means-ends reasoning – the process of deciding how to achieve intentions. Thus,
once an agent has formed an intention to x, it must subsequently consider options
to achieve x. These options will be more concrete – less abstract – than x. As some
of these options then become intentions themselves, they will also feedback into
option generation, resulting in yet more concrete options being generated. We can
thus think of a BDI agent’s option generation process as one of recursively elabo-
rating a hierarchical plan structure, considering and committing to progressively
more specific intentions, until finally it reaches the intentions that correspond to
immediately executable actions.

While the main purpose of the options function is thus means-ends reasoning,
it must in addition satisfy several other constraints. First, it must be consistent:
any options generated must be consistent with both the agent’s current beliefs and
current intentions. Secondly, it must be opportunistic, in that it should recognize
when environmental circumstances change advantageously, to offer the agent new
ways of achieving intentions, or the possibility of achieving intentions that were
otherwise unachievable.

A BDI agent’s deliberation process (deciding what to do) is represented in the
f ilter function,

f ilter : 2Bel ×2Des×2Int → 2Int

which updates the agent’s intentions on the basis of its previously-held intentions
and current beliefs and desires. This function must fulfill two roles. First, it must
drop any intentions that are no longer achievable, or for which the expected cost of
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achieving them exceeds the expected gain associated with successfully achieving
them. Second, it should retain intentions that are not achieved, and that are still
expected to have a positive overall benefit. Finally, it should adopt new intentions,
either to achieve existing intentions, or to exploit new opportunities.

Notice that we do not expect this function to introduce intentions from
nowhere. Thus f ilter should satisfy the following constraint:

∀B ∈ 2Bel,∀D ∈ 2Des,∀I ∈ 2Int , f ilter(B,D, I)⊆ I∪D.

In other words, current intentions are either previously held intentions or newly
adopted options.

The execute function is assumed to simply return any executable intentions –
one that corresponds to a directly executable action:

execute : 2Int → A

The action selection function action of a BDI agent is then a function that takes
as input a percept (i.e., some raw sensor data, denoted by p), and returns an action;
it is defined by the following pseudo-code.

1. function action(p) returns an action

2. begin

3. B := br f (B, p)
4. D := options(B, I)
5. I := f ilter(B,D, I)
6. return execute(I)
7. end function action

Note that representing an agent’s intentions as a set (i.e., as an unstructured
collection) is generally too simplistic in practice. A simple alternative is to as-
sociate a priority with each intention, indicating its relative importance. Another
natural idea is to represent intentions as a stack. An intention is pushed on to the
stack when it is adopted, and popped when it is either achieved or else not achiev-
able. More abstract intentions will tend to be at the bottom of the stack, with more
concrete intentions toward the top.

To summarize, BDI architectures are practical reasoning architectures, in
which the process of deciding what to do resembles the kind of practical reason-
ing that we appear to use in our everyday lives. The basic components of a BDI

architecture are data structures representing the beliefs, desires, and intentions of
the agent, and functions that represent its deliberation (deciding what intentions
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to have – i.e., deciding what to do) and means-ends reasoning (deciding how to do
it). Intentions play a central role in the BDI model: they provide stability for deci-
sion making, and act to focus the agent’s practical reasoning. A major issue in BDI

architectures is the problem of striking a balance between being committed to and
overcommitted to one’s intentions: the deliberation process must be finely tuned
to its environment, ensuring that in more dynamic, highly unpredictable domains,
it reconsiders its intentions relatively frequently – in more static environments,
less frequent reconsideration is necessary.

The BDI model is attractive for several reasons. First, it is intuitive – we all
recognize the processes of deciding what to do and then how to do it, and we
all have an informal understanding of the notions of belief, desire, and intention.
Second, it gives us a clear functional decomposition, which indicates what sorts
of subsystems might be required to build an agent. But the main difficulty, as ever,
is knowing how to efficiently implement these functions.

3.3.1 Sources and Further Reading

Belief-desire-intention architectures originated in the work of the Rational
Agency project at Stanford Research Institute in the mid 1980s. The origins of
the model lie in the theory of human practical reasoning developed by the philoso-
pher Michael Bratman [7], which focuses particularly on the role of intentions in
practical reasoning. The conceptual framework of the BDI model is described
in [8], which also describes a specific BDI agent architecture called IRMA. The
description of the BDI model given here (and in particular in Figure 1.5) is adapted
from [8]. One of the interesting aspects of the BDI model is that it has been used in
one of the most successful agent architectures to date. The Procedural Reasoning
System (PRS), originally developed by Michael Georgeff and Amy Lansky [23],
has been used to build some of the most exacting agent applications to date, in-
cluding fault diagnosis for the reaction control system of the space shuttle, and an
air traffic management system at Sydney Airport in Australia – overviews of these
systems are described in [24]. In the PRS, an agent is equipped with a library of
plans, which are used to perform means-ends reasoning. Deliberation is achieved
by the use of meta-level plans, which are able to modify an agent’s intention struc-
ture at run-time, in order to change the focus of the agent’s practical reasoning.
Beliefs in the PRS are represented as PROLOG-like facts – essentially, as atoms
of first-order logic. A number of modern implementations of PRS are available.
Perhaps the best-known of these is the AGENTSPEAK language [45], which has
been implemented in a freely available distribution known as JASON [6].

The BDI model is also interesting because a great deal of effort has been de-
voted to formalizing it. In particular, Anand Rao and Michael Georgeff have



36 Chapter 1

developed a range of BDI logics, which they use to axiomatize properties of BDI-
based practical reasoning agents [46, 47, 48, 49, 50, 51].

3.4 Layered Architectures

Given the requirement that an agent be capable of reactive and proactive behav-
ior, an obvious decomposition involves creating separate subsystems to deal with
these different types of behaviors. This idea leads naturally to a class of architec-
tures in which the various subsystems are arranged into a hierarchy of interacting
layers. In this section, we will consider some general aspects of layered architec-
tures, and then go on to consider two examples of such architectures: INTERRAP

and TOURINGMACHINES.
Typically, there will be at least two layers, to deal with reactive and proactive

behaviors, respectively. In principle, there is no reason why there should not be
many more layers. However many layers there are, a useful typology for such
architectures is by the information and control flows within them. Broadly speak-
ing, we can identify two types of control flow within layered architectures (see
Figure 1.6):

• Horizontal layering

In horizontally layered architectures (Figure 1.6(a)), the software layers are
each directly connected to the sensory input and action output. In effect,
each layer itself acts like an agent, producing suggestions as to what action
to perform.

• Vertical layering

In vertically layered architectures (Figure 1.6(b) and 1.6(c)), sensory input
and action output are each dealt with by at most one layer each.

The great advantage of horizontally layered architectures is their conceptual sim-
plicity: if we need an agent to exhibit n different types of behavior, then we imple-
ment n different layers. However, because the layers are each in effect competing
with one another to generate action suggestions, there is a danger that the overall
behavior of the agent will not be coherent. In order to ensure that horizontally
layered architectures are consistent, they generally include a mediator function,
which makes decisions about which layer has “control” of the agent at any given
time. The need for such central control is problematic: it means that the designer
must potentially consider all possible interactions between layers. If there are n
layers in the architecture, and each layer is capable of suggesting m possible ac-
tions, then this means there are mn such interactions to be considered. This is
clearly difficult from a design point of view in any but the most simple system.
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Figure 1.6: Information and control flows in three types of layered agent architec-
tures (Source: [41, p. 263]).

The introduction of a central control system also introduces a bottleneck into the
agent’s decision making.

These problems are partly alleviated in a vertically layered architecture. We
can subdivide vertically layered architectures into one-pass architectures (Fig-
ure 1.6(b)) and two-pass architectures (Figure 1.6(c)). In one-pass architectures,
control flows sequentially through each layer, until the final layer generates ac-
tion output. In two-pass architectures, information flows up the architecture (the
first pass) and control then flows back down. There are some interesting simi-
larities between the idea of two-pass vertically layered architectures and the way
that organizations work, with information flowing up to the highest levels of the
organization, and commands then flowing down. In both one-pass and two-pass
vertically layered architectures, the complexity of interactions between layers is
reduced: since there are n− 1 interfaces between n layers, then if each layer is
capable of suggesting m actions, there are at most m2(n− 1) interactions to be
considered between layers. This is clearly much simpler than the horizontally
layered case. However, this simplicity comes at the cost of some flexibility: in
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Figure 1.7: TOURINGMACHINES: a horizontally layered agent architecture.

order for a vertically layered architecture to make a decision, control must pass
between each different layer. This is not fault tolerant: failures in any one layer
are likely to have serious consequences for agent performance.

In the remainder of this section, we will consider two examples of layered
architectures: Innes Ferguson’s TOURINGMACHINES, and Jörg Müller’s INTER-
RAP. The former is an example of a horizontally layered architecture; the latter is
a (two-pass) vertically layered architecture.

3.4.1 TouringMachines

The TOURINGMACHINES architecture is illustrated in Figure 1.7. As this figure
shows, TOURINGMACHINES consists of three activity producing layers. That is,
each layer continually produces “suggestions” for what actions the agent should
perform. The reactive layer provides a more or less immediate response to
changes that occur in the environment. It is implemented as a set of situation-
action rules, like the behaviors in Brooks’s subsumption architecture (Section 3.2).
These rules map sensor input directly to effector output. The original demonstra-
tion scenario for TOURINGMACHINES was that of autonomous vehicles driving
between locations through streets populated by other similar agents. In this sce-
nario, reactive rules typically deal with functions like obstacle avoidance. For
example, here is an example of a reactive rule for avoiding the kerb (from [15,
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p. 59]):

rule-1: kerb-avoidance
if

is-in-front(Kerb, Observer) and
speed(Observer) > 0 and
separation(Kerb, Observer) < KerbThreshHold

then
change-orientation(KerbAvoidanceAngle)

Here change-orientation(...) is the action suggested if the rule fires.
The rules can only make references to the agent’s current state – they cannot do
any explicit reasoning about the world and on the right-hand side of rules are ac-
tions, not predicates. Thus if this rule fired, it would not result in any central
environment model being updated, but would just result in an action being sug-
gested by the reactive layer.

The TOURINGMACHINES planning layer achieves the agent’s proactive behav-
ior. Specifically, the planning layer is responsible for the “day-to-day” running of
the agent – under normal circumstances, the planning layer will be responsible
for deciding what the agent does. However, the planning layer does not do “first-
principles” planning. That is, it does not attempt to generate plans from scratch.
Rather, the planning layer employs a library of plan “skeletons,” called schemas.
These skeletons are in essence hierarchically structured plans, which the TOUR-
INGMACHINES planning layer elaborates at run-time in order to decide what to
do. So, in order to achieve a goal, the planning layer attempts to find a schema in
its library that matches that goal. This schema will contain subgoals, which the
planning layer elaborates by attempting to find other schemas in its plan library
that match these subgoals.

The modeling layer represents the various entities in the world (including the
agent itself, as well as other agents). The modeling layer thus predicts conflicts
between agents, and generates new goals to be achieved in order to resolve these
conflicts. These new goals are then posted down to the planning layer, which
makes use of its plan library in order to determine how to satisfy them.

The three control layers are embedded within a control subsystem, which is
effectively responsible for deciding which of the layers should have control over
the agent. This control subsystem is implemented as a set of control rules. Control
rules can either suppress sensor information between the control rules and the
control layers, or else censor action outputs from the control layers. Here is an
example of a censor rule [17, p. 207]:
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Figure 1.8: INTERRAP: a vertically layered two-pass agent architecture.

censor-rule-1:
if

entity(obstacle-6) in perception-buffer
then

remove-sensory-record(layer-R, entity(obstacle-6))

This rule prevents the reactive layer from ever knowing about whether
obstacle-6 has been perceived. The intuition is that although the reactive
layer will in general be the most appropriate layer for dealing with obstacle avoid-
ance, there are certain obstacles for which other layers are more appropriate. This
rule ensures that the reactive layer never comes to know about these obstacles.

3.4.2 InteRRaP

INTERRAP is an example of a vertically layered two-pass agent architecture – see
Figure 1.8.

As Figure 1.8 shows, INTERRAP contains three control layers, as in TOURING-
MACHINES. Moreover, the purpose of each INTERRAP layer appears to be rather
similar to the purpose of each corresponding TOURINGMACHINES layer. Thus
the lowest (behavior-based) layer deals with reactive behavior; the middle (local
planning) layer deals with everyday planning to achieve the agent’s goals, and the
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uppermost (cooperative planning) layer deals with social interactions. Each layer
has associated with it a knowledge base, i.e., a representation of the world ap-
propriate for that layer. These different knowledge bases represent the agent and
its environment at different levels of abstraction. Thus the highest level knowl-
edge base represents the plans and actions of other agents in the environment;
the middle-level knowledge base represents the plans and actions of the agent it-
self; and the lowest level knowledge base represents “raw” information about the
environment. The explicit introduction of these knowledge bases distinguishes
TOURINGMACHINES from INTERRAP.

The way the different layers in INTERRAP conspire to produce behavior is
also quite different from TOURINGMACHINES. The main difference is in the way
the layers interact with the environment. In TOURINGMACHINES, each layer was
directly coupled to perceptual input and action output. This necessitated the in-
troduction of a supervisory control framework, to deal with conflicts or problems
between layers. In INTERRAP, layers interact with each other to achieve the same
end. The two main types of interaction between layers are bottom-up activation
and top-down execution. Bottom-up activation occurs when a lower layer passes
control to a higher layer because it is not competent to deal with the current situ-
ation. Top-down execution occurs when a higher layer makes use of the facilities
provided by a lower layer to achieve one of its goals. The basic flow of control in
INTERRAP begins when perceptual input arrives at the lowest layer in the archi-
tecture. If the reactive layer can deal with this input, then it will do so; otherwise,
bottom-up activation will occur, and control will be passed to the local planning
layer. If the local planning layer can handle the situation, then it will do so, typ-
ically by making use of top-down execution. Otherwise, it will use bottom-up
activation to pass control to the highest layer. In this way, control in INTERRAP

will flow from the lowest layer to higher layers of the architecture, and then back
down again.

The internals of each layer are not important for the purposes of this chapter.
However, it is worth noting that each layer implements two general functions. The
first of these is a situation recognition and goal activation function. This function
acts rather like the options function in a BDI architecture (see Section 3.3). It
maps a knowledge base (one of the three layers) and current goals to a new set
of goals. The second function is responsible for planning and scheduling – it is
responsible for selecting which plans to execute, based on the current plans, goals,
and knowledge base of that layer.

Layered architectures are currently the most popular general class of agent ar-
chitecture available. Layering represents a natural decomposition of functionality:
it is easy to see how reactive, proactive, social behavior can be generated by the
reactive, proactive, and social layers in an architecture. The main problem with
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layered architectures is that while they are arguably a pragmatic solution, they
lack the conceptual and semantic clarity of unlayered approaches. In particular,
while logic-based approaches have a clear logical semantics, it is difficult to see
how such a semantics could be devised for a layered architecture. Another issue
is that of interactions between layers. If each layer is an independent activity pro-
ducing process (as in TOURINGMACHINES), then it is necessary to consider all
possible ways that the layers can interact with one another. This problem is partly
alleviated in two-pass vertically layered architectures such as INTERRAP.

3.4.3 Sources and Further Reading

The introductory discussion of layered architectures given here draws heavily
upon [41, pp. 262–264]. The best reference to TOURINGMACHINES is [15]; more
accessible references include [16, 17]. The definitive reference to INTERRAP

is [40], although [19] is also a useful reference. Other examples of layered ar-
chitectures include the subsumption architecture [9] (see also Section 3.2), and
the 3T architecture [4].

4 Conclusions

I hope that after reading this chapter, you understand what agents are and why
they are considered to be an important area of research and development. The
requirement for systems that can operate autonomously is very common. The re-
quirement for systems capable of flexible autonomous action, in the sense that I
have described in this chapter, is similarly common. This leads me to conclude
that intelligent agents have the potential to play a significant role in the future
of software engineering. Intelligent agent research is about the theory, design,
construction, and application of such systems. This chapter has focused on the
design of intelligent agents. It has presented a high-level, abstract view of intel-
ligent agents, and described the sort of properties that one would expect such an
agent to enjoy. It went on to show how this view of an agent could be refined
into various different types of agent architectures — purely logical agents, purely
reactive/behavioral agents, BDI agents, and layered agent architectures.

5 Exercises

1. Level 1 Give other examples of agents (not necessarily intelligent) that you
know of. For each, define as precisely as possible:
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(a) the environment that the agent occupies (physical, software, . . . ), the
states that this environment can be in, and whether the environment is:
accessible or inaccessible; deterministic or non-deterministic; episodic
or non-episodic; static or dynamic; discrete or continuous.

(b) the action repertoire available to the agent, and any preconditions as-
sociated with these actions.

(c) the goal, or design objectives, of the agent – what it is intended to
achieve.

2. Level 2 The following few questions refer to the vacuum world example.

Give the full definition (using pseudo-code if desired) of the new function,
which defines the predicates to add to the agent’s database.

3. Level 2 Complete the vacuum world example by filling in the missing rules.
How intuitive do you think the solution is? How elegant is it? How compact
is it?

4. Level 2 Try using your favorite (imperative) programming language to code
a solution to the basic vacuum world example. How do you think it com-
pares to the logical solution? What does this tell you about trying to encode
essentially procedural knowledge (i.e., knowledge about what action to per-
form) as purely logical rules?

5. Level 2 If you are familiar with PROLOG, try encoding the vacuum world
example in this language and running it with randomly placed dirt. Make
use of the assert and retract meta-level predicates provided by PRO-
LOG to simplify your system (allowing the program itself to achieve much
of the operation of the next function).

6. Level 2 Develop a solution to the vacuum world example using the sub-
sumption architecture. How does it compare to the logic-based example?

7. Level 2 Try scaling the vacuum world up to a 10× 10 grid size. Approx-
imately how many rules would you need to encode this enlarged example,
using the approach presented above? Try to generalize the rules, encoding
a more general decision-making mechanism.

8. Level 3 Suppose that the vacuum world could also contain obstacles, which
the agent needs to avoid. (Imagine it is equipped with a sensor to detect
such obstacles.) Try to adapt the example to deal with obstacle detection
and avoidance. Again, compare a logic-based solution to one implemented
in a traditional (imperative) programming language.
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9. Level 3 Suppose the agent’s sphere of perception in the vacuum world is
enlarged, so that it can see the whole of its world, and see exactly where the
dirt lay. In this case, it would be possible to generate an optimal decision-
making algorithm – one which cleared up the dirt in the smallest time possi-
ble. Try and think of such general algorithms, and try to code them both in
first-order logic and a more traditional programming language. Investigate
the effectiveness of these algorithms when there is the possibility of noise
in the perceptual input the agent receives (i.e., there is a non-zero probabil-
ity that the perceptual information is wrong) and try to develop decision-
making algorithms that are robust in the presence of such noise. How do
such algorithms perform as the level of perception is reduced?

10. Level 3 Try developing a solution to the “distant planet exploration" exam-
ple (see page 21) using the logic-based approach. How does it compare to
the reactive solution?

11. Level 3 In the programming language of your choice, implement the “dis-
tant planet exploration" example using the subsumption architecture. (To do
this, you may find it useful to implement a simple subsumption architecture
“shell” for programming different behaviors.) Investigate the performance
of the two approaches described, and see if you can do better.

12. Level 3 Using the simulator implemented for the preceding question, see
what happens as you increase the number of agents. Eventually, you should
see that overcrowding leads to a suboptimal solution – agents spend too
much time getting out of each other’s way to get any work done. Try to get
around this problem by allowing agents to pass samples to each other, thus
implementing chains. (See the description in [14, p. 305].)

13. Level 3 Read about traditional control theory, and compare the problems
and techniques of control theory to what we are trying to accomplish in
building intelligent agents. How are the techniques and problems of tradi-
tional control theory similar to those of intelligent agent work, and how do
they differ?

14. Level 4 One advantage of the logic-based approach to building agents is
that the logic-based architecture is generic: first-order logic turns out to
be extremely powerful and useful for expressing a range of different prop-
erties. Thus it turns out to be possible to use the logic-based architecture
to encode a range of other architectures. For this exercise, you should at-
tempt to use first-order logic to encode the different architectures (reactive,
BDI, layered) described in this chapter. (You will probably need to read the
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original references to be able to do this.) Once completed, you will have a
logical theory of the architecture, which will serve both as a formal speci-
fication of the architecture, and also as a precise mathematical model of it,
amenable to proof. Once you have your logically-specified architecture, try
to animate it by mapping your logical theory of it into, say, the PROLOG

programming language. What compromises do you have to make? Does it
seem worthwhile trying to directly program the system in logic, or would
it be simpler to implement your system in a more pragmatic programming
language (such as JAVA)?
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Chapter 2

Multiagent Organizations

Virginia Dignum and Julian Padget

1 Introduction

The previous chapter discusses the design of intelligent agents. Each agent is an
individual entity capable of independent action. However, many applications re-
quire the interaction between several individuals in order to realize a certain goal.
Think, for instance, of a logistics system that coordinates transport and storage
of different goods belonging to different owners, using different transportation
forms. Another example is a network of sensors that monitors traffic in a busy
intersection. If we think of each sensor as an intelligent agent, then it is clear
that they should be able to coordinate their activities. Such systems, composed of
several agents, are called Multiagent Systems (MAS).

This chapter builds on the concept of agent put forward in Chapter 1, in which
the agent is seen as situated in an environment in which it may sense and upon
which it may act, and consequently a multiagent system is seen as a collection of
agents that are concurrently sensing and acting on an environment. The premise
of multiagent systems is that an agent can be more effective in the context of
others because it can concentrate on tasks within its competence, delegate other
tasks, and use its ability to communicate, coordinate, and negotiate to achieve
its goals. But how can a collection of agents achieve the desired level of mutual
coordination? Moreover, how can MAS account for global goals, which are not
necessarily assumed by any of the agents?

A multiagent system often cannot be fully described by the sum of all the de-
scriptions of the agents in it. Not only that not all problems can be easily described
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in terms of individual mental states, but also, in many cases, situations are better
described based on activities and constraints that characterize the externally ob-
servable behavior of the whole population. Think, for example, of resources that
are collectively owned or shared between or among communities, such as a shared
Internet connection. If each agent follows its own goal of having as much and as
frequent access to the Internet as possible, soon the quality of the connection of
each will be very low because they all will be limiting bandwidth to each other.
This example demonstrates the need to somehow “organize” these agents so that
all benefit (possible solutions are to divide access time equally between them, or
to use a pay-per-minute system, or to make a rooster, etc.). Sometimes, such “or-
ganization” will emerge from the interactions between the agents, but in many
cases it is an entity in itself which has its own goals, that regulates the agents in
the environment.

Since their origin in the 1980s, Multiagent Systems (MAS) have often been
defined as organizations or societies of agents, i.e., as a set of agents that interact
together to coordinate their behavior and often cooperate to achieve some col-
lective goal [28]. The term agent organization has become commonplace within
the MAS community, but is often used to refer to different, even incompatible,
concepts. In short, some take organization as the process of organizing a set of
individuals, whereas others see organization as an entity in itself, with its own
requirements and objectives. These differences are in large part due to the diverse
worldviews and backgrounds of different research fields, namely sociology and
organization theory (OT), on the one hand, and distributed artificial intelligence
(DAI), on the other hand. From a sociological perspective, agent organization is
specified independently of its participants and relates the structure of a (complex)
system to its externally observable global behavior. The artificial intelligence view
on MAS is mostly directed to the study of the mental state of individual agents
and their relation to the overall behavior of the system.

The main focus of this chapter is on the idea of organization as an entity itself,
which is different from the agents in it. Taking an example from human organiza-
tions, think for instance of a university. As an entity, it clearly has its own goals
(e.g., being a place of learning), its plans (e.g., admitting students or producing
research), and its design (e.g., departments, positions, and activities). However,
in itself, the university cannot do anything! In order to achieve its goals, the uni-
versity is dependent on the individuals it will attract to fulfill its positions (i.e.,
lecturers, students, and so on). On the other hand, an agent with the goal of get-
ting a degree in computer science is dependent on the existence of a university
that awards it. So, both agents and organizations are dependent on each other.

This chapter will show that organizations are an essential aspect of multiagent
systems, because they can complement the concept of agents in that they allow
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for simplified agent models through reducing uncertainty. This chapter discusses
comprehensive frameworks to build multiagent organizations, based on notions
from human societies, in which we identify roles, assign responsibilities, and
specify permissions – among other things. We will discuss structural and insti-
tutional approaches to multiagent organizations, where the former is mostly con-
cerned with the specification and enactment of organization goals, and the latter
sees organizations as regulative instruments for interaction.

The remainder of this chapter is organized as follows. In Section 2 we set
out the broader context of multiagent systems and organizations, identifying
the drivers for bringing organizational issues into MAS; describe the different
views on organization; and introduce the conference management scenario used
throughout this chapter to illustrate different concepts. In Section 3 we exam-
ine the elements and key properties of organizations, concluding with an exam-
ple of organizational modeling using the OperA framework. This perspective is
complemented in Section 4 by a presentation of institutions and their formal un-
derpinnings, followed by an example of institutional modeling using InstAL. In
Section 5 we move to the agent perspective to consider how organizations appear
from the position of agents. Finally, in Section 6 we examine motivations and
mechanisms for organizational change.

2 Background

In this section, we describe the evolution of the organization perspective in MAS,
and discuss how different sources of inspiration have lead to different approaches
to organization in MAS.

2.1 From Intelligent Agents to Multiagent Systems

A multiagent system is a system composed of multiple interacting intelligent
agents that interact to solve problems that are beyond the individual capabilities or
knowledge of each individual. In [68], MAS are characterized as systems where
(1) each agent has incomplete information or capabilities for solving the problem
and, thus, has a limited viewpoint; (2) there is no system global control; (3) data
are decentralized; and (4) computation is asynchronous. That is, MAS can be seen
as distributed problem solvers (DPS) [26] used to solve problems that are difficult
or impossible to solve by an individual agent or a monolithic system. In those situ-
ations, a central controller is either not feasible, or one wants to make good use of
an existing distribution of resources. A good example is a sensor network, which
consists of multiple processing units, each with local sensor capabilities, limited
processing power, limited power supply, and limited communication bandwidth.
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Despite these limitations, sensor networks are able to provide some global ser-
vices.

Research in MAS is concerned with the modeling, analysis, and construction
of a collection of possibly pre-existing, autonomous agents that interact with each
other and their environments. Agents are considered to be autonomous entities,
such as software programs or robots. In MAS, the study of such systems goes
beyond the study of individual intelligence to consider, in addition, problem solv-
ing that has social components. Interactions in MAS can be either cooperative
or selfish. That is, the agents can share a common goal (e.g., an ant colony), or
they can pursue their own interests (as in a free market economy). In coopera-
tive situations, agents collaborate to achieve a common goal, shared between the
agents or, alternatively, the goal of a central designer who is designing the various
agents [63]. Interaction between selfish agents usually uses coordination tech-
niques based on auctions or other resource sharing mechanisms. The definition
of coordination mechanisms between different agent types is a major part of the
MAS, resulting in implementations where social aspects, goals, and behaviors are
part of the architecture of the specific agents [55].

From an engineering perspective, the development of MAS is not straightfor-
ward. Even though it is commonly accepted that “some way of structuring the
society is typically needed to reduce the system’s complexity, to increase the sys-
tem’s efficiency, and to more accurately model the problem being tackled" [39],
in many situations, individuals do not share nor necessarily pursue the same aims
and requirements as the global system or society to which they belong. In these
cases, the view of coordination and control needs to be expanded to consider not
only an agent-centric perspective but also takes a societal focus. However, many
approaches assume a predefined agent type or class when designing MAS. A dis-
advantage is that systems are then closed for agents that are not able to use the
same type of coordination and behavior, and that all global characteristics and
requirements are implemented in the individual agents and not outside them.

The pursuit of open solutions to MAS, which are independent of the architec-
tures of a particular set of agents, has led to the concept of organization-based ap-
proaches to MAS. These can be broadly divided into two main categories: struc-
tural and institutional. Structural approaches see organizations mainly as ways
to provide the means for coordination, which enable the achievement of global
goals. Institutions are mechanisms used to regulate social action by defining and
upholding norms. According to Ostrom, institutions are rules-in-use that structure
organizations and activities [52].

So far, we have discussed organizations, primarily from a design perspective,
as a mechanism that can be crafted to enable coordination between agents. A
complementary view of organizations stems from emergence, that starts from the
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assumption that MAS require no real structure or patterns and the outcomes of
interaction are unpredictable. From an emergent perspective, MAS are viewed as
a population of (simple) agents interacting locally with one another and with their
environment. In these systems, organization is not designed but is taken as an
externally observable result of the collective behavior of agents. Communication
is often based on modification of the environment (stigmergy). There is no cen-
tralized control structure dictating how individual agents should behave, meaning
that local interactions between such agents are expected to lead to the emergence
of global behavior. Emergent agent systems are mostly used in the domains of
social simulation, adaptive planning, logistics, and artificial life.

In this chapter, we mostly follow the design view on organization, but will also
discuss the emergence view whenever relevant.

2.2 From Multiagent Systems to Multiagent Organizations

An important differentiation in organizational approaches is that of “focus," lead-
ing to the distinction between agent-centric approaches which implicitly encode
organizational aspects at the agent level and organization-centric approaches
which provide an explicit, referenceable representation of organizational compo-
nents.

Multiagent systems, as outlined in Section 2.1, offer a view in which agents
communicate, negotiate, and collaborate directly with one another. The organiza-
tional structure exists within the individual agents’ state, and their propensity to
organize is typically predetermined by their encoded behaviors. The attraction of
this approach is that the agents themselves encapsulate the organization, but this
also means the organization has no representation because it is only implicitly
observable through the agents’ interactions. However, because the organization
is distributed and hard-wired, it is hard to maintain, revise, and scale up. Fur-
thermore, such solutions often lead to systems with high entry barriers – because
third-party agents must somehow have in themselves the knowledge of how to
interact with existing agents correctly and maintain the integrity of the system.

The response is to refactor the system to build an explicit representation of
the organization, external to the agents, which opens the door to open systems,
because the agents and, in particular, new entrants to the system can then reason
about the organizational structure, goals, and policies, if presented in a suitable
form.

In organization-centric approaches, organizations are, in general, conceptu-
alized in terms of their structure, that is, the pattern of information and control
relations that exist among agents and the distribution of problem-solving capa-
bilities among them. An organization structure provides a framework for agent
interactions through the definition of roles, behavior expectations, and authority
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relations. In cooperative problem solving, a structure gives each agent a high-level
view of how the group solves problems. Coordination is often achieved by com-
munication between agents (using an agent communication infrastructure such as
FIPA), but interaction through the environment is also common, particularly in
systems where agents are very simple (e.g., in swarm systems, agents interact im-
plicitly through the use of resources in the environment). Chapter 3 explores agent
communication in much greater depth.

Organization structure provides scope for interactions, enables strength in
numbers, reduces or manages uncertainty, and addresses whether there is need
for redundancy. At the same time, organizations can also adversely affect com-
putational or communication overhead, reduce overall flexibility or reactivity, and
add an additional layer of complexity to the system. This requires careful thought
on the design of organization structures.

Organization-oriented approaches to MAS are well-suited to understanding
and designing MAS in ways that extend and complement traditional agent-centric
approaches. Multiagent organizations can be understood as complex entities
where a multitude of agents interact, within a structured environment aimed at
some global purpose. This is of particular importance for MAS in complex, dy-
namic, distributed domains.

In the following, the view of an organization as a basic explicit component of
MAS is elaborated further, starting from its grounds in organizational and social
sciences to its concrete use in MAS engineering frameworks.

2.3 Sources of Inspiration

In the last decade, the field of multiagent systems has increasingly applied ideas,
paradigms, and theories from research in human organizations as a means to un-
derstand and model distributed complex domains. In particular, research in orga-
nization theory, institutional analysis, and rationality theory has been crucial for
the development of the organizational views now being used in MAS.

2.3.1 Organization as Structure

Organization theory has for many decades investigated the issue of organizational
structure. An organizational structure has essentially two objectives [25]: first, it
facilitates the flow of information within the organization in order to reduce the
uncertainty of decision making; secondly, the structure of the organization should
combine organizational behavior across the parts of the organization so it is coor-
dinated. In deciding what kind of organization structure to use, decision makers
need to understand the characteristics of the environment they are in and the de-
mands of this environment in terms of information and coordination requirements.
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Organizational Machine Professional Entrepreneurial Adhocracy

Form Bureaucracy Organization Startup

Complexity Low (simple) High (complex) Low (simple) High (complex)
Pace of Change Low (stable) Low (stable) High (dynamic) High (dynamic)
Coordination Standardize Standardize Direct supervision Mutual adjustment
Mechanism procedures skills and norms and control of ad-hoc teams

and outputs

Table 2.1: Organizational forms according to Mintzberg.

Organizational design therefore concerns the allocation of resources and people
to a specified mission or purpose and the structuring of these resources to achieve
the mission [29]. Given that there are no exact recipes to construct the optimal
organization, the evaluation of design and determination of its appropriateness –
given the organization’s aims and constraints – are main issues in organization
theory.

Notable in organization theory is the work of Mintzberg on the classification
of organizational structures [47]. According to Mintzberg, environmental vari-
ety is determined by both environmental complexity and the pace of change. He
identifies four types of organizational forms, which are associated with the four
possible combinations of complexity and change. Each of the four forms of orga-
nization depend on fundamentally different coordination mechanisms. Table 2.1
summarizes Mintzberg’s taxonomy of organizations.

Inspired by and extending upon the work of Mintzberg, researchers in orga-
nizational theory have proposed a growing number of classification systems for
organization structures, such as bureaucratic, matrix, virtual enterprise, network,
boundary-less, conglomerate, alliance, among many others. However, often, defi-
nitions and naming of organizational forms are unclear, and the classification of a
specific organization into one of the proposed classes is not trivial, often resulting
in a hybrid classification.

Design strategies determine the focus of the design process. Some organiza-
tions place a higher priority on efficiency, preferring designs that minimize the
costs of producing goods or services. Others emphasize effectiveness, focusing
on generating revenues or seizing leading-edge innovation in the marketplace [9].

From the perspective of developing MAS, one of the main contributions of
organization theory is the idea that models for organizational design should en-
able the separation of collective from individual concerns. This is achieved by
providing abstract representations of interactions, environments, objectives on the
one hand, and of the participating entities, on the other hand, which enables the
analysis of their partial contributions to the overall performance of the organiza-
tion. Horling and Lesser have analyzed different organizational forms commonly
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used in MAS, such as hierarchies, coalitions, teams, federations, markets, and so-
cieties. In [37], they give some insight into how they can be used and generated,
and compare their strengths and weaknesses. The use of organizational structures
in MAS is explored further in Section 3.

2.3.2 Organization as Institution

Social sciences look at organization from the perspective of social behavior, that
is, behavior directed towards society, or taking place between members of the
same group or species. While strategic management and organizational theory, as
discussed in Section 2.3.1, study the macro behavior of whole organizations and
industries, how they adapt, and the strategies, structures, and contingencies that
guide them – in the social sciences, the interest on organizations is mostly geared
to the study of micro organizational behavior, which focuses on individual and
group dynamics in an organizational setting.

Social activity concerns interpersonal processes and structures related to in-
teraction between people. According to Max Weber, “an action is social if the
acting individual takes account of the behavior of others and is thereby oriented
in its course.” Whenever people interact, many factors come into play. In this
sense, organizing can be seen as the collective attempt to manage a common re-
source, which brings with it the problems of “coping with free-riding, solving
commitment problems, arranging for the supply of new institutions, and monitor-
ing individual compliance with sets of rules.” [51].

In sociology, behavioral expectations within a society or group are defined
as norms. A norm is a more or less general rule of conduct within a group or
society, which constitutes a link between the abstract values (goals) and concrete
behavior that is considered to serve one or more of those goals. As such, norms
are the explicit, or implicit, rules that a group uses to determine appropriate and
inappropriate values, beliefs, attitudes, and behaviors [19].

According to Ostrom, institutions are rules-in-use that structure organizations
and activities [52]. Institutions are essential to building trust and represent signifi-
cant investment of time and effort to increase results and reduce social costs. This
complements the view introduced by North and commonly used in economics,
which defines institutions as “the rules of the game in a society, or more formally,
the humanly devised constraints that shape social interaction” [49]. Institutions
operate in an environment consisting of individuals and other institutions that af-
fect each other.

Norms are one of the ways to express the criteria for rightness and wrong-
ness, correctness and incorrectness, that characterize, for example, formulae for
greeting in social relationships. Norms are shared by a community, and may have
no individual representations [36]. In most cases, work on norm compliance as-
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sumes norms to be implemented and enforced by an institution. This perspective
both sees the institution as active and as an entity (firm, government, company),
which is the warrant of those conventions [49]. Clearly, this conflicts with the so-
cial sciences definition of institution as a set of rules and conventions and presents
a source of potential confusion if not disambiguated.

In multiagent systems, institutions are used to regulate interactions where
agents establish commitments and to facilitate that these commitments are upheld.
Such institutions are devices, external to the agents, which facilitate agent inter-
actions; that is, according to Simon’s design view, institutions are coordination
artifacts that constitute an interface between the internal, rational decision-making
capabilities of agents and the social effect of their interactions [65].

Work on norms and institutions in multiagent systems (MAS) has resulted in
broadly two different approaches [20]: a regimented view of norms [27, 54, 59]
in which norms are viewed as constraints, and a regulated view [1, 12, 33] in
which norm enforcement is explicit and agents’ motivations play an important
role in compliance decisions. When regimenting norms, all agent actions leading
to a violation of those norms are impossible. That is, the design of the system
makes it impossible to perform forbidden actions – think of gates at the metro
station that prevent entrance without a ticket. From an engineering perspective,
these approaches are easier to implement, but they seriously limit agent autonomy.
Regulated approaches require both the establishment of institutions – together
with their representative agents that can monitor and enforce norm compliance –
and the presence of normative agents that are able to reason about the effect of
norms on goal achievement.

We will further discuss the use of institutions in MAS in Section 4.

2.3.3 Organization as Agent

From a holistic perspective, organizations can be seen as active entities (typi-
cally socio-technological systems) that act in an environment. As a system, “or-
ganizations are economic units with a production function that transforms inputs
into outputs, with efficiency realized through the choice of optimal factor pro-
portions” [78]. Systems theory sees an organization as more than the sum of its
various parts, and, in particular, organizational behavior as dependent on the in-
terrelationships of its parts [58].

As an agent, an organization can affect and be affected by its environment
and by other agents with whom it interacts. This is the view of agency theory,
i.e., the principal-agent paradigm, as it is known in economics, which deals with
the difficulties that arise under conditions of incomplete and asymmetric informa-
tion, when one party (the principal) delegates work to another (the agent), who
performs that work. Classical economics views the firm as a single decision-unit
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engaged in maximizing profits. It ignores the possibility of conflict between own-
ers, managers, and employees. Agency theory is concerned with two issues that
can occur in agency relationships. The first occurs when (a) the desires or goals of
the principal and agent conflict and (b) it is difficult or expensive for the principal
to verify what the agent is actually doing. The problem here is that the principal
cannot verify that the agent has behaved appropriately. The second issue is the
problem of risk sharing, which arises when the principal and agent have different
attitudes towards risk.

2.4 Autonomy and Regulation

In MAS, agents are assumed to be autonomous entities, pursuing their own in-
dividual goals based on their own beliefs and capabilities. From this perspec-
tive, global behavior emerges from individual interactions and therefore the final
behavior of the whole system cannot be easily predicted, managed, or specified
externally. However, in complex critical environments, the requirements, expec-
tations, and overall behavior of the global system must be taken into account and
structural characteristics of the domain have to be incorporated. As such, multi-
agent organizations must consider not only the goals and characteristics of individ-
uals, but also such organizational characteristics as stability over time, predictabil-
ity, and commitment to predefined aims and strategies. These are not reducible to
individual issues, and therefore must exist independently and externally to agent
design.

The organization perspective on MAS recognizes that the modeling of interac-
tion in MAS cannot simply rely on an agent’s own architectures and capabilities.
This implies that organizational design cannot be assumed to be the result of au-
tonomous interaction, and, thus, organization must be pre-established. Organiza-
tional approaches arise from the idea that the effective engineering of MAS needs
high-level, agent-independent concepts and abstractions that explicitly define the
organization in which agents live [79]. These are the rules and global objectives
that govern the activity of an enterprise, group, organization, or nation, which are
specified externally and imposed on the participants. Just as MAS cannot assume
that agents will coordinate their actions, organizational models cannot assume that
participating agents will act according to the global needs and expectations. This
creates a dichotomy between regulation and autonomy, which characterizes multi-
agent organizations [75]. As such, multiagent organization specifications need to
describe mechanisms designed to systematize, defend, and recommend right and
wrong behavior, which can inspire trust into the agents that will join them.

Agent organizations reflect the idea that interactions occur not just by accident
but aim at achieving some desired global goals. That is, there are goals external
to each individual participant (or agent) that must be reached through their inter-
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action. Desired behavior of an organization is therefore external to the partici-
pants and must be guaranteed by the organizational structure. However, assuming
open environments where neither the internal architecture nor the actual aims of
the agents can be verified, such guarantees on desired global behavior should be
achieved without relying on the design of agents nor compromising the agents’
autonomy [73].

A consequence of the considerations mentioned above is that agent organiza-
tions assume organizational structure to be determined by design, independently
of the participants. From an organizational perspective, the main function of an in-
dividual agent is the enactment of a role that contributes to the global aims of the
organization. From this perspective, organizational goals determine agent roles
and interaction norms. Agents are then seen as the actors that perform role(s)
described by the organization design.

However, the very notion of agent autonomy refers to the ability of individual
agents to determine their own actions, plans, and beliefs. From the agent’s per-
spective, its own capabilities and aims determine the reasons and the specific way
an agent will enact its role(s), and the behavior of individual agents is motivated
from their own goals and capabilities [16, 76]. That is, agents bring in their own
ways into the society, in that they will follow their own goals and motivations
and will bring in their own ways of doing things to the system. In other words,
the actual behavior of the society emerges from the goal-pursuing behavior of the
individual agents within the constraints set by the organization.

In summary, there is a clear need for multiagent frameworks that combine
and use the potential of a group of agents for the realization of the objectives
of the whole, without ignoring the individual aims and “personalities” of the au-
tonomous participant agents. That is, in order to represent interactions between
agents in such an open context, organizational framework must meet the following
requirements [76]:

Internal autonomy: interaction and structure of the organization must be repre-
sented independently from the internal design of the agents.

Collaboration autonomy: activity and interaction in the organization must be
specified without completely fixing in advance all interaction possibilities.

The first requirement relates to the fact that since an open organization allows
the participation of multiple heterogeneous entities – the number, characteristics,
and architecture of which are unknown to the designer – the design of the organi-
zation cannot be dependent on their individual designs. The second requirement
highlights the fundamental tension between the goals of the organization and the
autonomy of the participating entities. On the one hand, the more detail about
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interactions provided by the organization design, the more requirements can be
checked and guaranteed at design time. This allows us, for example, to ensure
that certain rules are always followed. On the other hand, there are good reasons
to allow the agents some degree of freedom, basically to enable their autonomy to
choose their own way of achieving collaboration, and, as such, increase flexibility
and adaptability.

Finally, different degrees of abstraction on organization specification have
consequences to the level of autonomy required from each agent to accomplish or-
ganizational objectives. Intuitively, the more detailed specification given, the less
alternative ways (and thus less autonomy) are available for the agents to achieve
the organizational objectives. On the other hand, abstract organization models
require more autonomy and reasoning capabilities from the agents, as they will
need to be able to interpret the specification and decide on how to coordinate with
others in each situation. This, however, provides higher flexibility of operation.
It is then a design decision how to better regulate agent autonomy by deciding on
the level of abstractness or concreteness of the organization description.

2.5 Example Scenario

In order to further describe multiagent organizations and the concepts introduced
above, we will use as an illustration throughout this chapter the scenario of the
management of an international conference (taken from [79]), shown in Fig-
ure 2.1.

3 Multiagent Organizations

In this section, we present in more detail the structural approach to multiagent
organizations, as introduced in Section 2.3.1.

Organization structures define the formal lines of communication, allocation
of information processing tasks, distribution of decision-making authority, and the
provision of incentives. That is, organizations describe objectives, roles, interac-
tions, and rules in an environment without considering the particular character-
istics of the individuals involved. Organizational objectives are not necessarily
shared by any of the individual participants, but can only be achieved through
their combined action. In order to achieve its goals, it is thus necessary that an
organization employs the relevant agents, and structures their interactions and re-
sponsibilities such that organizational objectives can be realized. The performance
of an organization is therefore determined both by its interaction structures, and
by the individual characteristics of the participating agents.
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CONFERENCE MANAGEMENT SYSTEM

Setting up and running a conference is a multiphase process involving sev-
eral individuals and groups, including organizing instance, authors, chairs,
program committee (PC) members, and participants. Tasks and activities are
either individual or require the coordination/cooperation of a set of roles: for
instance, the PC chair depends on PC members to achieve the reviewing pro-
cess and on the authors to get submissions; the organizer depends on session
chairs to manage sessions; presenters depend on the organizer to have a suit-
able location, and so forth.

Agents associated with the persons involved in the process play roles in this
organization, and therefore their behavior can be influenced by those persons.
For example, an author could attempt to review his or her own paper or a PC
member could try to deal with fewer papers than he or she should. As such,
the organization must define the holding norms of behavior, which can, for
instance, include the following: (a) papers must be submitted before the dead-
line; (b) reviewers must submit their evaluations on time; (c) all papers must
be written in English; (d) reviewing must follow a single-blind (or double-
blind) process.

During the submission phase, authors of submitted papers need to be informed
that their papers have been received and they need to be assigned a submission
number. Once the submission deadline has passed, the PC has to handle the
review of the papers – contacting potential referees and asking them to review
a number of the papers. After a while, reviews are expected to come in and
be used to decide about the acceptance/rejection of the submissions. Authors
need to be notified of these decisions, and in the event of acceptance, must
be asked to produce the camera-ready version of their revised papers. Finally,
the publisher has to collect the camera-ready versions from the authors and
print the whole proceedings.

Figure 2.1: Conference management system.

Research on agent organizations applies normative, social, and organizational
ideas coming from human societies into electronic distributed computational
mechanisms for the design and analysis of MAS. Using organizational concepts
as first-class modeling constructs [46] allows for a natural specification of open
systems, and can describe both emergent and designed organizations. Just as in
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human organizations, agent organizations describe how agents interact with each
other and with the environment.

Implicit in the definition of organizations as instruments of purpose are the
ideas that organizations have goals, or objectives, to be realized and, therefore,
the shape, size, and characteristics of the organization affect its behavior [37].
Objectives of an organization are achieved through the action of the individuals in
the organization, which means that an organization should make sure to employ
the relevant actors, so that it can “enforce" the possibility of making its desires
happen. Note that here an explicit distinction is made between the organization
position, or role, and the actor, or agent. In this way, separation of concerns is
possible according to the requirements described in Section 2.4. Furthermore,
one of the main reasons for creating organizations is efficiency, that is, to provide
the means for coordination that enables the achievement of global goals in an
efficient manner. This means that the actors in the organization need to coordinate
their activities in order to efficiently achieve those objectives.

3.1 Organization Concepts

Organization implies the existence of several coordinating entities that need to co-
ordinate to realize some goal, which none individually has the capacity to achieve.
As such, organization also implies the need for rules indicating how parts must be
put together (i.e., the organizational structure relating roles to each other). Orga-
nizational structure can be defined as “what persists when components or individ-
uals enter or leave an organization, i.e., the relationships that make an aggregate
of elements a whole” [28].

The structure of a multiagent organization is the collection of roles, relation-
ships, and authority structures that governs its behavior [37]. Roles describe the
capabilities, objectives, rights, and obligations of different parties. By knowing
one’s role, individuals can define expectations and establish plans. Organizational
theory and sociology research have for a long time studied structure, dynamics,
and behavior of human organizations and human interactions, based on the con-
cept of role and relationships between roles.

A concrete organization is one possible instantiation of an organizational
structure, where roles are filled in by specific individuals (which can be software
agents, humans, or other systems). Social structure is thus an independent con-
struct that describes and enables interaction between agents in a system. A social
structure may be explicitly implemented in the form of a social artifact existing
independently of the implementations of the agents, may be included in the im-
plementations of the individual agents, or may exist only intangibly, in the form
of the behavior patterns exhibited by the collective of agents during interaction
[44].
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Inspired by [67], components of organization can be classified into three broad
classes. The first are (task) environmental factors, which include the components
and features of the task (such as size, time constraints, uncertainty), the available
resources, and the external conditions under which an organization operates. The
second are the structural factors, which describe the components and features of
the structure itself (such as roles, dependencies, constraints, norms, and regula-
tions). The third class of factors are agent factors, which describe the character-
istics of the individual agents concerning task capability, intelligence (including
decision making and reasoning capabilities), social awareness, etc. To sum up, the
three main aspects that must be represented in any model aimed at understanding
or specifying organizational performance or behavior are:

1. Environment is the space in which organizations exist. This space is not
completely controllable by the organization, and therefore results of activity
cannot always be guaranteed. Environment can also include the description
of tasks and resources (such as size and frequency), and is characterized by
properties such as volatility, scarcity, unpredictability, and (task) complex-
ity.

2. Individuals or agents are the acting, reasoning entities in the organiza-
tion, which have the capability (partially) to control the state of some ele-
ment in the environment. Agents are defined by their capabilities – typically
describing their learning, communication, reasoning, and decision-making
skills.

3. Structure describes the features of the organization, such as objectives,
roles, relationships, and strategy. The roles and relationships holding in
the organization determine control, coordination, and power relations. Dif-
ferentiating dimensions of structure are size, degree of centralization, and
formalization.

The ontological relations between these concepts, according to [24], are cap-
tured in Figure 2.2. Most organization models adopt similar classifications, but
put different emphasis on the various parts of this ontology. For an overview, we
refer to [15].

3.2 Example of Organization Modeling: The OperA Frame-

work

Models to design organizations must enable the explicit representation of struc-
tural and strategic concerns and their adaptation to environmental changes in a
way that is independent of the behavior of the agents.

In this section, we present an example of an organization modeling lan-
guage, the OperA framework. Other well-known models include Tropos [8],



66 Chapter 2

Figure 2.2: An excerpt of the organization ontology.

MOISE [38], or ORG4MAS [41], among others.
The OperA framework [21] consists of an organization modeling language

and a supporting toolset for specification and analysis of organizations. OperA
proposes an expressive language for defining organizations, distinguishing ex-
plicitly between the organizational aims, and the agents who act in it. That is,
OperA enables the specification of organizational structures, requirements, and
objectives, independently from agent choice criteria, which allows participants
to have the freedom to act according to their own capabilities and demands. At
the organization level, an OperA model describes the aims and concerns of the
organization with respect to the social system. These are described as an organi-
zation’s externally observable objectives, that is, the desired states of affairs for
the organization. OperA supports the deployment of organizations in dynamic
and unpredictable settings, and brings forth critical issues concerning the design,
implementation, and validation of their behavior [34, 56, 76], guided by the fol-
lowing principles.

• Provide sufficient representation of the global organization requirements so
that the overall system complies with its norms.

• Provide enough flexibility to accommodate heterogeneous participants so
that agents can act according to their own characteristics and requirements.

OperA provides the means to represent concepts and relationships in a domain that
is rich enough to cover the necessary contexts of agent interaction while keeping in
mind the relevance of those concepts for the global aims of the system. The design
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and validation of OperA organization models (OMs) can be done using the Op-
erettA toolset [3]. OperettA is a combination of tools based on the Eclipse Model-
ing Framework (EMF) and the Graphical Modeling Framework (GMF), integrated
into a single editor. Developed as an Eclipse plug-in, OperettA is fully open source
and follows the model-driven engineering (MDE) principles of tool development.
OperettA is available open source at http://www.operettatool.nl.

The OperA framework consists of three interrelated models. The Organi-

zation Model (OM) is the result of the observation and analysis of the domain
and describes the desired behavior of the organization, as determined by the or-
ganizational stakeholders in terms of objectives, norms, roles, interactions, and
ontologies. The OM is described in more detail in the remainder of this section,
using as an example the conference organization scenario as in Section 2.5.

The OM provides the overall organization design that fulfills the stakehold-
ers’ requirements. Objectives of an organization are achieved through the action
of agents, which means that, at each moment, an organization should employ the
relevant agents that can make its objectives happen. However, the OM does not
allow for specifying the individual agents. The Social Model (SM) maps orga-
nizational roles to (existing) agents and describes agreements concerning the role
enactment and other conditions in enactment contracts. Finally, the Interaction

Model (IM) describes the run-time interactions between role-enacting agents. The
overall development process is depicted in Figure 2.3.

interaction 
model

social model

agents

dynamic instantiation

runtime deployment

organization 
model

design

Figure 2.3: The OperA development process.

http://www.operettatool.nl
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Id PC_member

Objectives paper_reviewed(Paper,Report)

Sub-objectives {read(P), report_written(P, Rep), review_received(Org, P, Rep)}

Rights access_confmanagement_system(me)

Norms & PC_member OBLIGED understand_english

Rules PC_member OBLIGED review_paper BEFORE deadline

IF paper_by_colleague THEN PC_member FORBIDDEN review_paper

Table 2.2: PC member role description.

In this chapter, we focus on the OM that specifies the structure and global char-
acteristics of a domain from an organizational perspective, e.g., how a conference
should be organized, its program, submissions, etc. That is, the OM describes
the means to achieve global objectives. Components of the OM are the social
and interaction structures, in which global goals are specified in terms of roles
and interactions. Moreover, organization specification should include the descrip-
tion of concepts holding in the domain, and of expected or required behaviors.
Therefore, these structures should be linked with the norms, defined in normative
structure, and with the ontologies and communication languages defined in the
communication structure.

3.2.1 The Social Structure

The social structure describes the roles and dependencies holding in the organi-
zation. It consists of a list of role definitions, Roles (including their objectives,
rights and requirements), a list of role groups’ definitions, Groups, and a Role De-
pendency’s graph. Examples of roles in the conference scenario are PC member,
program chair, author, etc.

Global objectives form the basis for the definition of the objectives of roles.
From the organization perspective, role descriptions should identify the activities
and services necessary to achieve the organizational objectives and also to make
it possible to abstract from the individuals that will eventually perform the role.
From the agent perspective, roles specify the expectations of the society with re-
spect to the agent’s activity in the society. In OperA, the definition of a role
consists of an identifier, a set of role objectives, possibly sets of sub-objectives
per objective, a set of role rights, a set of norms, and the type of role. An example
of a role description for a PC member in the conference scenario is depicted in
Table 2.2.

Groups provide the means to collectively refer to a set of roles and are used to
specify norms that hold for all roles in the group. Groups are defined by means of
an identifier, a non-empty set of roles, and group norms. An example of a group
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in the conference scenario is the organizing team, consisting of the roles program
chair, local organizer, and general chair.

The distribution of objectives in roles is defined by means of the role hierar-
chy. Different criteria can guide the definition of role hierarchy. In particular,
a role can be refined by decomposing it into sub-roles that, together, fulfill the
objectives of the given role.

This refinement of roles defines role dependencies. A dependency graph rep-
resents the dependency relations between roles. Nodes in the graph are roles in
the society. Arcs are labeled with the objectives for which the parent role de-
pends on the child role. Part of the dependency graph for the conference society
is displayed in Figure 2.4.

Conference
society

organizer
role

session
chair
role

author
role

PC
member

role

presenter
role

conference_organized paper_submitted

paper_reviewed session_organized

paper_presented

Figure 2.4: Role dependencies in a conference.

For example, the arc between nodes PC-Chair and PC-member represents
the dependency between PC-Chair and PC-member concerning paper-reviewed
(PC_Chair �paper_reviewed PC_Member). The way objective g of r1 in a depen-
dency relation r1 �g r2 is actually passed to r2 depends on the coordination type
of the society, defined in the architectural templates. In OperA, three types of role
dependencies are identified: bidding, request, and delegation. These dependency
types result in three different interaction possibilities:
Bidding defines market, or auction-like interactions, where the dependent (ini-

tiator) of the dependency asks for proposals from the dependees. Typically,
the best proposal is selected for the achievement of the objective.
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Scene Review Process

Roles Program-Chair (1), PC-member(2)

Results r1 = ∀ P ∈ Papers: reviews_done(P, rev1, rev2)

Interaction Pattern PATTERN(r1): see Figure 2.5
Norms & Rules Program-Chair PERMITTED assign_papers

IF paper_assigned THEN PC_member OBLIGED review_paper

BEFORE deadline

Table 2.3: Script for the review process scene.

Request leads to networks, where roles interact cooperatively toward the achieve-
ment of an objective;

Delegation gives rise to hierarchies, where the dependent of the dependency dele-
gates the responsibility of the achievement of the objective to the dependees
(i.e., subordinates).

3.2.2 The Interaction Structure

Interaction is structured as a set of meaningful scenes that follow predefined scene
scripts. Examples of scenes are the “registration" of participants in a conference,
which involves a registrar and a participant, or “paper review" involving program
committee members and the PC chair. A scene script describes the players (roles),
desired results, and the norms regulating the interaction. The results of an interac-
tion scene are achieved by the joint activity of the participating roles, through the
realization of (sub-)objectives of those roles. A scene script establishes also the
desired interaction patterns between roles, that is, a desired combination of the
(sub-)objectives of the roles. Table 2.3 gives an example of a scene script for the
review process involving two PC members and a PC chair.

Interaction scene descriptions are declarative, indicating the global aims of
the interaction rather than describing exact activities in details. Interaction pat-
terns can be more or less restrictive, which will give the agent enacting the role
more or less freedom to decide how to achieve the role objectives and interpret
its norms. Following the ideas of [42, 66], we call such expressions landmarks,
defined as conjunctions of logical expressions that are true in a state. Landmarks
combined with a partial ordering to indicate the order in which the landmarks are
to be achieved are called a landmark pattern. Figure 2.5 shows the landmark pat-
tern for the review process. Several different specific actions can bring about the
same state, that is, landmark patterns actually represent families of actual inter-
action protocols. The use of landmarks to describe activity enables the actors to
choose the best applicable actions, according to their own goals and capabilities.
The ordering relation between scenes is given in the interaction structure (see Fig-
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Figure 2.5: Landmark pattern for review process.
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Figure 2.6: Interaction structure in the conference scenario.

ure 2.6). In this diagram, transitions describe a partial ordering of the scenes, plus
eventual synchronization constraints. Note that, at run-time, several scenes can
be happening at the same time and one agent can participate in different scenes
simultaneously. Transitions also describe the conditions for the creation of a new
instance of the scene, and specify the maximum number of scene instances that
are allowed simultaneously. Furthermore, the enactment of a role in a scene may
have consequences in following scenes. Role evolution relations describe the con-
straints that hold for the role-enacting agents as they move from scene to scene; for
example, in the transition between paper acceptance and conference registration,
authors will became participants.

3.2.3 The Normative Structure

At the highest level of abstraction, norms are the values of a society, in the sense
that they define the concepts that are used to determine the value or utility of sit-
uations. For the conference organization scenario, the desire to share information
and uphold scientific quality can be seen as values. However, values do not specify
how, when, or in which conditions individuals should behave appropriately in any
given social setup. In OperA, these aspects are defined in the normative structure.
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In OperA, norms are specified using a deontic logic that is temporal, rela-
tivized (in terms of roles and groups), and conditional [23]. For instance, the
following norm might hold: “The authors should submit their contributions
before the submission deadline" – which can be formalized as, for example,
Oauthor(submit(paper)≤ Submission_deadline).

Furthermore, in order to check norms and act on possible violations of the
norms by the agents within an organization, abstract norms have to be translated
into actions and concepts that can be handled within such organizations. To do so,
the definition of the abstract norms are iteratively concretized into more concrete
norms, and then translated into specific rules, violations, and sanctions. Concrete
norms are related to abstract norms through a mapping function, based on the
“counts-as” operator as developed in [2]. Norms are further discussed in Section 4.

3.2.4 The Communication Structure

Communication mechanisms include both the representation of domain knowl-
edge (what we are talking about) and protocols for communication (how we are
talking). Both content and protocol have different meanings at the different levels
of abstraction. For example, while at the abstract level one might talk of dis-
seminate knowledge, such action will probably not be available to agents acting
at the implementation level, where such abstract objective will be translated into
concrete actions, such as publish proceedings. Specification of communication
content is usually realized using ontologies, which are shared conceptualizations
of the terms and predicates in a domain. Agent communication languages (ACLs)
are the usual means in MAS to describe communicative actions. ACLs are wrap-
per languages in the sense that they abstract from the content of communication.

In OperA, the communication structure describes both the content and the
language for communication. The content aspects of communication, or domain
knowledge, are specified by domain ontologies; and communication acts define
the language for communication, including the performatives and the protocols.

4 Institutions

The concept of institution – and its realization in multiagent systems – has largely
been inspired by the economic [49] and social [36, 51] perspectives, as discussed
in Section 2.3.2. In contrast, the concept of organization has drawn more on the lit-
erature of organizational structure, management, and business [47]. While the ter-
minology, emphasis, and tools are different, there is substantial overlap in goals –
indeed institutions can be seen to underpin organizations, and it is these connec-
tions that we aim to illustrate in this section.
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Institutions are closely tied to the concept of norm – in both its implicit, so-
cial manifestation and its explicit, legal form – and reiterating North [49], they
constitute “the rules of the game in a society, or more formally, the humanly de-
vised constraints that shape social interaction.” Harré and Secord [36] emphasize
the importance of roles in institutions as “that part of the act-action structure pro-
duced by the subset of the rules followed by a particular category of individual,”
and state that “Role is a normative concept, focusing on what is proper for a per-
son in a particular category to do.” These views are also echoed by Ostrom [52],
who describes institutions as “the prescriptions that humans use to organize all
forms of repetitive and structured interaction ... at all scales” and, just as impor-
tantly, observes that individuals “face choices regarding the actions and strategies
they take, leading to consequences for themselves and for others.” All of which
are underlined by the dictionary [53] definitions:

INSTITUTION An established law, custom, usage, practice, organi-
zation, or other element in the political or social life of a people; a
regulative principle or convention subservient to the needs of an or-
ganized community or the general ends of civilization.

NORM A standard or pattern of social behavior that is accepted in or
expected of a group.

This has led to the view in multiagent systems research [12, 54, 59, 74] that an
institution is a set of norms, while still encompassing the rich variety of usage
surrounding the term “norm.”

In this section, we first address the relationship between institutions and or-
ganizations, then examine how individual actions affect institutional state through
the concept of conventional generation. Consequently it becomes possible to rec-
ognize particular configurations of the institution, in order to monitor both individ-
ual and collective action, including norm violation and subsequent application of
sanction.We conclude with an illustration of one approach to normative modeling,
taking the conference scenario, using the institutional action language InstAL.

4.1 Organizations, Institutions, and Norms

Institutions facilitate and enforce the normative character of organizations by de-
scribing exchange mechanisms, specifying coordination structures, determining
interaction and communication forms within the organization, connecting orga-
nizational and individual perspectives, and, above all, making explicit the social
norms governing behavior, external to the agents.

The relationship between organizations, institutions, and norms is captured in
Figure 2.7, where the major cycle connects norms, institutions, and organizations.
We explain the connections starting from norms:
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NORMS

INSTITUTIONS
[a set of rules]

ORGANIZATIONS⎡⎢⎢⎢⎢⎣
agents

goal(s)/state(s)
performance

role(s)/action(s)
membership

⎤⎥⎥⎥⎥⎦

characterize establish

grounding

(partial)

chosen by

synthesize clone

Figure 2.7: Relating institutions, norms, and organizations.

• A particular set of norms characterize an institution, giving it a kind of
signature, which enables us to recognize a university, a bank, a club, or a
company, for example. Those norms also provide the agent with a represen-
tation of the “rules of the game” – how the agent processes those rules may
vary widely, as covered in Section 5.

• An organization is typically constructed from a recognized set of norms –
an institution – and fixes aspects of them to meet its organizational goals,
taking account of the attributes listed in the figure, such as performance,
roles, and membership. Agents then animate the organization, playing roles
and taking actions to achieve individual and organizational goals.

• The agents participating in an organization are the enablers of change, and
may choose to refine, revise, replace, or even create norms in response to
changes in requirements, changes in the environment in which the organi-
zation is situated, or simply changes in the society of agents that the organi-
zation serves. Hence we get the establishment of new norms, contributing
to the pool by which institutions and organizations are defined. Change can
arise bottom-up, initiated by the actors in an organization, where through
the application of recognized (institutional) decision-making procedures the
norms and organizational properties can be amended: this typifies incre-
mental change. It can also be imposed, possibly even externally, requiring
the wholesale revision of the normative and organizational structure. These
aspects are discussed further in Section 6.

While the above explains the major relationships between the three elements,
there are also other feedback and evolutionary processes:

• Organizations – through the actions of their participants – have some control
over which rules they choose for which game from the set of norms, even
to the extent of creating disruptive organizational models that act as “game
changers.”

• Consequently, successful (new) organizational models may be cloned and
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refined, and in due course may lead to the synthesis of new institutions.
In practice, an agent is likely to be subject to the governance of more than

one institution, certainly concurrently, perhaps even simultaneously – consider
for example a job submitted from one country to a cloud computing facility in
another and the question of which legislation governs the security of which stages
of the computation. It would be surprising, given such a scenario, if the norms
of one institution do not sometimes conflict with another: in the worst case, an
agent may take a norm-compliant action in one institution, only to violate a norm
in another, or vice versa, so that whichever action the agent takes, it may suffer
sanctions. This may seem a pathological case, but neither can it be ruled out: given
that institutions may be developed independently of one another, without knowing
how they may be combined in the future, such conflicts are inevitable and is the
reason why agents need to be able to find out the potential consequences of actions
before taking them.

4.2 Events and States

Approaches to the specification of organizational processes fall broadly into one of
two categories: state-based or event-based. The two approaches offer alternative
views of the behavior of a system, which can be abstractly characterized by a
trace comprising events and states, where an event causes the transition from one
(system) state to the next. Neither events nor states are sufficient alone: a sequence
of events does not inform us about the system state, whereas a sequence of states
does not inform us how the system got where it is.

In pursuit of the objective expressed in “On social laws for artificial agent
societies [...]” identified in [62] as “[...] laws which guarantee the successful co-
existence of multiple programs and programmers,” the set of norms comprising
an institution ought to be:

• capable of describing correct as well as incorrect action,
• obligations acquired through correct action, and
• sanctions applied for incorrect action

while maintaining a record of the institutional state.
This conceptual statement of requirements is captured in the upper part of Fig-

ure 2.8: there is a (partially) observable environment, where the actions of agents
are events (ei) that bring about changes in the environmental state, but addition-
ally some events (ei) are recognized and mapped to institutional events (e′j), which
bring about changes to the institutional state, causing the addition and deletion of
institutional facts. Hence, we can write down a simple abstract model of insti-
tutions (lower part of Figure 2.8), which highlights the trace that characterizes
the interaction of a single actor with an institution – the institutionally situated
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ENVIRONMENT
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• Let si ∈ S denote a state of a system (model)
• Let ei ∈ E denote an event that affects a system (model)
• Let τ : S×E→ 2S denote a state transformer function
• Hence, an actor interacting with a system generates a trace:

s0
e0−→ s1

e1−→ s2
e2−→ s3 . . .sn ∈ T

• And induces a corresponding institutional trace:

s′0
e′0−→ s′1

e′1−→ s′2
e′2−→ s′3 . . .sm ∈ T

Figure 2.8: An event-based view of institutions.

agent – and the (institutional) state transformer function that takes a set of insti-
tutional facts and an event and produces the consequent institutional state. If the
event is of no relevance for the institution, the institutional state does not change.
If it is relevant, the state does change. For example, the program chair may only
close submission if it was previously opened. The notion of interpreting an action
in the physical world as an institutional action is called conventional generation,
deriving from speech acts [60], action theory [32], and the unification of these
ideas [18], as reflected in the upper part of Figure 2.8.

The attraction of an event-based approach is that it offers a fine-grained view
of the action, enabling a (relatively) forensic focus on details and ordering that
may be critical to system state evolution. In contrast, the attraction of a situation-
based approach is that it abstracts away from the detail of individual events and
orderings (that may be irrelevant), enabling a focus on significant phases in the
evolution of the system state. Both are feasible within a common formal and
computational framework, as described in [43].

The point of such a formalization, from an organizational modeling perspec-
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tive, is to support the construction of computational models of dynamic systems,
so that it becomes possible to ask (of a model) not only “where are we?” but also
“how did we get here?” – along with the subsidiary questions of “where can we
go?” and “how do we get there?” With this formal context in place, and corre-
sponding computational mechanisms, it becomes possible to make the connection
between the formalization of events and states and how multiagent systems may
use such models.

4.3 Obligations, Permission, and Power

In this section we examine (institutional) constraints on action and the expression
of those constraints in the form of: (i) obligations, which denote an obligation
on some principal to bring about a particular (institutional) state of affairs, after
which the obligation is discharged (ii) permissions, which denote whether an ac-
tion is correct for some principal in some state of the institution, and (iii) powers,
following [40], which denote whether an action by some principal “counts-as”
some institutional action, hence bringing about a new institutional state. To put
this in terms of Figure 2.8, attention is focused on what happens on the dashed
lines between environment and institution.

Obligations are the consequence of some action, but obligations are institu-
tional, not environmental artifacts, and so first the action must be recognized as
relevant to the institution (ei → e′j) in the current state, and only then, if the action
is permitted, might an obligation be added to the institutional facts. A subsequent
action (mapped to an institutional event) may then bring about a state of affairs
that satisfies the obligation, so that it may be removed from the institutional state.
In the case of the conference scenario, a reviewer acquires the obligation to deliver
a review, when he or she is assigned an article. The obligation is discharged when
the review is submitted. The obligation may also be contingent on another event,
such as when the program chair says reviews are due.

Permissions are largely self-explanatory. If an action is not permitted for some
principal in some state, then the action is in violation of the institution. Thus, a
permission is also an institutional artifact. Sometimes violations matter, such as
the program chair closing submission before the announced deadline; other times
they can be ignored, if the effect is benign.

Power is an important property in modeling, because it determines whether
an action has any institutional effect. To be more precise, it determines whether
an institutional action has an institutional effect, because although power can be
granted and rescinded with respect to an institutional action, such operations are
meaningless for environmental actions. Thus, as with obligations, it is first neces-
sary to recognize whether the action is relevant in the current state, then determine
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if the institutional action is permitted and empowered for that principal in the cur-
rent state. Power is represented in the institutional state, associating an action
and some principal, and may be added and removed consequent to institutional
actions. In the conference scenario, the program chair is empowered to open
and close submission, for example, whereas a program committee member is not.
But the empowerment to close submission may only be added after submission is
opened.

4.4 Example of Institutional Modeling: InstAL

We start this section by giving a brief introduction to the formal model (see Fig-
ure 2.9) behind InstAL, explaining how it relates to the principles of institutions
covered in Sections 4.2 and 4.3. This is followed by an overview of the InstAL
language, through annotated examples of fragments of the conference scenario
model. InstAL is translated into a computational model based on Answer Set
Programming [30].

4.4.1 The Formal Model

Data in the formal model comprises events of various kinds (exogenous and in-
stitutional) and fluents,1 also of various kinds (power, permission, obligation),
corresponding to the concepts discussed above, from which the institutional state
is constituted.

The transformer function comes in two parts: the generation relation, denoted
G, and the consequence relation C, again reflecting the concepts discussed above
and the consequences arising from their interaction. G is responsible for recogniz-
ing relevant exogenous events and turning them into institutional events, but also
ensuring that all the institutional events that ensue from an institutional event are
generated. C is responsible for the addition and deletion of fluents in the institu-
tional state, arising from all the events identified by G. Hence, τ (from Figure 2.8)
is the application of C to the events arising from the transitive closure of G. For a
detailed description of the computational model see [13].

4.4.2 The Conference Scenario

Given a scenario, the task is to translate the natural language description, and other
expressions of the requirements, into a specification. The start of the process is
very similar to that employed in object-oriented modeling: analyze the description
of physical world or exogenous events that are of significance to the conference

1A term whose presence in the institutional state indicates it is true, and absence implies falsity.
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Normative system N := 〈E,F,G,C,Δ〉
Events, comprising exogenous,
(normative) actions and (normative)
violations

E= Eex∪Einst with Einst = Eact ∪Eviol

Normative facts (fluents): power,
permission, obligations, and
domain-specific facts

F =W∪P∪O∪D

Generation relation: maps state and
event to a set of events

G : X×E→ 2Einst

State formula: the set of positive and
negative fluents comprising the
current normative state

X= 2F∪¬F

Consequence relation: maps state and
event to a pair (additions, deletions) of
sets of fluents

C : X×E→ 2F×2F where
C(X ,e) = (C↑(ϕ,e),C↓(ϕ,e)) where

(i) C↑(ϕ,e) initiates a fluent
(ii) C↓(ϕ,e) terminates a fluent

The initial set of fluents Δ

Figure 2.9: An event-based formal model of institutions.

institution and subsequently to institutional events. For example, there is the open-
ing of submission, the closing, the start of reviewing, the end of reviewing, and so
forth. For the sake of the example, we assume the following declarations:

• Person: frank, gerhard, julian, virginia
• Paper: paper01
• Review: review02

where Person, Paper, and Review are types, as shown in Figure 2.10.

All of the physical world events bring about institutional events and begin to
lay the foundations of the model. Once such a set of events has been identified,
two issues become apparent: (i) that order matters: opening comes before closing,
submission comes before review, etc., and (ii) that the identity of actors matters:
actors play roles and only certain roles should cause certain events. For example,
only the conference chair can declare that the conference is open for submissions;
and likewise, paper assignments can only be made by the chair, and then only
subject to certain conditions, such as the reviewer not being a listed author of the
paper. Institutions make explicit this separation of concerns and enable reasoning
about such matters. The keys to dealing with the issues described above are the
twin concepts of permission and power. Physical world events are always em-
powered, but within the institution, power can be given and taken away in order
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type Person; These are some of the objects that appear in
the model. This is a simple monomorphic
type system

type Paper;

static isReviewer(Person);
Associates a Person with a particular rolestatic isChair(Person);

static isAuthor(Person);
static listedAuthor(Paper,Person); Associates a Person and a Paper
static isInEnglish(Paper);

initially isChair(frank),
Uses the above to set up some roles

isReviewer(gerhard);

exogenous event submitPaper(Paper);

Some of the events that identify key transition
points in the scenario

exogenous event openSubmission(Person);
exogenous event closeSubmission(Person);
exogenous event openReview(Person);
exogenous event sendReview(Paper,Person,Review);

Figure 2.10: Conference types, predicates, and events.

exogenous event
openSubmission(Person);

inst event iopenSubmission;
openSubmission(A) generates

External event is recognized, generating insti-
tutional event, iff A is the PC chair. This is
part of the G relation

iopenSubmission(A)
if isChair(A);

iopenSubmission(A) initiates

The institutional event causes the addition of
some powers and permissions to the institu-
tional state so that papers can be submitted
and submission can be closed. This is part of
the C relation.

perm(icloseSubmission(A)),
pow(icloseSubmission(A));

iopenSubmission(A) terminates
...and the deletion of powers and permissions
associated with opening submission. This is
also part of the C relation.pow(iopenSubmission(A)),

perm(iopenSubmission(A)),

Figure 2.11: Institutional events changing institutional state.

to ensure that events have (or not) their intended institutional consequences; thus,
for example, closing submission might only be empowered after the opening of
submission. The PC chair can close submission because he or she has the permis-
sion, but the PC chair only has the power if sufficient time has elapsed since the
opening, and he or she may only do it (say) once, as shown by the fragment in
Figure 2.11.

Obligations are used to express that certain events have to take place, e.g.,
the review requires that a review is delivered before the review period closes. To
emphasize that the evolution of the model state is controlled by external events, no
dates and the like are encoded in the model. Instead we use exogenous events that
act as deadlines, i.e., the obligation has to be satisfied before the deadline occurs.
This deadline event can be generated by an agent acting as a timekeeper, as above,
where the program chair declares the review period closed, so any reviews not sent
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assignReviewer(P,R,A) generates
iassignReviewer(P,R)
if isChair(A),

The institutional event is only generated if the
principal is the PC chair, if R is on the PC
and not an author of the paper.

isReviewer(R),
not listedAuthor(P,R);

iassignReviewer(P,R) initiates
obl(review(P,R,Report)

The assignment establishes an obligation for
reviewer R to deliver the review by the close
of the review period, or the violation event
badRev occurs.

reviewClosed,
badRev(R)),

perm(isendReview(P,R,Report)),
Review delivery now permitted and empow-
ered

pow(isendReview(P,R,Report));

Figure 2.12: Reviewer assignment.

trigger badRev violations (see Figure 2.12).
Dedicated violation events can be introduced to indicate not only that an event

has taken place without permission but also that an obligation was not fulfilled or
that an undesirable event has taken place, given the current state of affairs. The
domain fluents are used to describe the non-institutional state of the world. They
keep track of what has happened in the system, such as a paper was submitted or
a reviewer was assigned, and they record details about a participant.

An InstAL institutional specification can be used in two ways: (i) to explore
the static properties of a set of normative rules, such as reachability of certain
states or the existence of traces containing particular events, using synthetic se-
quence of external events, and (ii) to explore the emergent properties of those
rules, in conjunction with an external source of events, which could be derived
from the physical world, or a simulation, or some combination.

The static properties are expressed through the generation of answer sets cor-
responding to all the possible traces that could occur, subject to the ordering con-
straints determined by external events. An impression of how this can be visu-
alized appears in Figure 2.13. The time instants are denoted i j−1...im+1, corre-
sponding not to real time, but to the occurrence of events of significance to the
institutional model. The institutional state corresponding to a time instant appears
below it, with additions arising from the last exogenous event in bold typeface.
The arc between each instant is labeled with the exogenous event (at the top) that
caused the transition, followed by any consequent events, as determined by the
transitive closure of G. The fragment here illustrates the registration of a paper, its
submission, close of submission, reviewer assignment, and review submission.

The emergent properties of an institution are best explored initially by cou-
pling the institutional model with a simulation, and most likely an agent-based
simulation, since this permits experimentation with diverse individual behaviors
through a range of population mixes and subsequent statistical analysis for the
significance of effects observed. For a detailed description of the process of ex-
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ij−1 ij ik

il im im+1

registerPaper
(paper01,virginia)

iregisterPaper
(paper01, virginia)

submitPaper
(paper01,virginia)

isubmitPaper
(paper01, virginia)

closeSubmission(frank)
icloseSubmission(frank)

assignReviewer
(paper01, gerhard, frank)

iassignReviewer
(paper01, gerhard)

sendReview
(paper01, gerhard, review02)

isendReview
(paper01, gerhard, review02)

isChair(frank)
isReviewer(gerhard)
submissionOpen
perm(icloseSubmission(frank))
isAuthor(virginia)
isAuthor(julian)
listedAuthor(paper01,virginia)
listedAuthor(paper01, julian)
perm(sendPaper(virginia))
perm(sendPaper(julian))
pow(sendPaper(virginia))
pow(sendPaper(julian))

isChair(frank)
isReviewer(gerhard)
submissionOpen
perm(icloseSubmission(frank))
isAuthor(virginia)
isAuthor(julian)
listedAuthor(paper01, virginia)
listedAuthor(paper01, julian)
perm(sendPaper(virginia))
perm(sendPaper(julian))
pow(sendPaper(virginia))
pow(sendPaper(julian))
isInEnglish(paper01)
obl(notify(virginia),

icloseSubmission,
badChair)

obl(notify(julian),
icloseSubmission,
badChair)

isChair(frank)
isReviewer(gerhard)
isAuthor(virginia)
isAuthor(julian)
listedAuthor(paper01, virginia)
listedAuthor(paper01, julian)
isInEnglish(paper01)
submissionClosed

isChair(frank)
isReviewer(gerhard)
isAuthor(virginia)
isAuthor(julian)
listedAuthor(paper01, virginia)
listedAuthor(paper01, julian)
reviewOpen
perm(icloseReview(frank))
pow(icloseReview(frank))
obl(isendReview(paper01, gerhard,Review),

icloseReview,
badRev)

Figure 2.13: A visualization of a possible answer set trace.

amination of emergent properties and a fully-worked case study, see [6].

5 Agents in Organizations

An important challenge in agent organizations is the specification of mechanisms
through which agents can evaluate the characteristics and objectives of organi-
zational roles, in order to decide about participation. In particular, an agent has
to reason about whether it wants to play a role and whether it has the capabili-
ties to behave as the role requires [4]. This is a complex issue and an open area
of research. To counter this problem, in many situations, agents are designed
from scratch so that their behavior complies with that of the organization. In
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such systems, the organizational model is often implicit in the specification of the
agents. However, comprehensive approaches to organizations cannot assume that
all agents are known at design time, but require organization-aware agents, that
is, agents that are able to reason about their own objectives and desires and thus
decide and negotiate their participation in an organization [71].

By specifying the way interactions can occur in an environment, multiagent
organizations are able to specify global organizational goals independently of the
design of the agents (cf. Section 2.4). A role description, as provided by an organi-
zation model, identifies a “position” to be filled by a player [50], which contributes
to some part of the organizational objectives and interaction rules. By consider-
ing role descriptions, global goals can be verified independently of the agents that
will act in the system. From the perspective of the organization it often does not
matter whether agent A or agent B takes a role, as long as they both have sufficient
capabilities. However, the ways in which each agent, A or B, will enact the role
will probably differ, leading to different global results. This is because agents are
assumed to have their own goals, which may be different from those of the orga-
nization, and will use their own reasoning capabilities to decide on the enactment
of one or another organizational role, and to determine which protocol available
to them is the most appropriate to achieve the objectives of the organizational
positions assigned to them. The ability to dynamically bind different players to
roles gives the organization a degree of adaptability in meeting changing goals
and environments [57].

Existing approaches for programming role enactment focus mainly on the pro-
cess of role enactment through communication with the organization [5], and on
the result of role enactment (for example, the adoption of the objectives of a role
as agents’ own goals) [16, 17]. In [16], compatibility between agent goals and
those of the role is investigated and taken as a prerequisite for enacting the role.
Moreover, these approaches assume that (1) organizational specification is explicit
and available to the agents, and (2) an agent is able to interpret that specification
and reason about whether it has the required capabilities to play a role in order to
decide on participating. However, given the heterogeneity of agents in open envi-
ronments, such level of organization-awareness cannot be assumed for all agents.

Role-enacting agents must be able to perform the assigned role(s). These ca-
pabilities include [14]:

• the execution of the functions defined by the role or imposed by role rela-
tionships, including the ability to use resources available to the role.

• the ability to communicate, as a proxy for its role, with players of other
roles.

• the ability to reason about which of its plans and activities can be used to
achieve role objectives.
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A possible way to deal with these issues, as proposed in [72], is to equip agents
with an interface to the organization (called a governor). This interface prevents
any action not allowed by the role definition and therefore ensures organizational
norms are met. However, it is not flexible enough to incorporate different agents,
enacting styles, capabilities, and requirements. It actually makes the actual agent
“invisible" to the society and only its enactment of the role behavior is apparent
in the organization. Moreover, the interface determines exactly which actions are
allowed, while differences between agents are invisible to the organization.

From the perspective of an agent, the role description provides a more or less
abstract definition of the organizational knowledge and skills required to perform
the role adequately. Depending on the level of detail of an organization specifi-
cation, more or less interpretation is required from agents. Detailed organization
models support agent designers to develop agents whose behavior complies with
the behavior described by the role(s) they will take up in the society. However,
such a solution is not applicable to open systems, where it is assumed that hetero-
geneous agents are designed to run independently of the organization.

From the perspective of the organization, the concerns are the effect of the
attitudes of agents toward the performance of roles. Agent literature discusses
extensively different types of social attitudes of agents: selfish, altruistic, honest,
dishonest, etc. [11, 21, 45, 48, 64]. Different agents result in different role perfor-
mances, because the way an agent will plan its goals, which is dependent on its
social attitude, influences the realization of its role objectives and the fulfillment
of the role norms. For instance, some agents will only attempt to achieve the goals
of their adopted roles and forget their own private goals, while others will only at-
tempt to achieve the goals of the role after all their own goals have been satisfied.
Furthermore, the relations between agent plans and role objectives, and of agent
goals and role sub-objectives must be considered, as well as the influence of the
role norms on the behavior of agents.

The participation of agents in an organization assumes that there is some ben-
efit to be gained, preferably both by the agent and by the organization. Depending
on how the agent will enact its role(s), different behaviours can be distinguished
[16]. Agents that follow a social enactment strategy will attempt first to realize
their organizational objectives (obtained from the roles they enact) before it will
consider its own goals. In selfish enactment strategies, the situation is reversed.
Many other situations are also possible. In the same way, the effect of agent plans
on role objectives, and of role objectives on agent goals leads to different types
of role enactment strategies [64], in which either the role or the individual plans
can be enriched. Organizational norms also affect the behavior of agents in the
organization, as those can limit or alter the achievement of individual goals.

In summary, most agent organization models assume that the effective engi-
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neering of MAS must be based on the independence between organizational mod-
els specifying collective structures and agent architectures specifying individuals.
However, in order to allow agents to join organizations, one must be able to spec-
ify what is expected of those agents, and engage in a process of admission during
which the requirements and aims of both the organizations and the agent are eval-
uated. Assuming that agents are capable of reasoning about role enactment, we
discussed what the consequences are for the organization of different enactment
styles.

6 Evolution of Organizations

One of the main reasons for having organizations is to achieve stability. However,
organizations and their environments are never static. They change, disappear, or
grow. Agents can migrate, organizational objectives can change, or the environ-
ment can evolve, all of which require adaptation of organizations. Reorganization
is the response to two different stimuli: a reaction to (local) changes in the envi-
ronment, and a means to implement modified overall intentions or strategies.

Multiagent organization models must therefore not only enable the adaptation
of individual agents, but also be able to adapt organizations’ structures dynami-
cally in response to changes in the environment. Depending on the type of organi-
zation and on the perceived impact of the changes in the environment, adaptation
can be achieved by behavioral changes at the agent level, modification of interac-
tion agreements, or the adoption of a new social structure.

Organizational evolution is the process by which organizations change and
adapt over time to meet new requirements and changes in the deployment envi-
ronment. There is a growing recognition that in organizations, a combination of
regulation and autonomy is often necessary. Most human organizations follow
ordered structures and stated goals, but develop an informal structure that reflects
the spontaneous efforts of individuals and subgroups to control and adapt to the
environment. The autonomy to develop informal structures is indispensable to
the process of organizational control and stability [61]. Also in the area of MAS,
Wellman noted in 1993 that "combining individual rationality with laws of so-
cial interaction provides perhaps the most natural approach to [...] distributed
computations" [77]. However, although each change may itself be justified, of-
ten, emergent patterns became the norm, and with time, part of the structures and
rules fixed in the organization. Figure 2.14 shows this cycle, common in human
interactions, moving from explicit rules to implicit practical structures, and back.
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implicit
organization

explicit
organization

evolutionrevolution

Figure 2.14: Implicit and explicit organizations.

6.1 Organizational Adaptation

In management and organization theory, most studies aim at understanding and
manipulating the performance, or behavior, of an organization in its environment.
Performance of the organization can be seen as the measure by which its objec-
tives are achieved at a certain moment. Because environments evolve, perfor-
mance will change. Many organizational studies are therefore concerned with the
evaluation of performance, identifying triggers for change and determining the
influence of environmental change on the organizational performance, and indi-
cating directions to improve performance.

Reorganization is in a sense at odds with a main objective of creating orga-
nizations, that of achieving stability. The issue is then to ascertain under which
conditions it is better to reorganize, knowing that organizational stability will be
(momentarily) diminished, and when to maintain stability [22]. In order to an-
swer this question, it is necessary to measure the utility of an organization. Re-
organization is desirable if it leads to increased utility of the system. That is, the
reorganized organization should perform better in some sense than the original
situation. In general terms, organizational utility can be defined as the measure in
which organizational objectives are met. Moreover, organizational utility depends
also on the cost of a possible reorganization. That is, any function to measure or-
ganization utility must take into account both the success of a given structure, and
the cost of any change needed to achieve that structure from the current situation
[31].

So and Durfee state that task-environmental factors, together with the struc-
ture and behavior of the organization, influence the performance of the organi-
zation [67]. That is, the way agents, tasks, and decision-making capabilities are
organized influences the performance of the system. In dynamic environments,
it is therefore necessary to enable an organization to adapt to change in the task-
environment. Organization theory research has also shown that when an orga-
nization is able to adapt its structure to environmental changes, its performance
will improve [10]. Formal models for organizations should therefore be able to
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represent and analyze organizational change.
The concept of dynamic adaptation refers to modifications in the structure

and behavior of a system, such as adding, removing, or substituting components,
done while the system is running and without bringing it down [69]. Dynamic
adaptation demands that systems can evaluate their own “health” (i.e., success and
other utility parameters) and take action to preserve or recover it by performing
suitable integration and reconfiguration actions. Reorganization of organizations
should therefore describe both situations in which the operational behavior of the
organization changes, due to admission or departure of agents, as well as situations
in which the social structure of the society changes, that is, roles, relationships,
norms, or interactions change.

6.2 Emergent Organizations

Much research on multiagent organizations takes a design perspective in the sense
that an external entity or a small group of decision makers within a larger com-
munity determines the nature, structure, and objectives of the organization based
on requirements from a set of stakeholders. In contrast, bottom-up, or self-
organization, which is suitable in situations where there is a complex interaction
between resources and stakeholders, tends to lead to quite different – and novel –
solutions.

The kind of scenarios that have received the most attention as part of the
study of bottom-up organizations are those that feature so-called common-pool
resources (CPRs), often known as the “tragedy of the commons” [35]. Several il-
lustrative cases, and the innovative solutions people have developed, are analyzed
by Ostrom [51] and lead to the topic of this section, the institutional analysis
and development framework (IAD) [52]. In contrast to conventional approaches
to the analysis of agent interaction, which tend to focus on game-theoretic mod-
els or utility-driven decision making in an isolated context, IAD embraces the
complexity of real-world situations in which there are both many variables and
contexts within contexts. The starting point for IAD is the action arena, which
comprises the participants and a particular action situation. Thus an arena identi-
fies some physical or conceptual space that situates the action, while an episode
for analysis is populated by certain players and circumstances that are determined
by (identified) exogenous variables. The interactions of the players are subject to
rules – some of which may be known, others yet to be discovered – leading to
outcomes, which may then be evaluated to assess the performance of the system.
As Ostrom [52] makes clear, her subjects of study are human solutions to human
organizational problems and the work is firmly rooted in the social sciences. We
draw attention to it here for the following reasons: (i) the methodology of IAD
provides useful lessons and a starting place when thinking about unconventional
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solutions for “messy” common-pool resource-like problems in both pure agent
and human-agent systems, (ii) because the solutions emerge from the desires of
the participants, rather than being imposed externally, and because they typically
exhibit high stability and resilience, it is interesting to see how these ideas may
contribute to the largely unexplored subject of emergent normative frameworks
for virtual environments, and (iii) the approach emphasizes the “discovery” of op-
posite solutions that take a range of factors into account and discourages the re-use
of off-the-shelf solutions.

7 Conclusions

This chapter gives an organization-oriented perspective on multiagent systems.
Assuming MAS to be an organization, or society of agents, makes it possible to
describe the set of agents interacting to coordinate their behavior as well as the
cooperation requirements that can lead to the achievement of some collective goal
[28]. The stance taken in this chapter is that the conceptualization of multiagent
systems is better served by an explicit separation of concerns about organizational
and individual issues. Whereas the individual aspect should concern the mental
states and capabilities of an agent, organizational issues can better describe ac-
tivities and constraints that characterize the externally observable behavior of a
whole agent population. This chapter further presents the two most common per-
spectives on organization, that of organization as structure (cf. Section 3) and that
of organization as institution (cf. Section 4).

An important ongoing research issue is that of organization-aware agents, as
discussed in Section 5 [70]. Agents who want to enter and play roles in an orga-
nization are expected to understand and reason about the organizational specifica-
tion, if they are to operate effectively and flexibly in the organization. The broader
aim of this line of research is the development of languages and techniques for
programming organization-aware agents. Such agents should be able to reason
about role enactment, about whether they want to play a role and whether they
have the capabilities to behave as the role requires.

Another open research issue concerns the interaction between human and ar-
tificial agents in organizations. What happens when human and artificial agents
interact in organizations? Such cooperation is increasingly happening, mostly in
situations where reaction speed is important (such as emergency response), where
knowledge is diffuse, where a high level of connectivity is necessary, or where
operation in constantly changing environments is needed. As yet, the reach and
consequences of coordinated activity between people and artificial agents working
in close and continuous interaction is not well understood. Planning technologies
for intelligent systems often take an autonomy-centered approach, with represen-
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tations, mechanisms, and algorithms that have been designed to accept a set of
goals, and to generate and execute a complete plan in the most efficient and sound
fashion possible. The teamwork-centered autonomy approach takes as a premise
that people are working in parallel alongside one or more autonomous systems,
and hence adopts the stance that the processes of understanding, problem solving,
and task execution are necessarily incremental, subject to negotiation, and forever
tentative [7]. That is, autonomy in teams requires close alignment to the current
work of other team members and the perception of the team’s goals.

Another major open issue is that of organizational adaptation and evolution.
Reorganization is needed in order to enable systems to enforce or adapt to changes
in the environment. This issue has been discussed by many researchers in both or-
ganizational theory and distributed systems, resulting mostly in domain-oriented
empiric solutions. The lack, in most cases, of a formal basis makes it difficult to
develop theories about reorganization, prevents the comparison of approaches and
results, and makes it difficult to adapt models to other domains or situations.

The view of agent organizations presented in this chapter posits that agent
organizations demand (i) the integration of organizational and individual perspec-
tives, (ii) the dynamic adaptation of models to organizational and environmental
changes, and (iii) rely significantly on the notions of openness and heterogene-
ity in MAS. Practical applications of agents to organizational modeling are being
widely developed but formal theories are needed to describe interaction and or-
ganizational structure. Furthermore, it is necessary to get a closer look at the
applicability of insights and theories from organization sciences to the develop-
ment of agent organizations. There is a need for a theoretic model to describe
organizations and their environments that enables the formal analysis of the fit
between organizational design and environment characteristics. This enables the
a priori comparison of designs and their consequences and therefore supports the
decision-making process on the choice of design.
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8 Exercises

1. Level 1 You have been asked to design an organization model for an on-
line bookstore. The system must be able to handle both selling and buying
books by individuals as well as acting as front-end for a bookstore. Take
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into account the interests and requirements of the different stakeholders.

(a) What are the organizational roles?
(b) What objectives can you identify for each role?
(c) What are their dependencies?
(d) Design a possible interaction structure for this organization. Are there

any scenes that can be active at the same time? Which interaction
scenes must follow from others?

(e) What are the roles that can participate in each scene?

2. Level 1 Extend the abstract model of agent, institutions, and environments
to handle:

(a) Multiple agents.
(b) Multiple institutions.
(c) Multiple agents and multiple institutions.

3. Level 2 Design fragments of an institution in InstAL,2 or an organization in
OperA, to control “rover” agents to explore a simulated planetary environ-
ment, in order to locate resources, and then return them to a base. Assume
a toroidal planet to avoid edge cases. Initial conditions are that: (a) rover
agents start at a base whose location is established at random, (b) each agent
has a limited amount of energy, and (c) resources are scattered throughout
the environment. Varying degrees of difficulty are possible as set out below,
but in each case the objective is to return as many resources to the base as
possible. Agents that run out of energy can no longer function. When all
agents run out of energy, or all resources have been collected, the scenario
is complete. Ordered by difficulty, the scenarios are:

(a) A single agent with one resource location. High energy limit.
(b) A single agent with several resource locations. High energy limit.
(c) Three agents with many available resources. Medium energy limit.
(d) Three agents with sparse resources. Medium energy limit.
(e) Ten agents with sparse resources. Low energy limit.

4. Level 2 Develop additional fragments of the InstAL model of the confer-
ence scenario to demonstrate some (or all!) of the following additional fea-
tures, such as:

(a) Handle papers without reviews after the end of the review period.
(b) Extend the review conflict mechanism to account for colleagues.
(c) Extend the review mechanism with reviewer bidding preferences.

2More information and tools can be downloaded from http://agents.cs.bath.ac
.uk/instal.

http://agents.cs.bath.ac
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(d) Extend the review mechanism to support multiple reviews of a paper.
(e) Handle the processing of decisions: this will require a wider decision

scale than just accept/reject.

5. Level 3 Download and install the OperettA modeling environment available
at http://www.operettatool.nl/. Implement the solution of the
exercise above in this environment.

(a) Execute the verification process by right clicking the OM element
in the tree view and selecting validate. (i) Do you find any error?
(ii) What do the warnings mean?

(b) For the Book Selling scene, define a Book_Selling landmark pattern.
(i) What are the roles that can participate in the scene? (ii) How does
the scene work? (iii) Can a buyer buy more than one book within the
scene? (iv) Can an order be canceled after the payment is done? What
happens then?

(c) Now modify the organization to include the possibility of selling
a book by auction. What extra roles, objectives, dependencies, and
scenes are needed? Run the verification process to check the changes.

(d) Define norms of behavior for this auction process.

6. Level 4 Institutional and organizational change is a complicated exercise.
There are mechanisms for incremental change, using predefined collec-
tive decision-making procedures and argumentation to propose and enact
changes to normative frameworks, which can be imported from and formal-
ized from the physical world. But externally imposed change, where there
is significant change in norms and structure, to the extent that a previously
compliant act may not be non-compliant, is largely unconsidered. A par-
ticularly challenging issue is the identification and validation of appropriate
transitional arrangements to avoid a sequence of actions that start compliant
but end as violations.

7. Level 4 Game theory and normative frameworks appear incompatible: one
encourages utility maximization, assuming such a function can be defined,
while the other encourages the satisfaction of individual and collective goals
through obligations and prohibitions. The question is, to what extent can
these models be unified, or how can one approach be expressed, or even
synthesized, from the other, allowing the tools that have been developed for
each to be used to analyze the other?

8. Level 4 An agent may simultaneously be subject to the governance of more
than one set of institutional rules, and given that one institution is most
likely not designed to take the other into account, this will inevitably lead

http://www.operettatool.nl/
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to conflict at some point. Three levels of compatibility appear to be possi-
ble: (i) compatible, where no actions lead to violations in either institution
(ii) partially compatible, where some actions lead to violations and others do
not, and (iii) incompatible, where a compliant action in one institution leads
to violation in the other or vice versa, or even and vice versa. This raises
numerous questions, such as: How to analyze institutions for all possible
traces with respect to compatibility? Are there traces that make partially
compatible institutions compatible in practice? Are there rule changes that
can make institutions compatible? How do those changes affect the abstract
norms the institutions are designed to maintain?
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Agent Communication

Amit K. Chopra and Munindar P. Singh

1 Introduction

Multiagent systems are distributed systems. Engineering a multiagent system
means rigorously specifying the communications among the agents by way of
interaction protocols. What makes specifying the protocols for agent interaction
especially interesting and challenging is that agents are autonomous and heteroge-
neous entities. These properties of agents have profound implications on the na-
ture of protocol specifications. As we shall see, protocols for multiagent systems
turn out to be fundamentally different from those for other kinds of distributed
systems such as computer networks and distributed databases.

We conceptualize all distributed systems in architectural terms – as consist-
ing of components and connectors between the components. The components of
the Internet are all nodes with IP addresses. The main connector is the Internet
protocol, which routes packets between the nodes. The components of the web
are the clients (such as browsers) and servers and the connector is the HTTP pro-
tocol. The components in a distributed database are the client databases and the
coordinator and a connector is the two-phase commit protocol. We can discern a
pattern here: the connectors are nothing but the interaction protocols among the
components. Further, we can associate protocols with the application it facilitates.
For example, the Internet protocol facilitates routing; HTTP facilitates access to
a distributed database of resources; and the two-phase commit protocol facilitates
distributed transactions.
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The same applies for multiagent systems except that the components are au-
tonomous and heterogeneous agents, and applications are typically higher-level –
for example, auctions, banking, shipping, and so on. Each application would have
its own set of requirements and therefore we would normally find different proto-
cols for each application. Below, the term traditional distributed systems refers to
non-multiagent distributed systems such as the Internet, the web, and so on.

The importance of protocols is not lost upon industry. Communities of prac-
tice are increasingly interested in specifying standard protocols for their respective
domains. RosettaNet [40] (e-business), TWIST [53] (foreign exchange transac-
tions), GDSN [33] (supply chains), and HITSP [34] and HL7 [31] (health care)
are just a few examples.

Our objectives in this chapter are to help the reader develop a clear sense of
the conceptual underpinnings of agent communication and to help the reader learn
to apply the concepts to the extent possible using available software. The chapter
is broadly structured according to the following sub-objectives.

Requirements for protocol specifications The inherently open nature of multi-
agent systems places certain requirements on protocol specifications. Meet-
ing these requirements is the key to designing good protocols.

Protocol specification approaches There are many diverse approaches for spec-
ifying protocols. We evaluate some approaches widely practiced in soft-
ware engineering and some historically significant ones from artificial in-
telligence. We also study an approach that is particularly promising.

Directions in agent communication research The last fifteen years have seen
some exciting developments in agent communication. However, many prac-
tical concerns remain to be addressed. We discuss these briefly.

1.1 Autonomy and Its Implications

Protocols are modular, potentially reusable specifications of interactions between
two or more components. The interactions are specified in terms of the mes-
sages the components exchange. To promote reusability, a protocol is specified
abstractly with reference to the roles that the interacting components may adopt.
A protocol is designed with a certain application in mind. An enactment refers to
an execution of the protocol by the components.

In distributed systems, the chief concern is how can distributed components
work together effectively? In other words, how can we ensure their interoperation?
In engineering terms, protocols are the key to interoperation. The idea is that as
long as components are individually conformant, that is, follow their respective
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roles in the protocol, they will be able to work together no matter how they are
implemented. Interoperation makes great engineering sense because it means that
the components are loosely coupled with each other; that is, we can potentially
replace a component by another conformant one and the modified system would
continue to function. You would have noticed that web browsers and servers often
advertise the versions of the HTTP standard with which they are conformant.

The same concepts and concerns apply to multiagent systems. However,
agents are not ordinary components. They are components that are autonomous
and heterogeneous. Below, we discuss exactly what we mean by these terms, and
how autonomy and heterogeneity naturally lead to requirements for agent interac-
tion protocols that go beyond protocols for traditional distributed systems.

Each agent is an autonomous entity in the sense that it itself is a domain of
control: other agents have no direct control over its actions (including its com-
munications). For instance, consider online auctions as they are conducted on
websites such as eBay. Sellers, bidders, and auctioneers are all agents, and none
of them exercises any control over the others. If an auctioneer had control over
bidders, then (if it chose to) it could force any of the bidders to bid any amount
by simply invoking the appropriate method. Such a setting would lack any resem-
blance to real life.

There is a subtle tension between the idea of a protocol and autonomy. With
protocols, we seek to somehow constrain the interaction among agents so that
they would be interoperable. Autonomy means that the agents are free to interact
as they please (more precisely, each agent acts according to the rationale of its
principal). From this observation follows our first requirement. We must design
protocols so that they do not overconstrain an agent’s interactions.

In traditional distributed systems, interoperation is achieved via low-level co-
ordination. The protocols there would specify the flow of messages between the
participants. In the case of the two-phase commit protocol, the controller co-
ordinates the commit outcome of a distributed transaction. In the first phase, a
controller component collects votes from individual databases about whether they
are each ready to commit their respective subtransactions. If they unanimously re-
spond positively, the controller, in the second phase, instructs each to commit its
respective subtransaction; otherwise, it instructs each to abort its subtransaction.

The above discussion of autonomy implies the following.

The irrelevance of intelligence Contrast the notion of agent autonomy discussed
above with the one where autonomy is interpreted as the ability of an agent
to perform high-level reasoning (intelligent agents) or as the degree to which
an agent can operate without the supervision of its principal (autonomic
agents). Consider that you want to automate your purchases on the web.
On the one hand, you can design a simple bidding agent that takes input
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from you about the things you want, the maximum prices you are willing
to pay, and the reputation thresholds of the sellers and auctioneers you are
willing to deal with. On the other hand, you can design a sophisticated
bidding agent that mines your communications to discover the items you
desire and what you are willing to pay for them and can figure out on its
own which auctions to bid in on your behalf. From the agent communication
perspective, however, the latter’s sophistication does not matter – they are
both autonomous agents.

Logical versus physical distribution Because of their autonomy, agents are the
logical units of distribution: they can neither be aggregated nor decomposed
into processes. Whenever an application involves two or more agents, there
simply is no recourse but to consider their interactions. Constructs such
as processes, by contrast, are physical units of distribution. The choice of
whether an application is implemented as a single process or multiple ones
is often driven by physical considerations such as geographical distribution,
throughput, redundancy, number of available processors and cores, and so
on. An agent itself may be implemented via multiple physical units of dis-
tribution; that choice, however, is immaterial from a multiagent systems
perspective.

Heterogeneity refers to the diversity of agent implementations. The software
engineering approach for accommodating heterogeneity is to make public the in-
terdependencies among the components. A component can then be implemented
based on what it depends on other components for (what it assumes) and what
others depend on it for (what it guarantees) without concern for how the others
are implemented. The same approach applies to agents. The specification of the
interdependencies is essentially a protocol.

In traditional distributed systems, to accommodate heterogeneity, it is enough
that protocols specify the schemas of the messages exchanged as well as their
legal flows, that is, their ordering and occurrence. However, such a specification is
inadequate for multiagent systems, wherein accommodating heterogeneity entails
also specifying the semantics of the interaction. As an example, consider the finite
state machine in Figure 3.1. It specifies the part of a purchase protocol that deals
with making offers. This protocol involves two roles: buyer (b) and seller (s). The
transitions are labeled with the messages. First, the seller sends an offer to the
buyer. The buyer may then accept or reject the offer. After the buyer accepts, the
seller may send an updated offer.

There is, however, an important element of the specification that is missing
from this protocol. That element is what the messages mean in the real world.
Making an offer in many settings would count as making a public, in other words,
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Figure 3.1: Updating an offer.

social commitment (more on social commitments later). Thus when the seller
offers some book to the buyer for some price, it would mean that the seller is
socially committed to the buyer for the offer. Consequently, updating an offer,
for instance, by raising the price of the book, counts as updating the commitment.
Specifically, it means that the old commitment is canceled and in its place a new
one is created. Clearly, a protocol that specifies only the flow of messages, such
as the one in Figure 3.1, does not capture such subtleties of meaning.

If the meanings of messages are not public, that would potentially make the
agent non-interoperable. For example, this would happen if the buyer interprets
the seller’s offer as a commitment, but the seller does not. Their interaction would
potentially break down. Accommodating semantic heterogeneity presupposes that
we make the meanings of messages public as part of the protocol specification.

In practice, many multiagent protocols are specified as flows without reference
to the message meanings. And they seem to work fairly well. In such cases, the
designers of the agents agree off-line on how to interpret and process the messages
and build this interpretation into the agents, thereby tightly coupling the agents.

1.2 Criteria for Evaluation

Communication has been studied in software engineering, distributed systems,
and distributed artificial intelligence. Consequently, there are many approaches
for specifying protocols. Later in the chapter, we discuss the major classes of ap-
proaches. Let us now motivate broad criteria by which to evaluate each approach.

Software engineering Ideally, protocols should be specified in terms of high-
level abstractions that appeal to their stakeholders. In other words, protocol
specifications should not be far removed from the expression of stakeholder
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requirements. Protocol specifications should be modifiable, easily under-
standable, and composable. Further, they should promote loose coupling
among agents.

Flexibility Agents should be able to enact protocols flexibly. Flexibility is espe-
cially important in dynamic settings where agents may come and go, and ex-
ceptions and opportunities may arise. Ideally, protocol specifications should
constrain agents no more than is necessary to ensure correctness, where cor-
rectness is understood in connection with the application domain of interest.

Compliance checking An important standard of correctness is compliance.
Checking an agent’s compliance with a protocol means determining if the
agent is following the protocol. To make such a determination presupposes
both that a protocol is precise and that its standard of correctness is based
on information that is accessible to the agents involved.

2 Conceptual Foundations of Communication in

MAS

2.1 Communicative Acts

An important theme in the study of communication is speech act theory, better
known as communicative act theory, since it has little specific connection with
spoken communication. The main insight behind communicative act theory, due
to the philosopher of language, John Austin, is that communication is a form of
action. Specifically, we can think of communicative acts as those where “saying
makes it so.” For example, when a judge declares a couple married, the judge
is not merely reporting on some privately or publicly known fact; instead, the
judge is bringing the fact into existence. The same may be said for a soccer
umpire who ejects a player from the game. The umpire is not merely stating that
the player is not allowed on the field for the duration of the game; the umpire
is causing the player’s permission to enter the field during the current game to
be withdrawn. The judge and the umpire rely upon lower-level means to carry
out the communicative acts. The judge may merely speak in public or sign a
marriage certificate and affix his or her seal on it. The umpire may flash a red
card at the player and speak out the player’s jersey number. The physical means
exist and information is transferred but what makes the communication a true
communication is the convention in place in the given setting. Informally, we can
think of the judge as saying, “I declare this couple man and wife” and the umpire
as saying, “I declare this player as ejected from the game.”
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Austin argued that all communications could be phrased in the above declar-
ative form through the use of appropriate performative verbs. Thus a simple in-
formative such as “the shipment will arrive on Wednesday” can be treated as if it
were “I inform you that the shipment will arrive on Wednesday.” A directive such
as “send me the goods” can be treated as if it were “I request that you send me
the goods” or “I demand that you send me the goods” or other such variations. A
commissive such as “I’ll pay you $5” can be treated as if it were “I promise that
I’ll pay you $5.”

The above stylized construction has an important ramification for us as stu-
dents of multiagent systems. It emphasizes that although what is being informed,
requested, or promised may or may not be within the control of the informer, re-
quester, or promiser, the fact that the agent chooses to inform, request, or promise
another agent is entirely within its control. The above construction thus coheres
with our multiagent systems thinking about autonomy and reflects the essence of
the autonomous nature of communication as we explained above.

The above stylized construction has another more practical and arguably more
nefarious ramification. Specifically, this is the idea that we can use the perfor-
mative verb in the above to identify the main purpose or illocutionary point of
a communication, separately from the propositional content of the communica-
tion. The underlying intuition is that the same propositional content could be
coupled with different illocutionary points to instantiate distinct communicative
acts. In computer science terms, the illocutionary points map to message types,
and may be thought of as being the value of a message header. Following the
shipment example above, we would associate the proposition “the shipment will
arrive on Wednesday” with different message types, for example, inform, request,
and query.

2.2 Agent Communication Primitives

As a result of the naturalness of the above mapping from illocutionary points to
message types, it has been customary in agent communication languages to spec-
ify a small number of specialized message types as primitives. Having message
types appears reasonable, but a pitfall lurks in this thinking. Because the literature
describes a few broad-brush illocutionary points, existing approaches reflect the
assumption that only a small number of primitives is adequate. They account for
the meaning of each of these primitives. The above assumption proves erroneous
because the applications of multiagent systems are manifold. In each application,
the meanings that we need can be potentially distinct from the others. Thus the of-
ficial meaning supplied by the agent communication language is insufficient, and
developers end up adopting additional ad hoc meanings, which they hard-code
into their agents. As a result, the agents become tightly coupled with each other.
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Such coupling makes it difficult to change a multiagent system dynamically, by
swapping out one agent for another as it were. Thus the potential benefit of using
an agent communication language is lost.

In response to the above challenges, the newer approaches dispense with a
fixed set of primitives based on illocutionary points. Instead, they provide an
underlying set of abstractions that can be used to provide a formal semantics for
any domain-specific primitives that a multiagent system may need. In other words,
each domain is different, but there is an underlying logic-based representation in
which the meanings of the terms used in the domain may be expressed.

For business applications, today, commitments are the key abstractions em-
ployed in the underlying representation. For example, in the stock-trading do-
main, we would see primitives such as request stock quote and provide stock
quote. And, in the electronic commerce domain, we would see primitives such
as quote price, quote delivery charges, and so on. The semantics of the primi-
tives would be expressed in commitments. Notice that even apparently similar
primitives may end up with completely different meanings, reflecting the needs
and practices of the applicable domains. For example, in typical practice, a price
quote is an offer to sell, meaning that the seller becomes committed to providing
the specified item at the quoted price. In contrast, in typical practice, a stock quote
carries no such connotation of an offer to sell – all it means is that the quoted price
is the price at which the previous transaction was completed on the specified stock
symbol, not that the brokerage who provided the quote is offering to sell you the
stock for the quoted price. As you can well imagine, the meanings can easily
be made more subtle and involved to capture the nuances of practical application
scenarios.

Therefore, in a nutshell, it appears misguided to have a few (about a dozen
or so) primitives with their unique definitions, hoping that they would cover all
practical variations. For the above reason, we suggest that you read the literature
on the primitives motivated from the illocutionary points, merely as showing il-
lustrative examples – possibly even as important patterns but definitely not as an
adequate basis for building a multiagent system for an arbitrary application.

3 Traditional Software Engineering Approaches

We referred above to low-level distributed computing protocols as a way to ex-
plain architectures in general. We argued that we need to consider multiagent
systems and high-level protocols as a way to specify architectures that yield in-
teroperability at a level closer to application needs. However, traditional software
engineering arguably addresses the challenges of interoperability too. Would it
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be possible to adopt software engineering techniques as a basis for dealing with
agent communication?

The above view has received a significant amount of attention in the litera-
ture. Partly because of the apparent simplicity of traditional techniques and largely
because of their familiarity to researchers and practitioners alike, the traditional
techniques continue to garner much interest in the agents community.

The traditional techniques leave the formulation of the message syntax open –
a message could be any document and in common practice is an XML document.
And they disregard the application meaning of the messages involved. Instead,
these techniques focus on the operational details of communication, mostly con-
centrating on the occurrence and ordering of messages.

Thus a protocol may be specified in terms of a finite-state machine (FSM),
which describes its states and legal transitions from a centralized perspective. For-
mally, this may be done in a variety of ways, including state machines [8, 58],
Petri nets [18], statecharts [24], UML sequence diagrams [35], process algebras
such as the pi-calculus [9], and logic-based or declarative approaches [47, 54]. All
of these approaches specify a set of message occurrences and orderings that are
deemed to capture the protocol being specified. We discuss a few of these below.

The above-mentioned traditional representations have the advantage of there
being a number of formal tools for verifying and even validating specifications
written in those representations. Thus a protocol designer would be able to deter-
mine if a protocol in question would satisfy useful properties such as termination.
Implementing the endpoints or agents to satisfy such specifications is generally
quite straightforward. Checking compliance with the specification is also concep-
tually straightforward. As long as the messages observed respect the ordering and
occurrence constraints given by a protocol, the enactment is correct with respect
to the protocol; otherwise, an enactment is not correct.

However, the value of such tools is diminished by the fact that in the traditional
representations there is no clear way to describe the meanings of the interactions.
In other words, these approaches lack an independent application-centric standard
of correctness. For example, let us suppose that a protocol happens to specify that
a merchant ships the goods to the customer and then the customer pays. Here, if
the customer happens to pay first, that would be a violation of the protocol. In
informal terms, we should not care. It should be the customer’s internal decision
whether to pay first. If the customer does (taking the risk of paying first or losing
bank interest on the money paid), that is the customer’s prerogative. However,
given the traditional, operational specification, any such deviation from the stated
protocol is equally unacceptable. Notice that it may in fact be in the customer’s
interest to pay first, for example, to include the expense in the current year’s tax
deductions. But we have no way of knowing that.
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Instead, if the protocol could be specified in terms of the meanings of the
communications involved, we would naturally express the intuition that all we
expect is that the customer eventually pays or that the customer pays no later than
some other crucial event. If the customer fails to pay, that would be a violation.
But if the customer pays early, so much the better.

3.1 Choreographies

The service-oriented computing literature includes studies of the notion of a
choreography. A choreography is a specification of the message flow among the
participants. Typically, a choreography is specified in terms of roles rather than
the participants themselves. Involving roles promotes reusability of the chore-
ography specification. Participants adopt roles, that is, bind to the roles, in the
choreography.

A choreography is a description of an interaction from a shared or, more prop-
erly, a neutral perspective. In this manner, a choreography is distinguished from a
specification of a workflow, wherein one party drives all of the other parties. The
latter approach is called an orchestration in the services literature.

An advantage of adopting a neutral perspective, as in a choreography, is that
it better applies in settings where the participants retain their autonomy: thus
it is important to state what each might expect from the others and what each
might offer to the others. Doing so promotes loose coupling of the components:
centralized approaches could in principle be equally loosely coupled but there
is a tendency associated with the power wielded by the central party to make
the other partners fit its mold. Also, the existence of the central party and the
resulting regimentation of interactions leads to implicit dependencies and thus
tight coupling among the parties.

A neutral perspective yields a further advantage that the overall computation
becomes naturally distributed and a single party is not involved in mediating all
information flows. A choreography is thus a way of specifying and building
distributed systems that among the conventional approaches most closely agrees
with the multiagent systems’ way of thinking. But important distinctions remain,
which we discuss below.

WS-CDL [57] and ebBP [25] are the leading industry supported choreography
standardization efforts. WS-CDL specifies choreographies as message exchanges
among partners. WS-CDL is based on the pi-calculus, so it has a formal oper-
ational semantics. However, WS-CDL does not satisfy important criteria for an
agent communication formalism. First, WS-CDL lacks a theory of the mean-
ings of the message exchanges. Second, when two or more messages are per-
formed within a given WS-CDL choreography, they are handled sequentially by
default, as in an MSC. Third, WS-CDL places into a choreography actions that
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would be private to an agent, such as what it should do upon receiving a message.
Fourth, for nested choreographies, WS-CDL relies upon local decision making by
an agent, such as whether to forward a request received in one choreography to
another [50].

3.2 Sequence Diagrams

The most natural way to specify a protocol is through a message sequence chart
(MSC), formalized as part of UML as sequence diagrams [28]. The roles of a
protocol correspond to the lifelines of an MSC; each edge connecting two life-
lines indicates a message from a sender to a receiver. Time flows downward by
convention and the ordering of the messages is apparent from the chart. MSCs
support primitives for grouping messages into blocks. Additional primitives in-
clude alternatives, parallel blocks, or iterative blocks. Although we do not use
MSCs extensively, they provide a simple way to specify agent communication
protocols.

FIPA (Foundation of Intelligent Physical Agents) is a standards body, now part
of the IEEE Computer Society, which has formulated agent communication stan-
dards. FIPA defines a number of interaction protocols. These protocols involve
messages of the standard types in FIPA. Each FIPA protocol specifies the possi-
ble ordering and occurrence constraints on messages as a UML sequence diagram
supplemented with some informal documentation.

Figure 3.2 shows the FIPA request interaction protocol in FIPA’s variant of the
UML sequence diagram notation [26]. This protocol involves two roles, an INI-
TIATOR and a PARTICIPANT. The INITIATOR sends a request to the PARTICIPANT,
who either responds with a refuse or an agree. In the latter case, it follows up with
a detailed response, which could be a failure, an inform-done, or an inform-result.
The PARTICIPANT may omit the agree message unless the INITIATOR asked for a
notification.

The FIPA request protocol deals with the operational details of when certain
messages may or must be sent. It does not address the meanings of the messages
themselves. Thus it is perfectly conventional in this regard. Where it deviates
from traditional distributed computing is in the semantics it assigns to the mes-
sages themselves, which we return to below. However, the benefit of having a
protocol is apparent even in this simple example: it identifies the roles and their
mutual expectations and thus decouples the implementations of the associated
agents from one another.
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Initiator Participant

Request

Refuse
[REFUSED]

Agree

[AGREED and NOTIFICATION]

Fail

Inform-done

Inform-result

AltAlt

AltAlt

Figure 3.2: FIPA request interaction protocol, from the FIPA specification [26],
expressed as a UML sequence diagram.

3.3 State Machines

Figure 3.3 shows a state machine between two roles, merchant (mer) and customer
(cus) as a state machine. The transitions are labeled with messages; the prefix mer,

cus indicates a message from the merchant to the customer, and cus, mer indicates
a message from the customer to the merchant. This state machine supports two
executions. One execution represents the scenario where the customer rejects the
merchant’s offer. The other execution represents the scenario where the customer
accepts the offer, following which the merchant and the customer exchange the
item and the payment for the item. In the spirit of a state machine, Figure 3.3 does
not reflect the internal policies based upon which the customer accepts an offer.

Consider the state machine in Figure 3.4. The dotted paths indicate two addi-
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Figure 3.3: A protocol specified as a state machine.

tional executions that are not supported by the state machine in Figure 3.3. The
executions depict the scenarios where the customer sends the payment upon re-
ceiving an offer and after sending an accept, respectively. These additional execu-
tions are just as sensible as the original ones. However, in the context of the state
machine in Figure 3.3, these executions are trivially noncompliant. The reason
is that checking compliance with choreographies is purely syntactical – the mes-
sages have to flow between the participants exactly as prescribed. Clearly, this
curbs the participants’ autonomy and flexibility.

We can attempt to ameliorate the situation by producing ever larger FSMs that
include more and more paths. However, doing so complicates the implementation
of agents and the task of comprehending and maintaining protocols, while not
supporting any real run-time flexibility. Further, any selection of paths will remain
arbitrary.

3.4 Evaluation with Respect to MAS

Traditional software engineering approaches for specifying protocols are opera-
tional in nature. Instead of specifying the meaning of a communication, they spec-
ify the flow of information among agents. The lack of meaning leads to the fol-
lowing observations about protocols produced following traditional approaches.

Software engineering Because the protocols specify the set of possible enact-
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Figure 3.4: An alternative, more flexible state machine.

ments at a low level of abstraction, any but the most trivial are difficult
to design and maintain. It is difficult to map the business requirements of
stakeholders to the protocols produced.

Flexibility Agents have little flexibility at runtime; the protocols essentially dic-
tate agent skeletons. Any deviation from a protocol by an agent, no matter
how sensible from a business perspective, is a violation. Further, to enable
interoperation, the protocols are specified so that they produce lock-step
synchronization among agents, which also limits flexibility.

Compliance Checking an agent’s compliance with the protocol is easy: compu-
tationally, it is akin to verifying whether a string is accepted by an FSM.
However, that ease comes at the expense of flexibility.

4 Traditional AI Approaches

The traditional AI approaches to agent communication begin from the opposite
extreme. These approaches presume that the agents are constructed based on cog-
nitive concepts, especially, beliefs, goals, and intentions. Then they specify the
communication of such agents in terms of how the communication relates to their
cognitive representations.
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The AI approaches came from two related starting points, which has greatly
affected how they were shaped. The first starting point was of human-computer
interaction broadly and natural language understanding specifically. The latter
includes the themes of discourse understanding from text or speech, and speech
understanding. What these approaches had in common was that they were geared
toward developing a tool that would assist a user in obtaining information from
a database or performing simple transactions such as booking a train ticket. A
key functionality of such tools was to infer what task the user needed to perform
and to help the user accordingly. These tools maintained a user model and were
configured with a domain model upon which they reasoned via heuristics to de-
termine how best to respond to their user’s request, and potentially to anticipate
the user’s request.

Such a tool was obviously cooperative: its raison d’être was to assist its user
and failure to be cooperative would be simply unacceptable. Further, it was an
appropriate engineering assumption that the user was cooperative as well. That is,
the tool could be based on the idea that the user was not purposefully misleading
it, because a user would gain nothing in normal circumstances by lying about its
needs and obtaining useless responses in return.

As the tools became more proactive they began to be thought of as agents.
Further, in some cases the agents of different users could communicate with one
another, not only with their users. The agents would maintain their models of
their users and others based on the communications exchanged. They could make
strong inferences regarding the beliefs and intentions of one another, and act and
communicate accordingly. These approaches worked for their target setting. To
AI researchers, the approaches these agents used for communicating with users
and other agents appeared to be applicable for agent communication in general.

The second body of work in AI that related to agent communication came
from the idea of building distributed knowledge-based systems (really just ex-
pert systems with an ability to communicate with each other). The idea was that
each agent would include a reasoner and a knowledge representation and com-
munication was merely a means to share such knowledge. Here, too, we see the
same two assumptions as for the human interaction work. First, that the member
agents were constructed with the same knowledge representations. Second, that
the agents were largely cooperative with each other.

4.1 KQML

Agent communication languages began to emerge in the 1980s. These were usu-
ally specific to the projects in which they arose, and typically relied on the specific
internal representations used within the agents in those projects.
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Somewhat along the same lines, but with some improved generality, arose the
Knowledge Query and Manipulation Language or KQML. KQML was created
by the DARPA Knowledge Sharing Effort, and was meant to be an adjunct to the
other work on knowledge representation technologies, such as ontologies. KQML
sought to take advantage of a knowledge representation based on the construct of a
knowledge base, such as had become prevalent in the 1980s. Instead of a specific
internal representation, KQML assumes that each agent maintains a knowledge
base described in terms of knowledge (more accurately, belief) assertions.

KQML proposed a small number of important primitives, such as query and
tell. The idea was that each primitive could be given a semantics based on the
effect it had on the knowledge bases of the communicating agents. Specifically,
an agent would send a tell for some content only if it believed the content, that is,
the content belonged in its knowledge base. And, an agent who received a tell for
some content would insert that content into its knowledge base, that is, it would
begin believing what it was told.

Even though KQML uses knowledge as a layer of abstraction over the detailed
data structures of the internal implementation of agents, it turns out to be overly
restricted in several ways. The main assumption of KQML is that the commu-
nicating agents are cooperative and designed by the same designers. Thus the
designers would make sure that an agent sent a message, such as a tell, only under
the correct circumstances and an agent who received such a message could imme-
diately accept its contents. When the agents are autonomous, they may generate
spurious messages – and not necessarily due to malice.

KQML did not provide a clear basis for agent designers to choose which of the
message types to use and how to specify their contents. As a result, designers all
too often resolved to using a single message type, typically tell, with all meanings
encoded (usually in some ad hoc manner) in the contents of the messages. That
is, the approach is to use different tell messages with arbitrary expressions placed
within the contents of the messages.

The above challenges complicated interoperability so that it was in general
difficult if not impossible for agents developed by different teams to be able to
successfully communicate with one another.

4.2 FIPA ACL

We discussed the FIPA interaction protocols in Section 3.2. FIPA has also pro-
duced the FIPA ACL, one of the motivations behind which was to address the
challenges with KQML. A goal for the FIPA ACL (Agent Communication Lan-
guage) was to specify a definitive syntax through which interoperability among
agents created by different developers could be facilitated. In addition, to en-
sure interoperability, the FIPA ACL also specified the semantics of the primitives.
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Like the KQML semantics, the FIPA ACL semantics is mentalist, although it has
a stronger basis in logic. The FIPA ACL semantics is based on a formalization of
the cognitive concepts such as the beliefs and intentions of agents.

Beliefs and intentions are suitable abstractions for designing and implement-
ing agents. However, they are highly unsuitable as a basis for an agent communi-
cation language. A communication language supports the interoperation of two or
more agents. Thus it must provide a basis for one agent to compute an abstraction
of the local state of another agent. The cognitive concepts provide no such basis in
a general way. They lead to the internal implementations of the interacting agents
to be coupled with each other. The main reason for this is that the cognitive con-
cepts are definitionally internal to an agent. For example, consider the case where
a merchant tells a customer that a shipment will arrive on Wednesday. When the
shipment fails to arrive on Wednesday, would it be any consolation to the cus-
tomer that the merchant sincerely believed that it was going to? The merchant
could equally well have been lying. The customer would never know without an
audit of the merchant’s databases. In certain legal situations, such audits can be
performed but they are far from the norm in business encounters.

One might hope that it would be possible to infer the beliefs and intentions of
another party, but it is easy to see with some additional reflection that no unique
characterization of the beliefs and intentions of an agent is possible. In the above
example, maybe the merchant had a sincere but false belief; or, maybe the mer-
chant did not have the belief it reported; or, maybe the merchant was simply un-
sure but decided to report a belief because the merchant also had an intention to
consummate a deal with the customer.

It is true that if one developer implements all the interacting agents correctly,
the developer can be assured that an agent would send a particular message only
in a particular internal state (set of beliefs and intentions). However such a multi-
agent system would be logically centralized and would be of severely limited
value.

It is worth pointing out that the FIPA specifications have ended up with a split
personality. FIPA provides the semiformal specification of an agent management
system, which underlies the well-regarded JADE system [7]. FIPA also provides
definitions for several interaction protocols (discussed in Section 3.2), which are
also useful and used in practice, despite their limitations. FIPA provides a formal
semantics for agent communication primitives based on cognitive concepts, which
gives a veneer of rigor, but is never used in multiagent systems.

4.3 Evaluation with Respect to MAS

The traditional AI approaches are mentalist, which render them of limited value
for multiagent systems.



118 Chapter 3

Software engineering The AI approaches offer high-level abstractions, which is
a positive. However, because the abstractions are mentalist, the approaches
cannot be applied to the design of multiagent systems except in the restricted
case where one developer designs all the agents (as explained above). Fur-
ther, recall the discussion from Section 2.2 regarding the unsuitability of a
small set of primitives. Both KQML and FIPA suffer from this problem.

Flexibility The flexibility of agents is severely curtailed because of restrictions
on when agents can send particular communications.

Compliance It is impossible for an observer to verify the cognitive state of an
agent. Hence verifying agent compliance (for example, if the agent has the
requisite cognitive state for sending a particular message) is impossible.

5 Commitment-Based Multiagent Approaches

In contrast with the operational approaches, commitment protocols give primacy
to the business meanings of service engagements, which are captured through the
participants’ commitments to one another [60], [11, 22, 52, 56], [20]. Computa-
tionally, each participant is modeled as an agent; interacting agents carry out a
service engagement by creating and manipulating commitments to one another.

5.1 Commitments

A commitment is an expression of the form

C(debtor,creditor,antecedent,consequent) ,

where debtor and creditor are agents, and antecedent and consequent are propo-
sitions. A commitment C(x,y,r,u) means that x is committed to y that if r holds,
then it will bring about u. If r holds, then C(x,y,r,u) is detached, and the com-
mitment C(x,y,�,u) holds (� being the constant for truth). If u holds, then the
commitment is discharged and does not hold any longer. All commitments are
conditional; an unconditional commitment is merely a special case where the an-
tecedent equals �. Examples 3.1–3.3 illustrate these concepts. In the examples
below, EBook is a bookseller, and Alice is a customer.)

Example 3.1 (Commitment) C(EBook,Alice,$12,BNW) means that EBook com-
mits to Alice that if she pays $12, then EBook will send her the book Brave New
World.
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Example 3.2 (Detach) If Alice makes the payment, that is, if $12 holds, then
C(EBook,Alice,$12,BNW) is detached. In other words, C(EBook,Alice,$12,
BNW)∧$12⇒ C(EBook,Alice,�,BNW).

Example 3.3 (Discharge) If EBook sends the book, that is, if BNW holds, then
both C(EBook,Alice,$12,BNW) and C(EBook,Alice,�,BNW) are discharged. In
other words, BNW ⇒¬C(EBook,Alice,$12,BNW)∧ ¬C(EBook,Alice,�,BNW).

Importantly, commitments can be manipulated, which supports flexibility. The
commitment operations [45] are listed below; CREATE, CANCEL, and RELEASE

are two-party operations, whereas DELEGATE and ASSIGN are three-party opera-
tions.

• CREATE(x,y,r,u) is performed by x, and it causes C(x,y,r,u) to hold.

• CANCEL(x,y,r,u) is performed by x, and it causes C(x,y,r,u) to not hold.

• RELEASE(x,y,r,u) is performed by y, and it causes C(x,y,r,u) to not hold.

• DELEGATE(x,y,z,r,u) is performed by x, and it causes C(z,y,r,u) to hold.

• ASSIGN(x,y,z,r,u) is performed by y, and it causes C(x,z,r,u) to hold.

• DECLARE(x,y,r) is performed by x to inform y that the r holds.

DECLARE is not a commitment operation, but may indirectly affect commit-
ments by causing detaches and discharges. In relation to Example 3.2, when Alice
informs EBook of the payment by performing DECLARE(Alice,EBook,$12), then
the proposition $12 holds, and causes a detach of C(EBook,Alice,$12,BNW).

Further, a commitment arises in a social or legal context. The context defines
the rules of encounter among the interacting parties, and often serves as an arbiter
in disputes and imposes penalties on parties that violate their commitments. For
example, eBay is the context of all auctions that take place through the eBay
marketplace; if a bidder does not honor a payment commitment for an auction
that it has won, eBay may suspend the bidder’s account.

A formal treatment of commitments and communication based on commit-
ments is available in the literature [15, 48].

5.2 Commitment Protocol Specification

Table 3.1 shows the specification of a commitment protocol between a mer-
chant and a customer (omitting sort and variable declarations). It simply states
the meanings of the messages in terms of the commitments arising between the
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Offer(mer,cus,price, item)means CREATE(mer,cus,price, item)
Accept(cus,mer,price, item)means CREATE(cus,mer, item,price)
Reject(cus,mer,price, item)means RELEASE(mer,cus,price, item)
Deliver(mer,cus, item)meansDECLARE(mer,cus, item)
Pay(cus,mer,price)meansDECLARE(cus,mer,price)

Table 3.1: A commitment protocol.

Figure 3.5: Distinguishing message syntax and meaning: two views of the same
enactment.

merchant and customer. For instance, the message Offer(mer,cus,price, item)
means the creation of the commitment C(mer,cus,price, item), meaning
the merchant commits to delivering the item if the customer pays the
price; Reject(cus,mer,price, item) means a release of the commitment;
Deliver(mer,cus, item) means that the proposition item holds.

Figure 3.5 (left) shows an execution of the protocol and Figure 3.5 (right) its
meaning in terms of commitments. (The figures depicting executions use a nota-
tion similar to UML interaction diagrams. The vertical lines are agent lifelines;
time flows downward along the lifelines; the arrows depict messages between the
agents; and any point where an agent sends or receives a message is annotated
with the commitments that hold at that point. In the figures, instead of writing
CREATE, we write Create. We say that the Create message realizes the CREATE

operation. Likewise, for other operations and DECLARE.) In the figure, the mer-
chant and customer roles are played by EBook and Alice, respectively; cB and cUB



Chapter 3 121

are the commitments C(EBook,Alice,$12,BNW) and C(EBook,Alice,�,BNW),
respectively.

5.3 Evaluation with Respect to MAS

Compliance Protocol enactments can be judged correct as long as the parties in-
volved do not violate their commitments. A customer would be in violation
if it keeps the goods but fails to pay. In this manner, commitments support
business-level compliance and do not dictate specific operationalizations
[22].

Flexibility The above formulation of correctness enhances flexibility over tradi-
tional approaches by expanding the operational choices for each party [13].
For example, if the customer substitutes a new way to make a payment or
elects to pay first, no harm is done, because the behavior is correct at the
business level. And the merchant may employ a new shipper; the customer
may return damaged goods for credit; and so on. By contrast, without busi-
ness meaning, exercising any such flexibility would result in non-compliant
executions.

Software Engineering Commitments offer a high-level abstraction for captur-
ing business interactions. Further, a commitment-based approach accom-
modates the autonomy of the participants in the natural manner: socially,
an agent is expected to achieve no more than its commitments. Commit-
ments thus also support loose coupling among agents. Commitment-based
approaches offer a compelling alternative to the traditional software engi-
neering approaches described in Section 3 for building systems comprised
of autonomous agents.

Figure 3.6 shows some of the possible enactments based on the proto-
col in Table 3.1. The labels cA and cUA are C(Alice,EBook,BNW,$12) and
C(Alice,EBook,�,$12), respectively. Figure 3.6(B) shows the enactment where
the book and payment are exchanged in Figure 3.3. Figures 3.6(A) and (C) show
the additional executions supported in Figure 3.4; Figure 3.6(D) reflects a new
execution that we had not considered before, one where Alice sends an Accept
even before receiving an offer. All these executions are compliant executions in
terms of commitments, and are thus supported by the protocol in Table 3.1.

Table 3.2 summarizes the three approaches.
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Figure 3.6: Flexible enactment.

Traditional SE Traditional AI Commitment Protocols

Abstraction control flow mentalist business relationship
Compliance lexical basis unverifiable semantic basis
Flexibility low low high
Interoperability message level integration business level

Table 3.2: Comparison of agent communication approaches.

6 Engineering with Agent Communication

Protocols support the development of distributed systems. A natural way to ap-
ply protocols is to derive from them the specifications of the roles that feature
in them. The idea is to use these role specifications as a basis for designing and
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implementing the agents who would participate in the given protocol. Role spec-
ifications are sometimes termed role skeletons or endpoints, and the associated
problem is called role generation and endpoint projection.

The above motivation of implementing the agents according to the roles sug-
gests an important quality criterion. We would like the role specifications to be
such that agents who correctly implement the roles can interoperate successfully
without the benefit of any additional messages than those included in the proto-
col and which feature in the individual role specifications. In other words, we
would like the agents implementing the roles to only be concerned with satisfying
the needs of their respective roles without regard to the other roles: the overall
computation would automatically turn out to be correct.

Role generation is straightforward for two-party protocols. Any message ex-
change involves two agents (neglecting multicast across roles): the sender and
the receiver. Any message sent by the sender is received by the receiver. Thus it
is easy to ensure their joint computations generate correct outcomes. In systems
with three or more roles, however, whenever a message exchange occurs, one or
more of the other roles would be left unaware of what has transpired. As a result,
no suitable role skeletons may exist for a protocol involving three or more par-
ties. We take this non-existence to mean that the protocol in question is causally
ill-formed and cannot be executed in a fully distributed manner. Such a protocol
must be corrected, usually through the insertion of messages that make sure that
the right information flows to the right parties and that potential race conditions
are avoided.

In a practical setting, then, the role skeletons are mapped to a simple set of
method stubs. An agent implementing a role – in this metaphor, by fleshing out
its skeleton – provides methods to process each incoming message and attempts to
send only those messages allowed by the protocol. Role skeletons do not consider
the contents of the messages. As a result, they can be expressed in a finite-state
machine too. Notice this machine is different from a state machine that specifies a
protocol. A role’s specification is very much focused on the perspective of the role
whereas the machine of a protocol describes the progress of a protocol enactment
from a neutral perspective.

6.1 Programming with Communications

The Java Agent Development Framework (JADE) is a popular platform for de-
veloping and running agent-based applications. It implements the FIPA protocols
discussed earlier. JADE provides support for the notion of what it terms behaviors.
A behavior is an abstract specification of an agent that characterizes important
events such as the receipt of specified messages and the occurrence of timeouts.
To implement an agent according to a behavior involves defining the methods
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Figure 3.7: Example of operational patterns.

it specifies as callbacks. In particular, a role skeleton can be implemented by
defining the handlers for any incoming methods. The JADE tutorial online offers
comprehensive instructions for building JADE applications.

6.2 Modeling Communications

It is not trivial to specify the right commitments for particular applications. For
instance, Desai et al. [19] show how a scenario dealing with foreign exchange
transactions may be formalized in multiple ways using commitments, each with
different ramifications on the outcomes. The challenge of specifying the right
commitments leads us to the question: How can we guide software engineers in
creating appropriate commitment-based specifications?

Such guidance is often available for operational approaches such as state ma-
chines and Petri nets that describe interactions in terms of message order and
occurrence. For instance, Figure 3.7 shows two common patterns expressed as
(partial) state machines, which can aid software engineers in specifying opera-
tional interactions. Here, b and s are buyer and seller, respectively. (A) says that
the seller may accept or reject an order; (B) says the buyer may confirm an order
after the seller accepts it.

By contrast, commitment protocols abstract away from operational details,
focusing on the meanings of messages, not their flow. Clearly, operational patterns
such as the above would not apply to the design of commitment protocols. What
kinds of patterns would help in the design of commitment protocols? By and
large, they would need to be business patterns – characterizing requirements, not
operations – that emphasize meanings in terms of commitments. In contrast with
Figure 3.7, these patterns describe what it means to make, accept, reject, or update
an offer, not when to send specific messages.

Business patterns support specifying business protocols. These patterns are
motivated by the following principles.

Autonomy compatibility Autonomy broadly refers to the lack of control: no
agent has control over another agent. To get things done, agents set up the



Chapter 3 125

appropriate commitments by interacting. Any expectation from an agent
beyond what the agent has explicitly committed would cause hidden cou-
pling.

Explicit meanings The meaning ought to be made public, not hidden within
agent implementations.

6.2.1 Business Patterns

Business patterns encode the common ways in which businesses engage each
other. Below is an example of the compensation pattern.

• COMPENSATION

Intent To compensate the creditor in case of commitment cancellation or viola-
tion by the debtor.

Motivation It is not known in advance whether a party will fulfill its commit-
ments; compensation commitments provide some assurance to the creditor
in case of violations.

Implementation Compensate(x,y,r,u,p) means
Create(x,y,violated(x,y,r,u),p).

Example Compensate(mer,cus,price, item,discount); it means that the merchant
will offer the customer a discount on the next purchase if the item is paid
for but not delivered.

Consequences A commitment (even a compensation commitment) should ide-
ally be supported by compensation; however, at some level, the only re-
course is escalation to the surrounding business context – for example, the
local jurisdiction [51].

6.2.2 Enactment Patterns

Whereas a business pattern describes the meaning of communication, an enact-
ment pattern describes the conditions under which an agent should enact a busi-
ness pattern, that is, when to undertake the corresponding communication. A locus
of such enactments may serve as the basic agent skeleton.

• COUNTER OFFER

Intent One party makes an offer to another, who responds with a modified offer
of its own.
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Motivation Essential for negotiation.

When Let C(x,y,r,u) be the commitment corresponding to the original of-
fer. Making a counteroffer would amount to creating the commitment
C(y,x,u′,r′) such that u′ � u and r � r′, in other words, if the consequent
is strengthened and the antecedent is weakened. An alternative implemen-
tation includes doing Release(x,y,r,u) in addition.

Example Let’s say C(EBook,Alice,$12,BNW) holds. Alice can make the coun-
teroffer C(Alice,EBook,BNW ∧Dune,$12), meaning that she wants Dune
in addition to BNW for the same price.

Consequences When u ≡ u′ and r ≡ r′, the counteroffer amounts to a mutual
commitment.

6.2.3 Semantic Antipatterns

Semantic antipatterns identify forms of representation and reasoning to be avoided
because they conflict with the autonomy of the participants or with a logical basis
for commitments.

• COMMIT ANOTHER AS DEBTOR

Intent An agent creates a commitment in which the debtor is another agent.

Motivation To capture delegation, especially in situations where the delegator is
in a position of power over the delegatee.

Implementation The sender of Create(y,z,p,q) is x (x and y are different agents),
thus contravening the autonomy of y.

Example Consider two sellers EBook and BookWorld. EBook sends
Create(BookWorld,Alice,$12,BNW) to Alice, which violated BookWorld’s
autonomy.

Consequences A commitment represents a public undertaking by the debtor. A
special case is when x = z. That is, x unilaterally makes itself the creditor.

Criteria Failed y’s autonomy is not respected.

Alternative Apply delegation to achieve the desired business relationship, based
on prior commitments. In the above example, BookWorld could have a
standing commitment with EBook to accept delegations. EBook can then
send a delegate “instruction” to BookWorld upon which BookWorld com-
mits to Alice.



Chapter 3 127

The above are some examples of patterns. For a more exhaustive list of pat-
terns, see [16].

6.3 Communication-Based Methodologies

Because of the centrality of agent communication to multiagent systems, a number
of methodologies for designing and implementing multiagent systems are based
on communications. We point out a few such methodologies in the Further Read-
ing section.

The common idea behind these methodologies is to identify the communica-
tions involved in the system being specified and to state the meanings of such
communications. The main protocol concepts are roles, messages, and message
meanings. Below we briefly outline the high-level considerations involved in de-
signing a protocol.

• Identify stakeholder requirements.

• Identify the roles involved in the interaction. Let’s say the roles identified
are customer, merchant, shipper, and banker.

• If a suitable protocol is available from a repository, then choose it and we’re
done. After all, one of the key benefits of protocols is reusability. For
instance, suppose the stakeholders wanted to design a purchase protocol. If
the protocol of Table 3.1 fits their requirements, we’re done.

• Often the required protocol may be obtained by composing existing proto-
cols. For example, the desired protocol could potentially be obtained by
combining Ordering, Payment, and Shipping protocols.

• Sometimes the protocol or parts of it may need to be written up from scratch.
Identify the communications among the roles. For example, there would
be messages between the customer and the merchant that would pertain to
ordering items. The messages between the customer and bank would pertain
to payment, and so on.

• Identify how each message would affect the commitments of its sender and
receiver. For example, the Offer message could be given a meaning similar
to the one in Table 3.1. The customer’s payment to the bank would effec-
tively discharge his or her commitment to pay the merchant. Similarly, the
delivery of the goods by the shipper would effectively discharge the mer-
chant’s commitment to pay, and so on.
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7 Advanced Topics and Challenges

This section describes some important current directions in agent communication.

7.1 Primacy of Meaning

As we outlined in the foregoing, there is an unfortunate tendency to specify com-
munication protocols in operational terms at the cost of the meanings that they
convey. However, agent communication should be understood at the level of the
“social state” of the parties involved and how it affects and is affected by commu-
nications. Adopting a meaning-based stance protects one’s models from inadver-
tent dependencies upon implementation and yields the highest flexibility for the
participating agents while maintaining correctness.

The earlier meaning-based approaches to agent communication tended to
combine assertions regarding the meanings of communications with operational
details, such as the conditions under which communication must occur and how
the communications must be mutually ordered. Such operational details inter-
fere with an application of meaning-based reasoning because they require that the
agents maintain not only the meanings of the communication and the changing so-
cial state but also additional, otherwise irrelevant dependencies with the decisions
of other agents.

We have not been able to find even a single compelling “natural” situation
where such details are necessary. Any requirement that an agent produce a mes-
sage is a violation of its autonomy. When we think of meaning properly, there is
never a natural need for ordering constraints – the only ordering constraints that
might arise are those based on artificial grounds such as arbitrary conventions in a
particular domain. Such conventions are fine and an approach for agent commu-
nication should support them. However, they do not explain the large number of
ordering constraints that traditional specifications tend to include.

Although the operational details interfere with reasoning about meaning, they
are essential to ensure that each party obtains the information it needs at the right
time so as to proceed effectively. The recent approach termed the Blindingly Sim-
ple Protocol Language [49] provides a simple resolution to this tension by cap-
turing the necessary operational details in a declarative manner. The declarative
representation of messages facilitates producing assertions regarding social state
from them, and using such assertions as a basis for reasoning about the meanings
of the messages.

A research challenge, then, is to develop languages and methodologies in
which (and with which to formulate) proper meanings for communications, so
as to capture the needs of domain settings precisely.
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7.2 Verifying Compliance

Because agent communication involves the interactions of two or more au-
tonomous parties, it inherently has the weight of a “standard” – albeit a minor –
non-universal standard. In other words, when two agents talk to one another, they
must agree sufficiently on what they are talking about and they must be able to
judge if their counterparty is interacting in a manner that they would expect. To
the first point, the traditional approaches missed stating expectations properly.

Just as a standard in any domain of practice is worthless if we cannot judge
whether the parties subject to the standard are complying with it or not, so it is
with agent communication. Any approach for agent communication must sup-
port the statement of the mutual expectations of the parties involved and do so in
a manner that supports each party verifying if the others are complying with its
expectations of them. This is an obvious point in retrospect. However, the mental-
ist approaches disregarded the problem of compliance. Despite this point having
been explained over a decade ago [44], there remains a tendency to disregard it in
approaches to communication, especially as such approaches are applied within
software engineering methodologies.

A research challenge here is to design specification languages that promote the
verification of compliance and, more importantly, to develop algorithms by which
an agent or a set of cooperating agents could verify the compliance of others based
on the communications it can monitor.

7.3 Protocol Refinement and Aggregation

If we are to treat communication as a first-class abstraction for specifying multi-
agent systems, we must be ready to support dealing with conceptual modeling
using that abstraction. Classically, two conceptual modeling relations are known:
refinement and aggregation. Refinement deals with how a concept refines another
in the sense of the is-a hierarchy. Aggregation deals with how concepts are put
together into composites in the sense of the part-whole hierarchy. Refinement
and aggregation are well-understood for traditional object-oriented design and are
supported by modern programming languages.

However, dealing with refinement in particular has been non-trivial for com-
munication protocols. Recent work on session types is promising in this regard
[32], as is work on refinement with respect to commitment-based protocols [30].
An important challenge is to produce a generalized theory and associated lan-
guages and tools that would support refinement and aggregation of protocols for
more powerful meaning specifications.
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7.4 Role Conformance

As we stated above, the meaning of communication captures the expectations that
the parties involved can have of each other. Accordingly, an important engineer-
ing challenge is to develop agents who would meet such expectations. An agent
can potentially apply complex reasoning, and, therefore, verifying that an agent
(implementation) would meet the expectations of another agent is non-trivial.

A natural way to approach the problem is to formulate a role description or a
role skeleton based on the specification of a communication protocol. A skeleton
describes the basic structure of a role. An agent who plays (and hence imple-
ments) a role would provide additional details so as to flesh out the structure that
is the skeleton. Since a protocol involves two or more roles, the challenge is to
determine sufficient structural properties of each role, in terms of what messages
it can receive and send under what circumstances and any constraints on how the
local representation of the social state should progress in light of the messages
received and sent. We can then publish the descriptions of each role in a protocol
along with the protocol specification.

At the same time, one can imagine that software vendors may produce agent
implementations that are compatible with different roles. A vendor would not and
should not provide the internal details but would and should provide the public
“interface” of the agent in terms of its interactions. In other words, a vendor
would describe a role that its agent would be able to play. In general, an agent
may need to participate in more than one protocol. Thus it would help to know
if the role as published by a vendor conforms with the role as derived from a
protocol. This is the problem of role conformance. Solving this problem for a
particular language would help automate part of the task of creating a multiagent
system from disparate agents while ensuring that the agents, even if implemented
heterogeneously, would be able to interoperate with respect to a specified protocol.

An important research challenge is to identify formal languages for specifying
roles along with algorithms for determining whether a role conforms with another.

8 Conclusions

It should be no surprise to anyone that communication is at the heart of multiagent
systems, not only in our implementations but also in our conception of what a
multiagent system is and what an agent is.

To our thinking, an agent is inherently autonomous. Yet, autonomous, hetero-
geneously constructed agents must also be interdependent on each other if they
are to exhibit complex behaviors and sustain important real-world applications.
A multiagent system, if it is any good, must be loosely coupled and communica-



Chapter 3 131

tion is the highly elastic glue that keeps it together. Specifically, communication,
understood in terms of agents and based on high-level abstractions such as those
we explained above, provides the quintessential basis for the arms-length relation-
ships desired in all modern software engineering as it addresses the challenges of
large decentralized systems.

The foregoing provided a historical view of agent communication, identifying
the main historical and current ideas in the field. This chapter has only scratched
the surface of this rich and exciting area. We invite the reader to delve deeper
and to consider many of the fundamental research problems that arise in this area.
An important side benefit is that, faced with the challenges of open systems such
as on the web, in social media, in mobile computing, and cyberphysical systems,
traditional computer science is now beginning to appreciate the importance and
value of the abstractions of agent communication. Thus progress on the problems
of agent communication can have significant impact on much of computer science.

Further Reading

Agent communication is one of the most interesting topics in multiagent systems,
not only because of its importance to the field but also because of the large number
of disciplines that it relates to. In particular, it touches upon ideas in philosophy,
linguistics, social science (especially organizations and institutions), software en-
gineering, and distributed computing. The readings below will take the reader
deeper into these subjects.

Philosophical foundations. Some of the most important works on the philos-
ophy of language undergird the present understanding of communication.
Austin [6] introduced the idea of communication as action. Searle devel-
oped two accounts of communication, one emphasizing the mental concepts
of the parties involved [41] and the second the notion of social reality that
sustains and is sustained by language [42]. Some recent works by Chopra,
Singh and their colleagues have exploited the distinction between constitu-
tion and regulation that Searle described [14, 38].

Organizations and institutions. Several researchers in multiagent systems have
studied the notions of organizations and institutions. These works provide
computational bases for agents to participate in structured relationships.
The works of Vázquez-Salceda and the Dignums [3, 55] and of Fornara
and Colombetti [27] highlight important conceptual and practical consider-
ations in this area.

Norms, conventions, and commitments. The notions of organizations and in-
stitutions are defined based on the normative relationships that arise among
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their participants. Artikis, Jones, Pitt, and Sergot have developed formal-
izations of norms that are worth studying as influential papers [5, 37]. Jones
and Parent [36] formalize conventions as a basis for communication.

Singh proposed the notion of social commitments [43, 45] as an important
normative concept to be used for understanding social relationships. He
proposed commitments as a basis for a social semantics for communica-
tion [46]. A related idea has been developed by Colombetti [17]. A formal
semantics for commitments [48] and the proper reasoning about commit-
ments in situations with asynchronous communication among decoupled
agents [15] are significant to practice and promising as points of departure
for important research in this area.

Software engineering. A number of approaches apply communications as cen-
tral to the development of multiagent systems [10, 16, 21, 29, 39]. Further,
several design and verification tools for communication protocols and agent
communication generally have been proposed [1, 2, 4, 23, 56, 59]. The
development of well-principled tools is an important research direction be-
cause of their potential impact on computer science – if they could lead to
the expanded deployment of multiagent systems.

Challenges. The agent communication manifesto is a collection of short essays
by several researchers who seek to articulate the main challenges and direc-
tions in this area [12]. The reader should consult it before embarking on
research in this area.
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9 Exercises

1. Level 1 Which of the following statements are true?

(a) Communications are an important class of interactions because they
support the autonomy of the parties involved.

(b) The three elements of a communicative act are locution, illocution,
and perlocution.

(c) Unlike traditional settings, perlocutions provide the right basis for
communicative acts in open, service-oriented settings.

(d) Unlike in a traditional, finite-state machine, the states of a commitment
machine are specified using logic and each transition corresponds to
the meaning of the message that labels the transition.

(e) In an open environment, two agents might sometimes need to com-
bine their local observations in order to determine that a third agent is
complying with its commitments.

2. Level 1 Which of the following statements are true?

(a) In an open environment, we can typically ensure compliance based
upon the implementations of the interacting agents.

(b) The benefit of employing a commitment protocol is that it exactly
specifies the order of the messages without regard to their meaning.

(c) Using the meanings of the messages, we can compute whether a mes-
sage may be sent in the current state, and the next state that would
result from doing so.

(d) Ideally, each participant in a protocol should be able to verify if any of
the commitments where it is the creditor are violated.

3. Level 1 Which of the following statements are true about interaction and
communication?

(a) Perlocutions are considered the core aspect of a communicative act.

(b) The same proposition, e.g., reserve(Alice, UA 872, 14 May 2020), may
feature in a request and a declare.

(c) We may not be able to decide if a statement such as Shut the door! is
true or false but we can decide whether such a statement was made.

(d) A statement such as Shut the door! becomes true if the door in ques-
tion is shut on purpose, not accidentally.
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4. Level 1 Identify all of the following statements that are true about commit-
ments and commitment protocols.

(a) If the debtor of a commitment delegates it simultaneously with the
creditor of the same commitment assigning it, additional messages are
in general needed for the new debtor and the new creditor to learn
about each other.

(b) If the debtor of a commitment discharges it simultaneously with the
creditor of the same commitment assigning it, no additional messages
are needed for the new creditor to learn that the debtor is compliant.

(c) A protocol for payment through a third party could naturally be spec-
ified using the delegate of a commitment to pay.

(d) Forward-going interactions such as ordering and payment may be
modeled as commitment protocols, but not backward-going interac-
tions such as returning goods for a refund.

(e) Even though a commitment protocol captures the meanings of the
messages involved, the participants must accept the protocol in order
for it to work.

5. Level 2 We say that a commitment is discharged when the consequent
holds, expired when the antecedent cannot ever hold, and violated when
the antecedent holds but the consequent cannot ever hold.

Let E = {e0,e1,e2, . . . ,e0,e1,e2, . . .} be a set of events such that ei is the
complement of ei. For instance, if e0 means package was delivered by 5PM,
e0 means package was not delivered by 5PM. Further, e0 = e.

Let 〈v0,v1, ...,vn〉 represent an event trace, that is, the sequence of events
that have been recorded, where all the vi are variables that range over E.
Further, in any event trace, for any event, only the event or its complement
may occur, but not both (e.g., the package was either delivered by 5PM or
it was not, but not both). Thus, for example, 〈e0,e3,e5〉 is a valid trace, but
〈e0,e3,e5,e0〉 is not.

Assume that the commitment C(x,y,e0,e1∧ e2) holds right before we start
recording events (x commits to y that if e0 occurs, both e1 and e2 will occur).

For each of the following event traces, indicate whether the commitment is
(1) satisfactorily resolved (via discharge or expiration), (2) violated, or (3)
continues to hold.

(a) 〈e0,e1,e5〉
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(b) 〈e1,e0,e2〉
(c) 〈e1,e0,e3〉
(d) 〈e1,e0,e2〉
(e) 〈e0,e1,e2〉

6. Level 2 Examine Figure 3.1. Now create an FSM for the commitment com-
pensate pattern discussed in the chapter.

7. Level 2 Examine Figure 3.1. Now specify a commitment pattern that cap-
tures the idea of updating commitments.

8. Level 2 Create an FSM corresponding to the FIPA request protocol shown
in Figure 3.2.

9. Level 3 Create a WS-CDL specification for the FIPA request protocol.

10. Level 3 Consider the following outline of a process for buying books. A
merchant offers an online catalog of books with price and availability infor-
mation. A customer can browse the catalog and purchase particular books
from the catalog or the merchant may contact the customer directly with of-
fers for particular books. However, the customer must arrange for shipment
on his or her own: in other words, the customer must arrange for a shipper
to pick up the books from the merchant’s store and deliver them to him or
her. All payments – to the merchant for the books and to the shipper for
delivery – are carried out via a payment agency (such as PayPal).

(a) List the roles and messages involved in the protocol underlying the
above business process.

(b) Specify the messages in terms of communicative acts.

(c) Specify the protocol in three different ways: as an FSM with messages
as the transitions, (2) as an MSC, and (3) as a commitment protocol.

(d) Show a simplified MSC representing one possible enactment where
the books have been delivered and the payments have been made.

(e) Based on the commitment protocol you specified above, annotate
points in the above-described enactment with commitments that hold
at those points.

11. Level 4 Suppose the business process described in Question 10 above also
supported returns and refunds for customers.
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(a) As we did above, specify the underlying protocol as an FSM, as an
MSC, and as a commitment protocol.

(b) Show both a synchronous and an asynchronous return-refund enact-
ment.

(c) Annotate both with the commitments at various points. (Hint: for the
asynchronous enactment, read [15]).

12. Level 3 Specify role skeletons for the purchase process with returns and
refunds

(a) in the JADE style.

(b) in the rule-based style. (Hint: read [22])

13. Level 3 Map Figure 3.6 to an FSM and an MSC.

14. Level 3 Compare the FSM and MSC from Question 13 to the commitment
protocol specification of Table 3.1 with respect to compliance, ease of cre-
ation, and ease of change.

15. Level 4 Implement the logic for practical commitments described in [48].

16. Level 5 Implement a commitment-based middleware based on the postu-
lates given in [15].
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Chapter 4

Negotiation and Bargaining

Shaheen Fatima and Iyad Rahwan

1 Introduction

Negotiation is a form of interaction in which a group of agents with conflicting
interests try to come to a mutually acceptable agreement over some outcome. The
outcome is typically represented in terms of the allocation of resources (commodi-
ties, services, time, money, CPU cycles, etc.). Agents’ interests are conflicting in
the sense that they cannot be simultaneously satisfied, either partially or fully.
Since there are usually many different possible outcomes, negotiation can be seen
as a “distributed search through a space of potential agreements” [36].

Negotiation is fundamental to distributed computing and multiagent systems.
This is because agents often cannot fulfill their design objectives on their own,
but instead need to exchange resources with others. After an informal discussion
of the different aspects of negotiation problems (Section 2), we turn to the use
of game theory to analyze strategic interaction in simple single-issue negotiation
(Section 3). Next, we talk about game-theoretic analysis of multi-issue negotiation
(Section 4).

After covering game-theoretic approaches, we describe various heuristic ap-
proaches for bilateral negotiation (Section 5). These approaches are necessary
when negotiation involves solving computationally hard problems, or when as-
sumptions underlying the game-theoretic approaches are violated. We also ex-
plore recent developments in agent-human negotiation (Section 6) and work on
logic-based argumentation in negotiation.
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We note that this chapter is concerned with the study of bilateral negotiation
in multiagent systems; that is, negotiation involving two agents. Multiparty nego-
tiation is often conducted under the banner of auctions and are outside the scope
of this chapter.

2 Aspects of Negotiation

Any negotiation problem requires defining the following main ingredients: (i)
the set of possible outcomes; (ii) the agents conducting the negotiation; (iii) the
protocol according to which agents search for a specific agreement in this space;
and (iv) the individual strategies that determine the agents’ behavior, in light of
their preferences over the outcomes.

The first ingredient in a negotiation scenario is the negotiation object, which
defines the set of possible outcomes. Abstractly, we can simply think of a space O
of possible outcomes (or deals or agreements), which can be defined in arbitrary
ways. There are many ways to define the set of possible outcomes concretely. The
simplest possible way is a single-issue negotiation scenario, in which outcomes
are described as members in discrete or continuous sets of outcomes. For example,
two agents may be negotiating over how to divide a tank of petrol (or some other
resource), and the question is who gets how much petrol. The set of possible
outcomes may be represented as a number in the interval [0,1], each of which
represents a percentage that goes to the first agent, with the rest going to the
second agent. Petrol is an example of a continuous issue. Alternatively, the issue
may be defined in terms of a set of discrete outcomes, such as a set of 8 time slots
to allocate to multiple teachers.

Single-issue negotiation contrasts with multi-issue negotiation, in which the
set of outcomes is defined in terms of multiple (possibly independent) issues. For
example, two people may negotiate over both the time and place of dinner. Each
of these represents one of the issues under negotiation, and an outcome is defined
in terms of combinations of choices over these issues (i.e., a specific restaurant
at a specific time). In general, given a set of issues (or attributes) A1, . . . ,An,
each ranging over a (discrete or continuous) domain Dom(Ai), then the space of
possible outcomes is the Cartesian product ∏n

i=1 Dom(Ai).
There are other approaches to defining the space of possible outcomes of ne-

gotiation. In their classic book, Rosenschein and Zlotkin distinguished between
three different types of domains in terms of the nature of the negotiation object
[66]:

1. Task-oriented domains: domains involving the division of tasks to execute;
agent preferences are measured in terms of the costs associated with differ-
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ent task allocations; each agent tries to minimize the cost of the tasks it has
to execute.

2. State-oriented domains: domains involving a joint decision about what state
agents will achieve; agent preferences are over states that result from differ-
ent deals; each agent tries to get to a more preferable state for itself.

3. Worth-oriented domains: domains involving a joint decision about what
goals to achieve; agent preferences are measured in terms of the number of
individual goals each outcome achieves; each agent tries to achieve as many
of its goals as possible.

In general, it may be possible to use any suitable approach to define the space of
possible outcomes, including the use of expressive logical languages for describ-
ing combinatorial structures of negotiation objects.

The very nature of competition over resources means that different agents pre-
fer different allocations of the resources in question. Hence, we need to capture
the individual agent preference over the set Ψ of possible deals. Preferences of
agent i can be captured using a binary preference relation �i over Ψ, and we de-
note by o1 �i o2 that for agent i, outcome o1 is at least as good as outcome o2.
It is also common to use o1 �i o2 to denote that o1 �i o2 and it is not the case
that o2 �i o1 (this is called strict preference). Economists and decision theorists
consider a preference relation to be rational if it is both transitive and complete
[53].

It is worth noting that agents may already have a particular allocation of re-
sources before they begin negotiation. Negotiation becomes an attempt to real-
locate the resources in order to reach a new allocation that is more preferable to
both. In this case, the conflict deal (also known as the no negotiation alternative)
refers to the situation in which agents do not reach an agreement in negotiation.

One way to define the preference relation of agent i is in terms of a utility
function Ui : O→ R+, which assigns a real number to each possible outcome.
The utility function Ui(.) represents the relation �i if we have Ui(o1)≥Ui(o2) if
and only if o1 �i o2.

In a sense, the utility function (and corresponding preference relation) cap-
tures the level of satisfaction of an agent with a particular deal. A rational agent
attempts to reach a deal that maximizes the utility it receives.

In the case of multi-issue negotiation, it may be possible to define a multi-
attribute utility function, Ui : A1 × ·· · × An → R+ which maps a vector of at-
tribute values to a real number. And if the attributes are preferentially independent,
then the utility function can be defined using a linear combination of sub-utility
functions over the individual attributes. In other words, the utility of outcome



146 Chapter 4

o = 〈a1, . . . ,an〉 becomes Ui = ∑n
k=1 wi

kui
k(ak), where ui

k : Ak → R+ is the sub-
utility function over attribute ak and wi

k is the attribute’s weight.
Given a set of agents (and their preferences), we need a protocol (rules of

interaction) for enabling these agents to search for a deal. These protocols range
from very simple alternating-offer protocols [43, 69, 70, 74], in which agents take
turns as they exchange possible deals, to complex argumentation-based protocols
[46, 63], in which agents can exchange logical sentences intended to persuade one
another to change their states of mind.

Given a set of agents, and a protocol for regulating their negotiation, the final
ingredient is the agent’s strategy. The strategy may specify, for example, what
offer to make next, or what information to reveal (truthfully or otherwise) to the
counterpart. A rational agent’s strategy must aim to achieve the best possible
outcome for itself, while still following the agreed protocol. The main role played
by game theory in negotiation is the analysis of the final outcome in light of such
strategic behavior.

3 Game-Theoretic Approaches for Single-Issue

Negotiation

In this section, we will describe how game theory can be used to analyze nego-
tiation. We will begin by considering the following scenario. There is a single
resource and there are two agents competing for the resource. Each agent wants
to get as large a share of the resource as possible, so there is a conflict between
the agents with regard to how the resource must be divided between them. To
resolve this conflict, the agents must negotiate or bargain and decide upon a di-
vision that will be acceptable to both parties. This decision is jointly made by
the agents themselves, so each party can only obtain what the other is prepared
to allow it. Given this, the negotiation will either end successfully, whereby the
parties reach an agreement on a mutually acceptable split, or else it will end in
a failure to reach an agreement. In the event of the latter happening, both agents
get nothing. Hence, each agent will prefer to get a non-zero share than allow the
negotiation to break down.

There are two ways to model such bilateral negotiations: using cooperative
game theory and using non-cooperative game theory. For the former, negotiation
is modeled as a cooperative game. In cooperative games, agreements are binding
or enforceable, possibly by law. When agreements are binding, it is possible for
the players to negotiate outcomes that are mutually beneficial. In non-cooperative
games, agreements are not binding. Here, the players are self-interested and their
focus is on individually beneficial outcomes. So a player may have an incentive
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a
deny confess

b
deny −1, −1 −3, 0
confess 0, −3 −2, −2

Table 4.1: Prisoner’s Dilemma game.

to deviate from an agreement in order to improve its utility. Thus the outcome
of a game when agreements are binding may be different from the outcome of
the same game when they are not [7]. This difference can be illustrated with
the Prisoner’s Dilemma game given in Table 4.1. Assume that this game is non-
cooperative. Then the dominant strategy for both players will be to confess. The
equilibrium outcome would be (−2,−2) which is not Pareto optimal. In contrast,
if the same game was played as a cooperative game, and the players agreed not
to confess, then both players would benefit. The agreement (deny, deny) would
be binding and the resulting outcome (−1,−1) would be Pareto optimal. This
outcome would also be better from each individual player’s perspective as it would
increase each player’s utility from −2 to −1.

Note that the outcome of a game with binding agreements need not neces-
sarily be better than the outcome for the same game with agreements that are
not binding. The former are aimed at reaching agreements that are a reasonable
compromise. However, from an individual player’s perspective, the latter may be
better than the former. In more detail, cooperative and non-cooperative bargaining
is modeled as follows.

3.1 Cooperative Models of Single-Issue Negotiation

In this section, we will explain how bargaining can be modeled as a two-person
cooperative game. A two-person bargaining situation typically involves two indi-
viduals who have the opportunity to collaborate for mutual benefit. Furthermore,
there will be more than one way of collaborating, and how much an individual
benefits depends on the actions taken by both agents. In other words, neither
individual can unilaterally affect these benefits. Thus, situations such as those
involving trading between a buyer and a seller, and those involving negotiation
between an employer and a labor union may be regarded as bargaining problems.

Most of the work on cooperative models of bargaining followed from the sem-
inal work of Nash [55, 56]. Nash analyzed the bargaining problem and defined a
solution/outcome for it using an axiomatic approach. A solution means a deter-
mination of how much each individual should expect to benefit from the situation.
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Nash defined a solution without modeling the details of the negotiation process.
In this approach, there is a set of possible or feasible outcomes, some of which
are acceptable or reasonable outcomes. The problem then is to find a bargaining
function that maps the set of possible outcomes to the set of acceptable ones.

Nash idealized the bargaining problem by assuming that the two individuals
are perfectly rational, that each can accurately compare its preferences for the
possible outcomes, that they are equal in bargaining skill, and that each has com-
plete knowledge of the preferences of the other. Under these assumptions, Nash
formed a mathematical model of the situation. In this model, he employed numer-
ical utilities to express the preferences of each individual, and each individual’s
desire to maximize its own gain.

More formally, Nash defined a two-person bargaining problem as follows.
There are two players (say a and b) who want to come to an agreement over
the alternatives in an arbitrary set A. Failure to reach an agreement, i.e., disagree-
ment, is represented by a designated outcome denoted {D}. Agent i ∈ {a,b} has
a von Neumann-Morgenstern utility function Ui defined as follows:

Ui : {A∪{D}}→ R for i = a,b

The set of all utility pairs that result from an agreement is called the bargaining
set. This set is denoted S where

S= {(Ua(z),Ub(z))⊂ R2 : z ∈A}

and the utility pair that results from disagreement is denoted d = (da,db), where
di = Ui(D). The point d ∈ R2 is called the disagreement point or threat point.
Thus, if the players reach an agreement z ∈A, then a gets a utility of Ua(z) and b
gets Ub(z). But if they do not reach an agreement, then the game ends in the dis-
agreement point d, where a gets utility da and b gets db. Given this, the bargaining
problem is defined as follows:

Definition 4.1 A bargaining problem is defined as a pair (S,d). A bargaining
solution is a function f that maps every bargaining problem (S,d) to an outcome
in S, i.e.,

f : (S,d)→ S

Thus the solution to a bargaining problem is a pair in R2. It gives the values of the
game to the two players and is generated through the function called bargaining
function. The values of the game to the two players are denoted f a and f b.

It is assumed that the set S is a closed and convex subset of R2, that d ∈ S, and
that the set

S∩{(xa,xb)| xa ≥ da and xb ≥ db}
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is non-empty and bounded. The assumption that S is convex is the same as as-
suming that players can agree on jointly randomized strategies, such that, if the
utility allocations x = (xa,xb) and y = (ya,yb) are feasible and 0≤ θ≤ 1, then the
expected utility allocation θx+(1− θ)y can be achieved by planning to imple-
ment x with probability θ and y otherwise. Closure of S is a natural topological
requirement. The non-emptiness and boundedness condition means that not all
feasible allocations are worse than disagreement for both players, and unbounded
gains over the disagreement point are impossible.

The bargaining problem is solved by stating general properties (or axioms)
that a reasonable solution should possess. By specifying enough such properties
one can exclude all but one solution. For example, a reasonable solution must
be individual rational, i.e., it must give each player at least as much utility as it
would get in the event of no agreement. So individual rationality is an axiom. The
term “reasonable solution” has no standard definition. Different axiomatic mod-
els define this term differently [68]. Nash’s [55] idea of a reasonable solution is
based on the assumption that when two players negotiate or an impartial arbitrator
arbitrates, the payoff allocations that the two players ultimately get should depend
only on the following two factors:

1. the set of payoff allocations that are jointly feasible for the two players in
the process of negotiation or arbitration, and

2. the payoffs they would expect if negotiation or arbitration were to fail to
reach a settlement.

Based on these assumptions, Nash generated a list of axioms that a reasonable
solution ought to satisfy. These axioms are as follows:

Axiom 1 (Individual Rationality) This axiom asserts that the bargaining solu-
tion should give neither player less than what it would get from disagree-
ment, i.e., f (S,d)≥ d.

Axiom 2 (Symmetry) As per this axiom, the solution should be independent of
the names of the players, i.e., who is named a and who is named b. This
means that when the players’ utility functions and their disagreement utili-
ties are the same, they receive equal shares. So any asymmetries in the final
payoff should only be due to the differences in their utility functions or their
disagreement outcomes.

Axiom 3 (Strong Efficiency) This axiom asserts that the bargaining solution
should be feasible and Pareto optimal.
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Axiom 4 (Invariance) According to this axiom, the solution should not change
as a result of linear changes to the utility of either player. So, for example,
if a player’s utility function is multiplied by 2, this should not change the
solution. Only the player will value what it gets twice as much.

Axiom 5 (Independence of Irrelevant Alternatives) This axiom asserts that
eliminating feasible alternatives (other than the disagreement point) that
would not have been chosen should not affect the solution, i.e., for any
closed convex set S′, if S′ ⊆ S and f (S,d) ∈ S′, then f (S′,d) = f (S,d).

Nash proved that the bargaining solution that satisfies the above five axioms is
given by:

f (S,d) ∈ argmax
x∈S,x≥d

(xa−da)(xb−db)

and that such a solution is unique.
Recall that a two-person bargaining problem was defined in terms of a threat

point d. This is called the fixed threat bargaining model. A salient feature of the
threat point d is that the players will receive the payoffs d = (da,db) if they fail
to reach an agreement. This means that there is no way that one player can take
unilateral action that hurts the other. However, one can easily imagine bargaining
scenarios in which each player has a range of possible actions to take in the event
of absence of an agreement. Each player can choose an action from a set of
possible actions and each player’s choice of action affects both of them. Such a
scenario is called a variable threat scenario.

In more detail, a bargaining situation is said to allow variable threats if each
player can choose any one of several retaliatory strategies available to it, and can
commit itself to use this strategy, called its threat strategy, against the other player
if they cannot reach an agreement. Therefore, the payoffs the players would re-
ceive in such a conflict situation would depend on the threat strategies to which
they had chosen to commit themselves. In contrast, a given bargaining situation is
said to allow only fixed threats if the payoffs that the players would receive in the
absence of an agreement are determined by the nature of the bargaining situation
itself, instead of being determined by the players’ choice of threat strategies or by
any other actions the players may take. The fixed threats case is relevant mainly
to economic situations, such as buying and selling; in the event of no agreement,
there is simply “no deal.” The variable threats case is more relevant to military
situations, where a “failure to reach agreement” can have a wide range of possible
outcomes.

In order to deal with variable threat scenarios, Nash [56] extended his solution
for games with a fixed threat point. The Nash variable threat game has a unique
solution, as is the case with the Nash fixed threat game. However, in contrast to
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the Nash fixed threat game, the Nash variable threat game does not, in general,
guarantee existence of a solution.

Following Nash’s work, several other bargaining solution concepts were pro-
posed using other systems of axioms [68]. Nash’s work was also extended to
bargaining with incomplete information [31, 76]. In general, for these axiomatic
models of bargaining, the solution depends only on two factors: the set of possi-
ble agreements and the disagreement point. However, in many practical scenarios,
the outcome of bargaining depends on other factors, such as the tactics employed
by the bargainers, the procedure through which negotiation is conducted, and the
players’ information. Non-cooperative models of bargaining [69, 70, 77] incorpo-
rate these factors.

3.2 Non-Cooperative Models of Single-Issue Negotiation

In the axiomatic model, a bargaining problem was defined as a pair (S,d) but
no bargaining procedure or protocol was specified. A key difference between
the cooperative and non-cooperative models is that the former does not specify a
procedure, whereas the latter does. Perhaps the most influential non-cooperative
model is that of Rubinstein [69, 70]. He provided a basic framework that could
easily be adapted and extended for different applications. He started with a simple
complete information model [69] and then extended it to an incomplete informa-
tion case [70]. The following paragraphs provide a brief overview and some key
insights of Rubinstein’s work.

In [69], Rubinstein considered the following scenario. There are two players
and a unit of good, a pie, to be split between them. If player a gets a share of
xa ∈ [0,1], then player b gets xb = 1− xa. Neither player receives anything unless
the two players come to an agreement. Here, the issue, or the pie, can be split
between the players. So the issue is said to be divisible.

This is a strategic form game and is played over a series of discrete time pe-
riods t = 1,2, . . . In the first time period, one of the players, say player a, begins
by proposing an offer to player b. Player b can accept or reject the offer. If player
b accepts, the game ends successfully with the pie being split as per player a’s
proposal. Otherwise, the game continues to the next time period in which player
b proposes a counteroffer to player a. This process of making offers and counter-
offers continues until one of the players accepts the other’s offer. Prior to termi-
nation, player a makes offers in all odd-numbered time periods t = 1,3, . . . , and
accepts or rejects player b’s offers in all even-numbered time periods t = 2,4, . . .
Player b makes offers in all even-numbered time periods and accepts or rejects
player a’s offer in all odd-numbered time periods. Since the players take turns in
making offers, this is known as alternating offers protocol. In this protocol, there
are no rules that prescribe how a player’s offer should relate to any previous or
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succeeding offers (this is in contrast to the monotonic concession protocol [67]
that prescribes a relation on a current offer and the previous one).

Here, the utility of an outcome to a player depends on its share and on the time
period in which an agreement is reached. The utility is increasing in the player’s
share and decreasing in time. The decrease in utility with time may be attributed
to the object under negotiation being perishable, or to inflation. This decrease
in utility with time is modeled with a discount factor. Let δa and δb denote the
discount factor for a and b, respectively. If a and b receive a share of xa and xb

respectively where xa + xb = 1, then their utilities at time t are as follows:

Ua = xaδt−1
a and Ub = xbδt−1

b .

If this discounted game is played infinitely over time, then Rubinstein [69] showed
that there is a unique perfect equilibrium outcome in which the players’ immedi-
ately reach an agreement on the following shares:

xa =
1−δb

1−δaδb
and xb =

δb−δaδb

1−δaδb

where player a is the first mover. The properties of uniqueness and immediate
agreement are especially desirable in the context of agents [43, 45]. However, this
infinite horizon model may not be immediately applicable to multiagent systems
since agents are typically constrained by a deadline (we will deal with deadlines
shortly).

Although Rubinstein’s model may not be directly applicable to the design of
automated negotiating agents, it provides two key intuitive insights. First, in fric-
tionless1 bargaining, there is nothing to prevent the players from haggling for as
long as they wish. It seems intuitive that the cost of haggling serves as an incen-
tive for the players to reach an agreement. Second, a player’s bargaining power
depends on the relative magnitude of the players’ respective costs of haggling.
The absolute magnitudes of these costs are irrelevant to the bargaining outcome.

It is now clear how the discount factor can influence negotiation. Apart from
the discount factor, a deadline can also impact on negotiation. Deadlines are
important because, in many applications [37], the agents must reach an agreement
within a time limit. So let us now study negotiations that are constrained by both
a discount factor and a deadline.

Work on negotiation with deadlines and discount factors includes [18, 25, 73].
While Fatima et al. [18] and Gatti et al. [25] use the alternating offers protocol,
Sandholm et al. [73] use a simultaneous offers protocol. Also, while [18] con-
siders negotiation over a pie, [25] considers the players’ reserve prices. Since the

1If it does not cost the players anything to make offers and counteroffers, the bargaining process
may be considered frictionless.
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model in [18] resembles Rubinstein’s model (described above) more closely, we
will study this one in detail.

In [18], δ is the discount factor for both players. And n, where n denotes a
positive integer, is the deadline. Thus, negotiation must end by the time period t =
n. Otherwise, both players get zero utilities. For time t ≤ n, the utility functions
are defined as follows. If a gets a share of xa and b gets xb where xa+xb = 1, then
Ua = xaδt−1 and Ub = xbδt−1. As before, the negotiation is conducted as per the
alternating offers protocol.

Here, under the complete information assumption, the equilibrium offer for
a time t ≤ n can be obtained using backward induction as follows. Let Xa(t)
and Xa(t) denote a’s and b’s equilibrium shares, respectively, for a time period t.
Consider the last time period t = n and assume that a is the offering agent. Since
the deadline is n and the pie shrinks with time, it will be optimal for a to propose
to keep the entire shrunken pie and give nothing to b. Because of the deadline, b
will accept such an offer.2 If we let STRATA(t) and STRATB(t) denote a’s and b’s
equilibrium strategies for time t, then the following strategies will form a subgame
perfect equilibrium. For t = n, these strategies are:

STRATA(n) =
{

OFFER (δn−1,0) If a’s turn to offer
ACCEPT If b’s turn to offer

STRATB(n) =
{

OFFER (0,δn−1) If b’s turn to offer
ACCEPT If a’s turn to offer

For all preceding time periods, the equilibrium strategies are obtained as follows.
Consider a time t < n and let a be the offering agent. Agent a will propose an
offer such that b’s utility from it will be equal to what b would get from its own
offer for the next time period. Agent b will accept such an offer. So for t < n, the
following strategies will form a subgame perfect equilibrium:

STRATA(t) =

⎧⎪⎪⎨⎪⎪⎩
OFFER (δt−1−Xb(t +1),Xb(t +1)) If a’s turn to offer
If (Ua(xa, t)≥ UA(t +1)) If a receives (xa,xb)
ACCEPT

else REJECT

STRATB(t) =

⎧⎪⎪⎨⎪⎪⎩
OFFER (Xa(t +1),δt−1−Xa(t +1)) If b’s turn to offer
If (Ub(xb, t)≥ UB(t +1)) If b receives (xa,xb)
ACCEPT

else REJECT

2It is possible that b may reject the offer. In practice, a will have to propose an offer that will
be just enough to induce b to accept.
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where UA(t) (UB(t)) denotes a’s (b’s) equilibrium utility for time t. An agree-
ment takes place at t = 1.

The above model was also analyzed in [18] in an incomplete information set-
ting with uncertainty about utility functions. In contrast, [25, 73] consider uncer-
tainty over the negotiation deadline. Also, as we mentioned earlier, a key differ-
ence between [18] and [73] is that the former uses the alternating offers protocol,
while the latter uses a simultaneous offers protocol and treats time as a continuous
variable. These differences in the setting result in the following differences in the
outcomes. First, for the former, an agreement can occur in the first time period
and the entire surplus does not necessarily go to just one of the players. For the
latter, an agreement only occurs at the earlier deadline and the entire surplus goes
to the player with the later deadline (different players have different deadlines).
Second, unlike the former, the deadline effect in the latter completely overrides
the effect of the discount factor. For the former, an agent’s share of the surplus
depends on both the deadline and the discount factor. These differences show that
the protocol is a key determinant of the outcome of negotiation.

However, apart from the protocol, the parameters of negotiation (such as the
deadline and the discount factor) also influence an agent’s share. For the alter-
nating offers protocol, [19] shows how the deadline and discount factor affects an
agent’s share.

Before closing this section, we will provide a brief overview of some of the
key approaches for analyzing games with incomplete information. Incomplete
information games are those where either or both players are uncertain about some
parameters of the game, such as the utility functions, the strategies available to the
players, the discount factors, etc. Furthermore, for sequential games, such as the
alternating offers game described in Section 3.2, the players may acquire new
information, and so, their information may change during the course of play.

There is a widely used approach for dealing with such incomplete information
cases. This approach was originated by Harsanyi [28, 29, 30] in the context of
simultaneous move games. In this approach, a player is assumed to have beliefs,
in the form of a random variable, about an uncertain parameter. Thus, there is a set
of possible values for the parameter, and a probability distribution over these pos-
sible values. And the uncertain parameter is determined by the realization of this
random variable. Although the random variable’s actual realization is observed
only by the player, its ex-ante probability distribution is assumed to be common
knowledge to the players. Such a game is called a Bayesian game and the related
equilibrium notion is Bayesian Nash equilibrium.

Although a Bayesian game deals with incomplete information, it is a simul-
taneous moves game. However, most multiagent negotiations require agents to
choose actions over time. Dynamic games [53] are a way of modeling such nego-
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tiations. An example of a dynamic game is the alternating offers game described
in Section 3.2 where the players take turns in making offers. In dynamic games,
the uncertainty in information may be one-sided [70] (meaning that one of the two
players has complete information, while the other is uncertain about some nego-
tiation parameters), or it may be two-sided [8, 9] (meaning that both players are
uncertain about some parameters). Depending on the type of uncertainty, a range
of refinements of Nash equilibrium have been defined for dynamic games. These
include subgame perfect equilibrium and sequential equilibrium [53].

Having looked at both the axiomatic and the non-cooperative models, let us
now examine the similarities and differences between them. A key similarity
is that, in both cases, there is a degree of conflict between the agents’ interest,
but there is also room for them to cooperate by resolving the conflict. Another
similarity is between the solutions for the Nash bargaining model and Rubinstein’s
model: as the discount factor approaches 1 (i.e., as the players become more
patient), the solution to the latter converges to the solution to the former. In this
solution, the pie is split almost equally between the players.

A key difference between these two models is the way in which players are
modeled and the way in which cooperation is enforced. In non-cooperative game
theory, the basic modeling unit is the individual, and cooperation between individ-
uals is self-enforcing. In contrast, in cooperative game theory the basic modeling
unit is the group, and players can enforce cooperation in the group through a third
party.

Another difference is that in a non-cooperative game, each player indepen-
dently chooses its strategy. But in a cooperative game, the players are allowed
to communicate before choosing their strategies and playing the game. They can
agree but also disagree about a joint strategy. In the context of the Prisoner’s
Dilemma game, the players first communicate to decide on a joint strategy. As-
sume that the joint strategy they choose is (deny, deny). The players then play
this strategy and each player is guaranteed (by means of a third party that enforces
agreement) a utility of −1.

Yet another difference between cooperative and non-cooperative models is that
for the former, there is no element of time but for the latter there is. A non-
cooperative bargaining game is played over a series of time periods. In general, the
outcome for non-cooperative bargaining is determined through a process in which
players make offers and counteroffers. This process is modeled as an alternating
offers game in which the players take turns in making offers.
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4 Game-Theoretic Approaches for Multi-Issue

Negotiation

One of the key differences between single and multi-issue bargaining is that mul-
tiple issues can be bargained using one of several different procedures. A pro-
cedure or protocol specifies the rules for negotiating the issues. For example, a
set of issues may be negotiated together or one by one. Furthermore, the out-
come of a negotiation need not be independent of the procedure. It is necessary
to understand these procedures in order to interpret the results of both coopera-
tive (i.e., axiomatic) and non-cooperative models of multi-issue bargaining. So
we will first outline these procedures, and then describe some of the key results
from the axiomatic and the non-cooperative models. The following are the four
key procedures for bargaining over multiple issues [58].

1. Global bargaining: Here, the bargaining agents directly tackle the global
problem in which all the issues are addressed at once. In the context of
non-cooperative theory, the global bargaining procedure is also called the
package deal procedure. In this procedure, an offer from one agent to the
other would specify how each one of the issues is to be resolved.

2. Independent/separate bargaining: Here negotiations over the individual is-
sues are totally separate and independent, with each having no effect on the
other. This would be the case if each of the two parties employed m agents
(for negotiating over m issues), with each agent in charge of negotiating one
issue. For example, in negotiations between two countries, each issue may
be resolved by representatives from the countries who care only about their
individual issue.

3. Sequential bargaining with independent implementation: Here the two par-
ties consider one issue at a time. For instance, they may negotiate over the
first issue, and after reaching an agreement on it, move on to negotiate the
second, and so on. Here, the parties may not negotiate an issue until the pre-
vious one is resolved. There are several forms of the sequential procedure.
These are defined in terms of the agenda and the implementation rule. For
sequential bargaining, the agenda3 specifies the order in which the issues
will be bargained. The implementation rule specifies when an agreement
on an individual issue goes into effect. There are two implementation rules
that have been studied in the literature [58]: the rule of independent imple-
mentation and the rule of simultaneous implementation. For the former, an

3As we will see in Section 5.3, the term “agenda” is defined differently in the context of the
package deal procedure.
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agreement on an issue goes into effect immediately (i.e., before negotiation
begins on the next issue). The latter is as described below.

4. Sequential bargaining with simultaneous implementation: This is similar to
the previous case except that now an agreement on an issue does not take
effect until an agreement is reached on all the subsequent issues.

The dependence of the outcome of bargaining on the procedure has been rec-
ognized in the context of both axiomatic and non-cooperative models. We will
describe some of the key results of the former in Section 4.1 and of the latter in
Section 4.2.

4.1 Cooperative Models of Multi-Issue Negotiation

A lot of the work on cooperative models of multi-issue bargaining has dealt with
proposing axioms that relate the outcomes of the above procedures. This includes
work by Myerson [54] and by Ponsati and Watson [58]. While [54] deals with
the first three of the above-listed four procedures, [58] deals with all four of them.
In more detail, for a set of axioms, [58] defined a range of solutions to a multi-
issue bargaining problem. In addition to the efficiency, invariance, and symmetry
axioms, these include the following:

1. Simultaneous implementation agenda independence: This axiom states that
global bargaining and sequential bargaining with simultaneous implemen-
tation yield the same agreement.

2. Independent implementation agenda independence: This axiom states that
global bargaining and sequential bargaining with independent implementa-
tion yield the same agreement.

3. Separate/global equivalence: This axiom states that global bargaining and
separate bargaining yield the same agreement.

Different axioms characterize different solutions. Details on these solutions can
be found in [58].

4.2 Non-Cooperative Models of Multi-Issue Negotiation

We will begin by looking at the package deal procedure in a complete information
setting. The package deal procedure is similar to the alternating offers protocol in
that the parties take turns in making offers. However, here, an offer must include
a share for each issue under negotiation.
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The strategic behavior for the package deal procedure was analyzed in [18].
Below, we will describe this model in the context of the complete information set-
ting (see [18] for details regarding strategic behavior in an incomplete information
setting). Here, a and b negotiate over m > 1 divisible issues. These issues are m
distinct pies and the agents want to determine how to split each of them. The set
S = {1,2, . . . ,m} denotes the set of m pies. As before, each pie is of size 1. For
both agents, the discount factor is δ for all the issues (in [18], the discount factor
is different for different issues, but for ease of discussion we will let it be the same
for all the issues). For each issue, n denotes each agent’s deadline.

In the offer for time period t (where 1≤ t ≤ n), agent a’s (b’s) share for each of
the m issues is represented as an m element vector xa (xb) such that, for i≤ i≤m,
0≤ xa

i ≤ 1 and xa
i +xb

i = 1. Thus, if agent a’s share for issue c at time t is xa
c , then

agent b’s share is xb
c = (1−xa

c). The shares for a and b are together represented as
the package (xa,xb).

An agent’s cumulative utility is linear and additive [41]. The functions Ua and
Ub give the cumulative utilities for a and b respectively at time t and are defined
as follows:

Ua((xa,xb), t) =

{
Σm

c=1wa
cδt−1xa

c if t ≤ n
0 otherwise

(4.1)

Ub((xa,xb), t) =

{
Σm

c=1wb
cδt−1xb

c if t ≤ n
0 otherwise

(4.2)

where wa ∈R+
m denotes an m element vector of constants for agent a and wb ∈R+

m
such a vector for b. These vectors indicate how the agents prefer different issues.
For example, if wa

c > wa
c+1, then agent a values issue c more than issue c+ 1.

Likewise for agent b.
It is clear from the above definition of utility functions that the parties may

have different preferences over the issue. So, during the process of negotiation, it
might be possible for an agent to perform trade-offs across the issues to improve
its utility. Since the utilities are linear, the problem of making trade-offs becomes
computationally tractable.4.

For this setting, let us see how we can determine an equilibrium for the pack-
age deal procedure. Since there is a deadline, we can find an equilibrium using
backward induction (as was done for single-issue negotiation). However, since an

4For a non-linear utility function, an agent’s trade-off problem becomes a non-linear optimiza-
tion problem Due to the computational complexity of such an optimization problem, a solution
can only be found using approximation methods [4, 32, 42]. Moreover, these methods are not gen-
eral in that they depend on how the cumulative utilities are actually defined. Since we use linear
utilities, the trade-off problem will be a linear optimization problem, the exact solution to which
can be found in polynomial time.



Chapter 4 159

offer for the package deal must include a share for all the m issues, an agent must
now make trade-offs across the issues in order to maximize its cumulative utility.
For a time t, agent a’s trade-off problem (TA(t)) is to find an allocation (xa,xb)
that solves the following optimization problem:

Maximize Σm
c=1wa

cxa
c

subject to δt−1Σm
c=1wb

c(1− xa
c)≥ UB(t +1)

0≤ xa
c ≤ 1 for 1≤ c≤ m (4.3)

The problem TA(t) is nothing but the well-known fractional knapsack problem.5

Let SA(TA(t)) denote a solution to TA(t). For agent b, TB(t) and SB(TB(t)) are
analogous. Given this, Theorem 4.1 (taken from [18]) characterizes an equilib-
rium for the package deal procedure. Here, STRATA(t) (STRATB(t)) denotes a’s
(b’s) equilibrium strategy for time t.

Theorem 4.1 For the package deal procedure, the following strategies form a
subgame perfect equilibrium. The equilibrium strategy for t = n is:

STRATA(n) =
{

OFFER (δn−1,0) If a’s turn to offer
ACCEPT If b’s turn to offer

STRATB(n) =
{

OFFER (0,δn−1) If b’s turn to offer
ACCEPT If a’s turn to offer

where 0 is a vector of m zeroes. For all preceding time periods t < n, the strategies
are defined as follows:

STRATA(t) =

⎧⎪⎪⎨⎪⎪⎩
OFFER SA(TA(t)) If a’s turn to offer
If (Ua(xa, t)≥ UA(t +1)) If a receives an offer (xa,xb)
ACCEPT
else REJECT

STRATB(t) =

⎧⎪⎪⎨⎪⎪⎩
OFFER SB(TB(t)) If b’s turn to offer
If (Ub(xb, t)≥ UB(t +1)) If b receives an offer (xa,xb)
ACCEPT

else REJECT

where UA(t) (UB(t)) denotes a’s (b’s) equilibrium utility for time t. An agreement
takes place at t = 1.

5Note that if xa
c is allowed to take one of two possible values, zero or one, then the trade-off

problem becomes an integer knapsack problem, which is NP-complete. Such a trade-off problem
corresponds to negotiation over indivisible issues. Here, an issue must be allocated in its entirety
to one of the two agents. So the problem is that of determining who to allocate which issue.
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One can easily verify that the outcome of the package deal procedure will be
Pareto optimal.

For the separate procedure, the m issues are negotiated independently of each
other. So the equilibrium for the individual issues will be the same as that for
single-issue negotiation.

For the sequential procedure with independent implementation, the m issues
are negotiated sequentially one after another. But since the agreement on an is-
sue goes into effect immediately, the equilibrium for the individual issues can be
obtained in the same way as that for single-issue negotiation. An issue will be
negotiated only after the previous one is settled.

For the sequential procedure with simultaneous implementation, the m issues
are negotiated sequentially one after another. But since the agreement on an issue
goes into effect only after all the m issues are settled, the basic idea for obtaining
an equilibrium for this procedure will be the same as that for the package deal
procedure.

Busch and Horstman [6] consider two issues and show how the outcome for
sequential negotiation with independent implementation can differ from the out-
come for simultaneous negotiations.

For the sequential procedure with independent implementation, a key determi-
nant of the outcome of negotiation is the agenda. In the context of this procedure,
the term agenda means the order in which the issues are settled. The importance of
the agenda was first recognized by Schelling [75]. This initiated research on agen-
das for multi-issue negotiation. The existing literature on agendas can broadly be
divided into two types: those that treat the agenda as an endogenous variable
[3, 33, 34], and those that treat it as an exogenous [20] variable.

The difference between these two types of agendas is that, for the former, an
agenda is selected during the process of negotiating over the issues. For the latter,
an agenda is decided first, and then the parties negotiate over the issues on the
agenda.

Research on endogenous agendas includes [3, 33, 34]. Bac and Raff [3] deal
with two divisible issues in the context of an incomplete information setting. Here,
the uncertainty is about the discount factor. For this setting, they study the prop-
erties of resulting equilibrium. While [3] deals with two divisible issues, Inderst
[34] deals with multiple divisible issues and potentially infinite discrete time pe-
riods. Here, the parties are allowed to make an offer on any subset of a given
set of issues but can only accept/reject a complete offer. In this sense, an agenda
is selected “endogenously.” For this setting, he showed existence and unique-
ness conditions for equilibrium under the complete information assumption. In
and Serrano [33] generalized these results to a larger class of utility functions by
considering a complete information setting. Similar work in the context of an
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incomplete information setting was later dealt with by Fatima et al. in [17] .
Fershtman [20] dealt with exogenous agendas. For the complete information

setting, he considered two divisible issues, and showed how the order in which
they are negotiated affects the outcome.

5 Heuristic Approaches for Multi-Issue Negotiation

The heuristic approach is another approach for the design of negotiating agents.
This approach is particularly useful when there are multiple issues to negotiate,
and finding an equilibrium offer is computationally hard. As we saw in Sec-
tion 4.2, finding an equilibrium offer for multi-issue negotiation requires solving
a trade-off problem, which can be computationally hard. In order to overcome the
computational hardness of the trade-off problem, heuristic strategies can be used
instead of equilibrium ones.

Heuristics can be used in a number of ways. For example, they can be used for
generating counteroffers. Apart from counteroffer generation, heuristics can also
be used to predict information about the opponent. This approach is particularly
relevant to situations where the negotiators have limited information about each
other. Yet another use of heuristics is in the generation of negotiation agendas.
The agenda is a key determinant of the outcome of a negotiation. So finding the
right agenda is crucial. Since the problem of finding optimal agendas may be com-
putationally hard, a heuristic approach will be useful for solving this problem. Be-
low, we will explain how heuristics can be employed for generating counteroffers,
for predicting the opponent’s preferences, and for generating optimal negotiation
agendas.

5.1 Heuristics for Generating Counteroffers

Faratin et al. defined a heuristic model based on negotiation decision functions
[14]. They defined a wide range of negotiation strategies that agents can use to
make offers, and also showed how an agent can dynamically change its strategy
over time. In order to generate a counteroffer for an issue under negotiation,
they defined three types of strategies: time dependent, resource dependent, and
behavior dependent, or imitative, strategies.

A time dependent strategy is defined as a function that takes “time” as an input
and returns an offer in such a way that concessions are small at the beginning of
negotiation but increase as the deadline approaches. A family of such functions is
defined by varying the concessions made during the course of negotiation. Thus
an agent can use one of these functions as a negotiation strategy. For example,
let there be two negotiators a and b and let j ∈ {1,2, . . . ,n} be an issue under
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1 

Figure 4.1: A Boulware, a linear, and a Conceder strategy.

negotiation. Assume that issue j represents the “price” of a product. If x j
a→b(t)

denotes the price offered by a at time t, then we have the following equation for
computing an offer:

x j
a→b(t)=

{
mina +αa(t)(maxa−mina) if a’s utility decreases with price
mina +(1−αa(t))(maxa−mina) if a’s utility increases with price

where maxa and mina denote a’s reserve prices. Here, αa(t) is a function such that
0 ≤ αa(t)≤ 1, αa(0) = κa, and αa(ta

max) = 1. So at the beginning of negotiation,
the offer will be a constant (κa), and when the deadline (ta

max) is reached, the offer
will be a’s reserve price.

A family of time dependent strategies can be defined by varying the defini-
tion of the function αa(t). For instance, αa(t) could be defined as a polynomial
function parameterized by β ∈ R+ as follows:

αa(t) = κa +(1−κa)(min(t, ta
max)/ta

max)
1/β

An infinite number of possible strategies can be obtained by varying β. One can
easily verify that for small β (such a strategy is called Boulware in [64]), the
initial offer is maintained until time almost approaches the deadline and then a
quick concession is made to the reserve value. On the other hand, for large β
(such a strategy is called Conceder in [59]), the offer quickly goes to the reserve
value. The parameter β can also be suitably adjusted to obtain a linear strategy.
These strategies are illustrated in Figure 4.1.
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Resource dependent strategies are also defined in terms of a set of functions
similar to the time dependent functions except that the domain of the function
is the quantity of resources available instead of the remaining time. Here, the
functions are used to model the pressure in reaching an agreement that the limited
resources may impose on an agent’s behavior.

Behavior dependent strategies are for those situations in which there is no
pressure in terms of time or resources. Here, an agent simply imitates its oppo-
nent’s strategy in order to protect itself from being exploited by the opponent.
Again, there is a family of functions that differ in terms of the specific aspect of
the opponent’s behavior that is imitated and the degree to which it is imitated. See
[14] for more details on these strategies and how they can be combined together.

5.2 Heuristics for Predicting Opponent’s Preferences and

Generating Counteroffers

Heuristics can not only be used for generating offers [15], but can also be used
to predict the opponent’s preferences for the issues. This prediction is relevant to
situations where the negotiators have limited information about their opponents.
Here, any information gained from the opponent’s offers in the past rounds is
used to heuristically form a prediction of the future. Heuristics based on similar-
ity criteria [15] are useful in this context. These heuristics predict the opponent’s
preferences by applying a fuzzy similarity criteria to the opponent’s past offers.
For example, consider a buyer-seller negotiation over two issues: the “price” and
the “quality” of a product. If, during negotiation, the opponent is making more
concessions on price than on quality, then it implies that it prefers quality more
than price. This information can then be used to make trade-offs and generate bet-
ter counteroffers. See [15] for details on how fuzzy similarity learning technique
is combined with hill climbing to explore the space of possible trade-offs and find
an acceptable counteroffer.

The similarity criteria with hill climbing is defined for direct negotiations be-
tween the parties. In some negotiations, such as those involving limited infor-
mation, non-linear utilities, or interdependent issues, an intermediate agent or a
mediator can be used to facilitate the process of negotiation by allowing the nego-
tiating parties to reach agreements that are optimal at a system-wide level. Klein,
Ito, and Hattori [35] showed how heuristics can be used to reach Pareto optimal
agreements through a mediator. Here, the agents themselves might not be able to
reach agreements that are Pareto optimal. But by using a mediator, they can reach
agreements that are better for both negotiators. The parties send offers to a medi-
ator who then determines a Pareto optimal agreement. This approach works if the
parties trust the mediator and truthfully reveal information about their preferred
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agreements. An agent’s preferences will be revealed when it makes offers to the
mediator, because an agent will only propose those offers that are optimal from
its individual perspective. However, due to non-linear utilities and interdependen-
cies between the issues, it is not easy for a party to decide what to offer to the
mediator. Here comes the role of heuristics such as hill climbing and simulated
annealing. See [35] for details regarding these heuristics. Similar work in the
context of auctions was done by Marsa-Maestre et al. [52].

5.3 Heuristics for Generating Optimal Agendas

Heuristics can not only be used to predict the opponent’s preferences or for gen-
erating counteroffers, but can also be used to find optimal negotiation agendas.
The approaches described in the previous sections assume that the set of issues to
be negotiated are given, and show how to generate offers for those issues. But in
many cases, it is not just the negotiation offers that determine the outcome of a
negotiation, but the actual issues included for negotiation also play a crucial part.
For example, consider a car dealer who has m different cars for sale. A potential
buyer may be interested in buying g < m cars. So the buyer must first choose
which cars to negotiate the price for. From the

(m
g

)
possible subsets (i.e., possible

agendas) of size g, the buyer must choose one. Since different agendas may yield
different utilities to the negotiators, a utility maximizing buyer will want to choose
the one that maximizes its utility and is therefore its optimal agenda. Finding an
optimal agenda is therefore crucial to the outcome of a negotiation.

Due to the complexity of finding optimal agendas, a genetic algorithm (GA)
approach was used by Fatima et al. in [16] for evolving optimal agendas for the
package deal procedure. For the case of non-linear utilities, this approach em-
ploys two GA search engines: one for evolving an optimal agenda and another for
evolving an optimal negotiation strategy (i.e., an optimal allocation of the issues
on an agenda) for a given agenda. The former uses a surrogate-assisted GA and
the latter uses a standard GA. The surrogate-assisted GA uses a surrogate (or ap-
proximation) to model an agent’s utility from a given agenda. See [16] for details
about this heuristic method.

5.4 Heuristics for Reasoning about Deliberation Cost

In many scenarios, negotiating agents need to solve computationally intractable
problems. For example, consider a distributed vehicle routing problem [72], in
which two self-interested dispatch centers (e.g., belonging to different companies)
need to fulfill a number of tasks (deliveries), and have resources (vehicles) at their
disposal. In this case, each agent has an individual optimization problem, aiming
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to make all deliveries, while minimizing transportation cost (i.e., driven mileage),
subject to the following constraints:

• Each vehicle has to begin and end its tour at the depot of its center (but
neither the pickup nor the drop-off locations of the orders need to be at the
depot).

• Each vehicle has a maximum load weight constraint. These may differ
among vehicles.

• Each vehicle has a maximum load volume constraint. These may differ
among vehicles.

• Each vehicle has a maximum route length (prescribed by law).

• Each delivery has to be included in the route of some vehicle.

This individual agent optimization problem is NP-complete [72]. In addition,
agents can potentially save mileage by pooling resources and tasks. This joint
problem is also NP-complete [72]. Hence, although the agents can negotiate to
find ways to share the delivery tasks and resources (and to divide the cost), they
must solve intractable problems in the process.

This sort of scenario is precisely why heuristics are needed in some negotia-
tion domains. Indeed, agents may even reason about this process explicitly, for
example by controlling an anytime algorithm [10] based on the degree to which it
is expected to improve the current solution while negotiating with another agent.
Based on this idea, Larson and Sandholm introduced a new solution concept,
dubbed deliberation equilibrium, in which deliberation (i.e., computation) costs
are factored into the agents’ strategies explicitly [48].

6 Negotiating with Humans

So far, we have discussed various approaches to programming software agents that
are capable of negotiating rationally with other software agents. In such settings,
one builds on the assumption that the opponent is built in such a way as to act
rationally, i.e., to further its own goals. In cases where software agents cannot be
assumed to be rational (e.g., because they have to solve intractable problems), we
saw how heuristics can be useful.

However, when agents negotiate with humans, a completely new challenge
arises. This is because, as research on bounded rationality has shown [26], hu-
mans make systematic deviations from the optimal behavior prescribed by norma-
tive theory. For example, people often change their valuations based on how the
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choices are framed [78], are averse to inequity [5], and are willing to engage in
irrational behavior such as costly punishment [13].

Given this, one often cannot assume that humans will follow the equilib-
rium strategy, or even be utility maximizers. Instead, one must endow software
agents with both (i) predictive behavioral models of how humans negotiate, and
(ii) decision-making algorithms that take these models into account as they guide
the agent’s behavior. Modeling human negotiation is a non-trivial problem, how-
ever. As one can imagine, modeling human negotiation behavior is a non-trivial
endeavor, and a field of study in its own right in the fields of psychology and
business study [49].

The above challenge is further complicated by the fact that the purpose of
agents that negotiate with humans can vary. Following are some possible objec-
tives of such agents:

• Outperform human negotiators in a web-based market.

• Train people in negotiation skills to help them negotiate with other people.

Depending on the purpose of the agent, the types of behavioral and decision-
making models may differ substantially. For example, an agent that is designed
to train people in negotiation skills would need to mimic other humans, while an
agent trying to make money in an online market simply needs to maximize profit.

One of the earliest agents capable of negotiating with humans was designed
by Kraus and Lehmann to play the game Diplomacy using a variety of heuristics
[44]. Surprisingly, humans were unable to discern whether they were playing with
a human or an agent. More recently, Katz and Kraus introduced agents that use
reinforcement learning to participate in single-shot auctions or games, and have
been shown to achieve higher payoffs than humans [39]. Building on this work,
they later introduced gender-sensitive learning, which achieves even better results
[40].

Another significant line of work builds on the Colored Trails (CT) platform,
which is a software infrastructure for investigating decision making in groups
comprising people, computer agents, and a mix of these two [27]. Although the
CT framework is highly customizable, most work focused on an n×m board of
colored squares, around which individual players can move. Each player has a
designated goal square, and can move to it provided it possesses chips that match
the colors of the squares along the path. Each player is initially endowed with
different colored chips, which may or may not be sufficient for reaching its in-
dividual goal. Thus, players may need to negotiate with one another in order to
redistribute those chips. Figure 4.2 shows a screen shot of a CT game [50], dis-
playing the board, the player’s location (marked “me”), the player’s goal (marked
“G”), the negotiation counterpart (marked as a square), the chips each player has,
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and a proposal panel that the player is using to prepare an offer to send to the coun-
terpart. Note that, in this case, the player cannot see the counterpart’s goal. Other
variants are possible, for example in which the players do not see each other’s
current chip endowment.

(a) Colored Trails board (b) Proposal panel

Figure 4.2: Colored Trails user interface example.

The CT platform has been used to conduct controlled experiments to study
human negotiation behavior. For example, it was used to build predictive mod-
els of humans’ reciprocity toward other negotiators [24], or willingness to reveal
individual goals [11]. By pitching automated agents against human players, CT
was also used to evaluate agents capable of adapting to social [22] and cultural
[23] attributes that influence human decision making in negotiation. Finally, CT
was used to conduct novel experiments to understand how humans design auto-
mated negotiation strategies [51]. A more comprehensive survey of human-agent
negotiation can be found in a recent article by Lin and Kraus [50].

7 Argumentation-Based Negotiation

Game-theoretic and heuristics-based approaches to automated negotiation are
characterized by the exchange of offers between parties with conflicting positions
and are commonly referred to as proposal-based approaches. That is, agents ex-
change proposed agreements – in the form of bids or offers – and when proposed
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deals are not accepted, the possible response is either a counterproposal or with-
drawal. Argumentation-based negotiation (ABN) approaches, on the other hand,
enable agents to exchange additional meta-information (i.e., arguments) during
negotiation [63].

Consider the case in which an agent may not be aware of some alternative
plans of achieving some goal. Exchanging this information may enable agents
to reach agreements not previously possible. This was shown through the well-
known painting/mirror hanging example presented by Parsons et al. [57]. The
example concerns two home-improvement agents – agent i trying to hang a paint-
ing, and agent j trying to hang a mirror. There is only one way to hang a painting,
using a nail and a hammer. But there are two ways of hanging a mirror, using a
nail and a hammer or using a screw and a driver, but j is only aware of the former.
Agent i possesses a screw, a screw driver, and a hammer, but needs a nail in addi-
tion to the hammer to hang the painting. On the other hand, j possesses a nail, and
believes that to hang the mirror, it needs a hammer in addition to the nail. Now,
consider the dialogue depicted in Figure 4.3 (described here in natural language)
between the two agents.

Can you sell 
me the nail?

(a)

No. Can you sell me 
the hammer?

Why do you need 
to keep the nail?

(b)

I need it to 
hang a mirror

But you can use a 
screw and a driver 
to hang the mirror!

(c)

In that case, would you 
swap my nail with your 

screw and driver? Deal

(b)

Figure 4.3: Dialogue between agents i (black) and j (gray).

As the figure shows, at first, j was not willing to give away the nail because
it needed it to achieve its goal. But after finding out the reason for rejection, i
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managed to persuade j to give away the nail by providing an alternative plan for
achieving the latter’s goal.

This type of negotiation dialogue requires a communication protocol that en-
ables agents to conduct a discussion about a domain of interest using a shared
vocabulary (i.e., ontology). Furthermore, it requires the ability to present justifi-
cations of one’s position, as well as counterarguments that influence the counter-
part’s mental state (e.g., its goals, beliefs, plans) [46]. Consequently, much work
on ABN builds on logic-based argumentation protocols. For example, Parsons et
al. [57] present a framework based on the logic-based argumentation framework
of Elvang-Gøransson et al. [12]. The framework of Sadri et al. [71] uses abduc-
tive logic programming [21]. Other frameworks allow the exchange of a variety
of other information relevant to negotiation, such as threats and rewards [2, 65],
or claims about social rights and obligations [38].

There has been some work on characterizing the outcomes of argument-based
negotiation (e.g., see [62] or [1]). However, the connection between ABN for-
malisms and classical models of negotiation is still not well-developed. For exam-
ple, it is not clear whether and how a particular argumentation protocol achieves
properties like Pareto optimality or independence of irrelevant alternatives. In ad-
dition, most existing models of argumentation lack an explicit model of strategic
behavior. This is a major drawback, since agents may withhold or misreport argu-
ments in order to influence the negotiation outcome to their own advantage. For
a recent discussion on strategic behavior in argumentation, and initial attempts at
grounding it in game theory, see [60, 61].

8 Conclusions

In this chapter, we studied some of the key concepts and techniques used for mod-
eling bargaining. Specifically, we looked at the axiomatic and non-cooperative
models of bargaining. Each of these two approaches has strengths and limita-
tions. For example, a main strength of the Nash bargaining model is its simplicity
and the uniqueness of its solution. However, this approach can be criticized be-
cause it ignores the whole process of making offers and counteroffers, and the
possibility of a breakdown. The model may therefore be more relevant to bar-
gaining with arbitration. In non-cooperative bargaining, the process of making
offers and counteroffers is modeled as an alternating offers game. But the solu-
tion to this model assumes that both players are able to apply backward induc-
tion logic. This assumption has been criticized because performing backward in-
duction can sometimes require complex computations regarding events that never
actually take place [47]. Despite the differences, the axiomatic and strategic ap-
proaches can sometimes be complementary in that each can help to justify and
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clarify the other [56].
Although bargaining has long been studied by economists and game theorists,

its study in the context of multiagent systems is relatively recent. While the game-
theoretic models of bargaining provide some key insights, they also open up new
challenges when applied in the context of computational agents. These challenges
arise mainly due to the bounded rationality of computational agents. Thus bar-
gaining solutions must be found that are not only individual rational and Pareto
optimal, but also computationally feasible. This will require the use of heuristic
techniques.

Another challenge that arises from the bounded rationality of negotiators is
how to design agents that can not only effectively negotiate with other agents but
also with human negotiators. Results from research in the social sciences have
shown that humans do not necessarily maximize utilities and they do not always
follow equilibrium strategies. The problem of designing heuristic strategies that
take this kind of behavior into account is an open research problem.
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9 Exercises

1. Level 1 Suppose that x ∈ S, y ∈ S, xa = da, yb = db, and 0.5x + 0.5y is
a strongly efficient allocation in S. Find the Nash bargaining solution of
(S,d).

2. Level 1 Suppose that there are two divisible pies (x and y) of unit size. Two
players (a and b) bargain over the division of these pies using the package
deal procedure. Let the negotiation deadline be 3 and the discount factor
be δ = 0.25. Assume that a has utility function Ua = 2xa + ya and b has
Ub = xb +3yb, where xa and ya denote a’s allocation of the two pies and xb

and yb denote b’s allocation. Under the complete information assumption,
when will an agreement be reached and what will each player’s equilibrium
allocation be?
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3. Level 2 Develop a program that will take the number of issues, the negoti-
ation deadline, the discount factor, and the two players’ utility functions as
input, and generate the equilibrium allocation for the package deal proce-
dure under the complete information assumption.

4. Level 3 Design a software negotiating agent that can generate offers using
the negotiation decision functions described in Section 5.1. Do this first for
single-issue negotiation and then for multi-issue negotiation.

5. Level 4 Define a multi-issue negotiation setting in terms of a deadline, a
discount factor, and the player’s utility functions. For this setting, conduct
a negotiation experiment with human participants using the package deal
procedure and study their behavior. Then analyze how this compares with
game-theoretic equilibrium behavior.
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Chapter 5

Argumentation among Agents

Iyad Rahwan

1 Introduction

The theory of argumentation is a rich, interdisciplinary area of research spanning
philosophy, communication studies, linguistics, and psychology [53]. Argumen-
tation can be seen as a reasoning process consisting of the following four steps:

1. Constructing arguments (in favor of/against a “statement”) from available
information.

2. Determining the different conflicts among the arguments.

3. Evaluating the acceptability of the different arguments.

4. Concluding, or defining, the justified conclusions.

The argumentation metaphor has found a wide range of applications in both
theoretical and practical branches of artificial intelligence and computer sci-
ence [5, 44]. These applications range from specifying semantics for logic pro-
grams [12], to natural language text generation [14], to supporting legal reason-
ing [4], to medical decision-support [16].

In multiagent systems, argumentation has been used both for automating indi-
vidual agent reasoning, as well as multiagent interaction. In this chapter, I focus
on the latter. I refer the reader to other articles for examples of argumentation-
based single-agent reasoning, such as belief revision [15] or planning [3, 41]. For
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a more comprehensive overview of argumentation in AI, the reader may refer
to the recent books on the subject [7, 46]. Due to space limitations, my cover-
age cannot do justice to the broad literature on argumentation in multiagent sys-
tems. Instead, I chose to give some representative approaches to give the reader
an overview of the main ideas and insights.

2 What Is an Argument?

Among argumentation theorists in philosophy, the term “argument” usually refers
to “the giving of reasons to support or criticize a claim that is questionable, or open
to doubt” [59]. This distinguishes argumentation from deductive mathematical
inference, in which the conclusions follow necessarily from the premises. Here,
I give a very brief overview of the major approaches to formalizing this notion in
the AI literature.

2.1 Arguments as Chained Inference Rules

Formalizations of argumentation using logically constructed structures have their
roots in the work of Pollock [34], Lin and Shoham [23], and Vreeswijk [56]. Other
approaches include those building on classical logic [6] or logic programming
formalisms [8, 49].

A number of recent attempts have been made to provide a general, unifying
definition. In this section, I give a very brief overview of Prakken’s recent unifying
framework [36], since it is quite general and highlights most important concepts.
Prakken defines an argumentation system as a tuple (L,−,Rs,Rd,≤), consisting
of a logical language L, two disjoint sets of strict rules Rs and defeasible rules
Rd , and a partial order≤ over Rd . The contrariness function− : L→ 2L captures
conflict between formulas, with classical negation ¬ being captured by ¬ϕ ∈ ϕ
and ϕ ∈ ¬ϕ.

A particular knowledge base is a pair (K,≤′), with K ⊆ L divided into the
following disjoint sets: Kn are the necessary axioms (cannot be attacked); Kp are
the ordinary premises; Ka are the assumptions; Ki are the issues. Finally, ≤′ is a
partial order on K\Kn.

From a knowledge base, arguments are built by applying inference rules to
subsets of K. The left-hand side of the rule ϕ1, . . . ,ϕn is called the premises (or
antecedents), while the right-hand side ϕ is called the conclusion (or consequent).
A strict rule of the form ϕ1, . . . ,ϕn → ϕ stands for classical implication, while
a defeasible rule of the form ϕ1, . . . ,ϕn ⇒ ϕ means that ϕ follows presumably
from the premises. Functions Perm(A), Conc(A) and Sub(A) return premises,



Chapter 5 179

conclusion, and subarguments of argument A, respectively. Omitting some details
(see [36]), an argument is intuitively any of the following structures:

• ϕ ∈K, where Prem(A) = {ϕ}, Conc(A) = ϕ, and Sub(A) = {ϕ}.

• A1, . . . ,An → ψ, where A1, . . . ,An are arguments, and there exists in Rs a
strict rule Conc(A1), . . . ,Conc(An)→ ψ.

• A1, . . . ,An ⇒ ψ, where A1, . . . ,An are arguments, and there exists in Rd a
defeasible rule Conc(A1), . . . ,Conc(An)→ ψ.

In the second and third cases, we define Prem(A) = Prem(A1)∪ ·· · ∪Prem(An),
that is, the premises of an argument are the union of the premises of its con-
stituents. Likewise, Sub(A) = Sub(A1)∪ ·· · ∪ Sub(An)∪{A}. The following ex-
ample is illustrative:

Example 5.1 (from [36]) Consider a knowledge base in an argumentation sys-
tem with Rs = {p,q → s;u,v → w}, Rd = {p ⇒ t;s,r, t ⇒ v}, Kn = {q}, Kp =
{p,u}, Ka = {r}. We can construct the following arguments:

A1 : p A5 : A1 ⇒ t
A2 : q A6 : A1,A2 → s
A3 : r A7 : A3,A5,A6 ⇒ v
A4 : u A8 : A4,A7 → w

with Prem(A8) = {p,q,r,u}, Conc(A8) = {w}, and
Sub(A8) = {A1,A2,A3,A4,A5,A6,A6,A8}.

The example above shows how an argument can form part of (the support of)
another argument. The other possibility is when an argument attacks another ar-
gument. Various notions of attack have been explored in the literature. For exam-
ple, an argument can undercut another argument by showing that a defeasible rule
cannot be applied.

Example 5.2 In Example 5.1, argument A8 can be undercut by an argument with
conclusion A5, since argument A5 is constructed with a defeasible rule.

Another way to attack an argument is to rebut with an argument that has the op-
posite conclusion.

Example 5.3 In Example 5.1, argument A8 can be rebutted on A5 with an ar-
gument with conclusion t, or rebutted on A7 with an argument with conclusion
v.

Rebutters and undercutters were first formalized by Pollock [34]. Yet another
way to attack an argument is to undermine it by attacking one of its premises (also
called premise attack), introduced by Vreeswijk [56].
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Example 5.4 In Example 5.1, argument A8 can be undermined by an argument
with conclusion p, r, or u.

Finally, we say that an argument A defeats argument B if the former attacks the
latter, and is also preferred to it according to some preference relation ≺, which
is itself based on the nature of the attack as well as the preference relations ≤ and
≤′ over the formulas involved. Details are beyond this introductory chapter, and
can be found elsewhere [36].

2.2 Argument as an Instance of a Scheme

Argumentation schemes are forms (or categories) of argument, representing
stereotypical ways of drawing inferences from particular patterns of premises
to conclusions in a particular domain (e.g., reasoning about action). Prior to
the development of formal models of argumentation, a number of such informal
schemes have been proposed [33, 51]. One of the most comprehensive classifi-
cations was presented by Walton [58]. For each category, Walton specifies the
scheme informally by listing the general form of the premises and conclusion, to-
gether with a set of critical questions that can be used to scrutinize the argument
by questioning explicit or implicit premises. For example, Walton’s “sufficient
condition scheme for practical reasoning” may be described as follows [1]:

In the current circumstances R
We should perform action A
Which will result in new circumstances S
Which will realize goal G
Which will promote some value V .

And its associated critical questions include:

CQ1: Are the believed circumstances true?
CQ2: Does the action have the stated consequences?
CQ3: Assuming the circumstances and that the action has the stated
consequences, will the action bring about the desired goal?
CQ4: Does the goal realize the value stated?
CQ5: Are there alternative ways of realizing the same consequences?

A number of formalizations of Walton’s schemes have been attempted. For ex-
ample, Atkinson and Bench-Capon [1] formalize the above scheme using Action-
based Alternating Transition Systems (AATS), which are a variant of alternating
time logic [52]. Walton’s schemes have also been influential in the proposed Ar-
gument Interchange Format (AIF), which is a community-based effort to produce
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an extensible ontology for describing argument structures [11]. Yet another for-
malization of Walton’s scheme was presented by Gordon et al. in their Carneades
model [18].

2.3 Abstract Arguments

In the preceding sections, each argument had an explicit internal structure, and
relationships between arguments were defined carefully, using various notions of
attack they pose or critical questions they raise. In a seminal article, Dung showed
that many fundamental aspects of argumentation can be studied without paying
attention to the internal structure of the arguments themselves [12]. Thus, an ar-
gument can be seen as a node in an argument graph, in which directed arcs capture
defeat between arguments. Despite its simplicity, this model is surprisingly pow-
erful.

Definition 5.1 (Argumentation framework) An argumentation framework is a
pair AF = 〈A,⇀〉 where A is a finite set of arguments and ⇀⊆ A×A is a de-
feat relation. We say that an argument α defeats an argument β if (α,β) ∈⇀
(sometimes written α ⇀ β).

An argumentation framework can be represented as a directed graph in which
vertices are arguments and directed arcs characterize defeat among arguments.
An example of an argument graph is shown in Figure 5.1. Argument α1 has two
defeaters (i.e., counterarguments) α2 and α4, which are themselves defeated by
arguments α3 and α5, respectively.

3 2

4

1

5

Figure 5.1: A simple argument graph.

3 Evaluating an Argument

To evaluate whether an argument is acceptable (according to some logical se-
mantics), we need to take into account how it interacts with other arguments.
This turns out to be a non-trivial problem, and the source of much research [2]
and controversy [9]. Let S+ = {β ∈ A | α ⇀ β for some α ∈ S}. Also let
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α− = {β ∈A | β⇀ α}. We first characterize the fundamental notions of conflict-
free and defense.

Definition 5.2 (Conflict-free, defense) Let 〈A,⇀〉 be an argumentation frame-
work and let S ⊆ A and let α ∈A.

• S is conflict-free if S∩S+ = /0.

• S defends argument α if α− ⊆ S+. We also say that argument α is acceptable
with respect to S.

Intuitively, a set of arguments is conflict-free if no argument in that set defeats an-
other. A set of arguments defends a given argument if it defeats all its defeaters. In
Figure 5.1, for example, {α3,α5} defends α1. We now look at different semantics
that characterize the collective acceptability of a set of arguments.

Definition 5.3 (characteriztic function) Let AF = 〈A,⇀〉 be an argumentation
framework. The characteriztic function of AF is FAF: 2A → 2A such that, given
S ⊆A, we have FAF(S) = {α ∈A | S defends α}.

When there is no ambiguity, we use F instead of FAF . The characteriztic function
allows us to capture the collective criteria of admissibility.

Definition 5.4 (Admissible set) Let S be a conflict-free set of arguments in
framework 〈A,⇀〉. S is admissible if it is conflict-free and defends every element
in S (i.e., if S ⊆ F(S)).

Intuitively, a set of arguments is admissible if it is a conflict-free set that defends
itself against any defeater – in other words, if it is a conflict-free set in which each
argument is acceptable with respect to the set itself.

Example 5.5 In Figure 5.1, the sets /0, {α3}, {α5}, and {α3,α5} are all admis-
sible simply because they do not have any defeaters. The set {α1,α3,α5} is also
admissible since it defends itself against both defeaters α2 and α4.

An admissible set S is a complete extension if and only if all arguments defended
by S are also in S (that is, if S is a fixed point of the operator F).

Definition 5.5 (Complete extensions) Let S be a conflict-free set of arguments in
framework 〈A,⇀〉. S is a complete extension if S = F(S).

Example 5.6 In Figure 5.1, the admissible set {α3,α5} is not a complete ex-
tension, since it defends α1 but does not include α1. Similarly, sets {α3} and
{α5} are not complete extensions, since F({α3}) = {α3,α5} and F({α5}) =
{α3,α5}. The admissible set {α1,α3,α5} is the only complete extension, since
F({α1,α3,α5}) = {α1,α3,α5}.
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Before moving to further refinements of the complete extension, I discuss an
equivalent way to characterize complete extensions using argument labeling [10].
A labeling specifies which arguments are accepted (labeled in), which ones are
rejected (labeled out), and which ones whose acceptance or rejection could not be
decided (labeled undec). Labelings must satisfy the condition that an argument is
in if and only if all of its defeaters are out. An argument is out if and only if at
least one of its defeaters is in. Otherwise, it is undecided.

Definition 5.6 (Argument labeling) Let AF = 〈A,⇀〉. A labeling is a total func-
tion L : A→{in,out,undec} such that:

• ∀α ∈A : (L(α) = out≡ ∃β ∈A such that (β⇀ α and L(β) = in))

• ∀α ∈A : (L(α) = in≡ ∀β ∈A : ( if β⇀ α then L(β) = out))

Otherwise, L(α) = undec (since L is a total function).

As it turns out, for any labeling satisfying the conditions above, those arguments
that happen to be labeled in form a complete extension as per Definition 5.5.

If the argument graph contains cycles, there may be more than one complete
extension (i.e., more than one legal labeling), each corresponding to a particular
consistent and self-defending viewpoint. Consider the following.

Example 5.7 Consider the graph in Figure 5.2. Here, we have three complete
extensions: {α3}, {α1,α3}, and {α2,α3}.

2 1

3

in out

L1

2 1

3L2

2 1

3LG

undec

Figure 5.2: Graph with three labelings/complete extensions.

Now, we turn to further refinements of the notion of complete extension.

Definition 5.7 (Refinements of the complete extension) Let S be a conflict-free
set of arguments in framework 〈A,⇀〉.

• S is a grounded extension if it is the minimal (w.r.t. set-inclusion) complete
extension (or, alternatively, if S is the least fixed-point of F(.)).
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• S is a preferred extension if it is a maximal (w.r.t. set-inclusion) complete
extension (or, alternatively, if S is a maximal admissible set).

• S is a stable extension if S+ =A\S.

• S is a semi-stable extension if S is a complete extension of which S∪ S+ is
maximal.

A grounded extension contains all the arguments which are not defeated, as well
as the arguments which are defended directly or indirectly by non-defeated argu-
ments. This can be seen as a non-committal view (characterized by the least fixed
point of F). As such, there always exists a unique grounded extension. Dung [12]
showed that in finite argumentation systems, the grounded extension can be ob-
tained by an iterative application of the characteriztic function F to the empty
set. For example, in Figure 5.1 the grounded extension (and the only complete
extension) can be obtained as follows:

– F1( /0) = {α3,α5};

– F2( /0) = F(F1( /0)) = {α1,α3,α5};

– F3( /0) = F(F2( /0)) = {α1,α3,α5}= F2( /0).

Similarly, in Figure 5.2, the grounded extension is {α3}, which is the minimal
complete extension w.r.t. set inclusion.

A preferred extension is a bolder, more committed position that cannot be ex-
tended – by accepting more arguments – without causing inconsistency. Thus
a preferred extension can be thought of as a maximal consistent set of hypothe-
ses. There may be multiple preferred extensions, and the grounded extension is
included in all of them.

Example 5.8 In Figure 5.1, {α1,α3,α5} is the only preferred extension. But in
Figure 5.2, there are two preferred extensions: {α1,α3} and {α2,α3}, which are
the maximal complete extension w.r.t. set inclusion.

Finally, a set of arguments is a stable extension if it is a preferred extension that
defeats every argument that does not belong to it. As expected, stable extensions
may now always exist. An alternative definition is a semi-stable extension, which
satisfies the weaker condition that the set of arguments defeated is maximal.

Caminada [10] established a correspondence between properties of labelings
and the different extensions. Let AF = 〈A,⇀〉 be an argumentation framework,
and L a labeling over AF . Define in(L) = {α ∈ A | L(α) = in}; out(L) = {α ∈
A | L(α) = out}; and undec(L) = {α ∈ A | L(α) = undec}. These are summa-
rized in Table 5.1.
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Extensions Restrictions on labelings
complete all labelings
grounded minimal in, or equivalently minimal out, or equivalently maximal undec
preferred maximal in, or equivalently maximal out
semi-stable minimal undec
stable empty undec

Table 5.1: The relationships between extensions and labelings.

Now that the acceptability of sets of arguments is defined, we can define the
status of any individual argument.

Definition 5.8 (Argument status) Let 〈A,⇀〉 be an argumentation system, and
E1, . . . ,En its extensions under a given semantics. Let α ∈A.

1. α is skeptically accepted iff α ∈ Ei, ∀Ei with i = 1, . . . ,n.

2. α is credulously accepted iff ∃Ei such that α ∈ Ei.

3. α is rejected iff �Ei such that α ∈ Ei.

An argument is skeptically accepted if it belongs to all extensions under the
adopted semantics. Intuitively, an argument is skeptically accepted if it can be ac-
cepted without making any hypotheses beyond what is surely self-defending. On
the other hand, an argument is credulously accepted on the basis that it belongs to
at least one extension. Intuitively, an argument is credulously accepted if there is
a possible consistent set of hypotheses in which it is consistent. If an argument is
neither skeptically nor credulously accepted, there is no basis for accepting it, and
it is therefore rejected.

4 Argumentation Protocols

So far, I outlined some methods for evaluating an argument given an existing col-
lection of arguments. In a multiagent system, however, the arguments are not all
available a priori. Instead, they are presented by the agents during their argumen-
tative dialogue. This raises the question of how such argumentation dialogues
are to be regulated. For example, one should not be able to make statements that
are completely irrelevant, or to contradict oneself. An argumentation protocol is,
therefore, a set of rules that govern the argumentation process.
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Figure 5.3: Argumentation framework and dispute tree. (i) shows an argumenta-
tion framework, (ii) shows the dispute tree induced in a, and (iii) shows the dispute
tree induced by a under protocol G, with the winning strategy encircled.

4.1 Abstract Argument Games

Rules for governing argumentation can be specified without regard to the specific
internal structure of the arguments. These protocols typically assume the presence
of two agents, one PRO (the proponent) and the other OPP (the opponent). Dia-
logue begins with PRO asserting an argument x. Then PRO and OPP take turns,
in a sequence of moves called a dispute, where each player makes an argument
that attacks its counterpart’s last move. A player wins a dispute if its counterpart
cannot make a counterattack. But the counterpart may try a different line of at-
tack, creating a new dispute. This results in a dispute tree structure that represents
the dialogue.

The idea is that there is an implicit abstract argument graph, distributed in the
agents’ heads, so to speak. By following a specific protocol, the two agents arrive
at an outcome (about the status of a particular argument) that corresponds to a
particular semantics over the implicit graph.

Example 5.9 Consider two agents arguing the argument graph shown in Figure
5.3, taken from [30]. In Figure 5.3(i), we see the underlying (usually implicit) ar-
gument graph. Figure 5.3(ii) shows the corresponding dispute tree in which PRO
presents argument a, OPP counters with argument b, PRO then counters once
with argument c and once with argument d, and so on. Note that this dispute tree
is infinite, since agents are able to repeat counterarguments due to the presence
of cycles in the argument graph. As shown in the figure, arguments in the dispute
tree can be indexed to capture repetition of the same argument from the graph.
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We now present a definition of winning strategy adapted from [30].

Definition 5.9 (Winning strategy ) Given argument graph 〈A,⇀〉 and a dispute
tree T with root a. A subtree T ′ is a winning strategy for a iff:

1. The set of disputes DT ′ in T ′ is a non-empty and finite set such that each
d ∈ DT ′ is finite and is won by PRO (terminates in an argument moved by
PRO).

2. ∀d ∈ DT ′ , ∀d′ such that d′ is a subdispute (i.e., sub-sequence with the same
head) of d, and the last move in d′ is argument x played by PRO, then for
any y such that y ⇀ x, there is d′′ ∈ DT ′ such that d′ appended with y is a
subdispute of d′′.

PRO is guaranteed to win if it plays the moves described in the winning strategy
subtree. The second requirement ensures that all possible objections that can pos-
sibly be raised by OPP in one dispute can be neutralized successfully by PRO in
the same or some other dispute in the subtree.

Note that creating a dispute tree (or subtree) only requires that every argument
presented is a defeater of an argument that has already been presented. Adding
further restrictions on the moves of different players can be captured by subtrees
of the dispute tree. By adding such restrictions carefully, we can generate dia-
logue outcomes that correspond to well-known semantics. To illustrate the above,
consider the following simple protocol:

Definition 5.10 (Protocol G) Given argument graph 〈A,⇀〉, and a dispute D
whose tail is argument x. Let PRO(D) be the arguments uttered by PRO.

• If the dispute length is odd (next move is by OPP), then the possible next
moves are {y | y ⇀ x}.

• If the dispute length is even (next move is by PRO), then the possible next
moves are {y | y ⇀ x and y /∈ PRO(D)}.

By simply prohibiting PRO from repeating himself, we ensure that the dispute
tree is finite. A more striking consequence of this simple restriction is that PRO
can only win if the argument at the root is in the grounded extension.

Theorem 5.1 ([30]) Let 〈A,⇀〉 be an argument graph. There exists a winning
strategy T for x under protocol G such that the set of arguments uttered by PRO
in T is conflict-free, if and only if x is in the grounded extension of 〈A,⇀〉.
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Going back to Figure 5.3, note that the grounded extension of the graph in Fig-
ure 5.3(i) is {a,c,e}. Figure 5.3(iii) shows the dispute tree induced by argument
a under protocol G, with the winning strategy {(a1−b2− c3−d4− e6)}.

As it turns out, it is possible to use different protocol restrictions in order to
capture different semantics. Suppose we wish to create dialogues in which PRO
wins if and only if the argument in question is in at least one preferred extension
(i.e., is credulously accepted under preferred semantics, recalling Definition 5.8).
This can be achieved by a protocol in which two restrictions apply. OPP is not
allowed to repeat its arguments. And PRO is allowed to repeat its arguments but
cannot present a self-attacking argument, or an argument that conflicts (attacks or
is attacked by) with another argument it already stated in the dispute. For a more
comprehensive discussion of abstract argument games, including protocols that
implement other semantics, refer to [30].

4.2 Dialogue Systems

Another approach to specifying argumentation protocols is the so-called dialogue
systems approach (also known as dialogue games). This approach was initiated
by Australian logician Charles L. Hamblin [19]. Unlike abstract argument games,
this approach relies on having the explicit contents of the arguments presented.

As an example, Table 5.2 shows a specification of a persuasion protocol in-
troduced by Prakken [37]. The left column shows the list of speech acts that can
be used by agents (the notion of speech acts dates back to Searle [48]). An agent
can assert a proposition by uttering “claim ϕ”, and can retract its own claims by
uttering “retract ϕ”. An agent can also concede a proposition claimed by its coun-
terpart by uttering “concede ϕ”, or challenge such a claim by uttering “why ϕ”.
Finally, an agent can support its claims, if challenged, by uttering “ϕ since S”.
With each speech act, Prakken associates two legal replies, one corresponding to
surrender (e.g., by conceding to a claim made by the counterpart), and the other
corresponding to attack (e.g., by challenging a claim or elements of an argument
S presented by the counterpart).

This protocol generates a tree structure in which each utterance (i.e., move)
is a node, and its possible responses are its children. Termination is defined in
terms of the dialogical status of each move. A move is in if it is surrendered or if
all its attacking replies are out. Conversely, a move is out if it has a reply that is
in.1 Whether the proponent or the opponent wins depends on whether the initial
move is in or out. It is possible to also impose the requirement that moves must
be relevant, meaning it would make its speaker the current winner. To illustrate,

1Note that assigning dialogical status bears resemblance (but is not identical) to the labeling of
abstract argument graphs discussed in Section 3.
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Acts Intuitive Meaning Attacks Surrenders

claim ϕ Assert ϕ is true why ϕ concede ϕ
ϕ since S Support ϕ by argument S why ψ(ψ ∈ S) concede ψ

(ψ ∈ S)
ϕ′ since S′ concede ϕ
(defeats ϕ since S)

why ϕ Challenge ϕ ϕ since S retract ϕ
concede ϕ Concede ϕ claimed by other
retract ϕ Take back own claim ϕ

Table 5.2: An example Lc in Prakken’s framework [35].

suppose agent P has knowledge base {p, p→r1 q, p→r2 r, p∧ s→r3 r2 > r4} and
agent O has knowledge base {t, t →r4 ¬r}. These knowledge bases are specified
in Prakken and Sartor’s argument-based, prioritized, extended logic programming
language, in which rules are annotated, allowing for rules that support preferences
between other rules [38].2 The following dialogue is consistent with the above
protocol [37], with the target of each move indicated between square brackets:

P1[−]: claim r O2[P1]: why r
P3[O2]: r since q,q⇒ r O4[P3]: why q
P5[O4]: q since p, p⇒ q O6[P5]: concede p⇒ q

O7[P5]: why p
Note that at this point, player P has many possible moves. It can retract its

claim or premises of its argument, or give an argument in support of p. It was also
possible for player O to make the following against P’s original claim:

O7[P3]: ¬r since t, t ⇒¬r

To this, P may respond with a priority argument, supporting the claim that rule r2
takes precedence over rule r4, thus showing that P3 strictly defeats O7:

P8[O7]: r2 > r4 since p,s, p∧ s⇒ r2 > r4

At this point, P1 is in, but the dialogue may continue, with O conceding or making
further challenges, and so on.

Various other dialogue systems have been presented in the literature, such as
Walton and Krabbe’s PDD [57] and McBurney and Parsons’s Agent Dialogue
Framework [28]. A longer discussion and comparison of different dialogue sys-
tems for persuasion was presented by Prakken [35].

The above approaches are related to the earlier work on so-called game seman-

2Note that these implications are not classical, thus they do not satisfy contraposition.
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tics for logic, which was pioneered by logicians such as Paul Lorenzen [24] and
Jaakko Hintikka [20]. Although many specific instantiations of this notion have
been presented in the literature, the general idea is as follows. Given some spe-
cific logic, the truth value of a formula is determined through a special-purpose,
multi-stage dialogue game between two players, the verifier and falsifier. The for-
mula is considered true precisely when the verifier has a winning strategy, while
it will be false whenever the falsifier has the winning strategy. Similar ideas have
been used to implement dialectical proof-theories for defeasible reasoning (e.g.,
by Prakken and Sartor [38]).

It is worth mentioning that, in addition to the generic protocols presented in
the last two sections, various domain-specific protocols have appeared in the liter-
ature. These protocols are usually more complex, and are linked to argumentation
schemes from specific domains, enabling agents to argue about what action to
take [1], the risks involved in various decisions [27], or about the properties of
items involved in negotiation [29].

5 Strategic Argumentation and Game Theory

In all of the approaches above, we saw a specification of the argumentation pro-
tocol, specifying the set of possible moves that can be made by the agents. When
it comes to the behavior of the agents who use this protocol, some protocols were
extremely prescriptive, giving exactly a single option at a time. Other protocols
(e.g., Prakken’s persuasion protocol) gave agents some choice of what to do. The
behavior of an agent, its so-called strategy, significantly influences the outcome
of the dialogue (e.g., who wins), as well as its dynamics (e.g., whether it will
terminate in a short number of moves).

To address this issue, researchers started exploring strategies for agents to
choose their next moves. For example, in their dialogue system, Parsons et al. [32]
defined a number of so-called attitudes of an agent, which specify the criteria ac-
cording to which it evaluates and asserts arguments. These attitudes assume the
availability of a preference relation over arguments, which can be used to com-
pare their relative strength. In terms of asserting arguments, a confident agent
can assert any proposition for which it can construct an argument, while a careful
agent can do so only if it can construct such an argument and cannot construct
a stronger counterargument. A thoughtful agent, on the other hand, can assert a
proposition only if it can construct an acceptable argument for the proposition.
Conversely, when it comes to evaluating arguments presented by the opponent, an
agent can have one of the following attitudes. A credulous agent accepts a propo-
sition if it can construct an argument for it, while a cautious agent does so only
if it is also unable to construct a stronger counterargument. A skeptical agent,
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however, accepts an argument only if it can construct an acceptable argument for
the proposition.

Another approach to designing heuristics is to use aspects related to social
constructs such as rights and obligations [21], or mental states of agents such as
their beliefs, desires, and intentions [22]. A more detailed discussion of some of
these issues can be found elsewhere [45].

While heuristic approaches to designing argumentation strategies are infor-
mative, they typically only address a subset of the possible strategies. A more
comprehensive study of strategic argumentation must rely on a more systematic
approach, and the appropriate framework for doing so is provided by the theory
of games (or game theory), which was pioneered by von Neuman and Morgen-
stern [55]. A setting of strategic interaction is modeled as a game, which consists
of a set of players, a set of actions available to them, and a rule that determines
the outcome given players’ chosen actions. In an argumentation scenario, the set
of actions are typically the set of argumentative moves (e.g., asserting a claim or
challenging a claim), and the outcome rule is the criterion by which arguments
are evaluated (e.g., the judge’s attitude). Generally, game theory can be used to
achieve two goals:

1. undertake precise analysis of interaction in particular strategic settings, with
a view to predicting the outcome;

2. design rules of the game in such a way that self-interested agents behave in
some desirable way (e.g., tell the truth); this is called mechanism design.

Both these approaches are quite useful for the study of argumentation in multi-
agent systems. On the one hand, an agent may use game theory to analyze a given
argumentative situation in order to choose the best strategy. On the other hand,
we may use mechanism design to design the rules (e.g., argumentation protocol)
in such a way as to promote good argumentative behavior.

5.1 Glazer and Rubinstein’s Model

One of the earliest attempts at game-theoretic analysis of argumentation was pre-
sented by microeconomists Glazer and Rubinstein [17]. The authors explore the
mechanism design problem of constructing rules of debate that maximize the
probability that a listener reaches the right conclusion given arguments presented
by two debaters. They study a very restricted setting, in which the world state
is described by a vector ω = (w1, . . . ,w5), where each “aspect” wi has two pos-
sible values: 1 and 2. If wi = j for j ∈ {1,2}, we say that aspect wi supports
outcome O j. Presenting an argument amounts to revealing the value of some wi.
The setting is modeled as an extensive-form game and analyzed. In particular,
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the authors investigate various combinations of procedural rules (stating in which
order and what sorts of arguments each debater is allowed to state) and persuasion
rules (stating how the outcome is chosen by the listener). In terms of procedural
rules, the authors explore: (1) one-speaker debate in which one debater chooses
two arguments to reveal; (2) simultaneous debate in which the two debaters si-
multaneously reveal one argument each; and (3) sequential debate in which one
debater reveals one argument followed by one argument by the other. Glazer and
Rubinstein investigate a variety of persuasion rules. For example, in one-speaker
debate, one rule analyzed by the authors states that “a speaker wins if and only if
he presents two arguments from {a1,a2,a3} or {a4,a5}.” In a sequential debate,
one persuasion rule states that “if debater D1 argues for aspect a3, then debater D2
wins if and only if he counter-argues with aspect a4.”

Note that these kinds of rules are arbitrary and do not follow an intuitive notion
of persuasion (e.g., like skepticism). Hence, there is no concept of how the logical
structure of the information presented by different players constrains the decision
made by the judge. In the remainder of this section, I present a game-theoretic
account of strategic argumentation based on abstract argument graphs.

5.2 Game Theory Background

This section gives a brief background on key game-theoretic concepts [25]. Read-
ers already familiar with game theory may skip this section. The field of game the-
ory studies strategic interactions of self-interested agents. We assume that there
is a set of self-interested agents, denoted by I. We let θi ∈ Θi denote the type of
agent i, which is drawn from some set of possible types Θi. The type represents
the private information and preferences of the agent. An agent’s preferences are
over outcomes o ∈ O, where O is the set of all possible outcomes. We assume
that an agent’s preferences can be expressed by a utility function ui(o,θi), which
depends on both the outcome, o, and the agent’s type, θi. Agent i prefers outcome
o1 to o2 when ui(o1,θi)> ui(o2,θi).

When agents interact, we say that they are playing strategies. A strategy for
agent i, si(θi), is a plan that describes what actions the agent will take for every
decision that the agent might be called upon to make, for each possible piece of
information that the agent may have at each time it is called to act. That is, a
strategy can be thought of as a complete contingency plan for an agent. We let Σi
denote the set of all possible strategies for agent i, and thus si(θi) ∈ Σi. When it is
clear from the context, we will drop the θi in order to simplify the notation. We
let strategy profile s = (s1(θ1), . . . ,sI(θI)) denote the outcome that results when
each agent i is playing strategy si(θi). As a notational convenience we define

s−i(θ−i) = (s1(θi), . . . ,si−1(θi−1),si+1(θi+1), . . . ,sI(θI))
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and thus s = (si,s−i). We then interpret ui((si,s−i),θi) to be the utility of
agent i with type θi when all agents play strategies specified by strategy profile
(si(θi),s−i(θ−i)). Similarly, we also define:

θ−i = (θ1, . . . ,θi−1,θi+1, . . . ,θI)

Since the agents are all self-interested, they will try to choose strategies that
maximize their own utility. Since the strategies of other agents also play a role
in determining the outcome, the agents must take this into account. The solution
concepts in game theory determine the outcomes that will arise if all agents are
rational and strategic. The most well-known solution concept is the Nash equilib-
rium. A Nash equilibrium is a strategy profile in which each agent is following
a strategy that maximizes its own utility, given its type and the strategies of the
other agents.

Definition 5.11 (Nash equilibrium) A strategy profile s∗ = (s∗1, . . . ,s
∗
I ) is a Nash

equilibrium if no agent has an incentive to change its strategy, given that no other
agent changes. Formally, ∀i,∀s′i,ui(s∗i ,s∗−i,θi)≥ ui(s′i,s∗−i,θi)

Although the Nash equilibrium is a fundamental concept in game theory, it
does have several weaknesses. First, there may be multiple Nash equilibria and
so agents may be uncertain as to which equilibrium they should play. Second, the
Nash equilibrium implicitly assumes that agents have perfect information about
all other agents, including the other agents’ preferences.

A stronger solution concept in game theory is the dominant-strategy equilib-
rium. A strategy si is said to be dominant if by playing it, the utility of agent i is
maximized no matter what strategies the other agents play.

Definition 5.12 (Dominant strategy) A strategy s∗i is dominant if

∀s−i, ∀s′i, ui(s∗i ,s−i,θi)≥ ui(s′i,s−i,θi).

Sometimes, we will refer to a strategy satisfying the above definition as weakly
dominant. If the inequality is strict (i.e., > instead of ≥), we say that the strategy
is strictly dominant. A dominant-strategy equilibrium is a strategy profile where
each agent is playing a dominant strategy. This is a very robust solution concept
since it makes no assumptions about what information the agents have available
to them, nor does it assume that all agents know that all other agents are being
rational (i.e., trying to maximize their own utility). However, there are many
strategic settings where no agent has a dominant strategy.
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5.2.1 Mechanism Design

The problem that mechanism design studies is how to ensure that a desirable
system-wide outcome or decision is made when there is a group of self-interested
agents who have preferences over the outcomes. In particular, we often want the
outcome to depend on the preferences of the agents. This is captured by a social
choice function.

Definition 5.13 (Social choice function) A social choice function is a rule f :
Θ1× . . .×ΘI → O, that selects some outcome f (θ) ∈ O, given agent types θ =
(θ1, . . . ,θI).

The challenge, however, is that the types of the agents (the θ′is) are private
and known only to the agents themselves. Thus, in order to select an outcome
with the social choice function, one has to rely on the agents to reveal their types.
However, for a given social choice function, an agent may find that it is better off
if it does not reveal its type truthfully, since by lying it may be able to cause the
social choice function to choose an outcome that it prefers. Instead of trusting the
agents to be truthful, we use a mechanism to try to reach the correct outcome.

A mechanism M= (Σ,g(·)) defines the set of allowable strategies that agents
can chose, with Σ = Σ1 × ·· · × ΣI where Σi is the strategy set for agent i, and
an outcome function g(s) that specifies an outcome o for each possible strategy
profile s = (s1, . . . ,sI) ∈ Σ. This defines a game in which agent i is free to select
any strategy in Σi, and, in particular, will try to select a strategy that will lead to
an outcome that maximizes its own utility. We say that a mechanism implements
social choice function f if the outcome induced by the mechanism is the same
outcome that the social choice function would have returned if the true types of
the agents were known.

Definition 5.14 (Implementation) Mechanism M = (Σ,g(·)) implements social
choice function f if there exists an equilibrium s∗ s.t. ∀θ ∈Θ, g(s∗(θ)) = f (θ).

While the definition of a mechanism puts no restrictions on the strategy spaces
of the agents, an important class of mechanisms are the direct-revelation mecha-
nisms (or simply direct mechanisms).

Definition 5.15 (Direct-revelation mechanism) A direct-revelation mechanism
is a mechanism in which Σi =Θi for all i, and g(θ) = f (θ) for all θ ∈Θ.

In other words, a direct mechanism is one where the strategies of the agents are to
announce a type, θ′i, to the mechanism. While it is not necessary that θ′i = θi, the
important revelation principle (see below for more details) states that if a social
choice function, f (·), can be implemented, then it can be implemented by a direct
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mechanism where every agent reveals its true type [25]. In such a situation, we
say that the social choice function is incentive compatible.

Definition 5.16 (Incentive compatible) The social choice function f (·) is in-
centive compatible (or truthfully implementable) if the direct mechanism M =
(Θ,g(·)) has an equilibrium s∗ such that s∗i (θi) = θi.

If the equilibrium concept is the dominant-strategy equilibrium, then the social
choice function is strategyproof . In this chapter we will on occasion call a mech-
anism incentive compatible or strategyproof. This means that the social choice
function that the mechanism implements is incentive compatible or strategyproof.

5.2.2 The Revelation Principle

Determining whether a particular social choice function can be implemented, and
in particular, finding a mechanism that implements a social choice function ap-
pears to be a daunting task. In the definition of a mechanism, the strategy spaces
of the agents are unrestricted, leading to an infinitely large space of possible mech-
anisms. However, the revelation principle states that we can limit our search to a
special class of mechanisms [25, Ch. 14].

Theorem 5.2 (Revelation principle) If there exists some mechanism that imple-
ments social choice function f in dominant strategies, then there exists a direct
mechanism that implements f in dominant strategies and is truthful.

The intuitive idea behind the revelation principle is fairly straightforward.
Suppose that you have a possibly very complex mechanism, M, which imple-
ments some social choice function, f . That is, given agent types θ = (θ1, . . . ,θI)
there exists an equilibrium s∗(θ) such that g(s∗(θ)) = f (θ). Then, the revelation
principle states that it is possible to create a new mechanism, M′, which, when
given θ, will then execute s∗(θ) on behalf of the agents and then select outcome
g(s∗(θ)). Thus, each agent is best off revealing θi, resulting in M′ being a truthful,
direct mechanism for implementing social choice function f .

The revelation principle is a powerful tool when it comes to studying imple-
mentation. Instead of searching through the entire space of mechanisms to check
whether one implements a particular social choice function, the revelation prin-
ciple states that we can restrict our search to the class of truthful, direct mech-
anisms. If we cannot find a mechanism in this space that implements the social
choice function of interest, then there does not exist any mechanism that will do
so.
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5.3 Argumentation Mechanism Design

In this section I define the mechanism design problem for abstract argumentation,
leading to so-called argumentation mechanism design (ArgMD) (this work was
introduced in [39, 42]).

Let AF = 〈A,R〉 be an argumentation framework with a set of arguments A

and a binary defeat relation R. I define a mechanism with respect to AF and
semantics S, and I assume that there is a set of I self-interested agents. I define an
agent’s type to be its set of arguments.

Definition 5.17 (Agent type) Given an argumentation framework 〈A,R〉, the
type of agent i, Ai ⊆A, is the set of arguments that the agent is capable of putting
forward.

There are two things to note about this definition. First, an agent’s type can be
seen as a reflection of its expertise or domain knowledge. For example, medical
experts may only be able to comment on certain aspects of forensics in a legal
case, whereas a defendant’s family and friends may be able to comment on its
character. Also, such expertise may overlap, so agent types are not necessarily
disjoint. For example, two medical doctors might have some identical argument.

The second thing to note about the definition is that agent types do not include
the defeat relation. In other words, I implicitly assume that the notion of defeat
is common to all agents. That is, given two arguments, no agent would dispute
whether one attacks another. This is a reasonable assumption in systems where
agents use the same logic to express arguments or at least multiple logics for which
the notion of defeat is accepted by everyone (e.g., conflict between a proposition
and its negation). Disagreement over the defeat relation itself requires a form
of hierarchical (meta) argumentation, which is a powerful concept, but can be
reduced to a standard argument graph [31].

Given the agents’ types (argument sets), a social choice function f maps a
type profile into a subset of arguments: f : 2A × . . .× 2A → 2A. Denote by
Acc(〈A,R〉,S) ⊆ A the set of acceptable arguments according to semantics S.3

It is possible to define argument acceptability social choice functions.

Definition 5.18 (Argument acceptability social choice functions) Given an ar-
gumentation framework 〈A,R〉 with semantics S, and given an agent type profile
(A1, . . . ,AI), the argument acceptability social choice function f is defined as the
set of acceptable arguments given the semantics S. That is,

f (A1, . . . ,AI) = Acc(〈A1∪ . . .∪AI,R〉,S).
3Here, assume that S specifies both the classical semantics used (e.g., grounded, preferred,

stable) as well as the acceptance attitude used (e.g., skeptical or credulous).
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As is standard in the mechanism design literature, assume that agents have
preferences over the outcomes o ∈ 2A, and we represent these preferences using
utility functions where ui(o,Ai) denotes agent i’s utility for outcome o when its
type is argument set Ai.

Agents may not have an incentive to reveal their true type because they may
be able to influence the final argument status assignment by lying, and thus obtain
higher utility. There are two ways that an agent can lie in our model. On the one
hand, an agent might create new arguments that it does not have in its argument
set. In the rest of the chapter I will assume that there is an external verifier that is
capable of checking whether it is possible for a particular agent to actually make
a particular argument. Informally, this means that presented arguments, while
still possibly defeasible, must at least be based on some sort of demonstrable
“plausible evidence.” If an agent is caught making up arguments, then it will be
removed from the mechanism. For example, in a court of law, any act of perjury
by a witness is punished, at the very least, by completely discrediting all evidence
produced by the witness. Moreover, in a court of law, arguments presented without
any plausible evidence are normally discarded (e.g., “I did not kill him, since I was
abducted by aliens at the time of the crime!”). For all intents and purposes this
assumption (also made by Glazer and Rubinstein [17]) removes the incentive for
an agent to make up facts.

A more insidious form of manipulation occurs when an agent decides to hide
some of its arguments. By refusing to reveal certain arguments, an agent might be
able to break defeat chains in the argument framework, thus changing the final set
of acceptable arguments. For example, a witness may hide evidence that impli-
cates the defendant if the evidence also undermines the witness’s own character. I
will focus on this form of lying in this chapter.

As mentioned earlier, a strategy of an agent specifies a complete plan that
describes what action the agent takes for every decision that a player might be
called upon to make, for every piece of information that the player might have
at each time that it is called upon to act. In our model, the actions available
to an agent involve announcing sets of arguments. Thus a strategy si ∈ Σi for
agent i would specify for each possible subset of arguments that could define its
type, what set of arguments to reveal. For example, a strategy might specify that
an agent should reveal only half of its arguments without waiting to see what
other agents are going to do, while another strategy might specify that an agent
should wait and see what arguments are revealed by others, before deciding how
to respond. We can therefore define an argumentation mechanism.

Definition 5.19 (Argumentation mechanism) Given an argumentation frame-
work AF = 〈A,R〉 and semantics S, an argumentation mechanism is defined as
MS

AF = (Σ1, . . . ,ΣI,g(·)), where Σi is an argumentation strategy space of agent i
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MD Concept ArgMD Instantiation

Agent type θi ∈Θi Agent’s arguments θi =Ai ⊆A

Outcome o ∈ O Accepted arguments Acc(.)⊆A

Utility ui(o,θi) Preferences over 2A (what arguments end up being ac-
cepted)

Social choice function f : Θ1× . . .×ΘI → O f (A1, . . . ,AI) = Acc(〈A1 ∪ . . .∪AI ,R〉,S)
by some argument acceptability criterion

Mechanism M= (Σ,g(·)) where
Σ= Σ1×·· ·×ΣI and g : Σ→ O Σi is an argumentation strategy, g : Σ→ 2A

Direct mechanism: Σi =Θi Σi = 2A (every agent reveals a set of arguments)
Truth revelation Revealing Ai

Table 5.3: Abstract argumentation as a mechanism.

and g : Σ1× . . .×ΣI → 2A.

Note that in the above definition, the notion of dialogue strategy is broadly
construed and would depend on the protocol used. In a direct mechanism, how-
ever, the strategy spaces of the agents are restricted so that they can only reveal a
subset of arguments. Due to the revelation principle, this will be sufficient for the
analysis in the rest of the chapter.

Definition 5.20 (Direct argumentation mechanism) Given an argumentation
framework AF = 〈A,R〉 and semantics S, a direct argumentation mechanism is
defined as MS

AF = (Σ1, . . . ,ΣI,g(·)), where Σi = 2A and g : Σ1× . . .ΣI → 2A.

Table 5.3 summarizes the mapping of multiagent abstract argumentation as an
instance of a mechanism design problem [42].

5.4 Case Study: Implementing the Grounded Semantics

In this section, I demonstrate the power of our ArgMD approach by showing how
it can be used to systematically analyze the strategic incentives imposed by a
well-established argument evaluation criterion [39, 43]. In particular, I specify
a direct-revelation argumentation mechanism, in which agents’ strategies are to
reveal sets of arguments, and where the mechanism calculates the outcome using
skeptical (grounded) semantics.4 I show that, in general, this mechanism gives
rise to strategic manipulation. However, under some conditions, this mechanism
turns out to be strategyproof.

In a direct argumentation mechanism, each agent i’s available actions are Σi =
2A. We will refer to a specific action (i.e., set of declared arguments) as A◦

i ∈ Σi.
The following mechanism calculates the grounded extension given the union of
all arguments revealed by agents.

4In the remainder of the chapter, I will use the term skeptical to refer to skeptical grounded.
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Definition 5.21 (Grounded direct argumentation mechanism) A grounded di-
rect argumentation mechanism for argumentation framework 〈A,R〉 is M

grnd
AF =

(Σ1, . . . ,ΣI,g(.)) where:

– Σi ∈ 2A is the set of strategies available to each agent;

– g : Σ1 × ·· · × ΣI → 2A is an outcome rule defined as: g(A◦
1, . . . ,A

◦
I ) =

Acc(〈A◦
1 ∪ ·· · ∪A◦

I ,R〉,Sgrnd) where Sgrnd denotes skeptical grounded ac-
ceptability semantics.

To simplify our analysis, let us assume that agents can only lie by hiding ar-
guments, and not by making up arguments. Formally, this means that ∀i, Σi ∈ 2Ai .
For the sake of illustration, consider a particular family of preferences that agents
may have. According to these preferences, every agent attempts to maximize the
number of arguments in Ai that end up being accepted. We call this preference
criteria the individual acceptability maximizing preference.

Definition 5.22 (Acceptability maximizing preferences) An agent i has indi-
vidual acceptability maximizing preferences if and only if ∀o1,o2 ∈ O such that
|o1∩Ai| ≥ |o2∩Ai|, we have ui(o1,Ai)≥ ui(o2,Ai).

1 2 3

4

5

2 3

4

5

(a) Argument graph in case of full revelation (b) Argument graph with 1 withheld

Figure 5.4: Hiding an argument is beneficial (case of acceptability maximizers).

The following example explores incentives with mechanism M
grnd
AF .

Example 5.10 Consider grounded direct argumentation mechanism with three
agents x, y, and z with types Ax = {α1,α4,α5}, Ay = {α2}, and Az = {α3},
respectively. And suppose that the defeat relation is defined as follows: R =
{(α1,α2), (α2,α3), (α3,α4), (α3,α5)}. If each agent reveals its true type (i.e.,
A◦

x = Ax; A◦
y = Ay; and A◦

z = Az), then we get the argument graph depicted in
Figure 5.4(a). The mechanism outcome rule produces the outcome o = {α1,α3}.
If agents have individual acceptability maximizing preferences, with utilities equal
to the number of arguments accepted, then: ux(o,{α1,α4,α5})= 1; uy(o,{α3})=
1; and uz(o,{α2}) = 0.
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It turns out that the mechanism is susceptible to strategic manipulation, even
if we suppose that agents do not lie by making up arguments (i.e., they may only
withhold some arguments). In this case, for both agents y and z, revealing their
true types weakly dominates revealing nothing at all. However, it turns out that
agent x is better off revealing {α4,α5}. By withholding α1, the resulting argument
network becomes as depicted in Figure 5.4(b), for which the output rule produces
the outcome o′ = {α2,α4,α5}. This outcome yields utility 2 to agent x, which
is better than the truth-revealing strategy. Thus, given an arbitrary argumentation
framework AF and agents with acceptability maximizing preferences, mechanism
M

grnd
AF is not strategyproof.
The following theorem provides a full characterization of strategyproof mech-

anisms for skeptical argumentation frameworks for agents with acceptability max-
imizing preferences.

Theorem 5.3 Let AF be an arbitrary argumentation framework, and let EGR(AF)

denote its grounded extension. Mechanism M
grnd
AF is strategyproof for agents

with acceptability maximizing preferences if and only if AF satisfies the follow-
ing condition: ∀i ∈ I,∀S ⊆ Ai and ∀A−i, we have |Ai ∩EGR(〈Ai ∪A−i,R〉)| ≥
|Ai∩EGR(〈(Ai\S)∪A−i,R〉)|.

Although the theorem gives us a full characterization, it is difficult to apply in
practice. In particular, the theorem does not give us an indication of how agents (or
the mechanism designer) can identify whether the mechanism is strategyproof for
a class of argumentation frameworks by appealing to their graph-theoretic prop-
erties. Below, we provide an intuitive, graph-theoretic condition that is sufficient
to ensure that Mgrnd

AF is strategyproof when agents have focal arguments.
Let α,β ∈A. We say that α indirectly defeats β, written α ↪→ β, if and only if

there is an odd-length path from α to β in the argument graph.

Theorem 5.4 Suppose agents have individual acceptability maximizing prefer-
ences. If each agent’s type corresponds to a conflict-free set of arguments that
does not include (in)direct defeats (formally ∀i�α1,α2 ∈ Ai such that α1 ↪→ α2),
then M

grnd
AF is strategyproof.

Note that ↪→ is over all arguments in A. Intuitively, the condition in the the-
orem states that all arguments of every agent must be conflict-free (i.e., consis-
tent), both explicitly and implicitly. Explicit consistency implies that no argument
defeats another. Implicit consistency implies that other agents cannot possibly
present a set of arguments that reveal an indirect defeat among one’s own argu-
ments. More concretely, in Example 5.10 and Figure 5.4, while agent x’s argument
set Ax = {α1,α4,α5} is conflict-free, when agents y and z presented their own ar-
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guments α2 and α3, they revealed an implicit conflict in x’s arguments. In other
words, they showed that x contradicts itself (i.e., committed a fallacy).

In addition to characterizing a sufficient graph-theoretic condition for strategy-
proofness, Theorem 5.4 is useful for individual agents. As long as the agent knows
that it is not possible for a path to be created that causes an (in)direct defeat among
its arguments (i.e., a fallacy to be revealed), then the agent is best off revealing all
its arguments. The agent only needs to know that no argument imaginable can
reveal conflicts among its own arguments.

Is the sufficient condition in Theorem 5.4 also necessary for revealing all ar-
guments truthfully? Example 5.11 shows that this is not the case. In particular, for
certain argumentation frameworks, an agent may have truth-telling as a dominant
strategy despite the presence of indirect defeats among its own arguments.

1 2 3

4

5

6

Figure 5.5: Argument graph (see Example 5.11).

Example 5.11 Consider the variant of Example 5.10 with the additional argu-
ment α6 and defeat (α6,α3). Let the agent types be Ax = {α1,α4,α5,α6},
Ay = {α2}, and Az = {α3}, respectively. The full argument graph is depicted
in Figure 5.5. Under full revelation, the mechanism outcome rule produces the
outcome o = {α1,α4,α5,α6}.

Note that in Example 5.11, truth revelation is now a dominant strategy for x
(since it gets all its arguments accepted) despite the fact that α1 ↪→ α4 and α1 ↪→
α5. This hinges on the presence of an argument (namely α5) that cancels out the
negative effect of the (in)direct self-defeat among x’s own arguments.

6 The Argument Interchange Format

To facilitate argumentation among agents in an open system, it is essential to
have a common language for argument representation. One community-led effort
toward this is the Argumentation Interchange Format (AIF). Here, I give a very
brief overview of the AIF, and point the reader elsewhere for further details [11].
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The core AIF has two types of nodes: information nodes (or I-nodes) and
scheme nodes (or S-nodes). These are represented by two disjoint sets, NI ⊂N and
NS ⊂N, respectively. Information nodes are used to represent passive information
contained in an argument, such as a claim, premise, data, etc. S-nodes capture the
application of schemes (i.e., patterns of reasoning). Such schemes may be domain-
independent patterns of reasoning, which resemble rules of inference in deductive
logics but broadened to include non-deductive inference. The schemes themselves
belong to a class, S, and are classified into the types: rule of inference scheme,
conflict scheme, and preference scheme. We denote these using the disjoint sets
SR, SC, and SP, respectively. The predicate (uses : NS×S) is used to express the
fact that a particular scheme node uses (or instantiates) a particular scheme. The
AIF thus provides an ontology for expressing schemes and instances of schemes,
and constrains the latter to the domain of the former via the function uses, i.e.,
∀n ∈NS,∃s ∈ S such that uses(n,s).

The present ontology has three different types of scheme nodes: rule of in-
ference application nodes (or RA-nodes), preference application nodes (or PA-
nodes) and conflict application nodes (or CA-nodes). These are represented as
three disjoint sets: NRA

S ⊆NS, NRA
S ⊆NS, and NCA

S ⊆NS, respectively. The word
“application” on each of these types was introduced in the AIF as a reminder that
these nodes function as instances, not classes, of possibly generic inference rules.
Intuitively, NRA

S captures nodes that represent (possibly non-deductive) rules of in-
ference, NCA

S captures applications of criteria (declarative specifications) defining
conflict (e.g., among a proposition and its negation, etc.), and NRA

S are applications
of (possibly abstract) criteria of preference among evaluated nodes.

The AIF specification does not type its edges. The (informal) semantics of
edges can be inferred from the types of nodes they connect. One of the restrictions
is that no outgoing edge from an I-node can be directed directly to another I-node.
This ensures that the type of any relationship between two pieces of information
must be specified explicitly via an intermediate S-node.

Definition 5.23 (Argument network) An argument network Φ is a graph with: (i)

a set N = NI ∪NS of vertices (or nodes); and (ii) a binary relation
edge−−→: N×N

representing edges, where �(i, j) ∈ edge−−→ where both i ∈NI and j ∈NI .

A simple argument can be represented by linking a set of premises to a conclusion.

Definition 5.24 (Simple argument) A simple argument, in network Φ and
schemes S, is a tuple 〈P,τ,c〉where: (i) P⊆NI is a set of nodes denoting premises;
(ii) τ ∈NRA

S is a rule of inference application node; (iii) c ∈NI is a node denoting

the conclusion, such that τ edge−−→ c, uses(τ,s) where s ∈ S, and ∀p ∈ P we have

p
edge−−→ τ.
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p  q

p

qMP1

(a) Simple argument (b) Attack among two simple arguments
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Figure 5.6: Examples of simple arguments. S-nodes denoted with a thicker border.

Following is a description of a simple argument in propositional logic, depicted in
Figure 5.6(a).

Example 5.12 (Simple argument) The tuple A1 = 〈{p, p→ q},MP1,q〉 is a sim-
ple argument in propositional language L, where p, (p → q) ∈ NI are nodes
representing premises, and q ∈ NI is a node representing the conclusion. In be-
tween them, the node MP1 ∈ NRA

S is a rule of inference application node (i.e.,
RA-node) that uses the modus ponens natural deduction scheme, which can be
formally written as follows: uses(MP1,∀A,B ∈ L A A→B

B ).

An attack or conflict from one information or scheme node to another infor-
mation or scheme node is captured through a CA-node, which captures the type of
conflict. The attacker is linked to the CA-node, and the CA-node is subsequently
linked to the attacked node. Note that since edges are directed, each CA-node
captures attack in one direction. Symmetric attack would require two CA-nodes,
one in each direction. The following example describes a conflict between two
simple arguments (see Figure 5.6(b)).

Example 5.13 (Simple arguments in conflict) Recall the simple argument A1 =
〈{p, p → q},MP1,q〉. And consider another simple argument A2 = 〈{r,r →
¬p},MP2,¬p〉. Argument A2 undermines A1 by supporting the negation of the
latter’s premise. This (symmetric) propositional conflict is captured through two
CA-nodes: neg1 and neg2, both of which instantiate a conflict scheme based on
propositional contraries.

Note that the AIF language is less abstract than Dung’s abstract argument
graphs, but is more abstract than approaches that describe the internal contents of
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logical arguments. Moreover, the AIF was deliberately given only semi-formal
semantics, allowing for it to be adapted according to one’s need, for example with
a particular language for describing the internal contents of information nodes, or
by committing to edges with specific formal semantics. It has been shown that
the AIF can be adapted for creating ontologies using Semantic Web standards
for annotating natural language arguments using Walton-style schemes (see for
example [47]). Having said that, the AIF is still a young effort in need of further
refinement and proof-of-concept applications.

7 Conclusion

I gave an overview of the emerging field of argumentation in multiagent systems.
I introduced some basic definitions of the argument and relationships between
arguments. I then gave an overview of protocols that govern argumentation di-
alogues among agents, before moving to the issue of strategic argumentation. I
closed the discussion with a brief overview of efforts toward a common ontology
for enabling the exchange of arguments.

This field of study is still in its infancy. While much is understood about
the properties of argumentation semantics [2] and the termination and complexity
properties of dialogue protocols [13], strategic aspects are still underexplored.
Game-theoretic tools have proven indispensable to the understanding of other
forms of interaction in multiagent systems, such as auction and voting protocols,
as illustrated elsewhere in this book. Yet the connection between argumentation
processes and game theory still has a long way to go.

Another important challenge is understanding how computational models of
argument relate to how people actually argue. This is crucial to the task of
programming agents capable of arguing with, and successfully persuading peo-
ple [26]. The models explored in this chapter mostly overlook questions of psy-
chological plausibility [40]. There is an opportunity for cross-fertilization be-
tween computational argumentation and human reasoning research [50].
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8 Exercises

1. Level 1 Consider the argument framework 〈A,⇀〉 with A= {a,b,c,d} and
⇀= {(a,b),(b,a),(a,c),(b,c),(c,d),(d,c)}. Draw the argument graph,
then produce all legal labelings of this graph. List all complete extensions,
and identify which of these is grounded, preferred, stable (if it exists), and
semi-stable.

2. Level 1 Consider the argument framework 〈A,⇀〉 with A = {a,b,c} and
⇀= {(a,b),(b,c),(c,a)}. Draw the argument graph, then produce all le-
gal labelings of this graph. List all complete extensions. Think about the
peculiar nature of odd-length cycles in argument graphs.

3. Level 1 Pick an argument from today’s newspaper, and try to model it using
the argument interchange format. Are there multiple ways to do this?

4. Level 2 Consider the following situation involving the couple Alice (A) and
Brian (B), who want to decide on an activity for the day. Brian thinks they
should go to a soccer match (argument α1) while Alice thinks they should
attend the ballet (argument α2). There is time for only one activity, however
(hence α1 and α2 defeat one another). Moreover, while Alice prefers the
ballet to the soccer, she would still rather go to a soccer match than stay
at home. Likewise, Brian prefers the soccer match to the ballet, but also
prefers the ballet to staying home. Formally, we can write uA(ballet) >
uA(soccer) > uA(home) and uB(soccer) > uB(ballet) > uB(home). Alice
has a strong argument which she may use against going to the soccer match,
namely by claiming that she is too sick to be outdoors (argument α3). Brian
simply cannot attack this argument (without compromising his marriage at
least). Likewise, Brian has an irrefutable argument against the ballet; he
could claim that his ex-wife will be there too (argument α4). Alice cannot
stand her! Draw the corresponding abstract argument graph, and identify
the strategic (normal-form) game being played, together with the equilibria
of this game.

5. Level 3 Recall that Definition 5.10 provides a dialogue protocol such that
the proponent wins the dialogue if and only if the argument at the root is
in the grounded set. Produce variants of this protocol corresponding to the
skeptical and credulous version of all semantics described in Section 3.

6. Level 3 Program a web-based system that enables people to author argu-
ments represented using the Argument Interchange Format, link to other
people’s arguments, and navigate argument structures.
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7. Level 3 In recent years, a number of web-based games have been devel-
oped, providing people with entertainment while, as a bi-product, produc-
ing useful content, such as agent image labels or formalized commonsense
facts [54]. Design and implement a web-based game in which, given plain
text snippets, human players produce annotated arguments according to an
appropriate argument scheme.

8. Level 4 Using the concepts of argumentation mechanism design, charac-
terize conditions under which mechanisms based on various semantics are
dominant-strategy incentive compatible.

9. Level 4 Conduct an experimental study, with human participants and natu-
ral language arguments, to compare the psychological plausibility of differ-
ent argumentation semantics. Explore the role of single argument structure,
argument graph structure, and type of attack relation on the way humans
evaluate arguments.

10. Level 4 Investigate the design of a software agent capable of conducting
successful persuasion dialogues with a human. Explore the role of game-
theoretic reasoning in designing such an agent, and compare it with more
heuristic behavior inspired by the psychological literature.

11. Level 4 Using tools from automated natural language processing, program
a system capable of annotating natural language arguments.
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Chapter 6

Computational Social Choice

Felix Brandt, Vincent Conitzer, and Ulle Endriss

1 Introduction

Social choice theory concerns the design and formal analysis of methods for ag-
gregating the preferences of multiple agents. Examples of such methods include
voting procedures, which are used to aggregate the preferences of voters over a set
of candidates standing for election to determine which candidate should win the
election (or, more generally, to choose an alternative from a set of alternatives), or
protocols for deciding on a fair allocation of resources given the preferences of a
group of stakeholders over the range of bundles they might receive. Originating
in economics and political science, social choice theory has since found its place
as one of the fundamental tools for the study of multiagent systems. The reasons
for this development are clear: if we view a multiagent system as a “society” of
autonomous software agents, each of which has different objectives, is endowed
with different capabilities, and possesses different information, then we require
clearly defined and well-understood mechanisms for aggregating their views so as
to be able to make collective decisions in such a multiagent system.

Computational social choice, the subject of this chapter, adds an algorithmic
perspective to the formal approach of social choice theory. More broadly speak-
ing, computational social choice deals with the application of methods usually
associated with computer science to problems of social choice.
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1.1 Introductory Example

Let us begin with a simple example. We shall discuss it at length, in order to
introduce some of the key concepts that will be treated more formally later in the
chapter. Consider the following situation in which there are four Dutchmen, three
Germans, and two Frenchmen who have to decide which drink will be served for
lunch (only a single drink will be served to all).1 The Dutchmen prefer milk to
wine to beer, the Germans prefer beer to wine to milk, and the Frenchmen prefer
wine to beer to milk. These preferences can be conveniently represented in a table
where each group of agents is represented by one column.

4 3 2

milk beer wine
wine wine beer
beer milk milk

Now, which drink should be served based on these individual preferences? Milk
could be chosen on the grounds that it has the most agents ranking it first (the
Dutch). That is, it is the winner according to the plurality rule, which only con-
siders how often each alternative is ranked in first place. However, a majority
of agents (the Germans and the French) will be dissatisfied with this choice as
they prefer any other drink to milk. In fact, it turns out that wine is preferred to
both beer and milk by a 6:3 and a 5:4 majority of voters, respectively. An alter-
native with this property (defeating every other alternative in pairwise majority
comparisons) is called a Condorcet winner. Yet another method of determining
a collective choice would be to successively eliminate those beverages that are
ranked first by the lowest number of agents (known as Single Transferable Vote,
or STV). This would result in wine being eliminated first because only two agents
(the French) rank it first. Between the remaining two options, beer is ranked
higher by the Germans and the French, and will eventually be chosen. In sum-
mary, this example shows that collective choice is not a trivial matter, as different,
seemingly reasonable, voting rules can yield very different results.

Another important lesson that can be learned from this example concerns
strategic manipulation. Assume the collective choice is determined using the plu-
rality rule. Since preferences are private and each agent only knows its own pref-
erences with certainty, nobody can prevent the Germans from claiming that their
most-preferred drink is wine. This will result in a more preferable outcome to
them than reporting their preferences truthfully, because they get wine rather than
milk, their least-preferred alternative. A seminal result in social choice theory, the

1This is based on an example used by Donald G. Saari at a conference in Rotterdam, where
only milk was served for lunch.
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Gibbard-Satterthwaite theorem (discussed in detail in Section 3.2.1), states that
every reasonable voting rule is susceptible to this type of manipulation.

While the example was carefully set up to avoid this, plurality and STV, as
well as many other rules, can, in general, result in multiple alternatives ending up
tied. If a social decision must be made, then we need to break this tie in some
way – for example, by flipping a coin (resulting in a randomized rule), lexico-
graphically according to the names of the alternatives, or by using another voting
rule as a tie-breaking rule (whose own ties may yet again need to be broken). An-
other option is simply to “pass the buck” and declare all the tied alternatives to be
winners, so that the output is now a subset of the alternatives. For obvious rea-
sons, we will generally require this subset to be non-empty. This sounds trivial,
but, for example, as we will see later in the chapter, a given election may not have
a Condorcet winner at all. As a consequence, the Condorcet winner method is not
even a well-defined voting rule. Many voting rules, however, are so-called Con-
dorcet extensions, which means that they choose the Condorcet winner whenever
one exists. This is sometimes also called the Condorcet principle. Our example
above shows that neither plurality nor STV are Condorcet extensions. An example
of a rule that is a Condorcet extension is Copeland’s rule, which chooses those
alternatives that win the most pairwise majority comparisons. If no Condorcet
winner exists, Copeland’s rule still yields one or more winners. A disadvantage
of Copeland’s rule, in contrast to, say, the plurality rule when applied to elections
with many voters and few alternatives, is that ties seem more likely here. In gen-
eral, we prefer to end up with as small a set of winners as possible, but as we will
see, this needs to be traded off against other properties.

We may even be a bit more ambitious and attempt to not only choose the win-
ner(s), but rather to rank all the alternatives, representing “society’s preferences”
over them. This can be useful, for example, if we are worried that some alterna-
tives may turn out to be unavailable and we need to quickly switch to another one.
We may also be interested in the aggregate ranking for other reasons; for exam-
ple, consider the problem of running a single query on multiple Internet search
engines, and trying to aggregate the results into a single ranking. In the example
above, we can simply rank the alternatives according to their pairwise majority
comparisons: wine defeats both beer and milk in their pairwise comparisons and
so should be ranked first, and beer defeats milk and so should be ranked second.
As we will see later, however, this approach can result in cycles. A simple ap-
proach to ranking alternatives is to use a rule that gives each alternative a score –
such as plurality or Copeland – and sort the alternatives by aggregate score. (Note
that if the pairwise majority approach does not result in cycles, then Copeland
will agree with it.) For STV, one possibility is to sort the alternatives in inverse
order of elimination. A generally applicable approach is to take the winners, rank
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them first, then vote again over the remaining alternatives, and to continue in this
fashion until all alternatives have been ranked.

We shall revisit several of these ideas again later on, when we define the frame-
works for social choice outlined here in more formal detail.

1.2 History of the Field

There are a number of historical cases showing that the intricacies of social choice
have occupied people’s minds for a very long time [160]. Examples include the
writings of Pliny the Younger, a senator in ancient Rome around the turn of the 1st
century A.D.; the thirteenth century Catalan philosopher, alchemist, and mission-
ary Ramon Llull; and the Marquis de Condorcet, a public intellectual who was
active around the time of the French Revolution.

Social choice theory as a scientific discipline with sound mathematical foun-
dations came into existence with the publication of the Ph.D. thesis of Kenneth
J. Arrow in 1951 [5], who introduced the axiomatic method into the study of ag-
gregation methods and whose seminal Impossibility Theorem shows that any such
method that satisfies a list of seemingly basic fairness requirements must in fact
amount to a dictatorial rule. Since then, much of the work in classical social
choice theory has focused on results concerning the formal possibility and impos-
sibility of aggregation methods that combine certain desirable properties – like
Pareto optimality, monotonicity, or non-manipulability – without resulting in an
unacceptable concentration of power. Some of the landmark results include Sen’s
characterization of preference domains allowing for consistent majority decisions
[197] and the Gibbard-Satterthwaite theorem [124, 191] mentioned earlier, which
establishes the impossibility of devising a reasonable, general voting rule that is
immune to strategic manipulation.

The first clear examples of work in computational social choice are a series of
papers by Bartholdi, Orlin, Tovey, and Trick, published around 1990 [17, 19, 20].
They argued that complexity theory, as studied in theoretical computer science, is
relevant to social choice. For instance, they analyzed the complexity of determin-
ing the winners in an intricate voting rule due to C. L. Dodgson, better known as
Lewis Carroll, the author of Alice in Wonderland.2 They also fielded the funda-
mental idea that complexity barriers might provide a means of protection against
strategic manipulation and other undesirable behavior. That is, while classical
social choice theory showed that it is a mathematical impossibility to devise a
voting rule that cannot be manipulated, computer science might provide the tools

2It was shown later that determining the winners according to Dodgson’s rule is complete for
the complexity class Θp

2 [130]. This is remarkable as Θp
2 was considered to lack “natural” complete

problems and Dodgson’s rule was proposed long before complexity theory existed.
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for making this unwanted behavior so difficult that it can be neglected in practice.3

This groundbreaking work was followed by a small number of isolated pub-
lications throughout the 1990s. In the first few years of the twenty-first century,
as the relevance of social choice to artificial intelligence, multiagent systems, and
electronic commerce became apparent, the frequency of contributions on prob-
lems related to social choice with a computational flavor suddenly intensified. Al-
though the field was still lacking a name, by 2005 contributions in what we would
now call “computational social choice” had become a regular feature at several
of the major conferences in artificial intelligence. The first workshop specifically
dedicated to computational social choice, and the first event to explicitly use this
name, took place in 2006 [102]. Around the same time, Chevaleyre et al. [56]
attempted the first classification of research in the area by distinguishing (a) the
nature of the social choice problem addressed, and (b) the type of formal or com-
putational technique used.

1.3 Applications

Social choice theory was originally developed as an abstraction of problems that
arise in political science and economics. More generally, social choice theory
provides a useful theoretical framework for the precise mathematical study of the
normative foundations of collective decision making, in a wide range of areas,
involving not only human decision makers but also autonomous software agents.
This chapter will focus on the theoretical foundations of computational social
choice. But before we delve into the theory, let us briefly cite a few examples
of actual and potential application domains, going beyond political elections and
collective decision making in multiagent systems, where the methods we shall
cover in this chapter can be put to good use.

The first such example comes from the domain of Internet search engines.
Imagine you want to design a metasearch engine that combines the search results
of several engines. This problem has a lot in common with preference aggrega-
tion. Aggregating preferences means asking each individual agent for a ranking
over the set of alternatives and then amalgamating this information into a sin-
gle such ranking that adequately represents the preferences of the group. For the
metasearch engine, we ask each individual search engine for a ranking of its own,
say, 20 top results and then have to aggregate this information to produce our
metaranking. Of course, the problems are not exactly the same. For instance,
some website may not have been ranked at all by one search engine, but be in the

3As we shall see, this approach of using computational complexity as a barrier against strategic
manipulation has its limitations, but conceptually this has nevertheless been an important idea that
has inspired a good deal of exciting research.
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top five for another. Also, the general principles that we might want to adhere
to when performing the aggregation might differ: in preference aggregation, fair-
ness will play an important role; when aggregating search results fairness is not
a goal in itself. Nevertheless, it is clear that insights from social choice theory
can inform possible approaches for designing our metasearch engine. In fact, this
situation is rather typical in computational social choice: for many modern appli-
cations, we can rely on some of the basic insights from social choice theory, but
to actually develop an adequate solution, we do have to alter some of the classical
assumptions.

There is also a less obvious application of principles of social choice to search
engines. One way of measuring the importance of a web page is the number of
other web pages linking to it. In fact, this is a recursive notion: the importance
of our web page also depends on the importance of the pages linking to it, which
in turn depends on the importance of the pages linking to those. This idea is the
basis for the PAGERANK algorithm at the core of Google’s search engine [170].
We may think of this as an election where the set of the voters and the set of the
candidates coincide (both are the set of all web pages). In this sense, the ranking
of the importance of web pages may be considered as a social choice problem.
This perspective has led to a deeper understanding of the problem, for instance,
by providing an axiomatic characterization of different ranking algorithms [3].

Another example of an application domain for which the perspective of social
choice theory can provide fruitful new insights is that of recommender systems. A
recommender system is a tool for helping users choose attractive products on the
basis of choices made by other users in the past. An important technique in this
field is collaborative filtering. By reinterpreting collaborative filtering as a pro-
cess of preference aggregation, the axiomatic method developed in social choice
theory has proven helpful in assessing and comparing the quality of different col-
laborative filtering approaches [171].

Yet another example is the problem of ontology merging, which arises in the
context of the Semantic Web. Suppose different information providers on the Se-
mantic Web provide us with different ontologies describing the same set of con-
cepts. We would like to combine this information so as to arrive at the best possi-
ble ontology representing the available knowledge regarding the problem domain.
This is a difficult problem that will require a combination of different techniques.
Social choice theory can make a contribution in those cases where we have little
information regarding the reliability of the individual providers and can only re-
sort to aggregating whatever information they provide in a “fair” (and logically
consistent) manner [174].

We shall allude to further areas of application along the way. However, our
focus will be on theoretical foundations from here on.



Chapter 6 219

1.4 Chapter Outline

In this chapter we review the foundations of social choice theory and introduce
the main research topics in computational social choice that have been identified
to date. Specifically, Section 2 introduces the axiomatic framework for study-
ing preference aggregation and discusses the most important seminal result in the
field, Arrow’s theorem, in detail. Section 3 is an introduction to voting theory.
We present the most important voting rules and then focus on the problem of
strategic manipulation. This includes a discussion of the Gibbard-Satterthwaite
theorem and a number of possible avenues for circumventing the impossibility it
is pointing to. Section 4 focuses on voting scenarios where the set of alternatives
to choose from has a combinatorial structure, as is the case when we have to elect
a committee (rather than a single official) or more generally when we have to
collectively decide on an instantiation of several variables. In Section 5 we turn
our attention to the problem of fairly allocating a number of goods to a group of
agents and discuss the problems that are characteristic of this particular type of
social choice problem. Section 6 concludes with a brief discussion of related re-
search topics in computational social choice not covered in this chapter and with
a number of recommendations for further reading.

2 Preference Aggregation

One of the most elementary questions in social choice theory is how the prefer-
ence relations of individual agents over some abstract set of alternatives can be
aggregated into one collective preference relation. Apart from voting, this ques-
tion is of broad interest in the social sciences, because it studies whether and how
a society of autonomous agents can be treated as a single rational decision maker.
As we point out in Section 2.1, results in this framework are very discouraging.

In many practical settings, however, one is merely interested in a set of socially
acceptable alternatives rather than a collective preference relation. In Section 2.2,
we discuss the relationship between both settings and present some positive results
for the latter framework.

2.1 Social Welfare Functions

We start by investigating social welfare functions, the simplest and perhaps most
elegant framework of preference aggregation. A social welfare function (SWF)
aggregates preferences of individual agents into collective preferences. More for-
mally, we consider a finite set N = {1, . . . ,n} of at least two agents (sometimes
also called individuals or voters) and a finite universe U of at least two alterna-
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tives (sometimes also called candidates). Each agent i entertains preferences over
the alternatives in U , which are represented by a transitive and complete pref-
erence relation �i. Transitivity requires that a �i b and b �i c imply a �i c for
all a,b,c ∈U , and completeness requires that any pair of alternatives a,b ∈U is
comparable, i.e., it holds that either a �i b or b �i a or both. In some cases, we
will assume preferences to be linear, i.e., also satisfying antisymmetry (a �i b and
b �i a imply that a = b), but otherwise we impose no restrictions on preference
relations. We have a �i b denote that agent i likes alternative a at least as much
as alternative b and write �i for the strict part of �i, i.e., a �i b if a �i b but
not b �i a. Similarly,∼i denotes i’s indifference relation, i.e., a∼i b if both a �i b
and b �i a. The set of all preference relations over the universal set of alterna-
tives U will be denoted by R(U). The set of preference profiles, associating one
preference relation with each individual agent, is then given by R(U)n.

Economists often also consider cardinal (rather than ordinal) preferences,
which are usually given in the form of a utility function that assign numerical
values to each alternative. It is easy to show that, for a finite number of alter-
natives, a preference relation can be represented by a utility function if and only
if it satisfies transitivity and completeness (see Exercise 1). Still, a utility func-
tion may encode much more information than a preference relation, such as the
intensity of preferences. In the absence of a common numeraire such as money,
the meaning of individual utility values and especially the interpersonal compar-
isons between those values is quite controversial. Therefore, the ordinal model
based on preference relations is the predominant model in abstract social choice
theory. In special domains such as fair division (see Section 5), however, cardinal
preferences are also used.

A social welfare function is a function that maps individual preference rela-
tions to a collective preference relation.

Definition 6.1 A social welfare function (SWF) is a function f : R(U)n →R(U).

For a given preference profile R = (�1, . . . ,�n), the resulting social preference
relation will be denoted by �.

It was the Marquis de Condorcet who first noted that the concept of a social
preference relation can be problematic. When there are just two alternatives, com-
mon sense and several axiomatic characterizations, such as May’s Theorem [157],
suggest that alternative a should be socially preferred to alternative b if and only if
there are more voters who strictly prefer a to b than b to a. This concept is known
as majority rule. Since the majority rule provides us with social pairwise compar-
isons, it appears to be a natural candidate for an SWF. However, as demonstrated
by the Condorcet paradox [86], the majority rule can result in cycles when there
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are more than two alternatives. To see this, consider the preference relations of
three voters given in Figure 6.1. A majority of voters (two out of three) prefers a
to b. Another majority prefers b to c and yet another one c to a. Clearly, the pair-
wise majority relation in this example is cyclic and therefore not a well-formed
preference relation. Hence, the majority rule does not constitute an SWF.

1 1 1

a b c
b c a
c a b

a

c b

Figure 6.1: Condorcet’s paradox [86]. The left-hand side shows the individual
preferences of three agents such that the pairwise majority relation, depicted on
the right-hand side, is cyclic.

In what is perhaps the most influential result in social choice theory, Arrow [5]
has shown that this “difficulty in the concept of social welfare” (as he calls it) is
not specific to the majority rule, but rather applies to a very large class of SWFs.
Arrow’s theorem states that a seemingly innocuous set of desiderata cannot be
simultaneously met when aggregating preferences. These desiderata are Pareto
optimality, independence of irrelevant alternatives, and non-dictatorship; they are
defined as follows.

• An SWF satisfies Pareto optimality if strict unanimous agreement is re-
flected in the social preference relation. Formally, Pareto optimality re-
quires that a�i b for all i ∈ N implies that a� b.

• An SWF satisfies independence of irrelevant alternatives (IIA) if the social
preference between any pair of alternatives only depends on the individual
preferences restricted to these two alternatives. Formally, let R and R′ be
two preference profiles and a and b be two alternatives such that R|{a,b} =
R′|{a,b}, i.e., the pairwise comparisons between a and b are identical in both
profiles. Then, IIA requires that a and b are also ranked identically in �,
i.e., � |{a,b} =�′ |{a,b}.

• An SWF is non-dictatorial if there is no agent who can dictate a strict rank-
ing no matter which preferences the other agents have. Formally, an SWF
is non-dictatorial if there is no agent i such that for all preference profiles R
and alternatives a,b, a�i b implies that a� b.
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Theorem 6.1 (Arrow, 1951) There exists no SWF that simultaneously satisfies
IIA, Pareto optimality, and non-dictatorship whenever |U | ≥ 3.

According to Paul Samuelson, who is often considered the founding father of
modern economics, Arrow’s theorem is one of the significant intellectual achieve-
ments of the twentieth century [188]. A positive aspect of such a negative result
is that it provides boundaries on what can actually be achieved when aggregating
preferences. In particular, Arrow’s theorem shows that at least one of the required
conditions has to be omitted or relaxed in order to obtain a positive result. For in-
stance, if |U |= 2, IIA is trivially satisfied by any SWF and reasonable SWFs (such
as the majority rule) also satisfy the remaining conditions. In a much more elab-
orate attempt to circumvent Arrow’s theorem, Young [231] proposed to replace
IIA with local IIA (LIIA), which only requires IIA to hold for consecutive pairs
of alternatives in the social ranking. By throwing in a couple of other conditions
(such as anonymity and neutrality, which will be defined in Section 3) and restrict-
ing attention to linear individual preferences, Young completely characterizes an
aggregation function known as Kemeny’s rule.

Kemeny’s rule. Kemeny’s rule [140] yields all strict rankings that agree with as
many pairwise preferences of the agents as possible. That is, it returns

argmax� ∑
i∈N

|� ∩ �i| .

Since there can be more than one ranking that satisfies this property, Kemeny’s
rule is not really an SWF but rather a multi-valued SWF. (Young refers to these as
social preference functions.) Alternatively, Kemeny’s rule can be characterized
using maximum likelihood estimation [231, 232].4 Over the years, Kemeny’s rule
has been reinvented by many scholars in different fields. It is also known as the
median or linear ordering procedure [15, 53]. Kemeny’s rule is not only very
interesting from an axiomatic but also from a computational point of view. The
problem of computing a Kemeny ranking, as well as the closely related problem
of computing a Slater ranking (a ranking that agrees with the outcomes of as many
pairwise elections as possible), correspond to a computational problem on graphs
known as the minimum feedback arc set problem (in the case of Kemeny’s rule, the
weighted version of this problem). It has been shown that computing a Kemeny

4This is done under a model where there exists a “correct” ranking of the alternatives, and the
agents’ preferences are noisy estimates of this correct ranking. This result relies on a particular
noise model; if the noise model is changed, the maximum likelihood solution can result in other
SWFs, though for yet other SWFs, it can be proved that no noise model would yield that SWF as
the solution [70, 76, 90, 209]. However, the Kemeny result is robust to some other generalizations
of the model [66, 222].
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ranking is NP-hard [20], even when there are just four voters [97]. Moreover,
deciding whether a given alternative is ranked first in a Kemeny ranking is Θp

2-
complete [131]. Nevertheless, under certain conditions, there is a polynomial-time
approximation scheme (PTAS) for the Kemeny problem [141]. For further details
on these problems, we refer to the works of Alon [2], Betzler et al. [23, 26], Brandt
et al. [48], Charon and Hudry [53], Conitzer [61], Conitzer et al. [73], Davenport
and Kalagnanam [84], Hudry [135, 136], and Ali and Meila [1].5

Rather than relaxing the explicit conditions in Arrow’s theorem, one may call
its implicit assumptions into question. For instance, in many applications, a full
social preference relation is not needed; rather, we just wish to identify the socially
most desirable alternatives. This corresponds to the framework considered in the
following section.6

2.2 Social Choice Functions

The central objects of study in this section are social choice functions, i.e., func-
tions that map the individual preferences of the agents and a feasible subset of
the alternatives to a set of socially preferred alternatives, the choice set. Through-
out this chapter, the set of possible feasible sets F(U) is defined as the set of all
non-empty subsets of U . A feasible set (or agenda) defines the set of possible
alternatives in a specific choice situation at hand. The reason for allowing the
feasible set to vary is that we will later define properties that relate choices from
different feasible sets to each other [see also 200, 206].

Definition 6.2 A social choice function (SCF) is a function f : R(U)n×F(U)→
F(U) such that f (R,A)⊆ A for all R and A.

2.2.1 The Weak Axiom of Revealed Preference

Arrow’s theorem can be reformulated for SCFs by appropriately redefining Pareto
optimality, IIA, and non-dictatorship and introducing a new property called the
weak axiom of revealed preference, as follows.

5In 1995, Peyton Young predicted “that the time will come when [Kemeny’s rule] is considered
a standard tool for political and group decision making” [232]. This has not yet happened, but the
website www.votefair.org provides an interface to use Kemeny’s rule for surveys, polls, and
elections at no charge.

6This effectively reduces the codomain of the aggregation function. As we will see in Sec-
tion 3.2.2, a common technique to avoid negative results in social choice theory is to reduce the
domain of the function.

http://www.votefair.org
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Pareto optimality now requires that an alternative should not be chosen if there
exists another feasible alternative that all agents unanimously prefer to the for-
mer – more precisely, a �∈ f (R,A) if there exists some b ∈ A such that b �i a for
all i ∈ N. An SCF f is non-dictatorial if there is no agent i such that for all prefer-
ence profiles R and alternatives a, a �i b for all b ∈ A\{a} implies a ∈ f (R,A).7

Independence of irrelevant alternatives reflects the idea that choices from a set of
feasible alternatives should not depend on preferences over alternatives that are
infeasible, i.e., f (R,A) = f (R′,A) if R|A = R′|A. Interestingly, in the context of
SCFs, IIA constitutes no more than a framework requirement for social choice
and is not the critical assumption it used to be in the context of SWFs.

Finally, the weak axiom of revealed preference (WARP) demands that choice
sets from feasible sets are strongly related to choice sets from feasible subsets. Let
A and B be feasible sets such that B ⊆ A. WARP requires that the choice set of B
consists precisely of those alternatives in B that are also chosen in A, whenever this
set is non-empty. Formally, for all feasible sets A and B and preference profiles R,

if B⊆ A and f (R,A)∩B �= /0 then f (R,A)∩B = f (R,B). (WARP)

We are now ready to state a variant of Arrow’s theorem for SCFs.

Theorem 6.2 (Arrow, 1951, 1959) There exists no SCF that simultaneously sat-
isfies IIA, Pareto optimality, non-dictatorship, and WARP whenever |U | ≥ 3.

As the Arrovian conditions – Pareto optimality, IIA, non-dictatorship, and
WARP – cannot be satisfied by any SCF, at least one of them needs to be ex-
cluded or relaxed to obtain positive results. Clearly, dropping non-dictatorship
is unacceptable and, as already mentioned, IIA merely states that the SCF repre-
sents a reasonable model of preference aggregation [see, e.g., 29, 193]. Wilson
[215] has shown that without Pareto optimality only SCFs that are constant (i.e.,
completely unresponsive) or fully determined by the preferences of a single agent
are possible. Moreover, it could be argued that not requiring Pareto optimality
runs counter to the very idea of social choice. Accordingly, the only remaining
possibility is to relax WARP.

2.2.2 Contraction and Expansion Consistency

Building on earlier work by Sen [198], Bordes [28] factorized WARP into two
separate conditions by splitting the equality in the consequence of the definition
of WARP into two inclusions. The resulting conditions are known as contraction
and expansion.

7Theorem 6.2 holds for an even weaker notion of non-dictatorship in which a dictator can
enforce that {a}= f (R,A).
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Contraction prescribes that an alternative that is chosen from some feasible
set will also be chosen from all subsets in which it is contained. Formally, SCF f
satisfies contraction if for all A,B and R,

if B⊆ A then B∩ f (R,A)⊆ f (R,B). (contraction)

The intuition behind expansion is that if alternative a is chosen from some set
that contains another alternative b, then it will also be chosen in all supersets in
which b is chosen. Formally, SCF f satisfies expansion if for all A,B and R,

if B⊆ A and B∩ f (R,A) �= /0 then f (R,B)⊆ B∩ f (R,A). (expansion)

One possibility to escape the haunting impossibility of social choice is to re-
quire only contraction or expansion but not both at the same time. It turns out
that contraction and even substantially weakened versions of it give rise to im-
possibility results that retain Arrow’s spirit [199]. As an example, consider the
preference profile given in Figure 6.1. All of the voting rules mentioned in the
introduction (plurality, STV, and Copeland) will yield a tie between all three al-
ternatives. Hence, if any of these rules were to satisfy contraction, they would
need to yield both available alternatives in every two-element subset of {a,b,c}.
However, this is not the case for any of these subsets as each of them has a single
winner according to all three rules (in fact, it is a 2:1 majority in each case, so this
would be the case for almost any natural rule).

Expansion consistency conditions, on the other hand, are much less restrictive.
In fact, a number of appealing SCFs can be characterized using weakenings of
expansion and inclusion minimality. Inclusion minimality is quite natural in this
context as one is typically interested in choice sets that are as small as possible.8

These characterizations are nice examples of how positive results can be obtained
by using the axiomatic method.

In the following, an SCF is said to be majoritarian if choice sets only depend
on the majority rule within the feasible set. For technical reasons, we further-
more assume that n is odd and that the preferences of the voters are strict, which
guarantees that the majority rule is asymmetric.

Top cycle. The top cycle is the smallest majoritarian SCF satisfying expansion
[28]. It consists of the maximal elements of the transitive closure of the weak ma-
jority relation [45, 88] and can be computed in linear time by using standard al-
gorithms for identifying strongly connected components in digraphs such as those
due to Kosaraju or Tarjan [see, e.g., 80].

8Moreover, due to the inclusive character of expansion consistency conditions, they are easily
satisfied by very undiscriminatory SCFs. For instance, the trivial SCF, which always yields all
feasible alternatives, trivially satisfies expansion (and all of its weakenings).
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Uncovered set. The uncovered set is the smallest majoritarian SCF satisfying
a weak version of expansion [164]. Interestingly, the uncovered set consists pre-
cisely of those alternatives that reach every other alternative on a majority rule
path of length at most two [202]. Based on this characterization, computing the
uncovered set can be reduced to matrix multiplication and is thus feasible in al-
most linear time [42, 134].

Banks set. The Banks set is the smallest majoritarian SCF satisfying a weaken-
ing of weak expansion, called strong retentiveness [40]. In contrast to the previous
two SCFs, the Banks set cannot be computed in polynomial time unless P equals
NP. Deciding whether an alternative is contained in the Banks set is NP-complete
[47, 216]. Interestingly, some alternatives (and thus subsets) of the Banks set can
be found in linear time [133]. A very optimized (exponential-time) algorithm for
computing the Banks set was recently proposed by Gaspers and Mnich [122].9

Two other SCFs, namely the minimal covering set [95] and the bipartisan
set [147], have been axiomatized using a variant of contraction, which is im-
plied by WARP [43]. While the bipartisan set can be computed using a single
linear program, the minimal covering set requires a slightly more sophisticated,
yet polynomial-time algorithm [42]. In addition to efficient computability, the
minimal covering set and the bipartisan set satisfy a number of other desirable
properties [39, 151] (see also Section 3.2.5).

3 Voting

In the previous section, we started our formal treatment of social choice and en-
countered some of the fundamental limitations that we face. The purpose of pre-
senting these limitations at the outset is of course not to convince the reader that
social choice is hopeless and we should give up on it; it is too important for that.
(One is reminded of Churchill’s quote that “democracy is the worst form of gov-
ernment except for all those other forms that have been tried from time to time.”)
Rather, it is intended to get the reader to think about social choice in a precise
manner and to have realistic expectations for what follows. Now, we can move on
to some more concrete procedures for making decisions based on the preferences
of multiple agents.

9Another SCF, the tournament equilibrium set [194], was, for more than 20 years, conjectured
to be the unique smallest majoritarian SCF satisfying retentiveness, a weakening of strong reten-
tiveness. This was recently disproven by Brandt et al. [49]. Deciding whether an alternative is
contained in the tournament equilibrium set of a tournament is NP-hard [47]. This problem is not
known to be in NP and may be significantly harder.
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3.1 Voting Rules

We begin by defining voting rules.

Definition 6.3 A voting rule is a function f : R(U)n → F(U).

Of course, every SCF can also be seen as a voting rule. There are two reasons
we distinguish SCFs from voting rules. First, from a technical perspective, the
SCFs defined in the previous section were axiomatized using variable feasible
sets in order to salvage some degree of collective rationality. Second, some of
these SCFs (e.g., the top cycle) can hardly be considered voting rules because
they are not discriminatory enough. Of course, the latter is merely a gradual
distinction, but there have been attempts to formalize this [see, e.g., 10, 117, 195,
207]. When ignoring all conditions that relate choices from different feasible sets
with each other, we have much more freedom in defining aggregation functions.
For simplicity, we assume throughout this section that preferences are linear, i.e.,
there are no ties in individual preference relations.

An important property that is often required of voting rules in practice, called
resoluteness, is that they should always yield a unique winner. Formally, a voting
rule f is resolute if | f (R)|= 1 for all preference profiles R. Two natural symmetry
conditions are anonymity and neutrality. Anonymity requires that the outcome of
a voting rule is unaffected when agents are renamed (or more formally, when the
individual relations within a preference profile are permuted). In a similar vein,
neutrality requires that a voting rule is invariant under renaming alternatives.

Unfortunately, in general, anonymous and neutral voting rules cannot be
single-valued. The simplest example concerns two agents and two alternatives,
each of which is preferred by one of the voters. Clearly, a single alternative can
only be chosen by breaking anonymity or neutrality.10

In the remainder of this section, we will define some of the most common
voting rules.

3.1.1 Scoring Rules

A common objection to the plurality rule is that an alternative ought to get some
credit for being ranked, say, in second place by a voter. Under a (positional)
scoring rule, each time an alternative is ranked ith by some voter, it gets a par-
ticular score si. The scores of each alternative are then added and the alternatives
with the highest cumulative score are selected. Formally, for a fixed number of
alternatives m, we define a score vector as a vector s = (s1, . . . ,sm) in Rm such

10Moulin [163] has shown that anonymous, neutral, and resolute voting rules exist if and only
if |U | can be written as the sum of non-trivial dividers of n.
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that s1 ≥ ·· · ≥ sm and s1 > sm. Three well-known examples of scoring rules are
Borda’s rule, the plurality rule, and the anti-plurality rule.

Borda’s rule. Under Borda’s rule alternative a gets k points from voter i if i
prefers a to k other alternatives, i.e., the score vector is (|U | − 1, |U | − 2, . . . ,0).
Borda’s rule takes a special place within the class of scoring rules as it chooses
those alternatives with the highest average rank in individual rankings. While
Borda’s rule is not a Condorcet extension, it is the only scoring rule that never
gives a Condorcet winner the lowest accumulated score [204]. Another appealing
axiomatic characterization of Borda’s rule was given by Young [228].

Plurality rule. The score vector for the plurality rule is (1,0, . . . ,0). Hence,
the cumulative score of an alternative equals the number of voters by which it is
ranked first.

Anti-plurality rule. The score vector for the anti-plurality rule (which is some-
times also called veto) is (1, . . . ,1,0). As a consequence, it chooses those alterna-
tives that are least-preferred by the lowest number of voters.

Due to their simplicity, scoring rules are among the most used voting rules in
the real world. Moreover, there are various elegant characterizations of scoring
rules. In Section 2, we introduced axioms that impose consistency restrictions
on choice sets when the set of feasible alternatives varies. Alternatively, one can
focus on changes in the set of voters. A very natural consistency property with
respect to a variable electorate, often referred to as reinforcement, was suggested
independently by Smith [204] and Young [228]. It states that all alternatives that
are chosen simultaneously by two disjoint sets of voters (assuming that there is at
least one alternative with this property) should be precisely the alternatives chosen
by the union of both sets of voters. When also requiring anonymity, neutrality, and
a mild technical condition, Smith [204] and Young [229] have shown that scoring
rules are the only voting rules satisfying these properties simultaneously.

A voting procedure, popularized by Brams and Fishburn [36], that is closely
related to scoring rules is approval voting. In approval voting, every voter can
approve any number of alternatives and the alternatives with the highest number of
approvals win. We deliberately called approval voting a voting procedure, because
technically it is not really a voting rule (unless we impose severe restrictions on the
domain of preferences by making them dichotomous). Various aspects of approval
voting (including computational ones) are analyzed in a recent compendium by
Laslier and Sanver [152].
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3.1.2 Condorcet Extensions

As mentioned in Section 1, a Condorcet winner is an alternative that beats every
other alternative in pairwise majority comparisons. We have already seen in the
Condorcet paradox that there are preference profiles that do not admit a Condorcet
winner. However, whenever a Condorcet winner does exist, it obviously has to be
unique. Many social choice theorists consider the existence of Condorcet winners
to be of great significance and therefore call any voting rule that picks a Condorcet
winner whenever it exists a Condorcet extension. For aficionados of Condorcet’s
criterion, scoring rules present a major disappointment: every scoring rule fails to
select the Condorcet winner for some preference profile [118]. This is shown by
using one universal example given in Figure 6.2.

6 3 4 4

a c b b
b a a c
c b c a

a’s score : 6+7s2
b’s score : 8+6s2
c’s score : 3+4s2

Figure 6.2: Example due to Fishburn [118], which shows that no scoring rule
is a Condorcet extension. Scores for the score vector (1,s2,0) are given on the
right-hand side.

It is easily verified that alternative a is a Condorcet winner as 9 out of 17
voters prefer a to b and 10 out of 17 voters prefer a to c. Now, consider an
arbitrary scoring rule with score vector (s1,s2,s3). Due to the linearity of scores,
we may assume without loss of generality that s1 = 1 and that s3 = 0. The resulting
scores for each alternative are given in Figure 6.2. Since s2 ∈ [0,1], the score of
alternative b always exceeds that of alternatives a and c. In other words, b is the
unique winner in any scoring rule, even though a is the Condorcet winner.

We now give some examples of rules that do satisfy Condorcet’s criterion.
This list is far from complete, but it already shows the wide variety of Condorcet
extensions.

Copeland’s rule. We have already mentioned Copeland’s rule: an alternative
gets a point for every pairwise majority win, and some fixed number of points
between 0 and 1 (say, 1/2) for every pairwise tie. The winners are the alternatives
with the greatest number of points.
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Maximin. Under the maximin rule, we consider the magnitude of pairwise elec-
tion results (by how many voters one alternative was preferred to the other). We
evaluate every alternative by its worst pairwise defeat by another alternative; the
winners are those who lose by the lowest margin in their worst pairwise defeats.
(If there are any alternatives that have no pairwise defeats, then they win.)

Dodgson’s rule. Dodgson’s rule yields all alternatives that can be made a Con-
dorcet winner by interchanging as few adjacent alternatives in the individual
rankings as possible. Deciding whether an alternative is a Dodgson winner is
Θp

2-complete and thus computationally intractable [20, 130]. Various computa-
tional properties of Dodgson’s rule such as approximability and fixed-parameter
tractability have been studied [see, e.g., 24, 51, 52, 158]. Unfortunately, Dodg-
son’s rule violates various mild axioms that almost all other Condorcet extensions
satisfy [see, e.g., 38].

Young’s rule. Young’s rule is based on removing voters in order to obtain a
Condorcet winner. More precisely, it yields all alternatives that can be made a
Condorcet winner by removing as few voters as possible. Deciding whether an
alternative is a winner according to Young’s rule is Θp

2-complete [185].11 Further
computational results for Young’s rule were obtained by Betzler et al. [24], Cara-
giannis et al. [51]

Nanson’s rule. Nanson’s rule is a runoff method similar to STV as described in
Section 1.1. In Nanson’s original definition, a series of Borda elections is held and
all alternatives who at any stage have no more than the average Borda score are
excluded unless all alternatives have identical Borda scores, in which case these
candidates are declared the winners. There exist two variants of Nanson’s rule due
to Fishburn and Schwartz, which exclude candidates with the lowest Borda score
(also known as Baldwin’s rule) and candidates whose Borda score is less than the
average score, respectively [167].

Ranked pairs. The ranked pairs rule generates a ranking of all alternatives (and
the first-ranked alternative can be considered the winner). It first sorts all pairwise
elections by the magnitude of the margin of victory. Then, starting with the pair-
wise election with the largest margin, it “locks in” these results in this order, so
that the winner of the current pairwise election must be ranked above the loser in
the final ranking – unless this would create a cycle due to previously locked-in

11Young [230] actually defined his rule using weak Condorcet winners (see Exercise 15). Brandt
et al. [46] have shown that the hardness result by Rothe et al. [185] carries over to Young’s original
definition.
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results, in which case we move on to the next pairwise election. A similar voting
rule was proposed by Schulze [192].

All SCFs mentioned in Section 2.2 (e.g., the top cycle, the uncovered set,
and the Banks set) also happen to be Condorcet extensions. This is because the
Condorcet criterion can be seen as a very weak variant of expansion consistency:
whenever an alternative is chosen in all two-element subsets, then it should also
be chosen from the union of all these sets. Many of the proposed Condorcet
extensions can be seen as refinements of these SCFs because they always yield
elements of, say, the top cycle or the uncovered set. Other prominent Condorcet
extensions are Kemeny’s rule and Slater’s rule (see Section 2.1).

3.1.3 Other Rules

While scoring rules and Condorcet extensions are two important classes of voting
rules, many other rules that do not fit in either class have been proposed over the
years. Two examples are STV and Bucklin’s rule.

STV. We have already mentioned the STV rule: it looks for the alternatives that
are ranked in first place the least often, removes them from all voters’ ballots (so
that some of them may now rank a different alternative first), and repeats. The
alternatives removed in the last round (which results in no alternatives being left
at all) win.

Bucklin’s rule. In the (simple version of) Bucklin’s rule, we first check whether
there is any alternative that is ranked first by more than half the voters; if so,
this alternative wins. If not, we check whether there are any alternatives that are
ranked in either first or second place by more than half the voters; if so, they win.
If not, we consider the first three positions, etc. When multiple alternatives cross
the n/2 threshold simultaneously, it is common to break ties by the margin by
which they crossed the threshold.

In order to gain more insight into the huge zoo of voting rules, various ax-
ioms that may or may not be satisfied by a voting rule have been put forward.
Sometimes a certain set of axioms completely characterizes a single voting rule
(such as the SCFs proposed in Section 2.2.2) or an interesting class of voting rules
(such as the class of scoring rules in Section 3.1.1). Another stream of research
studies the rationalization of voting rules by measuring the distance (according to
various metrics) of a given preference profile to the nearest preference profile that
satisfies certain consensus properties (e.g., being completely unanimous or ad-
mitting a Condorcet winner). This approach goes back to Dodgson’s voting rule
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mentioned in Section 3.1.2 and covers many of the rules proposed in this section
[99, 100, 161].

3.2 Manipulation

So far, we have assumed that the preferences of all voters are known. In reality,
generally the voters need to report their preferences. A significant problem is
that a voter may be incentivized to report preferences other than its true ones.
For example, consider a plurality election between three alternatives, a, b, and
c. Consider voter i with preferences a �i b �i c. Moreover, suppose that voter
i believes that almost nobody else will rank a first, but it will be a close race
between b and c. Then, i may be best off casting a vote in which b is ranked first:
it has little hope of getting a to win, so it may be better off focusing on ensuring
that at least b will win.

One may wonder why manipulation is something to be avoided. First, the
possibility of manipulation leads to fairness issues since manipulative skills are
usually not spread evenly across the population. Second, energy and resources are
wasted on determining how best to manipulate. Third, it makes it difficult to eval-
uate whether the resulting outcome is in fact one that makes sense with respect to
the true preferences (as opposed to the reported ones). As we will see, the question
of how to manipulate is not only computationally but also conceptually problem-
atic. It raises various fundamental game-theoretic questions and makes it very
difficult to make predictions or theoretical statements about election outcomes.12

There is also a result in the theory of mechanism design known as the revelation
principle, which can be very informally described as saying that anything that
can be achieved by a mechanism in which agents play strategically, can also be
achieved by a mechanism in which agents are best off telling the truth, underlin-
ing again the importance of truthful voting (for more details see the chapter on
“Mechanism Design and Auctions” in this book). Unfortunately, as we shall see,
the problem of manipulation cannot be avoided in general as every single-valued

12One reason for this is that voting games can have many different equilibria. For example, in
a plurality election, it can be an equilibrium for all voters to vote for either b or c, even though all
voters rank a first in their true preferences! This is so because if nobody else is expected to vote
for a, then it does not make sense to waste one’s vote on a. If such an equilibrium seems artificial,
imagine a society in which two parties dominate the political scene and put forward candidates b
and c, whereas a is a third-party candidate. Of course, there are other equilibria as well, which
will in general result in different winners. This makes it difficult to make any predictions about
strategic voting. One context in which we can make a sharp game-theoretic prediction of the
winner is the one in which the agents vote in sequence, one after the other, observing what the
earlier agents have voted (see also Section 4.2). Unfortunately, in this context, paradoxical results
can be exhibited where the game-theoretic outcome does not reflect the voters’ true preferences
well. For more detail, see the work of Desmedt and Elkind [89] and Xia and Conitzer [220].
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voting rule for more than two alternatives is susceptible to manipulation.

3.2.1 The Gibbard-Satterthwaite Impossibility

In order to formally capture whether voting rule f can be manipulated by voter i,
we initially make the following assumptions. First, since voters just have pref-
erences over single alternatives we assume that f is resolute (i.e., single-valued).
And second, we assume that i knows the preferences of all other voters. This latter
assumption is not entirely unreasonable in some settings (e.g., decision making in
committees) and actually makes all statements about non-manipulability particu-
larly strong because it guarantees non-manipulability even when all preferences
are known.

Formally, a resolute voting rule f is manipulable by voter i if there exist pref-
erence profiles R and R′ such that R j = R′j for all j �= i and f (R′)�i f (R). (Recall
that�i corresponds to the strict part of �i (not �′

i).) A voting rule is strategyproof
if it is not manipulable.

Just like an SCF, a voting rule f is non-dictatorial if there is no voter i such
that for all preference profiles R, a ∈ f (R) where a is voter i’s most preferred
alternative.13 Finally, we need a technical condition, even weaker than Pareto
optimality, that ensures that at least three different alternatives can be returned by
the voting rule, as follows. A voting rule is non-imposing if its image contains all
singletons of F(U), i.e., every single alternative is returned for some preference
profile.

Theorem 6.3 (Gibbard, 1973; Satterthwaite, 1975) Every non-imposing, strat-
egyproof, resolute voting rule is dictatorial when |U | ≥ 3.

Just as for Arrow’s theorem, we will now consider different ways to circum-
vent this impossibility by calling some of its explicit and implicit assumptions into
question.

3.2.2 Restricted Domains of Preferences

One of the implicit assumptions of the Gibbard-Satterthwaite theorem is that the
voting rule needs to be defined for all possible preference profiles. An important
stream of research has consequently studied which restricted domains of prefer-
ences allow for strategyproof voting rules.

An important observation by Moulin [165] is that in every restricted domain
that always admits a Condorcet winner, the SCF that uniquely chooses the Con-
dorcet winner is strategyproof (see Exercise 9). There are many examples of such

13For resolute voting rules, a ∈ f (R) obviously implies {a}= f (R).
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domains. The best-known among these is the domain of single-peaked prefer-
ences. Suppose there is a linear ordering < on the alternatives, signifying which
alternatives are “smaller” than others. For example, the voters may be voting
over what the tax rate should be. In this case, the set of alternatives may be
{20%,30%,40%,50%,60%}, and clearly, 20% < 30% < .. . < 60%. They may
also be voting over possible dates for a deadline, in which case earlier dates could
be considered smaller; they may be voting over a location along a road at which
to build a building, in which case locations further to the west could be considered
“smaller”; or, more abstractly, they could be voting over political candidates, in
which case candidates further to the left of the political spectrum could be consid-
ered “smaller.”

Imposing an ordering < on the alternatives, in and of itself, of course does
not restrict the preferences yet; we must say something about how the preferences
relate to the order over the alternatives. Preferences are said to be single-peaked
with respect to the order < if the following holds: for every voter, as we move
away (according to <) from the voter’s most-preferred alternative, the alternatives
will become less preferred for that voter. Formally, a preference profile R is single-
peaked if for every x,y,z ∈U , it holds that

if (x < y < z) or (z < y < x), then x�i y implies y�i z for every i ∈ N.

When preferences are single-peaked and there is an odd number of voters, there
is always a unique Condorcet winner. If we sort voters by < according to their
most-preferred alternative (breaking ties arbitrarily), then the ((n+1)/2)th voter
is called the median voter. Its top choice is always identical to the Condorcet
winner, as was first observed by Black [27]. (The reason that the median voter’s
most-preferred alternative c is always the Condorcet winner is simple. Consider
any other alternative c′; without loss of generality, suppose c′< c. Then, by single-
peakedness, all the voters whose most-preferred alternative is equal to or greater
than c will prefer c to c′, and these constitute more than half the voters.) Hence, to
determine a Condorcet winner, it suffices to know every voter’s top choice, even
though the voters’ preference relations contain more information than just their
most-preferred alternatives.

Now, what is the relation of all of this to the Gibbard-Satterthwaite theorem?
The answer is that the median-voter rule, in spite of clearly allowing every alter-
native the possibility of winning and not being a dictatorial rule, is strategyproof
when we restrict attention to preference profiles that are single-peaked. This fol-
lows immediately from the more general result by Moulin [165], which we stated
earlier, which says that any Condorcet extension is strategyproof when we only
consider profiles with a Condorcet winner. Still, it is instructive to explain the rea-
sons for strategyproofness directly. To do so, consider what a voter who did not get
its most preferred alternative elected could do. Suppose the winner a is “smaller”
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than its own top choice b. If it manipulates and instead of truthfully declaring b
as its top choice decides to report a “smaller” alternative b′, then either the win-
ner will not change or the winner will become even “smaller” and thus even less
attractive. On the other hand, if it reports a “larger” alternative b′′ instead, then
it will not affect the median (and thus the winner) at all. Hence, any form of
manipulation will either damage its interests or have no effect at all. The exact
same argument would continue to hold even if instead of choosing the median, or
50th-percentile, voter, we chose the (say) 60th-percentile voter, even though this
clearly would not necessarily choose the Condorcet winner. The argument is also
easily modified to prove the stronger property of group-strategyproofness (where
a group of agents can join forces in attempting to manipulate the outcome).

Single-peakedness has also been studied from a computational point of view.
It is very easy to check whether a preference profile is single-peaked according to
a specific given ordering <. However, it is less obvious whether it can be checked
efficiently whether a preference profile is single-peaked according to some or-
dering <. Building on previous work by Bartholdi, III and Trick [18], Escoffier
et al. [106] proposed a linear-time algorithm for this problem. In other work,
Conitzer [63] and Farfel and Conitzer [116] investigated how to elicit the voters’
preferences by asking as few queries as possible when preferences are known to
be single-peaked (with the latter paper focusing on settings where agents have
most-preferred ranges of alternatives). The computational hardness of manip-
ulation (which will be introduced in the next section) for voting rules other than
median voting has also been examined in the context of single-peaked preferences
[46, 111, 213].

Another important domain of restricted preferences is that of value-restricted
preferences, which also guarantees the existence of a Condorcet winner and sub-
sumes many other domains such as that of single-peaked preferences [197, 201].

3.2.3 Computational Hardness of Manipulation

The positive results for restricted preferences discussed above are encouraging for
settings where we can expect these restrictions to hold. Unfortunately, in many
settings we would not expect them to hold. For example, while placing political
candidates on a left-to-right spectrum may give us some insight into what the vot-
ers’ preferences are likely to be, we would still expect many of their preferences
to be not exactly single-peaked: a voter may rank a candidate higher because
the candidate is especially charismatic, or perhaps voters are somewhat more so-
phisticated and they really consider two spectra, a social one and an economic
one. This is perhaps the main downside of the approach of restricting the voters’
preferences: we generally have no control over whether the preferences actually
satisfy the restriction, and if they do not, then there is little that we can do.
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We now discuss another approach to circumventing impossibility results such
as the Gibbard-Satterthwaite theorem. Here, the idea is that the mere theoretical
possibility of manipulation need not be a problem if in practice, opportunities
for manipulation are computationally too hard to find. So, how hard is it to find
effective manipulations? For this, we first need to clearly define the manipulation
problem as a computational problem. The best-known variant is the following,
which takes the perspective of a single voter who (somehow) already knows all the
other votes, and wishes to determine whether it can make a particular alternative
the winner.

Definition 6.4 In the manipulation problem for a given resolute voting rule, we
are given a set of alternatives, a set of (unweighted) votes, and a preferred alter-
native p. We are asked whether there exists a single vote that can be added so that
p wins.14

One may object to various aspects of this definition. First of all, one may argue
that what the manipulator seeks to do is not to make a given alternative the winner,
but rather to get an alternative elected that is as high in its true ranking as possible.
This does not pose a problem: if the manipulator can solve the above problem, it
can simply check, for every alternative, whether it can make that alternative win,
and subsequently pick the best of those that can win. (Conversely, to get an alter-
native elected that is as high in its true ranking as possible, the manipulator needs
to check first of all whether it can make its most-preferred alternative win, which
comes down to the above problem.) Another objection is that the manipulator
generally does not know the votes of all the other voters. This is a reasonable
objection, though it should be noted that as long as it is possible that the manipu-
lator knows the votes of all the other voters, the above problem remains a special
case (and thus, any (say) NP-hardness results obtained for the above definition
still apply).

Inspired by early work by Bartholdi, III et al. [19], recent research in com-
puter science has investigated how to use computational hardness – primarily NP-
hardness – as a barrier against manipulation [see, e.g., 68, 74, 98, 110, 129]. Find-
ing a beneficial manipulation is known to be NP-hard for several rules, including
second-order Copeland [19], STV [17], ranked pairs [224], and Nanson and Bald-
win’s rules [166]. Many variants of the manipulation problem have also been
considered. In the coalitional manipulation problem, the manipulators can cast
multiple votes in their joint effort to make p win. Because the single-manipulator

14Often, the problem is defined for irresolute voting rules; in this case, the question is either
whether p can be made one of the winners, or whether p can be made the unique winner. These
questions can be interpreted to correspond to the cases where ties are broken in favor of p, and
where they are broken against p, respectively.
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case is a special case of this problem where the coalition happens to have size 1,
this problem is NP-hard for all the rules mentioned above. However, other rules
are also NP-hard to manipulate in this sense, including Copeland [109, 115],
maximin [224], and Borda [25, 85]. Finally, in the weighted version of this
problem, weights are associated with the voters, including the manipulators (a
vote of weight k counts as k unweighted votes). Here, many rules become NP-
hard to manipulate even when the number of alternatives is fixed to a small con-
stant [74, 129, 166].

In the destructive version of the problem, the goal is not to make a given alter-
native a win, but rather to make a given alternative a not win [74]. For contrast,
the regular version is called the constructive version. If the constructive version is
easy, then so is the destructive version, because to solve the destructive version it
suffices to solve the constructive version for every alternative other than a; but in
some cases, the destructive version is easy while the constructive version is not.

Computational hardness has also been considered as a way of avoiding other
undesirable behavior. This includes control problems, where the chair of the elec-
tion has (partial) control over some aspects of the election (such as which alterna-
tives are in the running or which voters get to participate) and tries to use this to
get a particular alternative to win [16, 75, 113, 132, 179]. Another example is the
bribery problem, where some interested party attempts to bribe the voters to bring
about a particular outcome [108, 112, 113].

One downside of using NP-hardness to prevent undesirable behavior – whether
it be manipulation, control, or bribery, but let us focus on manipulation – is that
it is a worst-case measure of hardness. This means that if the manipulation prob-
lem is NP-hard, it is unlikely that there is an efficient algorithm that solves all
instances of the manipulation problem. However, there may still be an efficient
algorithm that solves many of these instances fast. If so, then computational hard-
ness provides only partial protection to manipulation, at best. It would be much
more desirable to show that manipulation is usually hard. Recent results have cast
doubt on whether this is possible at all. For instance, it was shown that when pref-
erences are single-peaked, many of the manipulation problems that are known to
be NP-hard for general preferences become efficiently solvable [46, 111]. In other
work on certain distributions of unrestricted preferences, both theoretical and ex-
perimental results indicate that manipulation is often computationally easy [e.g.,
71, 176, 177, 214, 217, 218]. Extending a previous result by Friedgut et al. [119],
Isaksson et al. [139] have recently shown that efficiently manipulable instances
are ubiquitous under fairly general conditions.

Theorem 6.4 (Isaksson et al., 2010) Let f be a neutral resolute voting rule and
assume that preferences are uniformly distributed. The probability that a random
preference profile can be manipulated by a random voter by submitting random
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preferences is at most polynomially small in |U | and n.

As a consequence, for efficiently computable, neutral, and resolute voting rules,
a manipulable preference profile with a corresponding manipulation can easily
be found by repeated random sampling. The current state of affairs on using
computational hardness to prevent manipulation is surveyed by Faliszewski and
Procaccia [107].

3.2.4 Probabilistic Voting Rules

Perhaps the only weakness of the Gibbard-Satterthwaite theorem is that it is re-
stricted to resolute voting rules [see, e.g., 206]. As we have seen in Section 3,
resoluteness is at variance with elementary fairness conditions such as anonymity
and neutrality. The most natural way to break ties yielded by an irresolute voting
rule that comes to mind is to pick a single winner at random according to some
probability distribution. In order to formalize this, Gibbard [125] proposed an
extension of voting rules called social decision schemes (SDSs), which map pref-
erence profiles to probability distributions (so-called lotteries) over alternatives.

Of course, the introduction of lotteries raises the question of how voters com-
pare lotteries with each other. The standard approach chosen by Gibbard [125]
and subsequent papers [e.g., 11, 126] is to use an expected utility model. In this
context, an SDS is strategyproof if, for any utility function that the voter may have
over the alternatives, the voter is best off reporting the ordering of the alternatives
that corresponds to its true utility function.

Standard examples of non-manipulable SDSs are random dictator rules, in
which the most preferred alternative of a randomly selected voter is chosen ac-
cording to a probability distribution that does not depend on the voters’ prefer-
ences. While these rules are clearly fairer than rules with a fixed dictator, they
are still not entirely desirable. Unfortunately, when requiring non-imposition,
i.e., every alternative may be chosen with probability 1 under some circumstances
(e.g., when all voters unanimously agree), random dictatorships are the only non-
manipulable SDSs.

Theorem 6.5 (Gibbard, 1977; Hylland, 1980) Every non-imposing, non-mani-
pulable SDS is a random dictatorship when |U | ≥ 3.

While this might appear like the natural equivalent of the Gibbard-
Satterthwaite theorem, it may be argued that non-imposition is rather strong in
this context. Gibbard [125] provides a different characterization that uses so-
called duple rules, in which the outcome is always restricted to two randomly
chosen alternatives (e.g., by applying the majority rule to a random pair of alter-
natives), which no longer seems so unreasonable. Following along these lines,
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Barberà [12] and Procaccia [175] provide further examples and characterizations.
However, all of these SDSs require an extreme degree of randomization.15

3.2.5 Irresolute Voting Rules

The definition of manipulability for SDSs rests on strong assumptions with respect
to the voters’ preferences. In contrast to the traditional setup in social choice the-
ory, which typically only involves ordinal preferences, this model relies on the
axioms of von Neumann and Morgenstern in order to compare lotteries over al-
ternatives. The gap between the Gibbard-Satterthwaite theorem for resolute vot-
ing rules and Gibbard’s theorem for social decision schemes has been filled by a
number of impossibility results for irresolute voting rules with varying underlying
notions of how to compare sets of alternatives with each other [see, e.g., 13, 206].

How preferences over sets of alternatives relate to or depend on preferences
over individual alternatives is a fundamental issue that goes back to the founda-
tions of decision making. There is no single correct answer to this question. Much
depends on the particular setting considered, the nature of the alternatives, and
what we can assume about the personal inclinations of the agent entertaining the
preferences. In the context of social choice the alternatives are usually interpreted
as mutually exclusive candidates for a unique final choice. For instance, assume
a voter prefers a to b, b to c, and – by transitivity – a to c. What can we reason-
ably deduce from this about the voter’s preferences over the subsets of {a,b,c}?
It stands to reason to assume that it would strictly prefer {a} to {b}, and {b}
to {c}. If a single alternative is eventually chosen from each choice set, it is safe
to assume that the voter also prefers {a} to {b,c}, but whether it prefers {a,b} to
{a,b,c} already depends on (its knowledge about) the final decision process. In
the case of a lottery over all preselected alternatives according to a known a pri-
ori probability distribution with full support, it would prefer {a,b} to {a,b,c}.16

This assumption is, however, not sufficient to separate {a,b} and {a,c}. Based
on a sure-thing principle, which prescribes that alternatives present in both choice
sets can be ignored, it would be natural to prefer the former to the latter. Finally,
whether the voter prefers {a,c} to {b} depends on its attitude towards risk: it
might be an optimist and hope for its most-preferred alternative, or a pessimist
and fear that its least-preferred alternative will be chosen. One of the most in-
fluential negative results for irresolute rules is the Duggan-Schwartz impossibility
[92].

15An important extension of this model studies SDSs in which the von Neumann-Morgenstern
utility functions of the voters rather than their preference relations are aggregated [see, e.g., 14,
96, 137].

16The posterior distribution is obtained by conditioning on the selected subset. This rules out
inconsistent lotteries like always picking b from {a,b} and a from {a,b,c}.
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Theorem 6.6 (Duggan and Schwartz, 2000)

Every non-imposing, non-dictatorial voting rule can be manipulated by an op-
timist or pessimist when |U | ≥ 3.

However, for weaker (incomplete) preference relations over sets, more posi-
tive results can be obtained [e.g., 39, 41]. Brandt [39], for instance, has shown that
the minimal covering set and the bipartisan set (mentioned in Section 2.2.2) are
non-manipulable when one set of alternatives is preferred to another if and only if
everything in the former is preferred to everything in the latter.

3.3 Possible and Necessary Winners

Two commonly studied computational problems in voting are the possible winner
problem and the necessary winner problem [142]. The input to these problems is
a partially specified profile of votes and a distinguished alternative c; we are asked
whether there exists some completion of the profile that results in c winning (pos-
sible winner) or whether c will in fact win no matter how the profile is completed
(necessary winner).17

There are several important motivations for studying these problems. One de-
rives from the preference elicitation problem, where we repeatedly query voters
for parts of their preferences until we know enough to determine the winner. The
necessary winner problem is of interest here, because at an intermediate stage
in the elicitation process, we will know the profile partially and may wish to
know whether we can safely terminate and declare c the winner. (The compu-
tational problem of determining whether elicitation is done was explicitly studied
by Conitzer and Sandholm [67].) The possible and necessary winner problems
also have as a special case the problems faced by a set of manipulators who know
the subprofile of the other voters (when they wish to make a given alternative win
or prevent a given alternative from winning, respectively). This latter observation
allows us to easily transfer hardness results for the manipulation problem to the
possible and necessary winner problems. In general, however, the possible and
necessary winner problems can be even harder than the corresponding manipula-
tion problems, because the possible and necessary winner problems generally also
allow individual votes to be only partially specified (which makes sense under the
elicitation interpretation, because we may so far have asked voters to compare
only certain pairs of alternatives, and not others).18

17Other work has considered this problem in the setting where instead of uncertainty about the
profile, there is uncertainty about the voting rule [150].

18Recent work has also studied a version of the manipulation problem where the profile of
nonmanipulator votes is only partially known to the manipulator [79], which is another problem
that is closely related to the possible/necessary winner problem.
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A natural way of expressing partial knowledge about the voters’ preferences is
to have a partial order over the alternatives associated with every voter. The idea
is that we know that the voters’ preferences must be some linear order that ex-
tends that partial order. The computational complexity of this problem for various
voting rules has been determined by Xia and Conitzer [221]. The possible winner
problem is NP-complete for rules including STV, scoring rules including Borda
and k-approval,19 Copeland, maximin, Bucklin, and ranked pairs. The necessary
winner problem is coNP-complete for all these except scoring rules, maximin,
and Bucklin, for which it can be solved in polynomial time. For plurality and
anti-plurality, both problems can be solved in polynomial time.

4 Combinatorial Domains

So far we have presented the classical mathematical framework for studying dif-
ferent variants of the problem of social choice and we have seen examples of
questions regarding the computational properties of this framework. Next, we will
consider a social choice problem where computational considerations already play
a central role at the level of defining the formal framework to study this problem.
The problem in question is the problem of social choice in combinatorial do-
mains. To simplify matters, we will focus specifically on voting in combinatorial
domains.

Let us begin with an example. Suppose three agents need to agree on a menu
for dinner. The options for the starter are salad and oyster; the options for the
main course are trout and veal; and the options for the wine are red and white.
The favorite menus of our three agents are as follows.

Agent 1: salad-trout-white
Agent 2: salad-veal-red
Agent 3: oyster-veal-white

Agent 1 likes trout and naturally wants to combine this with a white wine; agent 2
likes veal (which may be paired with either red or white wine) and has a preference
for red wine; and agent 3 likes oyster and veal, which calls for a white wine. Now,
what menu should our agents choose as a group, and how should they make that
choice? Maybe the most natural approach is to use the plurality rule on each of the
three issues: there is a majority for salad, there is a majority for veal, and there is
a majority for white wine. That is, the group menu will be salad-veal-white. But
this very conceivably could be one of the worst possible choices for our agents:
like agent 2, they may very well all prefer to have a red wine with salad and veal.

19The complexity of the possible winner problem for scoring rules has been completely charac-
terized by Betzler and Dorn [22] and Baumeister and Rothe [21].
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What went wrong here? The problem is that the preferences of the agents over
the choices made for each of the three issues are not independent. For instance,
our little story suggested that for all of them their preferred choice of wine depends
on what starter and main course they will actually get served. But voting issue-by-
issue completely ignores this dependency, and so we should not be too surprised
if we get a paradoxical outcome.

Note also that the next most obvious approach, which would be to directly
vote on full menus, does not work very well either. If we ask each agent only
for its most preferred menu (as we have done above), we will typically get three
different answers, and the best we can do is to randomly select one of the three.
We could refine this approach further, and ask, say, for their five most preferred
menus and apply, say, the Borda rule. This might lead to an acceptable solution
in our little example, but imagine we are dealing with a choice problem with 10
binary issues and thus 210 = 1,024 alternatives: the most preferred alternatives of
our three agents might very well be entirely disjoint again.

A full description of our example should actually list the full preferences of
each of our three agents over the combinatorial domain D = {salad,oyster}×
{trout,veal}× {red,white}, i.e., over a set of eight alternatives. Note that the
number of alternatives is exponential in the number of issues. But this means that
even for examples with a slightly larger number of issues it can quickly become
practically infeasible for the agents to rank all the alternatives and communicate
this ranking. That is, there is a fundamental computational challenge hidden at the
very heart of voting in combinatorial domains: even a small problem description
immediately gives rise to a very large choice problem.

In our little example there actually is a good solution: For all three agents,
their preferences regarding the wine depend on the choices made for the starter
and the main course, while their preferences for those two issues do not depend
on anything else (we have not actually described our example in enough detail
before to be sure about the latter fact, but let us now assume that this is indeed
the case). We can use these dependencies to determine a good order in which to
vote on each of the three issues in sequence. As long as we vote on the wine at
the very end, there will not be any paradoxical outcome (nor will there be any
computational difficulty).20

So, if we first use the plurality rule to choose a starter and a main course, our
agents are likely to choose the salad and the veal. If we then fix these choices
and ask the agents to vote on the wine, they will select the red wine, yielding an
outcome (salad-veal-red) that is ideal for agent 2 and not unreasonable for the
other two.

20This is assuming that agents do not vote strategically; we will discuss this point more at the
end of Section 4.2.
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The kind of paradox we have seen has long been observed and studied in
political science, typically under the name of “multiple-election paradoxes” [35].
As a problem that is inherently computational in nature it was first formulated by
Lang [148].

As the representation of an agent’s preferences plays a central role in social
choice in combinatorial domains, we will first review the most important knowl-
edge representation languages that have been used in the literature to this end.
We will then focus on two types of promising approaches: sequential voting and
voting by means of compactly represented preferences.

4.1 Preference Representation

Suppose we want to model an agent’s preferences over a combinatorial domain
defined by � binary variables, i.e., over a domain with 2� alternatives. There are
(2�)! different linear orders that might represent the agent’s preferences, and there
are even more possibilities if we want to also consider weak or partial orders. En-
coding such a linear order thus requires at least log(2�!), i.e., O(� ·2�), bits. If we
use an explicit representation that specifies for each pair of alternatives whether
or not our agent prefers the first of them over the second, we even need O(2� ·2�)
bits (one per pair). This will generally not be feasible in practice. Instead, we
require a compact preference representation language that will allow us to model
those preference structures that we can expect to occur in a given application sce-
nario using short expressions in that language. When choosing such a language,
we should consider its expressive power (which preference structures can it ex-
press?), its relative succinctness (can it do so using significantly less space than a
given rival language?), its complexity (how hard is it to reason about preferences
expressed in the language?), its elicitation-friendliness (does it support efficient
elicitation of preferences from the agents?), and its cognitive adequacy (is it a
“natural” form of describing preferences?) [54].

The most widely used language for compact preference representation used in
computational social choice is conditional preference networks, or CP-nets [31].
The basic idea is to induce a preference order from statements of the form “if
condition C holds, then – everything else being equal – I prefer variable X to take
value x rather than value x̄”. A CP-net is based on a directed graph on the set
of variables defining the combinatorial domain in question. Every vertex in the
graph is annotated with a table that specifies, for each possible instantiation of the
variables corresponding to the parents of that vertex, a preference order over the
possible values of the variable corresponding to that vertex. Let us consider an
example. Suppose our domain is defined by means of three variables: X (with
possible values x and x̄), Y (with possible values y and ȳ), and Z (with possible
values z and z̄). A CP-net for this domain might look like this:
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X Y Z� �
�

x� x̄ x : y� ȳ
x̄ : ȳ� y

xy : z� z̄
xȳ : z̄� z
x̄y : z̄� z
x̄ȳ : z̄� z

A CP-net induces a partial order: if two alternatives differ only in the instantiation
of a single variable, then we can look up the corresponding entry in the table for
that variable to find how the two alternatives should be ranked. The full partial
order is the transitive closure of the relations we obtain by interpreting the indi-
vidual preference statements in this manner. For instance, given the CP-net above,
we prefer xyz̄ to xȳz̄, because the two differ only in their assignment to Y , and the
first statement in the table for variable Y says that when X = x, then we should
prefer Y = y over Y = ȳ, everything else being equal (i.e., Z = z̄ in both cases).
The full preference relation induced by the CP-net above is the following partial
order (where an arrow represents � and the rankings obtained by transitivity are
not shown explicitly):

xyz→ xyz̄→ xȳz̄ →
↘

x̄ȳz̄

xȳz

↗
→
↗

x̄yz̄

x̄ȳz
↘
→ x̄yz

Note that, for instance, x̄ȳz̄ and xȳz are incomparable: the CP-net does not specify
which of the two the agent prefers.

Another important family of languages for preference representation is that of
prioritized goals [81, 148]. Prioritized goals are applicable when each of the
variables defining the combinatorial domain has exactly two possible values (e.g.,
true and false, or 1 and 0). The basic idea is to describe the goals of the agent
whose preferences we are modeling as formulas of propositional logic. For exam-
ple, the formula X ∨Y expresses the goal of having at least one of the variables
X and Y take the value true, while X → ¬(Y ∧Z) says that whenever X is true,
then it should not be the case that both Y and Z are true as well. Usually not all
goals will be satisfiable. An agent can indicate the importance of each of its goals
by labeling it with a number, its priority level (suppose a higher number indicates
higher importance). Different interpretations of this kind of language are possible.
One choice is the lexicographic interpretation, under which we prefer alternative
a to alternative b if there exists a k such that for every priority level above k both
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a and b satisfy the same number of goals, while a satisfies more goals of priority
level k than b does. For example, if an agent has the goals X and ¬Y and the
former has higher priority than the latter, then this induces the preference order
xȳ� xy� x̄ȳ� x̄y.

Both CP-nets and prioritized goals define preferences that are ordinal: either
linear or weak orders, as commonly used in classical social choice theory, or par-
tial orders and preorders, which can be particularly appropriate for applications
in multiagent systems, where we may want to model explicitly the fact that an
agent has bounded rationality and is lacking either the computational resources or
the necessary information to completely rank all possible pairs of alternatives. In
Section 5.1, in the context of discussing fair division problems, we will see further
examples of preference representation languages, namely languages for modeling
cardinal preferences (i.e., valuation functions).

4.2 Sequential Voting

In the example above, we already mentioned the idea of voting over the issues
one at a time, in sequence. This is a very natural idea and requires relatively little
communication. A downside of sequential voting is that an agent’s preferences for
the current issue may depend on issues on which we have not yet decided. (Above,
avoiding such a situation was our motivation for deciding on the wine last.) CP-
nets allow us to formalize this idea. We say that a CP-net is legal for an order over
the issues if its graph does not have any edges pointing from issues that are later
in the order to ones that are earlier (which immediately implies that the graph is
acyclic). As a result, if all the agents’ CP-nets are legal for the order in which we
vote over issues, then each agent’s CP-net will always unambiguously specify the
agent’s preferences over the current issue, because we will have already decided
on the values of the issues on which these preferences depend. This also means
that the agents do not actually need to vote on each issue separately; they can just
submit their CP-nets, and then leave. These ideas and the properties of sequential
voting are discussed in detail by Lang and Xia [149].

It is of course still possible to force agents to use sequential voting even if
their preferences for earlier issues do depend on later issues, but in this case it is
no longer clear how they should vote. One possibility is to assume that agents
vote strategically, thinking ahead toward what is likely to happen regarding later
issues (which may also depend on how they vote on the current issue). It should
be noted that this will, in general, change how the agents vote even when their
preferences for earlier issues do not depend on later issues. Unfortunately, as we
have discussed earlier, even when there is only a single issue, strategic voting is
quite complicated when that issue can take three or more possible values – for
example, the corresponding game has multiple equilibria. On the other hand, if
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we assume that each issue can take only two possible values and that the agents’
true preferences are common knowledge, then it is clear how to vote strategically.
This is because in the last round (when voting over the last issue) the agents are
effectively voting over the two remaining alternatives, so each agent is best off
voting for its preferred one; based on this, in the second-to-last round, the agents
can predict which alternative will end up chosen in the last round as a function
of which value the current (second-to-last) issue ends up taking, so effectively
the agents are deciding between the corresponding two alternatives; and so on.
Specifically, this means that under these circumstances, strategic sequential voting
is bound to result in the election of the Condorcet winner, whenever it exists [145].

On the other hand, Xia et al. [226] show that, unfortunately, for some profiles
without a Condorcet winner, strategic sequential voting results in very poor out-
comes; in fact, this happens even when the agents’ preferences for earlier issues
never depend on the agents’ preferences for later issues, because they will not
necessarily vote truthfully. (Incidentally, the strategic sequential voting process is
a special case of multistage sophisticated voting [128, 159, 162].) Xia et al. [226]
also show that the outcome can be very sensitive to the order in which the issues
are voted on, potentially giving the agenda setter a significant amount (or even
complete) control over the outcome. The complexity of this control problem has
been studied in a non-strategic context [75].

4.3 Voting with Compactly Represented Preferences

Considerations of strategic voting aside, sequential voting is an appealing pro-
cedure when each agent’s preferences are represented by a CP-net that is legal
with respect to the same ordering. But what if this is not the case? For one,
the agents may require different orders. For example, consider one agent who
prefers veal to trout regardless of which wine is chosen, but whose preferred wine
depends on which meal is served; and another agent who prefers red to white
wine regardless of which meal is served, but whose preferred meal depends on
which wine is served. For the former agent, it would be ideal to vote on the
meal first, but for the latter, it would be ideal to vote on the wine first. Clearly,
there is no way to order the issues that will make both agents comfortable vot-
ing on the first issue without knowing what value the second issue will take.
Moreover, it is not necessarily the interaction between multiple agents’ prefer-
ences that causes trouble: it is even possible for a single agent’s preferences to
conflict with the idea of sequential voting. For example, consider an agent who
mostly cares that the wine fits the meal, and ranks the different meal combinations
(trout,white)� (veal,red)� (veal,white)� (trout,red). For this agent, no order-
ing of the issues is satisfactory, because its preference for each issue depends on
the other issue – its CP-net is cyclic.
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How can we address such preferences, without falling back on making the
agents rank all the exponentially many alternatives, but rather by making use of a
compact preference representation language, such as CP-nets? This problem has
been introduced by Lang [148] under the name of “combinatorial voting,” i.e., vot-
ing by means of ballots that are compactly represented preference structures. Un-
fortunately, the computational complexity of this approach is often prohibitively
high. For example, Lang [148] shows that computing the election winners – when
each voter specifies its preferences using the language of prioritized goals and (a
suitable generalized form of) the plurality rule is used – is coNP-hard, even when
each voter only states a single goal. Similarly, deciding whether there exists a
Condorcet winner is coNP-hard under the same conditions. For languages that
can express richer preference structures, the complexity of winner determination
will typically be beyond NP.

One useful property of preferences represented by a CP-net is that, if we hold
the values of all but one issue fixed, then the CP-net specifies the agent’s prefer-
ences over that remaining issue. While it is not computationally efficient to do
so, conceptually, we can consider, for every issue and for every possible setting
of the other issues, all agents’ preferences. We can then choose winners based on
these “local elections” [78, 153, 223]. For example, we can look for an alternative
that defeats all of its neighboring alternatives (that is, the alternatives that differ
on only one issue from it) in pairwise elections. Of course, there may be more
than one such alternative, or none. The maximum likelihood approach mentioned
earlier in this chapter has also been pursued in this context [225].

Developing practical algorithms for voting in combinatorial domains is one of
the most pressing issues on the research agenda for computational social choice
in the near future.

5 Fair Division

So far we have discussed social choice, in its most general and abstract form, as the
problem of choosing one or several “alternatives,” or as the problem of ranking
them. An alternative might be a candidate to be elected to political office or it
might be a joint plan to be executed by a group of software agents. In principle,
it might also be an allocation of resources to a group of agents. In this section,
we specifically focus on this latter problem of multiagent resource allocation.

To underline our emphasis on fairness considerations we shall favor the term
fair division. In the economics literature, the broad research area concerned with
determining a fair and economically efficient allocation of resources in society is
known as welfare economics. We will introduce some of the fundamental concepts
from this literature, discuss them from an algorithmic point of view, and review
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their relevance to multiagent systems.
Fair division differs from the other types of social choice problems discussed

in this chapter in at least two important respects:

1. Fair division problems come with a rich internal structure: alternatives are
allocations of goods to agents and an agent’s preferences are usually as-
sumed to only depend on their own bundle.

2. In the context of fair division problems, preferences are usually assumed to
be valuation functions, mapping allocations to numerical values, rather than
binary relations for ranking allocations.

Below (in Section 5.1) we will therefore begin by reviewing preference represen-
tation languages for compactly modeling such valuation functions.

First, however, we need to fix the type of goods to be allocated. The main line
of differentiation is between divisible and indivisible goods. A classical example
of the former scenario is the fair division of a cake. While there have been a num-
ber of contributions to the cake-cutting literature in theoretical computer science
and more recently also in artificial intelligence, to date, most work in multiagent
systems has concentrated on indivisible goods. We shall therefore only give one
example here, which is illustrative of the simple and elegant solutions that have
been obtained in the field of cake-cutting. Consider the moving-knife procedure
due to Dubins and Spanier [91]:

A referee moves a knife across the cake, from left to right. Whenever
an agent shouts “stop,” he receives the piece to the left of the knife
and leaves.

Under standard assumptions on the agents’ valuation functions (namely, continu-
ity and additivity), this procedure is proportional: it guarantees each agent at least
1
n of the full value of the cake, according to its own valuation, whatever the other
agents may do (where n is the number of agents). To see this, observe that you
are free to shout “stop” when the knife reaches a point where the piece to be cut
would be exactly 1

n according to your valuation; and if another agent shouts “stop”
earlier, then that only means that it will leave with a piece that you consider to be
of less value than 1

n . The books by Brams and Taylor [37] and by Robertson and
Webb [182] both provide excellent expositions of the cake-cutting problem.

For the remainder of this section we will focus on the problem of fairly allocat-
ing a set of indivisible goods to a group of agents. After introducing several lan-
guages for representing preferences in this context, we define the most important
criteria for measuring fairness and economic efficiency, and we review examples
of work in computational social choice concerning the complexity of computing
a fair allocation and designing protocols that can guarantee convergence to a fair
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allocation. For a more extensive review of the variety of multiagent resource al-
location problems and computational aspects of fairness than is possible here we
refer to the survey article by Chevaleyre et al. [54].

5.1 Preference Representation

Let G be a finite set of indivisible goods, with � = |G|. Each agent may receive
any subset of G. The preferences of agent i ∈ N are given by means of a valuation
function vi : 2G →R, mapping every bundle it might receive to the value it assigns
to it. Valuation functions are often assumed to be monotonic, i.e., for any two sets
of goods S and S′, it will be the case that vi(S) ≤ vi(S′) whenever S ⊆ S′. This
assumption is also known as free disposal. For many applications it makes sense
to assume that valuation functions are monotonic, while for others we also need
to be able to model undesirable goods.

An explicit representation of a valuation function vi will often not be feasible
in practice, as it requires us to specify a list of 2� numbers. However, if valuations
are “well-behaved” in the sense of exhibiting some structural regularities, then a
compact representation using a suitable preference modeling language will often
be possible.

A powerful family of languages, closely related to the prioritized goal lan-
guages discussed in Section 4.1, is based on weighted goals. This language orig-
inates in the work on penalty logic by Pinkas [172] and variants of it have been
used in many areas of artificial intelligence and elsewhere. Its relevance for pref-
erence representation in the context of social choice has first been recognized by
Lafage and Lang [146]. The basic idea is again to have an agent express its goals
in terms of formulas of propositional logic and to assign numbers, or weights, to
these goals to indicate their importance. We can then aggregate the weights of
the goals satisfied by a given alternative to compute the value of that alternative.
The most widely used form of aggregation is to take the sum of the weights of the
satisfied goals. For example, suppose G is a set of three goods, associated with
the propositional variables p, q, and r. An agent providing the weighted goals
(p∨q,5) and (q∧ r,3) expresses the following valuation function:

v( /0) = 0 v({p,q} = 5
v({p}) = 5 v({p,r}) = 5
v({q}) = 5 v({q,r}) = 8
v({r}) = 0 v({p,q,r}) = 8

That is, obtaining one of p and q (or both) has value 5 for the agent, and in the
event it obtains the latter, obtaining r on top of it results in an additional value
of 3.
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By putting restrictions on the kinds of formulas we want to admit to describe
goals, we can define different languages. For instance, we may only permit con-
junctions of atomic formulas, or we may only allow formulas of length at most 3,
and so forth. Different such languages have different properties, in view of their
expressive power, in terms of their succinctness for certain classes of valuation
functions, and regarding the computational complexity of basic reasoning tasks,
such as computing the most preferred bundle for an agent with a given set of
weighted goals. For full definitions and a detailed analysis of these properties, we
refer to the work of Uckelman et al. [211].

Weighted goal languages are closely related to other languages to be found in
the literature. For instance, k-additive functions, studied in measure theory [127],
correspond to the weighted goal language we obtain when the only admissible
logical connective is conjunction and when each formula may involve at most k
propositional variables [211]. In cooperative game theory, marginal contribution
nets [138], a language for modeling coalitional games, correspond to the language
of conjunctions of literals of arbitrary length.21 Weighted goal languages have
also been studied for other forms of aggregation than summing up the weights of
the satisfied goals [146, 210].

Preference representation languages also play an important role in the litera-
ture on combinatorial auctions [82], where they are known as bidding languages.
In an auction, each bidder has to describe its valuation of the goods on sale to the
auctioneer, i.e., a bid amounts to the specification of a valuation function (whether
or not the bidder does so truthfully is irrelevant for the representation problem at
hand). The idea of using weighted goals has been used also in this domain [30].
The most widely used basic bidding languages, however, belong to the OR/XOR
family. An atomic bid is a bundle of goods together with a price, e.g., ({p,q},7).
Each bidder can provide any number of atomic bids. Under the OR-language,
the value of a bundle for the bidder is the maximum price that we can obtain by
assigning each item in the bundle to (at most) one atomic bid and summing up
the prices for those atomic bids that are covered completely by this assignment.
For example, given the bid ({p,q},7)OR ({p,r},5)OR ({r},3), the value of the
bundle {p,q,r} is 7+ 3 = 10. Under the XOR-language the value of a bundle is
the price of the most valued atomic bid it can cover. That is, the XOR-language is
like the explicit representation mentioned earlier (together with an implicit mono-
tonicity assumption). Combinations of OR and XOR have also been studied. Full
definitions and results regarding the expressive power and succinctness of differ-
ent languages are available in a review article by Nisan [169].

21In some expositions of marginal contribution nets the restriction to conjunctions of literals is
not imposed, in which case we obtain the general language of weighted goals (see, e.g., the chapter
on “Computational Coalition Formation” in this book).
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Yet another option is to think of a valuation function as a program that takes
bundles as inputs and returns values as output. In the context of fair division, this
idea has been explored in the work of Dunne et al. [94].

While most work in fair division assumes that preferences are given in the
form of valuation functions, the problem of fairly dividing goods over which
agents have ordinal preferences is also interesting. CP-nets, the most important
language for research on voting in combinatorial domains, is only of very limited
interest here, because CP-nets cannot express most monotonic preferences. A pos-
sible alternative are so-called conditional importance networks, or CI-nets [34].

5.2 Fairness and Efficiency

What makes a fair allocation of resources? More generally, what makes a good
allocation? Next we shall review several proposals for measuring the quality of
an allocation. The first set of proposals is based on the idea of a collective utility
function. Any given allocation yields some utility ui ∈ R for agent i. This utility
will usually be the result of applying agent i’s valuation function to the bundle it
receives under the allocation in question. Now we can associate an allocation with
a utility vector (u1, . . . ,un) ∈ Rn.

Definition 6.5 A collective utility function (CUF) is a function f : Rn → R.

That is, a CUF returns a single collective utility value for any given utility
vector (which in turn we can think of as being generated by an allocation). This
collective utility is also referred to as the social welfare of the corresponding allo-
cation. The following are the most important CUFs studied in the literature:

• Under the utilitarian CUF, fu(u1, . . . ,un) := ∑i∈N ui, i.e., the social welfare
of an allocation is the sum of the utilities of the individual agents. This
is a natural way of measuring the quality of an allocation: the higher the
average utility enjoyed by an agent, the higher the social welfare. On the
other hand, this CUF hardly qualifies as fair: an extra unit of utility awarded
to the agent currently best off cannot be distinguished from an extra unit of
utility awarded to the agent currently worst off. Note that authors simply
writing about “social welfare” are usually talking about utilitarian social
welfare.

• Under the egalitarian CUF, fe(u1, . . . ,un) := min{ui | i ∈ N}, i.e., the so-
cial welfare of an allocation is taken to be the utility of the agent worst off
under that allocation. This CUF clearly does focus on fairness, but it is
less attractive in view of economic efficiency considerations. In the special
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case where we are only interested in allocations where each agent receives
(at most) one item, the problem of maximizing egalitarian social welfare is
also known as the Santa Claus problem [9].

• A possible compromise is the Nash CUF, under which fn(u1 . . . ,un) :=
∏i∈N ui. Like the utilitarian CUF, this form of measuring social welfare re-
wards increases in individual utility at all levels, but more so for the weaker
agents. For instance, the vectors (1,6,5) and (4,4,4) have the same utilitar-
ian social welfare, but the latter has a higher Nash product (and intuitively
is the fairer solution of the two). For the special case of just two agents, the
Nash product is discussed in more detail in the chapter on “Negotiation and
Bargaining” in this book.

Any CUF gives rise to a social welfare ordering (SWO), a transitive and com-
plete order on the space of utility vectors (in the same way as an individual utility
function induces a preference relation). We can also define SWOs directly. The
most important example in this respect is the leximin ordering. For the following
definition, suppose that all utility vectors are ordered, i.e., u1 ≤ u2 ≤ ·· · ≤ un.
Under the leximin ordering, (u1, . . . ,un) is socially preferred to (v1, . . . ,vn) if and
only if there exists a k ≤ n such that ui = vi for all i < k and uk > vk. This is a re-
finement of the idea underlying the egalitarian CUF. Under the leximin ordering,
we first try to optimize the well-being of the worst-off agent. Once our options in
this respect have been exhausted, we try to optimize the situation for the second
worst-off agent, and so forth.

SWOs have been studied using the axiomatic method in a similar manner as
SWFs and SCFs. Let us briefly review three examples of axioms considered in
this area.

• An SWO � is zero independent if u � v entails (u+w) � (v+w) for any
w ∈ Rn. That is, according to this axiom, social judgments should not
change if some of the agents change their individual “zero point.” Zero in-
dependence is the central axiom in a characterization of the SWOs induced
by the utilitarian CUF [83, 165].

• An SWO � is independent of the common utility pace if u � v entails
(g(u1), . . . ,g(un))� (g(v1), . . . ,g(vn)) for any increasing bijection g : R→
R. You might think of g as a function that maps gross to net income. Then
the axiom says that we want to be able to make social judgments indepen-
dently from the details of g (modeling the taxation laws), as long as it never
inverts the relative welfare of two individuals. The utilitarian SWO fails this
axiom, but the egalitarian SWO does satisfy it.
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• An SWO � satisfies the Pigou-Dalton principle if u � v whenever u can be
obtained from v by changing the individual utilities of only two agents in
such a way that their mean stays the same and their difference reduces. The
Pigou-Dalton principle plays a central role in the axiomatic characterization
of the leximin ordering [165].

For an excellent introduction to the axiomatics of welfare economics, provid-
ing much more detail than what is possible here, we refer to the book of Moulin
[165]. Broadly speaking, the additional information carried by a valuation func-
tion (on top of its ordinal content, i.e., on top of the kind of information used
in voting theory), avoids some of the impossibilities encountered in the ordinal
framework. For instance, if we enrich our framework with a monetary component
and stipulate that each agent’s utility can be expressed as the sum of that agent’s
money and its valuation for its goods (so-called quasilinear preferences), then
we can define strategyproof mechanisms that are not dictatorial. Examples are the
mechanism used in the well-known Vickrey auction and its generalizations (see
the chapter on “Mechanism Design and Auctions” in this book).

Another important fairness criterion is envy-freeness. An allocation A of goods
is envy-free if no agent would rather obtain the bundle allocated to one of the other
agents: vi(A(i))≥ vi(A( j)) for any two agents i and j, with A(i) and A( j) denoting
the bundles of goods allocated to i and j, respectively. Note that this concept can-
not be modeled in terms of a CUF or an SWO. If we insist on allocating all goods,
then an envy-free allocation will not always exist. A simple example is the case
of two agents and one item that is desired by both of them: in this case, neither
of the two complete allocations will be envy-free. When no envy-free allocation
is possible, then we might want to aim for an allocation that minimizes the degree
of envy. A variety of definitions for the degree of envy of an allocation have been
proposed in the literature, such as counting the number of agents experiencing
some form of envy or counting the pairs of agents where the first agent envies the
second [55, 154, 155].

A new application in multiagent systems may very well call for a new fairness
or efficiency criterion. However, any new idea of this kind should always be
clearly positioned with respect to the existing standard criteria, which are well
motivated philosophically and deeply understood mathematically.

5.3 Computing Fair and Efficient Allocations

Once we have settled on a language for modeling the valuation functions of in-
dividual agents and on an efficiency or fairness criterion we want to apply, the
question arises of how to compute an optimal allocation of goods. Algorithmic
methods that have been used in this field include linear and integer programming,
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heuristic-guided search, and constraint programming. Rather than discussing spe-
cific algorithms here, let us focus on the computational complexity of the combi-
natorial optimization problems such an algorithm would have to tackle.

First, suppose we want to compute an allocation with maximal utilitarian so-
cial welfare. In the combinatorial auction literature, this problem is generally
known as the “winner determination problem” and it has received a large amount
of attention there [82]. The goal is to maximize the sum of the valuations of the
individual agents. As complexity theory is more neatly applied to decision prob-
lems, let us consider the corresponding decision problem:

We are given a profile of valuation functions (v1, . . . ,vn), one for each
agent, and a number K and ask whether there exists an allocation
A : N → 2G mapping agents to bundles of goods, with A(1)∪ ·· · ∪
A(n) = G and A(i)∩A( j) = /0 for any two agents i and j, such that
fu(v1(A(1)), . . . ,vn(A(n))) ≥ K, i.e., such that the utilitarian social
welfare of A is at least K.

This problem turns out to be NP-complete for any of the preference represen-
tation languages discussed [54, 82]. To show that it is in NP is usually easy. The
fact that it is NP-hard was first observed by Rothkopf et al. [187], in the context of
what is now known as the OR-language. The proof proceeds via a reduction from
a standard NP-hard problem known as SET PACKING [121]: given a collection
of finite sets C and a number K, is there a a collection C′ ⊆ C of pairwise disjoint
sets such that |C′| ≥K? Now consider any preference representation language that
allows us to specify for each agent i one bundle Bi such that vi(B) = 1 if B = Bi (or
possibly B ⊇ Bi) and vi(B) = 0 otherwise (weighted goals, the OR-language, and
the XOR-language can all do this). Then we have a one-to-one correspondence
between finding an allocation with a utilitarian social welfare of at least K and
finding at least K non-overlapping bundles Bi. Hence, welfare optimization must
be at least as hard as SET PACKING. (The problem has also been shown to be
NP-hard to approximate [190, 233].)

Let us now briefly go over some related complexity results, but with less at-
tention to detail. Rather than stating these results precisely, we focus on some of
the crucial insights they represent and cite the original sources for further details.

• Computing allocations that are optimal under the egalitarian CUF or the
Nash CUF is also NP-hard [32, 180]. In case all valuation functions are
additive, i.e., if we can always compute the value of a bundle by adding
the values of the individual items in that bundle, then computing an allo-
cation with maximal utilitarian social welfare becomes easy (simply assign
each item to the agent giving it the highest value), but the same domain re-
striction does not render the problem polynomial when we are interested in
egalitarian social welfare or the Nash product.
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• An allocation A is Pareto optimal if there is no other allocation A′ that is
strictly preferred by some agent and not worse for any of the others. Decid-
ing whether a given allocation is Pareto optimal is typically coNP-complete
[54, 57, 87, 94]. The crucial difference with respect to optimizing utilitarian
social welfare is that we now have to check that there is no other allocation
that is “better” (hence the switch in complexity class).

• Computing allocations that are envy-free can be significantly more diffi-
cult.22 Bouveret and Lang [33] show that deciding whether there exists an
allocation that is both Pareto optimal and envy-free is Σp

2-complete when
preferences are represented using weighted goals, even when each agent
can only distinguish between “good” (valuation 1) and “bad” (valuation 0)
bundles. When valuations are additive, then deciding whether there exists
an envy-free allocation (that allocates all goods) is still NP-complete [155].
Lipton et al. [155] also discuss approximation schemes for envy-freeness.

5.4 Convergence to Fair and Efficient Allocations

The complexity results we have reviewed above apply in situations where we have
complete information regarding the individual preferences of the agents and we
want to compute a socially optimal allocation in a centralized manner. Of course,
this is an idealized situation that we will rarely encounter in a multiagent system
in practice. Besides the algorithmic challenges highlighted above, we also need to
face the game-theoretical problem of ensuring that agents report their preferences
truthfully (in case we consider truthfulness an important desideratum). We need to
design a suitable elicitation protocol to obtain the relevant preference information
from the agents.

An alternative approach, which we shall discuss next, is as follows: rather than
centrally collecting all the agents’ preference information and determining an op-
timal allocation, we let agents locally find utility-improving deals that involve the
exchange of some of the goods in their possession. We can then analyze the effects
that sequences of such local trading activities have on the allocations emerging at
the global level. If we give up control in this manner, we might not always be able
to reach a socially optimal allocation. Instead, we now have to ask what quality
guarantees we can still provide. This distributed approach to multiagent resource
allocation requires us to fix a set of assumptions regarding the local behavior of
agents. For instance, we could make the assumption that each agent is a utility-
maximizer in the full game-theoretic sense. Often this will be unrealistic, given
the high complexity of computing one’s optimal strategy under all circumstances

22One allocation that is always envy-free is the one where nobody gets anything. To prevent
such trivialities, normally some efficiency requirement is added as well.
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in this context. Instead, let us assume that agents are individually rational and my-
opic. This means that we assume that an agent will agree to participate in a deal
if and only if that deal increases the agent’s utility. On the other hand, it will not
try to optimize its payoff in every single deal and it does not plan ahead beyond
the next deal to be implemented.

Formally, a deal is a pair of allocations δ= (A,A′) with A �= A′, describing the
situation before and after the exchange of goods. Note that this definition permits
exchanges involving any number of agents and goods at a time. Bilateral deals,
involving only two agents, or simple deals, involving only one item, are special
cases. For the result we want to present in some detail here, we assume that a deal
may be combined with monetary side payments to compensate some of the agents
for a loss in utility. This can be modeled via a function p : N → R, mapping each
agent to the amount it has to pay (or receive, in case p(i) is negative), satisfying
p(1)+ · · ·+ p(n) = 0, i.e., the sum of all payments made must equal the sum of
all payments received. A deal δ = (A,A′) is individually rational if there exists
a payment function p such that vi(A′(i))− vi(A(i)) > p(i) for all agents i ∈ N,
with the possible exception of p(i) = 0 in case A(i) = A′(i). That is, a deal is
individually rational if payments can be arranged in such a way that for each
agent involved in the deal its gain in valuation exceeds the payment it has to make
(or its loss in valuation is trumped by the money it receives). We shall assume that
every deal made is individually rational in this sense. Note that we do not force
agents to make deals under these conditions; we simply assume that any deal that
is implemented is (at least) individually rational.

Now, by a rather surprising result due to Sandholm [189], any sequence of
individually rational deals must converge to an allocation with maximal utilitarian
social welfare. That is, provided all agents are individually rational and continue
to make individually rational deals as long as such deals exist, we can be certain
that the resulting sequence of deals must be finite and that the final allocation
reached must be socially optimal in the sense of maximizing utilitarian social
welfare. For a detailed discussion and a full proof of this result we refer to the
work of Endriss et al. [104]. The crucial step in the proof is a lemma that shows
that, in fact, a deal is individually rational if and only if it increases utilitarian
social welfare. Convergence then follows from the fact that the space of possible
allocations is finite.

How useful is this convergence result in practice? Of course, the complexity
results discussed in Section 5.3 did not just go away: finding an allocation that
maximizes utilitarian social welfare is still NP-hard. Indeed, to decide whether it
is possible to implement yet another individually rational deal, our agents do have
to solve an NP-hard problem (in practice, most of the time they might find it easy
to identify a good deal, but in the worst case this can be very hard). Also the struc-
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tural complexity of the deals required (in the worst case) is very high. Indeed, if
our agents use a negotiation protocol that excludes deals involving a certain num-
ber of agents or goods, then convergence cannot be guaranteed any longer [104].
On the other hand, a simple positive result shows that, if all valuation functions
are additive, then we can get away with a protocol that only allows agents to make
deals regarding the reallocation of one item at a time. Unfortunately, this is the
best result we can hope for along these lines: for no strictly larger class of valu-
ation functions will a simple protocol of one-item-at-a-time deals still suffice to
guarantee convergence [60].

Similar results are also available for other fairness and efficiency criteria,
such as Pareto optimality [104], egalitarian social welfare [104], and envy-
freeness [55]. Most of the work in the field is of a theoretical nature, but the
convergence problem has also been studied using agent-based simulations [4, 50].

Some of the results in the literature are based on the same notion of myopic
individual rationality used here and others rely on other rationality assumptions.
In fact, there are two natural perspectives regarding this point. First, we might
start by postulating reasonable assumptions regarding the rational behavior of in-
dividual agents and then explore what convergence results can be proven. Second,
we might start with a convergence property we would like to be able to guarantee,
and then design appropriate rationality assumptions that will allow us to prove
the corresponding theorem. That is, we may think of a multiagent system as,
first, a system of self-interested agents we cannot control (but about which we can
make certain assumptions) or, second, as a system of agents the behavior of which
we can design and program ourselves, as a tool for distributed problem solving.
Which perspective is appropriate depends on the application at hand.

Finally, the distributed approach to multiagent resource allocation also gives
rise to new questions regarding computational complexity. For instance, we might
ask how hard it is to decide whether a given profile of valuation functions and
a given initial allocation admit a path consisting only of individually rational
deals involving the exchange of a single item each to a socially optimal allo-
cation. Questions of this kind have been studied in depth by Dunne and col-
leagues [93, 94].

6 Conclusion

This chapter has been an introduction to classical social choice theory and an ex-
position of some of the most important research trends in computational social
choice. We have argued in the beginning that social choice theory, the mathe-
matical theory of collective decision making, has a natural role to play when we
think about the foundations of multiagent systems. As we are concluding the
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chapter, we would like to relativize this statement somewhat: it is true that many
decision problems in multiagent systems are naturally modeled as problems of
social choice, but it is also true that many of the problems that one is likely to
encounter in practice will not fit the template provided by the classical formal
frameworks introduced here exactly, or will have additional structure that can be
exploited. More research is required to improve our understanding of best prac-
tices for adapting the elegant mathematical tools that computational social choice
can provide to the problems encountered by practitioners developing real multi-
agent systems. We hope that readers of this chapter will feel well equipped to
participate in this undertaking.

Let us conclude with a brief review of additional topics in computational social
choice, which we have not been able to cover in depth here, as well as with a few
pointers to further reading.

6.1 Additional Topics

In terms of social choice settings, we have covered preference aggregation, vot-
ing, and fair division. Another important area of social choice theory is matching,
which addresses the problem of how to pair up the elements of two groups that
have preferences over each other (e.g., men and women, doctors and hospitals,
or kidney donors and patients). Matching theory is particularly notable for its
many successful applications. An excellent introduction to the field is the semi-
nal monograph by Roth and Sotomayor [184]. Matching can be seen as a special
case of coalition formation where agents have preferences over the various pos-
sible partitions of the set of agents (see the chapter on “Computational Coalition
Formation” in this book).

Preferences are not the only individual characteristics that the members of a
group might want to aggregate. Other examples include beliefs and judgments.
In both cases there exists a small but significant technical literature in which be-
liefs and judgments, respectively, are modeled as sets of formulas in propositional
logic that need to be aggregated. The work of Konieczny and Pino Pérez [143]
is a good starting point for reading about belief merging, and List and Puppe
[156] survey the literature on judgment aggregation. While belief merging grew
out of the literature on belief revision in artificial intelligence and computational
logic and always had a computational flavor to it, judgment aggregation initially
developed in the political philosophy and the philosophical logic literature, and
computational aspects did not get investigated until very recently [105].

Throughout the chapter, we have occasionally alluded to connections to mech-
anism design, a topic at the interface of social choice and game theory (see also the
chapter on “Mechanism Design and Auctions” in this book). On the mechanism
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design side, there has been interest in designing voting rules that are false-name-
proof [227], that is, robust to a single voter participating under multiple identities.
While this is not an inherently computational topic, it is motivated by applica-
tions such as elections that take place on the Internet. The design of such rules
has been studied both in general [62] and under single-peaked preferences [208].
Unfortunately, the results are rather negative here. To address this, other work has
extended the model, for example by making it costly to obtain additional identi-
ties [212] or by using social network structure to identify “suspect” identities [77].
An overview of work on false-name-proofness is given by Conitzer and Yokoo
[72]. Another exciting new direction in the intersection of computational social
choice and mechanism design is that of approximate mechanism design without
money [178], where the goal is to obtain formal approximation ratios under the
constraint of strategyproofness, without using payments.

In terms of techniques, we have focused on the axiomatic method, on algo-
rithms, and on computational complexity. We have also discussed the use of tools
from knowledge representation (for the representation of preferences in combina-
torial domains). A further important research trend in computational social choice
has considered communication requirements in social choice. This includes top-
ics such as the amount of information that voters have to supply before we can
compute the winner of an election [69, 196], the most efficient form of storing an
intermediate election result that will permit us to compute the winner once the re-
maining ballots have been received [59, 219], whether voters can jointly compute
the outcome of a voting rule while preserving the privacy of their individual pref-
erences [44], and the number of deals that agents have to forge before a socially
optimal allocation of goods will be found [103].

Another technique we have not discussed concerns the use of tools developed
in automated reasoning to verify properties of social choice mechanisms and to
confirm or discover theorems within social choice theory. Examples in this line
of work include the verification of proofs of classical theorems in social choice
theory in higher-order theorem proofs [168], a fully automated proof of Arrow’s
theorem for the special case of three alternatives [205], and the automated discov-
ery of theorems pertaining to the problem of ranking sets of objects [123].

6.2 Further Reading

There are a number of excellent textbooks on classical social choice theory that are
highly recommended for further reading. General texts include those by Austen-
Smith and Banks [7] and by Gaertner [120]. Taylor [206] specifically focuses
on the manipulation problem in voting. Moulin [165] covers not only preference
aggregation and voting, but also the axiomatic foundations of welfare economics
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(i.e., fair division) and cooperative game theory. Two highly recommended sur-
veys are those of Plott [173] and Sen [200].

The area of computational social choice (or certain parts thereof) has been
surveyed by several authors. Chevaleyre et al. [56] provide a broad overview of
the field as a whole. The literature on using computational complexity as a bar-
rier against manipulation in voting is reviewed by Faliszewski et al. [114] and
Faliszewski and Procaccia [107]; Faliszewski et al. [110] also discuss the com-
plexity of winner determination and control problems in depth. Chevaleyre et al.
[58] give an introduction to social choice in combinatorial domains. The survey
on multiagent resource allocation by Chevaleyre et al. [54] covers the basics of
fair division and also discusses connections to other areas relevant to multiagent
systems, particularly combinatorial auctions. Conitzer [64, 65] compares research
directions across mechanism design, combinatorial auctions, and voting. Endriss
[101] gives concise proofs of classical results such as Arrow’s theorem and the
Gibbard-Satterthwaite theorem, and then discusses application of logic in social
choice theory, e.g., in judgment aggregation and to model preferences in combina-
torial domains. Rothe et al. [186] provide a book-length introduction to computa-
tional social choice (in German), covering topics in voting, judgment aggregation,
and fair division, and focusing particularly on complexity questions. Finally, the
short monograph of Rossi et al. [183] on preference handling includes extensive
discussions of voting and matching from the point of view of computational social
choice.
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7 Exercises

1. Level 1 A utility function u : U → R is said to represent a preference re-
lation on U if, for all a,b ∈ U , u(a) ≥ u(b) if and only if a � b. Show
that, when U is finite, a preference relation can be represented by a utility
function if and only if it is transitive and complete.
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2. An SWF f is non-imposing if for every preference relation � there exists a
profile R = (�1, . . . ,�n) such that f (R) =�. The purpose of this exercise is
to investigate what happens to Arrow’s theorem when we replace the axiom
of Pareto optimality by the axiom of non-imposition.

(a) Level 1 Show that Pareto optimality is strictly stronger than non-
imposition. That is, show that every Pareto optimal SWF is non-
imposing and that there exists a non-imposing SWF that is not Pareto
optimal.

(b) Level 2 Show that Arrow’s theorem ceases to hold when we replace
Pareto optimality by non-imposition. That is, show that there ex-
ists a SWF that satisfies IIA and that is both non-imposing and non-
dictatorial.

3. Level 2 Prove that the four conditions in Theorem 6.2 are logically inde-
pendent by providing, for each of the conditions, an SCF that violates this
property but satisfies the other three.

4. Level 2 Show that every Copeland winner lies in the uncovered set and
hence reaches every other alternative on a majority rule path of length at
most two (assuming an odd number of voters).

5. Level 1 Consider the following preference profile for 100 voters (due to
Michel Balinski).

33 16 3 8 18 22

a b c c d e
b d d e e c
c c b b c b
d e a d b d
e a e a a a

Determine the winners according to plurality, Borda’s rule, Copeland’s rule,
STV, and plurality with runoff (which yields the winner of a pairwise com-
parison between the two alternatives with the highest plurality score).

6. Level 2 Give a polynomial-time algorithm that, for a given preference pro-
file, decides whether an alternative will win under all scoring rules.

7. Level 3 A Condorcet loser is an alternative that loses against every other
alternative in pairwise majority comparisons. Check which of the following
voting rules may choose a Condorcet loser: Borda’s rule, Nanson’s rule,
Young’s rule, maximin. Prove your answers.
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8. Level 3 An SCF is monotonic if a winning alternative will still win after it
has been raised in one or more of the individual preference orderings (leav-
ing everything else unchanged). Check which of the SCFs and voting rules
mentioned in this chapter satisfy monotonicity and which satisfy Pareto op-
timality. Prove your answers.

9. Level 2 Assume there is an odd number of voters and consider a restricted
domain of preferences that always admits a Condorcet winner. Show that
the voting rule that always yields the Condorcet winner is strategyproof.

10. Level 2 Assume there is an odd number of voters, and rank the alternatives
by their Copeland scores. Prove that there are no cycles in the pairwise
majority relation if and only if no two alternatives are tied in this Copeland
ranking.

11. Level 2 Recall the definition of single-peakedness. Similarly, a preference
profile R is single-caved if for every x,y,z ∈U , it holds that if (x < y < z)
or (z < y < x), then y�i x implies z�i y for every i ∈ N. Prove or disprove
the following statements.

(a) Every preference profile for two voters and three alternatives is single-
peaked.

(b) Every preference profile for two voters and more than three alterna-
tives is single-peaked.

(c) Every single-peaked preference profile is single-peaked with respect
to the linear order given by the preferences of one of the voters.

(d) Plurality and Condorcet winners coincide for single-peaked prefer-
ences.

(e) Plurality and Condorcet winners coincide for single-caved prefer-
ences.

(f) Borda and Condorcet winners coincide for single-peaked preferences.

12. Level 4 We have seen that any non-dictatorial voting rule can be manipu-
lated when we want that rule to operate on all possible preference profiles.
We have also seen that this problem can be avoided when we restrict the
domain of possible profiles appropriately, e.g., to single-peaked profiles.
What we have not discussed is the frequency of manipulability: how often
will we encounter a profile in which a voter has an incentive to manipu-
late? One way of studying this problem is by means of simulations: gener-
ate a large number of profiles and check for which proportion of them the
problem under consideration (here, manipulability) occurs. The standard
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method for generating profiles is to make the impartial culture assumption,
under which every logically possible preference order has the same proba-
bility of occurring. For instance, if there are 3 alternatives, then there are
3! = 6 possible (strict) preference orders, so each preference order should
have probability 1

6 to be a given voter’s preference.

(a) Write a program to analyze the frequency of manipulability of some of
the voting rules introduced in this chapter under the impartial culture
assumption.

(b) While it is considered a useful base line, the impartial culture assump-
tion has also been severely criticized for being too simplistic. Indeed,
real electorates, be it in politics or multiagent systems, are unlikely to
be impartial cultures. Can you think of better methods for generating
data to test the frequency of interesting phenomena in social choice
theory?

A good starting point for further reading on generating data for studying
the frequency of social choice phenomena is the book of Regenwetter et al.
[181]. There has also been a significant amount of theoretical work on the
frequency of manipulability [recent contributions include, e.g., 8, 177, 203,
218].

13. Level 2 Show that for each of the following voting rules the manipulation
problem (with a single manipulator) can be solved in polynomial time by
providing a suitable algorithm: the plurality rule, Borda’s rule, Copeland’s
rule. Argue why your algorithms are correct and analyze their run-time in
terms of the number of voters and alternatives.

14. For some voting rules, it is possible to significantly reduce the amount of
information that the voters need to communicate by having the communica-
tion take place in rounds. A natural example is the STV rule (also known as
instant runoff voting). Instead of having each agent communicate an entire
ranking of all the alternatives at the outset, we can simply have the agents
communicate their first-ranked alternatives; based on that, we can determine
which alternative gets eliminated first; then, the agents who had ranked that
alternative first communicate their next-most-preferred alternative; etc. In
effect, this is removing the “instant” from “instant runoff voting”!

(a) Level 2 When there are n voters and m alternatives, how many bits of
communication does this protocol require in the worst case? Hints:

• If there are i alternatives left, how many bits does an agent need
to communicate to indicate its most-preferred one among them?
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• If there are i alternatives left and we remove the one with the
fewest votes, what is an upper bound on how many agents need to
indicate a new most-preferred alternative among the i−1 remain-
ing ones?

(b) Level 4 Using tools from communication complexity [144], a lower
bound of Ω(n logm) bits of information in the worst case has been
shown to hold for any communication protocol for the STV rule [69].
This leaves a gap with the result from (a). Can you close the gap,
either by giving a better protocol or a better lower bound?

15. Level 2 A weak Condorcet winner is an alternative that wins or draws
against any other alternative in pairwise contests. Just like a (normal) Con-
dorcet winner, a weak Condorcet winner need not exist for all preference
profiles. Unlike a Condorcet winner, when it does exist, a weak Condorcet
winner need not be unique. In the context of voting in combinatorial do-
mains, show that when voters model their preferences using the language of
prioritized goals and each voter only specifies a single goal, then there must
always be a weak Condorcet winner.

16. Level 1 In the context of measuring the fairness and efficiency of allocations
of goods, check which of the following statements are true. Give either a
proof (in the affirmative case) or a counterexample (otherwise).

(a) Any allocation with maximal utilitarian social welfare is Pareto opti-
mal.

(b) No allocation can maximize both utilitarian and egalitarian social wel-
fare.

(c) Any allocation that is optimal with respect to the leximin ordering is
both Pareto optimal and maximizes egalitarian social welfare.

(d) The Nash SWO is zero independent.
(e) The Nash SWO is independent of the common utility pace.
(f) The egalitarian SWO respects the Pigou-Dalton transfer principle.

17. Level 2 The elitist CUF is defined via fel(u1, . . . ,un) := max{ui | i ∈ N},
i.e., social welfare is equated with the individual utility of the agent that is
currently best off. This CUF clearly contradicts our intuitions about fair-
ness, but it might be just the right efficiency measure for some applications,
e.g., in a multiagent system where we only care about at least one agent
achieving its goal. What is the computational complexity of (the decision
variant of) the problem of finding an allocation of indivisible goods (without
money) that maximizes elitist social welfare?
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(a) First state your answer (and your proof) with respect to the explicit
form of representing valuation functions (where the size of the rep-
resentation of a function is proportional to the number of bundles to
which it assigns a non-zero value).

(b) Then repeat the same exercise, this time assuming that valuation func-
tions are expressed using the language of weighted goals (without
restrictions to the types of formulas used). Hint: You might expect
that the complexity will increase, because now the input will be repre-
sented more compactly (on the other hand, as discussed in Section 5.3,
there was no such increase in complexity for the utilitarian CUF).

Note that both of these languages can express valuation functions that need
not be monotonic (that is, simply giving all the items to one agent will
usually not yield an allocation with maximal elitist social welfare).

18. Level 4 Consider a fair division problem with an odd number of agents.
Under the median-rank dictator CUF the social welfare of an allocation is
equal to the utility of the middle-most agent: fmrd(u1, . . . ,un) := ui∗ , where
i∗ is defined as the (not necessarily unique) agent for which |{i ∈ N | ui ≤
ui∗}| = |{i ∈ N | ui ≥ ui∗}|. This is an attractive form of measuring social
welfare: it associates social welfare with the individual utility of a repre-
sentative agent, while being less influenced by extreme outliers than, for
instance, the utilitarian CUF. At the time of writing, most of the problems
discussed in the section on fair division have not yet been investigated for
the median-rank dictator CUF.

(a) What is the computational complexity of computing an allocation that
is optimal under the median-rank dictator CUF? Consider this question
for different forms of representing individual valuation functions, such
as the explicit form, weighted propositional formulas, or the OR/XOR
family of bidding languages used in combinatorial auctions.

(b) Design and implement an algorithm for computing an optimal allo-
cation under the median-rank dictator CUF for a preference represen-
tation language of your choice. You may find it useful to consult the
literature on efficient algorithms for the winner determination problem
in combinatorial auctions to get ideas on how to approach this task.

(c) Can you devise a notion of rationality (replacing myopic individual
rationality as defined in this chapter) so that distributed negotiation
will guarantee convergence to an optimal allocation under the median-
rank dictator CUF? Are there suitable domain restrictions (limiting the
diversity of valuation functions that agents may hold) that will ensure
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convergence even when negotiation is limited to structurally simple
deals (such as deals involving at most two agents at a time)?
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[187] M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally manageable com-
binational auctions. Management Science, 44(8):1131–1147, 1998.

[188] P. A. Samuelson. Arrow’s mathematical politics. In S. Hook, editor, Human Values
and Economic Policy. New York University Press, 1967.

[189] T. Sandholm. Contract types for satisficing task allocation: I Theoretical results.
In Proceedings of the AAAI Spring Symposium on Satisficing Models, 1998.

[190] T. Sandholm. Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence, 135:1–54, 2002.

[191] M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions. Jour-
nal of Economic Theory, 10:187–217, 1975.

[192] M. Schulze. A new monotonic, clone-independent, reversal symmetric, and
Condorcet-consistent single-winner election method. Social Choice and Welfare,
36(2):267–303, 2011.

[193] T. Schwartz. The Logic of Collective Choice. Columbia University Press, 1986.

[194] T. Schwartz. Cyclic tournaments and cooperative majority voting: A solution.
Social Choice and Welfare, 7:19–29, 1990.

[195] A. Scott and M. Fey. The minimal covering set in large tournaments. Social Choice
and Welfare, 38(1):1–9, 2012.

[196] I. Segal. The communication requirements of social choice rules and supporting
budget sets. Journal of Economic Theory, 136:341–378, 2007.

[197] A. K. Sen. A possibility theorem on majority decisions. Econometrica, 34(2):
491–499, 1966.



Chapter 6 281

[198] A. K. Sen. Quasi-transitivity, rational choice and collective decision. Review of
Economic Studies, 36(3):381–393, 1969.

[199] A. K. Sen. Social choice theory: A re-examination. Econometrica, 45(1):53–89,
1977.

[200] A. K. Sen. Social choice theory. In K. J. Arrow and M. D. Intriligator, editors,
Handbook of Mathematical Economics, volume 3, chapter 22, pages 1073–1181.
Elsevier, 1986.

[201] A. K. Sen and P. K. Pattanaik. Necessary and sufficient conditions for rational
choice under majority decision. Journal of Economic Theory, 1:178–202, 1969.

[202] K. A. Shepsle and B. R. Weingast. Uncovered sets and sophisticated outcomes
with implications for agenda institutions. American Journal of Political Science,
28(1):49–74, 1984.

[203] A. Slinko. How large should a coalition be to manipulate an election? Mathemati-
cal Social Sciences, 47(3):289–293, 2004.

[204] J. H. Smith. Aggregation of preferences with variable electorate. Econometrica,
41(6):1027–1041, 1973.

[205] P. Tang and F. Lin. Computer-aided proofs of Arrow’s and other impossibility
theorems. Artificial Intelligence, 173(11):1041–1053, 2009.

[206] A. D. Taylor. Social Choice and the Mathematics of Manipulation. Cambridge
University Press, 2005.

[207] T. N. Tideman. Independence of clones as a criterion for voting rules. Social
Choice and Welfare, 4(3):185–206, 1987.

[208] T. Todo, A. Iwasaki, and M. Yokoo. False-name-proof mechanism design without
money. In Proceedings of the Tenth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pages 651–658. IFAAMAS, 2011.

[209] M. Truchon. Borda and the maximum likelihood approach to vote aggregation.
Mathematical Social Sciences, 55(1):96–102, 2008.

[210] J. Uckelman and U. Endriss. Compactly representing utility functions using
weighted goals and the max aggregator. Artificial Intelligence, 174(15):1222–1246,
2010.

[211] J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang. Representing utility functions
via weighted goals. Mathematical Logic Quarterly, 55(4):341–361, 2009.



282 Chapter 6

[212] L. Wagman and V. Conitzer. Optimal false-name-proof voting rules with costly vot-
ing. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
pages 190–195. AAAI Press, 2008.

[213] T. Walsh. Uncertainty in preference elicitation and aggregation. In Proceedings
of the 22nd AAAI Conference on Artificial Intelligence (AAAI), pages 3–8. AAAI
Press, 2007.

[214] T. Walsh. Where are the really hard manipulation problems? The phase transi-
tion in manipulating the veto rule. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI), pages 324–329. AAAI Press, 2009.

[215] R. B. Wilson. Social choice theory without the Pareto principle. Journal of Eco-
nomic Theory, 5:478–486, 1972.

[216] G. J. Woeginger. Banks winners in tournaments are difficult to recognize. Social
Choice and Welfare, 20:523–528, 2003.

[217] L. Xia and V. Conitzer. A sufficient condition for voting rules to be frequently
manipulable. In Proceedings of the 9th ACM Conference on Electronic Commerce
(ACM-EC), pages 99–108. ACM Press, 2008.

[218] L. Xia and V. Conitzer. Generalized scoring rules and the frequency of coalitional
manipulability. In Proceedings of the ACM Conference on Electronic Commerce
(EC), pages 109–118. ACM Press, 2008.

[219] L. Xia and V. Conitzer. Compilation complexity of common voting rules. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI), pages 915–
920. AAAI Press, 2010.

[220] L. Xia and V. Conitzer. Stackelberg voting games: Computational aspects and
paradoxes. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), pages 921–926. AAAI Press, 2010.

[221] L. Xia and V. Conitzer. Determining possible and necessary winners under com-
mon voting rules given partial orders. Journal of Artificial Intelligence Research,
41:25–67, 2011.

[222] L. Xia and V. Conitzer. A maximum likelihood approach towards aggregating
partial orders. In Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence (IJCAI), pages 446–451. AAAI Press, 2011.

[223] L. Xia, V. Conitzer, and J. Lang. Voting on multiattribute domains with cyclic
preferential dependencies. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 202–207. AAAI Press, 2008.



Chapter 6 283

[224] L. Xia, M. Zuckerman, A. D. Procaccia, V. Conitzer, and J. S. Rosenschein. Com-
plexity of unweighted coalitional manipulation under some common voting rules.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI), pages 348–353. AAAI Press, 2009.

[225] L. Xia, V. Conitzer, and J. Lang. Aggregating preferences in multi-issue domains
by using maximum likelihood estimators. In Proceedings of the Ninth International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
399–406. AAAI Press, 2010.

[226] L. Xia, V. Conitzer, and J. Lang. Strategic sequential voting in multi-issue do-
mains and multiple-election paradoxes. In Proceedings of the ACM Conference on
Electronic Commerce (EC), pages 179–188. ACM Press, 2011.

[227] M. Yokoo, Y. Sakurai, and S. Matsubara. The effect of false-name bids in combi-
natorial auctions: New fraud in Internet auctions. Games and Economic Behavior,
46(1):174–188, 2004.

[228] H. P. Young. An axiomatization of Borda’s rule. Journal of Economic Theory, 9:
43–52, 1974.

[229] H. P. Young. Social choice scoring functions. SIAM Journal on Applied Mathe-
matics, 28(4):824–838, 1975.

[230] H. P. Young. Extending Condorcet’s rule. Journal of Economic Theory, 16:335–
353, 1977.

[231] H. P. Young. Condorcet’s theory of voting. The American Political Science Review,
82(4):1231–1244, 1988.

[232] H. P. Young. Optimal voting rules. Journal of Economic Perspectives, 9(1):51–64,
1995.

[233] D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3(1):103–128, 2007.





Chapter 7

Mechanism Design and Auctions1

Kevin Leyton-Brown and Yoav Shoham

1 Introduction

Mechanism design is a strategic version of social choice theory, which adds the
assumption that agents will behave so as to maximize their individual payoffs.
For example, in an election agents may not vote their true preference. Like social
choice theory, however, the scope of mechanism design is broader than voting.
The most famous application of mechanism design is auction theory, to which
we devote the second part of this chapter. However, mechanism design has many
other applications.

Consider the transportation network described in Figure 7.1. The number next
to a given edge is the cost of transporting along that edge, but these costs are the
private information of the various shippers that own each edge. The task here is to
find the shortest (least-cost) path from S to T ; this is hard because the shippers may
lie about their costs. Your one advantage is that you know that they are interested
in maximizing their revenue. How can you use that knowledge to extract from
them the information needed to compute the desired path?

This is where mechanism design, or implementation theory, comes in. Mecha-
nism design is sometimes colloquially called “inverse game theory.” The problem
most conventionally addressed by game theory can be framed as follows: given

1This chapter is distilled from Chapters 10 and 11 of Multiagent Systems: Algorithmic, Game-
Theoretic and Logical Foundations, published by Cambridge University Press [29]. This material
is reprinted with the permission of its original publisher.
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Figure 7.1: Transportation network with selfish agents.

an interaction among a set of agents, how do we predict or prescribe the course of
action of the various agents participating in the interaction? In mechanism design,
rather than investigate a given strategic interaction, we start with certain desired
behaviors on the part of agents and ask what strategic interaction among these
agents might give rise to these behaviors. Roughly speaking, from the technical
point of view this will translate to the following. We will assume unknown indi-
vidual preferences, and ask whether we can design a game such that, no matter
what the secret preferences of the agents actually are, the equilibrium of the game
is guaranteed to have a certain desired property or set of properties. Mechanism
design is perhaps the most “computer scientific” part of game theory, since it con-
cerns itself with designing effective protocols for distributed systems. The key
difference from the traditional work in distributed systems is that in the current
setting the distributed elements are not necessarily cooperative, and must be mo-
tivated to play their part. For this reason one can think of mechanism design as an
exercise in “incentive engineering.”

2 Mechanism Design with Unrestricted Preferences

We begin by introducing some of the broad principles of mechanism design, plac-
ing no restriction on the preferences agents can have. (We will consider such
restrictions in later sections.) Because mechanism design is most often studied in
settings where agents’ preferences are unknown, we start by defining a Bayesian
game setting.

Definition 7.1 (Bayesian game setting) A Bayesian game setting is a tuple
(N,O,Θ, p,u), where

• N is a finite set of n agents;
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• O is a set of outcomes;

• Θ=Θ1×·· ·×Θn is a set of possible joint type vectors;

• p is a (common-prior) probability distribution on Θ; and

• u = (u1, . . . ,un), where ui : O×Θ "→R is the utility function for each player
i.

Given a Bayesian game setting, we can define a mechanism.

Definition 7.2 (Mechanism) A mechanism (for a Bayesian game setting
(N,O,Θ, p,u)) is a pair (A,M), where

• A = A1× ·· ·×An, where Ai is the set of actions available to agent i ∈ N;
and

• M : A "→Π(O) maps each action profile to a distribution over outcomes.

A mechanism is deterministic if for every a ∈ A, there exists o ∈ O such that
M(a)(o) = 1; in this case we write simply M(a) = o.

2.1 Implementation

Together, a Bayesian game setting and a mechanism define a Bayesian game. The
aim of mechanism design is to select a mechanism, given a particular Bayesian
game setting, whose equilibria have desirable properties. We now define the most
fundamental such property: that the outcomes that arise when the game is played
are consistent with a given social choice function.

Definition 7.3 (Implementation in dominant strategies) Given
a Bayesian game setting (N,O,Θ, p,u), a mechanism (A,M) is an implementa-
tion in dominant strategies of a social choice function C (over N and O) if for any
vector of utility functions u, the game has an equilibrium in dominant strategies,
and in any such equilibrium a∗ we have M(a∗) =C(u).

A mechanism that gives rise to dominant strategies is sometimes called
strategyproof , because there is no need for agents to reason about each others’
actions in order to maximize their utility. This suggests that the above defini-
tion can be relaxed, and can appeal to solution concepts that are weaker than
dominant-strategy equilibrium. For example, one can appeal to the Bayes–Nash
equilibrium.
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Definition 7.4 (Implementation in Bayes–Nash equilibrium) Given a Bayes-
ian game setting (N,O,Θ, p,u), a mechanism (A,M) is an implementation
in Bayes–Nash equilibrium of a social choice function C (over N and O) if
there exists a Bayes–Nash equilibrium of the game of incomplete information
(N,A,Θ, p,u) such that for every θ ∈ Θ and every action profile a ∈ A that can
arise given type profile θ in this equilibrium, we have that M(a) =C(u(·,θ)).

A classical example of Bayesian mechanism design is auction design. While
we defer a lengthier discussion of auctions to Section 4.4, the basic idea is as fol-
lows. The designer wishes, for example, to ensure that the bidder with the highest
valuation for a given item will win the auction, but the valuations of the agents are
all private. The outcomes consist of allocating the item (in the case of a simple,
single-item auction) to one of the agents, and having the agents make or receive
some payments. The auction rules define the actions available to the agents (the
“bidding rules”), and the mapping from action vectors to outcomes (“allocation
rules” and “payment rules”: who wins and who pays what as a function of the
bidding). If we assume that the valuations are drawn from some known distribu-
tion, each particular auction design and particular set of agents define a Bayesian
game, in which the signal of each agent is its own valuation.

Finally, there exist implementation concepts that are satisfied by a larger set
of strategy profiles than implementation in dominant strategies, but that are not
guaranteed to be achievable for any given social choice function and set of prefer-
ences, unlike Bayes–Nash implementation. For example, we could consider only
symmetric Bayes–Nash equilibria, on the principle that strategies that depend on
agent identities would be less likely to arise in practice. It turns out that symmetric
Bayes–Nash equilibria always exist in symmetric Bayesian games. A second im-
plementation notion that deserves mention is ex post implementation. An ex post
equilibrium has the property that no agent can ever gain by changing its strategy
even if it observes the other agents’ types, as long as all the other agents follow the
equilibrium strategies. Thus, unlike a Bayes–Nash equilibrium, an ex post equilib-
rium does not depend on the type distribution. Regardless of the implementation
concept, we can require that the desired social choice function is implemented in
the only equilibrium, in every equilibrium, or in at least one equilibrium of the
underlying game.

2.2 The Revelation Principle

One property that is often desired of mechanisms is called truthfulness. This prop-
erty holds when agents truthfully disclose their preferences to the mechanism in
equilibrium. It turns out that this property can always be achieved regardless of
the social choice function implemented and of the agents’ preferences. More for-



Chapter 7 289

Original
Mechanism

outcome

strategy ( )
type

strategy ( )
type

(a) Revelation principle: original mechanism

(

New Mechanism

Original
Mechanism

outcome

strategy
type

strategy
type

( )

( )

(b) Revelation principle: new mechanism

Figure 7.2: The revelation principle: how to construct a new mechanism with a
truthful equilibrium, given an original mechanism with equilibrium (s1, . . . ,sn).

mally, a direct mechanism is one in which the only action available to each agent
is to announce its private information. Since in a Bayesian game an agent’s pri-
vate information is its type, direct mechanisms have Ai = Θi. When an agent’s
set of actions is the set of all its possible types, it may lie and announce a type θ̂i
that is different from its true type θi. A direct mechanism is said to be truthful (or
incentive compatible) if, for any type vector θ, in equilibrium of the game defined
by the mechanism, every agent i’s strategy is to announce its true type, so that
θ̂i = θi. We can thus speak about incentive compatibility in dominant strategies
and Bayes–Nash incentive compatibility. Our claim that truthfulness can always
be achieved implies, for example, that the social choice functions implementable
by dominant-strategy truthful mechanisms are precisely those implementable by
strategyproof direct mechanisms. This means that we can, without loss of cover-
age, limit ourselves to a small sliver of the space of all mechanisms.

Theorem 7.1 (Revelation principle) If there exists any mechanism that imple-
ments a social choice function C in dominant strategies, then there exists a direct
mechanism that implements C in dominant strategies and is truthful.

Proof. Consider an arbitrary mechanism for n agents that implements a social
choice function C in dominant strategies. This mechanism is illustrated in Fig-
ure 7.2a. Let s1, . . . ,sn denote the dominant strategies for agents 1, . . . ,n. We will
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construct a new mechanism that truthfully implements C. Our new mechanism
will ask the agents for their utility functions, use them to determine s1, . . . ,sn, the
agents’ dominant strategies under the original mechanism, and then choose the
outcome that would have been chosen by the original mechanism for agents fol-
lowing the strategies s1, . . . ,sn. This new mechanism is illustrated in Figure 7.2b.

Assume that some agent i would be better off declaring a utility function u∗i
to the new mechanism rather than its true utility function ui. This implies that i
would have preferred to follow some different strategy s∗i in the original mecha-
nism rather than si, contradicting our assumption that si is a dominant strategy for
i. (Intuitively, if i could gain by lying to the new mechanism, it could likewise
gain by “lying to itself” in the original mechanism.) Thus the new mechanism is
dominant-strategy truthful.

In other words, any solution to a mechanism design problem can be converted
into one in which agents always reveal their true preferences, if the new mech-
anism “lies for the agents” in just the way they would have chosen to lie to the
original mechanism. The revelation principle is arguably the most basic result
in mechanism design. It means that, while one might have thought a priori that
a particular mechanism design problem calls for an arbitrarily complex strategy
space, in fact one can restrict one’s attention to truthful, direct mechanisms.

As we asserted earlier, the revelation principle does not apply only to im-
plementation in dominant strategies; we have stated the theorem in this way
only to keep things simple. Following exactly the same argument we can ar-
gue that, for example, a mechanism that implements a social choice function in
a Bayes–Nash equilibrium can be converted into a direct, Bayes–Nash incentive-
compatible mechanism.

The argument we used to justify the revelation principle also applies to original
mechanisms that are indirect (e.g., ascending auctions). The new, direct mecha-
nism can take the agents’ utility functions, construct their strategies for the in-
direct mechanism, and then simulate the indirect mechanism to determine which
outcome to select. One caveat is that, even if the original indirect mechanism had
a unique equilibrium, there is no guarantee that the new revelation mechanism
will not have additional equilibria.

Before moving on, we finally offer some computational caveats to the revela-
tion principle. Observe that the general effect of constructing a revelation mech-
anism is to push an additional computational burden onto the mechanism, as is
implicit in Figure 7.2b. There are many settings in which agents’ equilibrium
strategies are computationally difficult to determine. When this is the case, the
additional burden absorbed by the mechanism may be considerable. Furthermore,
the revelation mechanism forces the agents to reveal their types completely. There
may be settings in which agents are not willing to compromise their privacy to this
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degree. (Observe that the original mechanism may require them to reveal much
less information.) Finally, even if not objectionable on privacy grounds, this full
revelation can sometimes place an unreasonable burden on the communication
channel. For all these reasons, in practical settings one must apply the revelation
principle with caution.

2.3 Impossibility of General, Dominant-Strategy

Implementation

We now ask what social choice functions can be implemented in dominant strate-
gies. Given the revelation principle, we can restrict our attention to truthful mech-
anisms. The first answer is disappointing.

Theorem 7.2 (Gibbard–Satterthwaite) Consider any social choice function C
of N and O. If:

1. |O| ≥ 3 (there are at least three outcomes);

2. C is onto; that is, for every o ∈ O there is a preference profile [�] such that
C([�]) = o (this property is sometimes also called citizen sovereignty); and

3. C is dominant-strategy truthful,

then C is dictatorial.

Note that this negative result is specific to dominant-strategy implementation.
It does not hold for the weaker concepts of Nash or Bayes–Nash equilibrium im-
plementation.

3 Quasilinear Preferences

If we are to design a dominant-strategy truthful mechanism that is not dictatorial,
we are going to have to relax some of the conditions of the Gibbard–Satterthwaite
theorem. First, we relax the requirement that agents be able to express any pref-
erences and replace it with the requirement that agents be able to express any
preferences in a limited set. Second, we relax the condition that the mechanism
be onto. We now introduce our limited set of preferences.

Definition 7.5 (Quasilinear utility function) Agents have quasilinear utility
functions (or quasilinear preferences) in an n-player Bayesian game when the
set of outcomes is O = X×Rn for a finite set X, and the utility of an agent i given
joint type θ is given by ui(o,θ) = ui(x,θ)− pi, where o = (x, p) is an element of
O, ui : X ×Θ "→R is an arbitrary function.
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Intuitively, we split outcomes into two pieces that are linearly related. First,
X represents a finite set of non-monetary outcomes, such as the allocation of an
object to one of the bidders in an auction or the selection of a candidate in an
election. Second, pi is the (possibly negative) payment made by agent i to the
mechanism, such as a payment to the auctioneer.

What does it mean to assume that agents’ preferences are quasilinear? First,
it means that we are in a setting in which the mechanism can choose to charge or
reward the agents by an arbitrary monetary amount. Second, and more restrictive,
it means that an agent’s degree of preference for the selection of any choice x ∈ X
is independent of its degree of preference for having to pay the mechanism some
amount pi ∈ R. Thus an agent’s utility for a choice cannot depend on the total
amount of money that it has (e.g., an agent cannot value having a yacht more if it
is rich than if it is poor). Finally, it means that agents care only about the choice
selected and about their own payments: in particular, they do not care about the
monetary payments made or received by other agents.

Strictly speaking, we have defined quasilinear preferences in a way that fixes
the set of agents. However, we generally consider families of quasilinear prob-
lems, for any set of agents. In the following we assume that a quasilinear utility
function is still defined when any one agent is taken away. In this case the set of
non-monetary outcomes must be updated (e.g., in an auction setting the missing
agent cannot be the winner), and is denoted by O−i. Similarly, the utility functions
ui and the choice function C must be updated accordingly.

We have also made another restrictive assumption about quasilinear prefer-
ences, albeit one commonly made: we assume that the agent values money in
the same units as it values utility. This assumption is called transferable utility,
because it means that utility can be shifted from one agent to another through
monetary transfers. It implies a second assumption, called risk neutrality, which
means that the agent’s value for a unit of currency is independent of the total
amount of money the agent has. For a discussion of what happens when these
assumptions are violated, please see [29].

3.1 Mechanism Design in the Quasilinear Setting

Now that we have defined the quasilinear preference model, we can talk about
the design of mechanisms for agents with these preferences. We concentrate on
Bayesian games because most mechanism design is performed in such domains.

First, we point out that since quasilinear preferences split the outcome space
into two parts, we can modify our formal definition of a mechanism accordingly.

Definition 7.6 (Quasilinear mechanism) A mechanism in the quasilinear setting
(for a Bayesian game setting (N,O = X×Rn,Θ, p,u)) is a triple (A,x ,℘), where
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• A = A1×·· ·×An, where Ai is the set of actions available to agent i ∈ N,

• x : A "→Π(X) maps each action profile to a distribution over choices, and

• ℘: A "→Rn maps each action profile to a payment for each agent.

In effect, we have split the function M into two functions x and℘, where x is
the choice rule and℘ is the payment rule. We will use the notation℘i to denote
the payment function for agent i.

A direct revelation mechanism in the quasilinear setting is one in which each
agent is asked to state its type.

Definition 7.7 (Direct quasilinear mechanism) A direct quasilinear mechanism
(for a Bayesian game setting (N,O = X ×Rn,Θ, p,u)) is a pair (x ,℘). It defines
a standard mechanism in the quasilinear setting, where for each i, Ai =Θi.

In many quasilinear mechanism design settings it is helpful to make the as-
sumption that agents’ utilities depend only on their own types, a property that we
call conditional utility independence.2

Definition 7.8 (Conditional utility independence) A Bayesian game exhibits
conditional utility independence if for all agents i ∈ N, for all outcomes o ∈ O
and for all pairs of joint types θ and θ′ ∈ Θ for which θi = θ′i, it holds that
ui(o,θ) = ui(o,θ′).

We will assume conditional utility independence for the rest of this chapter.
Thus, we can write an agent i’s utility function as ui(o,θi), since it does not depend
on the other agents’ types. We can also refer to an agent’s valuation for choice
x ∈ X , written vi(x) = ui(x,θ). vi should be thought of as the maximum amount of
money that i would be willing to pay to get the mechanism designer to implement
choice x – in fact, having to pay this much would exactly make i indifferent about
whether it was offered this deal or not.3 Note that an agent’s valuation depends on
its type, even though we do not explicitly refer to θi. In the future when we discuss
direct quasilinear mechanisms, we will usually mean mechanisms that ask agents
to declare their valuations for each choice; of course, this alternate definition is
equivalent to Definition 7.7. Let Vi denote the set of all possible valuations for

2This assumption is sometimes referred to as privacy. We avoid that terminology here because
the assumption does not imply that agents cannot learn about others’ utility functions by observing
their own types.

3Observe that here we rely upon the assumption of risk neutrality discussed earlier. Further-
more, observe that it is also meaningful to extend the concept of valuation beyond settings in
which conditional utility independence holds; in such cases, we say that agents do not know their
own valuations. We describe such settings in [29].
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agent i. We will use the notation v̂i ∈Vi to denote the valuation that agent i declares
to such a direct mechanism, which may be different from its true valuation vi. We
denote the vector of all agents’ declared valuations as v̂ and the set of all possible
valuation vectors as V . Finally, we denote the vector of declared valuations from
all agents other than i as v̂−i.

Now we can state some properties that it is common to require of quasilinear
mechanisms.

Definition 7.9 (Truthfulness) A quasilinear mechanism is truthful if it is direct
and ∀i∀vi, agent i’s equilibrium strategy is to adopt the strategy v̂i = vi.

Of course, this is equivalent to the definition of truthfulness that we gave in
Section 2.2; we have simply updated the notation for the quasilinear utility setting.

Definition 7.10 (Efficiency) A quasilinear mechanism is strictly Pareto efficient,
or just efficient, if in equilibrium it selects a choice x such that ∀v∀x′, ∑i vi(x) ≥
∑i vi(x′).

That is, an efficient mechanism selects the choice that maximizes the sum of
agents’ utilities, disregarding the monetary payments that agents are required to
make. We describe this property as economic efficiency when there is a danger that
it will be confused with other (e.g., computational) notions of efficiency. Observe
that efficiency is defined in terms of agents’ true valuations, not their declared
valuations. This condition is also known as social welfare maximization.

Definition 7.11 (Budget balance) A quasilinear mechanism is budget balanced
when ∀v, ∑i℘i(s(v)) = 0, where s is the equilibrium strategy profile.

In other words, regardless of the agents’ types, the mechanism collects and
disburses the same amount of money from and to the agents, meaning that it makes
neither a profit nor a loss. Sometimes we relax this condition and require only
weak budget balance, meaning that ∀v, ∑i℘i(s(v))≥ 0 (i.e., the mechanism never
takes a loss, but it may make a profit). Finally, we can require that either strict
or weak budget balance hold ex ante, which means that Ev [∑i℘i(s(v))] is either
equal to or greater than zero. (That is, the mechanism is required to break even or
make a profit only on expectation.)

Definition 7.12 (Ex interim individual rationality) A quasilinear mechanism is
ex interim individually rational when

∀i∀vi, Ev−i|vi [vi(x (si(vi),s−i(v−i)))−℘i(si(vi),s−i(v−i))]≥ 0,

where s is the equilibrium strategy profile.



Chapter 7 295

This condition requires that no agent loses by participating in the mechanism.
We call it ex interim because it holds for every possible valuation for agent i, but
averages over the possible valuations of the other agents. This approach makes
sense because it requires that, based on the information that an agent has when it
chooses to participate in a mechanism, no agent would be better off choosing not
to participate. Of course, we can also strengthen the condition to say that no agent
ever loses by participation.

Definition 7.13 (Ex post individual rationality) A quasilinear mechanism is ex
post individually rational when ∀i∀v, vi(x (s(v)))−℘i(s(v)) ≥ 0, where s is the
equilibrium strategy profile.

We can also restrict mechanisms based on their computational requirements
rather than their economic properties.

Definition 7.14 (Tractability) A quasilinear mechanism is tractable when ∀a ∈
A, x (a) and℘(a) can be computed in polynomial time.

Finally, in some domains there will be many possible mechanisms that satisfy
the constraints we choose, meaning that we need to have some way of choosing
among them. (And as we will see later, for other combinations of constraints no
mechanisms exist at all.) The usual approach is to define an optimization problem
that identifies the optimal outcome in the feasible set. For example, although we
have defined efficiency as a constraint, it is also possible to soften the constraint
and require the mechanism to achieve as much social welfare as possible. Here
we define some other quantities that a mechanism designer can seek to optimize.

First, the mechanism designer can take a selfish perspective. Interestingly,
this goal turns out to be quite different from the goal of maximizing social wel-
fare. (We give an example of the differences between these approaches when we
consider single-good auctions in Section 5.)

Definition 7.15 (Revenue maximization) A quasilinear mechanism is revenue
maximizing when, among the set of functions x and℘ that satisfy the other con-
straints, the mechanism selects the x and℘ that maximize Ev [∑i℘i(s(v))], where
s(v) denotes the agents’ equilibrium strategy profile.

The mechanism designer might be concerned with selecting a fair outcome.
However, the notion of fairness can be tricky to formalize. For example, an out-
come that fines all agents $100 and makes a choice that all agents hate equally
is in some sense fair, but it does not seem desirable. Here we define so-called
maxmin fairness, which says that the fairest outcome is the one that makes the
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least-happy agent the happiest. We also take an expected value over different val-
uation vectors, but we could instead have required a mechanism that does the best
in the worst case.

Definition 7.16 (Maxmin fairness) A quasilinear mechanism is maxmin fair
when, among the set of functions x and ℘ that satisfy the other constraints, the
mechanism selects the x and℘ that maximize Ev [mini∈N vi(x (s(v)))−℘i(s(v))],
where s(v) denotes the agents’ equilibrium strategy profile.

Finally, the mechanism designer might not be able to implement a social-
welfare-maximizing mechanism (e.g., in order to satisfy a tractability constraint)
but may want to get as close as possible. Thus, the goal could be minimizing
the price of anarchy, the worst-case ratio between optimal social welfare and the
social welfare achieved by the given mechanism. Here we also consider the worst
case across agent valuations.

Definition 7.17 (Price-of-anarchy minimization) A quasilinear mechanism
minimizes the price of anarchy when, among the set of functions x and ℘ that
satisfy the other constraints, the mechanism selects the x and℘ that minimize

max
v∈V

maxx∈X ∑i∈N vi(x)
∑i∈N vi (x (s(v)))

,

where s(v) denotes the agents’ equilibrium strategy profile in the worst equilib-
rium of the mechanism – that is, the one in which ∑i∈N vi(x (s(v))) is the smallest.

4 Efficient Mechanisms

Efficiency (Definition 7.10) is often considered to be one of the most important
properties for a mechanism to satisfy in the quasilinear setting. One reason is
that, whenever an inefficient choice is selected, it is possible to find a set of side
payments among the agents with the property that all agents would prefer the
efficient choice in combination with the side payments to the inefficient choice.
(Intuitively, the sum of agents’ valuations for the efficient choice is greater than
for the inefficient choice. Thus, the agents who prefer the efficient choice would
still strictly prefer it even if they had to make side payments to the other agents
so that each of them also strictly preferred the efficient choice.) A great deal of
research has considered the design of mechanisms that are guaranteed to select
efficient choices when agents follow dominant or equilibrium strategies. In this
section we survey these mechanisms.
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4.1 Groves Mechanisms

The most important family of efficient mechanisms are the Groves mechanisms.

Definition 7.18 (Groves mechanisms) Groves mechanisms are direct quasilin-
ear mechanisms (x ,℘), for which

x (v̂) = argmax
x

∑
i

v̂i(x),

℘i(v̂) = hi(v̂−i)−∑
j �=i

v̂ j(x (v̂)).

In other words, Groves mechanisms are direct mechanisms in which agents
can declare any valuation function v̂ (and thus any quasilinear utility function û).
The mechanism then optimizes its choice assuming that the agents disclosed their
true utility function. An agent is made to pay an arbitrary amount hi(v̂−i) that
does not depend on its own declaration, and is paid the sum of every other agent’s
declared valuation for the mechanism’s choice. The fact that the mechanism de-
signer has the freedom to choose the hi functions explains why we refer to the
family of Groves mechanisms rather than to a single mechanism.

The remarkable property of Groves mechanisms is that they provide a
dominant-strategy truthful implementation of a social-welfare-maximizing social
choice function. It is easy to see that if a Groves mechanism is dominant-strategy
truthful, then it must be social welfare maximizing: the function x in Defini-
tion 7.18 performs exactly the maximization called for by Definition 7.10 when
v̂ = v. Thus, it suffices to show the following.

Theorem 7.3 Truth-telling is a dominant strategy under any Groves mechanism.

Proof. Consider a situation where every agent j other than i follows some arbi-
trary strategy v̂ j. Consider agent i’s problem of choosing the best strategy v̂i. As
a shorthand, we write v̂ = (v̂−i, v̂i). The best strategy for i is one that solves

max
v̂i

(vi(x (v̂))−℘(v̂)) .

Substituting in the payment function from the Groves mechanism, we have

max
v̂i

(
vi(x (v̂))−hi(v̂−i)+∑

j �=i
v̂ j(x (v̂))

)
.

Since hi(v̂−i) does not depend on v̂i, it is sufficient to solve

max
v̂i

(
vi(x (v̂))+∑

j �=i
v̂ j(x (v̂))

)
.
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The only way in which the declaration v̂i influences the maximization above
is through the term vi(x (v̂)). If possible, i would like to pick a declaration v̂i that
will lead the mechanism to pick an x ∈ X which solves

max
x

(
vi(x)+∑

j �=i
v̂ j(x)

)
. (7.1)

The Groves mechanism chooses an x ∈ X as

x (v̂) = argmax
x

(
∑

i
v̂i(x)

)
= argmax

x

(
v̂i(x)+∑

j �=i
v̂ j(x)

)
.

Thus, agent i leads the mechanism to select the choice that it most prefers
by declaring v̂i = vi. Because this argument does not depend in any way on the
declarations of the other agents, truth-telling is a dominant strategy for agent i.

Intuitively, the reason that Groves mechanisms are dominant-strategy truth-
ful is that agents’ externalities are internalized. Imagine a mechanism in which
agents declared their valuations for the different choices x∈ X and the mechanism
selected the efficient choice, but in which the mechanism did not impose any pay-
ments on agents. Clearly, agents would be able to change the mechanism’s choice
to another that they preferred by overstating their valuation. Under Groves mech-
anisms, however, an agent’s utility does not depend only on the selected choice,
because payments are imposed. Since agents are paid the (reported) utility of all
the other agents under the chosen allocation, each agent becomes just as inter-
ested in maximizing the other agents’ utilities as in maximizing its own. Thus,
once payments are taken into account, all agents have the same interests.

Groves mechanisms illustrate a property that is generally true of dominant-
strategy truthful mechanisms: an agent’s payment does not depend on the amount
of its own declaration. Although other dominant-strategy truthful mechanisms ex-
ist in the quasilinear setting, the next theorem shows that Groves mechanisms are
the only mechanisms that implement an efficient allocation in dominant strategies
among agents with arbitrary quasilinear utilities.

Theorem 7.4 (Green–Laffont) An efficient social choice function C : RXn "→
X ×Rn can be implemented in dominant strategies for agents with unrestricted
quasilinear utilities only if℘i(v) = h(v−i)−∑ j �=i v j(x (v)).

We do not give the proof here; it appears in [29]. It has also been shown
that Groves mechanisms are unique among Bayes–Nash incentive-compatible ef-
ficient mechanisms, in a weaker sense. Specifically, any Bayes–Nash incentive-
compatible efficient mechanism corresponds to a Groves mechanism in the sense
that each agent makes the same ex interim expected payments and hence has the
same ex interim expected utility under both mechanisms.
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4.2 The VCG Mechanism

So far, we have said nothing about how to set the function hi in a Groves mech-
anism’s payment function. Here we will discuss the most popular answer, which
is called the Clarke tax. In the subsequent sections we will discuss some of its
properties, but first we define it.

Definition 7.19 (Clarke tax) The Clarke tax sets the hi term in a Groves mecha-
nism as

hi(v̂−i) =∑
j �=i

v̂ j (x (v̂−i)) ,

where x is the Groves mechanism allocation function.

The resulting Groves mechanism goes by many names. We will see in Sec-
tion 5 that the Vickrey auction (invented in 1961) is a special case; thus, in re-
source allocation settings the mechanism is sometimes known as the generalized
Vickrey auction. Second, it is also called the pivot mechanism; we will explain
the rationale behind this name in a moment. From now on, though, we will refer
to it as the Vickrey–Clarke–Groves mechanism (VCG), naming its contributors in
chronological order of their contributions. We restate the full mechanism here.

Definition 7.20 (Vickrey–Clarke–Groves (VCG) mechanism)

The VCG mechanism is a direct quasilinear mechanism (x ,℘), where

x (v̂) = argmax
x

∑
i

v̂i(x),

℘i(v̂) =∑
j �=i

v̂ j (x (v̂−i))−∑
j �=i

v̂ j(x (v̂)).

First, note that because the Clarke tax does not depend on an agent i’s own
declaration v̂i, our previous arguments that Groves mechanisms are dominant-
strategy truthful and efficient carry over immediately to the VCG mechanism.
Now, we try to provide some intuition about the VCG payment rule. Assume that
all agents follow their dominant strategies and declare their valuations truthfully.
The second sum in the VCG payment rule pays each agent i the sum of every other
agent j �= i’s utility for the mechanism’s choice. The first sum charges each agent
i the sum of every other agent’s utility for the choice that would have been made
had i not participated in the mechanism. Thus, each agent is made to pay its social
cost – the aggregate impact that its participation has on other agents’ utilities.

What can we say about the amounts of different agents’ payments to the mech-
anism? If some agent i does not change the mechanism’s choice by its participa-
tion – that is, if x (v) = x (v−i) – then the two sums in the VCG payment function
will cancel out. The social cost of i’s participation is zero, and so it has to pay
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nothing. In order for an agent i to be made to pay a non-zero amount, it must be
pivotal in the sense that the mechanism’s choice x (v) is different from its choice
without i, x (v−i). This is why VCG is sometimes called the pivot mechanism –
only pivotal agents are made to pay. Of course, it is possible that some agents will
improve other agents’ utilities by participating; such agents will be made to pay a
negative amount, or, in other words, will be paid by the mechanism.

Let us consider an example. Recall that we previously discussed the problem
of buying a shortest path in a transportation network. We will now determine what
route and what payments the VCG mechanism would select. For convenience, we
reproduce Figure 7.1 as Figure 7.3, now labeling the nodes so that we have names
to refer to the agents (the edges).
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Figure 7.3: Transportation network with selfish agents.

Note that in this example, the numbers labeling the edges in the graph denote
agents’ costs rather than utilities; thus, an agent’s utility is −c if a route involving
its edge (having cost c) is selected, and zero otherwise. The argmax in x will
amount to cost minimization. Thus, x (v) will return the shortest path in the graph,
which is ABEF . How much will agents have to pay? First, let us consider the
agent AC. The shortest path taking its declaration into account has a length of
5 and imposes a cost of −5 on agents other than it (because it is not involved).
Likewise, the shortest path without AC’s declaration also has a length of 5. Thus,
its payment is pAC = (−5)− (−5) = 0. This is what we expect, since AC is not
pivotal. Clearly, by the same argument BD, CE, CF , and DF will all be made
to pay zero. Now let us consider the pivotal agents. The shortest path taking
AB’s declaration into account has a length of 5, and imposes a cost of 2 on other
agents. The shortest path without AB is ACEF , which has a cost of 6. Thus
pAB = (−6)− (−2) = −4: AB is paid 4 for its participation. Arguing similarly,
you can verify that pBE = (−6)− (−4) = −2, and pEF = (−7)− (−4) = −3.



Chapter 7 301

Note that although EF had the same cost as BE, they are paid different amounts
for the use of their edges. This occurs because EF has more market power: for
the other agents, the situation without EF is worse than the situation without BE.

4.3 Properties of VCG

4.3.1 VCG and Individual Rationality

We have seen that Groves mechanisms are dominant-strategy truthful and effi-
cient. We have also seen that no other mechanism has both of these properties
in general quasilinear settings. Thus, we might be a bit worried that we have not
been able to guarantee either individual rationality or budget balance, two proper-
ties that are quite important in practice. (Recall that individual rationality means
that no agent would prefer not to participate in the mechanism; budget balance
means that the mechanism does not lose money.) We will consider budget bal-
ance in Section 4.4; here we investigate individual rationality.

As it turns out, our worry is well founded: even with the freedom to set hi,
we cannot find a mechanism that guarantees us individual rationality in an unre-
stricted quasilinear setting. However, we are often able to guarantee the strongest
variety of individual rationality when the setting satisfies certain mild restrictions.

Definition 7.21 (Choice-set monotonicity) An environment exhibits choice-set
monotonicity if ∀i, X−i ⊆ X (removing any agent weakly decreases – that is, never
increases – the mechanism’s set of possible choices X).

Definition 7.22 (No negative externalities) An environment exhibits no negative
externalities if ∀i∀x ∈ X−i, vi(x) ≥ 0 (every agent has zero or positive utility for
any choice that can be made without its participation).

Theorem 7.5 The VCG mechanism is ex post individually rational when the
choice-set monotonicity and no negative externalities properties hold.

Consider a market consisting of a set of agents interested in buying a single
unit of a good such as a share of stock and another set of agents interested in
selling a single unit of this good. The choices in this environment are sets of
buyer–seller pairings. (Prices are imposed through the payment function.) If a
new agent is introduced into the market, no previously existing pairings become
infeasible, but new ones become possible; thus choice-set monotonicity is satis-
fied. Because agents have zero utility both for choices that involve trades between
other agents and no trades at all, there are no negative externalities.
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4.3.2 VCG and Weak Budget Balance

What about weak budget balance, the requirement that the mechanism will not
lose money? Our two previous conditions, choice-set monotonicity and no neg-
ative externalities, are not sufficient to guarantee weak budget balance: for ex-
ample, the “buying the shortest path” example given earlier satisfied these two
conditions, but we saw that the VCG mechanism paid out money and did not
collect any. Thus, we will have to explore further restrictions to the quasilinear
setting.

Definition 7.23 (No single-agent effect) An environment exhibits no single-
agent effect if ∀i, ∀v−i, ∀x ∈ argmaxy∑ j v j(y) there exists a choice x′ that is fea-
sible without i and that has ∑ j �=i v j(x′)≥ ∑ j �=i v j(x).

In other words, removing any agent does not worsen the total value of the best
solution to the others, regardless of their valuations. For example, this property is
satisfied in a single-sided auction – dropping an agent just reduces the amount of
competition in the auction, making the others better off.

Theorem 7.6 The VCG mechanism is weakly budget balanced when the no
single-agent effect property holds.

Indeed, we can say something more about VCG’s revenue properties: restrict-
ing ourselves to settings in which VCG is ex post individually rational as discussed
earlier, and comparing to all other efficient and ex interim individually rational
mechanisms, VCG turns out to collect the maximal amount of revenue from the
agents. This is somewhat surprising, since this result does not require dominant
strategies, and hence compares VCG to all Bayes–Nash mechanisms. A useful
corollary of this result is that VCG is as budget balanced as any efficient mecha-
nism can be: it satisfies weak budget balance in every case where any dominant
strategy, efficient, and ex interim individually rational mechanism would be able
to do so.

4.3.3 Drawbacks of VCG

The VCG mechanism is one of the most powerful positive results in mechanism
design: it gives us a general way of constructing dominant-strategy truthful mech-
anisms to implement social-welfare-maximizing social choice functions in quasi-
linear settings. We have seen that no fundamentally different mechanism could
do the same job. And VCG gives us even more: under the right conditions it fur-
ther guarantees ex post individual rationality and weak budget balance. Thus, it is
not surprising that this mechanism has been enormously influential and continues
to be widely studied. However, despite these attractive properties, VCG also has
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some undesirable characteristics. We discuss these at length in [29], but briefly
list them here.

1. Agents must fully disclose private information.

2. VCG is susceptible to collusion.

3. VCG is not “frugal”: prices can be many times higher than the true value of
the best allocation involving no winning agents.

4. Excluding bidders can (unboundedly) increase revenue.

5. It is impossible to return all of VCG’s revenue to the agents without distort-
ing incentives.

6. The problem of identifying the argmax can be computationally intractable
(e.g., see Section 7).

Having listed these problems, however, we offer a caveat: although there exist
mechanisms that circumvent each of the drawbacks we discuss, none of the draw-
backs are unique to VCG, or even to Groves mechanisms. Indeed, in some cases
the problems are known to crop up in extremely broad classes of mechanisms.

4.4 Budget Balance and Efficiency

In Section 4.3.2 we identified a realistic case in which the VCG mechanism is
weakly budget balanced. However, we also noted that there exist other important
and practical settings in which the no single-agent effect property does not hold.
For example, define a simple exchange as an environment consisting of buyers and
sellers with quasilinear utility functions, all interested in trading a single identical
unit of some good. The no single-agent effect property is not satisfied in a simple
exchange because dropping a seller could make some buyer worse off and vice
versa. Can we find some other argument to show that VCG will remain budget
balanced in this important setting?

It turns out that neither VCG nor any other Groves mechanism is budget bal-
anced in the simple exchange setting. (Recall Theorem 7.4: only Groves mecha-
nisms are both dominant-strategy incentive compatible and efficient.)

Theorem 7.7 (Green–Laffont; Hurwicz) No dominant-strategy incentive-com-
patible mechanism is always both efficient and weakly budget balanced, even if
agents are restricted to the simple exchange setting.
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Furthermore, another seminal result showed that a similar problem arises in
the broader class of Bayes–Nash incentive-compatible mechanisms (which, recall,
includes the class of dominant-strategy incentive-compatible mechanisms) if we
also require ex interim individual rationality and allow general quasilinear utility
functions.

Theorem 7.8 (Myerson–Satterthwaite) No Bayes–Nash incentive-compatible
mechanism is always simultaneously efficient, weakly budget balanced, and ex
interim individually rational, even if agents are restricted to quasilinear utility
functions.

5 Single-Good Auctions

We now consider the problem of allocating (discrete) resources among selfish
agents in a multiagent system. Auctions – an interesting and important applica-
tion of mechanism design – turn out to provide a general solution to this problem.
We describe various different flavors of auctions, including single-good and com-
binatorial auctions. In each case, we survey some of the key theoretical, practical,
and computational insights from the literature.

The auction setting is important for two reasons. First, auctions are widely
used in real life, in consumer, corporate, as well as government settings. Millions
of people use auctions daily on Internet consumer web sites to trade goods. More
complex types of auctions have been used by governments around the world to sell
important public resources such as access to electromagnetic spectrum. Indeed, all
financial markets constitute a type of auction (one of the family of so-called double
auctions). Auctions are also often used in computational settings to efficiently
allocate bandwidth and processing power to applications and users.

The second – and more fundamental – reason to care about auctions is that
they provide a general theoretical framework for understanding resource alloca-
tion problems among self-interested agents. Formally speaking, an auction is any
protocol that allows agents to indicate their interest in one or more resources and
that uses these indications of interest to determine both an allocation of resources
and a set of payments by the agents. Thus, auctions are important for a wide range
of computational settings (e.g., the sharing of computational power in a grid com-
puter on a network) that would not normally be thought of as auctions and that
might not even use money as the basis of payments.

It is important to realize that the most familiar type of auction – the ascending-
bid, English auction – is a drop in the ocean of auction types. Indeed, since
auctions are simply mechanisms for allocating goods, there is an infinite number
of auction types. In the most familiar types of auctions there is one good for
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sale, one seller, and multiple potential buyers. Each buyer has its own valuation
for the good, and each wishes to purchase it at the lowest possible price. These
auctions are called single-sided, because there are multiple agents on only one
side of the market. Our task is to design a protocol for this auction that satisfies
certain desirable global criteria. For example, we might want an auction protocol
that maximizes the expected revenue of the seller. Or, we might want an auction
that is economically efficient; that is, one that guarantees that the potential buyer
with the highest valuation ends up with the good.

Given the popularity of auctions, on the one hand, and the diversity of auction
mechanisms, on the other, it is not surprising that the literature on the topic is vast.
In this section we provide a taste for this literature, beginning by concentrating on
auctions for selling a single good. We explore richer settings later in the chapter.

5.1 Canonical Auction Families

To give a feel for the broad space of single-good auctions, we start by describ-
ing some of the most famous families: English, Japanese, Dutch, and sealed-bid
auctions.

5.1.1 English Auctions

The English auction is perhaps the best-known family of auctions, since in one
form or another such auctions are used in the venerable, old-guard auction houses,
as well as most of the online consumer auction sites. The auctioneer sets a starting
price for the good, and agents then have the option to announce successive bids,
each of which must be higher than the previous bid (usually by some minimum
increment set by the auctioneer). The rules for when the auction closes vary; in
some instances the auction ends at a fixed time, in others it ends after a fixed
period during which no new bids are made, in others at the latest of the two, and
in still other instances at the earliest of the two. The final bidder, who by definition
is the agent with the highest bid, must purchase the good for the amount of its final
bid.

5.1.2 Japanese Auctions

The Japanese auction4 is similar to the English auction in that it is an ascending-
bid auction but is different otherwise. Here the auctioneer sets a starting price for
the good, and each agent must choose whether or not to be “in,” that is, whether
it is willing to purchase the good at that price. The auctioneer then calls out

4Unlike the terms English and Dutch, the term Japanese is not used universally; however, it is
commonly used, and there is no competing name for this family of auctions.



306 Chapter 7

successively increasing prices in a regular fashion,5 and after each call each agent
must announce whether it is still in. When an agent drops out it is irrevocable, and
it cannot re-enter the auction. The auction ends when there is exactly one agent
left in; the agent must then purchase the good for the current price.

5.1.3 Dutch Auctions

In a Dutch auction the auctioneer begins by announcing a high price and then
proceeds to announce successively lower prices in a regular fashion. In prac-
tice, the descending prices are indicated by a clock that all of the agents can see.
The auction ends when the first agent signals the auctioneer by pressing a buzzer
and stopping the clock; the signaling agent must then purchase the good for the
displayed price. This auction gets its name from the fact that it is used in the Am-
sterdam flower market; in practice, it is most often used in settings where goods
must be sold quickly.

5.1.4 Sealed-Bid Auctions

All the auctions discussed so far are considered open-outcry auctions, in that all
the bidding is done by calling out the bids in public (however, as we will discuss
shortly, in the case of the Dutch auction this is something of an optical illusion).
The family of sealed-bid auctions, probably the best known after English auctions,
is different. In this case, each agent submits to the auctioneer a secret, “sealed”
bid for the good that is not accessible to any of the other agents. The agent with
the highest bid must purchase the good, but the price at which it does so depends
on the type of sealed-bid auction. In a first-price sealed-bid auction (or simply
first-price auction) the winning agent pays an amount equal to its own bid. In
a second-price auction it pays an amount equal to the next highest bid (i.e., the
highest rejected bid). The second-price auction is also called the Vickrey auction.
In general, in a kth-price auction the winning agent purchases the good for a price
equal to the kth highest bid.

5.2 Auctions as Bayesian Mechanisms

We now move to a more formal investigation of single-good auctions. Our starting
point is the observation that choosing an auction that has various desired proper-
ties is a mechanism design problem. Ordinarily we assume that agents’ utility
functions in an auction setting are quasilinear. To define an auction as a quasilin-
ear mechanism (see Definition 7.6) we must identify the following elements:

5In the theoretical analyses of this auction, the assumption is usually that the prices rise con-
tinuously.
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• set of agents N,

• set of outcomes O = X ×Rn,

• set of actions Ai available to each agent i ∈ N,

• choice function x that selects one of the outcomes given the agents’ actions,
and

• payment function ℘ that determines what each agent must pay given all
agents’ actions.

In an auction, the possible outcomes O consist of all possible ways to allocate
the good – the set of choices X – and all possible ways of charging the agents.
The agents’ actions will vary in different auction types. In a sealed-bid auction,
each set Ai is an interval from R (i.e., an agent’s action is the declaration of a
bid amount between some minimum and maximum value). A Japanese auction
is an imperfect-information extensive-form game with chance nodes, and so in
this case the action space is the space of all policies the agent could follow (i.e.,
all different ways of acting conditioned on different observed histories). As in
all mechanism design problems, the choice and payment functions x and ℘ de-
pend on the objective of the auction, such as achieving an efficient allocation or
maximizing revenue.

A Bayesian game with quasilinear preferences includes two more ingredients
that we need to specify: the common prior and the agents’ utility functions. We
will say more about the common prior – the distribution from which the agents’
types are drawn – later; here, just note that the definition of an auction as a
Bayesian game is incomplete without it. Considering the agents’ utility func-
tions, note that the quasilinearity assumption (see Definition 7.5) allows us to
write ui(o,θi) = ui(x,θi)− pi.

We are left with the task of describing the agents’ valuations: their utilities for
different allocations of the goods x ∈ X . Auction theory distinguishes between a
number of different settings here. One of the best-known and most extensively
studied is the independent private value (IPV) setting. In this setting all agents’
valuations are drawn independently from the same (commonly known) distribu-
tion, and an agent’s type (or “signal”) consists only of its own valuation, giving it
no information about the valuations of the others. An example in which the IPV
setting is appropriate is in auctions consisting of bidders with personal tastes who
aim to buy a piece of art purely for their own enjoyment. We will assume that
agents have independent private values; in [29] we also explore an alternative, the
common-value assumption.
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5.3 Second-Price, Japanese, and English Auctions

Let us now consider whether the second-price sealed-bid auction, which is a direct
mechanism, is truthful (i.e., whether it provides incentive for the agents to bid their
true values). The following very conceptually straightforward proof shows that in
the IPV case it is truthful.

Theorem 7.9 In a second-price auction where bidders have independent private
values, truth-telling is a dominant strategy.

The second-price auction is a special case of the VCG mechanism, and hence
of the Groves mechanism. Thus, Theorem 7.9 follows directly from Theorem 7.3.
However, a proof of this narrower claim is considerably more intuitive than the
general argument.

Proof. Assume that all bidders other than i bid in some arbitrary way, and con-
sider i’s best response. First, consider the case where i’s valuation is larger than
the highest of the other bidders’ bids. In this case i would win and would pay
the next-highest bid amount, as illustrated in Figure 7.4a. Could i be better off
by bidding dishonestly in this case? If it bid higher, it would still win and would
still pay the same amount, as illustrated in Figure 7.4b. If it bid lower, it would
either still win and still pay the same amount (Figure 7.4c) or lose and pay zero
(Figure 7.4d).6 Since i gets non-negative utility for receiving the good at a price
less than or equal to its valuation, i cannot gain, and would sometimes lose by
bidding dishonestly in this case. Now consider the other case, where i’s valuation
is less than at least one other bidder’s bid. In this case i would lose and pay zero
(Figure 7.4e). If it bid less, it would still lose and pay zero (Figure 7.4f). If it
bid more, either it would still lose and pay zero (Figure 7.4g) or it would win and
pay more than its valuation (Figure 7.4h), achieving negative utility. Thus again, i
cannot gain, and would sometimes lose by bidding dishonestly in this case.

In the IPV case, we can identify strong relationships between the second-price
auction and Japanese and English auctions. Consider first the comparison be-
tween second-price and Japanese auctions. In both cases the bidder must select
a number (in the sealed-bid case the number is the one written down, and in the
Japanese case it is the price at which the agent will drop out); the bidder with
highest amount wins, and pays the amount selected by the second-highest bid-
der. The difference between the auctions is that information about other agents’
bid amounts is disclosed in the Japanese auction. In the sealed-bid auction an
agent’s bid amount must be selected without knowing anything about the amounts

6Figure 7.4d is oversimplified: the winner will not always pay i’s bid in this case. (Do you see
why?)
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Figure 7.4: A case analysis to show that honest bidding is a dominant strategy in
a second-price auction with independent private values.

selected by others, whereas in the Japanese auction the amount can be updated
based on the prices at which lower bidders are observed to drop out. In general,
this difference can be important; however, it makes no difference in the IPV case.
Thus, Japanese auctions are also dominant-strategy truthful when agents have in-
dependent private values.

Obviously, the Japanese and English auctions are closely related. Thus, it is
not surprising to find that second-price and English auctions are also similar. One
connection can be seen through proxy bidding, a service offered on some online
auction sites such as eBay. Under proxy bidding, a bidder tells the system the
maximum amount it is willing to pay. The user can then leave the site, and the
system bids as the bidder’s proxy: every time the bidder is outbid, the system will
respond with a bid one increment higher, until the bidder’s maximum is reached.
It is easy to see that if all bidders use the proxy service and update it only once,
what occurs will be identical to a second-price auction (excepting that the winner’s
payment may be one bid increment higher).

The main complication with English auctions is that bidders can place so-
called jump bids: bids that are greater than the previous high bid by more than the
minimum increment. Although it seems relatively innocuous, this feature compli-
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cates analysis of such auctions. Indeed, when an ascending auction is analyzed it
is usually the Japanese variant, not the English.

5.4 First-Price and Dutch Auctions

Let us now consider first-price auctions. The first observation we can make is that
the Dutch auction and the first-price auction, while quite different in appearance,
are actually the same auction (in the technical jargon, they are strategically equiv-
alent). In both auctions each agent must select an amount without knowing about
the other agents’ selections; the agent with the highest amount wins the auction,
and must purchase the good for that amount. Strategic equivalence is a very strong
property: it says the auctions are exactly the same no matter what risk attitudes
the agents have, and no matter what valuation model describes their utility func-
tions. This being the case, it is interesting to ask why both auction types are held
in practice. One answer is that they make a trade-off between time complexity
and communication complexity. First-price auctions require each bidder to send a
message to the auctioneer, which could be unwieldy with a large number of bid-
ders. Dutch auctions require only a single bit of information to be communicated
to the auctioneer, but requires the auctioneer to broadcast prices.

Of course, all this talk of equivalence does not help us to understand anything
about how an agent should actually bid in a first-price or Dutch auction. Unfor-
tunately, unlike the case of second-price auctions, here we do not have the luxury
of dominant strategies, and must thus resort to Bayes–Nash equilibrium analy-
sis. Let us assume that agents have independent private valuations, that agents
are risk neutral, and that their valuations are drawn uniformly from some interval,
say [0,1]. Let si denote the bid of player i, and vi denote its true valuation. Thus
if player i wins, its payoff is ui = vi− si; if it loses, it is ui = 0. Then it can be
shown that there is an equilibrium in which each player bids a fraction of its true
valuation that depends on the number of participants.

Theorem 7.10 In a first-price sealed-bid auction with n risk-neutral agents
whose valuations are independently drawn from a uniform distribution on the
same bounded interval of the real numbers, the unique symmetric equilibrium
is given by the strategy profile (n−1

n v1, . . . ,
n−1

n vn).

In other words, the unique equilibrium of the auction occurs when each player
bids n−1

n of its valuation. This theorem can be proved using calculus, but the
proof is long and tedious. Furthermore, this proof only shows how to verify an
equilibrium strategy. How do we identify one in the first place? Although it is
also possible to do this from first principles (at least for straightforward auctions
such as first-price), we will explain a simpler technique below.
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5.5 Revenue Equivalence

Of the large (in fact, infinite) space of auctions, which one should an auctioneer
choose? To a certain degree, the choice does not matter, a result formalized by the
following theorem.

Theorem 7.11 (Revenue equivalence theorem) Assume that each of n risk-
neutral agents has an independent private valuation for a single good at auction,
drawn from a common cumulative distribution F(v) that is strictly increasing and
atomless on [v, v̄]. Then any efficient7 auction mechanism in which any agent with
valuation v has an expected utility of zero yields the same expected revenue, and
hence results in any bidder with valuation vi making the same expected payment.

We omit this proof, as it is fairly technical; we refer interested readers to [29].
This theorem tells us that when bidders are risk neutral and have independent pri-
vate valuations, all the auctions we have spoken about so far – English, Japanese,
Dutch, and all sealed-bid auction protocols – are revenue equivalent. The rev-
enue equivalence theorem is useful beyond telling the auctioneer that it does not
much matter which auction she holds, however. It is also a powerful analytic tool.
In particular, we can make use of this theorem to identify equilibrium bidding
strategies for auctions that meet the theorem’s conditions.

For example, let us consider again the n-bidder first-price auction discussed in
Theorem 7.10. Does this auction satisfy the conditions of the revenue equivalence
theorem? The second condition is easy to verify; the first is harder, because it
speaks about the outcomes of the auction under the equilibrium bidding strategies.
For now, let us assume that the first condition is satisfied as well.

The revenue equivalence theorem only helps us, of course, if we use it to com-
pare the revenue from a first-price auction with that of another auction that we
already understand. The second-price auction serves nicely in this latter role: we
already know its equilibrium strategy, and it meets the conditions of the theorem.
We know from the proof that a bidder of the same type will make the same ex-
pected payment in both auctions. In both of the auctions we are considering, a
bidder’s payment is zero unless it wins. Thus a bidder’s expected payment condi-
tional on being the winner of a first-price auction must be the same as its expected
payment conditional on being the winner of a second-price auction. Since the
first-price auction is efficient, we can observe that under the symmetric equilib-
rium agents will bid this amount all the time: if the agent is the high bidder then
it will make the right expected payment, and if it is not, its bid amount will not
matter.

7Here we make use of the definition of economic efficiency given in Definition 7.10. Equiva-
lently, we could require that the auction has a symmetric and increasing equilibrium and always
allocates the good to an agent who placed the highest bid.
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We must now find an expression for the expected value of the second-highest
valuation, given that bidder i has the highest valuation. It is helpful to know
the formula for the kth order statistic, in this case of draws from the uniform
distribution. The kth order statistic of a distribution is a formula for the expected
value of the kth-largest of n draws. For n independent and identically distributed
draws from [0,vmax], the kth order statistic is

n+1− k
n+1

vmax. (7.2)

If bidder i’s valuation vi is the highest, then there are n− 1 other valuations
drawn from the uniform distribution on [0,vi]. Thus, the expected value of the
second-highest valuation is the first-order statistic of n−1 draws from [0,vi]. Sub-
stituting into Equation (7.2), we have (n−1)+1−(1)

(n−1)+1 (vi) =
n−1

n vi. This confirms the
equilibrium strategy from Theorem 7.10. It also gives us a suspicion (that turns
out to be correct) about the equilibrium strategy for first-price auctions under val-
uation distributions other than uniform: each bidder bids the expectation of the
second-highest valuation, conditioned on the assumption that its own valuation is
the highest.

A caveat must be given about the revenue equivalence theorem: this result
makes an “if” statement, not an “if and only if” statement. That is, while it is true
that all auctions satisfying the theorem’s conditions must yield the same expected
revenue, it is not true that all strategies yielding that expected revenue constitute
equilibria. Thus, after using the revenue equivalence theorem to identify a strat-
egy profile that one believes to be an equilibrium, one must then prove that this
strategy profile is indeed an equilibrium. This should be done in the standard way,
by assuming that all but one of the agents play according to the equilibrium and
show that the equilibrium strategy is a best response for the remaining agent.

Finally, recall that we assumed above that the first-price auction allocates the
good to the bidder with the highest valuation. The reason it was reasonable to
do this (although we could instead have proved that the auction has a symmetric,
increasing equilibrium) is that we have to check the strategy profile derived using
the revenue equivalence theorem anyway. Given the equilibrium strategy, it is easy
to confirm that the bidder with the highest valuation will indeed win the good.

6 Position Auctions

Search engines make most of their money – many billions of dollars annually –
by selling advertisements through what are called position auctions. In these
auctions, multiple different goods (keyword-specific “slots,” usually a list on the
right-hand side of a page of search results) are simultaneously offered for sale to
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interested advertisers. Slots are considered to be more valuable the closer they
are to the top of the page, because this affects their likelihood of being clicked
by a user. Advertisers place bids on keywords of interest, and every time a user
searches for a keyword on which advertisers have bid, an auction is held. The
outcome of this auction is a decision about which ads will appear on the search
results page and in which order. Advertisers are required to pay only if a user
clicks on their ad.

We now give a formal model. As before, let N be the set of bidders (advertis-
ers), and let vi be i’s (commonly known) valuation for getting a click. Let bi ∈R+

denote i’s bid, and let b( j) denote the jth-highest bid, or 0 if there are fewer than
j bids. Let G = {1, . . . ,m} denote the set of goods (slots), and let α j denote the
expected number of clicks (the click-through rate) that an ad will receive if it
is listed in the ith slot. Observe that we assume that α does not depend on the
bidder’s identity. Observe that our model treats the auction as unrepeated, and
assumes that agents know each other’s valuations. The single-shot assumption is
motivated by the fact that advertisers tend to value clicks additively (i.e., the value
derived from a given user clicking on an ad is independent of how many other
users clicked earlier), at least when advertisers do not face budget constraints.
The perfect-information assumption makes sense because search engines allow
bidders either to observe other bids or to figure them out by probing the mecha-
nism.

The generalized first-price auction was the first position auction to be used by
search engine companies.

Definition 7.24 (Generalized first-price auction) The generalized first-price
auction (GFP) awards the bidder with the jth-highest bid the jth slot. If bidder
i’s ad receives a click, it pays the auctioneer bi.

Unfortunately, these auctions do not always have pure-strategy equilibria, even
in the unrepeated, perfect-information case. For example, consider three bidders
1,2, and 3 who value clicks at $10,$4, and $2, respectively, participating in an
auction for two slots, where the probability of a click for the two slots is α1 = 0.5
and α2 = 0.25, respectively. Bidder 2 needs to bid at least $2 to get a slot; suppose
it bids $2.01. Then bidder 1 can win the top slot for a bid of $2.02. But bidder
2 could get the top slot for $2.03, increasing its expected utility. If the agents bid
by best responding to each other – as has indeed been observed in practice – their
bids will increase all the way up to bidder 2’s valuation, at which point bidder 2
will drop out, bidder 1 will reduce its bid to bidder 3’s valuation, and the cycle
will begin again.

The instability of bidding under the GFP led to the introduction of the gener-
alized second-price auction, which is now the dominant mechanism in practice.
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Definition 7.25 (Generalized second-price auction) The generalized second-
price auction (GSP) awards the bidder with the jth-highest bid the jth slot. If
bidder i’s ad is ranked in slot j and receives a click, it pays the auctioneer b( j+1).

The GSP is more stable than the GFP. Continuing the example from above, if
all bidders bid truthfully, then bidder 1 would pay $4 per click for the first slot,
bidder 2 would pay $2 per click for the second slot, and bidder 3 would lose.
Bidder 1’s expected utility would be 0.5($10−$4) = $3; if it bid less than $4 but
more than $2 it would pay $2 per click for the second slot and achieve expected
utility of 0.25($10−$2)= $2, and if it bid even less then its expected utility would
be zero. Thus bidder 1 prefers to bid truthfully in this example. If bidder 2 bid
more than $10 then it would win the top slot for $10, and would achieve negative
utility; thus in this example bidder 2 also prefers honest bidding.

This example suggests a connection between the GSP and the VCG mecha-
nisms. However, these two mechanisms are actually quite different, as becomes
clear when we apply the VCG formula to the position auction setting.

Definition 7.26 (VCG) In the position auction setting, the VCG mechanism
awards the bidder with the jth-highest bid the jth slot. If bidder i’s ad is ranked
in slot j and receives a click, it pays the auctioneer 1

α j
∑m+1

k= j+1 b(k)(αk−1−αk).

Intuitively, the key difference between the GSP and VCG is that the former
does not charge an agent its social cost, which depends on the differences between
click-through rates that other agents would receive with and without its presence.
Indeed, truthful bidding is not always a good idea under the GSP. Consider the
same bidders as in our running example, but change the click-through rate of slot
2 to α2 = 0.4. When all bidders bid truthfully we have already shown that bidder
1 would achieve expected utility of $3 (this argument did not depend on α2).
However, if bidder 1 changed its bid to $3, it would be awarded the second slot
and would achieve expected utility of 0.4($10−$2) = $3.2. Thus the GSP is not
even truthful in equilibrium, let alone in dominant strategies.

What can be said about the equilibria of the GSP? Briefly, it can be shown
that in the perfect-information setting the GSP has many equilibria. The dynamic
nature of the setting suggests that the most stable configurations will be locally
envy free: no bidder will wish that it could switch places with the bidder who won
the slot directly above its own. There exists a locally envy-free equilibrium of the
GSP that achieves exactly the VCG allocations and payments. Furthermore, all
other locally envy-free equilibria lead to higher revenues for the seller, and hence
are worse for the bidders.

What about relaxing the perfect-information assumption? Here, it is possible
to construct a generalized English auction that corresponds to the GSP, and to
show that this English auction has a unique equilibrium with various desirable
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properties. In particular, the payoffs under this equilibrium are again the same as
the VCG payoffs, and the equilibrium is ex post, meaning that it is independent of
the underlying valuation distribution.

7 Combinatorial Auctions

We now consider a broader auction setting, in which a whole variety of different
goods are available in the same market. Switching to such an auction model is
important when bidders’ valuations depend strongly on which subset of the goods
they receive. Some widely studied practical examples include governmental auc-
tions for the electromagnetic spectrum, energy auctions, corporate procurement
auctions, and auctions for paths (e.g., shipping rights, bandwidth) in a network.

More formally, let us consider a setting with a set of bidders N = {1, . . . ,n}
(as before) and a set of goods G = {1, . . . ,m}. Let v = (v1, . . . ,vn) denote the true
valuation functions of the different bidders, where for each i∈N, vi : 2G "→R. We
will usually be interested in settings where bidders have non-additive valuation
functions, for example valuing bundles of goods more than the sum of the values
for single goods. We identify two important kinds of non-additivity. First, when
two items are partial substitutes for each other (e.g., a Sony TV and a Toshiba TV,
or, more partially, a CD player and an MP3 player), their combined value is less
than the sum of their individual values. Strengthening this condition, when two
items are strict substitutes their combined value is the same as the value for either
one of the goods. For example, consider two non-transferable tickets for seats on
the same plane.

Definition 7.27 (Substitutability) Bidder i’s valuation vi exhibits substitutability
if there exist two sets of goods G1,G2⊆G, such that G1∩G2 = /0 and v(G1∪G2)<
v(G1)+v(G2). When this condition holds, we say that the valuation function vi is
subadditive.

The second form of non-additivity we will consider is complementarity. This
condition is effectively the opposite of substitutability: the combined value of
goods is greater than the sum of their individual values. For example, consider a
left shoe and a right shoe, or two adjacent pieces of real estate.

Definition 7.28 (Complementarity) Bidder i’s valuation vi exhibits complemen-
tarity if there exist two sets of goods G1,G2 ⊆ G, such that G1 ∩G2 = /0 and
v(G1∪G2)> v(G1)+v(G2). When this condition holds, we say that the valuation
function vi is superadditive.

How should an auctioneer sell goods when faced with such bidders? One ap-
proach is simply to sell the goods individually, ignoring the bidders’ valuations.
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This is easy for the seller, but it makes things difficult for the bidders. In partic-
ular, it presents them with what is called the exposure problem: a bidder might
bid aggressively for a set of goods in the hopes of winning a bundle, but succeed
in winning only a subset of the goods and therefore pay too much. This problem
is especially likely to arise in settings where bidders’ valuations exhibit strong
complementarities, because in these cases bidders might be willing to pay sub-
stantially more for bundles of goods than they would pay if the goods were sold
separately.

The next-simplest method is to run essentially separate auctions for the dif-
ferent goods, but to connect them in certain ways. For example, one could hold
a multiround (e.g., Japanese) auction, but synchronize the rounds in the different
auctions so that as a bidder bids in one auction it has a reasonably good indica-
tion of what is transpiring in the other auctions of interest. This approach can
be made more effective through the establishment of constraints on bidding that
span all the auctions (so-called activity rules). For example, bidders might be al-
lowed to increase their aggregate bid amount by only a certain percentage from
one round to the next, thus providing a disincentive for bidders to fail to partic-
ipate in early rounds of the auction and thus improving the information transfer
between auctions. Bidders might also be subject to other constraints: for example,
a budget constraint could require that a bidder not exceed a certain total commit-
ment across all auctions. Both of these ideas can be seen in some government
auctions for electromagnetic spectrum (where the so-called simultaneous ascend-
ing auction was used) as well as in some energy auctions. Despite some successes
in practice, however, this approach has the drawback that it only mitigates the
exposure problem rather than eliminating it entirely.

A third approach ties goods together in a more straightforward way: the auc-
tioneer sells all goods in a single auction, and allows bidders to bid directly on
bundles of goods. Such mechanisms are called combinatorial auctions. This ap-
proach eliminates the exposure problem because bidders are guaranteed that their
bids will be satisfied “all or nothing.” For example a bidder may be permitted to
offer $100 for the pair (TV, DVD player), or to make a disjunctive offer “either
$100 for TV1 or $90 for TV2, but not both.” However, we will see that while
combinatorial auctions resolve the exposure problem, they raise many other ques-
tions. Indeed, these auctions have been the subject of considerable recent study in
both economics and computer science.

VCG has some attractive properties when applied to combinatorial auctions.
Specifically, it is dominant-strategy truthful, efficient, ex post individual rational,
and weakly budget balanced (the latter by Theorems 7.5 and 7.6). The VCG
combinatorial auction mechanism is not without shortcomings, however, as we
already discussed in Section 4.3.3. For example, a bidder who declares its valua-
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tion truthfully has two main reasons to worry – one is that the seller will examine
its bid before the auction clears and submit a fake bid just below, thus increasing
the amount that the agent would have to pay if it wins. (This is called a shill
bid.) Another possibility is that both its competitors and the seller will learn its
true valuation and will be able to exploit this information in a future transaction.
Indeed, these two reasons are often cited as reasons why VCG auctions are rarely
seen in practice. Other issues include the fact that VCG is vulnerable to collusion
among bidders, and, conversely, to one bidder masquerading as several differ-
ent ones (so-called pseudonymous bidding or false-name bidding). Perhaps the
biggest potential hurdle, however, is computational, and it is not specific to VCG.

Any efficient combinatorial auction protocol must solve a core problem:
given the agents’ individual declarations v̂, it must determine the allocation
of goods to agents that maximizes social welfare. That is, we must compute
maxx∈X ∑i∈N v̂i(x). In single-good auctions this was simple – we just had to sat-
isfy the agent with the highest valuation. In combinatorial auctions, determining
the winners is a more challenging computational problem.

Definition 7.29 (Winner determination problem (WDP)) The winner determi-
nation problem (WDP) for a combinatorial auction, given the agents’ declared
valuations v̂, is to find the social-welfare-maximizing allocation of goods to
agents. This problem can be expressed as the following integer program.

maximize ∑
i∈N

∑
S⊆G

v̂i(S)xS,i (7.3)

subject to ∑
S# j

∑
i∈N

xS,i ≤ 1 ∀ j ∈ G (7.4)

∑
S⊆G

xS,i ≤ 1 ∀i ∈ N (7.5)

xS,i = {0,1} ∀S ⊆ G, i ∈ N (7.6)

In this integer programming formulation, the valuations v̂i(S) are constants
and the variables are xS,i. These variables are Boolean, indicating whether bundle
S is allocated to agent i. The objective function (7.3) states that we want to max-
imize the sum of the agents’ declared valuations for the goods they are allocated.
Constraint (7.4) ensures that no overlapping bundles of goods are allocated, and
constraint (7.5) ensures that no agent receives more than one bundle. (This makes
sense since bidders explicitly assign a valuation to every subset of the goods.) Fi-
nally, constraint (7.6) is what makes this an integer program rather than a linear
program: no subset can be partially assigned to an agent.

The fact that the WDP is an integer program rather than a linear program is bad
news, since only the latter are known to admit a polynomial-time solution. Indeed,
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a reader familiar with algorithms and complexity may recognize the combinatorial
auction allocation problem as a set packing problem (SPP). Unfortunately, it is
well known that the SPP is NP-complete. This means that it is not likely that
a polynomial-time algorithm exists for the problem. Worse, it so happens that
this problem cannot even be approximated uniformly, meaning that there does
not exist a polynomial-time algorithm and a fixed constant k > 0 such that for all
inputs the algorithm returns a solution that is at least 1

k s∗, where s∗ is the value of
the optimal solution for the given input.

There are two primary approaches to getting around the computational prob-
lem. First, we can restrict ourselves to a special class of problems for which there
is guaranteed to exist a polynomial-time solution. Second, we can resort to heuris-
tic methods that give up the guarantee of polynomial running time, optimality of
solution, or both. In both cases, relaxation methods are a common approach. One
instance of the first approach is to relax the integrality constraint, thereby trans-
forming the problem into a linear program, which is solvable in polynomial time.
In general the solution results in “fractional” allocations, in which fractions of
goods are allocated to different bidders. If we are lucky, however, our solution to
the LP will just happen to be integral; the broadest case when such luck is assured
arises when the integer program’s constraint matrix is totally unimodular.

8 Conclusions

Mechanism design studies the design of protocols that achieve desired objectives
even in the presence of self-interested agents. We say that a social choice func-
tion is implementable if it can be achieved in the equilibrium of some mechanism.
The revelation principle demonstrates that we can restrict our attention to direct
and truthful mechanisms without changing the set of implementable social choice
functions. However, few social choice functions are implementable when agents
are allowed general preferences. We thus consider the case of quasilinear prefer-
ences, in which agents’ preferences for money are additively separable from their
preferences for the choice made by a mechanism. VCG is a particularly impor-
tant mechanism for the quasilinear setting. It guarantees efficiency and dominant
strategy truthfulness, and under additional assumptions also achieves weak budget
balance and individual rationality.

Auctions are mechanisms for the allocation of scarce resources among a set
of selfish agents. Various canonical auctions exist for the single-good setting.
Second-price auctions offer dominant strategies (and, indeed, are a special case of
VCG for this setting), while first-price auctions offer only Bayes–Nash equilibria.
However, both auction types achieve the same revenue for the seller in equilib-
rium, under standard assumptions about agents’ valuations. Auctions can also be
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used in more complex settings. Two important examples are position auctions,
which are used to sell advertisements alongside search results on the Internet,
and combinatorial auctions, which sell multiple, heterogeneous goods in the same
auction, and allow bidders to specify valuations for arbitrary bundles of goods.

Mechanism design and auctions are covered to varying degrees in modern
game theory textbooks, but even better are the microeconomic textbook of [16]
and the excellent formal introduction to auction theory by [14]. More techni-
cal overviews from a computer science perspective are given in the introductory
chapters of [25], in [24], and in our own textbook [29], on which this chapter is
based. [12] is a large edited collection of many of the most important papers on
the theory of auctions, preceded by a thorough survey by the editor; this survey is
reproduced in [11]. Earlier surveys include [1], [33], and [17]. These texts cover
most of the canonical single-good auction types we discuss in the chapter. Spe-
cific publications that underlie some of the results covered in this chapter are as
follows.

The foundational idea of mechanisms as communication systems that select
outcomes based on messages from agents is due to [8], who also elaborated the
theory to include the idea that mechanisms should be “incentive compatible” [9].
The revelation principle was first articulated by [5] and was developed in the great-
est generality by Myerson [19, 20, 21]. In 2007, Hurwicz and Myerson shared a
Nobel Prize (along with Maskin, whose work we do not discuss in this chapter),
“for having laid the foundations of mechanism design theory.” Theorem 7.2 is due
to both Satterthwaite and Gibbard, in two separate publications [5, 28]. The VCG
mechanism was anticipated by [31], who outlined an extension of the second-price
auction to multiple identical goods. [7] explicitly considered the general family
of truthful mechanisms applying to multiple distinct goods (though the result had
appeared already in his 1969 Ph.D. dissertation). [2] proposed his tax for use with
public goods (i.e., goods such as roads and national defense, which are paid for
by all regardless of personal use). Theorem 7.4 is due to [6]; Theorem 7.7 is due
to that paper as well as to the earlier [10]. The fact that Groves mechanisms are
payoff equivalent to all other Bayes–Nash incentive-compatible efficient mecha-
nisms was shown by [13] and [32]; the former reference [13] also gave the results
that VCG is ex interim individually rational and that VCG collects the maximal
amount of revenue among all ex interim individually rational Groves mechanisms.
The Myerson–Satterthwaite theorem (7.8) appears in [22].

Vickrey’s seminal contribution [31] is still recommended reading for anyone
interested in auctions. In it Vickrey introduced the second-price auction and ar-
gued that bidders in such an auction do best when they bid sincerely. He also pro-
vided the analysis of the first-price auction under the independent private value
model with the uniform distribution described in this chapter. He even proved
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an early version of the revenue-equivalence theorem (Theorem 7.11), namely
that in the independent private value case, the English, Dutch, first-price, and
second-price auctions all produce the same expected revenue for the seller. For
his work, Vickrey received a Nobel Prize in 1996. The more general form of the
revenue-equivalence theorem, Theorem 7.11, is due to [23] and [26], who also
investigated optimal (i.e., revenue-maximizing) auctions. Our discussion of po-
sition auctions generally follows [4]; see also [30]. Combinatorial auctions are
covered in depth in the edited collection [3], which probably provides the best
single-source overview of the area. The computational complexity of the WDP is
discussed in a chapter by [15]. Algorithms for the WDP have an involved history,
and are reprised in chapters by [18] and [27].

9 Exercises

1. Level 2 Consider a potentially infinite outcome space O⊂ [0,1], and a finite
set N of n agents. Denote the utility of an agent with type θi for outcome
o as ui(o,θi). Constrain the utility functions so that every agent has some
unique, most-preferred outcome b(θi) ∈ O, and so that |o′ −b(θi)| < |o′′ −
b(θi)| implies that ui(o′,θi) > ui(o′′,θi). Consider a direct mechanism that
asks every agent to declare its most-preferred outcome and then selects the
median outcome. (If there are an even number of agents, the mechanism
chooses the larger of the two middle outcomes.)

(a) Prove that truth-telling is a dominant strategy.

(b) Prove that the mechanism selects a Pareto optimal outcome.

(c) Prove that if the mechanism designer submits n− 1 “dummy prefer-
ences” with any values he or she likes, and then runs the same mecha-
nism on the 2n−1 preferences, the dominant strategy is preserved.

(d) As described so far, the mechanism selects the
⌈n

2

⌉th-order statistic of
the declared preferences. Explain how to select dummy preferences
in such a way that the mechanism selects the kth-order statistic of the
agents’ declared preferences for any k ∈ {1, . . . ,n}. Of course, the
dummy preferences must be set in a way that does not depend on the
specific declarations made by the agents.

2. Level 1 Consider the following problem: a mechanism designer wants to
know how likely it is that a given unfair coin will come up heads when it is
next tossed. There is a psychic (agent 1) who knows the true probability p
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of the coin coming up heads. The designer could just offer to pay the psy-
chic a flat fee, but then the psychic’s utility would be the same, regardless of
the probability that the psychic reports, p̂. In order to induce the psychic to
reveal the true p, the mechanism designer commits to the following mech-
anism: if the coin comes up heads, then the psychic will be paid c+ log2 p̂,
and if the coin comes up tails, then the psychic will be paid c+ log2(1− p̂).

(a) Prove that the psychic’s utility is maximized by revealing the true p.

(b) Now consider a scenario where p, again known by the psychic, repre-
sents the probability that a buyer (agent 2) has a high valuation (200
rather than 100). Because p represents the psychic’s private informa-
tion, we can understand it as the psychic’s type. The seller knows that
the joint type distribution is as follows:

p v2 Probability of this type profile
1/6 200 1/10
1/6 100 5/10
3/4 200 3/10
3/4 100 1/10

Design a deterministic mechanism with the following properties:

i. truthful in Bayes–Nash equilibrium;
ii. the psychic’s payment is consistent with the log2 p rule above;

iii. in equilibrium the psychic and the buyer are guaranteed ex post
utilities of at least one and zero respectively; and

iv. maximizes revenue, subject to satisfying (i–iii).

(c) What mechanism would the seller choose to maximize revenue if the
psychic wasn’t available? Does having access to the psychic increase
the seller’s expected (total) revenue? If so, by how much?

(d) Given this setting, but relaxing requirements ii–iv, is it possible to cre-
ate a mechanism that is truthful in dominant strategies (where the dom-
inance can be weak, but not very weak)? Explain why or why not.

3. Level 1 The VCG mechanism does not violate the Myerson-Satterthwaite
theorem because it is not budget balanced for general quasilinear prefer-
ences. But this seems like an easy enough problem to solve – we can just
evenly redistribute any money that was collected by the mechanism (or, tax
all agents equally if the net payment to the agents was positive). Below is a
proposed, budget-balanced version of the VCG mechanism.
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The budget-balanced VCG mechanism is a direct mechanism M(v̂) =
(x(v̂), p1(v̂), . . . , pn(v̂)), where

x(v̂) = argmaxx∈X ∑i∈N v̂i(x), and

ti(v̂) = maxo∈O−i ∑ j �=i v̂ j(o)−∑ j �=i v̂ j(x)

pi(v̂) = ti− 1
n ∑i ti(v̂).

(a) Show that this mechanism is not incentive compatible.

(b) Although our first mechanism failed, we can use a similar idea to make
VCG budget balanced ex-ante. Assume that bidders valuations vi are
randomly drawn from some joint commonly-known distribution.
Ex-ante budget-balanced VCG mechanism is a direct mechanism
M(v̂) = (x(v̂), p1(v̂), . . . , pn(v̂)), where

x(v̂) = argmaxx∈X ∑i∈N v̂i(x), and
ti(v̂) = maxo∈O−i ∑ j �=i v̂ j(o)−∑ j �=i v̂ j(x(v̂))

pi(v̂) = ti(v̂)− 1
n ∑ jEv[t j(v)].

Prove that truth-telling is a dominant strategy in this new mechanism.

(c) Show that this mechanism is ex-ante budget balanced.

4. Level 2 Suppose you have some object that each of n agents desires, but
which you do not value. Assume that each agent i values it at vi, with vi’s
drawn independently and uniformly from some positive real line interval,
say [0,10100]. Although you do not desire the object and also do not care
about the actual values of the vi’s, you need to compute

√
vi for each i.

Unfortunately, you face two problems. First, agents are not inclined to just
reveal to you anything about their vi’s. Second, your computer is costly to
operate. It costs you 1 unit to determine the greater of two values, 2 units
to perform any basic arithmetic operation (+,−,×,/), and anything more
complicated (such as

√
x) costs 20 units. The (accurate) current time of day

can be observed without cost.

(a) How much would it cost to compute
√

vi for each i using a straight-
forward VCG mechanism? (When computing cost, ignore the revenue
that the auction will generate.) Hint: this part is very easy.

(b) Your answer above gives an upper bound on the cost of computing
the square roots of the valuations. Design an incentive-compatible,
dominant-strategy (“strategyproof”) direct mechanism that will allow
you to compute all

√
vi at minimal cost. Assume that agents can do

computations for free.
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(c) In the previous part you were restricted to direct mechanisms. Show
that an indirect mechanism can achieve even lower cost.

5. Level 1 Consider a first-price auction with two bidders. Assume that they
have IPV valuations drawn uniformly from the interval [0,10], and that they
are risk-neutral. We saw that s1(v1) =

1
2v1 and s2(v2) =

1
2v2 together form

a Bayes–Nash equilibrium for this game.

(a) Assuming that bidder 2 is instead using the bidding strategy s2(v2) =
v2 (i.e., bidder 2 bids bidder 1’s valuation), what is the best response
bidding strategy s1(v1) for bidder 1?

(b) Now consider instead a second-price auction. However, suppose the
mechanism has a buggy implementation of max: most of the time the
mechanism works correctly, but with some probability p that is strictly
less than 1/3, it awards the object to the second-highest bidder (instead
of the highest bidder). In all cases it correctly calculates price as the
second highest bid. Assuming that bidder 2 is still bidding truthfully,
compute the best-response strategy for bidder 1. Is it still truthful?

6. Level 1 Consider the following lobbying problem. There are n different
companies, each of which wants the government to pass legislation that
will benefit that company and will have no direct effect on the other compa-
nies. If the legislation that favors company i is passed, i’s profit will be vi;
otherwise it will be 0. In order to try to influence government policy, each
company i considers making a donation of some amount di to the govern-
ment. Let’s consider the case where all vi are independent random variables
distributed uniformly on [0,1]. Somewhat cynically, the government will
pass the single piece of legislation that benefits its biggest donor; of course,
it will keep all the donations it receives.

(a) Model this problem as an auction. State all the relevant assumptions
that you make in building this model, and explain why they are rea-
sonable.

(b) Find a symmetric Bayes–Nash equilibrium of this game. You may as-
sume that for this game there exists a symmetric, pure-strategy equilib-
rium for which the bid amount is a monotonically increasing function
of the agent’s valuation.

7. Level 2 We say that a good is multiunit if multiple, identical copies of the
good are available, and these copies are valued identically by the agents.
Say that a bidder i in the multiunit setting has simple multiunit preferences
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if there are numbers vi and di such that the bidder values di or more units of
the good at vi, and any smaller number of units at 0. Say that i has known
simple multiunit preferences if di is common knowledge. Consider mech-
anisms running in the multiunit setting where each agent has quasilinear,
known simple multiunit preferences. In this setting, a direct mechanism
is one where each agent i declares a valuation v̂i for its bundle size, and
the mechanism chooses an allocation of its k units among the agents and
payments that each agent must make.

An allocation rule is monotone if for any agent i and any profile v̂−i of
declarations of the other agents, there exists a critical value κi(v̂−i) ∈ (R∪
{∞}) such that

(1) any declaration v̂i > κi(v̂−i) is a winning declaration (i.e., causes i to
be allocated its desired number of units), and

(2) any declaration v̂i < κi(v̂−i) is a losing declaration (i.e., causes i not to
be allocated its desired bundle).

An auction is normalized if pi ≥ 0 for every losing agent i.

Prove the following statement: Let M = (χ, p) be a direct, normalized, in-
dividually rational auction in this setting, where χ is the allocation rule and
p is the payment rule. Then M is truthful if and only if

(1) χ is monotone, and

(2) each winning bidder pays its critical value, and each losing agent pays

0. That is, pi(v̂) =

{
κi(v̂−i) if i is allocated di units,
0 otherwise.

8. Level 2 Consider the following combinatorial auction scenario: a professor
wants to supplement his or her income by auctioning off advertising space
on his or her lecture slides. The professor decides to use VCG as an auction
mechanism and to offer two goods: a top banner space and a sidebar space.
Every advertiser’s type has two parts: vi, which specifies its utility for an
allocation that satisfies it; and fi ∈ {t,s,b}, which specifies what must hap-
pen for it to be satisfied. An agent with fi = t will be satisfied if it wins
the top banner space, regardless of what happens to the sidebar space. An
agent with fi = s will be satisfied if it wins the sidebar space, regardless of
what happens to the top banner space. An agent with fi = b will only be
satisfied if it wins both spaces. (It might only use one space, but it insists
on not having any other ad shown alongside its ad.)
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(a) Let v1s denote the first-highest bid for slot s. (Similarly define v1t ,
v1b, v2s, v2t and v2b). Express the VCG revenue as a function of these
values. Assume that the values are zero if there is no corresponding
bidder. Assume that the auctioneer breaks ties in favor of bidders who
want both slots.

(b) Demonstrate (with a specific example) that VCG’s revenue can de-
crease as these quantities increase.

(c) Consider a setting where one of the agents is capable of creating a
second identity (at some very small cost α), and submitting bids using
both identities. (If it does so it gets every good won by either identity,
and must pay for both.) Demonstrate that VCG is no longer dominant-
strategy truthful in this case.

(d) Consider the following auction mechanism: allocate both goods to
whichever advertiser has submitted the highest bid, and charge him or
her the amount of the second highest bid (ignoring the fi element of
their types). Prove that this mechanism has the following properties:

i. the agents have a dominant strategy of reporting truthfully, using
only their true identities, and

ii. in equilibrium, the mechanism generates at least half as much rev-
enue as VCG would if the agents submitted truthful reports.

9. Level 3 Using data from an auction website (e.g., eBay), estimate bidders’
valuation distributions, using (e.g.) kernel density estimation. Do this for
several dissimilar kinds of goods. How different are the maximum like-
lihood estimates of the valuation distributions across these auctions? How
much social welfare would be lost if bidders played the equilibrium strategy
from one auction setting in another?

10. Level 4 Mechanism design and auction theory are based on a perfect-
rationality model of agent behavior. Investigate how the theory is impacted
by a more realistic model of behavior. (E.g., revenue equivalence holds
only under a set of given assumptions. Consider which auction design a
seller should choose if agents are not perfectly rational.)
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Chapter 8

Computational Coalition Formation

Edith Elkind,∗ Talal Rahwan,∗ and Nicholas R. Jennings

1 Introduction

In many multiagent systems, agents can improve their performance by forming
coalitions, i.e., pooling their efforts and resources so as to achieve the tasks at
hand in a more efficient way. This holds both for cooperative agents, i.e., agents
who share a common set of goals, and for selfish agents who only care about their
own payoffs. For cooperative agents, to find the optimal collaboration pattern,
it suffices to identify the best way of splitting agents into teams. In contrast,
when the agents are selfish, we also have to specify how to distribute the gains
from cooperation, since each agent needs to be incentivized to participate in the
proposed solution.

In this chapter, we discuss coalition formation in multiagent systems for both
selfish and cooperative agents. To deal with selfish agents, we introduce classic
solution concepts of coalitional game theory that capture the notions of stability
and fairness in coalition formation settings. We then give an overview of existing
representation formalisms for coalitional games. For each such formalism, we
discuss the complexity of computing the solution concepts defined earlier in the
chapter, focusing on algorithms whose running time is polynomial in the number
of agents n. In the second half of the chapter, we focus on practical approaches for
finding an optimal partition of agents into teams. We present the state-of-the-art
algorithms for this problem, and compare their relative strengths and weaknesses.

∗The first two authors have contributed equally to the chapter.
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1.1 Coalitional Games: A Bird’s Eye View

The goal of the coalition formation process is to split the set of agents – or play-
ers – into disjoint teams, or coalitions: a partition of the set of agents into coali-
tions is called a coalition structure.1 Once a coalition structure forms, each coali-
tion chooses its action in a way that results in payoffs to its members. Coalitional
games provide a formal model of coalition formation scenarios. They are usu-
ally classified according to two orthogonal dimensions: (1) whether agents can
make payments to each other and (2) whether the payoff that a coalition obtains
by choosing a particular action depends on the actions of other coalitions. We will
now discuss this classification in more detail.

In some settings modeled by coalitional games, all agents have comparable
utilities and can commit to monetary transfers among the members of a coalition.
Whenever this is the case, we can simply assume that the coalitional action gen-
erates a single payoff, which is subsequently shared among the members of the
coalition; this payoff is referred to as the value of this coalition. Such games are
known as transferable utility games, or TU games. However, sometimes agents
cannot make side payments to each other, either because their payoffs from the
coalitional action are non-monetary in nature, or because there is no suitable in-
frastructure to transfer the money.

Example 8.1 If several researchers from different universities write a joint paper,
each researcher receives a payoff from its own university: the paper can count
toward promotion or tenure, receive an internal prize, or, sometimes, be rewarded
with a monetary bonus. However, these payoffs are allocated to individual re-
searchers, and, with the exception of a bonus payment, cannot be transferred from
one researcher to another.

The settings similar to the one in Example 8.1 are modeled by assuming that each
coalitional action corresponds to a vector of payoffs – one for each member of
the coalition. Games represented in this manner are known as games with non-
transferable utility, or NTU games.

It is important to note that in NTU settings two coalitional actions may be
incomparable. For instance, consider the 2-player coalition {a1,a2} that chooses
between actions x and y. Suppose that whenever the players choose x, player
a1 gets a payoff of 5, whereas player a2 gets a payoff of 1; on the other hand,
if players choose y, player a1 gets 2 and player a2 gets 7. Obviously, player
a1 prefers x to y, even though action y has a higher total utility, whereas player
a2 prefers y to x. In contrast, in TU games, all players prefer the action(s) that
result(s) in the highest sum of payoffs, as they can distribute the total payoff so

1Recently, games with overlapping coalitions have also been considered; see, e.g. [12].
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that everyone is better off. This intracoalitional competition makes NTU games
more difficult to analyze, which may explain why TU games received much more
attention in the multiagent literature. We will follow this trend, and for the rest of
the chapter focus on TU games only.

Now, in each of the examples considered so far, the payoffs that each coalition
could attain were determined by the identities and actions of the coalition mem-
bers. However, there are cases where a coalition’s productivity also depends on
the coalition structure that it is a part of, i.e., it may be influenced by the actions of
non-members. This is the case, for instance, in market-like environments, where
each coalition provides a service, and the payment it can charge for its service de-
pends on the competition it faces. While this phenomenon can be observed both
in TU and in NTU settings, traditionally, it has been studied in the transferable
utility model only. Transferable utility games where the value of each coalition
may depend on the coalition structure it appears in are known as partition func-
tion games [37]. On the other hand, games where the value of each coalition is
the same in every coalition structure are known as characteristic function games.
Clearly, characteristic function games form a proper subclass of partition function
games, and tend to be much easier to work with. Thus, from now on, we will
further restrict our attention to characteristic function games.

2 Definitions

In this section, we will formally define characteristic function games as well as
several important subclasses of these games.

Definition 8.1 A characteristic function game G is given by a pair (A,v), where
A = {a1, . . . ,an} is a finite set of players, or agents, and v : 2A →R is a character-
istic function, which maps each subset, or coalition, of agents C to a real number
v(C). This number is referred to as the value of the coalition C.

We remark that we can represent a characteristic function game by explicitly
listing all coalitions together with their values; the size of this naive representation
is exponential in n. However, in practice we are usually interested in games that
admit a succinct representation and can be analyzed in time polynomial in n. A
number of such representations have been considered in the literature; we will
discuss some of them in Section 4.

We will now present two examples of characteristic function games.

Example 8.2 Charlie (C), Marcie (M), and Pattie (P) want to pool their savings
to buy ice cream. Charlie has c dollars, Marcie has m dollars, Pattie has p dollars,
and the ice cream packs come in three different sizes: (1) 500g which costs $7,
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(2) 750g which costs $9, and (3) 1000g which costs $11. The children value
ice cream, and assign no utility to money. Thus, the value of each coalition is
determined by how much ice cream it can buy.

This situation corresponds to a characteristic function game with the set of
players A = {C,M,P}. For c = 3, m = 4, p = 5, its characteristic function v is
given by v( /0) = 0, v({C}) = v({M}) = v({P}) = 0, v({C,M}) = v({C,P}) = 500,
v({M,P}) = 750, v({C,M,P}) = 1000. For c = 8, m = 8, p = 1, its characteristic
function v is given by v( /0) = 0, v({C}) = v({M}) = 500, v({P}) = 0, v({C,P}) =
v({M,P}) = 750, v({C,M}) = 1250, v({C,M,P}) = 1250.

Example 8.3 A fictional country X has a 101-member parliament, where each
representative belongs to one of the four parties: Liberal (L), Moderate (M),
Conservative (C), or Green (G). The Liberal party has 40 representatives, the
Moderate party has 22 representatives, the Conservative party has 30 representa-
tives, and the Green party has 9 representatives. The parliament needs to decide
how to allocate $1 billion of discretionary spending, and each party has its own
preferred way of using this money. The decision is made by a simple majority
vote, and we assume that all representatives vote along the party lines. Parties
can form coalitions; a coalition has value $1 billion if it can win the budget vote
no matter what the other parties do, and value 0 otherwise.

This situation can be modeled as a 4-player characteristic function game,
where the set of players in A = {L,M,C,G} and the characteristic function v
is given by

v(C) =

{
0 if |C| ≤ 1, or |C|= 2 and G ∈C
109 otherwise.

It is usually assumed that the value of the empty coalition /0 is 0, i.e., v( /0) = 0.
Moreover, it is often the case that the value of each coalition is non-negative (i.e.,
agents form coalitions to make a profit), or else that the value of each coalition is
non-positive (i.e., agents form coalitions to share costs). Throughout this chapter,
we will mostly focus on the former scenario, i.e., we assume that v(C)≥ 0 for all
C ⊆ A. However, all our definitions and results can be easily adapted to the latter
scenario.

2.1 Outcomes

An outcome of a characteristic function game consists of two parts: (1) a partition
of players into coalitions, and (2) a payoff vector, which distributes the value of
each coalition among its members.

Formally, a coalition structure over A is a collection of non-empty coalitions
CS = {C1, . . . ,C|CS|} such that
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• ⋃|CS|
j=1Cj = A, and

• Ci∩Cj = /0 for any i, j = 1, . . . , |CS| such that i �= j.

We will denote the space of all coalition structures over A by PA. Also, given
a coalition structure CS = {C1, . . . ,C|CS|} ∈ PA, we will say that a vector x =
(x1, . . . ,xn) is a payoff vector for CS, where xi specifies the payoff of ai in CS, if

• xi ≥ 0 for all i = 1, . . . ,n, and

• ∑i:ai∈Cj xi = v(Cj) for any j = 1, . . . , |CS|.
Definition 8.2 Given a characteristic function game G = (A,v), an outcome of G
is a pair (CS,x), where CS ∈ PA and x is a payoff vector for CS.

A payoff vector x for a coalition structure CS∈PA is said to be an imputation if
it satisfies the individual rationality condition, i.e., xi ≥ v({ai}) for each ai ∈ A. If
a payoff vector is an imputation, each player weakly prefers being in the coalition
structure to being on its own. Now, of course, players may still find it profitable to
deviate as a group; we will discuss the issue of stability against group deviations
in Section 3. However, before we do that, let us consider a few important classes
of characteristic function games, and discuss the relationship among them.

2.2 Subclasses of Characteristic Function Games

We will now define four important subclasses of coalitional games: monotone
games, superadditive games, convex games, and simple games.

2.2.1 Monotone Games

Usually, adding an agent to an existing coalition can only increase the overall pro-
ductivity of this coalition; games with this property are called monotone games.

Definition 8.3 A characteristic function game G = (A,v) is said to be monotone
if v(C′)≤ v(C′′) for every pair of coalitions C′,C′′ ⊆ A such that C′ ⊆C′′.

2.2.2 Superadditive Games

A stronger property, which is also enjoyed by many practically useful games, is
superadditivity: in a superadditive game, it is always profitable for two groups of
players to join forces.

Definition 8.4 A characteristic function game G = (A,v) is said to be superaddi-
tive if v(C′ ∪C′′)≥ v(C′)+ v(C′′) for every pair of disjoint coalitions C′,C′′ ⊆ A.
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Since we have assumed that the value of each coalition is non-negative, su-
peradditivity implies monotonicity: if a game G = (A,v) is superadditive, and
C′ ⊆C′′, then v(C′) ≤ v(C′′)− v(C′′ \C′) ≤ v(C′′). However, the converse is not
necessarily true: consider, for instance, a game where the value of the character-
istic function grows logarithmically with the coalition size, i.e., v(C′) = log |C′|.

In superadditive games, there is no compelling reason for agents to form a
coalition structure consisting of multiple coalitions: the agents can earn at least
as much profit by forming the grand coalition, i.e., the coalition that contains all
agents. Therefore, for superadditive games it is usually assumed that the agents
form the grand coalition, i.e., the outcome of a superadditive game is of the form
({A},x) where x satisfies ∑n

i=1 xi = v(A). Conventionally, {A} is omitted from
the notation, i.e., an outcome of a superadditive game is identified with a payoff
vector for the grand coalition.

2.2.3 Convex Games

The superadditivity property places a restriction on the behavior of the charac-
teristic function v on disjoint coalitions. By placing a similar restriction on v’s
behavior on non-disjoint coalitions, we obtain the class of convex games.

Definition 8.5 A characteristic function game G = (A,v) is said to be convex if
v(C∪C′)+ v(C∩C′)≥ v(C)+ v(C′) for every pair of coalitions C,C′ ⊆ A.

Convex games have a very intuitive characterization in terms of players’
marginal contributions: in a convex game, a player is more useful when it joins a
bigger coalition.

Proposition 8.1 A characteristic function game G = (A,v) is convex if and only
if for every pair of coalitions C′,C′′ such that C′ ⊂C′′ and every player ai ∈ A\C′′
it holds that v(C′′ ∪{ai})− v(C′′)≥ v(C′ ∪{ai})− v(C′).

Proof. For the “only if” direction, assume that G = (A,v) is convex, and consider
two coalitions C′,C′′ such that C′ ⊂C′′ ⊂ A and a player ai ∈ A \C′′. By setting
X =C′′, Y =C′ ∪{ai}, we obtain

v(C′′ ∪{ai})−v(C′′) = v(X ∪y)−v(X)≥ v(Y )−v(X ∩Y ) = v(C′ ∪{ai})−v(C′),

which is exactly what we need to prove.
The “if” direction can be proved by induction on the size of X \Y ; we leave

the proof as an exercise for the reader.

Any convex game is necessarily superadditive: if a game G = (A,v) is convex,
and C′ and C′′ are two disjoint subsets of A, then we have v(C′ ∪C′′) ≥ v(C′)+
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v(C′′)− v(C′ ∩C′′) = v(C′)+ v(C′′) (here we use our assumption that v( /0) = 0).
To see that the converse is not always true, consider a game G = (A,v), where
A = {a1,a2,a3}, and v(C) = 1 if |C| ≥ 2 and v(C) = 0 otherwise. It is easy to
check that this game is superadditive. On the other hand, for C′ = {a1,a2} and
C′′ = {a2,a3}, we have v(C′) = v(C′′) = 1, v(C′ ∪C′′) = 1, v(C′ ∩C′′) = 0.

2.2.4 Simple Games

Another well-studied class of coalitional games is that of simple games: a game
G = (A,v) is said to be a simple game if it is monotone and the characteristic func-
tion only takes values 0 and 1, i.e., v(C) ∈ {0,1} for every C ⊆ A. For instance,
the game in Example 8.3 becomes a simple game if we rescale the payoffs so that
they become 0 and 1 (instead of 0 and 109). In a simple game, coalitions of value 1
are said to be winning, and coalitions of value 0 are said to be losing. Such games
model situations where there is a task to be completed: a coalition is labeled as
winning if and only if it can complete the task.

Note that simple games are superadditive if and only if the complement of
each winning coalition is losing. Clearly, there exist simple games that are not
superadditive. Nevertheless, it is usually assumed that the outcome of a simple
game is a payoff vector for the grand coalition, just as in superadditive games.

3 Solution Concepts

Any partition of agents into coalitions and any payoff vector that respects this par-
tition correspond to an outcome of a characteristic function game. However, not
all outcomes are equally desirable. For instance, if all agents contribute equally
to the value of a coalition, a payoff vector that allocates the entire payoff to one
of the agents is less appealing than the one that shares the profits equally among
all agents. Similarly, an outcome that incentivizes all agents to work together is
preferable to an outcome that some of the agents want to deviate from.

More broadly, one can evaluate the outcomes according to two sets of criteria:
(1) fairness, i.e., how well each agent’s payoff reflects its contribution, and (2) sta-
bility, i.e., what the incentives are for the agents to stay in the coalition structure.
These two sets of criteria give rise to two families of payoff division schemes, or
solution concepts. We will now discuss each of them in turn.

3.1 Shapley Value

The best-known solution concept that aims to capture the notion of fairness in
characteristic function games is the Shapley value [64]. The Shapley value is



336 Chapter 8

usually defined for superadditive games. As argued above, for such games an
outcome can be identified with a payoff vector for the grand coalition, i.e., the
Shapley value prescribes how to share the value of the grand coalition in a fair
way.

To present the formal definition of the Shapley value, we need some additional
notation. Given a characteristic function game G = (A,v), let ΠA denote the set of
all permutations of A, i.e., one-to-one mappings from A to itself. Given a permuta-
tion π ∈ΠA, we denote by Cπ(ai) the coalition that consists of all predecessors of
ai in π, i.e., we set Cπ(ai) = {a j ∈ A | π(a j)< π(ai)}. The marginal contribution
of an agent ai with respect to a permutation π in a game G = (A,v) is denoted by
ΔG
π (ai) and is given by

ΔG
π (ai) = v(Cπ(ai)∪{ai})− v(Cπ(ai));

this quantity measures by how much ai increases the value of the coalition con-
sisting of its predecessors in π when it joins them. Informally, the Shapley value
of a player ai is its average marginal contribution, where the average is taken over
all permutations of A. More formally, we have the following definition.

Definition 8.6 Given a characteristic function game G=(A,v), the Shapley value
of a player ai ∈ A is denoted by ϕi(G) and is given by

ϕi(G) =
1
n! ∑

π∈ΠA

ΔG
π (ai).

The Shapley value has many attractive properties. In what follows, we list four
of them; the proofs of Propositions 8.2–8.5 are left as an exercise for the reader.

First, the Shapley value is efficient, i.e., it distributes the value of the grand
coalition among all agents.

Proposition 8.2 For any characteristic function game G = (A,v), we have
∑n

i=1ϕi(G) = v(A).

Second, the Shapley value does not allocate any payoffs to players who do
not contribute to any coalition. Formally, given a characteristic function game
G = (A,v), a player ai ∈ A is said to be a dummy if v(C) = v(C∪{ai}) for every
C ⊆ A. It is not hard to see that the Shapley value of a dummy player is 0.

Proposition 8.3 If a player ai ∈ A is a dummy in a characteristic function game
G, then ϕi(G) = 0.

Third, if two players contribute equally to each coalition, then their Shapley
values are equal. Formally, given a characteristic function game G = (A,v), we
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say that players ai and a j are symmetric in G if v(C∪{ai}) = v(C∪{a j}) for every
coalition C ⊆ A\{ai,a j}. It turns out that symmetric players have equal Shapley
values.

Proposition 8.4 If players ai and a j are symmetric in a characteristic function
game G, then ϕi(G) = ϕ j(G).

Finally, consider a group of players A that is involved in two coalitional games
G′ and G′′, i.e., G′ = (A,v′), G′′ = (A,v′′). The sum of G′ and G′′ is a coalitional
game G+ = G′+G′′ given by G+ = (A,v+), where for every coalition C ⊆ A we
have v+(C) = v′(C) + v′′(C). It can easily be seen that the Shapley value of a
player ai in G+ is the sum of its Shapley values in G′ and G′′.

Proposition 8.5 Consider two characteristic function games G′ = (A,v) and
G′′ = (A,v) over the same set of players A. Then for any player ai ∈ A we have
ϕi(G′+G′′) = ϕi(G′)+ϕi(G′′).

To summarize, we have argued that the Shapley value possesses four desirable
properties:

(1) Efficiency: all the profit earned by the agents in the grand coalitions is dis-
tributed among them;

(2) Null player: players with zero marginal contributions to all coalitions re-
ceive zero payoff;

(3) Symmetry: all players that have the same marginal contribution to all coali-
tions receive the same payoff;

(4) Additivity: ϕi(G′+G′′) = ϕi(G′)+ϕi(G′′) for all ai ∈ A.

Interestingly, the Shapley value is the only payoff division scheme that has these
four properties simultaneously [64]. In other words, if we view properties (1)–(4)
as axioms, then these axioms characterize the Shapley value.

3.2 Banzhaf Index

Another solution concept that is motivated by fairness considerations is the
Banzhaf index [7]. The difference between the Shapley value and the Banzhaf
index can be described in terms of the underlying coalition formation model: the
Shapley value measures the agent’s expected marginal contribution if agents join
the coalition one by one in a random order, whereas the Banzhaf index measures
the agent’s expected marginal contribution if each agent decides whether to join
the coalition independently with probability 1/2. This intuition is formally cap-
tured by the following definition.
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Definition 8.7 Given a characteristic function game G = (A,v), the Banzhaf in-
dex of a player i ∈ A is denoted by βi(G) and is given by

βi(G) =
1

2n−1 ∑
C⊆A\{ai}

[v(C∪{ai})− v(C)].

It is not hard to verify that the Banzhaf index satisfies properties (2), (3), and (4)
in the list above. However, it does not satisfy property (1), i.e., efficiency.

Example 8.4 Consider a characteristic function game G= (A,v), where v(A) = 1
and v(C) = 0 for every C ⊂ A. We have ϕi(G) = 1

n , βi(G) = 1
2n−1 for each ai ∈ A.

Since efficiency is a very desirable property of a payoff distribution scheme, some
researchers also consider the normalized Banzhaf index ηi(G), which is defined
as

ηi(G) =
βi(G)

∑i∈Aβi(G)
.

While this version of the Banzhaf index satisfies efficiency, it loses the additivity
property.

3.3 Core

We have introduced two solution concepts that attempt to measure the agents’
marginal contribution. In contrast, the solution concepts considered in this and
subsequent sections are defined in terms of coalitional stability.

Consider a characteristic function game G = (A,v) and an outcome (CS,x) of
this game. Let x(C) denote the total payoff of a coalition C under a payoff vector x,
i.e., x(C) =∑i:ai∈C xi. Now, if x(C)< v(C), then the agents in C have an incentive
to deviate since they could do better by abandoning CS and forming a coalition of
their own. For example, if the agents were to share the extra profit equally among
themselves, every agent ai ∈C would receive a payoff of xi +

v(C)−x(C)
|C| instead of

xi. An outcome where no subset of agents has an incentive to deviate is called
stable, and the set of all such outcomes is called the core of G [29].

Definition 8.8 The core of a characteristic function game G = (A,v) is the set of
all outcomes (CS,x) such that x(C)≥ v(C) for any C ⊆ A.

In a superadditive game, the outcomes are payoff vectors for the grand coali-
tion, so for such games the core can be defined as the set of all vectors x that
satisfy: (1) xi ≥ 0 for all ai ∈ A, (2) x(A) = v(A), and (3) x(C) ≥ v(C) for all
C ⊆ A.

The outcomes in the core are stable and therefore they are more likely to arise
when a coalitional game is played. However, some games have empty cores.
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Example 8.5 Consider the game G = (A,v), where A = {a1,a2,a3}, v(C) = 1
if |C| ≥ 2 and v(C) = 0 otherwise. We claim that this game has an empty core.
Indeed, suppose that the core of G is non-empty. Since G is superadditive, its core
contains a vector x = (x1,x2,x3), where x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, and x1 + x2 +
x3 = 1. The latter constraint implies that xi ≥ 1

3 for some ai ∈ A. But then for
C = A\{ai} we have v(C) = 1, x(C)≤ 2/3, which means that (x1,x2,x3) is not in
the core. This contradiction shows that the core of G is empty.

Observe that the set of all outcomes in the core of a superadditive game can
be characterized by the following linear feasibility program (LFP):

xi ≥ 0 for each ai ∈ A

∑
i:ai∈A

xi = v(A) (8.1)

∑
i:ai∈C

xi ≥ v(C) for each C ⊆ A

This LFP has 2n + n+ 1 constraints. Therefore, if we want to convert it into an
algorithm for checking non-emptiness of the core which runs in time polynomial
in n, we need an efficient separation oracle for this LFP. Recall that a separation
oracle for a linear (feasibility) program is a procedure that, given a candidate solu-
tion (x1, . . . ,xn), determines whether it is feasible, and, if not, outputs the violated
constraint. It is well-known that if a linear program over n variables admits a sep-
aration oracle that runs in time poly(n), then an optimal feasible solution can be
found in time poly(n) [62].

Now, the first n+1 constraints in our LFP are straightforward to check. There-
fore, the problem of checking non-emptiness of the core for superadditive games
can be reduced to checking whether a candidate solution satisfies the last 2n con-
straints, i.e., verifying whether a given outcome is in the core (and, if not, com-
puting the coalition that has an incentive to deviate). In general, checking whether
a given outcome is in the core and/or deciding whether the core is non-empty is
not easy: in Section 4, we will see examples of classes of coalitional games for
which these problems are NP-hard. However, we will now see that for some of the
classes of games discussed in Section 2.2, these problems are efficiently solvable.

3.3.1 The Core of Simple Games

Recall that for simple games it is standard to assume that the grand coalition
forms, even if the game is not superadditive. Under this assumption, it is easy
to characterize the outcomes in the core, and provide a simple criterion for check-
ing whether the game has a non-empty core.
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A player ai in a simple game G = (A,v) is said to be a veto player if v(C) =
0 for any C ⊆ A \ {ai}; since simple games are monotone, this is equivalent to
requiring that v(A \ {ai}) = 0. Observe that a game may have more than one
veto player: for instance, in the unanimity game, where v(A) = 1, v(C) = 0 for
any C ⊂ A, all players are veto players. We will now show that the only way to
achieve stability is to share the payoff among the veto players, if they exist.

Theorem 8.1 A simple game G = (A,v) has a non-empty core if and only if it has
a veto player. Moreover, an outcome (x1, . . . ,xn) is in the core of G if and only if
xi = 0 for any player ai who is not a veto player in G.

Proof. Suppose G has a veto player ai. Then the outcome x with xi = 1, x j = 0
for j �= i is in the core: any coalition C that contains ai satisfies x(C) = 1≥ v(C),
whereas any coalition C′ that does not contain ai satisfies v(C′) = 0≤ x(C′).

Conversely, suppose that G does not have a veto player. Suppose for the sake
of contradiction that G has a non-empty core, and let x be an outcome in the core
of G. Since x(A) = 1, we have xi > 0 for some ai ∈ A, and hence x(A \ {ai}) =
1− xi < 1. However, since ai is not a veto player, we have v(A \ {ai}) = 1 >
x(A\{ai}), a contradiction with x being in the core.

The second statement of the theorem can be proved similarly.

The characterization of the outcomes in the core provided by Theorem 8.1
suggests a simple algorithm for checking if an outcome is in the core or deciding
non-emptiness of the core: it suffices to determine, for each player ai, whether it
is a veto player, i.e., to compute v(A\{ai}). Thus, if the characteristic function of
a simple game is efficiently computable, we can answer the core-related questions
in polynomial time.

We remark that if the simple game is not superadditive, and we use the more
general definition of an outcome, i.e., allow the players to form coalition struc-
tures, Theorem 8.1 no longer holds. Moreover, deciding whether an outcome is
in the core becomes computationally hard even for fairly simple representation
formalisms (see Section 4.1).

3.3.2 The Core of Convex Games

Convex games always have a non-empty core. We will now present a constructive
proof of this fact, i.e., show how to obtain an outcome in the core of a convex
game.

Theorem 8.2 If G = (A,v) is a convex game, then G has a non-empty core.
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Proof. Fix an arbitrary permutation π ∈ ΠA, and set xi = ΔG
π (ai). We claim that

(x1, . . . ,xn) is in the core of G.
Indeed, observe first that any convex game is monotone, so xi ≥ 0 for all ai ∈A.

Moreover, we have ∑n
i=1 xi = ΔG

π (a1) + · · ·+ ΔG
π (an) = v(A). Finally, suppose

for the sake of contradiction that we have v(C) > x(C) for some coalition C =
{ai1 , . . . .ais}. We can assume without loss of generality that π(ai1)≤ ·· · ≤ π(ais),
i.e., the members of C appear in π ordered as ai1 , . . . ,ais . We can write v(C) as

v(C) = v({ai1})− v( /0)+ v({ai1 ,ai2})− v({ai1})+ · · ·+ v(C)− v(C \{ais}).

Now, for each j = 1, . . . ,s, the supermodularity of v implies

v({ai1 , . . . ,ai j})− v({ai1 , . . . ,ai j−1})≤ v({a1, . . . ,ai j})− v({a1, . . . ,ai j−1}) = xi j .

By adding up these inequalities, we obtain v(C)≤ x(C), i.e., coalition C does not
have an incentive to deviate, which is a contradiction.

Observe that the construction used in the proof of Theorem 8.2 immediately im-
plies that in a convex game the Shapley value is in the core: indeed, the Shapley
value is a convex combination of outcomes constructed in the proof of Theo-
rem 8.2, and the core can be shown to be a convex set. However, Theorem 8.2
does not, in general, enable us to check whether a given outcome of a convex
game is in the core of that game.

3.4 The Least Core

When a given game has an empty core, we may still be interested in finding “the
most stable” outcome. In this section, we explore solution concepts that are mo-
tivated by this idea. In what follows, we focus on superadditive games; however,
many of our definitions also apply to general characteristic function games.

In many situations, a coalition would prefer not to deviate if its gain from a
deviation is positive, but tiny. Therefore, we may view outcomes in which no
coalition can improve its welfare significantly as stable. This motivates the fol-
lowing definition.

Definition 8.9 An outcome x is said to be in the ε-core of a superadditive game
G for some ε ∈ R if x(C)≥ v(C)− ε for each C ⊆ A.

Of course, in practice we are usually interested in finding the smallest value of
ε such that the ε-core is non-empty. The corresponding ε-core is called the least
core of G [39]. More formally, we have the following definition.
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Definition 8.10 Given a superadditive game G, let

ε∗(G) = inf{ε | ε-core of G is non-empty}.

The least core of G is its ε∗(G)-core. The quantity ε∗(G) is called the value of the
least core of G.

To see that the least core is always non-empty, observe that we can modify the
linear feasibility program (8.1) so as to obtain a linear program for the value of
the least core as well as a payoff vector in the least core. Specifically, we have

min ε subject to:
xi ≥ 0 for each ai ∈ A

∑
i:ai∈A

xi = v(I) (8.2)

∑
i:ai∈C

xi ≥ v(C)− ε for each C ⊆ A.

Clearly, if (ε,x1, . . . ,xn) is an optimal solution to this linear program, then ε is the
value of the least core and (x1, . . . ,xn) is an outcome in the least core. This shows
that we can compute the value of the least core of a superadditive game G as long
as we have an algorithm for checking if a given outcome is in the core of G (and,
if not, finding the deviating coalition).

Observe that if G has a non-empty core, it may happen that ε∗(G) < 0, in
which case the least core is a subset of the core. We remark, however, that some
authors require the value of the least core to be non-negative, i.e., they define the
least core as the smallest non-negative value of ε for which the ε-core is non-
empty. Under this definition, to compute the value of the least core we need to
add the constraint ε≥ 0 to the linear program (8.2).

3.5 Other Solution Concepts

Besides the Shapley value, the Banzhaf index, the core, and the least core, there
are several other solution concepts for characteristic function games. The most
prominent among them are the nucleolus, the kernel, and the bargaining set. We
will not be able to discuss them in full detail in this chapter due to space con-
straints; instead, we will provide a brief intuitive description of each of these
concepts. For a more comprehensive treatment, the interested reader is referred
to [47, 48].

The nucleolus [61] can be thought of as a refinement of the least core. Specif-
ically, the least core can be defined as the set of all payoff vectors that minimize
the maximum deficit d1 = max{v(C)− x(C) | C ⊆ A}. Now, among all payoff
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vectors in the least core, we can pick the ones that minimize the second highest
deficit d2 = max{v(C)− x(C) | C ⊆ A,v(C)− x(C) < d1}, and remove all other
payoff vectors. We can continue this procedure until the set of the surviving pay-
off vectors stabilizes. The resulting set can be shown to consist of a single payoff
vector: this payoff vector is known as the pre-nucleolus. If, at each step, we only
consider imputations (rather than arbitrary payoff vectors), we obtain the nucle-
olus. The nucleolus is an attractive solution concept, as it arguably identifies the
most stable outcome of a game. However, its formal definition involves an expo-
nentially long vector, and therefore the nucleolus is not easy to compute from the
first principles. However, some classes of games defined on combinatorial struc-
tures (see Section 4) admit efficient algorithms for computing the nucleolus: see,
e.g., [19, 26, 36].

The kernel [17] consists of all outcomes where no player can credibly demand
a fraction of another player’s payoff. Formally, for any player ai we define its
surplus over the player a j with respect to a payoff vector x as the quantity

suri, j(x) = max{v(C)− x(C) |C ⊆ A,ai ∈C,a j �∈C}.
Intuitively, this is the amount that ai can earn without the cooperation of a j, by
asking a set C \ {ai} to join it in a deviation, and paying each player in C \ {ai}
what it used to be paid under x. Now, if suri, j(x) > sur j,i(x), player ai should
be able to demand a fraction of player a j’s payoff – unless player a j already
receives the smallest payment that satisfies the individual rationality condition,
i.e., v({a j}). Following this intuition, we say that an imputation x is in the
kernel of a superadditive game G if for any pair of players (ai,a j) we have ei-
ther: (1) suri, j(x) = sur j,i(x), or (2) suri, j(x)> sur j,i(x) and x j = v({a j}), or (3)
suri, j(x)< sur j,i(x) and xi = v({ai}).

The bargaining set [38] is defined similarly to the core. However, in contrast
to the definition of the core, we only take into account coalitional deviations that
are themselves stable, i.e., do not admit a counterdeviation. Consequently, the
bargaining set contains the core, and the containment is sometimes strict. In fact,
the bargaining set can be shown to contain the least core [22], which implies that
the bargaining set is guaranteed to be non-empty.

4 Representation Formalisms

It would be desirable to have a representation language that allows us to encode
all coalitional games so that the description size of each game is polynomial in
the number of agents n. However, a simple counting argument shows that no
representation formalism can encode each coalitional game using poly(n) bits;
this is true even if we restrict ourselves to simple games. Therefore, one needs
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to decide on a trade-off between expressiveness, i.e., the formalism’s ability to
encode many different games, and succinctness, i.e., the resulting description size.
For instance, one option is to choose a formalism that can only represent games
in a certain subclass of coalitional games, but guarantees that each game in this
class has a succinct encoding. Alternatively, one can choose a formalism that
can represent any coalitional game, but is only guaranteed to produce succinct
representation for games that have certain special properties.

In this chapter, we will discuss several formalisms for characteristic function
games. We start with restricted representation languages, i.e., formalisms that are
always succinct, but not fully expressive.

4.1 Weighted Voting Games

In a weighted voting game, each player has a certain weight, which encodes the
amount of resources available to this player. Further, there is a task that can be
accomplished by any coalition that has sufficient resources. If a coalition can ac-
complish the task, it earns a fixed payoff, which can be normalized to 1; otherwise,
it earns nothing. Formally, weighted voting games are defined as follows.

Definition 8.11 A weighted voting game G is given by a triple (A,w,q), where A
is the set of players, |A| = n, w = (w1, . . . ,wn) ∈ Rn is a vector of weights, and
q ∈R is a quota. The characteristic function v of a game G = (A,w,q) is given by
v(C) = 1 if ∑i:ai∈C wi ≥ q and v(C) = 0 otherwise.

It is usually assumed that all weights and the quota are integers given in binary; it
can be shown that this assumption can be made without loss of generality. Further,
most of the work on weighted voting games assumes that all weights are non-
negative; observe that in this case weighted voting games are simple games.

Weighted voting games are used to model decision making in voting bodies;
for instance, the game described in Example 8.3 is a weighted voting game with
quota q = 51 and weights 40, 22, 30, 9 for players L, M, C, G, respectively.
Indeed, the Shapley value and the Banzhaf index in such games are often viewed
as measures of a party’s voting power in a parliament and have therefore received
significant attention from political scientists. In such settings it is usually assumed
that the quota q is at least half of the players’ total weight; however, in general
task execution scenarios the quota q can take any value between 0 and ∑n

i=1 wi.
It is important to note that a player’s power in a weighted voting game is not

necessarily proportional to its weight. Indeed, in Example 8.3, the Liberal party
and the Moderate party have the same Shapley value (namely, 1/3), even though
their weights differ by almost a factor of 2. Moreover, the Green party is a dummy
and thus its Shapley value is 0, even though it has a non-zero weight. Observe also
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that if we changed the quota to, say, q′ = 60, the balance of power would change:
for instance, we would have v({M,C}) = 0, but v({M,C,G}) = 1, so G would no
longer be a dummy.

4.1.1 Computational Issues

The complexity of computing fair and stable outcomes in weighted voting games
has received significant attention in the literature.

For instance, the complexity of determining the players’ Shapley values has
been analyzed by a variety of authors [21, 41, 50]. An easy reduction from the
SUBSET SUM problem shows that deciding whether a player is a dummy is coNP-
complete; this implies that deciding whether a player’s Shapley value is equal to
0 is coNP-complete as well. In fact, one can strengthen this result to show that
computing the Shapley value is #P-complete.

Fortunately, the situation is considerably less bleak if we can assume that all
weights are at most polynomial in the number of players n, or, equivalently, are
given in unary. Under this assumption, we would be satisfied with algorithms
whose running time is polynomial in n and the maximum weight, i.e., maxi:ai∈A wi.
It is not too hard to show that such algorithms do exist: a dynamic programming-
based approach has been described by Matsui and Matsui [40].

The same easiness and hardness results hold for the Banzhaf index: it is
#P-complete to compute when weights are given in binary, but admits an efficient
dynamic programming-based algorithm for small weights.

The core-related questions are easy to answer if we make the standard as-
sumption that the grand coalition always forms: indeed, since weighted voting
games are simple games, there is a stable way of dividing the payoffs of the grand
coalition if and only if the game has veto players. Now, determining if a player
ai is a veto player in a weighted voting game G = (A,w,q) is easy: it suffices to
check whether ∑ j:a j �=ai w j ≥ q. This implies that there are polynomial-time algo-
rithms for checking if an outcome is in the core or determining whether the core
is non-empty.

However, if q < ∑n
i=1 wi/2, then forming the grand coalition may be ineffi-

cient, and therefore there may exist stable outcomes in which the agents form
a non-trivial coalition structure. Indeed, consider the weighted voting game
G =

({a1,a2,a3,a4},(2,2,2,2),4
)
. This game does not have a veto player, and

therefore any outcome in which the grand coalition forms is not stable. On the
other hand, it is easy to see that the outcome ({{a1,a2},{a3,a4}},(1

2 ,
1
2 ,

1
2 ,

1
2)) is

stable: any winning coalition contains at least two players, and therefore its payoff
is at least 1.

Now, when arbitrary coalition structures are allowed, checking whether a sta-
ble outcome exists, or even whether a given outcome is stable, becomes difficult.



346 Chapter 8

Specifically, Elkind et al. [23] showed that that former problem is NP-hard, while
the latter problem is coNP-complete. On the positive side, they also showed that if
all weights are polynomially bounded, one can check in polynomial time whether
an outcome is in the core. It is currently open whether a similar easiness result
holds for the problem of checking the non-emptiness of the core; although it is
conjectured that this problem remains hard even for small weights [23].

Elkind et al. analyze the complexity of computing the value of the least core
and the nucleolus [24, 26]. Again, a familiar picture emerges: both problems
are hard when weights are given in binary, but easy when weights are given in
unary. Moreover, even for large weights, the value of the least core admits a fully
polynomial-time approximation scheme (FPTAS), i.e., an algorithm that, given a
weighted voting game G = (A,w,q) and a parameter δ, outputs a value ε′ that
satisfies ε≤ ε′ ≤ (1+δ)ε, where ε is the true value of the least core of G, and runs
in time that is polynomial in the number of players n, the maximum weight, and
1/δ.

4.1.2 Expressivity and Vector Weighted Voting Games

When all weights are non-negative, weighted voting games are simple games.
However, one may wonder if the converse is also true, i.e., whether given a
simple game G = (A,v) with |A| = n we can always find a vector of weights
w = {w1, . . . ,wn} and a quota q such that G is equivalent to the game (A,w,q),
i.e., for every C ⊆ A it holds that v(C) = 1 if and only if ∑i:ai∈C wi ≥ q.

It is not hard to show that the answer to this question is “no.” Indeed, consider
a simple game G = (A,v) with A = {a1,a2,a3,a4}, where a coalition is winning
if it contains both an even-numbered agent and an odd-numbered agent, or, in
symbols, v(C) = 1 if and only if C∩{a1,a3} �= /0 and C∩{a2,a4} �= /0. Suppose
that this game can be represented as a weighted voting game (A,w,q) for some
real weights and quota (note that we do not assume that the weights are positive or
rational). Since {a1,a2} and {a3,a4} are winning coalitions, we have w1+w2 ≥ q,
w3 +w4 ≥ q, and hence w1 +w2 +w3 +w4 ≥ 2q. On the other hand, {a1,a3} and
{a2,a4} are losing coalitions, so we have w1 +w3 < q, w2 +w4 < q, and hence
w1 +w2 +w3 +w4 < 2q. This contradiction shows that G is not equivalent to any
weighted voting game.

Interestingly, the game G discussed in the previous paragraph can be viewed
as an intersection of two weighted voting games: to win the first game, the coali-
tion must contain an odd-numbered player (this corresponds to the weighted vot-
ing game

(
A,(1,0,1,0),1

)
, whereas to win the second game, the coalition must

contain an even-numbered player (this corresponds to the weighted voting game(
A,(0,1,0,0),1

)
. To win the overall game, the coalition must win both of the

component games. Such games are known as vector weighted voting games, or
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k-weighted voting games, where k is the number of component games.

Definition 8.12 A game G = (A,v) with |A|= n is said to be a k-weighted voting
game for some k ∈ N if there exists a collection of k weighted voting games G1 =(
A,(w1

1, . . . ,w
1
n),q

1), . . . ,Gk =
(
A,(wk

1, . . . ,w
k
n),q

k) over the set of players A such
that v(C) = 1 if and only if ∑i:ai∈C w j

i ≥ q j for every j = 1, . . . ,k. The games
G1, . . . ,Gk are called the component games of G; we will write G = G1∧ . . .∧Gk.

Vector weighted voting games are widely used in practice: for instance, the
European Union decision-making system is a 27-player 3-weighted voting game,
where the three component games correspond to the commissioners, countries,
and population [9].

From the computational perspective, vector weighted voting games are similar
to the ordinary weighted voting games if k is bounded by a constant, but become
harder to deal with if k is viewed as part of the input: for instance, Elkind et
al. [27] show that deciding whether a player is a dummy in a k-weighted voting
game is coNP-complete even if all weights are in {0,1} (recall that, in contrast,
for weighted voting games this problem is easy as long as all weights are polyno-
mially bounded).

Now, we have seen that vector weighted voting games are more expressive
than weighted voting games; but are they fully expressive? We will now show
that the answer is “yes,” i.e., any simple game can be represented as a k-weighted
voting game for a suitable value of k; this holds even if all weights are required to
be in {0,1}.

Theorem 8.3 Any simple game G = (A,v) with |A| = n can be represented as
a k-weighted voting game G1 ∧ . . .∧Gk, where k ≤ 2n and all weights in each
component game are either 0 or 1.

Proof. Let C1, . . . ,Ck be the list of all losing coalitions in G. For each coalition
Cj in this list, we construct a weighted voting game G j =

(
A,(w j

1, . . . ,w
j
n),q j

)
,

where q j = 1 and w j
i = 1 if ai �∈Cj, w j

i = 0 if ai ∈Cj. Observe that a coalition C
is a winning coalition in G j if and only if it contains some agent ai ∈ A\Cj.

We claim that G is equivalent to G′ = G1 ∧ . . .∧Gk. Indeed, if C ⊆ A is a
losing coalition in G, then C =Cj for some j = 1, . . . ,k, and therefore C loses in
the corresponding component game and hence in G′. On the other hand, if C ⊆ A
is a winning coalition in G, then, by monotonicity, C is not contained in any losing
coalition, i.e., for any coalition Cj in our list we have C \Cj �= /0 and hence C is
a winning coalition in Cj. Since this holds for any j = 1, . . . ,k, C is a winning
coalition in G′. To complete the proof, it remains to observe that k ≤ 2n.
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The minimum number of component games in the representation of a given
simple game G as a weighted voting game is called the dimension of G. Theo-
rem 8.3 shows that the dimension of any simple n-player game G does not exceed
2n; on the other hand, there are explicit constructions of simple games whose di-
mension is exponential in the number of players [69]. Thus, vector weighted vot-
ing games are universally expressive for the class of all simple games, but are only
succinct for some of the games in this class (namely, the games with polynomi-
ally small dimension, which includes all weighted voting games). This situation is
typical of the universally expressive representation formalisms; we will see some
further examples in Section 4.3.

4.2 Combinatorial Optimization Games

Several classes of cooperative games that have been studied in the operations
research and theoretical computer science community are defined via a combi-
natorial structure, such as, for example, a graph. The value of each coalition
is obtained by solving a combinatorial optimization problem on the substructure
that corresponds to this coalition. We will refer to such games as combinatorial
optimization games. Just like weighted voting games, such representations are
succinct, but not complete. An excellent (though somewhat outdated) survey of
combinatorial optimization games can be found in [10]. In this section, we give
several examples of the games in this family.

4.2.1 Induced Subgraph Games

In induced subgraph games [21], players are vertices of a weighted graph, and
the value of a coalition is the total weight of its internal edges. It can be checked
that if all weights are non-negative, this game is convex and therefore has a non-
empty core. However, if we allow negative weights, the core may be empty, and,
moreover, checking whether an outcome is in the core becomes coNP-complete.
In contrast, the Shapley value in this game is easy to compute even if the weights
can be negative: the Shapley value of a vertex x is half of the total weight of the
edges that are incident to x.

4.2.2 Network Flow Games

In network flow games [33, 34], the players are edges of a network with a source
and a sink. Each edge has a positive integer capacity, indicating how much flow it
can carry. The value of a coalition C is the maximum amount of flow that can be
sent from the source to the sink using the edges in C only. Various stability-related
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solution concepts for this class of games were studied in [31] and subsequently
in [19].

One can also consider a variant of network flow games where the value of a
coalition is 1 if it can carry at least k units of flow from the source to the sink, and
0 otherwise. Such games are called threshold network flow games, and have been
studied in [6] and subsequently in [2].

4.2.3 Matching and Assignment Games

In assignment games [65], agents are vertices of a weighted bipartite graph. The
value of each coalition is the size of its maximum-weight induced matching.
Matching games [20] are a generalization of assignment games, where the graph
is not required to be bipartite. The complexity of the core, the least core, and the
nucleolus in these games has been studied in [36, 68].

4.3 Complete Representation Languages

In this section, we will discuss four representation formalisms for coalitional
games that are complete, i.e., can be used to describe any coalitional game.

4.3.1 Marginal Contribution Nets

Marginal contribution nets, or MC-nets [32], is a rule-based representation; it
describes a game with a set of players A = {a1, · · · ,an} by a collection of rules
R. Each rule r ∈ R is of the form Br → ϑr, where Br is a Boolean formula
over a set of variables {b1, . . . ,bn} and ϑr is a real value. We say that a rule
r ∈R is applicable to a coalition C if Br is satisfied by the truth assignment given
by bi = � if ai ∈ C and bi = ⊥ if ai /∈ C. Let RC denote the set of rules that
are applicable to C. Then, the characteristic function of the game described by
R= {B1 → ϑ1, . . . ,Bk → ϑk} is computed as follows:

v(C) = ∑
r∈RC

ϑr.

Example 8.6 The MC-net that consists of the rules R = {b1∧ b2 → 5,b2 → 2},
corresponds to a coalitional game G = (A,v), where A = {a1,a2}, v({a1}) = 0,
v({a2}) = 2, v({a1,a2}) = 7.

An MC-net is said to be basic if the left-hand side of any rule is a conjunction
of literals, i.e., variables and their negations. In this case, we can write a rule
r ∈ R as (Pr,Nr)→ ϑr, where Pr and Nr are the sets of agents that correspond to
positive and negative literals in Br, respectively. Thus, r is applicable to coalition
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C if C contains every agent in Pr and none of the agents in Nr. It is not hard to see
that any coalitional game G = (A,v) with |A| = n can be represented by a basic
MC-net with 2n−1 rules: for each non-empty coalition C ⊆ A we create a rule

(∧i:ai∈Cbi)
∧

(∧i:ai �∈C¬bi)→ v(C).

However, many interesting games admit a more succinct representation, especially
if we allow MC-nets that are not basic.

For basic MC-nets, the players’ Shapley values can be computed efficiently.
The algorithm proceeds by decomposing a game given by k rules into k games –
one for each rule; in a game described by a single basic rule, the Shapley value
of each player is given by a closed-form expression. This argument extends to
read-once MC-nets, where in each rule each literal appears at most once [25].
However, if the formulas in the rules can be arbitrary, the Shapley value becomes
hard to compute. On the other hand, the core-related questions are NP-hard even
for basic MC-nets [32].

4.3.2 Synergy Coalition Groups

Synergy Coalition Group (SCG) Representation [14] is a complete language for
superadditive games that is obtained by trimming down the naive representation,
i.e., one that lists all coalitions together with their values. It is based on the follow-
ing idea. Suppose that a game G = (A,v) is superadditive, and consider a coalition
C ⊆ A. Then we have

v(C)≥ max
CS∈PC\{C} ∑

C′∈CS
v(C′). (8.3)

Now, if the inequality (8.3) holds with equality, then there is no need to store the
value of C as it can be computed from the values of the smaller coalitions. There-
fore, we can represent G by listing the values of all coalitions of size 1 as well as
the values of the coalitions for which there is a synergy, i.e., the inequality (8.3) is
strict.

By construction, the SCG representation is complete. Moreover, it is succinct
when there are only a few groups of agents that can collaborate productively. Fur-
ther, it allows for an efficient procedure for checking whether an outcome is in the
core: it can be shown that if an outcome is not in the core, then there is a “syn-
ergetic” coalition, i.e., one whose value is given explicitly in our representation,
which can profitably deviate. However, the SCG representation has a major draw-
back: computing the value of a coalition may involve finding an optimal partition
of the players into subcoalitions, and is therefore NP-hard.
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4.3.3 Skill-Based Representations

In many settings, the value of a coalition can be defined in terms of the skills
possessed by the agents. A simple representation formalism that is based on this
idea has been proposed in [46]: there is a set of skills S, each agent ai ∈ A has a
subset of the skills Sai ⊆ S, and there is a function u : 2S → R, which for every
subset of skills S′ ⊆ S specifies the payoff that can be obtained by a coalition that
collectively possesses all the skills in S′. The value of a coalition C ⊆ A is then

v(C) = u(∪i:ai∈CSai).

Clearly, this representation is complete, as we can identify each agent ai with a
unique skill sai and set u(S′) = v({ai | sai ∈ S′}) for any subset S′ of the skill set.
It is succinct when the performance of each coalition can be expressed in terms
of a small number of skills possessed by the members of the coalition. Ohta et
al. [46] discuss such representations in the context of anonymous environments,
where agents can hide skills or split them among multiple identifiers.

A more structured representation was proposed in [5], where coalition values
are expressed in terms of skills and tasks. Specifically, in addition to the set of
skills S, there is a set of tasks Γ, and every task τ ∈ Γ has a skill requirement
Sτ ⊆ S and a payoff. As before, each agent ai ∈ A has a set of skills Sai ⊆ S. A
coalition C ⊆ A achieves a task τ if it has all skills that are required for τ, i.e., if
Sτ ⊆∪i:ai∈CSai . Finally, there is a task value function F : 2Γ→R, which for every
subset Γ′ ⊆ Γ of tasks specifies the payoff that can be obtained by a coalition
that achieves all tasks in Γ′. A coalitional skill game [4] is then defined as the
coalitional game 〈A,v〉 where:

v(C) = F({τ | Sτ ⊆ ∪i:ai∈CSai}).
This representation is more compact than that of [46] when the number of skills
is large (so that the domain of the function u is very large), but the game can be
described in terms of a small number of tasks, or if the function F can be encoded
succinctly.

4.3.4 Agent-Type Representation

Shrot et al. [67] and Ueda et al. [71] study coalition formation scenarios where
agents can be classified into a small number of types so that the agents of the
same type are symmetric, i.e., make the same contribution to any coalition they
belong to. In such settings, the characteristic function can often be specified more
succinctly.

More formally, suppose that the set of agents A admits a partition {A1, . . . ,AT}
such that for every i = 1, . . . ,T , every a j,ak ∈ Ai and every coalition C such
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that a j,ak /∈ C it holds that v(C∪{a j}) = v(C∪{ak}). We will refer to the sets
A1, . . . ,AT as agent types. Then the value of any coalition depends solely on how
many agents of each type it contains. More precisely, given a coalition C ⊆ A, we
define the coalition-type of C as a vector ψ= 〈n1, . . . ,nT 〉, where ni = |C∩Ai|. It is
immediate that two coalitions of the same coalition-type have the same value. This
means that the conventional characteristic function v : 2A → R can be replaced
with the more concise type-based characteristic function, vt : Ψ→ R, which is
defined on the set

Ψ= {〈n1, . . . ,nT 〉 | 0≤ ni ≤ ∣∣Ai∣∣}
of all possible coalition-types. To represent this function, we only need to store
O(nT ) coalitional values, since |Ψ| = (

∣∣A1
∣∣+ 1)× ·· ·× (

∣∣AT
∣∣+ 1) < nT . Thus,

for small values of T , this representation is significantly more succinct than the
standard one. On the other hand, it is obviously complete: in the worst case, all
agents have different types and vt coincides with v.

5 Coalition Structure Generation

While the focus so far has been on how to distribute the gains from cooperation, in
this section we focus on how to maximize those gains. To state our computational
problem formally, we need some additional notation. Recall that PA denotes the
space of all coalition structures over the set of agents A; we extend this notation
to subsets of A, and write PC to denote the space of all coalition structures over
a set C ⊆ A. Given a set C ⊆ A and a coalition structure CS ∈ PC, let V (CS)
denote the value of CS, which is calculated as follows: V (CS) = ∑C′∈CS v(C′).
The coalition structure generation problem is then to find an optimal coalition
structure CS∗ ∈ PA, i.e., an (arbitrary) element of the set

argmaxCS∈PAV (CS).

This problem is computationally hard. It resists brute-force search, as the number
of possible coalition structures over n players, which is known as the Bell number
Bn [8], satisfies αnn/2 ≤ Bn ≤ nn for some positive constant α (see, e.g., Sandholm
et al. [60] for proofs of these bounds and de Bruijn [18] for an asymptotically tight
bound). Moreover, it is NP-hard to find an optimal coalition structure given oracle
access to the characteristic function [60]. To date, therefore, a number of algo-
rithms have been developed to try and combat this complexity. In what follows,
we will present these algorithms and discuss their relative strengths and weak-
nesses. However, before we do that, we will present the two main representations
of the space of the possible coalition structures as they will provide insight into
the way some of these algorithms work.
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5.1 Space Representation

To date, there are two main representations of the space of possible coalition struc-
tures. The first, proposed by Sandholm et al. [60], is called the coalition structure
graph. In this undirected graph, every node represents a coalition structure. These
nodes are categorized into levels PA

1 , . . . ,P
A
n , where level PA

i contains the nodes
that represent all coalition structures containing exactly i coalitions. An edge con-
nects two coalition structures if and only if: (1) they belong to two consecutive
levels PA

i and PA
i−1, and (2) the coalition structure in PA

i−1 can be obtained from
the one in PA

i by merging two coalitions into one. A four-agent example can be
seen in Figure 8.1.

Figure 8.1: The coalition structure graph for four agents.

While the above representation categorizes the coalition structures according
to the number of coalitions they contain, a different representation was proposed
by Rahwan et al. [56] to categorize them based on the sizes of the coalitions they
contain. More specifically, this representation divides the space of coalition struc-
tures into disjoint subspaces that are each represented by an integer partition of
n. Recall that an integer partition of n is a multiset of positive integers, or parts,
whose sum (with multiplicities) equals to n [1]. For instance, n = 4 has five dis-
tinct integer partitions, namely, {4}, {1,3}, {2,2}, {1,1,2}, and {1,1,1,1}. Each
of these partitions corresponds to the subspace of P{a1,a2,a3,a4}, which consists of
all the coalition structures within which the coalition sizes match the parts of the
integer partition. We denote by In the set of integer partitions of n, and by PA

I

the subspace that corresponds to I ∈ In. For instance, P{a1,a2,a3,a4}
{1,1,2} is the subspace

containing all the coalition structures consisting of two coalitions of size 1 and
one coalition of size 2. This representation can be encoded by an integer partition
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graph [52]. This is an undirected graph, where every subspace is represented by
a node, and two nodes representing I, I′ ∈ In are connected by an edge if and only
if there exist two parts i, j ∈ I such that I′ = (I \{i, j})&{i+ j} (here & denotes
the multiset union operation). For example, Figure 8.2 shows the integer partition
graph for four agents, as well as the subspaces that correspond to every node in
the graph.

Figure 8.2: The integer partition-based representation for four agents.

Having described the main representations of the search space, in the remain-
ing subsections we will present different approaches to the coalition structure gen-
eration problem, some of which are built upon those representations.

5.2 Dynamic Programming Algorithms

The first dynamic programming algorithm, called DP, was proposed by Yeh [72].
This algorithm is based on the following theorem.

Theorem 8.4 Given a coalition C ⊆ A, let f (C) be the value of an optimal parti-
tion of C, i.e., f (C) = maxP∈PC V (P). Then

f (C) =

{
v(C) if |C|= 1

max
{

v(C) , max{C′,C′′}∈PC
(

f (C′)+ f (C′′)
)}

otherwise.
(8.4)

Proof. The proof is trivial when |C| = 1. Thus, for the remainder of the proof
we will assume that |C| > 1. Let opt(C) be some optimal partition of C, i.e.,
opt(C) ∈ argmaxP∈PCV (P). We will make use of the following lemma.

Lemma 8.1 For any coalition C ⊆ A, if P∗ = {P1, . . . ,Pk} is an optimal partition
of C and k > 1, then for any j = 1, . . . ,k it holds that P′ = {P1, . . . ,Pj} is an
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optimal partition of C′ = ∪P′, and P′′ = {Pj+1, . . . ,Pk} is an optimal partition of
C′′ = ∪P′′.

Proof of Lemma 8.1 To prove the lemma, observe that P∗=P′ ∪P′′ and V (P∗) =
V (P′) +V (P′′). Suppose for the sake of contradiction that P′ was not an op-
timal partition of C′. Then there exists another partition P̂′ ∈ PC′ such that
V (P̂′)>V (P′). However, since P̂′ ∪P′′ is a partition of C, and since V (P̂′ ∪P′′) =
V (P̂′)+V (P′′) > V (P∗), it follows that P∗ cannot be an optimal partition of C, a
contradiction. Assuming that P′′ is not an optimal partition of C′′ leads to a contra-
diction as well, by a similar argument. Thus, the proof of the lemma is complete.

Lemma 8.1 shows that if |opt(C)| > 1, then there exists a coalition struc-
ture {C′,C′′} ∈ PC such that opt(C) = opt(C′)∪ opt(C′′). On the other hand, if
|opt(C)| = 1, then surely we would have opt(C) = {C} and V (opt(C)) = v(C).
Equation (8.4) covers both possibilities by taking the maximum over v(C) and
max{C′,C′′}∈PC

(
f (C′)+ f (C′′)

)
.

The way DP works is by iterating over all the coalitions of size 1, and then over
all those of size 2, and then size 3, and so on until size n: for every such coalition
C, it computes f (C) using equation (8.4). As can be seen, whenever |C| > 1, the
equation requires comparing v(C) with max{C′,C′′}∈PC

(
f (C′)+ f (C′′)

)
. The result

of this comparison is stored in a table, t, which has an entry for every coalition.
In particular, if v(C) was greater, then the algorithm sets t[C] = C, so that it can
later on remember that it is not beneficial to split C into two coalitions. Other-
wise, it sets t[C] = argmax{C′,C′′}∈PC

(
f (C′)+ f (C′′)

)
to remember the best way of

splitting C into two coalitions. By the end of this process, f (A) will be computed,
which is by definition equal to V (CS∗). It remains to compute CS∗ itself. This
is done recursively using the table t. The running time of this algorithm can be
shown to be O(3n).

The execution of the algorithm is illustrated by the following example.

Example 8.7 Given A = {a1,a2,a3,a4}, suppose that t[A] = {{a1,a2},{a3,a4}},
i.e., it is most beneficial to split A into {a1,a2} and {a3,a4}. Moreover, suppose
that t[{a1,a2}] = {{a1},{a2}}, while t[{a3,a4}] = {a3,a4}, i.e., it is most bene-
ficial to split {a1,a2} into {a1} and {a2}, but it is not beneficial to split {a3,a4}.
In this case, CS∗ = {{a1},{a2},{a3,a4}}.

Although DP is guaranteed to find an optimal coalition structure, Rahwan and
Jennings [53] showed that many of its operations are in fact redundant. Based
on this, they developed an improved dynamic programming algorithm (IDP) that
avoids all redundant operations. To date, IDP is the fastest algorithm that can
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find an optimal solution in O(3n) time. This is significantly less than ω(nn/2) –
the time required to exhaustively enumerate all coalition structures. However, the
disadvantage is that IDP provides no interim solution before completion, meaning
that it is not possible to trade computation time for solution quality.

5.3 Anytime Algorithms

Generally speaking, an anytime algorithm is one whose solution quality improves
gradually as computation time increases [73]. In our case, this is particularly
desirable as the agents might not always have sufficient time to run the algorithm
to completion due to the exponential size of the search space. Moreover, being
anytime makes the algorithm robust against failure; if the execution is stopped
before the algorithm would normally have terminated, then it can still return a
solution that is better than the initial – or any intermediate – one.

In this subsection, we will focus on anytime algorithms that return optimal so-
lutions, or at least provide worst-case guarantees on the quality of their solutions.

5.3.1 Identifying Subspaces with Worst-Case Guarantees

A number of researchers have attempted to answer the following question:

If the solution space is too large to be fully searched, can we search through
only a subset of this space, and be guaranteed to find a solution CS∗∗ that
is within a certain bound β from optimum, that is, V (CS∗)

V (CS∗∗) ≤ β?

This problem can be approached by (1) dividing the space into subsets, and (2)
identifying a sequence in which these subsets are searched so that the worst-case
bound on solution quality is guaranteed to improve after each subset. The first
such algorithm was developed by Sandholm et al. [60], and is mainly based on the
following theorem.

Theorem 8.5 To establish a worst-case bound β, it is sufficient to search the low-
est two levels of the coalition structure graph, i.e., PA

1 and PA
2 . With this search,

the bound is β= n, and the number of searched coalition structures is 2n−1. Fur-
thermore, no algorithm can establish any bound by searching a different set of at
most 2n−1 coalition structures.

Proof. For a partial search to establish a bound on solution quality, every coalition
C ⊆ A must appear in at least one of the searched coalition structures. This is due
to the possibility of having a single coalition whose value is arbitrarily greater
than the values of other coalitions. Now, since the grand coalition appears in
PA

1 , and every other coalition C ⊂ A appears in {C,A\C} ∈ PA
2 , the value of the
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best coalition structure in PA
1 ∪PA

2 is at least maxC⊆A v(C). On the other hand,
since CS∗ can include at most n coalitions, its value cannot be greater than n×
maxC⊆A v(C). This means V (CS∗)

maxCS∈PA
1∪PA

2
V (CS∗) ≤ n.

As for the number of searched coalition structures, the reader can check that∣∣PA
1 ∪PA

2

∣∣ = 2n−1. What remains is to show that no bound can be established
by searching a different set of at most 2n−1 coalition structures. This is done by
proving that PA

1 ∪PA
2 is the unique subset of PA of size at most 2n−1 in which

every coalition appears in some coalition structure. We leave this as an exercise
for the reader.

Based on this theorem, the algorithm starts by searching the bottom two levels.
After that, if additional time is available, the algorithm searches the remaining
levels one by one, starting from the top level and moving downward. Sandholm
et al. proved that the bound improves with this search. In particular, once the
algorithm completes searching level PA

i , the bound becomes β= 'n/h(, where h=
'(n− i)/2(+2. The only exception is when n≡ h−1(mod h) and n≡ i(mod 2),
in which case the bound becomes β = )n/h*. Importantly, this means that after
searching the bottom two levels and establishing the bound β = n, one can very
easily drop (i.e., improve) the bound to β = )n/2* by searching the top level,
which only contains one coalition structure.

A different approach was proposed by Dang and Jennings [16]. Their algo-
rithm starts by searching the bottom two levels, as well as the top one (as Sand-
holm et al.’s algorithm does). After that, however, instead of searching the re-
maining levels one by one (as Sandholm et al. do), the algorithm searches through
certain subsets of all remaining levels. Specifically, it searches the coalition struc-
tures that have at least one coalition of size at least )n(d−1)/d* (with d running
from '(n+1)/4( down to 2). Dang and Jennings proved that, for any given value
of d, the algorithm establishes a bound of 2d−1.

So far, we have seen how certain bounds can be established by searching
certain subsets of the search space. However, with the exception of β = n and
β = )n/2*, we still do not know the minimum subset that must be searched in
order to establish a desired bound. To this end, let us introduce the following no-
tation. For any integer partition I ∈ In, let PI denote the set of possible partitions
of I. For instance, P{1,1,2} consists of the following four partitions: {{1,1,2}},
{{1,1},{2}}, {{1,2},{1}}, and {{1},{1},{2}}. Moreover, for any set of integer
partitions I′ ⊆ In, let S(I′) be the set that consists of every non-empty subset of
every integer partition in I′, i.e.,

S(I′) =
⋃

I∈I′

⋃

J⊆I,J �= /0
{J}.
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For example, given I′ = {{1,1,2},{1,3}}, the set S(I′) consists of the following
subsets: {{1}}, {{2}}, {{3}}, {{1,1}}, {{1,2}}, {{1,3}}, {{1,1,2}}. Finally,
for any integer partition I ∈ In and any set of integer partitions I′ ⊆ In, let η(I′, I)
denote the minimum number of subsets in S(I′) that are required to construct a
partition in PI . Formally,

η(I,I′) =

⎧⎨⎩
minS⊆S(I′):S∈PI |S| if ∃S ⊆ S(I′) : S ∈ PI

+∞ otherwise.

For example, given I = {1,1,1,3} and I′ = {{1,1,2},{1,3}}, the minimum num-
ber of subsets in S(I′) that are required to construct a partition of I is 2, and those
subsets are {1,1} and {1,3}. Therefore, we have η(I′, I) = 2. Rahwan et al. [55]
showed that this definition is crucial when determining the minimum subset that
must be searched in order to establish a certain bound. Specifically, they prove the
following theorem.

Theorem 8.6 For any real value b, 1≤ b≤ n, and for any I′ ⊆ In, we can estab-
lish a bound β= b by searching ∪I∈I′PA

I if and only if the following holds:

∀I ∈ In,η(I′, I)≤ b. (8.5)

Furthermore, the minimum set of coalition structures that must be searched in or-
der to establish a bound β= b is ∪I∈In(b)P

A
I , where In(b) is defined as follows:

In(b) ∈ argmin
I′⊆In:∀I∈In,η(I′,I)≤b

∣∣∣∪I∈I′PA
I

∣∣∣ .
In other words, to establish a bound β = b, all we need to do is to find a set of
integer partitions I′ ⊆ In such that, if we take every possible subset of every I ∈ I′,
then with these subsets we can partition every I ∈ In into at most b parts. One can
optimize this by looking for the set of integer partitions that minimizes

∣∣∪I∈I′PA
I

∣∣.
We omit the proof of Theorem 8.6 due to space constraints. However, the

intuition is similar to the proof of Theorem 8.5, where we proved that a bound
β = n can be established by searching PA

1 ∪PA
2 . This was done by showing that

CS∗ contains at most n coalitions, and that every possible coalition appears in
some CS ∈ PA

1 ∪PA
2 . The proof of Theorem 8.6 generalizes this idea by replacing

“coalitions” with “combinations of coalitions”. More specifically, equation (8.5)
means that CS∗ contains at most b combinations, and that every one of those
combinations appears in some CS ∈ ∪I∈I′PA

I .
Theorem 8.6 enables us to describe the set to be searched when establishing

a given bound in terms of subspaces that are represented by integer partitions.



Chapter 8 359

Therefore, it would be useful to have an algorithm that can efficiently search those
subspaces. In what follows, we present an algorithm that does exactly that.

5.3.2 Integer Partition-Based Search

An anytime algorithm, called IP, was developed by Rahwan et al. [58] based on
the integer partition-based representation from Section 5.1. In particular, it uses
the observation that, for any subspace PA

I , it is possible to compute upper and
lower bounds on the value of the best coalition structure in that subspace. More
formally, let MaxA

s and AvgA
s be the maximum and average values of all coalitions

of size s, respectively. It turns out that one can compute the average value of the
coalition structures in PA

I without inspecting these coalition structures [58].

Theorem 8.7 For any I ∈ In, let I(i) be the multiplicity of i in I. Then:

∑CS∈PA
I

V (CS)∣∣PA
I

∣∣ =∑
i∈I

I(i) ·AvgA
i . (8.6)

Proof. For any C ⊆ A, the number of coalition structures in PA
I that contain C

depends solely on the size of C. In other words, this number is equal for any two
coalitions that are of the same size. Let us denote this number by N

|C|
I . Formally,

for every C ⊆ A we set N|C|
I =

∣∣{CS ∈ PA
I |C ∈ CS}∣∣. Then we have

∑
CS∈PA

I

V (CS) =∑
i∈I

∑
C:|C|=i

Ni
I · v(C) =∑

i∈I
Ni

I ∑
C:|C|=i

v(C) =∑
i∈I

Ni
I ·
(

n
i

)
·AvgA

i ,

where
(n

i

)
is the binomial coefficient (i.e., the number of possible coalitions of

size i). Thus, to prove (8.6) it suffices to prove that

∑i∈I N
i
I ·
(n

i

) ·AvgA
i∣∣PA

I

∣∣ =∑
i∈I

I(i) ·AvgA
i .

This can be done by proving that the following holds for all i ∈ I:

Ni
I ·
(

n
i

)
= I(i) ·

∣∣∣PA
I

∣∣∣ . (8.7)

Observe that every CS ∈ PA
I contains exactly I(i) coalitions of size i. Thus:

∑
C:|C|=i

N
|C|
I = ∑

C:|C|=i
∑

CS∈PA
I :C∈CS

1 = ∑
CS∈PA

I

∑
C∈CS:|C|=i

1 = ∑
CS∈PA

I

I(i) = |PA
I | · I(i).
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We have shown that ∑C:|C|=iN
|C|
I = |PA

I | · I(i). On the other hand, since N
|C|
I

is equal for all coalitions of size |C|, we obtain ∑C:|C|=iN
|C|
I =

(n
i

) ·Ni
I . Thus,

equation (8.7) holds.

Based on this theorem, for every I ∈ In, it is possible to compute a lower
bound LBI on the value of the best coalition structure in PA

I as follows: LBI =

∑s∈I I(s)AvgA
s . This is simply because the best value is always greater than, or

equal to, the average one. Similarly, it is possible to compute an upper bound
UBI on the value of the best coalition structure in PA

I as UBI = ∑s∈I I(s)MaxA
s .

Using these bounds, the algorithm computes an upper bound UB∗ = maxI∈In UBI
and a lower bound LB∗ = maxI∈In LBI on the value of the optimal coalition struc-
ture CS∗. Computing UB∗ allows for establishing a bound on the quality of the
best coalition structure found at any point in time, denoted CS∗∗; this bound is
β= UB∗/V (CS∗∗). On the other hand, computing LB∗ allows for identifying sub-
spaces that have no potential of containing an optimal coalition structure, which
are PA

I : UBI < LB∗. These subspaces are pruned from the search space. As for the
remaining subspaces, the algorithm searches them one at a time, unless a coali-
tion structure is found that has a value greater than, or equal to, the upper bound
of some subspace, in which case that subspace no longer needs to be searched.
Searching a subspace is done using an efficient process that applies a branch-and-
bound technique to avoid examining every coalition structure in that subspace
whenever possible. A distributed version of IP has also been developed, see [43]
for more details.

The IP algorithm can, in the worst case, end up searching the entire space, i.e.,
it runs in O(nn) time. In practice, however, IP has been shown to be significantly
faster than IDP given popular coalition-value distributions, and the bound that it
generates, i.e., β = UB∗/V (CS∗∗), has been shown to be significantly better than
those obtained by searching particular subsets as per the previous subsection.

An extended version of IP, called IDP-IP, was developed by Rahwan and Jen-
nings [52]. As the name suggests, this algorithm is a combination of IDP and IP;
it is based on the observation that IDP, even if not run to completion, can still pro-
vide useful information. Thus, the basic idea is to partially run IDP, and then use a
modified version of IP that can continue the search from where IDP has stopped.
This results in a hybrid performance that can be controlled by simply setting the
point at which IDP stops. In so doing, one can control the trade-off between the
desired features of both IDP and IP. For more details, see [52].

5.3.3 Integer Programming

A different anytime approach, compared to what we have discussed so far, is to
formulate the coalition structure generation problem as an integer program. More
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specifically, let C1,C2, . . . ,C2n denote the possible coalitions. Let z be an n× 2n

binary matrix, where every row represents an agent and every column represents
a coalition, so that zi, j = 1 if and only if ai ∈Cj. Finally, let us have 2n decision
variables, x1,x2, . . . ,x2n , where x j = 1 corresponds to Cj being selected in the
solution. The coalition structure generation problem can then be modeled as:

max ∑
j=1,...,2n

v(Cj) · x j subject to:

∑
j=1,...,2n

zi, j · x j = 1 for i = 1,2, . . . ,n

x j ∈ {1,0} for j = 1,2, . . . ,2n

With this formulation, it is possible to apply any integer programming solver.
However, this approach has been shown to be inefficient, e.g., even an industrial-
strength solver such as ILOG’s CPLEX was shown to be significantly slower than
both IDP and IP, and quickly runs out of memory as the number of agents in-
creases [57].

5.4 Metaheuristic Algorithms

In all the algorithms that were presented so far, the focus was on finding an opti-
mal solution, or a solution that is within a bound from optimum. However, as the
number of agents increases, the problem becomes too hard, and the only practical
option would be to use metaheuristic algorithms. Such algorithms do not guaran-
tee that an optimal solution is ever found, nor do they provide any guarantees on
the quality of their solutions. However, they can usually be applied for very large
problems. Next, we outline some of these algorithms.

Sen and Dutta [63] developed a genetic algorithm for coalition structure gen-
eration. This algorithm starts with an initial, randomly generated set of coalition
structures, called a population. After that, the algorithm repeats the following
three steps: (1) evaluation, (2) selection, and (3) recombination. More specif-
ically, the algorithm evaluates every member of the current population, selects
members based on the outcome of the evaluation, and constructs new members
from the selected ones by exchanging and/or modifying their contents.

Keinänen [35] proposed an algorithm based on Simulated Annealing – a
generic stochastic local search technique. At each iteration, the algorithm moves
from the current coalition structure to a coalition structure in its neighborhood,
where neighborhoods can be defined using a variety of criteria. More specifically,
the algorithm starts by generating a random coalition structure CS. Then, at ev-
ery iteration, it samples a random coalition structure CS′ in the neighborhood of
CS. If CS′ is better than CS, then the algorithm sets CS = CS′. Otherwise, it sets
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CS = CS′ with a probability e
V (CS′)−V (CS)

τ , where τ is the temperature parameter that
decreases after each iteration according to an annealing schedule τ = ατ, where
0 < α< 1.

A decentralized, greedy algorithm was proposed by Shehory and Kraus [66].
This algorithm ignores coalitions containing more than a certain number of agents.
It returns a coalition structure CS that is constructed iteratively in a greedy manner;
at every iteration, the best of all candidate coalitions is added to CS, where a
candidate coalition is one that does not overlap with any of the coalitions that were
added to CS in previous iterations. The search for the best candidate coalition is
done in a distributed fashion; the agents negotiate over which one of them searches
which coalitions. A significantly improved distribution mechanism was later on
proposed in [51].

Another greedy algorithm, which was put forward by Di Mauro et al. [42], is
based on GRASP – a general purpose greedy algorithm, which after each iteration
performs a quick local search to try and improve its solution [28]. In the coalition
structure generation version of GRASP, a coalition structure CS is constructed it-
eratively. Every iteration consists of two steps. The first step is to add the best
candidate coalition to CS, resulting in a set of pairwise disjoint, but not necessar-
ily exhaustive, coalitions, i.e., ∪CS ⊆ A. The second step is to explore different
neighborhoods of CS. These two steps are repeated until ∪CS = A. Furthermore,
the whole process of constructing CS is repeated over and over to try and find
better solutions. This algorithm has been shown to work particularly well, with
empirical results suggesting that it is the best metaheuristic algorithm for coalition
structure generation to date.

5.5 Coalition Structure Generation under Compact Represen-

tations

So far, we focused on the coalition structure generation problem under the char-
acteristic function representation (where the input consists of a value for every
possible coalition). In what follows, we briefly discuss several papers that con-
sider alternative, often more concise, representations.

5.5.1 Distributed Constraint Optimization

The Distributed Constraint Optimization Problem (DCOP) framework has re-
cently become a popular approach for modeling cooperative agents [44]. In this
framework: (1) each agent has a choice of actions, (2) reward is determined by the
combination of actions, and (3) the goal is for every agent to choose an action so
as to maximize the sum of the rewards. Ueda et al. [70] considered the coalition
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structure generation problem where the multiagent system is represented as one
big DCOP, and every coalition’s value is computed as the optimal solution of the
DCOP among the agents of that coalition.

At first glance, this might seem too computationally expensive since there are
2n possible coalitions. Thus, to find the optimal coalition structure, one might
need to solve 2n instances of the NP-hard DCOP problem. Interestingly, how-
ever, Ueda et al. showed that the process of finding an optimal, or near optimal,
coalition structure does not have to be divided into two independent stages: (1)
computing all coalition values, and (2) finding an optimal combination of disjoint
and exhaustive coalitions. Instead, the big DCOP that represents the multiagent
system can be modified so that those two stages are merged. This means the de-
sired coalition structure can be obtained by solving a single, modified DCOP.

The modification is controlled by a single parameter, called σ, which speci-
fies the maximum number of coalitions that are allowed to contain more than one
agent. We will call these multiagent coalitions. The basic idea behind the mod-
ification is to change every agent’s domain, i.e., set of possible actions. Specifi-
cally, every action d j in the original domain is replaced by σ actions, d j,1, . . . ,d j,σ,
where d j,i means that the agent performs action d j while joining the ith multiagent
coalition. The new domain also contains an action called “independent”, which
means that the agent acts independently. The modified DCOP can be solved using
any existing algorithm that can obtain an optimal solution, e.g., ADOPT [44] or
DPOP [49]. Assuming that the original number of possible actions per agent is d,
the search space size for the original DCOP is dn, while for the modified DCOP
it is (σd + 1)n. The following theorem implies that the optimal solution of the
modified DCOP is within a bound β=

⌊n
2

⌋
/σ from optimum.

Theorem 8.8 Let In
k ⊆ In be a set in which every integer partition contains at most

k integers that are greater than 1. Then, the best coalition structure in ∪I∈In
k
PA

I is
within a bound β=

⌊n
2

⌋
/k from optimum.

Proof. Assume that CS∗ contains � multiagent coalitions, where � > k. Let
C1, . . . ,C�−k be the �− k coalitions with the smallest values in CS∗. Let us split
each coalition Ci, i = 1, . . . , �−k, into single-agent coalitions; denote the resulting
coalition structure by CS′k. Clearly, CS′k ∈ ∪I∈In

k
PA

I . Furthermore, the total value
of C1, . . . ,C�−k is at most �−k

� V (CS∗), and the values of the single-agent coalitions
are non-negative. Hence, we have V (CS′k)≥ k

�V (CS∗). It remains to observe that
�≤ ⌊n

2

⌋
.
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5.5.2 Marginal Contribution Nets

Ohta et al. [45] studied the coalition structure generation problem under the basic
MC-net representation (see Section 4.3.1). Recall that a basic MC-net rule can
be written as (Pr,Nr) → ϑr: the interpretation is that a coalition that contains
all agents in Pr and none of the agents in Nr can earn a profit of ϑr. Ohta et
al. consider a restricted class of basic MC-nets, where for each r we have Pr �= /0
and ϑr > 0; it can be shown that any characteristic function can be represented
by such a restricted MC-net. They define a set of rules R′ ⊆ R to be feasible if
all the rules in R′ are applicable at the same time to some coalition structure. In
other words, R′ is feasible if there exists a coalition structure CS such that every
rule r ∈ R′ is applicable to some C ∈ CS. The problem of finding an optimal
coalition structure is then equivalent to the problem of finding a feasible set of
rules R′ such that ∑r∈R′ ϑr is maximized. While this problem is NP-hard, Ohta et
al. showed that it admits a mixed integer programming (MIP) formulation. Their
MIP is based on the observation that, for any two rules r,r′, the possible relations
between r and r′ can be classified into the following four cases:

• Compatible on different coalitions (CD): This is when Pr ∩ Pr′ = /0
and (Pr ∩Nr′ �= /0 or Pr′ ∩Nr �= /0). For example, ({a1,a2}, /0) → ϑ1 and
({a3,a4},{a1})→ ϑ2 are applicable at the same time in some CS as long as
a1,a2 appear in a coalition C ∈ CS and a3,a4 appear in a different coalition
C′ ∈ CS.

• Incompatible (IC): This is when Pr∩Pr′ �= /0 and (Pr∩Nr′ �= /0 or Pr′ ∩Nr �=
/0). For example, ({a1,a2}, /0)→ϑ1 and ({a2,a3},{a1})→ϑ2 are not appli-
cable at the same time, because the first requires a1 and a2 to appear together
in a coalition, while the second requires a2 and a3 to appear together in a
coalition that does not contain a1.

• Compatible on the same coalition (CS): This is when Pr∩Pr′ �= /0 and Pr∩
Nr′ = Pr′ ∩Nr = /0. For example, ({a1,a2}, /0)→ ϑ1 and ({a2,a3},{a4})→
ϑ2 are applicable at the same time to some coalition structure CS as long as
there exists C ∈ CS such that {a1,a2,a3} ⊆ C and a4 /∈ C. Note that both
rules apply to the same coalition.

• Independent (ID): This is when Pr∩Pr′ = Pr∩Nr′ = Pr′ ∩Nr = /0.

Consider a graphical representation of an MC-net in which every node is a rule,
and between any two nodes there exists an edge whose type is one of the four
cases described above. Then, the following holds:
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Theorem 8.9 A set of rules R′ is feasible if and only if (1) it includes no pair of
rules that are connected by an edge of type IC, and (2) for any two rules in R′
that are connected by an edge of type CD, it is not possible to reach one from the
other via a series of edges of type CS.

To understand the intuition behind the proof, consider an example of three rules,
r1,r2,r3. Suppose that for i = 1,2,3 we have ri = (Pi,Ni) → ϑi, where P1 =
{a1,a2}, N1 = /0, P2 = {a2,a3}, N2 = /0, and P3 = {a3,a4}, N3 = {a1}. Here,
r1 and r2 are connected by an edge of type CS. Thus, they must be applicable to
a single coalition in CS, say C′, such that P1∪P2 ⊆C′. Similarly, an edge of type
CS connects r2 and r3, and so they must be applicable to a single coalition in CS,
say C′′, such that P2∪P3 ⊆C′′. Now, since P1∪P2 overlaps with P2∪P3, and since
the coalitions in CS are pairwise disjoint, we must have C′ =C′′. This means that
r1,r2,r3 must all be applicable to the same coalition, i.e., the edge between r1 and
r3 must not be of the type IC or CD. However, in our example, we happen to have
an edge of type CD between r1 and r3. Therefore, any rule set containing r1,r2,r3
is not feasible.

Based on Theorem 8.9, Ohta et al. proposed the following MIP formulation.

max ∑
r∈R

ϑr · xr subject to:

xri + xr j ≤ 1 for each edge (ri,r j) of type IC (8.8)
ye

ri
= 0 for each edge e = (ri,r j) of type CD with j > i (8.9)

ye
r j

≥ 1 for each edge e = (ri,r j) of type CD with j > i (8.10)

ye
rk

≤ ye
r� +(1− xrk)+(1− xr�)

for each edge (rk,r�) of type CS (8.11)
ye

r� ≤ ye
rk
+(1− xrk)+(1− xr�)

for each edge (rk,r�) of type CS (8.12)
xr ∈ {0,1} for each r ∈ R

Here, we have a binary variable xr for every rule r, where xr = 1 means that r
is selected in the solution. Thus, condition (1) of Theorem 8.9 is enforced by the
constraint (8.8), which ensures that two rules connected by an edge of type IC are
never selected at the same time. Moreover, for every edge e of type CD or CS and
every rule r that is adjacent to this edge we define a variable ye

r . These variables
are used in constraints (8.9)–(8.12) to enforce condition (2) of Theorem 8.9. In
more detail, for every edge e = (ri,r j) of type CD with j > i constraints (8.9)
and (8.10) ensure that ye

ri
�= ye

r j
. Furthermore, for every edge (rk,r�) of type CS

the constraints (8.10) and (8.11) ensure that, if both rk and r� are selected, then
ye

rk
= ye

rl
. Thus, by enforcing both conditions of Theorem 8.9, we guarantee that

every solution to this MIP is a feasible rule set.
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5.5.3 Coalitional Skill Games

Bachrach et al. [4] considered the coalition structure generation problem in coali-
tional skill games (see Section 4.3.3). While this problem is, in general, very hard
computationally, Bachrach et al. showed that it admits an efficient algorithm as
long as the number of tasks m and the treewidth of a certain associated hyper-
graph are small. To describe their algorithm, we need a few additional definitions.

Given a skill game with a skill set S, its skill graph is a hypergraph g= 〈V,E〉 in
which every agent corresponds to a vertex, and every skill si ∈ S is represented as a
hyperedge esi ∈E that connects all agents that possess this skill. The “complexity”
of a hypergraph can be measured using the notion of treewidth. The following
definition is reproduced from [30] (an illustration is provided in Figure 8.3).

Definition 8.13 Given a hypergraph g = 〈V,E〉, a tree decomposition of g is a
tuple (Q,B), where B is a family of subsets of V (each such subset Bi ∈B is called
a bag), and Q is a tree whose node set is B such that: (1) for each e ∈ E there is a
bag Bi ∈ B such that e ∈ Bi ; (2) for each v j ∈V the set {Bi ∈ B | v j ∈ Bi} is non-
empty and connected in Q. The width of (Q,B) is maxBi∈B |Bi|−1. The treewidth
of g is the minimum width of (Q,B) over all possible tree decompositions (Q,B)
of g.

Figure 8.3: A skill graph and its tree decomposition with width 2.

Let CSG(m,w) be the class of all coalitional skill games where the number of
tasks is at most m and the treewidth of the corresponding skill graph is at most
w. We will now show that, for fixed m and w, the coalition structure generation
problem for a game in CSG(m,w) can be solved in time polynomial in the number
of agents n and the number of skills k (but exponential in m and w).

To start, observe that a single task can be performed multiple times by a single
coalition structure CS. To be more precise, a task that requires a skill which only
x agents share can be performed at most x times (this is when each one of those
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x agents appears in a different coalition in CS). Let d denote the largest number
of agents sharing a single skill; note that d ≤ w+ 1. Then a coalition structure
can accomplish at most dm tasks. Based on this, we will define a candidate task
solution as a set {Γi}h

i=1 where each Γi is a subset of Γ, and h ≤ dm. For every
coalition structure CS = {Ci}h

i=1, we say that CS accomplishes {Γi}h
i=1 if Ci ac-

complishes all tasks in Γi, for i = 1, . . . ,h. We say that {Γi}h
i=1 is feasible if there

exists at least one coalition structure that accomplishes it. Clearly, the total value
obtained by accomplishing these tasks is ∑h

i=1 F(Γi). The problem of finding an
optimal coalition structure is thus equivalent to the problem of finding a feasible
set of task subsets that maximizes ∑h

i=1 F(Γi). To solve this problem, it is suffi-
cient to iterate over all possible choices of {Γi}h

i=1: for each such choice we find
the coalition structure that accomplishes it, or determine that it is not feasible.
Next, we show how this can be done for a fixed set {Γi}h

i=1 in time polynomial in
n and k; the bound on the running time follows as the number of candidate task
solutions is bounded by (2m)dm ≤ (2m)(w+1)m.

To this end, observe that every coalition structure can be viewed as a coloring
of the agents, where all agents with the same color form a coalition. Based on
this, for each choice of {Γi}h

i=1, let us define a constraint satisfaction problem2

whose underlying graph is the skill graph g, where:

• the variables correspond to the agents;

• the domain (i.e., the possible values) of each variable (i.e., agent) consists
of the possible colors (i.e., the possible coalitions that the agent can join);

• For each skill s, we have the following constraint: For each i = 1, . . . ,h, if
some task in Γi requires s, then at least one agent in Ci possesses s.

To solve this “primal” constraint satisfaction problem, we first check if the
treewidth of g is bounded by w, and if so return a tree decomposition (this can
be done in time polynomial in n and k, see [30]). Then, to solve the primal prob-
lem, we define a “dual” problem. This is another constraint satisfaction problem
whose underlying graph is the tree decomposition of g and

• the variables correspond to the bags in the tree decomposition;

• the domain of every bag consists of the possible colorings of the agents
in the bag. The size of this domain is O(hw+1) = O(((w+ 1)m)w+1) since
every bag contains at most w+ 1 agents, and every agent has h possible
colors;

2For more details on constraint satisfaction problems, see [59].
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• the constraints are of two types. The first prevents an agent from getting
different colors in two neighboring bags. This, in turn, ensures that every
agent gets the same color in all bags (due to the structure of the tree decom-
position). The second type of constraints is exactly the same as the one in
the primal problem (i.e., if a skill is required for at least one task in Γi, then
at least one agent in Ci possesses that skill).

Note that a solution to the dual problem is in fact a valid solution to the primal
problem. Since the underlying graph of the dual problem is a tree, it can be solved
in time polynomial in n and k [4, 59].

5.5.4 Agent-Type Representation

Aziz and de Keijzer [3] and Ueda et al. [71] studied the coalition structure gener-
ation problem under the agent-type representation (see Section 4.3.4). Recall that
under this representation the game is given by a partition of the set of agents A
into T types A1, . . . ,AT and a type-based characteristic function vt : Ψ→R, where
Ψ= {〈n1, . . . ,nT 〉 | 0≤ ni ≤ ∣∣Ai

∣∣}. Thus, a coalition structure can be viewed as a
partition of 〈∣∣A1

∣∣ , . . . , ∣∣AT
∣∣〉. Formally, we have the following definition.

Definition 8.14 A type-partition of a coalition-type ψ = 〈n1, . . . ,nT 〉 is a set of
coalition-types λ = {〈n1

i , . . . ,n
T
i 〉}�i=1 such that 〈∑�

i=1 n1
i , . . . ,∑

�
i=1 nT

i 〉 = ψ. The
value of λ is computed as Vt(λ) = ∑�

i=1 vt(〈n1
i , . . . ,n

T
i 〉).

For example, {〈0,1,2〉,〈4,3,2〉} is one of the possible type-partitions of 〈4,4,4〉,
and Vt({〈0,1,2〉,〈4,3,2〉}) = vt(〈0,1,2〉)+ vt(〈4,3,2〉).

Thus, while we typically deal with “coalitions” and “coalition structures,” in
an agent-type representation we deal with “coalition-types” and “type-partitions.”
The problem of finding an optimal coalition structure is then equivalent to that of
finding an optimal type-partition of 〈|A1|, . . . , |AT |〉. For example, if we have four
types and five agents of each type, we need to find an optimal type-partition of
〈5,5,5,5〉. Two dynamic programming algorithms were proposed for this prob-
lem; both run in O(n2T ) time [3, 71]. We will present the one given in [3], since
it is easier to describe.

For any coalition-type ψ ∈Ψ, let us denote by f t(ψ) the value of the optimal
type-partition of ψ. Then, we can compute f t(ψ) recursively as follows [3]:

f t(ψ) =

⎧⎪⎨⎪⎩
0 if ni = 0 for i = 1, . . . ,T
max{ f t(〈n1− x1, . . . ,nT − xT 〉)+ vt(〈x1, . . . ,xT 〉)

| xi ≤ ni for i = 1, . . . ,T} otherwise.
(8.13)
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Based on this recursive formula, we can compute the optimal type-partition
by dynamic programming. Specifically, the algorithm works by filling two ta-
bles, namely R and Q, each with an entry for every coalition-type. Entry
R[〈n1, . . . ,nT 〉] of table R stores an optimal type-partition of 〈n1, . . . ,nT 〉, whereas
entry Q[〈n1, . . . ,nT 〉] of table Q stores the value of this type-partition. The algo-
rithm fills out these tables using (8.13), where “lower” entries are filled in first, i.e.,
if mi ≤ ni for all i = 1, . . . ,T , then 〈m1, . . . ,mT 〉 is dealt with before 〈n1, . . . ,nT 〉.
For each 〈n1, . . . ,nT 〉, the algorithm finds a coalition type 〈x1, . . . ,xT 〉 that maxi-
mizes the max-expression of (8.13), and then sets

Q[〈n1, . . . ,nT 〉] = Q[〈n1− x1, . . . ,nT − xT 〉]+ vt(〈x1, . . . ,xT 〉),
R[〈n1, . . . ,nT 〉] = R[〈n1− x1, . . . ,nT − xT 〉],〈x1, . . . ,xT 〉.

By the end of this process, we compute Q[〈|A1|, . . . , |AT |〉] and R[〈|A1|, . . . , |AT |〉],
which provide the solution to the coalition structure generation problem. Filling
out each cell of R and Q requires O(nT ) operations, and the size of each table is
|Ψ|< nT . Hence, the algorithm runs in time O(n2T ).

5.6 Constrained Coalition Formation

So far, we assumed that agents can split into teams in any way they like. How-
ever, in practice some coalition structures may be inadmissible. To deal with this
issue, Rahwan et al. [54] proposed the constrained coalition formation (CCF)
framework, which allows one to impose constraints on the coalition structures
that can be formed. Formally, a CCF game is a tuple 〈A,CS,v〉, where A is the
set of agents, CS is the set of coalition structures that are feasible (i.e., allowed
to form), and v is the characteristic function that assigns a real value to every
coalition that appears in some feasible coalition structure. Note that, in the gen-
eral case, the notion of feasibility is defined for coalition structures rather than
coalitions. For instance, if A = {a1,a2,a3,a4} and we define CS as the set of all
coalition structures in which all coalitions have the same size, then the coalition
structure {{a1},{a2},{a3,a4}} is not feasible, even though each of its component
coalitions may be a part of a feasible coalition structure.

There are, however, many settings of interest where the constraints implied by
CS can be reduced to constraints on individual coalitions. More formally, a CCF
game G = 〈A,CS,v〉 is locally constrained if there exists a set of coalitions C⊆ 2A

such that CS= {CS∈PA |CS⊆ C}. We will refer to the coalitions in C as feasible
coalitions.

To represent the constraints succinctly, the authors propose the use of propo-
sitional logic. More formally, let BA = {bi | ai ∈ A} be a set of Boolean variables,
and let ϕ be a propositional formula over BA, constructed using the usual classical
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connectives (∧,∨,¬,→, . . .). A coalition C satisfies ϕ if ϕ is satisfied under the
truth assignment that sets all bi with ai ∈C to true and all bi with ai �∈C to false.
For example, any coalition containing a1 and a2 satisfies ϕ= b1∧b2. It has been
shown that this language can represent any locally constrained CCF game, and
that it can be extended so as to represent any CCF game [54].

Rahwan et al. then define a natural subclass of locally constrained CCF games,
which they call basic CCF games. Intuitively, the constraints in a basic CCF game
are expressed in the form of (1) sizes of coalitions that are allowed to form, and
(2) subsets of agents whose presence in any coalition is viewed as desirable/pro-
hibited. The constraints of the former type are called size constraints, denoted as
S⊆ {1, . . . ,n}. As for the latter type of constraints, the desirable subsets of agents
are called positive constraints, denoted as P⊆ 2A, while the prohibited subsets are
called negative constraints, denoted as N ⊆ 2A. Thus, a coalition C is feasible if
(1) its size is permitted, i.e., |C| ∈ S, and (2) it contains at least one of the desirable
subsets and none of the prohibited ones, i.e., ∃P ∈ P : P⊆C and ∀N ∈N,N �⊆C.
We will denote the set of all such feasible coalitions as c(A,P,N,S).

The set of constraints in a basic CCF game can be transformed into another,
isomorphic set so as to facilitate both the process of identifying feasible coalitions
and the process of searching for an optimal feasible coalition structure [54]. This
transformation is based on the observation that, for any agent ai ∈ A, the coalitions
in c(A,P,N,S) can be divided into:

• coalitions that contain ai. For those, any constraint P ∈ P : ai ∈ P has the
same effect as P\{ai}. Similarly, any constraint N ∈N : ai ∈N has the same
effect as N\{ai}. Thus, every such P or N can be replaced with P\{ai} or
N\{ai}, respectively;

• coalitions that do not contain ai. For those, every positive or negative con-
straint that contains ai has no effect, and so can be removed.

Thus, the problem of dealing with c(A,P,N,S) is replaced with two simpler
problems; we can then apply the same procedure recursively. This process can be
visualized as a tree, where the root is c(A,P,N,S), and each node has two outgo-
ing edges: one leads to a subtree containing some agent a j and the other leads to a
subtree that does not contain a j. As we move down the tree, the problems become
simpler and simpler, until one of the following two cases is reached: (1) a case
where one can easily generate the feasible coalitions, which is called a base case,
or (2) a case where one can easily verify that there are no feasible coalitions (i.e.,
the constraints cannot be satisfied), which we call an impossible case (see [54] for
more details). This is illustrated in Figure 8.4 (A), where the edge labels ai and
ai indicate whether the branch contains, or does not contain, ai, respectively. By
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Figure 8.4: Feasible coalitions and coalition structures: given a basic CCF, (A)
shows how to generate feasible coalitions, while (B) shows how to generate feasi-
ble coalition structures.

generating the feasible coalitions in all base cases, one ends up with the feasible
coalitions in c(A,P,N,S).

The tree structure described above also facilitates the search for an optimal
feasible coalition structure. Indeed, observe that every such tree contains exactly
one path that (1) starts with the root, (2) ends with a leaf, and (3) consists of
edges that are each labeled with ai for some ai ∈ A. In Figure 8.4, for example,
this path is the one connecting c(A,P,N,S) to baseCase15. Now, let us denote by
A∗ the sequence of agents that appear in the labels of this path. For instance, in
Figure 8.4, we have A∗ = 〈a5,a2,a1,a8〉. Finally, let us denote by a∗i the ith agent
in A∗.

With these definitions in place, we can now present the coalition structure
generation algorithm in [54]; we will call this algorithm DC as it uses a divide-
and-conquer technique. The basic idea is to create lists, L∗1, · · · ,L∗|A∗|+1, where
L∗1 consists of the base cases that contain a∗1, each L∗i , i = 1, . . . , |A∗|, consists of
the base cases that contain a∗i but not a∗1, . . . ,a

∗
i−1, and L∗|A∗|+1 consists of the base

cases that do not contain a∗1, . . . ,a
∗
|A∗|. This is illustrated in Figure 8.4 (B). Impor-

tantly, by constructing the lists in this way, we ensure that every feasible coalition
structure contains exactly one coalition from L∗1, and at most one coalition from
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each L∗i , i > 1. Thus, the algorithm picks a coalition, say C1, from some base case
in L∗1, and checks whether {C1} is a feasible coalition structure. If not, then the
agents in C1 are added to the negative constraints of all base cases in L∗2. This
places further constraints on the coalitions in those base cases, so as to ensure
that they do not overlap with C1. Next, the algorithm picks a coalition, say C2,
from some base case in L∗2, and checks whether {C1,C2} is a feasible coalition
structure, and so on. Eventually, all feasible coalition structures are examined. To
speed up the search, the algorithm applies a branch-and-bound technique (see [54]
for more details). This algorithm was compared to the integer programming for-
mulation in Section 5.3.3, where z contains a column for every feasible coalition,
instead of a column for every possible coalition. This comparison showed that DC
outperforms the integer programming approach by orders of magnitude.

6 Conclusions

We gave a brief overview of basic notions of cooperative game theory, followed
by a discussion of a number of representation formalisms for coalitional games
that have been proposed in the literature. We then presented several algorithms
for finding an optimal coalition structure, both under the standard representation,
and under the more succinct encodings discussed earlier in the chapter. There are
several other approaches to the optimal coalition structure generation problem,
which we were unable to cover due to space constraints; this problem continues
to attract a lot of attention from the multiagent research community due to its
challenging nature and numerous applications.

We would like to conclude this chapter by giving a few pointers to the lit-
erature. Most standard game theory textbooks provide some coverage of coop-
erative game theory; the well-known text of Osborne and Rubinstein [47] is a
good example. There are also several books that focus exclusively on cooperative
games [11, 15, 48]. A very recent book by Chalkiadakis et al. [13] treats the topics
covered in the first part of this chapter in considerably more detail than we do, and
also discusses coalition formation under uncertainty. However, its coverage of the
coalition structure generation problem is much less comprehensive than ours.

7 Exercises

1. Level 1 Compute the Shapley values of all players in the two variants of the
ice cream game described in Example 8.2. Do these games have non-empty
cores?
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2. Level 1 Argue that any n-player induced subgraph game can be represented
as a basic MC-net with O(n2) rules.

3. Level 1 Given the characteristic function shown in Table 8.1, where the
value of the grand coalition is 165, identify the optimal coalition structure
using the same steps as those of the integer partition-based (IP) algorithm.

4. Level 1 Write the pseudo-code of the dynamic programming (DP) algo-
rithm for coalition structure generation.

5. Level 2 Prove Propositions 8.2–8.5.

6. Level 2 Construct a non-monotone game in which some player’s Shapley
value is 0, even though this player is not a dummy.

C:|C|=1 v(C) C:|C|=2 v(C) C:|C|=3 v(C) C:|C|=4 v(C)

{a1} 20 {a1,a2} 40 {a1,a2,a3} 70 {a1,a2,a3,a4} 110
{a2} 10 {a1,a3} 30 {a1,a2,a4} 70 {a1,a2,a3,a5} 140
{a3} 30 {a1,a4} 30 {a1,a2,a5} 60 {a1,a2,a4,a5} 100
{a4} 30 {a1,a5} 40 {a1,a3,a4} 60 {a1,a3,a4,a5} 150
{a5} 10 {a2,a3} 40 {a1,a3,a5} 40 {a2,a3,a4,a5} 100

{a2,a4} 20 {a1,a4,a5} 80
{a2,a5} 30 {a2,a3,a4} 70
{a3,a4} 20 {a2,a3,a5} 50
{a3,a5} 65 {a2,a4,a5} 75
{a4,a5} 35 {a3,a4,a5} 75

Table 8.1: Sample characteristic function given five agents.

7. Level 2 Consider two simple games G1 = (A,v1) and G2 = (A,v2) with the
same set of players A. Suppose that a player i ∈ A is not a dummy in both
games. Can we conclude that i is not a dummy in the game G∩ = (A,v∩),
with the characteristic function v∩ given by v∩(C) = min{v1(C),v2(C)}?
What about the game G∪ = (A,v∪), where v∪ is given by v∪(C) =
max{v1(C),v2(C)}?

8. Level 2 Prove that any outcome in the core maximizes the social welfare,
i.e., for any coalitional game G it holds that if (CS,x) is in the core of G,
then CS ∈ argmaxCS∈PAV (CS).
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9. Level 2 Argue that the problem of finding an optimal coalition structure in
a weighted voting game is NP-hard.

10. Level 2 Prove that the running time of the dynamic programming algorithm
described in Section 5.2 is O(3n).

11. Level 2 Provide a formal proof of Theorem 8.6.

12. Level 3 For every pair (L1,L2) of complete representation languages con-
sidered in Section 4.3, find a family of games that can be compactly repre-
sented in L1, but not in L2, or prove that any game that admits a succinct
encoding in L1 also admits a succinct encoding in L2.

13. Level 3 Write an implementation of the different metaheuristic algorithms
outlined in Section 5.4, and run experiments to compare those algorithms
and identify their relative strengths and weaknesses. Are there other meta-
heuristic algorithms that can be used for coalition structure generation?

14. Level 3 All the algorithms in Section 5 were developed for settings where
(1) overlapping coalitions are prohibited, and (2) every coalition’s value is
not influenced by the coalition structure to which it belongs (unlike in a
partition function game, where a coalition’s value in one coalition can be
different than that in another). Extend one of those algorithms so as to deal
with settings where the aforementioned assumptions do not hold.

15. Level 4 Elkind et al. [24] show that the problem of computing the least core
of a weighted voting game admits a pseudopolynomial algorithm as well as
an FPTAS. The pseudopolynomial algorithm extends to the nucleolus [26];
however, it is not known if the problem of computing the nucleolus admits
an FPTAS. Develop an FPTAS for this problem, or prove that this is not
possible (under a suitable complexity assumption).
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Chapter 9

Trust and Reputation in Multiagent

Systems

Jordi Sabater-Mir and Laurent Vercouter

1 Introduction

In open multiagent systems, agents are autonomous and therefore their behavior
is not deterministic. On the one hand, this is a desirable feature essential to the
nature of the multiagent paradigm. The designer of an agent has to take into ac-
count the autonomy of other agents while programming the way it will interact
with them. This relaxes constraints on other agents’ behavior and makes adapta-
tion during run-time a must for any agent that wants to be competitive. On the
other hand, autonomy also brings vulnerabilities. An agent cannot assume that
the other individuals will behave following the same code of conduct. Each agent
has different interests that do not necessarily agree with the interests of the others.

Similar to what happens in human societies, artificial societies need some kind
of mechanism to guarantee a certain degree of control. Traditionally, the control in
electronic environments has been approached only from a computational security
perspective. The field of trust-based computing has been interested in develop-
ing secure systems aimed at preventing a set of well-defined attacks. Proposed
solutions often rely on cryptography algorithms. Public-key infrastructures and
trusted platform modules are examples of secure systems using asymmetric key
algorithms [9]. Even if these techniques can be used to ensure specific properties
such as authentication or message integrity, they do not secure a multiagent sys-
tem regarding aspects like the truth of messages or the subjective fulfillment of a
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service. Furthermore, with this approach it is required that there exists a few reli-
able trusted third parties to provide public and private keys, credentials, or secure
deployment infrastructures. These assumptions are unrealistic if decentralization
and openness are necessary features.

Control has then to be implemented with an approach compatible with the
specific characteristics of open multiagent systems. The term soft security has
been proposed by Rasmusson and Jansson [32] to refer to control techniques that
provide a degree of protection without being too restrictive for the system devel-
opment. The general idea is to provide social control mechanisms that do not
prevent every occurrence of undesirable events but that are able to adapt the sys-
tem to prevent them from appearing again in the future. Trust and reputation
mechanisms have been working in human societies for a long time to implement
soft security.

Inspired by its importance in human relations, the use of social trust and rep-
utation in agent interactions has been proposed. Their use is dual. From a local
perspective, they are integrated into an agent decision process when it involves
other agents in order to decide with whom to interact. From a global perspec-
tive, they can be used as social control mechanisms [5]. The particularity of social
control mechanisms is that the individuals themselves are in charge of supervising
each other. Fear of ostracism is used as a deterrent. An agent that does not behave
as expected would be distrusted by its neighbors and socially excluded.

The implementation of trust and reputation mechanisms for software agents
needs first an explicit representation of these social evaluations. Section 2 sum-
marizes the different formalisms used to represent them. Then, sections 3 and 4
describe the processes required to implement, respectively, trust and reputation
mechanisms. Finally, the connections between trust and other agreement tech-
nologies are described in section 5.

2 Computational Representation of

Trust and Reputation Values

There is not a unique way to represent trust and reputation values. Existing mod-
els use different formalisms, its choice being justified by the type of reasoning
the agents have to do. The two main characteristics of this choice are the sim-
plicity and the expressiveness of values. It is, however, difficult to combine these
two characteristics as they are rather opposite, and a trade-off between them has
usually to be done. The advantages of having a simple representation is that
it facilitates the calculation functions and the reasoning mechanisms. However,
simplicity implies less information and therefore the kind of reasoning that can be
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done is less sophisticated. On the other hand, expressive values require more com-
putational and storage capacity as well as complex reasoning algorithms to take
advantage of that expressiveness. This section shows some of the representations
that can be used for trust and reputation values.

2.1 Boolean Representation

The most simple representation for a trust evaluation is using a Boolean. True
means the trustee is trustworthy (regarding some behaviors) while False means
the other way around. This representation is very limited and rarely used in cur-
rent models. Trust (like reputation) is a notion eminently graded and therefore it
is important to be able to express how much you trust. It is true that humans use
expressions like “I trust him” where the notion of trust seems to be Boolean. How-
ever, this kind of sentence refers to the issue of a trust decision process rather than
an internal mental representation of the trust value. Section 3 explores this dual
nature of trust. Notice that this kind of representation is not useful for reputation
values.

2.2 Numerical Values

The second representation in terms of simplicity, both applicable to trust and rep-
utation models, is the use of a real or an integer value. In this case we say that
the trust in an agent X is 0.4 or that the reputation of agent Y is −1. This is by
far the most used representation. Usually real values in the interval [−1,1] (e.g.,
the ReGreT model [35]) or [0,1] (Sen & Sajja [40]) are used. Less frequently,
you can also find integer values in the intervals [0,10] or [−5,5] although it is not
restricted to these ranges (see for example the Sporas model [50], which uses the
range [0,3000]). In this representation the value is the degree of trust (distrust) or
the degree of good (bad) reputation.

The complete order attached to this data type is also useful in comparing sev-
eral agents. We can then say that two agents A and B are trusted (distrusted) but
that we trust (distrust) A more than B if its trust value is higher (lower) than the
one attached to B.

The range of possible values may attach a specific semantics to some values.
Case in point, it is often assumed that the value 0 in the range [−1,1] represents a
neutral behavior. The values below 0 would then be considered as degrees of dis-
trust (bad reputation) while the ones above are degrees of trust (good reputation).
However, the semantics of numerical values is ambiguous and not well defined.
The exact meaning of a trust or reputation value is left to the agents’ local interpre-
tation. For instance, a given agent may consider that 0.6 represents a very good
trust value while another agent would interpret it only as a correct value. This
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ambiguity brings about interoperability problems in the event that agents have to
exchange their own values.

2.3 Qualitative Labels

Although the numerical representation makes the implementation of the model
easier, one aspect that has to be considered is that trust and reputation are vague
by nature. Humans usually use expressions like “Her reputation is very good” or
“I trust her quite a lot.” They are based on subjective and imprecise information
and therefore some authors claim it makes no sense to talk in terms of exact values
to describe trust and reputation. Is a trust of 0.6 really different from a trust of 0.7
in terms of making trust decisions? Probably not, so in order to express this lack
of precision inherent to both concepts, some models use finite sets of labels in an
ordered set to give value to trust and reputation. Usually the set {bad, neutral,
good} or the set {very_bad, bad, neutral, good, very_good} are used. These sets
are mapped to integer numbers so in fact it is a way of reducing the number of
output values to simplify the decision-making process. An example of a model
using this kind of representation is that of Abdul Rahman & Hailes [1]. With this
representation, the loss of a fine grain comparison of trust and reputation values
is compensated by a universally recognized semantics. Of course, it requires that
the agents share the same set of labels. Another advantage of this representation
is that it is more friendly in case the values have to be interpreted by humans.

2.4 Probability Distribution and Fuzzy Sets

The previous representations have some limitations in terms of expressiveness.
For example you cannot express polarized behaviors (always good or bad, never
in the middle). Therefore, some models advocate for a richer representation and
one of these representations is the use of a discrete probability distribution over
a sorted discrete set. A paradigmatic example of this kind of representation is
the one used in RepAge [37]. Figure 9.1 shows a graphical representation of
evaluations as used in RepAge. The probability distribution is represented using
a bar chart over the discrete set of labels. Figure 9.1-a shows an evaluation that
states that with a probability of 0.75 the behavior of the agent will be very bad
(vb) and with a probability of 0.25 it will be bad (b). Figure 9.1-b states that
the behavior of the agent has a probability of 0.5 of being very bad (vb) and a
probability of 0.5 of being very good (vg), that is, an agent that is capable of the
best and the worse but will never behave in between. Finally Figure 9.1-c typifies
an agent that is completely unpredictable.

Similar is the use of fuzzy sets as in the AFRAS [3] model. In AFRAS, a repu-
tation value is a fuzzy set over a range that goes from 0 to 100. The representation
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Figure 9.1: Representing reputation as a probability distribution.

Figure 9.2: Representing reputation using fuzzy sets.

takes advantage of the linguistics modifiers in fuzzy sets. Figure 9.2 shows how
linguistic modifiers affect a fuzzy set representing a reputation value. The idea
is that in adding these modifiers the issuer expresses the degree of precision of
the reputation value represented by the fuzzy set (for example, “somewhat right”
expresses less precision than “extremely”). This is reflected in the wideness of the
fuzzy set and is interpreted as a measure of reliability of the reputation value, in
other words, “the reliability of reputation is implicitly represented in the shape of
the fuzzy set.”

2.5 Trust and Reputation as Beliefs

The final objective for an agent regarding trust and reputation values is to be able
to reason about them in order to make decisions. This requires a certain degree
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of integration between the trust and reputation model and the rest of the elements
of the agent. Integration is essential if we consider deliberative architectures, and,
more specifically, one of the most successful architectures in the MAS field, the
BDI architecture (see Chapter 1). As we said, trust and reputation are meant to
be used in agents’ reasoning mechanisms, so they have to be represented in the
same way as any other mental states. Therefore in a BDI architecture, the trust
and reputation values should be represented in terms of beliefs. Using beliefs to
represent trust or reputation raises two main issues. The first one is to define the
content and the semantics of this specific belief. The second issue consists of
linking the belief to the aggregated data grounding it.

The content of a trust or a reputation belief has to include in the representa-
tion all the constitutive elements of that belief. For instance, if we rely on the
socio-cognitive theory proposed by Castelfranchi and Falcone [6] claiming that
“an agent i trusts another agent j in order to do an action α with respect to a
goal ϕ", the formal representation has to be able to express all this information.
More specifically, it means that trust is about an agent and has to be relative to a
given action and a given goal. Such a formalization has been done in the ForTrust
model [16] by the definition of a specific predicate OccTrust(i, j,α,ϕ) holding for
specific instances of a trustor (i), a trustee ( j), an action (α), and a goal (ϕ). The
OccTrust(i, j,α,ϕ) predicate is used to represent the concept of occurrent trust,
which refers to a trust belief holding here and now.

The problem of linking beliefs to an aggregation and weighting of values (for
example, using a numerical representation of trust and reputation) has been tack-
led in the BDI+RepAge [30] by the integration of the RepAge model with a BDI
architecture. The link consists of transforming each one of the probability values
of the probability distribution used in RepAge into a belief. Following the defi-
nition that reputation is “what a social entity says about a target regarding his/her
behavior” (see Section 4 for a discussion of this definition), the final belief that
will be introduced in the belief data base of the agent will be a belief that reflects
the certainty that the corresponding evaluation is communicated among the agents
in the group. The approach used in BDI+RepAge is based on LBC [27], a belief
language and logic that makes it possible to ground the reputation values into be-
liefs and then reason about them. Among other things, LBC introduces a belief
predicate S representing what is believed to be said in the community.

For example, from a reputation value calculated by RepAge that says that the
reputation of agent j playing the role seller is Rep( j,seller, [0.6,0.1,0.1,0.1,0.1])
where the probability distribution is defined over the discrete set

{V BadProduct,BadProduct,OKProduct,GoodProduct,V GoodProduct},

the system would generate the set of beliefs shown in Figure 9.3. The predicate
S(buy( j),GoodProduct,0.1,seller) for example, represents the belief “people say
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Figure 9.3: Reputation as beliefs in the BDI+RepAge model.

that the probability of receiving a good product from the seller j is 0.1.” Notice
that the belief is about what people say, and not about the quality of j as a seller.

One relevant aspect here is that because the reputation/trust can be represented
in the agent’s mind as a belief (or set of beliefs), it can be used like any other belief
to perform a standard BDI reasoning without extending the BDI model.

2.6 The Reliability of a Value

Till now we have been talking about how to represent a trust or reputation value.
However, the fact that the model can give us a value doesn’t mean that that value is
reliable. To what extent do we have to take into account a trust or reputation value
in order to make a decision? Are the foundations of that value strong enough to
base a decision on it?

To solve that problem, some models add a measure of the reliability that the
trust or reputation value has. The most used and straightforward approach is to
associate a number to the trust or reputation value that reflects how reliable it
is. The calculation of this number is based on several aspects regarding how,
in turn, the trust or reputation value has been calculated. Aspects that can be
taken into account are the number of opinions grounding the value, variance of
those opinions (more variance implies less reliability), recency of the opinions,
credibility of the informers, and so forth.

As we said, if the representation method is based on fuzzy sets, an alternative
is to associate the representation of the reliability to the wideness of the fuzzy sets.
Therefore, a wide fuzzy set represents a value that is not very reliable, whereas a
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narrow fuzzy set reflects the contrary. In other words, the shape of the fuzzy set
reflects implicitly the reliability of the reputation value.

3 Trust Processes in Multiagent Systems

A definition of trust that is commonly accepted in the field of multiagent systems is
the one proposed by Gambetta [13]: “Trust is the subjective probability by which
an individual, A, expects that another individual, B, performs a given action on
which its welfare depends.” In this definition, trust is an estimation, a prediction
of the future or, as Marsh [23] says, “an expectation about an uncertain behavior.”
From a cognitive perspective, this expectation is a psychological attitude.

Castelfranchi and Falcone [6] stress a second nature of trust: trust as an act.
Trust is also the “decision and the act of relying on, counting on, depending on
[the trustee].” Therefore, trust is both (i) a mental state of the agent (an evaluation)
and (ii) a “decision and intention based on that disposition.” This second nature
of trust links the evaluation with the decision-making process. Analyzing the
computational trust models in the literature, it is obvious that almost all the effort
has been directed to calculating trust evaluations ignoring the motivational aspect.
Only recently some models have been proposed which aim at considering trust in
its full dimension.

3.1 General Overview of Trust-Related Processes

The dual nature of trust, both epistemic and motivational, should be taken into
account while adopting a multiagent perspective, since it allows us to separate
naturally two stages: trust evaluation and trust decision. Figure 9.4 shows an
overview of the main processes and data involved in multiagent trust models. The
figure shows how an agent, called the trustor, can use the different sources of
information to decide if other agents, called the trustees, are trustworthy or not in
order to take some actions.

Trust evaluations and trust decisions are the central parts of the model and
correspond to the two steps that a trust process has to follow: evaluation and
decision making. Trust evaluations can be seen as a summary of all the beliefs,
mental states, and values known by the trustor to assess trustees. Two elements
feed trust evaluations: images and reputation. An image, as defined by Conte and
Paolucci [7], is “an evaluative belief; it tells whether the target is good or bad
with respect to a given behavior.” Images are the result of an internal reasoning
on different sources of information that leads the agent to create a belief about the
behavior of another agent. As shown in Figure 9.4, there are three sources that
agents can use to create images.
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Figure 9.4: The dual nature of trust.

• Direct experiences: direct interactions between the trustor and the trustee.
This source is usually considered as the most reliable because it comes from
a direct perception without intermediaries. An exception would be if the
sensors of the agent that allow it to perceive the interaction are not reliable.
Almost every multiagent trust model uses the agents’ direct experiences as
a source for image calculation.

• Communicated experiences: information coming from other agents that is
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communicated to the trustor. This information describes an interaction be-
tween the trustee and an agent different from the trustor. It is possible that
this information is transmitted through several agents following a commu-
nication chain. Sharing experiences is a way to improve the convergence
of image calculation as it increases the number of inputs. However, this in-
formation source may be unreliable since agents can provide false reports.
Most of the existing trust models [1, 17, 35, 40, 46, 49] use third-party in-
formation for image calculation.

• Social information: the hierarchical position of the trustee in the society,
the social relations with other known individuals, or the role the agent plays
in the society are social aspects that can be incorporated in a trust model to
calculate images. A prototypical example of a model that makes extensive
use of this kind of information is the ReGreT model [35].

Besides images, a trustor can use reputation as a source for trust. Reputation is
available since the agent evolves in a society in which social evaluations are com-
municated. Reputation should not be confused with communicated experiences.
This concept and its social construction are detailed in section 4.

The second step described in the figure is the trust decision process. The goal
of this process is to determine if a trustee should be trusted for a given task. The
trustor is now in a situation where it is in its own interest that the trustee behaves
in an expected way, and the trustor has to decide if it will intend to rely on the
trustee. Obviously, trust evaluations are considered to make this decision. But the
decision should also take into account the current context since trustworthiness
may depend on it. For example, I can trust my car mechanic to fix correctly my
car (the trust evaluations indicate he or she is a good mechanic), but I need my
car urgently and I see that my mechanic has many cars waiting to be repaired.
Although he or she is a good mechanic I know that my mechanic will not be able
to do a good job in that context. In that context probably it is better to choose
another mechanic with worse trust evaluations but with more availability.

We have seen the general structure of a trust model. In the following subsec-
tions we will go in depth in the different aspects of trust.

3.2 Trust Evaluations

The trust calculation process consists of building images from inputs coming from
several information sources. Each information source reports experiences with
the trustee. Two kinds of sources must be distinguished here: the experiences
coming from interactions between the trustee and the trustor themselves, and the
experiences communicated by other agents. The first case is often considered as
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the most reliable source of experience because it is assumed that the trustor has
a correct perception of its own interactions and of its local satisfaction criteria.
Communicated experiences are useful to increase the input size of the trust cal-
culation process so that the resulting value is more accurate. However, they may
also introduce noise or false information in case agents have different satisfac-
tion criteria (e.g., one agent considers an interaction as satisfactory while another
one may have considered it differently), or if some agents create fake experience
reports (e.g., a group of malicious agents trying to recommend each other).

The nature of the inputs as well as the chosen formalisms for trust evaluations
have an influence on the trust calculation process.

3.2.1 Filtering the Inputs

Although it can be useful at some moment to talk about trust as a general property,
almost all of the time the agent will consider trust associated with a certain behav-
ior. For example, I may trust a given student to write a good article but not to cook
a good meal, and I maintain both evaluations to be used depending on the context.
Trust models [16, 17, 33, 35, 46] that include such contextual elements usually as-
sociate the experiences and the images with agents’ skills, agents’ personal traits,
or to general conditions. Therefore, in order to build different images associated
with different behaviors or agent characteristics, a trust calculation function will
take into account only a subset of the available experiences about the trustee. On
the other hand, communicated experiences are not always reliable and their reli-
ability depends on the source of the communication. Given that, the selection of
the experiences to be considered as inputs should rely on:

• the context of the experience, including descriptive elements of the interac-
tion (e.g., a kind of query or a delegated task), the satisfaction criteria used
to evaluate the experience, or the environmental conditions;

• the information source that has generated the experience.

The computation of images from communicated experiences should be made
with caution. Sen et al. [39] have shown that it is not in the interest of selfish
agents to share their opinions. The effect of several malicious agents collaborat-
ing to send fake experiences may be disastrous for the accuracy of trust decisions.
To avoid this, an agent has to learn which agents are reliable sources and which
ones are not. In fact, it has to evaluate the trustworthiness of other agents as infor-
mation sources. For that purpose, a trustor usually compares, for a given trustee,
its own direct experiences with the communicated experiences sent by a recom-
mender. The distance between the experiences is used to assess the relevance of
the recommender as an information source for future communicated experiences.
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Depending on the models, this trust evaluation of agents as information sources
is used to weight the influence of communicated experiences [37, 43, 49] or to
adjust the content of communicated experiences [1].

One problem that can appear when considering communicated experiences is
the correlated evidence problem [26]. This happens when several agents observe
a single interaction and then communicate about it. Because normally the interac-
tion is not identified in a communication, a third-party agent can receive several
communications from those agents, which seem to be different experiences while
in fact all of them refer to the same interaction. This problem is difficult to solve
if the identification of the interaction cannot be made explicit (something that is
quite usual). A possible solution [35] is to use social network analysis to identify
clusters of socially related agents. It is known that social groups tend to unify
their point of view due to the large amount of common experiences and the in-
tense communication among their members. Because of this, we can assume that
the individuals belonging to one of these clusters probably share a common opin-
ion regarding third-party agents. By asking only the most relevant member of the
group, we can obtain a representative opinion of the whole group while avoiding
the correlated evidence problem.

3.2.2 Statistical Aggregation

The most direct way to define an image is to represent it as a single value. In that
case, trust calculation consists of considering, as inputs, several reports about the
trustee and in using a function that produces, as an output, the image. The calcu-
lation function strongly depends on the type of inputs (experiences) and outputs
(images). Thereby, the inputs and outputs are often represented in a similar way.

In the widespread approach that consists of representing trust within a discrete
or a continuous set, the calculation function uses data type operators to merge all
the experiences into a single value. One approach is to represent images in tuples
with the form t(a,c, td) in which a is the trustee, c a context, and td a value where
td ∈ {vt, t,u,vu}. These possible values correspond to an evaluation, respectively,
of very trustworthy, trustworthy, untrustworthy, and very untrustworthy. The cal-
culation of an image is done by a trustor by considering the number of direct ex-
periences it had with the trustee a in the context c, estimated as very good, good,
bad, or very bad. For instance, if most of its experiences have been judged very
good, it will consider the trustee as very trustworthy. Among the first works in the
field, the trust model proposed by Abdul-Rahman and Hailes [1] is an example of
that approach.

Numerical representations offer a larger set of operators to be used for trust
calculation. The most used operator by far is the average of the inputs. In Schillo
et al. [38], for instance, an image of a trustor i about a trustee j is calculated as
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the percentage of the number of positive behaviors (noted p) of j observed by i
among all the behaviors (noted n) of j observed by i, that is, T j

i = p
n .

Usually the inputs are graduated (for example in the range [−1,1]) and instead
of a simple average, a weighted average is used. The weights depend on param-
eters like the recency of the input, the credibility of the source, and so on. This
is the case, for example, of the ReGreT system [35] that uses a time dependent
function to weight the inputs of the average.

The use of probability distributions opens new possibilities of aggregation as
explored in the work by Sierra and Debenham [41]. In what they call “Ideal En-
actment,” the agent has an ideal probability distribution that represents “the best
that the agent could reasonably expect to happen.” Given that, the measure of
trust is the relative entropy between this ideal distribution and the outcomes (that
are expressed as punctual probability distributions) and communications about
the trustee behavior (represented also as probability distributions). The same ap-
proach can be used also to measure the level of certainty (or reliability) of a trustee
by calculating the relative entropy between the outcomes. In both cases, a lower
entropy means the agent is more trustworthy/reliable.

3.2.3 Logical Beliefs Generation

When trust evaluations are represented as beliefs, the problem of determining
the trustworthiness of a trustee consists of generating these beliefs. The trust
calculation process cannot be implemented here as a statistical function. It should
rather define which elementary constitutive beliefs are necessary to build trust.

Only very few trust models represent formally the evaluations as beliefs and
perform logical inference on them. For many applications a numerical approach
based on statistical aggregations is enough. However, given the nature of trust, a
cognitive view is an interesting perspective that makes it possible to build agents
that deal with trust in a more “human like” way. This makes it easier for the
owners of the agents to understand and foresee how the agents behave, which
increases their confidence in them. It also has the advantage of using a formalism
that can be easily integrated into BDI reasoning processes.

The distinction between trust evaluation and trust decision implies here that
we have to consider two different kinds of beliefs. We focus here on the case
of trust evaluation (the formal logic representation of trust decision is covered
in section 3.3.2). In order to keep persistent beliefs, trust evaluations have to be
represented in a way such that all the specific conditions for which an agent is
trusted are encapsulated in the belief. This kind of belief is called dispositional
trust. An agent is thus considered as trustworthy whenever some conditions are
satisfied.

The constitutive elements of trust have been identified in the socio-cognitive
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theory of trust presented in [6]. They consist of internal and external attributions
about the trustee:

• the internal attribution of the trustee means that it should have the intention
of behaving as expected;

• an external attribution of the trustee means that it should be able to act as
expected and to achieve the goal for which a trust decision is required.

Bringing together all these parameters, dispositional trust of a trustor toward a
trustee is relative to an action to perform, a goal to achieve, and some contextual
conditions that should hold. An informal example of dispositional trust belief
is DispTrust(Alice,Tom, in f orm(weather),know(Alice,weather),asked(Alice,
Tom,weather)). This belief mentions that Alice trusts Tom for performing the ac-
tion in f orm(weather) and by this action to achieve the goal know(Alice,weather)
whenever the condition asked(Alice,Tom,weather) holds.

A prototypical example of a model that follows this approach is the ForTrust
model [16], which proposes an epistemic formalization of dispositional trust:

DispTrust(i, j,α,ϕ,κ) def
= PotGoali(ϕ,κ)∧

BeliG
∗((κ∧ChoiceiFϕ)→ (Intends j(α)∧Capable j(α)∧After j:αϕ))

Dispositional trust is believed to be true for a truster i toward a trustee j for
doing an action α in order to achieve a goal ϕ when the conditions κ hold if the
truster has potentially the goal ϕ when κ holds (PotGoali(ϕ,κ)), and if the truster
believes that when it has the goal ϕ and when κ holds (κ∧ChoiceiFϕ)), the trustee
j intends to perform α (Intends j(α)), is capable of doing it (Capable j(α)), and
has the power to satisfy ϕ by doing α (After j:αϕ)). The condition κ is used to
contribute to the multidimensionality of the model (together with the action α).
It represents a general context that can be a state of the world, for example, the
previous sending of a query from i to j to perform α.

3.3 Trust Decision

The last step of a trust model is the decision process that corresponds to the con-
cept of trust as an act. If the decision is positive (negative), the trustor will intend
to act in a way such that it trusts (distrusts) the trustee. Of course, trust evalua-
tions are considered in a prominent way in that decision. However, they have to
be taken into account according to the specific conditions of the current situation,
mainly the contextual elements and the motivations of the trustor. The representa-
tion formalism used for trust evaluations directs the form of the decision process.
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3.3.1 Single Trust Values and Probability Distributions

Trust evaluations represented as a single value, either Boolean, qualitative, or nu-
merical, require a simple decision process. This is usually done by comparing the
value to a given threshold. If the trust value (corresponding to the context of the
decision if different trust values are maintained for a given trustee but in differ-
ent contexts) is above the threshold, the issue is to trust the trustee. Otherwise,
it is distrusted. Marsh and Briggs [24] propose to use two thresholds: one for
trust and one for distrust. The distrust threshold is obviously lower than the trust
threshold. This makes it possible to have three possible outputs of the decision:
trust, distrust, or uncertainty (in the case that the trust value is in between the two
thresholds).

The value of the thresholds depends on the importance of the decision for the
trustor and the risk tolerance. This is a way to integrate its self-motivations in the
decision process. If the stake is high, the trustor should use a high trust threshold,
whereas if the stake is low, it can be less careful in its trust decision.

When trust is represented as a probability distribution, a usual approach is to
transform the probability distribution to a single value so it can be compared with
the threshold. One possibility is to calculate the center of mass of the distribution
and use that value for the comparison with the threshold.

3.3.2 Trust Beliefs

When trust is represented as a belief in a BDI-like architecture, the result of a trust
decision influences the agent’s intentions. Intentions are the mental states that
drive an agent’s actions. Thus, trust “as an act" consists of having the intention
to rely on a trustee, the content of the intention depending on the nature of the
decision. It can be a task to delegate, a query to send, an expected behavior, etc.

The trust belief resulting from a trust decision corresponds to the concept of
occurrent trust as it has been introduced in section 2.5. Occurrent trust is a trust
attitude that holds here and now. It means that, given the current contextual con-
ditions and a goal that the trustor wants to achieve now, the trustor trusts a trustee
for performing now a given action that will achieve the goal. Occurrent trust is
obviously linked to the concept of dispositional trust. More precisely, occurrent
trust is inferred from dispositional trust if the trustor has currently the associated
goal and if the specific conditions of the dispositional trust hold. Formally, this
relation is represented in the ForTrust framework [16] by

DispTrust(i, j,α,ϕ,κ)∧ChoiceiFϕ∧Beliκ→ OccTrust(i, j,α,ϕ)
This rule states that the trustor i should decide to trust a trustee j to perform

an action α in order to achieve a goal ϕ if agent i: (i) has the corresponding
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dispositional trust when the conditions κ hold; (ii) has the goal ϕ; (iii) believes
that the conditions κ currently hold.

3.4 Coping with the Diversity of Trust Models

This section has shown that there exists various ways to represent and calculate
trust. But if models differ in their formalisms or the implementation of calcula-
tion and decision processes, they all follow mainly the same steps represented in
Figure 9.4 – consisting of gathering experiences, computing trust evaluations, and
then deciding if an agent should be trusted or not.

However, differences exist and the existent diversity generates two important
challenges: how to compare trust models and how agents using different trust
models can exchange information about trust. The exchange of trust information
is discussed in section 5.5.

Regarding the comparison of trust models one of the most successful initia-
tives is the ART testbed. The ART testbed [12] was developed as a common
comparative tool in order to evaluate the performances of trust (and reputation)
models. As the authors claim, the ART testbed was designed to serve in two
roles:

• as a competition forum in which researchers can compare their technologies
against objective metrics, and

• as an experimental tool, with flexible parameters, allowing researchers to
perform customizable, easily-repeatable experiments.

Several competitions were organized between 2005 and 2008. But the ART com-
petitions have also emphasized the limitations of statistical approaches. The best
trust models performed well in the specific scenario of the testbed but it was not
really possible to explain the reasons for this good performance nor to exploit
lessons for real applications. Moreover, it has been shown that different trust mod-
els were not able to exchange trust information because of the high heterogeneity
of representations. Interoperability between heterogeneous trust models [45] re-
quires a rigorous semantical definition of trust concepts. Sociological groundings
are necessary to define a precise semantics to trust concepts that would facilitate
interoperability with other software agents but also with a human trust decision.

4 Reputation in Multiagent Societies

A Vietnamese proverb says: “After death, a tiger leaves behind his skin, a man his
reputation.” Reputation has been present in human societies since the beginning
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of time as a social mechanism that helps these societies to regulate the behavior
of their individuals. Apart from this social functionality, reputation also has an
individual dimension, acting as one of the main sources used by individuals to
build trust relations.

Similar to what happens with the notion of trust, many definitions of what
reputation is can be found in the literature, some of them mixing (wrongly) the
concept of reputation with that of trust or assuming as general some properties
that cannot always be taken for certain. We will base our definition on the work
by Pinyol et al. [27]. In this work the authors define an ontology for reputation
that at the same time is based on the previous work by Sabater et al. in the RepAge
model [37].

We define reputation as “what a social entity says about a target regarding
his or her behavior.” Let’s take apart this definition. A “social entity” is defined
as a set of individuals plus a set of social relations among these individuals or
properties that identify them as a group in front of its own members and the society
at large. Ruben [34] defines a social entity as “a group which is irreducible to the
sum of its individual members, and so must be studied as a phenomenon in its
own right.” Examples of social entities in human societies are companies, sport
clubs, neighborhoods, street bands, etc. Notice we are talking about a group of
individuals without trying to individualize. It is not what A, B, or C are saying
at an individual level but what they say in the name of the group as a whole.
When we talk about reputation we lose track of the single individuals, which
constitute the group that is responsible for the reputation value. This property is
important because this allows reputation to be an efficient mechanism to spread
social evaluations by reducing retaliation fear [28]. Because it is the social entity
that is responsible for the evaluation and not the issuer at an individual level, the
degree of responsibility that the issuer takes is much less. This allows the issuer
to be more inclined to spread the evaluation even if it is not so sure about it.

The second important aspect is regarding the word “says.” In the computa-
tional reputation models literature, reputation is also defined as the “opinion” that
a social entity has about a target. We prefer to use the word “says” because it
stresses two other important aspects of reputation. First that the reputation is not
necessarily a belief of the issuer and second that reputation cannot exist without
communication. It makes no sense to talk about reputation if there is no exchange
of evaluations. You could imagine a social entity in which its individuals share
an evaluation but there is no communication among them and with the rest of
the society. In that case we cannot talk about reputation but only about a shared
evaluation. Reputation only appears when the evaluation is communicated and
circulates, being identified as an evaluation associated with the social entity and
not with the individual who is performing the communicative act. In this case the
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fact that the opinion is believed to be true or not by the communicator is irrelevant.
In fact, an individual can help to spread a reputation believing that the truth is the
contrary. What is relevant is that it is communicated and attributable to the social
entity.

Finally, reputation (like trust) is always associated with a specific behav-
ior/property. It makes no sense to talk about reputation as a general property
and, when it is done, it is because the object of the reputation is implicit.

4.1 Reputation-Building Process

The number of reputation models has increased a lot the last few years and it
will continue to increase given the relevance these models have for multiagent
societies. The goal of this section is not to make an exhaustive analysis of each
current model (for these you can refer to one of the many reviews available in the
literature [19, 21, 31, 36]) but to show how the calculation of reputation has been
approached from the point of view of multiagent systems and to present the main
advantages and drawbacks of each approach.

Figure 9.5 shows the main elements that can be taken into account to cal-
culate reputation values. Basically there are three sources that can be used to
evaluate reputation: communicated image/third-party image, communicated rep-
utation, and social information.

4.1.1 Communicated Image as a Source for Reputation

This is the most used mechanism to calculate the reputation of a target in computa-
tional models. Basically it consists of aggregating the images that other members
in the society communicate and taking this aggregation as the reputation value.
The communication can be the image that the agent who is performing the com-
munication has regarding the trustee, or a third-party image that is being com-
municated. The use of image to evaluate a reputation requires that at a certain
moment the agent moves from a shared evaluation to a reputation. This implies
losing track of the individual agents and generalizing to the social entity. In other
words, it implies moving from “individuals A, B, and C have an image regarding
agent D that is very good” to “the reputation that agent D has from the point of
view of the social entity α is very good,”1 where A, B, and C (and probably many
more individuals) belong to social entity α.

Although many models use this approach, very few take the step from the
communicated images to reputation correctly. Taking the step from a set of com-
municated images to a reputation implies two assumptions: (i) that the evaluation

1For the sake of clarity we have omitted the object of the reputation in this example.
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Figure 9.5: Reputation evaluation.

is being communicated and (ii) that the individuals who share the image are a
good sample of what the whole social entity thinks. The former is usually ful-
filled (we know the image exists because it is communicated) but very few models
take into account the latter. Usually, as soon as the first communicated image is
received, the model already gives a reputation value. Generalizing a reputation
value just from a few images is not very reliable. To lessen the effects of this,
some models incorporate a measure of the reliability that a reputation value has
(see section 2.6). An example of a model that takes this into account is the Re-
GreT system [35]. What in ReGreT is called the witness reputation is nothing
else but a reputation calculated from communicated images. ReGreT uses social
information to detect the most representative and credible members of a social
entity (those that can represent better the general thinking of the group) and uses
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those images to build the reputation. Moreover, it assigns to each reputation value
a reliability value that reflects how confident the model is on that calculation. The
reliability value is based on the credibility of the individuals whose images are
used to build the reputation.

4.1.2 Communicated Reputation

This is probably the most straightforward source to evaluate reputation. It is based
on the aggregation of information about reputation received from third parties.
This information source depends heavily on having trusted informants that have a
good knowledge of the society. This should not be confused with the reputation
based on communicated images. Here the informants are communicating directly
about reputation values. They are claiming what the reputation value is without
necessarily agreeing that the value is coherent with the image that they really have
regarding that target. The level of individual compromise the informant is mak-
ing here is quite less than that in the communication of images. Although the
agent can still be judged by the fact that it is spreading that reputation value, it is
detached from the value of the reputation. In other words, the agent is only a trans-
mitter of the information, whereas in the case of an image it is also the generator.
Again, as in the case of communicated images, at some moment the system has
to move from “agents A, B, and C say that the reputation of D in the social entity
α is good” (what we call a shared voice) to “The reputation of D according to the
social entity α is good,” which is a reputation evaluation. This step is dependent
on the context and is usually based on the number of communications as well as
the credibility of the informers.

4.1.3 Inherited Reputation

We call inherited reputation the reputation that is directly inherited from third-
party agents with whom the subject has some kind of social relation or the reputa-
tion associated with the role the subject is playing in the society. In all these cases
the reputation does not depend on the behavior of the subject but on certain prop-
erties the subject is supposed to inherit from its social position. For example, the
director of a research institute is supposed to be a good researcher because the role
of director is supposed to be assigned to good researchers. So even before inter-
acting with him or her, the reputation as a good researcher is assumed. Similarly,
social relationships can transmit default reputation. For instance, an employee
who works for a certain company inherits the reputation of that company or a
member of a family inherits the reputation of its ancestors.

Although social information is not yet a usual source to calculate reputation,
some current models have started to use it to improve the lack of more direct



Chapter 9 401

knowledge. The ReGreT [35] model makes an extensive use of inherited reputa-
tion. Specifically it takes into account inherited reputation coming from the role
the agent is playing (what they call system reputation) and inherited reputation
coming from the social relations (what they call neighborhood reputation). The
FIRE [17] model also uses the information about the role to calculate what they
call role-based trust. This role-based trust is, in spite of its name, a reputation
value inherited from the reputation that that role has in the society and that is
automatically transformed into a trust value.

When we talk about an object instead of an individual, reputation can be in-
herited also through other kinds of structural relations. For example, if a scientific
journal has a good reputation, a paper published in it inherits part of this reputa-
tion just because there is a relation “part of.” One model that takes into account
the structural relation to calculate reputation is that of Osman et al. [25]. The pro-
posed algorithm makes it possible to calculate how the reputation propagates in a
structural graph taking into account the structural relations among individuals/ob-
jects.

Inherited reputation is usually used as a starting approach to the actual rep-
utation value. Once the agent starts interacting with the other agents and has
enough information to use images as a source for reputation or starts receiving
communicated reputations, inherited reputation should be overwritten by those
more reliable sources.

4.1.4 Putting It All Together

As it happens in the trust evaluation, to obtain a reputation evaluation the agent
has to mix the different sources that influence reputation (communicated images,
communicated reputation, and inherited reputation). There is no specific rule that
says what the right way is to mix the sources, and this is because this process is
highly dependent on the context and the self-motivations (or, in other words, the
environment and the beliefs and goals of the agent). Many models use a weighted
mean to aggregate the sources. For instance, in the ReGreT [35] model the rep-
utation of an agent b from the point of view of an agent a is calculated using the
formula

Ra→b(ϕ) = ∑
i∈{W,N,S,D}

ξi ·Ra i→b
(ϕ)

where {W,N,S,D} correspond to the different types of reputation considered (in
this case, witness, neighborhood, system, and default reputation, respectively).
The weights ξi are calculated taking into account the reliability of the value
(RL

a i→b
(ϕ)) and a heuristic that establishes a preference order among the source

types.
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ξW = RL
aW→b

(ϕ)

ξN = RL
a N→b

(ϕ) · (1−ξW )

ξS = RL
a S→b

(ϕ) · (1−ξW −ξN)

ξD = 1−ξW −ξN −ξS

Using a fixed heuristic can be a problem in highly changing environments.
In the previous example the information coming from third-party agents (witness
reputation) is considered to be more relevant than the reputation inherited from
the role (system reputation). What will happen if the agent starts operating in an
environment full of liars and where the information obtained from third parties is
always wrong? The agent should be able to adapt the weights to this new scenario
giving more relevance to the sources that are providing more reliable information.

4.2 Centralized vs. Decentralized Models

One aspect that has special relevance and that clearly separates computational
reputation models in two groups is the kind of architecture for which the model is
designed. There is indeed a clear distinction between centralized and decentral-
ized reputation systems. Both approaches have benefits and drawbacks and are
adapted to different environmental conditions.

4.2.1 Centralized Approaches

A central service is responsible for collecting the raw information (images, social
relations, etc.) from individuals in a social entity and for calculating a reputa-
tion value using an aggregation mechanism. This value is then available to the
individuals as a measure of reputation.

A centralized reputation system has the following advantages:

• The reputation value is supposed to be calculated using all the information
available to the individuals. All of the community is contributing to improv-
ing the reputation value calculation and therefore that value should be more
accurate.

• Given that usually there is a lot of information to make the calculation,
possible wrong or biased information provided by a few individuals has
less of a bad impact on the final value.
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• The fact that reputation values are public allows newcomers to benefit from
this information even without having any previous knowledge about the so-
ciety.

But it also brings some drawbacks:

• The individuals have to trust the central service regarding the impartiality
of the calculation.

• The mechanism used to calculate the reputation is not taking into account
personal preferences and biases.

• The central repository is a bottleneck for the system. That means that it
introduces a system vulnerability in case of failure of the central service. It
may also cause a system overload or slowness in case agents require very
frequent access to reputation values and send a huge amount of queries and
data to the central repository.

• Providing information to a central authority can create a security problem
in certain domains. Aspects like social relations, for example, are difficult
to collect in a central repository given their sensitive nature. Related to
this, it has been observed that when the source for calculating reputation is
based on images, people avoid giving bad evaluations in central repositories
because there is fear of retaliation [8], making the calculated reputation too
optimistic.

The most well-known centralized reputation mechanisms are those used in
online auctions like eBay [10] or Internet review sites like epinions [11]. These
models, clearly oriented towards human users, rely on the possibility of reading
the textual comments that others have left. Therefore the reputation value usu-
ally is used as an indicator that is complemented and fine tuned by reading the
textual comments. Another characteristic of these models is that they are used in
environments with many (thousands or even millions) users where the repeated
interactions among the same partners are scarce. All these models only use com-
municated images as a source for reputation evaluation.

4.2.2 Decentralized Approaches

The decentralized approach relies on the individual information that each agent
can obtain about the society. This information can be images and reputation values
coming from third-party agents but also can be information about social relations,
roles, etc.

Decentralized approaches have the following advantages:
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• It is not necessary that a centralized service stores the individual evaluations
and performs the calculation of the reputation value. No trust of an external
central entity is necessary.

• They are suited to build scalable systems (such as peer-to-peer networks) as
they do not introduce any bottleneck.

• Each agent can decide the method that it wants to follow to calculate repu-
tation.

But they imply the following drawbacks:

• It can take some time for the agent to obtain enough information from the
rest of the society to calculate a reliable reputation value. It is not so easy
for newcomers to start using reputation in a society that does not have a
centralized reputation service.

• It demands more complex and “intelligent” agents as they need to encap-
sulate processes for reasoning on reputation messages received, calculating
reputation, and deciding when to communicate reputation to others.

Many multiagent models fall in this category (ReGret [35], Travos [43],
FIRE [17]).

4.3 Using Reputation

The concept of reputation is tightly linked to the one of trust. It has a dual function
of being used for and with trust. In the first case reputation is considered as a
source for building trust. In the second case reputation is seen as “an intermediate
solution to the problem of social order” [7].

4.3.1 Reputation as a Source of Trust

As we have seen in section 3, reputation is one of the elements that can contribute
to building trust in a trustee. Usually reputation is used when there is a lack of
direct information. This is how it is used for instance in the ReGreT model [35].
In that model what is called direct experience is the main source for building trust,
but if that source is not available, the model relies on reputation. Specifically, the
model considers three types of reputation values, depending on the information
source: information from third parties, social relations, and roles.
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4.3.2 Reputation for Social Order

The word social order is used in sociology to refer to a set of linked social struc-
tures, social institutions, and social practices that conserve, maintain, and enforce
“normal” ways of relating and behaving. The same nature of reputation incen-
tivizes “socially acceptable conducts (like benevolence or altruism) and/or forbids
socially unacceptable ones.”

The possibility of being excluded is the main deterrent used by reputation
mechanisms. In a society that uses reputation, if you follow the norms and have
an acceptable behavior2 you will be rewarded with greater opportunities to interact
with the other members of the society, while if you behave against the norms you
will be excluded and ostracized.

Notice that both functions of reputation are intimately related. The fact that
reputation is used from an individual point of view to evaluate the behavior of
others is exactly what allows reputation to be a mechanism for social order from
a social perspective and vice versa.

4.4 Pitfalls When Using Reputation

As any mechanism for social order, reputation is prone to receive attacks from
malicious agents. In this section we describe the most common attacks identified
in the literature [18]. We note that defense methods against attacks are usually
prone to give false positives if they are not used cautiously. For example, when
the unfair ratings attack (see Section 4.4.1) is combined with collusion (see Sec-
tion 4.4.5), it is easy to regard those that are actually correct ones to be unfair. The
solution for that is to delay the decisions coming from the defense mechanisms
until there is a high degree of certainty and several indicators (not only one) have
given clear signals. A compromise, depending on the context, between waiting
for clearer signals and acting against the attack is necessary.

4.4.1 Unfair Ratings

An unfair ratings attack occurs when an agent sends deliberately wrong feedback
about interactions with another agent. This can be both sending bad feedback
while knowing the interaction was good (badmouthing) or sending good feedback
while knowing that it was bad. A typical approach described in the literature
to decrease the effect of unfair ratings is to give more weight to the opinions of
those agents that in the past have demonstrated more accuracy in their opinions.
In other words, more weight is given to those agents that have acquired a better
image/reputation as informers.

2The definition of what is an acceptable behavior is fixed by the society itself.
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4.4.2 Ballot-Stuffing

Ballot-stuffing is an attack in which an agent sends more feedback than interac-
tions it has been involved in as a partner. The main counterattacks described in the
literature are filtering feedback that comes from peers suspected of ballot-stuffing,
and using feedback per interaction rates instead of per accumulation of feedback.

4.4.3 Dynamic Personality

An agent that achieves a high reputation can attempt to deceive other agents by
taking advantage of this high reputation. A specific case of this attack is what is
known as the “value imbalance exploitation” where the agent provides a number
of low value, high-quality services (to get a good reputation) and a small num-
ber of deceptive, high-value services. A commonly used technique to make the
reputation mechanism robust to dynamic personality attacks is to have a memory
window so that not all the past history is taken into account. An even more ro-
bust mechanism is to have a dynamic memory window that is shortened when the
reputation is lowered. In the case of a “value imbalance exploitation,” the key is
to use the value of the service to weight the impact that that specific service will
have on the final reputation.

4.4.4 Whitewashing

Whitewashing occurs when an agent changes its identifier in order to escape pre-
vious bad feedback. A more sophisticated attack happens when whitewashing is
combined with collusion and unfair ratings. A group of malicious agents collude
to allow whitewashing by using unfair ratings to increase the reputation of the
agent who has just changed personality. This is no different than a Sybil attack
(see Section 4.4.6).

4.4.5 Collusion

Collusion occurs when a group of agents cooperate with one another in order to
take advantage of the system and other agents. This is not an attack “per se” but
an enhancer of other attacks. Collusion is difficult to counter. A possibility is to
detect an important and recurrent deviation in the feedbacks of different agents
regarding the same targets. If that detection leads to identifying a small group of
agents that keeps recommending each other (while other agents provide a different
feedback), this group can be suspected of collusion and excluded from the system.
However, this detection is hard to perform if there is no global view of the agent
society or if there is a high number of colluding agents.
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4.4.6 Sybil Attacks

Sybil attacks are a sort of security threat that can be launched in scenarios in which
it is easy to create fake identities. The attack consists of creating enough identi-
ties so that a single agent can subvert the normal functioning of the system. An
example of a Sybil attack would be the improvement of one’s reputation through
artificial feedback from many Sybil identities.

4.4.7 Reputation Lag Exploitation

All reputation mechanisms have an inertia, that is, when the behavior of an agent
changes, it takes some time for the reputation to reflect the new reality. This
is necessary to avoid having reputation values that oscillate from one value to
another in reacting to the minimum change, and depending on the model, this
inertia can be bigger or smaller. This attack consists of using this lag that the
reputation mechanism needs to reflect the new reality and exploiting it to obtain
benefit. The malevolent agent increases the reputation to a certain point and then
starts defrauding – taking advantage of the good reputation while the reputation
value is still high. Once the reputation decreases, it starts again to show a good
behavior to increase again the reputation, repeating the cycle. The solution to this
attack can rely on two aspects. First, adjusting the reaction time of the reputation
mechanism so it reacts quickly enough to changes in the behavior. Second, giving
the agent the possibility of detecting patterns that show this cyclic behavior in the
reputation value.

5 Trust, Reputation, and Other Agreement

Technologies

Trust and reputation contribute to agents’ representation models and decision pro-
cesses. It is natural to integrate them into an agent architecture in which they have
to be combined with other agent reasoning processes. The combination of trust
and reputation concepts with other agreement technologies is promising (and at
the same time necessary) as there can be a reciprocal contribution of the technolo-
gies. We sketch in this section existing connections between trust and reputation
and other subfields of multiagent systems: argumentation, negotiation, norms, or-
ganizations, and semantics.
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Rep(a,seller,VB)

Comm(b,Rep(a,seller,VB)) Img(b,inf,VG)

SharedEval(b,inf,VG)

Comm(c,Img(b,inf,VG))

S1

SharedEval(b,inf,VB)

Comm(d, Img(b,inf,VB))

Attack

S2

Figure 9.6: Example of argument for a reputation value.

5.1 Argumentation

In a scenario with autonomous entities that have to interact and at the same time
maintain self-interest goals, it is normal to have disagreements. This makes it
necessary to establish dialogues to try to reach a consensus. This is a central
problem in the field of argumentation (see Chapter 5).

We can see the relation of trust and reputation models to argumentation from
two different perspectives (that at the same time are complementary):

• Argumentation for trust/reputation: Arguments can be used to explain a
trust/reputation value. A straightforward approach is to provide to the other
agent the “raw” data that has been used to calculate the value [38], where by
“raw” data we mean the data that still has not been evaluated by the agent.
This raw data can be seen as the argument that gives support to the value.
The main drawback of this approach consists of the problem of privacy in
providing basic data like contracts or other kinds of sensitive information,
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which in very few occasions can be distributed. A more sophisticated ap-
proach is to use arguments built using more abstract and generic elements
that hide the sensitive information but at the same time give enough in-
formation to participate in an argumentation dialogue and reach an agree-
ment [27]. For example, instead of giving the details of the contracts that
are responsible for a bad reputation, you can communicate something like
the argument S1 in Figure 9.6, where the exact details (the contracts) are
substituted by qualitative and more abstract predicates.

In the figure, we can see in argument S1 that the reputation regarding
agent a as a seller is very bad (Rep(a,seller,V B)) and that this value has
been obtained (i) from a communication from agent b that says that the
reputation of agent a as a seller is very bad (Comm(b,Rep(a,seller,V B))
and (ii) from one image that says that agent b is a very good in-
former (Img(b, in f ,V G)). The image is supported by a shared evaluation
(SharedEval(b, in f ,V G)) that at the same time is supported by a commu-
nication from agent c saying that the image of agent b as an informer is
very good (Comm(c, Img(b, in f ,V G))). In the example, this argument is at-
tacked by argument S2, which says that agent b as an informer is very bad
(SharedEval(b, in f ,V B)) and that this is supported by a communication
from agent d (Comm(d, Img(b, in f ,V B))). Notice that the kind of informa-
tion provided in the dialogue is much more abstract than the transmission of
specific interaction details. The nice thing here is that the agent can decide
the level of detail that it wants to reveal depending on who the partner is:
from high-level reputation and image values as in the example, to low-level
contract outcomes where the details of the interaction are made explicit.

• Trust/reputation for argumentation: In this case trust and reputation are not
the object of the argumentation process but mechanisms that help to decide
about the reliability of the arguments. During an argumentation dialogue
about a social evaluation, it can be either that the object of the evaluation is
known by the two agents but they disagree on the value (that is the case in
the example in Figure 9.6 where there is a disagreement about the quality
of b as an informer) or that the attack is based on information that the first
agent did not know before (for example new information that reveals that b
is not a good informer). In both cases (especially in the latter) the trust in
the agents that are sending the information and their reputation as informers
are crucial elements that can be used to decide about the acceptance of the
argument/attack. Therefore, if the sender of the information is a trustworthy
agent, I can accept what it says without having any further certainty or even
if the information contradicts what I know.
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5.2 Negotiation

As stated in Chapter 4, the capacity to negotiate with other agents is a skill usually
demanded of an autonomous agent. Similar to what happens with argumentation,
the relation between trust/reputation and negotiation models can be at different
levels:

• Trust negotiation was first introduced in trust management systems in
the field of computational security. Trust management systems, such as
KeyNote [2], propose to assess trust based on credentials provided by the
trustee. Negotiation is involved when there is an exchange between the
trustor and the trustee to agree on a given set of credentials corresponding
to the stake or the risk of the transaction [47]. A matter of concern for the
trustee may be to deliver the minimum set of required credentials to preserve
as much as possible its privacy [48].

• Trust/reputation models can be used to evaluate a partner as a negotiator.
This is not very different from using them to evaluate any other character-
istic of that partner. Knowing the trustworthiness of the possible partners
as negotiators can help an agent to balance (i) the quality of the service the
partners potentially can offer and (ii) the actual possibilities for the agent to
obtain that quality after a negotiation process.

5.3 Norms

According to the definition of Marsh [23], trust (and by extension reputation)
refers to an expectation about an uncertain behavior. Trust evaluations are built
based on the compliance of past behavior of the trustee and are used by the trustor
to predict the trustee’s future behavior. Even if the expectations are often hidden
in the trust calculation function, they can also be made explicit by using norms.
The use of norms is covered in more depth in Chapter 2, in particular, for situa-
tions in which norms are used by electronic institutions in order to control agents’
behaviors.

The concept of norms has various implementations in multiagent systems. In
the categories of norms identified by Tuomela [44], rules (r-norms for Tuomela)
represent hard constraints that have to be respected in a society, social norms
(s-norms) consist of preferences shared by a group of individuals, and personal
norms (p-norms or m-norms) are individual expectations. Rules are usually en-
forced by electronic institutions. But this solution requires an intrusive control of
agents and the centralization of some tasks by trusted third parties. If such charac-
teristics are not feasible or not desired, trust and reputation acting as social control
mechanisms can be used to enforce agents to behave as expected.
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Trust is then used to assess the agent’s norm obedience [22]. When individual
norms are considered, trust evaluations are subjective and performed locally by
agents. Contracts may also be used to make explicit the trustor’s expectations.
The distance between the outcome of a transaction and the initial contract is then
an experience to consider as an input of trust calculation (e.g., Regret [35] uses
such experiences). With global norms attached to groups or to the whole society,
the expectations are attached to a set of agents. Each agent of the group should use
trust mechanisms to contribute to social control by supervising the compliance of
its neighbors’ behavior to rules and social norms. Trust models that attach trust
evaluations to given norms [14, 42] are able to represent different trust values
about the same trustee and provide a multidimensional evaluation covering local
and global norms.

5.4 Organizations

Besides norms, other organizational concepts bring interesting properties when
combined with trust and reputation. When agents are organized in groups, it is
therefore possible to place some information at a group level. Reputation for
instance can be attached to an explicit group of agents, and an agent may have
different reputations in different groups. The reputation concept is represented in
this way in the ForTrust model [16] by the predicate Reput(I, j,α,ϕ,κ) stating
that agent j has the reputation in the group I to achieve ϕ by doing α when the
conditions κ hold. An explicit representation of the group I is required to be
integrated with the formal representation of reputation.

A generalization of trust assessments can be done using the concept of roles.
Trust is then attached to agents but also to general roles. There is a mutual relation
between role-based and agent-based trust. An agent’s behaviors influence the trust
attached to its role but the evaluation of the agent also depends on the trust about
its roles. It is then possible to estimate the trustworthiness of an agent without
any prior experience with it, by considering the role it is playing. However, it is
essential that roles are defined and explicitly attached to agents. Sometimes, roles
represent stereotypes of agents and are built dynamically by clustering agents ac-
cording to exhibited characteristics [15].

5.5 Ontologies and Semantics

We have already mentioned the large number of trust and reputation models avail-
able and that this number is increasing quickly. We have seen that they are very
different from one another and do not only represent trust and reputation using dif-
ferent mathematical formalisms but also define the essential concepts in different
ways. Therefore, it seems clear that when two agents in an open MAS exchange
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information regarding trust and reputation, some kind of ontology mechanism is
necessary to guarantee that the exchanged information has meaning for both. Ex-
pecting that both agents are using the same model is not realistic in open MAS,
but even if they are using the same model, there is no guarantee that the informa-
tion can be directly reused. The fact that agents can have different goals makes
the evaluation of an interaction something completely subjective and therefore the
trust and reputation values can be based on elements that not necessarily coincide
with each partner’s interests.

One solution to this problem is the use of a common ontology. Till now there
have been only two ontologies [4, 29] specifically oriented to trust and reputation.
The ontologies define a set of terms related to trust and reputation unambiguously
so every agent that adopts the ontology can use it as a bridge to communicate with
the other agents regarding trust and reputation. The ontology of Pinyol et al. [29]
also establishes how to make the conversion between different types of trust and
reputation values representations. For example, it provides a way to represent a
reputation value initially represented as a probability distribution as a real number.
This way, a model using internally a real value to represent trust values can use
information coming from an agent that uses probability distributions.

This, however, does not solve the problem of subjectivity. Although the agents
can share the meaning of what is an image, a reputation, or a shared voice, this
does not mean that they also share the scale of values associated with each con-
cept. Moreover, the interests of the agents may be different, and so their eval-
uations of a particular event may be different as well. Something that is good
for one agent, but can be very bad for another. One possible solution, as pro-
posed by Koster et. al. [20], is that the agent aligns its trust model with that of
its partner prior to starting to consider social evaluations coming from it. This
alignment process however is not an easy task and requires a considerable amount
of shared information between the two agents. In order to reduce the amount of
previously shared information, another solution is to use argumentation as we saw
in the previous section when we were talking about the use of argumentation for
trust/reputation. Justifying a communicated value can give clues to the receiver
about what the motivation is for that value and if that motivation can adapt to its
situation. The idea is to use argumentation dialogues to “understand” why the
other agent is giving that social evaluation. By doing that, the agent can decide
to modify its own beliefs, adapt the information that it receives, or simply discard
that information.
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6 Conclusions

There is no doubt that computational trust and reputation models have become an
important topic in the area of MASs. Currently it is almost inconceivable to de-
ploy an agent in an open multiagent system without giving that agent the capability
of evaluating the trust of partners. At the same time, the nature of a MAS makes
necessary mechanisms of social control like reputation to guarantee its good func-
tioning. It is this relevance that resulted in a large number of computational trust
and reputation models being proposed in the last few years. However, the fact
that this topic is a crossroad of different disciplines (psychology, sociology, cog-
nitive science, artificial intelligence, economics, etc.) makes it difficult and slow
to achieve a consensus even on the main definitions.

The initial and mainstream approach was to define mathematical functions
computing a single or a small set of trust values from a set of inputs (usually ob-
servations of agents’ behaviors). Recently this tendency has changed and now
much more effort is dedicated to semantical aspects with the objective of building
trust and reputation representations that are closer to the real concepts involved in
human relations. This is mainly due to the fact that MAS are currently seen as a
global system populated not only by artificial entities but also by human beings.
Therefore, the old agent that knew about computational protocols and languages
and was using black boxes to make the calculations is not yet enough. The new
challenge is a new generation of agents that can communicate (in the broad sense
of the word) with humans. To achieve that, more cognitive approaches that take
into account not only the final value but also the “path” that carries one to that
value are appearing. The motivations behind these two approaches mainly depend
on the nature of the trust decisions to be made. For instance, if we need an au-
tomatic decision that should make accurate predictions, mathematical approaches
are relevant. If it is important to be precise in the semantics of the concepts a
symbolic socio-cognitive approach seems more suited. It is however nonsense
to oppose these two approaches. They should indeed be seen as complementary
and modern trust and reputation models should now provide accurate computation
mechanisms that lead to the instantiation of well-defined concepts.

Another important challenge is the integration of the trust and reputation mod-
els with the rest of the elements of the agent. The black box and reactive approach,
where the trust and reputation model is a passive element of the architecture wait-
ing for queries about the trust or reputation value assigned to a possible partner,
may be satisfactory for simplistic applications but is clearly insufficient for more
complex MAS. We have to see the trust and reputation module as an element
that can justify the returned values if it is necessary and participate in the deci-
sion making in a proactive way, proposing actions that improve the knowledge the
agent has about the society.
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This integration has to be also at the level of other agreement technologies:
How can the agent use argumentation mechanisms to improve the reliability of
trust and reputation models? How does the observance (and violation) of norms
affect trust and reputation? How can agents with different models communicate
efficiently? These are only a few questions that are still open and that, for sure,
will be the focus of an important part of the research on computational trust and
reputation models in years to come.

7 Exercises

1. Level 1 Provide a critical discussion on the advantages/drawbacks of adopt-
ing a mathematical approach to trust representation and calculation versus
a symbolic one.

2. Level 1 Enumerate and describe the inputs of a trust calculation process
resulting in the generation of trust evaluations.

3. Level 1 What is the problem of correlated evidence? How can it be solved?

4. Level 1 Explain the difference between shared image and reputation.

5. Level 2 Gossip or recommendations coming from other agents are some-
times used for trust calculation. However, they are a particular source of
information that bring specific risks. Explain why it is interesting to take
them into account and what the associated risks are. Propose an efficient
way to integrate them into a trust calculation process.

6. Level 2 A distinction between dispositional trust and occurrent trust is done
in the ForTrust model. Explain why it is interesting to distinguish the two
and how they are linked.

7. Level 2 Design a heuristic for the aggregation function like that in Sec-
tion 4.1.4 to obtain a reputation evaluation that takes into account the con-
text.

8. Level 3 Trust and reputation models are meant to be used in an agent rea-
soning process besides other agreement technologies. Explain how they
can be combined with argumentation techniques and what the contribution
of trust/reputation is for argumentation and vice versa.

9. Level 3 Design a trust model that takes into account the elements depicted
in Figure 9.4 to calculate trust evaluations. Consider that the agents use



Chapter 9 415

integers [−1,1] to represent the evaluations where −1 is complete distrust
and 1 complete trust.

10. Level 4 Evaluating and comparing existing trust models is a difficult task
for which there is not yet any satisfactory solution. Describe the main diffi-
culties that prevent the development of an evaluation tool and propose your
ideas to overcome them.

11. Level 4 Using a multiagent platform, implement a centralized reputation
mechanism that represents reputation as a probability distribution. Then
implement a few agents that feed the system with image values and use the
calculated reputation to select a partner.

12. Level 4 Implement an agent that will send unfair ratings to the centralized
reputation mechanism implemented in the previous exercise. Extend this
agent implementation in order to simulate a collusion in which agents use
unfair ratings to recommend each other. Try several executions of a MAS
composed of a different number of attackers to estimate the proportion of
agents for which your centralized reputation mechanism does not provide
reliable reputation values.
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Multiagent Learning

Karl Tuyls and Kagan Tumer

1 Introduction

One of the key properties attributed to an agent operating in an unknown environ-
ment is its ability to learn from its experiences. For a single-agent system, this
generally consists of building a mapping from the agent’s inputs (sensor reading
and internal state) to an output (action). How that mapping is constructed depends
on many factors, and there are many algorithms that have been extensively studied,
including learning automata [49], reinforcement learning [72], neuro-evolutionary
algorithms [26] and biologically inspired methods [12].

When extending such algorithms to multiagent learning, two new key issues
arise: how do agents account for the collective action of other agents in the sys-
tem, and how do agents select actions that not only provide a direct benefit but
also shape the actions of other agents in the future? The first issue addresses an
agent’s perception, in that it forces an agent to differentiate between the poten-
tially stochastic changes to an environment and the actions of intelligent agents
and to exploit this knowledge. The second issue addresses an agent’s impact, in
that it forces an agent to select actions that lead to desired behavior through its
interactions with other agents’ actions. These two issues together lead to both
theoretical (convergence) and practical (signal to noise in rewards) complications
and render the direct application of single-agent learning algorithms problematic.

Yet, multiagent learning must solve these problems because it is a fundamen-
tal component of multiagent systems both from scientific and engineering per-
spectives. From a scientific perspective, studying the interactions among learning
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agents provides insights into many social phenomena from game theory to com-
modities trading to resource allocation problems. From an engineering perspec-
tive, learning agents provide a conceptually proven approach to distributed control
problems such as load balancing, sensor networks, multirobot coordination, and
air traffic management. The benefits of understanding the dynamics of multiagent
systems are numerous, in that it would provide desirable system characteristics,
including:

• Robustness: A multiagent approach removes the single point of failure view
of a centralized system; if one or a few components fail, the system still
should operate properly;

• Efficiency: A multiagent approach allows tasks to be assigned to indepen-
dent agents, which can then pursue those goals in parallel;

• Reconfigurability: A multiagent approach is modular by definition and
components can be added or removed as needed;

• Scalability: A multiagent system removes the need for full information flow
in both the sensory and action directions, and hence multiagent systems
generally scale better than centralized systems.

For a multiagent system to realize those potential gains, agents need to interact
with each other and quickly adapt to changing environments and the changing
strategies of their peers.

As a consequence, machine learning algorithms are crucial to development
and deployment of adaptive multiagent approaches [4, 19, 33, 35, 43, 62, 64, 70,
73, 77, 79, 80, 83, 87]. The subfield of multiagent learning studies agent defi-
nitions, algorithms, interactions, and reward structures to create adaptive agents
that can function in environments where their actions shape and are shaped by the
actions of other agents. Though most multiagent learning algorithms are based
on traditional single-agent learners (e.g., reinforcement learning), they need to be
modified to effectively deal with the challenges stemming from the interaction
among multiple independent agents.

In this chapter we introduce the basics of multiagent learning, present its chal-
lenges and approaches and provide examples of domains that can benefit from
such approaches. The remainder of the chapter is organized as follows.

Section 2 elaborates on the main differences between single and multiagent
learning algorithms, and highlights the challenges that multiagent learning algo-
rithms must address. In Section 3 we concisely introduce the necessary back-
ground on single-agent reinforcement learning, present the multiagent Markov de-
cision process formulation, and introduce a number of state-of-the-art multiagent
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reinforcement learning algorithms. Section 4 presents evolutionary game theory
as a multiagent learning paradigm, with an elaborate discussion on the formal
link with multiagent reinforcement learning and the evolutionary analysis of sev-
eral reinforcement learning algorithms. Section 5 presents swarm intelligence as
a multiagent learning paradigm. Section 6 presents the use of neuro-evolutionary
algorithms as a multiagent learning paradigm, and includes a short description
on the link between multiagent reinforcement learning and neuro-evolutionary
approaches. Section 7 presents a case study of the successful application of multi-
agent learning to air traffic control. Finally, Section 8 concludes the chapter.

2 Challenges in Multiagent Learning

The extension of basic learning paradigms from single to multiagent systems
poses many challenges. For example, reinforcement learning – one of the key
methods for single and multiagent learning – has a well understood framework and
theoretical guarantees that are based on a single agent interacting with a (mostly)
static environment [36, 72]. Though deviations from this assumption exist, partic-
ularly in real-world applications of reinforcement learning, the theory stretches to
a breaking point when multiple agents learn in the same environment and where
each agent’s actions modify the state of other agents in a non-predictable way. The
convergence guarantees no longer hold and there exists no general formal theory
describing and elucidating the conditions under which algorithms for multiagent
learning (MAL) are successful. It is currently an open question how to scale up
MAL, i.e., how to efficiently handle many states, many actions, and many agents.

Though treating the actions of all other agents as part of the environment is
an acceptable approach in some simple multiagent learning problems, in general,
an agent needs to account for those actions. The key reason for this is the new
dynamics created by the actions of the other agents in the system, particularly if
all the agents are learning as a response to the actions of all the other agents in
the system. In this section we first discuss the key characteristics and challenges
in multiagent learning, including the state space explosion, the differences in sys-
tem dynamics in cooperative and competitive multiagent systems, the multiagent
credit assignment problems, and the care that must be taken in determining the
reward structure of agents operating in a multiagent system. We then revisit the
learning problem and provide two simple learning algorithms as starting points
for the rest of the chapter.
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2.1 State, Action, and Outcome Space Problems

Learning is fundamentally a search problem through possible solutions, and there-
fore increases in the number of variables (e.g., agents, states, actions, outcome
states) exponentially complicate the learning task. In particular, for multiagent
learning, three key computational problems stand out: the state space explosion,
the joint action space explosion, and the result-state (or outcome state) explo-
sion [56].

First, the state space grows exponentially in the number of agents and envi-
ronment features, significantly increasing the time required to determine the de-
sirability of each state (e.g., value functions in reinforcement learning). Second,
the space of possible actions grows exponentially in the number of agents, making
looking ahead for joint actions difficult for a small number of time steps and all
but impossible for many real-world sequences. Third, the number of joint action
outcomes grows exponentially with the number of agents, making the desirabil-
ity of the next state difficult to compute exactly. These three issues are referred
together as the three “curses of dimensionality” [56]. Though these problems are
particularly pronounced in classical reinforcement formulations such as value iter-
ation and policy iteration (see Section 3), they are present in all learning methods
since they are caused by the process of searching for solutions in large spaces in
stochastic and dynamic environments.

2.2 Multiagent Credit Assignment Problem

The basic problem a learning agent faces is the credit assignment problem of de-
termining which of its actions resulted in the feedback received. When a learning
agent interacts with its surroundings, it adjusts its internal parameters based on the
feedback it receives from the environment. As long as the feedback follows every
action, the agent can directly associate each response to its actions, and the credit
assignment is trivially solved. However, most problems have delayed feedback
mechanisms where a sequence of actions needs to be performed before the agent
receives feedback. This situation creates the temporal credit assignment prob-
lem of how to assign a reward received at the end of a sequence to each action
in the sequence, a problem which has been extensively studied for single-agent
systems [22, 72, 74, 76, 96].

In multiagent learning, a second credit assignment problem appears: the struc-
tural credit assignment problem of how to assign credit to a particular agent
based on the performance of a set of agents. For systems with few agents, this
credit assignment problem can be sidestepped, and all agents can use the full
system feedback directly. However, when the number of agents in a system in-
creases, this method breaks down and agents need to receive a reward that ac-
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counts for their contribution to the system. This problem has also been stud-
ied [4, 47, 81, 89, 90, 91, 92, 98].

In most multiagent problems, these two structural problems are confounded
and each agent needs to not only determine its contribution to the full system
performance, but also determine the relative impact of each of its actions in a se-
quence. Solving both these credit assignment problems at once is difficult since
each reward is a function of actions from different agents over different time steps.
Temporal difference methods, such as Q-learning, are an important class of meth-
ods for addressing the temporal credit assignment problem for single-agent rein-
forcement learning. Unfortunately they do not address the structural credit assign-
ment problem present in multiagent problems and can have very low performance
when there are many agents.

Because it is essential for designing the proper agent rewards, this credit as-
signment problem is critical in both cooperative and competitive multiagent sys-
tems. In the former, it allows for the design of agent rewards that explicitly seek to
maximize a global reward (e.g., win the soccer game in robotic soccer, maximize
the information gathered in multirover exploration). In the latter, it crystalizes the
competition for shared resources and allows the creation of appropriate incentive
structures to improve system performance (e.g., overall improved traffic conges-
tion).

2.3 Agent Rewards and System Dynamics

As mentioned earlier, the performance of a learning multiagent system greatly de-
pends on the credit assignment structure used to shape its behavior. In competitive
settings, agent rewards represent inherent desires of the agents and are generally
set. The key then is to determine agent incentives and interactions that lead to
desirable outcomes. In cooperative settings, however, the agent rewards can be
modified directly and have a large impact on the agent interactions, equilibrium
points, and convergence. In this section, we focus on cooperative systems and
evaluate key characteristics of agent rewards and their impact on system behav-
ior.1

Indeed, the impact of the reward structure is particularly pronounced when
multiple agents that need to exhibit coordinated behavior are interacting and learn-
ing simultaneously [4, 5, 33, 45, 71, 81, 102]. Given a reward that evaluates the
performance of the full system, there are many ways in which agent rewards can
be selected. In very simple systems, agents may simply use the system reward

1In this section we will refer to agent “reward” functions, though for the conceptual description
in this section, one can replace “reward” with “objective,” “evaluation,” “payoff,” or “utility” and
retain the same content.
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directly [21]. In more complex systems, agents may need local rewards that in-
crease their ability to learn good policies. Unfortunately this “reward shaping”
problem becomes more difficult in domains involving continuous state spaces,
and dynamic and stochastic environments. For example, reward structures that
have been shown to perform well in static environments do not necessarily lead to
good system behavior in dynamic environments.

One way to assess the impact of a reward structure is to have reward charac-
teristics that are independent of the domains and learning algorithms used. Two
such characteristics measure reward “alignment” and “sensitivity,” which measure
necessary, but often conflicting, properties.

• Alignment – formalized as “factoredness” [4, 81] – defines how well two re-
wards are matched in terms of their assessment of the desirability of partic-
ular actions. Intuitively, high values of factoredness mean that actions that
optimize one reward will also optimize the other reward. In that sense, hav-
ing agent rewards have high factoredness with respect to the system reward
results in a system where agents that aim to improve their own performance
also tend to improve system performance.

• Sensitivity – formalized as “learnability” [4, 81] – defines how discernible
the impact of an action is on an agent’s reward function. Intuitively, the
higher the learnability, the more the agent’s reward depends on its own ac-
tions. Therefore, higher learnability means it is easier for an agent to take
actions (changing its state) that maximize its reward. When learnability is
too low, many other agents are affecting the reward; therefore it is hard for
an agent to discern the impact of its actions from the impact of all of the
other agents’ actions.

Based on these characteristics, let us analyze three potential agent rewards for
a given system, as system performance hinges on balancing the degree of factored-
ness and learnability for each agent. In general, a reward with high factoredness
will have low learnability and a reward with high learnability will have low fac-
toredness [102]. Consider the following three reward functions for an agent:

1. Full system reward: Each receives the full system reward. By definition
it is fully factored, meaning every action that is good for the agent is good
for the system. This reward has been used successfully on multiagent prob-
lems with few agents [21]. However, since each agent’s reward depends on
the actions of all the other agents, it generally has poor learnability, a prob-
lem that gets progressively worse as the size of the system grows. This is
because, when an agent’s reward changes, it is difficult for the agent to de-
termine whether that change was caused by its own action or by the actions
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of the other agents in the system. It is therefore only suited for problems
with a small number of agents.

2. Local reward: Each agent receives the local component of the full system
reward. In contrast to the global reward, which requires full state informa-
tion, the local reward is composed of the components of the global reward,
which depend on the states of agent i. Because it does not depend on the
states of other agents, this reward is “perfectly learnable.” However, de-
pending on the domain, it may have a low degree of factoredness, in that
having each agent optimize its own performance may or may not promote
coordinated system level behavior.

3. Difference reward: Each agent receives a reward that measures its im-
pact. This reward is based on the difference between the system reward and
the system reward that would have resulted had the agent performed some
“null” action – hence the name [5, 77, 79, 81, 102]. This reward has gen-
erally high factoredness as the removed “null” action term does not depend
on the agent’s action. As a result, any impact an agent has on this reward
comes from its impact on the global reward. Hence, any actions that im-
prove/deteriorate the difference reward also improve/deteriorate the system
reward. Furthermore, this reward usually has better learnability than the
system reward because subtracting out the null action term removes some
of the effects of other agents (i.e., noise) from the agent’s reward. While
having good properties, this reward can be impractical to compute because
it requires knowledge about the system state. The formal definition and ap-
plication of this reward is presented in the air traffic case study in Section 7.

The key then for devising good agent rewards is to balance the individual
agent’s learning with its coordination with other agents. Since directly using the
system reward is impractical in most real-world cases, shaping the agent reward
is critical for both local and difference rewards. In both cases, how the miss-
ing information is handled (ignored, estimated) determines the trade-off between
factoredness and learnability, which in turn directly determines the system perfor-
mance [4, 79].

2.4 Two Simple Multiagent Learning Paradigms

Having introduced many key challenges in the preceding sections, we now define
the multiagent learning problem as the problem of devising learning algorithms
for agents that are capable of learning (sub)optimal solutions in the presence of
other (learning) agents (or algorithms) – facing the difficulties of incomplete in-
formation, large state spaces, credit assignment, cooperative and/or competitive
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settings, and reward shaping. We consider these difficulties as the main complex-
ity factors behind agents that learn concurrently.

The settings we follow in this book chapter are that of stochastic or Markov
games (see Section 3.5), evolutionary game theory (see Section 4), swarm intel-
ligence (see Section 5), and neuro-evolutionary algorithms (see Section 6). In
this section we describe two simple learning algorithms, action-value learning
and cross learning (a kind of learning automaton [13]), as an introduction to the
reinforcement learning approach to multiagent learning presented in Section 3.

2.4.1 Action-Value Learning

First, let us introduce the n-armed bandit problem, where the agent has to repeat-
edly choose one of n actions, each of which results in a reward. The rewards come
from a fixed distribution and the agent’s objective is to maximize its long-term re-
ward, by learning the true “value” of each action. This is called the n-armed bandit
problem based on its similarity to a slot machine [72]. The learning agent selects
an action at each time step and maintains an estimate of the mean reward of each
action by averaging the rewards received so far by pulling arm ai. This estimate
for each action ai can be denoted as follows:

Qt(ai) =
r1 + r2...+ rki

ki
(10.1)

where ki is the total number of times action ai has been selected. ri are the rewards
received when choosing action ai over the different trials. t is the current time step
and also represents the total number of times an action has been selected so far.
In this manner, the agent builds an accurate “model” of its world, having each
value represent the potential reward for that action. This simple learning method
is called “action-value” learning as it is based on learning the “value” of each
action, allowing the agent to select the action that will maximize its long-term
reward.

A direct extension of this problem to multiagent learning is when multiple
agents aim to learn the same problem. Nominally, this can be treated as each agent
learning independently. Some recent work aims to allow information sharing be-
tween agents, where either the values can be shared [28], or the agents can learn
from the actions of other agents by taking counterfactual actions [79]. A far more
interesting situation arises when the probability distributions for the arms are not
fixed, but depend on the actions of the other agents. The multinight bar problem
provides such an example [80]. In this problem, each agent needs to select one of
n nights to attend a bar, where the bar has a capacity c. If too few or too many
agents attend any one night the reward drops. The action-value learning in this sit-
uation would have each agent associate a value for attending a particular night, but



Chapter 10 431

this value now tracks a non-stationary process. Though theoretically, convergence
isn’t guaranteed as in the fixed probability case, a simple action-value approach
has been shown to work and even track changes in behavior by a large number of
agents [80].

2.4.2 Direct Policy Adjustment

Second, let us discuss an alternative learning method based on directly adjusting
the agent’s policy. The cross learning model is a good example of such an ap-
proach, which consists of multiple agents playing the same game (i.e., a normal
form game) repeatedly in discrete time. At each point in time, each agent has a
probability distribution over its action set, which indicates how likely it is to play
any of its actions. That probability distribution constitutes the “policy,” that is, a
plan to choose actions. The probabilities change over time in response to experi-
ence. At each time step (indexed by t), a player chooses one of its actions based
on the probabilities that are related to each isolated action. In response to an ac-
tion, a player receives a reward, expressing how good the chosen action was. For
illustration, we consider a multiagent situation with two players to simplify the
representation. The first agent can choose from s actions, while the second agent
can choose from r actions.

The agents do not know each other’s actions and rewards and play the situation
repeatedly. After observing the outcome of a round (observing the joint action)
and receiving a reward at each stage, they update their probability vector or policy.
For the first agent we denote this by vector p: p(t) = (p1(t), ..., ps(t)), and for the
second agent we denote this by q : q(t) = (q1(t), ...,qr(t)). These vectors are
updated according to

pi(t +1) = r1
i j +(1− r1

i j)pi(t) (10.2)

and
pi′(t +1) = (1− r1

i j)pi′(t) (10.3)

where 0 ≤ ri j ≤ 1 and r1
i j is the reward agent 1 receives when it chooses its i− th

action and agent 2 chooses its j− th action. Equation 10.2 expresses how the
probability of the selected strategy ai is updated and Equation 10.3 expresses how
all the other strategies ai′ for which i′ �= i , and were not selected, are updated for
the first agent. If this player p played action ai in the tth repetition of the game,
and if it received reward ri j, then it updates its policy by taking a weighted average
of the old policy, and of the unit vector, which puts all probability on strategy ai.
The probability vector of q(t) is updated in an analogous manner.

This simple learning model easily gets stuck in non-optimal solutions when
applied to multiagent coordination problems. For example, returning to the multi-
night bar problem, agent strategies can consist of simple rules such as “at time
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step t, take the action that agent k took at time step t − 1,” or “at time step t do
the action you performed at time step t−2,” or “at time step t take the action that
yielded the highest reward in the last three time steps.” Each of these is a policy
and the agent can update its probability vector as described above. However, as
the case with the action-value approach, this method need not converge as the
outcome of the policies depend on the actions of other agents. In both cases,
the simple learning approaches provide a method for learning to take actions and
tracking a non-stationary process, but cannot provide guarantees of convergence.

In the next section, we discuss the extensions of these simple learning concepts
to more diverse and complex situations encompassing multiple states, delayed
rewards, and the general Markov decision context.

3 Reinforcement Learning for Multiagent Systems

In this section we introduce the basics of single-agent reinforcement learning, the
MDP framework, and model-free and model-based approaches. Then we make
the transition to multiagent reinforcement learning and introduce Markov games,
the elementary framework in which multiagent reinforcement learning typically
is studied. We end with a summary of some of the state-of-the-art multiagent
reinforcement learning algorithms.

Reinforcement learning (RL) is based on the simple observation that reward-
ing desirable behavior and discouraging undesirable behavior leads to behavioral
change. Figure 10.1 shows the basic concept where at time step t, the agent is
in state st and takes action at . This results in the agent receiving reward rt and
moving to state st+1 [72]. The objective of a reinforcement learner is to discover a
policy, i.e., a mapping from states to actions, so as to maximize the reinforcement
signal it receives. The reinforcement signal is a scalar value, which is usually
negative to express a punishment, and positive to indicate a reward. The two sim-
ple learning paradigms presented in Section 2.4 are rudimentary reinforcement
learning algorithms.

Unlike supervised learning techniques, reinforcement learning methods do not
assume the presence of a teacher who can provide the correct action in a particular
situation. Instead the learner finds out what the best actions are by trying them out
and by receiving a signal on the consequences of its actions. For this reason,
reinforcement learning is considered a “semi-supervised” learning technique. For
many problems the consequences of an action are not immediately apparent after
performing the action, but only after a number of other actions have been taken.
In other words, the selected action may not only affect the immediate reward or
punishment the learner receives, but also the reinforcement it might receive in the
future.
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Figure 10.1: Basic reinforcement learning scheme: At time step t, the agent is
in state st and takes action at . This results in the agent receiving reward rt and
moving to state st+1 [72].

3.1 Markov Decision Processes

Most single-agent RL research is based on the framework of Markov decision
processes (MDPs) [58]. MDPs are sequential decision-making problems for fully
observable worlds. MDPs are defined by a tuple 〈S,A,T,R〉, where S is a finite set
of states and A is a finite set of actions available to the agents. An MDP respects
the Markov property: the future dynamics, transitions, and rewards fully depend
on the current state, i.e., an action a in state s ∈ S results in state s′ based on a
transition matrix function T : S×A×S → [0,1]. The probability of ending up in
state s′ after doing action a in state s is denoted as T (s,a,s′). For all actions a, and
all states s and s′, we have that 0 ≤ T (s,a,s′) ≤ 1, and ∑s′∈S T (s,a,s′) = 1. The
reward function R : S → R returns the reward R(s,a) after taking action a from
state s.

The transition function T and reward function R together are often referred to
as the model of the environment. The learning task in an MDP is to find a policy
π : S→ A for selecting actions with maximal expected (discounted) future reward.
The quality of a policy is indicated by a value function V π. The value V π(s) spec-
ifies the total amount of reward that an agent may expect to accumulate over the
future, starting from state s and then following the policy π. Informally, the value
function indicates the long-term desirability of states or state-action pairs after
taking into account the states that are likely to follow, and the rewards available
in those states. In a discounted infinite horizon MDP, the expected cumulative
reward (i.e., the value function) is denoted as:
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V π(s) = E

[
∞

∑
t=0

γtR(st)|s0 = s

]
(10.4)

A γ ∈ [0,1) is introduced to ensure that the rewards returned are bounded
(finite) values. The variable γ determines the relevance of future rewards in the
update. Setting γ to 0 results in a myopic update (i.e., only the immediate reward
is optimized), whereas values closer to 1 will increase the contribution of future
rewards in the update.

The value for a given policy π, expressed by Equation 10.4, can iteratively be
computed by the Bellman Equation [9]. One typically starts with arbitrarily cho-
sen value functions, and at each iteration for each state s ∈ S, the value functions
are updated based on the immediate reward and the current estimates of V π:

V π
t+1(s) = R(s)+ γ ∑

s′∈S
T (s,π(s),s′)V π

t (s
′) (10.5)

The process of updating state value functions based on current estimates of
successor state values is referred to as bootstrapping. The depth of successor
states considered in the update can be varied, i.e., one can perform a shallow
bootstrap where one only looks at immediate successor states or a deep bootstrap
where successors of successors are also considered. The value functions of suc-
cessor states are used to update the value function of the current state. This is
called a backup operation. Different algorithms use different backup strategies,
e.g., sample backups (sample a single successor state) or full backups (sample all
successor states).

The goal of an MDP is to find the optimal policy, i.e., the policy that receives
the most reward. The optimal policy π∗(s) is such that V π∗(s)≥V π(s) for all s∈ S
and all policies π.

3.2 Action Selection and Exploration-Exploitation Dilemma

Action selection in reinforcement learning is generally based on a stochastic pro-
cess. Given estimates of the values of each action, the question becomes how
to select future actions. Through exploration the reinforcement learner discovers
new actions and their potential value (i.e., rewards and future states) and uses
this to improve its policy. An important issue that occurs is the exploration-
exploitation dilemma, i.e., when to cease (or slow down) exploration and to start
exploiting acquired knowledge. One way to proceed is to select the action with the
maximum value so far, i.e., select action a∗ for which Qt(s,a∗) = maxiQt(s,ai).
This means that we under all circumstances choose the action with the highest
estimate, i.e., the greedy action. This approach does not explore actions that are
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less good at that moment to check whether they might be better in the long term
and so is prone to yield suboptimal solutions.

An alternative is to behave greedily most of the time but once in a while select a
random action to make sure we do not miss the better actions in the long term. This
approach is called the ε-greedy exploration method in which the greedy option is
chosen with high probability 1− ε and with a small probability ε a random action
is selected. The benefit of this method is that when we play a sufficiently large
number of iterations every action will be sufficiently sampled to guarantee that we
have learned for all actions ai its true value Q∗

t (s,ai). This ensures that an agent
learns to play the optimal action in the long term. For a thorough overview, we
refer to [101]. Though annealing can be used for ε as well, in practice this is often
unnecessary.

Another alternative is to use a “softmax” approach, or Boltzmann exploration,
where the good actions have an exponentially higher probability of being selected
and the degree of exploration is based on a temperature parameter τ. An action a j
is chosen with probability:

p j =
e

Q(s,a j)
τ

∑i e
Q(s,ai)

τ

(10.6)

The selection of the temperature parameter is used to balance exploration and
exploitation. Low values of τ increase the probability of selecting the best action,
whereas high values of τ make all action probabilities converge. In many cases,
starting with high values of τ and reducing this parameter (also called annealing)
provides the best results (the agent tends to select actions associated with higher
utilities when τ is low). (Note that in the literature τ occurs in the nominator as
well as in the denominator.)

3.3 Model-Free and Model-Based Approaches

When the model of the environment is unknown, as it usually is, reinforcement
learning can be used to directly map states to actions. Model-free RL does not
depend on having a model of state transitions and rewards, but rather collects
samples from the environment to estimate that model. In particular when multiple
actions need to be taken before a reward is received, the reward received needs to
be temporally distributed to the set of actions that preceded it. This is the basis
of learning, and Q-learning [95] and SARSA [60] are the most commonly used
examples of model-free temporal difference learning algorithms. The algorithms
are described in detail in [72]. The one-step Q-learning algorithm is summarized
in Algorithm 10.1, and the updating of the Q-values of the state action pairs is
given by:
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1 Initialize Q(s,a) arbitrarily
2 Initialize s to any starting state
3 for each step do

4 Choose action a from s based on values of Q (e.g., ε-greedy)
5 Take action a, observe reward r and next state s′

6 Q(s,a)← Q(s,a)+α
[
r+ γ max

a′∈A′(s)
Q(s′,a′)−Q(s,a)

]
7 s← s′

8 end

Algorithm 10.1: The Q-learning algorithm.

Q(s,a)→ (1−α)Q(s,a)+α
[

r+ γ max
a′

Q(s′,a′)
]

(10.7)

where α is the learning rate, and γ the discount-rate. A similar model-free tem-
poral difference learning method is the SARSA learner. In this case, the update
algorithm is given by:

Q(s,a)→ (1−α)Q(s,a)+α
[
r+ γ Q(s′,a′)

]
(10.8)

where a′ denotes the action taken at step s′ (this is sometimes denoted by π(s′)
to denote that policy π needs to be followed from state s′). The key difference
between SARSA learning and Q-learning is that in SARSA learning, the Q-value
update depends on the action selected at s′ and hence the policy. Q-learning, on
the other hand, is policy independent, since the Q-value update is based on the
best possible action from state s′ and, thus, does not depend on how the actions
are chosen. Both algorithms are proven to converge to optimal policies, given that
no abstractions have been applied, though in many practical problems with large
state spaces, solving the full MDP is both time-intensive and impractical.

When an environment’s model (i.e., transition function T and reward func-
tion R) is known or can be learned, that model can be used directly to evaluate
the potential outcomes of an agent’s actions. Such a “model-based” RL has two
key advantages over model-free methods: First, given the existence of a model,
the agent needs much less interaction with the environment, making it desirable
in situations where the cost of interacting with the environment is high. Second,
having a model provides a method for evaluating policies off-line – again mini-
mizing the need for direct interaction with the environment. Adaptive real time
dynamic programming (RTDP) is one of the earliest model-based reinforcement
learning algorithms and has the simple flow shown in Algorithm 10.2 [8].
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1 Initialize value function v(·)
2 Initialize s to a starting state
3 for each step do

4 Choose a from s using policy derived from v (e.g., ε-greedy)
5 Take action a, observe r, s′
6 Update the model parameters r(s,a) and p(s′|s,a)
7 v(s)← v(s)+α

[
maxa

{
r(s,a)+ γ∑s′ p(s′|s,a)v(s′)

}
−v(s)

]
8 s← s′

9 end

Algorithm 10.2: The adaptive RTDP algorithm.

3.4 Multiagent MDP Formulations

The presence of multiple agents creates different interpretation and extensions to
the basic MDP formulation. Indeed, whether the agents are independent learners
(each with its own MDP), are joint action learners (share the action space), or
are coupled through their rewards (share rewards), leads to different MDPs. A
non-exhaustive list of potential MDP formulations are listed here:

• Full state, joint action MDP with team reward 〈S,A,T,R,Π〉: Find single
policy π mapping system state s ∈ S to system action a ∈ A that maximizes
team rewards r ∈ R.

• Full state, independent action MDP with team reward 〈S,Ai,T,R,Πi〉:
Agent i finds policy πi ∈Πi mapping system state s to agent’s action ai ∈ Ai
that maximizes team rewards r.

• Full state, independent action MDP with local reward 〈S,Ai,T,R,Πi〉:
Agent i finds policy πi ∈Πi mapping system state s to agent’s action ai ∈ Ai
that maximizes agent’s local reward ri ∈ Ri.

• Local state, independent action MDP with team reward 〈Si,Ai,T,R,Πi〉:
Agent i finds policy πi mapping agent’s state si ∈ Si to agent’s action ai that
maximizes team r.

• Local state, independent action MDP with local reward 〈Si,Ai,T,Ri,Πi〉:
Agent i finds policy πi mapping agent’s state si to agent’s action ai that
maximizes agent’s local reward ri ∈ Ri.

Each of these formulations is appropriate for particular conditions, and has
both benefits and shortcomings, depending on the dynamics of the domain in



438 Chapter 10

which it is used. Below we present Markov games, an approach that aims to
directly integrate the interactions among agents into the structure of an MDP.

3.5 Markov Games

Once multiple agents are interacting through their learning processes, the basic
MDP model is no longer sufficient, and some situations require a different inter-
pretation than those presented in Section 3.4. Markov or stochastic games gener-
alize both repeated games and MDPs to the more general case of multiple states
(repeated games are stateless) and multiple agents (basic MDPs consider only a
single agent). In each stage, the game is in a specific state featuring a partic-
ular payoff function and an admissible action set for each player. Players take
actions simultaneously and thereafter receive an immediate payoff depending on
their joint action. A transition function maps the joint action space to a probability
distribution over all states, which in turn determines the probabilistic state change.
Thus, similar to a Markov decision process, actions influence the state transitions.
A formal definition of Markov games is given below.

Definition 10.1 The game G =
〈
n,S,A,q,τ,π1 . . .πn〉 is a stochastic game with n

players and k states. In each state s ∈ S =
(
s1,. . .,sk) each player i chooses an

action ai from its admissible action set Ai (s) according to its strategy πi (s).
The payoff function τ(s,a) : ∏n

i=1 Ai (s) "→ℜn maps the joint action a =(
a1,. . .,an) to an immediate payoff value for each player.

The transition function T (s,a) : ∏n
i=1 Ai (s) "→ Δk−1 determines the probabilis-

tic state change, where Δk−1 is the (k−1)-simplex and Ts′ (s,a) is the transition
probability from state s to s′ under joint action a.

In this chapter we restrict our consideration to the set of games where all states
s ∈ S are in the same ergodic set. The motivation for this restriction is twofold.
In the presence of more than one ergodic set one could analyze the corresponding
subgames separately. Furthermore, the restriction ensures that the game has no
absorbing states. Games with absorbing states are of no particular interest in
respect to evolution or learning since any type of exploration will eventually lead
to absorption. The formal definition of an ergodic set in stochastic games is given
below.

Definition 10.2 In the context of a stochastic game G, E ⊆ S is an ergodic set if
and only if the following conditions hold:
(a) For all s ∈ E, if G is in state s at stage t, then at t +1:

Pr (G in some state s′ ∈ E) = 1, and
(b) for all proper subsets E ′ ⊂ E, (a) does not hold.
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Note that in repeated games player i either tries to maximize the limit of the
average of stage rewards

max
πi

lim
T→∞

1
T

T

∑
t=1

τi (t) (10.9)

or the discounted sum of stage rewards ∑T
t=1 τi (t)δt−1 with 0 < δ< 1, where τi (t)

is the immediate stage reward for player i at time step t.

3.6 State-of-the-Art Algorithms

In this section we discuss a number of state-of-the-art algorithms. As we can-
not discuss all of them and be comprehensive in this chapter, we have chosen to
describe three groups of them in more detail. Pointers will be provided to litera-
ture that elaborates on these more thoroughly and references to detailed overview
articles.

3.6.1 Joint Action Learning

Joint action learning has been introduced in the context of cooperative repeated
games, see [19]. A joint action learner (JAL) is an agent that learns Q-values for
joint actions in a cooperative repeated game, in contrast to independent learners
that learn Q-values only for individual actions. This entails that such an agent
stores and adapts Q-values for joint actions a with a a vector 〈a1, ...,an〉 ∈ Ai×
...×An composed of the individual actions ai ∈ Ai of agent i. This implies that
each agent can observe the actions of other agents.

Instead of carrying out Q-learning in the individual action space the JAL agent
now learns in the joint action space. Since we consider stateless repeated games,
the update rule of Q-learning can be simplified to:

Q(a) = Q(a)+α(r−Q(a)) (10.10)

In this stateless setting, we assume a Q-value, i.e., Q(a), providing an estimate
of the value of taking action a. At each time step a JAL agent i takes an action
ai belonging to joint action a. The sample 〈a,r〉 is the experience obtained by
the agent: joint action a was performed resulting in reward r; for instance when
the agents involved in the game illustrated in Figure 10.2 play joint action 〈a0,b0〉
they will receive reward r1. α is the typical learning rate to control step sizes of the
learning process. It is important to realize that a JAL agent is now learning values
for all joint actions and no longer individual actions. For instance in the 2-player
2-action game example in Figure 10.2, the joint action learner will learn Q-values
for the tuples 〈ai,b j〉 with i, j ∈ {0,1} instead of for its individual actions ai as an
independent learner does.
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a0
a1

b0 b1(
r1 r2
r3 r4

)
Figure 10.2: General form of repeated matrix game.

Suppose that agent 1 (or the row player) has Q-values for all four joint actions;
then the reward it can expect to accumulate will depend on the strategy adopted
by the second (or column) player. Therefore a JAL agent will keep a model of
the strategies of other agents i participating in the game such that it can compute
the expected value of joint actions in order to select good subsequent actions bal-
ancing exploration and exploitation. A JAL then assumes that the other players i
will choose actions in accordance with the model it keeps on the strategies of the
other players. Such a model can be simply implemented through a fictitious play
approach, in which one estimates the probability with which an agent will play a
specific action based on the frequencies of their past plays. In such a way expected
values can be computed for the actions of a JAL based on the joint actions. For
instance in the above example we would have the following expected value EV
for the first player’s actions:

EV (ai) = ∑
b j∈b0,b1

Q(b j∪{ai})Pr1
b j

(10.11)

with Pr1
b j

the probability with which player 1 believes the other player will choose
actions b j implemented through a fictitious play approach. Using these EV values,
player 1 can now implement, e.g., a Boltzmann exploration strategy for action
selection.

3.6.2 Nash-Q Learning

Nash-Q, an algorithm introduced by Hu and Wellman [33, 34], aims to converge
to a Nash equilibrium in general-sum stochastic games. In essence the algorithm
extends the independent Q-learning algorithm to the multiagent case using the
Markov game framework (see section 3.5). The optimal Q-values in this algorithm
are the values that constitute a policy or strategy for the different agents that are in
Nash equilibrium. The Nash equilibrium serves as the solution concept the agents
aim to reach by learning iteratively. To achieve this each Nash-Q learning agent
maintains a model of other agents’ Q-values and uses that information to update
its own Q-values.

The Nash-Q learning algorithm also considers joint actions (such as JAL) but
now in the context of stochastic games (containing multiple states). In an n-
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agent system, the Q-function for an agent becomes Q(s,a1, ...,an), rather than
the single-agent Q-function, Q(s,a). Given these assumptions Hu and Wellman
define a Nash Q-value as the expected sum of discounted rewards when all agents
follow specified Nash equilibrium strategies from the next period on. The al-
gorithm uses the Q-values of the next state to update those of the current state.
More precisely, the algorithm makes updates with future Nash equilibrium pay-
offs, whereas single-agent Q-learning updates are based on the agent’s own max-
imum payoff. To be able to learn these Nash equilibrium payoffs, the agent must
observe not only its own reward, but those of others as well (as was the case in the
JAL algorithm).

The algorithm proceeds as follows. The learning agent, indexed by i, learns
its Q-values by starting with arbitrary values at time 0. An option is to let
Qi

0(s,a1, ...,an) = 0 for all s ∈ S,a1 ∈ A1, ...,an ∈ An. At each time t, agent i
observes the current state, and takes its action. After that, it observes its own re-
ward, actions taken by all other agents, rewards of others, and the new state s′.
Having this information it then computes a Nash equilibrium π1(s′), ...,πn(s′) for
the stage game (Q1

t (s
′), ...,Qn

t (s
′)), and updates its Q-values according to:

Qi
t+1(s,a1, ...,an) =

(1−αt)Qi
t(s,a1, ...,an)+αt [ri

t +βNashQi
t(s

′)]

where NashQi
t(s

′) = π1(s′)...πn(s′).Qi
t(s

′).
NashQi

t(s
′) is agent i’s payoff in state s′ for the selected equilibrium. In or-

der to calculate the Nash equilibrium(π1(s′), ...,πn(s′)), agent i needs to know
Q1

t (s
′), ...,Qn

t (s
′). Since this information about other agents’ Q-values is not avail-

able, this has to be learned as well. Since i can observe other agents’ immediate
rewards and previous actions, it can use that information to learn the other agents’
Q-functions as well.

The algorithm is guaranteed to converge to Nash equilibrium, given certain
technical conditions hold. Littman tackled these restrictive conditions of Nash-
Q and introduced Friend or Foe Q-learning [44], which converges to Nash-
equilibrium with fewer restrictions than Nash-Q. For more details on Nash-Q we
refer to [34].

3.6.3 Gradient Ascent Algorithms

Infinitesimal gradient ascent (IGA) [65] is a policy gradient learning algorithm
based on the limit of infinitesimal learning rates. It is shown that the average pay-
off of IGA converges to the pure Nash equilibrium payoff in two-agent, two-action
matrix games, although policies may cycle in games with mixed equilibria. Each
agent i participating in a game updates its policy πi such that it follows the gradi-
ent of expected payoffs. The IGA algorithm has been generalized into the GIGA
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(generalized infinitesimal gradient ascent) algorithm beyond two actions using the
regret measure by Zinkevich [103]. Regret measures how much worse an algo-
rithm performs compared to the best static strategy, with the goal of guaranteeing
at least zero average regret (i.e., no-regret) in the limit. Since GIGA reduces to
IGA in two-player, two-action games, it does not achieve convergence in all types
of games. As a response to the fact that the IGA algorithm does not converge in all
two-player-two-action games, IGA-WoLF (Win or Learn Fast) was introduced by
Bowling [15] in order to improve the convergence properties of IGA. The policies
of infinitesimal gradient ascent with WoLF learning rates are proven to converge
to the Nash equilibrium policies in two-agent, two-action games [15]. The learn-
ing rate is made large if WoLF is losing. Otherwise, the learning rate is kept small
as a good strategy has been found. In contrast to other reinforcement learning
algorithms, IGA-WoLF assumes that the agents possess a lot of information about
the payoff structure. In particular, sometimes agents are not able to compute the
gradient of the reward function since that information is not available, which is
necessary for this algorithm. Another well-known gradient-ascent type algorithm
is policy hill climbing (PHC) explained in [15]. PHC is a simple adaptive strat-
egy based on an agent’s own actions and rewards, which performs hill climbing
in the space of mixed policies. It maintains a Q-table of values for each of its
base actions, and at every time step it adjusts its mixed strategy by a small step to-
wards the greedy policy of its current Q-function. Also the PHC-WoLF algorithm
needs prior information about the structure of the game. Related algorithms to
infinitesimal gradient ascent have been devised to tackle this issue, such as for in-
stance the WPL (weighted policy learner) algorithm of Abdallah and Lesser; see
[1]. The GIGA-WoLF algorithm extended the GIGA algorithm with the WoLF
principle [14] improving on its convergence properties. The algorithm basically
keeps track of two policies of which one is used for action selection and the other
is used for approximating the Nash equilibrium.

3.6.4 Other Approaches

Good overview articles on multiagent reinforcement learning algorithms can be
found in [16, 64, 73].

The extended replicator dynamics algorithm provides another approach to
reaching a Nash equilibrium [82]. Here the authors take a dynamical systems
approach in which they first designed the stable differential equations, reaching
an asymptotic stable Nash equilibrium in all types of stateless matrix games. Af-
ter this they constructed the approximating learning algorithm showing the same
behavior as the predefined dynamical system, i.e., reaching a stable Nash equilib-
rium.

Finally, the AWESOME algorithm, short for “Adapt When Everybody Is Sta-
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tionary, Otherwise Move to Equilibrium,” provides a compromise between best
response and precomputed play [20]. This algorithm converges to best response
against stationary opponents, and otherwise converges to a precomputed Nash-
equilibrium in self-play.

4 Evolutionary Game Theory as a Multiagent

Learning Paradigm

Game theory is the field that is mainly concerned with interactive decision making
in multiple actor situations. It provides a good basis to study properties of deci-
sion making and desirable outcomes of agent interactions. Furthermore, game
theory is formally and empirically linked to learning. Basic game theoretic con-
cepts are discussed in detail in Chapter 17. In this section, we only introduce
the most relevant concepts from classical game theory and present the basics of
evolutionary game theory (EGT). We then formally link evolutionary game theory
and reinforcement learning using the replicator equations.

The simple concept at the root of evolutionary game theory is that instead of
focusing on a finite, small number of players (such as the most commonly used
2-player, 2-action games), one can consider a population of infinite size. Then, by
having that population in constant motion in terms of adapting its strategies, and
by selecting the players in the population based on their payoffs, the “evolution-
ary” aspect is introduced into game theory.

4.1 Matrix Games

In Section 3.6.1 we illustrated already the general concept of a repeated matrix
game (see Figure 10.2). Game theory models the interaction between players as a
game, in which each player has a set of actions to choose from. All players have
to select an action simultaneously, upon which they receive a payoff that depends
on the combination of actions played. The goal for each player is to come up with
a strategy that maximizes its payoff in the game. The payoffs can be conveniently
represented in the bi-matrix (A,B). A bi-matrix can, just like a normal matrix,
contain any number of rows and columns; “bi” just reflects the fact that each
cell contains two numbers: the payoffs for both players. Suppose the row player
plays action i and the column player plays j, then the bi-matrix (A,B) gives the
payoffs Ai j to the row player and Bi j to the column player. Figure 10.3 presents
the payoff bi-matrices of three popular games, i.e., the Prisoner’s Dilemma, the
Battle of the Sexes, and the Matching Pennies. Matching Pennies is an example
of a competitive game, in which a win for one player is a loss for the other.
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Figure 10.3: Examples of matrix games.

4.2 Solution Concepts

In traditional game theory it is assumed that the players are rational, meaning that
every player will choose the action that is best for itself, given its beliefs about
the other players’ actions. In this chapter, we discuss two solution concepts, the
Nash equilibrium and Pareto optimality, which elucidate the behavior of players
in games.

The first concept, Nash equilibrium, is defined as a set of strategies in a game
where no player can increase its payoff by unilaterally changing its strategy (i.e.,
while the other players keep their strategies fixed).

Formally, a Nash equilibrium is defined as follows. When two players play the
strategy profile s = (si,s j) belonging to the product set S1× S2, then s is a Nash
equilibrium if

P1(si,s j)≥ P1(sx,s j) ∀x ∈ {1, ...,n}
P2(si,s j)≥ P2(si,sy) ∀y ∈ {1, ...,m} .

Three distinct classes of 2×2 normal form games are identified in [25]. The
first class consists of games with one pure Nash equilibrium, such as the Prisoner’s
Dilemma (both players play D or Defect). The second class of games has two pure
and one mixed Nash equilibrium. The Battle of the Sexes game belongs to this
class (the pure ones are (O,O) and (F,F), the calculation of the mixed one is
left as an exercise). Finally, the third class of games has only one mixed Nash
equilibrium; an example is the Matching Pennies game (both players play both
actions with probability 0.5).

The second concept, Pareto optimality, is defined as a solution in a game where
there is no joint action for all the players that can improve (or leave unchanged)
the payoff of all the players. That is, there is no joint action that will not reduce
the payoff of at least one player. More formally we have: a strategy combination
s = (s1, ...,sn) for n agents in a game is Pareto optimal if there does not exist
another strategy combination s′ for which each player receives at least the same
payoff Pi and at least one player j receives a strictly higher payoff than Pj. As
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an example, the Nash equilibrium (D,D) in the Prisoner’s Dilemma game is not
Pareto optimal. Playing profile (C,C) is Pareto optimal, but not Nash.

4.3 Evolutionary Stable Strategies

The core equilibrium concept of evolutionary game theory is that of an evolution-
arily stable strategy (ESS), introduced by Maynard Smith and Price in 1973 [46].
One way to understand this idea is to imagine a population of agents playing some
game. After a number of games, the agents breed, producing new agents that play
the same strategy, where the number of offspring of an agent depends on the pay-
off it has obtained. Now, in this setting, consider that initially all agents play the
same strategy, but then a small number of agents switch to play a second strategy.
If the payoff obtained by this new strategy is smaller than the payoff obtained by
the original one, the second strategy will be played by fewer agents each genera-
tion, and will eventually disappear. In this case we say that the original strategy is
evolutionarily stable against this new appearing strategy. More generally, we say
a strategy is an ESS if it is robust against evolutionary pressure from any strategy
that appears.

Formally an ESS is defined as follows. Suppose that a large population of
agents is programmed to play the (mixed) strategy s, and suppose that this popu-
lation is invaded by a small number of agents playing strategy s′. The population
share of agents playing this mutant strategy is ε ∈ ]0,1[. When an individual is
playing the game against a random chosen agent, chances that it is playing against
a mutant are ε and against a non-mutant are 1− ε. The payoff for the first player,
being a non-mutant is:

P(s,(1− ε)s+ εs′)

and the payoff for being a mutant is

P(s′,(1− ε)s+ εs′)

Now we can state that a strategy s is an ESS if ∀ s′ �= s there exists some δ ∈ ]0,1[
such that ∀ ε : 0 < ε< δ

P(s,(1− ε)s+ εs′)> P(s′,(1− ε)s+ εs′)

holds. The condition ∀ ε : 0 < ε< δ expresses that the share of mutants needs to
be sufficiently small.

Note that one can frame the idea of ESS without the need to consider agents
breeding. Instead one can consider agents being able to observe the average payoff
of agents playing different strategies, and making a decision as to which strategy
to adopt based on that payoff. In such a case, the “mutant” strategy is simply
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a new strategy adopted by some agents – if other agents observe that they do
well, they will switch to this strategy also, while if the new strategy does not do
comparatively well, the agents that play it will switch back to the original strategy.

4.4 Replicator Dynamics

Agents playing a strategic game each hold a vector of proportions over possible
actions, indicating the proportion of “individuals” or “replicators” in an infinite
“population” (the agent) that have adopted a given action. At every time step,
the proportions of actions for each agent are changed based on the rewards in the
payoff tables as well as on the current probabilities of other agents’ choosing their
actions.

An abstraction of an evolutionary process usually combines two basic ele-
ments: selection and mutation. Selection favors some population actions over
others, while mutation provides variety in the population. The most basic form
of replicator dynamics only highlights the role of selection, i.e., how the most fit
actions in a population are selected.

In this chapter we consider continuous time replicator equations; for the dis-
crete version we refer to [31]. The equations can be described as follows:

dxi

dt
= [(Ax)i− x ·Ax]xi (10.12)

In Equation 10.12, xi represents the density of action i in the population, and A
is the payoff matrix that describes the different payoff values that each individual
replicator receives when interacting with other replicators in the population. The
state x of the population can be described as a probability vector x= (x1,x2, ...,xn),
which expresses the different densities of all the different types of replicators in
the population. Hence (Ax)i is the payoff that replicator i receives in a popula-
tion with state x and x ·Ax describes the average payoff in the population. The

growth rate
dxi
dt
xi

of the proportion of action i in the population equals the differ-
ence between the action’s current payoff and the average payoff in the population.
[25, 31, 97] detail further information on these issues.

Usually, we are interested in models of multiple agents that evolve and learn
concurrently, and therefore we need to consider multiple populations. For simplic-
ity, the discussion focuses on only two such learning agents. As a result, we need
two systems of differential equations, one for each agent. This setup corresponds
to a replicator dynamics for asymmetric games, where the available actions or
strategies of the agents belong to two different populations.

This translates into the following coupled replicator equations for the two pop-
ulations:
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Figure 10.4: Visualization of the replicator dynamics of BoS, PD, and MP games.

dxi

dt
= xi[(Ay)i− xT Ay] (10.13)

dyi

dt
= yi[(Bx)i− yT Bx] (10.14)

where x (y) is the frequency distribution for player 1 (2), and A (B) represents its
individual payoff matrix.

Equations 10.13 and 10.14 indicate that the growth rate of the types in each
population is additionally determined by the composition of the other population,
in contrast to the single population (learner) case described by Equation 10.12.

As an example we plot the direction fields of these equations for the three ex-
ample games, i.e., Battle of the Sexes, Prisoner’s Dilemma, and Matching Pennies,
in Figure 10.4. It is a graphical representation of the solutions of the differential
equations without solving the differential equations analytically. The plots visu-
alize the dynamics qualitatively and show how all possible initial policies of the
agents will evolve over time. Moreover they show the attractors and their basins.
The x-axis shows the probability with which the first player plays its first action
and the y-axis shows the probability with which the second player plays its first
action. For instance in the PD game the x-axis shows the probability with which
the first player plays cooperate – the y-axis shows the same probability for the
second player.

4.5 The Role of Game Theory for Multiagent Learning

In the last decades, the focus of computer science has shifted from standalone
systems towards distributed components that interact with one another. The more
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these components exhibit properties that are usually assigned to intelligent enti-
ties, the more the theory of interactive decision making, i.e., game theory, be-
comes relevant to understand, model, and steer the interactions of these intelligent
components. Agent technology, which has become an important research field
within computer science, exactly studies computer systems that are capable of au-
tonomous action taking in order to optimize some given performance measure.
For an overview of the application of game theory to multiagent systems we refer
to [53] and to Chapter 17. Here we lay out the use of evolutionary game theory
for the purpose of evolution and learning in multiagent systems.

Building models of agents that evolve and behave optimally requires insight
into the type and form of these agents’ interactions with the environment and other
agents in the system. In much work on multiagent adaptation and learning, this
modeling is very similar to that used in a standard game theoretical model: players
are assumed to have complete knowledge of the environment, are hyperrational,
and optimize their individual payoff disregarding what this means for the utility of
the entire population. A more recent approach relaxes the strong assumptions of
classical game theory and follows the evolutionary approach. The basic properties
of multiagent systems seem to correspond well with those of evolutionary game
theory. First of all, a multiagent system is a distributed dynamic system, which
makes it hard to model using a rather static theory like traditional game theory.
Secondly, a multiagent system consists of actions and interactions between two
or more independent agents, who each try to accomplish a certain, possibly co-
operative or conflicting, goal. No agent has the guarantee to be completely in-
formed about the other agents’ intentions or goals, nor has it the guarantee to be
completely informed about the complete state of the environment. Furthermore,
evolutionary game theory offers us a solid basis to understand dynamic iterative
situations in the context of strategic interactions and this fits well with the dynamic
nature of a typical multiagent system. Not only do the fundamental assumptions
of evolutionary game theory and multiagent systems seem to fit each other rather
well, but there is also a formal relationship between the replicator equations of
evolutionary game theory and reinforcement learning. This relation will allow for
studying the theoretical properties of multiagent learning in greater detail.

4.6 Evolutionary Game Theory as a Theoretical Framework

Learning in multiagent systems is a complex and cumbersome task. The theoret-
ical foundation of single-agent learning implies that as long as the environment
an agent experiences is stationary, and the agent can experiment sufficiently, RL
guarantees convergence to the optimal strategy [72]. This is no longer valid in
the multiagent case because there are now multiple agents learning in the same
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environment, facing unobservable actions and rewards of other agents and non-
stationarity of the environment. All these complicating properties of multiagent
systems make it hard to engineer learning algorithms capable of finding optimal
solutions.

Recent debate in the MAL community gave direction to a new research agenda
for the field [64]. An important problem of MAL that stands out is the lack of a
theoretical framework such as exists for the single-agent case. For this purpose
we employ an evolutionary game theoretic approach by formally linking and an-
alyzing the relation between RL and replicator dynamics (RD). More precisely,
in [13, 52, 84, 86] the authors derived a formal link between the replicator equa-
tions of evolutionary game theory and such reinforcement learning techniques as
Q-learning and learning automata. In particular this link showed that in the limit
these learning algorithms converge to a certain form of the RD. This makes it pos-
sible to establish equilibria using the RD that tell us what states a given learning
system will settle into over time and what intermediate states it will go through.

There are a number of benefits to exploiting this link: one, the model predicts
desired parameters to achieving Nash equilibriums with high utility; two, the in-
tuitions behind a specific learning algorithm can be theoretically analyzed and
supported by using the basins of attraction; three, it was shown how the frame-
work can easily be adapted and used to analyze new MAL algorithms, such as, for
instance, lenient Q-learning, regret minimization, etc. [38, 52].

Extension of the framework to multiple states (e.g., switching dynamics) and
continuous strategy spaces have been explored as well and can be found in, e.g.,
[30, 88, 93]. In this chapter we limit ourselves to describing the link between
stateless Q-learning (and its two variants FAQ and LFAQ) and the basic replicator
equations. More precisely we present the dynamical system of Q-learning. These
equations are derived by constructing a continuous time limit of the Q-learning
model, where Q-values are interpreted as Boltzmann probabilities for the action
selection. For reasons of simplicity we consider games between two players. The
equations for the first player are

dxi

dt
= xiατ((Ay)i−x ·Ay)+ xiα∑

j
x jln(

x j

xi
) (10.15)

and analogously for the second player, we have

dyi

dt
= yiατ((Bx)i−y ·Bx)+ yiα∑

j
y jln(

y j

yi
) (10.16)

Equations 10.15 and 10.16 express the dynamics of both Q-learners in terms
of Boltzmann probabilities. Each agent (or player) has a probability vector over
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its action set, more precisely x1, ...,xn over action set a1, ...,an for the first player
and y1, ...,ym over b1, ...,bm for the second player.

For a complete mathematical derivation and discussion of these equations we
refer to [84, 85]. Comparing (10.15) or (10.16) with the RD in (10.12), we see
that the first term of (10.15) or (10.16) is exactly the RD and thus takes care of
the selection mechanism (see [97]). The mutation mechanism for Q-learning is
therefore left in the second term, and can be rewritten as:

xiα∑
j

x jln(x j)− ln(xi) (10.17)

In equation (10.17) we recognize two entropy terms, one over the entire probabil-
ity distribution x, and one over strategy xi.

Other RL methods for which the dynamics have been derived are the follow-
ing:

Frequency Adjusted Q-learning (FAQ) [37] is a variation of the value-
based Q-learning method, which modulates the learning step size to be in-
versely proportional to the action selection probability. This modulation leads
to more rational behavior that is less susceptible to initial overestimation of
the action values. The update rule for FAQ-learning is Qi(t + 1) ← Qi(t) +
min

(
β
xi
,1
)
α
[
r(t +1)+ γmax j Q j(t)−Qi(t)

]
, where α and β are learning step

size parameters, and γ is the discount factor. The Boltzmann action-selection

mechanism is used with a temperature τ: xi =
eQi·τ−1

∑ j eQ j ·τ−1 .

Lenient FAQ-learning (LFAQ) is a variation of FAQ-learning. Leniency
has been shown to improve convergence to the optimal solution in coordination
games [52]. Leniency is introduced by having the FAQ method collect κ rewards
for an action, before updating this action’s Q-value based on the highest perceived
reward.

Finite Action-set Learning Automata (FALA) [49] is a policy-based learn-
ing method. [49] considers the linear reward-inaction update scheme. It updates
its action selection probability based on a fraction α of the reward received. The
probability is increased for the selected action, and decreased for all other actions.
The update rules for FALA are xi(t + 1)← xi(t)+αri(t + 1)(1− xi(t)) if i is the
action taken at time t, and x j(t +1)← x j(t)−αri(t +1)x j(t) for all actions j �= i.

Regret Minimization (RM) [38] is another policy-based learning method.
It updates its policy based on the loss (regret) incurred for playing that policy,
with respect to some other policy. [38] studies the polynomial weights method,
which calculates the loss with respect to the optimal policy in hindsight. Again,
a learning step size parameter α controls the update process. The method updates
the weight of the actions by wi(t + 1)← wi(t)(1−αli(t +1)). Normalization of
these weights gives the action selection probabilities.
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Method Evolutionary model

FAQ dxi
dt = αxi

τ [(Ay)i− xT Ay]+ xiα∑ j x jln(
x j
xi
)

LFAQ ui = ∑ j
Ai jy j

[(
∑k:Aik≤Ai j yk

)κ−(
∑k:Aik<Ai j yk

)κ]
∑k:Aik=Ai j yk

dxi
dt = αxi

τ (ui− xT u)+ xiα∑ j x jln(
x j
xi
)

FALA dxi
dt = αxi[(Ay)i− xT Ay]

RM dxi
dt = λxi[(Ay)i−xT Ay]

1−λ[maxk(Ay)k−xT Ay]

Figure 10.5: Overview of the evolutionary dynamics of the studied learning meth-
ods. Only the dynamics of the first player are given; the dynamics of the second
player can be found by substituting B for A, swapping x and y, and swapping the
matrix indexes in the ui rule of LFAQ.

The evolutionary dynamics of these models are presented in Figure 10.5. As
an example of these evolutionary models we visualize the dynamics of FAQ and
LFAQ in directional field plots, see Figure 10.6. Self-play is the standard form of
learning experiments, in which each competing player implements the same learn-
ing method. We describe the behavior of the learning methods in self-play. All
plots use the same parameter settings: step size α= 0.001; for (L)FAQ, β= 0.01,
τ = 0.01, and γ = 0. The behavior of a learner over time can be visualized using
a trajectory plot or by plotting the directional field of the corresponding replicator
dynamics. Here, a combination of both is used to show how the individual learn-
ing trajectories relate to their evolutionary prediction. All trajectory plots show
the average trajectory over 10 runs of 50,000 iterations each (100,000 for the Pris-
oner’s Dilemma). The plots show that FAQ and LFAQ indeed behave as predicted
by their evolutionary models. In the Prisoner’s Dilemma all trajectories converge
to the game’s Nash equilibrium (D,D), which in the plot lies at (0,0). The direc-
tional field shows that indeed all possible initial policies will eventually converge
to this equilibrium.

5 Swarm Intelligence as a Multiagent Learning

Paradigm

Swarm intelligence is a bio-inspired machine learning technique, largely based
on the behavior of social insects (e.g., ants and honeybees), which is concerned
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Figure 10.6: Policy trajectories of FAQ and LFAQ in three different games.

with developing self-organized and decentralized adaptive algorithms. The type
and form of learning in a swarm intelligence is characterized by a large popu-
lation of cognition limited agents that locally interact. Rather than developing
complex behaviors for single individuals, as is done in reinforcement learning,
swarm intelligence investigates the emerging (intelligent) behavior of a group of
simple individuals that achieve complex behavior through their interactions with
one another. Consequently, swarm intelligence can be considered as a coopera-
tive multiagent learning approach in that the behavior of the full set of agents is
determined by the actions of and interactions among the individuals.

In a swarm intelligence, each individual in the group follows simple rules
without central control structures. By interacting locally, a global behavior
emerges, yet the individual has no knowledge of this “big picture” behavior. Ex-
amples of such systems are ant foraging, bird flocking, fish schooling, and animal
herding. Though based on different principles, swarm intelligence and reinforce-
ment learning are closely related, as both techniques comprise iterative learning
algorithms based on trial and error, and use a “reinforcement signal” (reward or
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fitness) to find optimal solutions. The key difference though is how the reinforce-
ment signal is used to modify an individual’s behavior. In this chapter, we do not
delve into the details of this relationship.

Currently the most well-known swarm intelligence algorithms are pheromone-
based (stigmergic), such as ant colony optimization. For an overview, we refer
to [12, 23]. Recently, interest has grown in non-pheromone-based approaches,
mainly inspired by the foraging behavior of honeybees. For an overview we re-
fer to Lemmens et al. [41, 42]. Below we concisely explain the basics of both
approaches.

5.1 Ant Colony Optimization

Ant colony optimization (ACO) is a class name for ant-inspired algorithms solv-
ing combinatorial optimization problems. Algorithms belonging to it are stochas-
tic search procedures in which the central component is the pheromone model.
Pheromone-based algorithms are inspired by the behavior of ants and are the most
well-known swarm intelligence algorithm. The algorithms are based on the fact
that ants deposit a pheromone trail on the path they take during travel. Using this
trail, they are able to navigate toward their nest or food. Ants employ an indirect
recruitment strategy by accumulating pheromone trails in the environment. The
ants literally communicate indirectly via the environment, in the subject called
stigmergy. When a trail is strong enough, other ants are attracted to it and, with
high probability, will follow this trail toward a destination. More precisely, the
more ants follow a trail, the more that trail becomes attractive for being followed.
This is known as an autocatalytic process. Since long paths take more time to
traverse, it will require more ants to sustain a long path. As a consequence, short
paths will eventually prevail. Figure 10.7 illustrates this concept.

Optimization problems best suited to being solved by ant colony optimization
are those that can be cast as computational problems on a graph, implying that
optimal solutions will correspond to specific paths in such a graph. Successful
examples of such problems include the traveling salesman problem [23], various
routing problems [17], group shop scheduling [11], and “covering problems” with
robots [94].

The basic ant system algorithm works as follows [12]. A swarm of m ants
solve the optimization problem iteratively by traversing the graph, which repre-
sents the problem at hand. An example of such a graph is the traveling salesman
problem in which the purpose is to find the shortest route through a number of
cities, visiting each of them exactly once. Each of these m ants searches for candi-
date solutions individually. While doing this, they influence each other’s solution
indirectly through pheromones deposited in the environment in which they search.
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(a) Exploring both paths (b) Short path prevails

Figure 10.7: Ant foraging. Individual ants explore both paths. Then the shorter
path on the right gets reinforced more and becomes the dominant path.

Nodes of such a graph are called states, and in one iteration t an ant produces a so-
lution to the given problem (e.g., a route between cities in the traveling salesman
problem). At the start all edges are initialized with a certain amount of pheromone
τ0. The probability for an ant k to move from state si to state s j at iteration t is
given by

pk
i, j =

[τi j(t)]α[ηi j]
β

∑l∈Nk
i
[τil(t)]α[ηil]β

(10.18)

with τi j(t) the amount of pheromone along the edge from state si to state s j at
iteration t. The parameter α controls the weight given to the pheromone part of
the equation. ηi j expresses the desirability of moving to state s j; for instance in
the traveling salesman problem it would correspond to the visibility of the next
city, formally described by the inverse of the distance between cities (states) si
and s j, i.e., 1

d(i, j) . β controls the weight given to the visibility part of the equation.

Nk
i is the set of unvisited nodes of ant k that are reachable from state si. The

intuition behind the rule is that ants prefer to move to nodes or states connected to
the current state by short edges with high pheromone presence.

Once all ants have found their own solution or route, pheromones are updated
on all edges according to the following equation:
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τi j(t +1) = (1−ρ)τi j(t)+
m

∑
k=1

Δτk
i j(t) (10.19)

where ρ controls evaporation of pheromone and Δτi j(t) is the amount per unit of
length of trail pheromone laid on edge (i, j) by the kth ant, i.e.,

Δτi j(t) =
1

Lk(t)
(10.20)

where edge (i, j) belongs to the solution generated by ant k. Lk(t) is the length
of the solution found by ant k at iteration t. As with the biological counterpart,
shorter solutions or routes are preferred.

5.2 Bee Colony Optimization

Recently, non-pheromone-based algorithms have also been proposed, see, e.g.,
Lemmens et al. and Teodorovic et al. [41, 75]. Such algorithms are inspired by the
foraging and nest-site selection behavior of bees. In contrast to ants, bees do not
use pheromones to navigate through unfamiliar worlds. Instead, for navigation,
they use a strategy named path integration (PI). Bees are able to compute their
present location from their past trajectory continuously and, as a consequence, can
return to their starting point by choosing the direct route rather than retracing their
outbound trajectory. For recruitment, bees communicate directly by dancing in
the nest. The dance is a representation of a PI vector and therefore communicates
distance and direction toward a destination (see Figure 10.9). Dance strength
(i.e., its duration) indicates the “fitness” of a solution. More precisely, bees know
which destination they are traveling to. Depending upon the strength of a dance,
the dance attracts other bees which may follow the PI vector toward a destination.
High evaluated solutions result in stronger bee dances. The more bees follow
a danced PI vector, the more that PI vector will be danced for and the more it
attracts other bees. Eventually, the best solution prevails. Although we mainly
refer to bees when we speak about PI, we have to note that PI can also be found
in other insects such as desert ants. For an illustration see Figure 10.8. A full
description of bee-inspired algorithms is beyond the scope of this chapter. We
refer the interested reader to [41, 42]. Note that non-pheromone-based algorithms
can be applied to the same problems as pheromone-based algorithms.

For a detailed comparison between ACO and bee colony optimization (BCO)
we refer to [42]. A key difference though between ACO and BCO is that ACO
largely depends on indirect communication between individual agents through the
environment, whereas BCO depends on direct communication between individu-
als in the hive or nest. Generally speaking, social-insect swarm intelligence de-
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Figure 10.8: Path integration. By tracking all angles steered and all distances
covered (i.e., solid arrow), bees have an up-to-date vector indicating their nest at
all times (i.e., dashed arrow).

Figure 10.9: Distance and direction by waggling dance. Waggling straight up on
the vertical comb indicates a food source that is located at an azimuthal angle
of 0 degrees while waggling straight down indicates a food source located at an
azimuthal angle of 180 degrees.
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pends on four principles. First, individuals in a swarm only have local awareness.
Their view of the environment is limited to their direct surroundings and they do
not take their previous actions into account for future actions. Second, swarms
are decentralized. Although central control is possible over short distances with
a small number of individuals, the performance of such control deteriorates with
distance or increasing number of agents. Therefore, decentralized control is a ne-
cessity. Third, to implement control, social insects rely on local interaction. Local
interaction is used to solve a subproblem of the task at hand. For example, find
the shortest path in a segment in the total search space. Fourth, by using local
interaction the swarm displays self-organization on a global level.

6 Neuro-Evolution as a Multiagent Learning

Paradigm

In addition to reinforcement learning and swarm intelligence, a third type of learn-
ing approach for autonomous agents consists of using evolutionary algorithms to
train a policy to perform the state-to-action mapping. In this approach, rather
than update the parameters of a single agent interacting with the environment as
is done in reinforcement learning, one searches through a population of policies
to find one that is appropriate for the task. This type of “policy search” approach
is best suited to domains with continuous states and actions where traditional re-
inforcement learning approaches generally encounter difficulties.

The most commonly used policy in conjunction with evolutionary algorithms
is a feed-forward neural network with non-linear activation functions [29]. The
aim of the neural network is to perform a mapping between its inputs (states)
and its outputs (actions) that satisfies the agent’s task. For example, a mobile
robot using a neural network to navigate can map the sensory inputs it receives to
direction and velocity. The key then is to find the correct parameters for the neural
network that will provide the desired behavior. If the desired behavior is known in
advance, traditional training algorithms (e.g., gradient descent) can be used. For
example, an autonomous vehicle can learn to drive by recording the actions of a
human driver, using those actions as the “correct” actions [55, 59] and modifying
its parameters to minimize the error between its actions and those of the driver. In
most cases, however, the correct actions for each particular state are not known in
advance. For such cases, the use of evolutionary algorithms provides an effective
search method through the possible policies, resulting in the set of approaches
known as neuro-evolutionary algorithms [18, 24, 26, 40, 48, 69].
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6.1 Evolutionary Algorithm Basics

Evolutionary computation has a long history of success in single-agent control
problems, and has been extensively applied to a multitude of domains [27, 32, 61,
63, 99]. At its most fundamental, an evolutionary algorithm consists of five steps:
representation, selection, generation of new individuals (crossover and mutation),
evaluation, and replacement.

• Representation refers to how the problem is abstracted into a set of pa-
rameters that capture the key aspects of the policy. For example, a neural
network, as described above, is a representation of a policy.

• Selection refers to how an individual policy is selected from a population
of policies. For example, the best policy can be selected, or policies can be
selected with a probability proportional to their success.

• Generation of new individuals is the core of the search algorithm. It may
consist of simply mutating the selected individual by injecting some ran-
domness into the policy, or by a combination of crossover and mutation.
The impact of the crossover operation where two individual policies are
merged to yield a new policy is greatly dependent on the representation. For
most representations, crossover simply introduces random noise and can be
skipped. In a few cases, where the representation captures partial solution
concepts, crossover may be beneficial.

• Evaluation refers to the assignment of a success/failure metric to the new
policy. It is sometimes referred to as the “fitness” function for an individual.

• Replacement refers to the final step where the new individual is reinserted
into the population, usually at the expense of removing another individual.
For example, the worst individual can be removed to make room for the
new individual, or an individual may be removed based on a probability
that depends on its fitness.

Algorithm 10.3 shows a simple evolutionary algorithm, with specific choices
for these steps. Though all five of these components affect the performance of an
evolutionary algorithm, two are particularly critical in the complex domains of in-
terest to autonomous agents. Indeed, the selection, generation of new individuals,
and replacement can follow simple principles and still provide good performance.

Though all steps are important, the two steps that are particularly critical are
representation and evaluation. The representation step is a key step in that it allows
the abstraction that guides the search for good policies. If the policy is represented
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1 Initialization Phase:

2 At t = 0
3 for Each policy πk where k ∈ (1,Npop) do

4 Use policy πk for a fixed number of steps
5 Evaluate performance of πk

6 end

7 Training Phase:

8 for t < tmax do

9 Select a policy πi from population of policies:
10 with probability ε: πcurrent ← πi
11 with probability 1− ε: πcurrent ← πbest
12 Modify the parameters of πcurrent to produce π′ (mutation)
13 Use policy π′ for a fixed number of steps
14 Evaluate performance of π′
15 Replace πworst with π′
16 t ← t+1
17 end

Algorithm 10.3: An evolutionary search algorithm to determine the parameters
of a policy. This general algorithm uses a population of Npop, selects the best
policy with probability 1−ε at each step, generates a new solution by perturbing
the parameters of the selected policy, and deterministically replaces the worst
policy in the population at the end of each step.

in a manner that captures its salient features, the search will be far more effective.
In addition, it is important to select a representation where similar policies will be
“close” in parameter space, and where small changes to the parameters will not
lead to significantly different policies. Indeed, the effectiveness of the new indi-
vidual generation step is directly related to the effectiveness of the representation.

The evaluation step, on the other hand, applies the selective pressure to guide
the search. Having the appropriate evaluation function is critical to finding good
solutions, and in ensuring that policies that offer a new and useful advancement are
identified and kept in the population (this is another instance of the fundamental
credit assignment problem discussed in Section 2.2). The impact of the evaluation
function is even more critical in large coevolutionary systems where agents oper-
ate in collaboration or competition with one another. Indeed, the co-evolution step
brings the same concerns of a search in a non-stationary domain. Coevolution has
been successfully applied in many domains, including multi-rover coordination
where robots are not only evolved to learn good policies, but also to cooperate
with one another [39, 50, 51].
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6.2 Linking Multiagent Reinforcement Learning to the

Neuro-Evolutionary Approach

The coevolutionary approach has also been linked to the replicator equations of
section 4, and as such also fits into the evolutionary game theory framework (see
[100]). In [52] the replicator dynamics models for cooperative coevolutionary
algorithms and for traditional multiagent Q-learning have been compared and ex-
tended to account for lenient learners: agents that forgive possible mismatched
teammate actions that resulted in low rewards. These extended formal models
have been used to study the convergence guarantees for these algorithms, and also
to visualize the basins of attraction to optimal and suboptimal solutions in bench-
mark coordination problems.

7 Case Study: Air Traffic Control

Air traffic control provides an ideal case study for demonstrating both the need for
and the effectiveness of multiagent learning approaches. Air traffic is a naturally
distributed problem where the complex interaction among the aircraft, airports,
and traffic controllers renders a predetermined centralized solution severely sub-
optimal at the first deviation from the expected plan. Though a truly distributed
and adaptive solution (e.g., free flight where aircraft can choose almost any path)
offers the most potential in terms of optimizing flow [54, 66, 67], it also provides
the most radical departure from the current system. In this section, we provide an
agent-based system that can be implemented readily, one based on assigning an
agent to a “fix,” which is a specific location in 2D [2, 6, 77]. This representation
allows localized fixes (or agents) to have direct impact on the flow of air traffic,
and makes a good case study for showing the impact of multiagent learning in
general and the structural credit assignment problem described in Section 2.2.

7.1 Motivation

The efficient, safe, and reliable management of the ever increasing air traffic is
one of the fundamental challenges facing the aerospace industry today. On a typi-
cal day, more than 40,000 commercial flights operate within the US airspace [68],
and the scheduling allows for very little room to accommodate deviations from
the expected behavior of the system. As a consequence, the system is slow to re-
spond to developing weather or airport conditions, leading potentially minor local
delays to cascade into large regional congestions. Current air traffic management
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relies on a centralized, hierarchical routing strategy that performs flow projections
ranging from one to six hours. Therefore, the system is not only slow to respond
to changes, but is also at the limit of its capacity. Unlike many other flow prob-
lems where the increasing traffic is to some extent absorbed by improved hardware
(e.g., more servers with larger memories and faster CPUs for Internet routing), the
air traffic domain needs to find mainly algorithmic solutions, as the infrastructure
(e.g., number of airports) will not change significantly to impact the flow problem.
There is therefore a strong need to explore multiagent solutions based on learning
agents to the air flow control problem.

With over 40,000 flights operating within the United States airspace on an av-
erage day, the management of traffic flow is a complex and demanding problem.
Not only are there concerns for the efficiency of the system, but also for fairness
(e.g., different airlines), adaptability (e.g., developing weather patterns), and reli-
ability and safety (e.g., airport management). In order to address such issues, the
management of this traffic flow occurs over four hierarchical levels:

1. Separation assurance (2–30 minute decisions);

2. Regional flow (20 minutes to 2 hours);

3. National flow (1–8 hours); and

4. Dynamic airspace configuration (6 hours to 1 year).

Of these, the regional and national flow are ideally suited for algorithmic improve-
ments as they fit between long-term planning by the FAA and the very short-term
decisions by air traffic controllers.

7.2 Simulation and System Performance

Simulating air traffic to allow the evaluation of agent-based decision making is a
key step. Two different types of simulators can be used for this, depending on the
aims of the research. Physics-based simulators (such as FACET [10, 68]) provide
an approach based on propagating the trajectories of proposed flights forward in
time. FACET simulates air traffic based on flight plans and through a graphical
user interface allows the user to analyze congestion patterns of different sectors
and centers (Figure 10.10). FACET also allows the user to change the flow pat-
terns of the aircraft through a number of mechanisms, including metering aircraft
through fixes. The user can then observe the effects of these changes to conges-
tion. Though accurate and well-accepted in industry, physics-based simulators
are also slow, making them difficult for learning-based approaches where a (very)
large number of runs may be required.
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Figure 10.10: Graphical user interface of the FACET simulator.

Event-based simulators (such as FEATS) provide an alternative that allows
one to quickly simulate thousands of aircraft of different characteristics taking off
from airports, navigating via waypoints and airways to their destination airport,
and landing. Such simulators are designed for being used with learning algorithms
and can simulate 26,000 flights/second (on a high-end PC). Individual simulations
take a fraction of a second to complete, which allows users to efficiently experi-
ment with machine learning techniques [57].

A good system performance evaluation function focuses on delay and conges-
tion, and also potentially the “fairness” on different commercial entities. Both
defining and optimizing fairness requires a great deal of domain specific infor-
mation. As a consequence, in this chapter we present results based on delay and
congestion alone to demonstrate the impact of multiagent learning. The linear
combination of these two terms gives the full system evaluation function, G(z), as
a function of the full system state z. More precisely, we have

G(z) =−(B(z)+αC(z)) , (10.21)

where B(z) is the total delay penalty for all aircraft in the system, and C(z) is
the total congestion penalty. The relative importance of these two penalties is
determined by the value of α, a congestion cost.

The total delay, B, is a sum of delays over the set of aircraft A and is given by:

B(z) = ∑
a∈A

Ba(z) (10.22)



Chapter 10 463

where Ba(z) is the delay of each aircraft caused by the agents’ controls. For con-
trols that delay aircraft (discussed in Section 7.3), the Ba(z) is simply the amount
of delay applied to that aircraft. For controls involving rerouting (Section 7.3), the
delay is the amount of additional time it takes an aircraft to go on its new route
instead of its scheduled route.

The total congestion penalty is a sum over the congestion penalties over the
sectors of observation, S:

C(z) =∑
s∈S

Cs(z) (10.23)

where
Cs(z) =∑

t
Θ(ks,t − cs)(ks,t − cs)

2 , (10.24)

where cs is the capacity of sector s as defined by the FAA, and Θ(·) is the step func-
tion that equals 1 when its argument is greater or equal to zero, and has a value
of zero otherwise. Intuitively, Cs(z) penalizes a system state where the number of
aircraft in a sector exceeds the FAA’s official sector capacity. Each sector capacity
is computed using various metrics, which include the number of air traffic con-
trollers available. The quadratic penalty is intended to provide strong feedback to
return the number of aircraft in a sector to below the FAA-mandated capacities.

7.3 Agent-Based Air Traffic

Four key decisions are needed to implement a full agent-based system. First, the
agents need to be defined in a manner that allows agents to have access to relevant
information and be in a position to influence the system dynamics. Second, the
agent action set has to be defined in a manner that allows agents to have impact
on the system performance defined above. Third, the agent’s learning algorithm
needs to be selected. Finally, the agent reward structure has to be defined in a
manner that allows agents to determine what a “good” action is given the system
condition.

Selecting the aircraft as agents is perhaps the most obvious choice for defining
an agent. That selection has the advantage that agent actions can be intuitive (e.g.,
change of flight plan, increase or decrease in speed and altitude) and offer a high
level of granularity, in that each agent can have its own policy. However, there are
several problems with that approach. First, there are in excess of 40,000 aircrafts
in a given day, leading to a massively large multiagent system. Second, as the
agents would not be able to sample their state space sufficiently, learning would
be prohibitively slow.

In this chapter, we present results based on assigning agents to individual “fix”
ground locations throughout the airspace. Each agent is then responsible for any
aircraft going through its fix. Fixes offer many advantages as agents:
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1. Their number can vary depending on need. The system can have as many
agents as required for a given situation (e.g., agents coming “live” around
an area with developing weather conditions).

2. Because fixes are stationary, collecting data and matching behavior to re-
ward is easier.

3. Because aircraft flight plans consist of fixes, agents will have the ability to
affect traffic flow patterns.

4. They can be deployed within the current air traffic routing procedures, and
can be used as tools to help air traffic controllers rather than compete with
or replace them.

The second issue that needs to be addressed is determining the action set of the
agents. Again, an obvious choice may be for fixes to “bid” on aircraft, affecting
their flight plans. Though appealing from a free flight perspective, that approach
makes the flight plans too unreliable and significantly complicates the scheduling
problem (e.g., arrival at airports and the subsequent gate assignment process).
Three key actions can be selected:

1. Miles in Trail (MIT): Agents control the distance aircraft have to keep from
each other while approaching a fix. With a higher MIT value, fewer aircraft
will be able to go through a particular fix during congested periods, because
aircraft will be slowing down to keep their spacing. Therefore setting high
MIT values can be used to reduce congestion downstream of a fix.

2. Ground Delays: An agent controls how long aircraft that will eventually go
through a fix should wait on the ground. Imposing a ground delay will cause
aircraft to arrive at a fix later. With this action, congestion can be reduced if
some agents choose ground delays and others do not, as this will spread out
the congestion. However, note that if all the agents choose the same ground
delay, then the congestion will simply happen at a later moment in time.

3. Rerouting: An agent controls the routes of aircraft going through its fix, by
diverting them to take other routes that will (in principle) avoid the conges-
tion.

The third issue that needs to be addressed is what type of learning algorithm
each agent will use. The selection of the agent and action space (as well as the
state space) directly impacts this choice. Indeed, each agent aims to select the
action that leads to the best system performance, G (given in Equation 10.21). For
delayed-reward problems, sophisticated reinforcement learning systems such as
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temporal difference may have to be used. However, due to our agent selection and
agent action set, the air traffic congestion domain modeled in this paper only needs
to utilize immediate rewards. As a consequence, a simple table-based immediate
reward reinforcement learner is used. Our reinforcement learner is equivalent to
an ε-greedy action-value learner [72]. At every episode an agent takes an action
and then receives a reward evaluating that action. After taking action a and receiv-
ing reward R an agent updates its value for action a, V (a) (which is its estimate of
the value for taking that action [72]) as follows:

V (a)← (1−λ)V (a)+(λ)R, (10.25)

where λ is the learning rate. At every time step, the agent chooses the action with
the highest table value with probability 1− ε and chooses a random action with
probability ε. In the experiments described in this chapter, λ is equal to 0.5 and
ε is equal to 0.25. The parameters were chosen experimentally, though system
performance was not overly sensitive to these parameters.

The final issue that needs to be addressed is selecting the reward structure
for the learning agents. The first and most direct approach is to let each agent
receive the system performance as its reward. However, in many domains such
a reward structure leads to slow learning. We will therefore also set up a second
set of reward structures based on agent-specific rewards. Given that agents aim to
maximize their own rewards, a critical task is to create “good” agent rewards, or
rewards that when pursued by the agents lead to good overall system performance.
In this work we focus on “difference rewards,” which aim to provide a reward
that is both sensitive to that agent’s actions and aligned with the overall system
reward [3, 80, 102]. This difference reward is of the form [5, 78, 80, 102]

Di(a)≡ G(a)−G(a−i + ci) , (10.26)

where a−i denotes the action of all agents other than i, and ci is a constant “action”
that replaces agent i’s actual action.2

In this domain, Di cannot be directly computed, as G cannot be expressed in
analytical form, and depends on sector counts obtained from a simulator. This is
a key issue with difference objectives, and various estimates have been proposed
to overcome this issue [6, 57, 77]. For example, precomputed difference rewards
or estimates based on the functional form of G have provided good results [6, 77].
Similarly, modeling G and using that model to estimate D has shown promise in
newer applications to air traffic [57]. Below, we will briefly provide results from
the first set of results.

2This notation uses zero padding and vector addition rather than concatenation to form full
state vectors from partial state vectors.
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Figure 10.11: Performance of agents controlling miles in trail on the congestion
problem, with 1,000 aircraft, 20 agents, and α= 5.
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Figure 10.12: Scaling properties of agents controlling miles in trail on the con-
gestion problem, with α= 5. Number of aircraft is proportional to the number of
agents, ranging from 500 – 2,500 aircraft (note that sector capacities have been
also scaled according to the number of aircraft).

7.4 Multiagent Air Traffic Results

We present the performance of the multiagent approach in two types of congestion
(see Figures 10.11 and 10.12). The first one consists of 1,000 aircraft, where 600
of the aircraft are going through an area of high congestion, while 400 aircraft are
going through an area of moderate congestion. The second scenario consists of
real-world historical data in the Chicago and New York areas. All experiments are
for an eight hour window of traffic.
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Figure 10.13: Performance of agents controlling miles in trail on historical data
from New York area. Agents control 1,577 aircraft.

In all experiments the goal of the system is to maximize the system perfor-
mance given by G(z) with the parameters, α = 5. In all experiments to make the
agent results comparable to the Monte Carlo estimation, the best policies chosen
by the agents are used in the results. All results are an average of thirty indepen-
dent trials with the differences in the mean (σ/

√
n) shown as error bars, though in

most cases the error bars are too small to see.
We also performed experiments with real dates from the Chicago and New

York areas. We present the results from the New York area where congestion
peaks at certain times during the day. This is a difficult case, since in many situa-
tions slowing down aircraft to avoid a current congestion just adds to aircraft in a
future congestion. The results show (Figure 10.13) that agents using D were able
to overcome this challenge and significantly outperform agents using the other re-
wards. In addition agents using the estimate of D were able to perform better than
agents using G.

7.5 Summary

In this section we presented the applicability of the discussed methods to a diffi-
cult real-world domain. Indeed, the efficient, safe, and reliable management of air
traffic flow is a complex problem, requiring solutions that integrate control poli-
cies with time horizons ranging from minutes up to multiple days. The presented
results show that a multiagent learning approach provides significant benefits in
this difficult problem. The keys to success were in defining the agents (agents as
fixes), their actions (miles in trail), their learning algorithm (action-value learn-
ers), and their reward structure (difference rewards).
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8 Conclusions

Multiagent learning is a young and exciting field that has produced many interest-
ing research results and has seen a number of important developments in a rela-
tively short period of time. This chapter has introduced the basics, challenges, and
state-of-the-art of multiagent learning. Foundations of different multiagent learn-
ing paradigms have been introduced, such as reinforcement learning, evolutionary
game theory, swarm intelligence, and neuro-evolution. Moreover, examples and
pointers to the relevant literature of the different paradigms have been provided.
On top of this a real-world case study on multiagent learning, from the air traffic
control domain, has been extensively described.

Over the past years multiagent learning has seen great progress at the inter-
section of game theory and reinforcement learning due to its strong focus on this
intersection. Recently, the field also started to take a broader and more interdisci-
plinary approach to MAL, which is an important step toward efficient multiagent
learning in complex applications. As an example we have introduced and dis-
cussed the potential of evolutionary game theory, swarm intelligence, and neuro-
evolutionary approaches for MAL. Specifically, we believe that in order to be
successful in complex systems, explicit connections should be drawn between the
different paradigms.

9 Exercises

1. Level 1 Create your own MDP for a domain that you consider interesting.
You should clearly specify the states, actions, transition probabilities, and
rewards. There should be at least three states and at least three actions. Try
to make it a relatively “interesting” MDP, i.e., make it so that there are not
too many deterministic transitions, and that it is not immediately obvious
what the optimal policy is. Draw your MDP.

2. Level 1 Calculate the value V (i) for each state i in the table shown on page
469, given a discount factor of 0.9. Hint: draw a diagram first.

3. Level 1-2 The subsidy game can be described by the following situation.
There are two new standards that enable communication via different proto-
cols. The consumers and suppliers can be described by probability vectors
that show which standard is supported by which fractions. One protocol
is 20% more energy efficient, hence the government wants to support that
standard. Usually, the profit of the consumers and suppliers are directly pro-
portional to the fraction of the corresponding type that supports its standard.
However, the government decides to subsidize early adopters of the better
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State Reward 

(state) 

Action  

consequence 

Probability that  

consequence occurs 

Reward 

(action) 

1 0 Go to 2 
Go to 4 

0.8 
0.2 

-2 
+1 

2 0 Go to 1 
Go to 3 

0.2 
0.8 

-1 
-2 

3 0 Go to 4 
Go to 5 

0.3 
0.7 

-2 
10 

4 0 Go to 2 
Go to 3 

0.5 
0.5 

-2 
+3 

5 10 - - - 

protocol. Such subsidies are expensive and the government only wants to
spend as much as necessary. They have no market research information and
consider any distribution of supporters on both sides equally likely. Fur-
thermore, they know that the supporters are rational and their fractions will
change according to the replicator dynamics.

This game is a variation of the pure coordination game. A subsidy parameter
s∈{0,11} is added, which can be used to make one action dominant. Figure
10.14 illustrates the game in its general form.

s1
s2

s1 s2(
10,10 0,s

s,0 12,12

)
Figure 10.14: The subsidy matrix game.

Applying the replicator dynamics (without mutation) to the two instances
of the subsidy game, shown in Figure 10.15, yields the direction field plots
shown in Figure 10.16.

• Identify the Nash equilibria in the game; is (are) there Pareto optimal
solution(s)?

• Which one(s) is (are) evolutionary stable? Why? What can you say
about the basins of attraction?

• What is the effect of adding the subsidy in the second instance of the
game?
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s1
s2

s1 s2(
10,10 0,0
0,0 12,12

)
s1
s2

s1 s2(
10,10 0,11
11,0 12,12
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Figure 10.15: Subsidy game instances.
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Figure 10.16: The dynamics of the game without subsidy (left) and with subsidy
(right).

4. Level 2-3 In this exercise perform an EGT comparison of Q-learning, FAQ-
learning, LFAQ-learning, and regret minimization in self-play. For this pur-
pose do the following:

• Implement the evolutionary dynamics of Q-learning and FAQ-learning
for the 2× 2 matrix games Prisoner’s Dilemma, Battle of the Sexes,
and Matching Pennies (e.g., in Matlab). This means that you should
be able to visualize the direction fields of these algorithms for different
parameter settings. Test your code by plotting the direction fields for
FAQ-learning and compare these to the ones provided in Section 4.

• Implement Q-learning and FAQ-learning for these games (e.g., in Mat-
lab). Again test your code by comparing the plots of the learning traces
to the ones provided in Section 4.

• Now also implement LFAQ-learning and regret minimization and the
evolutionary dynamics for these games. Compare your findings for
LFAQ with those provided in Section 4.

• Conduct an extensive comparison of the four algorithms by varying the
parameter settings of the evolutionary dynamics. Draw conclusions on
the performance of the algorithms.
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5. Level 4 Repeat the previous exercise (same games), but now perform the
comparison in mixed play. In the mixed play experiments, games are played
by heterogeneous pairs of players, meaning that both players implement dif-
ferent learning methods. Plot and compare the dynamics for the following
cases:

• Q-learning vs. FAQ-learning

• RM vs. FAQ-learning

• FAQ-learning vs. LFAQ-learning

• RM vs. LFAQ-learning

6. Level 2-3 Implement the joint action learning algorithm for stateless games
and compare its convergence behavior with (independent) Q-learning on the
matrix games shown in Figures 10.17 and 10.18 (draw clear conclusions).

a0
a1

b0 b1(
10 0
0 10

)
Figure 10.17: Repeated matrix game (general form).

a0 a1 a2
b0 11 −30 0
b1 −30 7 6
b2 0 0 5

Figure 10.18: The climbing game.

7. Level 1-2 This question concerns the swarm intelligence paradigm. Forag-
ing is the task of locating and acquiring resources. Typically, this task has
to be performed in an unknown and possibly dynamic environment. The
problem consists of two phases. First, leaving the starting location (e.g., the
nest) in search for food. Second, returning to the starting location loaded
with food. In its simplest form (e.g., an open-field-like environment), this
is a problem domain that can be solved by a single agent or multiple, inde-
pendent agents which act in parallel. If agents want to solve the problem by
cooperation, getting to the solution of the problem becomes more complex.
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Performance can be measured in time used before all items are collected and
the number of items collected in a certain time span. Foraging can be seen as
an abstract problem with regard to more complex real-world problems such
as network routing, information retrieval, transportation, and patrolling.

• Explain the essential similarities and differences, and advantages and
disadvantages between ant and bee self-organization. Relate this to
the foraging problem.

• Would it be possible to combine the best of both worlds, i.e., of bee and
ant systems, into one new hybrid algorithm for the task of foraging? If
yes, describe how; if no, motivate your answer.

8. Level 2 Consider a congestion problem where each agent takes one of Nk
actions. Each action has a parameter bk and the number of agents that select
action k is given by xk. The total number of agents selecting the same action
as agent i is denoted by xki . The system-level objective function is:

G(z) =
Nk

∑
k=1

(xk−bk)
2 (10.27)

Now, someone gives you the following agent objective functions for agent
i. Discuss each and why you would expect them to work or not work (use
factoredness and/or learnability to make your point if necessary).

(a) gi = (xki −bk)
2− (xki)

2

(b) gi = (xki −bk)
2− (xki −bk−1)2

(c) gi = (xki −bk)
2−b2

k

(d) gi = ∑nk
k (xk−bk)

2−∑Nk
k b2

k

9. Level 2 Repeat the previous exercise for the case where bk = b ∀k. (That
is, the action parameters are the same for all actions.) How do your answers
change?

10. Level 2 Consider a multiagent system with N agents and the following
system-level objective function:

G(z) =
|∑N

i=1 aiei|
∑N

k=1 ak
, (10.28)

where ai ∈ {0,1} is agent i’s binary action (e.g., agent i is active or
not), and where {ei} is a specific value associated with each agent (the
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state vector z in this case consists of the set of all the agents’ actions, or
z = {a1,a2, · · · ,ai, · · · ,aN}).

(a) Derive the difference objective for agent i given ci = 0 (i.e., the agent
removes itself from the system). Simplify your answer.

(b) Derive the difference objective for agent i given ci = 0.5 (i.e., the agent
takes half an action, an average over its possible choices). Simplify
your answer.

(c) Both difference objectives are factored by definition. What can you
deduce about their learnability? Why?

11. Level 2 Consider a 5 x10 gridworld. The agent starts at a random location
and has four actions (moves in each of the four directions). There is a reward
of 100 to catch T1, a target that starts at the bottom right square and moves
randomly by one square at each time step. In addition, there is a reward of
−2 for every time step the agent is in this gridworld.

(a) Devise a reinforcement algorithm to catch T1. Clearly state all system
parameters (inputs, states, outputs, etc.)

(b) Now, the target uses a different algorithm. Instead of moving ran-
domly, it moves in a direction opposite the agent in each time step,
if possible, and randomly if not. Can the agent still catch the target?
Explain the behavior of the system.

(c) Now, have two agents start at the same location and move in this grid.
What behavior do you observe now? Do the agents get a benefit from
each other? If so, is that direct or incidental? Do they cooperate?

(d) Suggest one simple modification to the learning that will make agents
cooperate more explicitly.

12. Level 3 Repeat the previous exercise when the agent uses a neural network
to map its states to actions directly and uses a neuro-evolutionary algorithm
to train this neural network. Can you suggest a method to coevolve the
agents so that they directly cooperate?

13. Level 3 Arthur’s El Farol bar problem [7] is a perfect example of a con-
gestion game. In this problem each agent i decides whether to attend a bar
by predicting, based on its previous experience, whether the bar will be too
crowded to be “rewarding” at that time, as quantified by a system reward
G. The congestion game structure means that if most agents think the at-
tendance will be low (and therefore choose to attend), the attendance will
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actually be high, and vice versa. Give a modified version of this problem
where the N agents pick one out of K nights to attend the bar every week.
The system reward in any particular week is [4, 102]:

G(z)≡
K

∑
k=1

xk(z)e
−xk(z)

b , (10.29)

where xk(z) is the total attendance on night k; and b is a real-valued param-
eter.

(a) Derive a simple “local” reward for each agent in this problem (e.g.,
the agent reward should depend on information easily available to the
agent). Discuss the factoredness and learnability of the reward you
derived.

(b) Derive a difference reward for each agent. What is a good “fixed vec-
tor” ci for this case? For at least two values of ci, discuss the locality of
the information and the factoredness and learnability of the resulting
difference rewards.

(c) Perform a simulation for this problem with the following parameters:
(i) capacity of each night is 4 (b = 4), k = 6, and there are 30 agents
in the system; and (ii) capacity of each night is 4 (b = 4), k = 5, and
there are 50 agents in the system.

Plot the performance of three agent rewards (G, difference, and local) and a
histogram of sample attendance profiles. Discuss the simulation results.

14. Level 3 The degree of factoredness of an agent reward function is defined
by [4, 80]:

Fgi =
∑z′ u[((gi(z)−gi(z′))(G(z)−G(z′))]

∑z′ 1
(10.30)

where the states z and z′ only differ in the states of agent i, and u[x] is the
unit step function, equal to 1 if x > 0. The numerator counts the number
of states where gi(z)− gi(z′) and G(z)−G(z′) have the same sign, and the
denominator counts the total number of states. Intuitively, the degree of
factoredness gives the fraction of states in which a change in the state of
agent i has the same impact on gi and G. A high degree of factoredness
means that the agent reward gi moves in the same direction (up or down)
as the global reward G based on a change to the system state. A system in
which all the agent rewards equal G has a degree of factoredness of 1.
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Now, this definition of alignment does not take into account by how much
gi and G change, nor does it take into account which parts of the state space
are likely to be visited. Provide two improvements to the concept of fac-
toredness to allow better prediction of whether an agent reward will lead to
good system behavior:

(a) Define a new concept of reward alignment that is maximized when
large improvements to gi lead to large improvements of G.

(b) Define a new concept of reward alignment where states that are more
likely to be visited have higher weight in the computation of align-
ment, and having gi and G misaligned on states unlikely to be visited
do not impact the computation of alignment.

15. Level 4 Based on your new definition quantifying the degree of alignment
between a system reward and an agent reward, derive a new agent reward
that will lead to good system behavior. (Hint: the difference reward pre-
sented in Section 2 leads to a fully factored system; derive an agent reward
that will lead to a fully “aligned” system with your new definition of align-
ment.)
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Chapter 11

Multiagent Planning, Control, and

Execution

Ed Durfee and Shlomo Zilberstein

1 Introduction

Planning is important to an agent because its current and upcoming choices of
actions can intentionally establish, or accidentally undo, the conditions that later
actions depend upon to reach desirable states of the world. Hence, planning in
single-agent systems is concerned with how an agent can efficiently model and
select from alternative sequences of actions, preferably without considering ev-
ery possible sequence. In a multiagent setting, the added complication is that
decisions an agent makes about near-term actions can impact the future actions
that other agents can (or cannot) take. Similarly, knowing what actions other
agents plan to take in the future could impact an agent’s current action choices.
And, unlike single agents, multiple agents can act concurrently. Therefore an
agent’s choice of action at any given time can impact and be impacted by the ac-
tion choices of other agents at the same time. Because the space of possible joint
courses of action the agents could take grows exponentially with the number of
agents (as we will detail later), planning in a multiagent world is inherently in-
tractable, a problem that is compounded in dynamic, partially-observable, and/or
non-deterministic environments. Yet, when agents are cooperative, as we will as-
sume in this chapter, then they should strive to make decisions that collectively
over time achieve their joint objectives as effectively as possible.
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The above paragraph captures in a simplistic way the themes of this chap-
ter. By multiagent control, we refer to how agents in a multiagent system can
be provided with and utilize information to make better decisions about what to
do now so that their joint actions can further the achievement of joint objectives.
Multiagent planning focuses not just on current decisions, but also on sequences
of decisions, allowing an agent to “look ahead” so as to establish conditions for
another agent that allow it to achieve desired shared goals. From the cooperative
perspective, an agent should be willing to incur local cost if by doing so it en-
ables other agents to achieve benefits that more than offset that cost. Multiagent
execution extends and in some senses combines multiagent planning and control,
where agents both proactively plan their (inter)actions to guide the evolution of
their shared environment, but also reactively control their behaviors in response
to emergent or unlikely events.

In single-agent planning, a key to getting traction on solving hard problems is
to exploit structure, typically involving notions of locality and composition. An
agent’s state is typically composed of features (for example, propositions about
what facts are true in the agent’s environment), and an action the agent can take
typically involves only a small subset (locality) of features. By focusing only
on features of interest and the actions that involve them, an agent can focus its
search only on a much smaller space of relevant plans. Similarly, as we will
see in this chapter, solving multiagent planning and control problems can depend
critically on exploiting problem structure, where that structure extends to locality
of interacting agents (e.g., an agent’s action choices only directly affect a few other
agents), and locality of involved features (e.g., few agents can directly affect any
particular feature, and/or only a few of the features an agent cares about can be
affected by others). Agents can exploit such structure to formulate their joint plans
through composition: the solutions for the different localities can be combined
(relatively) straightforwardly into a comprehensive multiagent solution.

This chapter builds on the topics of the previous chapters to describe the con-
cepts and algorithms that comprise the foundations of multiagent control, plan-
ning, and execution. We assume that the reader is already familiar with protocols
of interaction; here those protocols are used in the context of coordinating coop-
erative multiagent action. We also assume the reader is familiar with traditional
AI search techniques, planning algorithms and representations, and models for
reasoning under uncertainty. We make liberal use of the relevant concepts as we
delve into their multiagent analogues.
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2 Characterizing Multiagent Planning and Control

As with many topics in multiagent systems (and artificial intelligence, and com-
puter science ...), a phrase like “multiagent planning” or “multiagent control” can
mean different things to different people. We do not claim that our characteriza-
tion here is necessarily the consensus opinion of the community, but it should give
the reader of this chapter a sense of the problems that are (and are not) within the
space of problems considered here.

Multiagent planning is something of an ambiguous term, because it is unclear
exactly what is “multiagent.” It could be that the operative issue is that, as a
consequence of possibly centralized planning, a plan is formulated that can be
distributed across and acted upon by a set of agent systems. Alternatively, the
operative issue could be that the planning process should itself be multiagent,
whether or not the resulting plan(s) are. Or perhaps both issues are of interest.

In this chapter, we consider both multiagent plans and multiagent plan forma-
tion as requirements. The case where neither holds is simply traditional single-
agent planning. The case where multiple agents cooperatively generate a single-
agent plan (such as where a set of planning specialists can contribute to the forma-
tion of a plan for the manufacture of an artifact [34], is effectively an instance of
cooperative problem solving, where the problem being solved is the construction
of a plan. Depending on the nature of the plan being devised, techniques such as
distributed constraint satisfaction [67], distributed constraint optimization (Chap-
ter 12), or distributed search [62] can be employed to jointly construct such a plan.
Finally, consider the case where a centralized planner builds a detailed collection
of plans to distribute among the agents, such that the behavior of each agent is
precisely dictated. While beautifully coordinated behavior can ensue, the agents
are stripped of any autonomy, and are thus arguably not agents in any interesting
sense any more. In essence, this is multi-effector planning, rather than multiagent
planning.

If the centralized planner provides less detailed guidance, however, then agents
can exercise their “agent” attributes to utilize local awareness of the world, along
with local preferences, knowledge, and capabilities, to more autonomously and
individually decide on current actions, and even to plan future actions. When this
occurs, then the multiagent plan and the plan formation process are both inher-
ently distributed among agents: no single agent forms or even might be aware of
the entire joint plan, since different agents may have made their own local plan
elaborations and refinements.

What happens if there is no centralized planner, and hence no centralized guid-
ance, at all? This is an interesting question. If we say that the agents could co-
operatively converge on an effective (distributed) joint plan without a centralized
planner, where did the guidance come from to do so? Typically, some central-
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izing entity (an agent, a human system designer, a group of people comprising
a standards body) will have devised and disseminated some guidelines, such as
interaction plans (aka protocols) and the rules for using them, which the agents
count upon to communicate and cooperate with each other. How and whether the
environment can itself provide the structure to allow dissimilar agents to converge
on cooperative plans for non-trivial problems, or can engender the unguided emer-
gence of languages and protocols that enable cooperation, is beyond the scope of
this chapter.

The preceding thus sets the table for our exploration of multiagent planning
and control techniques in this chapter. We begin in Section 3 with looking at the
process of creating centralized guidelines that push agents to make good control
decisions (about current actions) and/or planning decisions (about sequences of
actions). As we shall see, in some cases these guidelines can guarantee that the
control decisions or plans that each agent makes in adherence to the guidelines
must be jointly coordinated. In such cases, coordination precedes planning.

We then turn to the opposite (Section 4), when planning precedes coordination,
where the guidelines are weaker (typically, more general-purpose) and hence do
not constrain the space of joint plans much. Instead, each agent can elaborate its
own plan to achieve its assigned goals, and then these plans are coordinated by,
for example, adjusting the timing of agents’ activities to preclude interference.

Unfortunately, for a variety of interesting problems, including problems where
unexpected events can occur at runtime, (local) planning of individual actions
and (multiagent) coordination of interactions need to be done together, in an
interleaved manner. In Section 5, we look at how such multiagent sequen-
tial decision-making problems can be formulated as decentralized (partially-
observable) Markov decision processes, and describe techniques for finding opti-
mal and approximately-optimal solutions (joint plans) in such problems.

Finally, finding good joint plans is only useful if agents can successfully ex-
ecute them. Since planning is done using a model of the environment, and that
model might not correctly represent the actual environment at the time the plan is
executed, agents should monitor the progress of their plans against expectations,
and repair their joint plans in response to deviations. These ideas are familiar
(though still challenging) in the single-agent planning world; we conclude this
chapter (Section 6) describing strategies to handle similar problems in the multi-
agent setting.

3 Coordination Prior to Local Planning

Developers of distributed systems typically anticipate how entities within a sys-
tem might need to interact, and predefine interaction plan templates for the en-
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tities to fill in and follow. Examples of such interaction plan templates abound
in this book. These templates can take the form of interagent protocols, defining
the possible sequences of communicative acts between agents, where the content
of these acts can be domain dependent. For example, agents solving a distributed
constraint satisfaction problem follow protocols for exchanging information about
tentative assignments of values to variables, or of no-good assignments that col-
lectively violate constraints [67]. As another example, agents solving a resource
allocation problem can work within auction mechanisms that have been designed
to cause information exchanges to converge on efficient allocations (Chapter 7).

3.1 Social Laws and Conventions

We begin with a simple strategy to ensure sufficient coordination of agents’ ac-
tions, a strategy that has been characterized as imposing social laws on agents
[55, 56]. The idea is to identify joint states that should not be allowed to arise, and
to impose restrictions on agents’ action choices to prevent them.

A canonical application domain for social laws is in coordinating mobile
robots. Collisions between robots leads to system degradation (robots become
disabled) and cost (robots need repairs), and thus should be avoided. If space is
discretized, such as modeling it as a grid, then states where two or more robots
are in the same grid coordinate should be prevented. Thus, one law to impose on
the robots is that a robot should never move into a neighboring location that is
occupied.

A moment’s reflection reveals that such a law is insufficient, because it fails to
prevent two or more robots from simultaneously entering the same empty location
from different directions. One way to strengthen the social law is to prohibit
agents from entering a location from more than one direction. If each location in
the grid is to be reachable from every other location, this stronger law effectively
defines a directed cycle through the grid locations such that each location is visited
exactly once.

The stronger social law leads to agents moving through the locations in a sort
of “conga line,” where each can move to its next location when that location is
empty. Agents do not need to coordinate their action choices as they decide where
they want to go, because so long as agents obey the law, collisions cannot arise.
However, such prebuilt coordination generally comes at a price. An agent might
take a very circuitous route to get to a desired destination because of the social
law, when it could have potentially gotten where it wanted much more directly
and safely because other agents were far away. In human terms, going the wrong
way on a one-way street might be more efficient late at night when the odds of en-
countering oncoming cars is negligible. But deciding when it is safe to break such
laws requires agents to reason about (and often communicate with) each other. A
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purpose of social laws is to relieve agents of the burden of explicitly coordinating,
potentially at the price of some degree of inefficiency in joint behaviors.

The flip side of social laws that tell agents what they are prohibited from doing
in certain circumstances is the notion of conventions, which tell agents what they
should (or must) do. The conceptual framework for conventions is the same as
for social laws, which is to identify undesirable joint situations and to constrain
agents to actions that avoid them. A canonical application domain for conventions
is when agents share joint intentions [33], such that they have committed to work
together on achieving some mutually-desired goal. If, in the midst of pursuing this
joint goal, an agent comes to believe that the goal is unachievable, then it would
be irrational for the agent to continue pursuing it. However, a state in which
some agents are continuing to pursue a joint goal while others have dropped it as
unachievable is arguably an undesirable state, since the former agents are taking
futile actions. Hence, agents in the joint intentions framework follow a convention
that they must notify each other if they come to believe the joint goal cannot be
achieved.

Other flavors of these concepts have been introduced, such as that agents
should return shared resources to their default state after usage (e.g., putting a
tool back where it belongs when finished using it) or even go slightly out of their
way to make a shared environment more conducive to goal achievement for other
agents (e.g., widening a path while following it to make its traversal easier for
later agents) [29]. The algorithmic model shared by them all is:

1. Identify joint states that should be avoided (or sought).

2. Work backward through agents’ joint actions to identify possible precursor
states to these states.

3. Impose constraints on agents’ action choices in the precursor states to pre-
vent (or require) joint actions accordingly.

Note that this process can recurse. If a precursor of a state to avoid leads
inexorably to the undesirable state, then the precursor state should be added to
the states to be avoided, and the algorithm should work backwards from it too.
Similarly, if there is a way to go assuredly to a sought state from its precursor, the
precursor can be added to the set of sought states.

3.2 Organizational Structuring

While social laws and conventions apply equally to all agents, cooperation in
some types of problems can be better achieved if agents are differentially biased
in the actions they choose to, or choose not to, take. Organizational structures
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are a familiar example of this in human institutions. An organizational structure
defines, for example, a set of different organizational roles with identified respon-
sibilities, and connections between roles to direct exchanges of information and to
dictate authority relationships. A good human organizational structure is one that
provides the people occupying each of the roles with guidance about how to pri-
oritize their tasks and direct their communications such that their complementary
actions dovetail together into an effective whole.

As described in Chapter 2, similar ideas can and have been incorporated in
multiagent systems. Organizational structuring has been exploited in a variety of
application domains for multiagent systems, such as disaster response and sensor
networks. Since the sensor network application has been a mainstay of organiza-
tional structuring research for decades, we use it for illustrative purposes in this
section.

The most obvious roles for agents in a distributed sensor network correspond
with geographical regions: different sensor agents will be responsible for mon-
itoring events near where they are located (or where they are now tasked with
relocating to). Where sensor coverages overlap, responsibility for the overlap-
ping region should be assigned, though perhaps not exclusively. That is, just as
in human organizations where overlap between roles allows whomever is least
burdened in the current situation to take on more of the shared responsibility, role
overlap in multiagent systems also enables some degree of dynamic load balanc-
ing, and even fault tolerance.

Other forms of task decomposition within the distributed sensor network do-
main can lead to further refinement of roles. An agent with access to a particular
sensory apparatus (e.g., acoustic instead of visual) might be given greater respon-
sibility for monitoring for particular events. Agents might balance computational
load by assigning responsibility for different kinds of phenomena among them-
selves. Some agents might be given greater responsibility for integrating interpre-
tations from others rather than forming interpretations from raw data themselves.

3.2.1 Organizational Design

While the preceding says something about what an organizational structure does,
the question remains about where it comes from. In general, the space of possible
organizational designs for a non-trivial multiagent (including human) enterprise is
vast, and the ability to predict organizational performance (particularly in human
settings) is limited. Hence, while computational techniques have been used to
study and extend organizational theory [10], no consensus strategy for forming
organizations for systems of computational agents has emerged.

As outlined in Chapter 2, organizational designs can arise from the bottom
up, by adopting and codifying emergent patterns of interactions between agents,
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or can be constructed from the top down, by tasking one or more organizational
designers with forming an organizational structure that the collection of agents
then adopts. Both cases involve a search over (part of) the space of designs.

To make the design process more concrete, we here summarize one approach
developed by Sims, Corkill, and Lesser [57]. A core idea is to view the design
of an organization much like the creation of a hierarchical plan: given goals and
environmental conditions, decompose the goals into component subgoals, identify
agent roles whose preconditions are met by the environment and whose expected
effects match the subgoals, and compose an organization out of the resultant roles.
Then, match agents to the roles to instantiate the organization.

More precisely, the ORGANIZATIONSEARCH algorithm takes a sorted list of
candidate partial organizations, and steps through the list until the following pro-
cedure returns:

1. Generate expansions of the candidate partial organization by finding a goal
leaf in the decomposition hierarchy that has not been fully bound, and
replacing it with either a role-goal binding indicating how it could be
achieved, or with a subgoal tree that further decomposes it into subgoals.

2. Repeat step 1 until all leaves have associated roles.

3. Then use information about agent capabilities to assign agents to the roles.

4. If all roles can be assigned, return the organizational design, else return fail-
ure, triggering the search to continue with other candidate decompositions.

The design search begins with the candidate partial plan corresponding to
the organization’s top-level goal(s), and terminates as soon as a completely in-
stantiated organizational design has been found. Because the candidate list is
kept sorted using a heuristic, the first successful returned design is adopted; even
though a better design might be possible, the costs of an exhaustive search for it
argues for heuristic termination.

The above algorithmic outline ignores a variety of details about how knowl-
edge about decompositions and agent capabilities are collected, stored, and re-
trieved, and about complications that arise from, for example, assigning a single
role to multiple agents that then themselves need to coordinate. Yet, it is funda-
mentally like a planning algorithm. As has been pointed out elsewhere, the dis-
tinction between an organizational role and an abstract plan step is blurry [21]. In
both cases, the agent is expected to dynamically elaborate the specification given
its current circumstances, with the expectation that any suitable elaboration will
fulfill the responsibilities to the rest of the organization/plan.
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3.2.2 Organizational Execution and Functionally-Accurate Cooperation

Agents working in a distributed sensor network lack global awareness of the prob-
lem, and thus cooperate by forming local interpretations based on their local sen-
sor data and the tentative partial interpretations received from others, and then
sharing their own tentative partial interpretations. As a result, these agents need to
cooperate to solve their subtasks, and might formulate tentative results along the
way that turn out to be unnecessary. This style of collective problem solving has
been termed functionally accurate (it gets the answer eventually, but with possibly
many false starts) and cooperative (it requires iterative exchange) [40].

Functionally-accurate cooperation has been used extensively in distributed
problem solving for tasks such as interpretation and design, where agents only
discover the details of how their subproblem results interrelate through tentative
formulation and iterative exchange. For this method to work well, participating
agents need to treat the partial results they have formulated and received as tenta-
tive, and therefore might have to entertain and contrast several competing partial
hypotheses at once. A variety of agent architectures can support this need; in par-
ticular, blackboard architectures [15] have often been employed as semi-structured
repositories for storing multiple competing hypotheses.

Exchanging tentative partial solutions can impact completeness, precision, and
confidence. When agents can synthesize partial solutions into larger (possibly still
partial) solutions, more of the overall problem is covered by the solution. When
an agent uses a result from another to refine its own solutions, precision is in-
creased. And when an agent combines confidence measures of two (corroborat-
ing or competing) partial solutions, the confidence it has in the solutions changes.
In general, most distributed problem-solving systems assume similar representa-
tions of partial solutions (and their certainty measures), which makes combining
them straightforward, although some researchers have considered challenges in
crossing between representations, such as combining different uncertainty mea-
surements [68].

In functionally-accurate cooperation, the iterative exchange of partial results
is expected to lead, eventually, to some agent having enough information to keep
moving the overall problem solving forward. Given enough information ex-
change, therefore, the overall problem will be solved. Of course, without being
tempered by some control decisions, this style of cooperative problem solving
could incur dramatic amounts of communication overhead and wasted computa-
tion. For example, if agents share too many results, a phenomenon called dis-
traction can arise: it turns out that they can begin to all gravitate toward doing
the same problem-solving actions (synthesizing the same partial results into more
complete solutions). That is, they all begin exploring the same part of the search
space. For this reason, limiting communication is usually a good idea, as is giving
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agents some degree of skepticism in how they assimilate and react to information
from others. We address these issues next.

Organizational structuring can provide the basis for making good decisions
about where agents should direct their attention and apply their communication re-
sources. The organization defines control and communication protocols between
agents by providing messaging templates and patterns to agents that trigger appro-
priate information exchange. As a simple example, the organization can provide
an agent with simple communication rules, such that if the agent creates a lo-
cal hypothesis that matches the rule pattern (e.g., characterizes an event near a
boundary with other agents), then the agent should send that hypothesis to the
specified agents. Similarly, if an agent receives a hypothesis from another, the
organizational structure can dictate the degree to which it should believe and act
on (versus being skeptical about) the hypothesis.

Organization structures thus provide static guidelines about who is generally
interested in what results. But this ignores timing issues. When deciding whether
to send a result, an agent really wants to know whether the potential recipient
is likely to be interested in the result now (or soon). Sending a result that is
potentially useful but that turns out not to be at best clutters up the memory of
the recipient, and at worst can distract the recipient away from the useful work
that it otherwise would have done. On the other hand, refraining from sending a
result for fear of these negative consequences can lead to delays in the pursuit of
worthwhile results and even to the failure of the system to converge on reasonable
solutions at all because some links in the solution chain were broken.

When cluttering memory is not terrible and when distracting garden paths are
short, then the communication strategy can simply be to send all partial results.
On the other hand, when it is likely that an exchange of a partial result will distract
a subset of agents into redundant exploration of a part of the solution space, it is
better to refrain, and only send a partial result when the agent that generated it has
completed everything that it can do with it locally. For example, in a distributed
theorem-proving problem, an agent might work forward through a number of res-
olutions toward the sentence to prove, and might transmit the final resolvent that
it has formed when it could progress no further.

Between the extremes of sending everything and sending only locally-
complete results are a variety of gradations [22], including sending a small partial
result early on (to potentially spur the recipient into pursuing useful related results
earlier). For example, in a distributed vehicle monitoring problem, sensing agents
in neighboring regions need their maps to agree on how vehicles move from one
region to the other. Rather than waiting until it forms its own local map before
telling its neighbor, an agent can send a preliminary piece of its map near the
boundary early on, to stimulate its neighbor into forming a complementary map
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(or determining that no such map is possible and that the first agent is pursuing a
dubious interpretation path).

So far, we have concentrated on how agents decide when and with whom to
voluntarily share results. But the decision could clearly be reversed: agents could
only send results when requested. When the space of results formed is large and
only a few are really needed by others, then sending requests (or more generally,
goals) to others makes more sense. This strategy has been explored in distributed
vehicle monitoring [17], as well as in distributed theorem proving [25, 42].

It is also important to consider the delays in iterative exchange compared to a
blind inundation of information. A request followed by a reply incurs two commu-
nication delays, compared to the voluntary sharing of an unrequested result. But
sharing too many unrequested results can introduce substantial overhead. Clearly,
there is a trade-off between reducing information exchanged by iterative messag-
ing versus reducing delay in having the needed information reach its destination
by sending many messages at the same time. Sen, for example, has looked at this
in the context of distributed meeting scheduling [52]. Our experience as human
meeting schedulers tells us that finding a meeting time could involve a series of
proposals of specific times until one is acceptable, or it could involve having the
participants send all of their available times at the outset. Most typically, however,
practical considerations leave us somewhere between these extremes, sending sev-
eral well-chosen options at each iteration.

Finally, the communication strategies outlined have assumed that messages
are assured of getting through. If messages get lost, then results (or requests for
results) will not get through. But since agents do not necessarily expect mes-
sages from each other, a potential recipient will be unable to determine whether
or not messages have been lost. One solution to this is to require that messages be
acknowledged, and that an agent sending a message will periodically repeat the
message (sometimes called “murmuring”) until it gets an acknowledgment [41].
Or, a less obtrusive but more uncertain method is for the sending agent to pre-
dict how the message will affect the recipient, and to assume the message made it
through when the predicted change of behavior is observed.

3.3 The Contract-Net Protocol and Role Assignment

The third and final category of techniques we discuss where coordination is done
prior to making local planning and control decisions is the use of predefined proto-
cols. An entire chapter of this book is dedicated to communication and protocols,
and so we will not go into all of the gory details. But the important point from
the perspective of this chapter is that protocols typically amount to predefined
multiagent plan templates. These plan templates are intended to bring about a
new joint state of the world, where the new state can include agents now knowing
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things that they previously did not know, forging relationships and dependencies
that mutually benefit them, making commitments that allow each to pursue some
tasks with confidence that others will pursue related tasks, etc.

Formulating protocols is thus akin to formulating social laws or organizational
structures: given properties of desired states of the world, predefine patterns of
actions that if jointly followed will bring them about. In fact, the creation of
choreographed service-oriented computing frameworks can treat the problem of
composing and sequencing services as a planning problem (Chapter 3).

For the remainder of this section, however, we focus not on where protocols
come from, but rather on how they can serve to control the interactions of agents
toward a particular outcome. We will illustrate the ideas by examining one of the
very first multiagent protocols, the contract-net protocol, and one of its first ap-
plications, which is to establish a distributed sensor network [18]. In distributed
sensor network establishment (DSNE), roles (areas of sensing responsibility, re-
sponsibilities for integrating partial interpretations into more complete ones) need
to be assigned to agents, where the population of agents might be initially un-
known or dynamically changing. Thus, the purpose of the protocol is to exchange
information in a structured way to converge on assignments of roles to particular
agents.

At the outset, it is assumed that a particular agent is given the task of monitor-
ing a wide geographic area. This agent has expertise in how to perform the overall
task, but is incapable of sensing all of the area from its own locality. Therefore,
the first step is that an agent recognizes that to perform its task better (or at all) it
should enlist the help of other agents. As a consequence, it then needs to create
subtasks to offload to other agents. In the DSNE problem, it can use its repre-
sentation of the structure of the task to identify that it needs sensing done (and
sensed data returned) from remote areas. Given this decomposition, it then uses
the protocol to match these sensing subtasks with available agents.

The agent announces a request for bids for subtask. The important aspects
of the announcement for our purposes here are the eligibility specification, the
task abstraction, and the bid specification. (Attributes of message structures are
described more fully in Chapter 3.) To be eligible for this task requires that the
bidding agent have a sensor position within the required sensing area and that
it have the desired sensing capabilities. Agents that meet these requirements can
then analyze the task abstraction (what, at an abstract level, is the task being asked
of the bidders?) and can determine the degree to which it is willing and able to
perform the task. An eligible agent can then bid on the task, where the content of
a bid is dictated by the bid specification.

The agent with the task receives back zero or more bids. If it gets no bids,
then it can give up, try again (since the population of agents might be changing),



Chapter 11 497

broaden the eligibility requirements to increase the pool of potential bidders, or
decompose the task differently to target a different pool of bidders. Even if it gets
back bids, it could be that none are acceptable to it, and it is as if it got none
back. If one or more is acceptable, then it can award the sensing subtask to one
(or possibly several) of the bidding agents. Note that, because the agent with the
task has a choice over what it announces and what bids it accepts, and an eligible
agent has a choice over whether it wants to bid and what content to put into its
bid, no agent is forced to be part of a contract. The agents engage in a rudimentary
form of negotiation, and form teams through mutual selection.

4 Local Planning Prior to Coordination

In some problem domains, predicting and pre-arranging the resolution of all pos-
sible interactions can be difficult and costly. For example, consider an environ-
ment where agents might pursue a wide variety of goals largely independently,
but where aspects of the environment are shared such that how one agent affects
the environment can impact how (and even whether) another agent can achieve its
goals. Anticipating and planning for every possible interaction might be overkill.
Instead, coordination should depend on the actual plans, and hence emergent in-
teractions, of the agents in the current circumstances.

This viewpoint is appealing from the perspective of “divide and conquer”
problem solving. The notion is to divide the problem up such that agents ini-
tially treat their own local problems as being independent, and thus each agent
can formulate its own plan concurrently with the planning of other agents. After
formulating their separate plans, then, the agents need to coordinate their plans to
resolve their unintended interactions. We will refer to the problem of resolving
interactions between separately-formed agent plans as the multiagent plan coor-
dination problem (MPCP).

As has been noted by a variety of people (dating back to Conry et al. [13], and
recently by Nassim et al. [46]), this view of multiagent planning is compatible
with a distributed constraint satisfaction formulation, where the variables are the
agents’ plans, and the constraints enforce that the plans dovetail together suitably.
In distributed constraint satisfaction approaches [67], each agent is responsible for
some set of variables, where each variable has an associated (typically finite) do-
main of values, and whose value assignment can be constrained depending on the
assignments of other variables (possibly belonging to other agents). Traditionally,
distributed constraint satisfaction algorithms involve asynchronous exchanges of
tentative value assignments to (some of) the variables, and then information about
constraint violations that trigger one or more agents to revise their tentative as-
signments. Parallel search can speed up finding a satisfying assignment, but care
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must be taken to ensure the process is complete and terminates.
The MPCP differs from typical distributed constraint satisfaction problems in

several important ways. First, the domain of possible “values” for an agent’s plan
“variable” is usually large (even infinite), and expensive to construct. Hence, there
is a desire to generate as few elements of the variable domains as possible before
converging on a joint plan. Second, the “constraints” between agents’ variables
are complex. It is non-trivial to assess whether the plans of two agents are com-
patible and will lead to some desired outcome state (or avoid an undesired state)
if executed asynchronously.

Hence, the MPCP is generally solved in a sequential manner, possibly with
backtracking, without assurances of finding an optimal joint plan. The basic out-
line of the algorithm is:

1. Each agent builds its local plan as if it were alone in the environment.

2. Agents directly, or through a more centralized mediary, identify potential
problems that can arise during joint execution.

3. For problems that can arise, agents inject additional constraints into their
plans (typically, over the timing of their actions relative to each other) to
prevent such problems.

4. If all problems are prevented, then the agents are done. Otherwise, if some
problems cannot be prevented, then one or more agents develops an alterna-
tive local plan, and the coordination problem repeats with the new portfolio
of agent plans.

4.1 State-Space Techniques

The preceding algorithm sketch obviously leaves underspecified exactly how
agents identify and rectify potential problems. One approach for doing so, rem-
iniscent of GRAPHPLAN concepts [50, section 11.4], is to forward simulate the
execution of agents’ plans, step by step, and to detect whether an inconsistent
state of the world arises, such as where a condition is simultaneously both estab-
lished and undone, or when a single resource is assumed to be claimed by more
than one agent at the same time. When such a state arises, the combination of
actions that led to the inconsistency is analyzed, and one or more of those actions
are prohibited to prevent the inconsistency. In essence, the agent(s) performing
those action(s) are required to pause in the execution of their plan(s) at this step.
Then, from the new resulting consistent state, again all agents (including those
who paused) propose their next actions, and the process continues. If one or more
agents is blocked from ever completing its plan, then the process can backtrack to
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either pause different combinations of actions, or even to request some agents to
form different local plans. It is also possible for some agent actions to be entirely
skipped over, if serendipitously some other agents had established the conditions
that those actions were intended to establish.

Ephrati and Rosenschein [23, 24] have formulated a more robust version of
this approach. Their plan combination search approach to multiagent plan coor-
dination begins with each agent constructing a set of possible local plans, rather
than just one specific local plan which might be incompatible with local plans of
others. During the search, the agents’ sets of plans gets refined to converge on a
nearly optimal combination. The search process avoids commitment to sequences
of actions by specifying sets of propositions that hold as a result of action se-
quences instead of fully grounded states. The agents search by proposing, given a
particular set of propositions about the world, the changes to that set that they each
can make with a single action from their plans. These are all considered so as to
generate candidate next sets of propositions about the world, and these candidates
are ranked using an A* heuristic. Specifically, the cost of reaching the candi-
date set of propositions is summed with the total of each agent’s estimated cost to
achieve its goal based on its plans. The best candidate is chosen and the process
repeats, until no agent wants to propose any changes (each has accomplished its
goal).

Ephrati and Rosenschein illustrate this approach using a simple problem of
agents cooperatively constructing an arch by separately planning the construction
of each upright as well as the lintel [23]. Note that, depending on the more global
movement of the plan, an agent will be narrowing down the plan it expects to use
to accomplish its own private goals. Thus, agents are simultaneously searching for
which local plan to use as well as for synchronization constraints on their actions,
since in many cases the optimal step forward in the set of achieved propositions
might omit the possible contributions of an agent, meaning that the agent should
not perform an action at that time.

4.2 Plan-Space Techniques

The plan-space formulation of the MPCP below follows from Russell and
Norvig’s presentation of partial-order planning [50]. We begin with a brief re-
fresher on single-agent partial-order planning, and then provide definitions and
algorithms that extend it to the multiagent case.

4.2.1 Single-Agent Plans

A single-agent plan is a total or partial ordering of steps that will advance an
agent from its initial state I to a state that satisfies its goal conditions G. A plan
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step is a fully grounded (or variable free) instance of an operator from the agent’s
set of operators. An operator a in this representation has a set of preconditions
(pre(a)) and postconditions (post(a)), where each condition c ∈ pre(a)∪ post(a)
is a positive or negative (negated) first-order literal. The set pre(a) represents the
set of preconditions that must hold for the agent to carry out operator a, and the
set post(a) represents the postconditions, or effects, of executing the operator on
an agent’s world state.

A standard formulation of a single-agent plan is a partial-order, causal-link
(POCL) plan. POCL plans capture temporal and causal relations between steps in
the partial-order plan. The definition of a POCL plan here is based on Bäckström
[2], though it follows common conventions in the POCL planning community [63]
to include special steps representing the initial and goal states of the plan.

Definition 11.1 A POCL plan is a tuple P = 〈S,≺T ,≺C〉 where S is a set of plan
steps (operator instances), ≺T and ≺C are (respectively) the temporal and causal
partial orders on S, where e ∈≺T is a tuple 〈si,s j〉 with si,s j ∈ S, and e ∈≺C is a
tuple 〈si,s j,c〉 with si,s j ∈ S and where c is a condition. A POCL plan models the
agent’s initial state using an init step, init ∈ S, and the agent’s goal using a goal
step, goal ∈ S, where post(init) = I (the initial state conditions), and pre(goal) =
G (the goal conditions).

Elements of≺T are commonly called ordering constraints on the steps in the
plan. A partial-order plan has the following properties:

• ≺T is irreflexive (if si ≺T s j then s j ⊀T si).

• ≺T is transitive (if si ≺T s j and s j ≺T sk then si ≺T sk).

Elements of ≺C are the causal links, representing causal relations between
steps, where causal link 〈si,s j,c〉 represents the fact that step si achieves condition
c for step s j. The presence of a causal link in a plan implies the presence of an
ordering constraint.

The single-agent planning problem can be seen as the problem of transforming
an inconsistent POCL plan into a consistent POCL plan. This is done by searching
through the space of possible POCL plans, identifying the consistency flaws in the
current POCL plan under consideration, and iteratively repairing them to produce
a state representing a consistent POCL plan. Flaws include causal-link conflicts
and open preconditions. The presence of a causal-link conflict in a plan indicates
that, for some causal link 〈si,s j,c〉, there exist executions (linearizations) of the
partial-order plan where a step sk ∈ S negates condition c after it is produced by
si but before it can be utilized by step s j. Given a conflict between a step sk and
a causal link 〈si,s j,c〉, the standard method to resolve it is to add either 〈sk,si〉 or
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Figure 11.1: Initial state for simple blocks world problem.

〈s j,sk〉 to≺T . That is, order the threatening step either before or after the link. An
open precondition c of a plan step s j ∈ S can be satisfied by adding a causal link
〈si,s j,c〉 where step si ∈ S establishes the needed condition (and si is not ordered
after s j). If this requires that a new step si is added to S, then its preconditions
become new open preconditions in the plan.

As a simple example, consider the blocks world situation portrayed in Fig-
ure 11.1. Say Agent1 has a goal of achieving a state where block A is on block B.
Using the POCL algorithm, it creates the plan shown in Figure 11.2, where actions
and their parameters are given in the squares, their preconditions (postconditions)
are given to the left (right) of the square, causal links are the narrow black arrows,
and ordering constraints are the wide gray arrows. Notice that the plan is partially
ordered, in that before block A can be stacked on B, both blocks must be cleared,
but they can be cleared in either order. Finally, in Figure 11.3 is a plan for Agent2
to stack block B on C. Neither agent cares where block D ends up.

4.2.2 Multiagent Plans

To extend the notation and definitions of POCL plans to the multiagent case, we
first address the issue of action concurrency. A single-agent usually takes only one
action at a time, and thus a POCL plan such as in Figure 11.2 will be linearized
before or during execution. If an agent can execute multiple actions in paral-
lel, unordered actions that are eligible for execution are assumed to be executed
concurrently. The POCL plan representation cannot express that some unordered
steps to be executed in parallel but not others. To make this distinction, we extend
from Bäckström [2] the idea of a parallel plan, to define a parallel POCL plan.

Definition 11.2 A parallel POCL plan is a tuple P = 〈S,≺T ,≺C,#,=〉 where
〈S,≺T ,≺C〉 is the embedded POCL plan, and “#” and “=” are symmetric non-
concurrency and concurrency relations over the steps in S, respectively.

The relation 〈si,s j〉 ∈= means that si and s j are required to be executed simul-
taneously. For example, if a plan has multiple goal steps and is intended to reach
a state where all goals are satisfied simultaneously, then all pairs of goal steps
would be elements of =. The relation 〈si,s j〉 ∈ # is equivalent to the statement
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Figure 11.2: Single POCL plan for stacking block A on block B.
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Figure 11.3: Single POCL plan for stacking block B on block C.

(s j ≺T si)∨ (si ≺T s j). The # relation is needed because we make the assumption
that parallel plans obey the post-exclusion principle [2], which states that actions
cannot take place simultaneously when their postconditions are not consistent.
The # and = are disjoint sets, as two steps cannot be required to be concurrent and
non-concurrent.

Given this definition of a parallel plan, it is clear that a partial-order (POCL)
plan P is a specialization of a parallel (POCL) plan P∗ in which either all pairs
of steps in P∗ are in # (if it is assumed an agent can do only one action at a
time) or none of them are (if all unordered actions are assumed to be concurrently
executable). Likewise, a POCL plan implicitly requires that = be empty (unless a
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single agent can execute multiple steps concurrently).
Because of the post-exclusion principle, parallel plans have an additional

source of plan flaws:

Definition 11.3 A parallel-step conflict exists in a parallel plan when there are
steps s j and si where post(si) is inconsistent with post(s j), s j ⊀T si, si ⊀ s j and
〈si,s j〉 /∈ #.

However, unlike open conditions and causal-link conflicts, parallel-step con-
flicts can always be resolved, no matter what other flaw resolution choices are
made. Recall that to repair a parallel-step conflict between steps si and s j, we
need only ensure that the steps are non-concurrent, either by adding si ≺T s j or
s j ≺T si to the plan. Given an acyclic plan P, there will always be at least one way
of ordering every pair of steps in the plan such that the plan P remains acyclic.
This can be trivially shown by considering the four possible existing orderings of
any pair of steps si and s j in plan P. First, si and s j could be unordered. In this
case, we can add either si ≺T s j or s j ≺T si to the plan without introducing cycles
in the network of steps. Second, si ≺T s j is in the plan, in which case the parallel-
step conflict has already been resolved. The same is true when s j ≺T si is in the
plan. Finally, si ≺T s j and s j ≺T si could both hold in the plan, but in this case the
plan already has a cycle, and so repairing the parallel-step conflict becomes moot.

The parallel plan model captures the idea of concurrency, but it is not rich
enough to describe the characteristics of a multiagent plan, in which we also need
to represent the agents involved, and to which actions they are assigned. To do so,
we extend the definition of a parallel plan to a multiagent parallel POCL plan.

Definition 11.4 A multiagent parallel POCL plan is a tuple M = 〈A,S,≺T ,≺C,
#,=,X〉 where 〈S,≺T ,≺C,#,=〉 is the embedded parallel POCL plan, A is the set
of agents, and X is a set of tuples of form 〈s,a〉, representing that the agent a ∈ A
is assigned to execute step s. A multiagent plan models the agents’ initial states
using init steps, initi ∈ S, and the goals of the agents using a set of goal steps,
goali ∈ S, where the preconditions of the goal steps represent the conjunctive goal
that the plan achieves, and the postconditions of the init steps represent features
of the agents’ initial states before any of them take any actions.

Figure 11.4 shows the (inconsistent!) multiagent parallel POCL plan com-
posed of the two agents’ individual plans from Figures 11.2 and 11.3. The dashed
rectangles around the init steps and goal steps indicate that these pairs of steps are
in the = relation. That is, all init steps happen simultaneously (there is a single
initial state whose conditions are the union of the init step postconditions), and
all goal steps happen simultaneously (there is a final goal state for the multiagent
system whose conditions are the union of the goal step preconditions).
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Now, just as in the single-agent case, the multiagent planning problem can
be solved by making an inconsistent multiagent parallel POCL plan consistent,
where each plan step is assigned to an agent capable of executing the step. More
formally, the multiagent plan coordination problem is the problem, given a set
of agents A and the set of their associated POCL plans P, of finding a consistent
and optimal multiagent parallel POCL plan M composed entirely of steps drawn
from P (in which agents are only assigned to steps that originate from their own
individual plans) that results in the establishment of all agents’ goals, given the
collective initial state of the agents. The MPCP can thus be seen as a restricted
form of the more general multiagent planning problem in which new actions are
not allowed to be added to any agent’s plan.

This definition of the MPCP imposes a set of restrictions on the kinds of multi-
agent plan coordination problems that can be represented. Because an agent can
only be assigned steps that originated in its individual plan, this definition does
not model coordination problems where agents would have to reallocate their ac-
tivities. Further, because only individually-planned steps are considered, the def-
inition does not capture problems where additional action choices are available if
agents work together; that is, an agent when planning individually will not con-
sider an action that requires participation of one or more other agents. Finally, in
keeping within the “classical” planning realm, the definition inherits its associated
limitations, such as assuming a closed world with deterministic actions where the
initial state is fully observable.

For any given multiagent parallel plan, there may be many possible consistent
plans one could create by repairing the various plan flaws. However, not all
consistent plans will be optimal. Based on the assumptions outlined previously
concerning the nature of the multiagent plan coordination problem (namely, that
the final plan must be assembled solely from the original agents’ plans), an op-
timal multiagent plan will be one that minimizes the total cost of the multiagent
plan:

Definition 11.5 Total step cost measures the cost of a multiagent parallel plan by
the aggregate costs of the steps in the plan.

This simple, global optimality definition is not the only one that could be used
for the MPCP, but correlates to the most widely-adopted single-agent optimality
criterion. Other relevant definitions include ones minimizing the time the agents
take to execute their plans (exploiting parallelism), maximizing the load balance
of the activities of the agents, or some weighted combination of various factors.
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Figure 11.4: Initial (inconsistent) multiagent parallel POCL plan.

4.2.3 Multiagent Plan Coordination by Plan Modification

As illustrated in Figure 11.4, an initial multiagent parallel plan can simply be the
union of the individual plan structures of the agents, and thus might contain flaws
due to potential interactions between the individual plans. The initial multiagent
plan can then be incrementally modified as needed (by both asserting new coordi-
nation decisions and retracting the individual planning decisions of the agents) to
resolve the flaws. We call this approach coordination by plan modification.

From the initial (as yet uncoordinated) multiagent plan, plan coordination
takes place by repairing any flaws due to interactions between the plans. The
types of flaws are exactly the same as in parallel POCL plans: open precondi-
tions, causal-link threats, and parallel-step flaws. Assuming each of the individual
plans are consistent, there should be no open precondition flaws to resolve, at least
to begin with. Causal link threats within each agent’s plan should not exist, but
new threats arise when an action in one agent’s plan threatens a link in another
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Figure 11.5: Ordering constraint added to resolve causal-link threat.

agent’s plan. In the running example (Figure 11.4), Agent1’s Move(A,T,B) step
results in block B no longer being clear (¬Cl(B)), which threatens the causal link
between Agent2’s Move(D,B,T) and Move(B,T,C) steps. The flaw can be resolved
by adding to the ordering constraints that Move(A,T,B) come after Move(B,T,C),
as shown in Figure 11.5. Similarly, as before, parallel-step flaws can also be han-
dled by adding in ordering constraints, though the running example has no such
flaws.

The multiagent parallel POCL plan in Figure 11.5 could still be considered
flawed, however, because Agent1 and Agent2 both are planning on moving block
D from block B to the table. In the best case, one of these agents would execute the
action, and then the other before attempting its action would recognize that it can
simply skip the action because the desired effects are done. However, some plan
execution systems would treat the situation as a deviation from expectations and
attempt to repair the plan by inserting actions to (re)establish the conditions that
the step expected. In other words, the second agent to execute the Move(D,B,T)
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action might put block D back onto block B just so that it can move it off. This
is obviously wasteful of time and energy. And, even worse, if the two agents
were to attempt their Move(D,B,T) actions at about the same time, their effectors
(grippers) might collide, and the agents might disable themselves!

The MPCP thus introduces a new type of flaw that affects the correctness, or at
least the optimality, of the multiagent plan. Specifically, a step from some agent’s
plan could be redundant given the presence of steps in others’ plans. Note that
redundancy does not require that the agents seek the same effect. For example, if
Agent1 had included action Move(D,B,T) to achieve On(D,T), while Agent2 had
planned that action to achieve Cl(B), the action taken by one agent has the side
effect of satisfying the other. In such cases, redundant steps may be able to be
removed without introducing new open precondition flaws.

Definition 11.6 A plan step s is redundant in a multiagent parallel POCL plan M
with steps S when there exists a set of replacing steps R, where R⊆ S, such that for
each causal link of form 〈s,s′′,c〉, it is also the case that ∃s′ ∈ R s.t. c ∈ post(s′).

Redundancies can be discovered by altering the causal structure of the multi-
agent plan, by retracting some causal-link instantiation decisions and then assert-
ing others to replace them (so as to prevent the introduction of open precondition
flaws). To perform an adjustment of a single causal-link l = 〈si,s j,c〉, we simply
identify another step sk that also achieves condition c, and then change l such that
l = 〈sk,s j,c〉. If such an adjustment leaves si with no outgoing causal links, then
si can be removed from the plan.

Note that the removal of a single redundant step may require many causal links
to be adjusted as each outgoing causal link of a redundant step must be adjusted
so that the redundant step is no longer causally necessary in the plan. Thus, a
set of steps can collectively replace a single redundant step in a plan. Also note
that removing plan steps provides an alternative way to resolve causal-link and
parallel-step flaws: rather than adjust orderings for a step that threatens a link or
introduces a potential inconsistency with another step, the step can be removed
and the flaws go away. Finally, note that just because a redundancy exists, it does
not mean that it can necessarily be exploited. As in a single-agent plan, the same
action might need to be taken multiple times because its effects are necessarily
undone by intervening actions. (The Towers of Hanoi puzzle is a familiar example
of this.) During plan modification, if removal of such a step is attempted, the
process of link adjustment would result in causal link threats that have no valid
resolutions.

The plan modification algorithm (PMA) is shown in Algorithm 11.1. The
PMA uses a best-first search in order to find the optimal solution. The search
algorithm begins by initializing the search queue with the starting multiagent par-
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Input : an (inconsistent) multiagent parallel plan
Output: an optimal and consistent multiagent parallel plan or null plan

1 Initialize Solution to null;
2 Add input plan to search queue;
3 while queue not empty do

4 Select and remove multiagent plan M from queue;
5 if M not bounded by Solution then

6 if (M passes Solution Test) and (steps in M < steps in Solution) then

7 Solution = M;
8 end

9 Select and adjust a non-flagged causal-link in M;
10 For each refinement, remove unnecessary steps in plan;
11 Enqueue all plan refinements in search queue;
12 end

13 end

14 repair parallel-step conflicts in Solution;
15 return Solution;

Algorithm 11.1: Multiagent plan coordination by plan modification.

allel plan, and by initializing the current best solution, Solution, to null. Then,
while the queue is not empty, it selects a multiagent plan M with the lowest total
step cost from the queue.

A bounding test is applied to M to determine whether it is possible for M to
have a lower total step cost than the best Solution found so far (if any). A lower
bound on total step cost is computed for plan M by working backwards from the
goal steps to find all plan steps that contribute flagged causal links (as will shortly
be explained) to achieving the goal. If the lower bound of M is below the cost of
Solution, the algorithm proceeds.

PMA next applies a SolutionTest to M, to derive a consistent solution from M,
where any flaws in M other than step redundancy flaws are iteratively resolved by
adding ordering constraints. The SolutionTest thus conducts a depth-first search
through the space of flaw resolutions to find a consistent solution, heuristically
ordering the search to prioritize flaws for which there are fewer alternative resolu-
tions, which is a minimum remaining values (MRV) heuristic [50]. If the consis-
tent solution from M has a lower total step cost than Solution, it replaces Solution.

The PMA algorithm then selects and adjusts a non-flagged causal link in
M. In Figure 11.5, consider the causal link into condition Cl(B) for Agent1’s
Move(A,T,B) step. That causal link could originate from either Agent1’s
Move(D,T,B) step (as it does in the figure) or from Agent2’s Move(D,T,B) step.
The PMA makes copies of M that differ only in this refinement of the source of
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Figure 11.6: Solution multiagent parallel POCL plan.

the causal link, and in each “flags” the causal link so that it is not branched on
again, because each of the refinements is added to the queue and might later be
further modified. If in a refinement of M the redirection of causal links results in
a plan step having no outgoing causal links, then that plan step is removed. When
that refinement is enqueued, it will move forward in the queue since its total step
cost will be lower.

The process of dequeuing, testing, and refining continues until the queue is
empty, at which point the current value of Solution represents the lowest cost
multiagent parallel plan derivable from the input plans. PMA then resolves any
parallel-step conflicts in Solution (which, as was previously noted, must be re-
solvable), and returns Solution. In our simple example, the input from Figure 11.4
will lead to two possible solutions, one of which is shown in Figure 11.6 and the
other where the Move(D,B,T) action is instead done by Agent1. These both have
the same number of steps. If the total step cost function also considers parallel
activity, the solution shown would be preferred.
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4.3 Hierarchical Multiagent Plan Coordination

Hierarchical task network (HTN) planning is a method with algorithmic similari-
ties to POCL planning. As per the summary in [50], single-agent HTN planning is
a plan-space search method where the process focuses on refining abstract plans,
rather than fixing flawed plans as in POCL planning. The idea is that the planning
agent is endowed with a library of plans at various levels of abstraction, and the
planning process involves refining a plan by iteratively replacing abstract steps
with sequences of steps that are closer to being operational.

A familiar example of (human) HTN planning is planning a trip to attend a
distant meeting. Given the distances involved, I might decide that my plan is to
“fly” to the meeting. But I cannot execute such a plan without first refining it into
steps of getting to a nearby airport, taking a flight to an airport near the meeting
site, and then getting from that airport to the meeting. Each of these steps in turn
needs to be refined further, until all the steps have been reduced to executable
(primitive) actions. Given the same space of primitive actions, a state-space or
POCL planner could in principle find the same plan, but the knowledge encoded
in entries of the plan library (e.g., that flying involves going from where you are
to an airport, taking a flight, and getting from the resulting airport to your final
destination) can greatly streamline the planning process.

The same can be said for streamlining the multiagent planning process. The
specification of hierarchical plans for teams of agents is part of a process that
has been called team-oriented programming [49]. Such plans not only describe
how high-level tasks are broken down into subtasks, but also how collaborative
activities are broken down into different roles, similarly to relationships between
agents in organizational structures (Section 3.2). Plan refinements associate with
a subtask one or more roles that are responsible for that subtask, and ultimately
the refinement process assigns an agent to each role. (Recovery from agent failure
thus can be done by simply reassigning a role rather than replanning from scratch.)
An agent can further refine an assigned subtask for its role using standard HTN
planning. Timing and other relationships between different agents’ tasks are spec-
ified in the team-oriented programming framework, but generic mechanisms for
enforcing them can be automatically instantiated by a team-oriented programming
infrastructure such as STEAM [59].

HTN planning representations have also been exploited as a means for flexi-
bly solving multiagent plan coordination problems (Section 4). The insight is that,
while an agent can only execute a plan at the level of primitive actions, multiagent
coordination actions can (and often should) be based on more abstract levels of
the hierarchy [11]. For example, two robots performing tasks in the rooms of a
shared environment might avoid collisions by synchronizing to avoid ever occu-
pying the same room, rather than incurring the expense of reasoning about colli-
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1. Initialize the current abstraction level to the most abstract level.

2. Agents exchange descriptions of the plans and goals of interest at the current level.

3. Remove plans with no potential conflicts. If the set is empty, then done; otherwise
determine whether to resolve conflicts at the current level or at a deeper level.

4. If conflicts are to be resolved at a deeper level, set the current level to the next
deeper level and set the plans/goals of interest to the refinements of the plans with
potential conflicts. Go to step 2.

5. If conflicts are to be resolved at this level:

(a) Agents form a total order. Top agent is the current superior.

(b) Current superior sends down its plan to the others.

(c) Other agents change their plans to work properly with those of the current
superior. Before confirming with the current superior, an agent also
double-checks that its plan changes do not conflict with previous superiors.

(d) Once no further changes are needed among the plans of the inferior agents,
the current superior becomes a previous superior and the next agent in the
total order becomes the superior. Return to step (b). If there is no next agent,
then the protocol terminates and the agents have coordinated their plans.

Algorithm 11.2: Hierarchical behavior-space search.

sions at the primitive level. Thus, agents might communicate and coordinate at
an abstract planning level. This not only can have computational benefits (fewer
combinations of joint steps to reason about), but also can have flexibility benefits
at execution time. For instance, in our example of robots in a shared workspace, if
robots only coordinate at the level of entering and leaving rooms, then each robot
retains flexibility to change its planned movements within a room without needing
to renegotiate with the other. However, coordinating at an abstract level tends to
lead to less efficient joint plans (e.g., a robot idling waiting for another to exit a
room rather than carefully jointly working within the room). Further, to antici-
pate potential primitive interactions at abstract levels means that agents need to
summarize for abstract steps the repercussions of the alternative refinements that
might be made [11]. Algorithm 11.2 summarizes a simple algorithm for solving
the multiagent plan coordination problem for agents that have hierarchical plans.
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5 Decision-Theoretic Multiagent Planning

Decision-theoretic planning is aimed at choosing actions under uncertainty by
maximizing the expected value of some performance measure called utility. Plan-
ning in this case explicitly factors the uncertainty about the outcomes of actions
and the state of the domain, aiming to optimize utility rather than provably sat-
isfy certain goals. For example, a decision-theoretic plan for a space exploration
rover could maximize the scientific return, measured by the amount or the value
of the collected data in a given mission, in the face of uncertainty about the pace
of progress of the rover and amount of power left in its battery. When applied
to a multiagent system, decision-theoretic planning optimizes simultaneously the
local plan as well as coordination decisions. The value associated with each ac-
tion is based on its impact on the domain, the information it transmits to other
agents, and the information it obtains from the domain or other agents. Thus, a
single planning process optimizes the comprehensive value, thereby optimizing
both domain actions and coordination.

A standard framework to tackle planning under uncertainty is the Markov de-
cision process (MDP) [47]. The model represents the domain using a set of states.
It is designed for a single decision maker whose actions lead to stochastic transi-
tions to new states and a reward that can depend on the action and outcome. The
partially observable MDP (POMDP) is a generalization of the basic model that
accounts for imperfect observations. In a POMDP, the decision maker receives
partial information about the state of the world after taking each action. In that
case, the agent can maintain a belief state (probability distribution over domain
states), and must act without knowing the exact state of the world. One of the
key observations that made it possible to solve single-agent POMDPs is that any
POMDP can be viewed as a belief-state MDP – an MDP whose domain states
are probability distributions over real-world states. Unfortunately, the same is not
true in the multiagent case, making planning substantially more complicated. A
range of exact and approximate dynamic programming algorithms have been de-
veloped for solving MDPs and POMDPs. These algorithms have been used in
many practical applications.

A more general planning problem arises when two or more agents have to co-
ordinate their actions. Imagine for example two space exploration rovers that con-
duct experiments as part of an overall mission. The value of the data collected by
one rover may depend on the experiments performed by the other rover. Planning
in this case becomes particularly complicated when each agent receives different
observations and has different partial knowledge of the overall situation. We refer
to such problems as decentralized control problems, indicating that all the agents
control a single process in a collaborative manner, but must each act in a decen-
tralized manner based on their own observations. Such decentralized multiagent
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Figure 11.7: Illustration of a two-agent DEC-POMDP.

control problems are ubiquitous. Examples include coordination of mobile robots,
load balancing for decentralized queues, target tracking in sensor networks, and
monitoring of hazardous weather phenomena. This section describes models for
representing such planning problems and algorithms for solving them.

5.1 Models for Decision-Theoretic Multiagent Planning

Natural extensions of MDPs and POMDPs to multiagent settings have been pro-
posed and extensively studied since the late 1990s. We focus in this chapter on
decentralized POMDPs (DEC-POMDPs) [7]. Figure 11.7 illustrates a DEC-
POMDP with two agents. In each step, each agent takes an action, the joint set
of actions causes a stochastic change in the state of the world, and a reward is
generated based on the actions and their outcome. Then, each agent receives its
own private observation and the cycle repeats.

Definition 11.7 (DEC-POMDP) A decentralized partially observable Markov
decision process (DEC-POMDP) is a tuple 〈I,S,{Ai},P,{Ωi},O,R,T 〉 where

• I is a finite set of agents indexed 1, ...,n.

• S is a finite set of states, with distinguished initial state s0 or belief state b0.

• Ai is a finite set of actions available to agent i and �A = ⊗i∈IAi is the set of
joint actions, where�a = 〈a1, ...,an〉 denotes a joint action.

• P : S×�A → ΔS is a Markovian transition function. P(s′|s,�a) denotes the
probability of a transition to state s′ after taking joint action�a in state s.

• Ωi is a finite set of observations available to agent i and �Ω=⊗i∈IΩi is the
set of joint observations, where�o = 〈o1, ...,on〉 denotes a joint observation.

• O : �A×S→ Δ�Ω is an observation function. O(�o|�a,s′) denotes the probabil-
ity of observing joint observation �o given that joint action �a was taken and
led to state s′. Here s′ ∈ S, �a ∈ �A, �o ∈ �Ω.
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Figure 11.8: Relationship among several models for multiagent planning.

• R : �A× S → ℜ is a reward function. R(�a,s′) denotes the reward obtained
after joint action�a was taken and a state transition to s′ occurred.

The goal is to maximize the cumulative (discounted) reward over some fi-
nite horizon T or over an infinite horizon. The model includes only one reward
function, indicating that the agents operate collaboratively toward one objective.
A special case of DEC-POMDP, called DEC-MDP, models situations in which
the combined observations of all the agents provide perfect information about the
underlying world state. DEC-MDPs extend multiagent MDPs (MMDPs), where
each agent has full knowledge of the underlying world state [9]. Notice that a
DEC-POMDP model is equivalent to a single-agent POMDP when n = 1.

Communication between agents can be modeled by a DEC-POMDP either
implicitly or explicitly. Implicit communication occurs whenever one agent’s ac-
tions affect another agent’s observations. Explicit communication – exchanging
messages between agents – can be represented by making the message a compo-
nent of each observation. Each action in this case can be divided into two parts:
a domain action that affects the state of the environment, and a communication
action that affects the messages received by other agents.

A model equivalent to DEC-POMDP called multiagent team decision problem
(MTDP) was introduced in 2002 [48]. DEC-POMDPs and MTDPs are a special
case of partially-observable stochastic games (POSGs), which allow each agent
to have a different objective encoded by a private reward function. Another re-
lated model that explicitly represents beliefs about other agents, called interactive
POMDP (I-POMDP), was introduced in 2005 [28]. The relationships between the
different models is illustrated in Figure 11.8, largely based on the analysis in [54].

To illustrate the problems and solution methods, we will use a simple toy
problem called the multiagent tiger problem. This domain includes two agents,
two states, three actions, and two observations, and was introduced by Nair et
al. [44]. In this problem, the two agents are initially situated in a room with two



Chapter 11 515

doors. Behind one door is a tiger and behind the other is a large treasure. Each
agent may open one of the doors or listen. If either agent opens the door with
the tiger behind it, a large penalty is given. If the door with the treasure behind it
is opened and the tiger door is not, a reward is given. If both agents choose the
same action (e.g., both open the same door), a larger positive reward or a smaller
penalty is given to reward this cooperation. If an agent listens, a small penalty is
given and an observation is seen that is a noisy indication of which door the tiger
is behind. Once a door is opened, the game resumes from its initial state with the
tiger, and treasure’s locations randomly reshuffled.

This class of problems has raised several questions about the feasibility of
decision-theoretic planning in multiagent settings: Are DEC-POMDPs signifi-
cantly harder to solve than POMDPs? What features of the problem domain af-
fect the complexity, and how? Is optimal dynamic programming possible? Can
dynamic programming be made practical? Can locality of agent interaction be
exploited to improve algorithm scalability? Research in recent years has signifi-
cantly increased the understanding of these issues and produced a solid foundation
for multiagent planning in stochastic environments. We describe below some of
the key results and lessons learned.

5.1.1 Solution Representation and Evaluation

Solutions for decentralized control problems involve a set of policies – one per
agent – that determine how each agent should act so as to maximize the overall
reward. How can these policies be represented? In the case of finite-horizon
problems, one can use policy trees. Each policy tree is a decision tree where
each node is labeled with an action and branches are labeled with observations.
Starting with the root node, at each step, each agent performs the action of the
current node and then branches to a subtree based on the observation it receives.
Sample optimal policy trees for the multiagent tiger problem with horizons 1–4
are shown in Figure 11.9. The actions are L (listen), OL (open left), and OR (open
right). The observations are hl (hear tiger on left) and hr (hear tiger on right). Note
that while the value generally grows with the horizon, there are some fluctuations
when the added time allows for costly listening actions, but is not sufficient for
establishing a reliable belief about the tiger’s location.

Figure 11.10 shows a horizon 5 optimal solution (same tree for both agents).
As this example illustrates, the size of policy trees grows exponentially with the
horizon of the problem, making it hard to keep complete policy trees in large prob-
lems. And when the problem has an infinite horizon, policy trees can no longer
be used to represent solutions. A common approach in that case is for each agent
to summarize what it knows using finite memory and to represent policies using
finite-state controllers. Each controller state represents an intermediate internal
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Figure 11.9: Optimal policy trees for the multiagent tiger problem with horizons
1–4. The policy trees of both agents are the same in this case. The expected values
as a function of the horizon are: V1 =−2, V2 =−4, V3 = 5.19, V4 = 4.80.
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Figure 11.10: Optimal policy tree for the multiagent tiger problem with horizon
5. The expected value in this case is V5 = 7.03.

memory state of the agent. Starting with an initial controller state, at each state
an agent chooses an action based on its internal state and then branches to a new
internal state based on the observation received. Both the action selection and
controller transitions could be deterministic or stochastic; higher value could be
obtained using stochastic mappings, but the optimization problem is harder.

Figure 11.11 shows optimal deterministic controllers for the infinite-horizon
multiagent tiger problem with a discount factor of 0.9. The large arrow points
to the initial state. The figure shows a one-node controller (same controller per
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Figure 11.11: Optimal one-node and two-node deterministic controllers for the
multiagent tiger problem.
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Figure 11.12: Optimal three-node deterministic controllers for multiagent tiger.

agent) with an expected value of −20, and a two-node controller, which repre-
sents the same policy and has the same value. With so little memory, the optimal
policy is to listen all the time and not risk opening a door. Figure 11.12 shows an
optimal deterministic solution with three-node controllers. The value in this case
is −14.12 and the policies of the agents are different in this case. Figure 11.13
shows an optimal deterministic solution with four-node controllers. The value in
this case is −3.66 and the policies of the agents are again different.

Figure 11.14 shows stochastic two-node controllers for this problem. The
large arrow points to the initial state. Each state leads to multiple actions shown in
rectangles with the probability of the action attached to the link. Each observation
then leads to a stochastic transition to one of the two states. The value in this case
is −19.30, a slight improvement over the two-node deterministic controller. A
three-node stochastic controller (not shown) can achieve a value of −9.94.

Formally, these solutions assign a local policy to each agent i, δi, which is a
mapping from local histories of observations or internal memory states to actions.
A joint policy, δ= 〈δ1, ...,δn〉, is a tuple of local policies, one for each agent.

For a finite-horizon problem with T steps, the value of a joint policy δ with
initial state s0 is

V δ(s0) = E
[T−1

∑
t=0

R(�at ,st)|s0,δ
]
.

For an infinite-horizon problem, with initial state s0 and discount factor γ ∈
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Figure 11.13: Optimal four-node deterministic controllers for multiagent tiger.
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Figure 11.14: Stochastic two-node controllers for multiagent tiger.

[0,1), the value of a joint policy δ is

V δ(s0) = E
[ ∞

∑
t=0

γtR(�at ,st)|s0,δ
]
.

5.1.2 The Complexity of DEC-POMDPs

Complexity analysis of DEC-POMDPs has shown that the finite-horizon prob-
lem is NEXP-hard. What is striking is that the problem remains NEXP-hard
even when restricted to a two-agent DEC-MDP. This is in contrast to the com-
plexity of finite-horizon MDPs and POMDPs, which is P-complete and PSPACE-
complete, respectively. Although it is not known whether the classes P, NP, and
PSPACE are distinct, it is known that P �= NEXP, and thus DEC-POMDPs are
provably intractable. Furthermore, assuming EXP �= NEXP, the problems take
super-exponential time to solve in the worst case. These complexity results reveal
some fundamental differences between centralized and decentralized control of
Markov decision processes.

These results, however, represent the worst-case complexity of the general
model. This presents the question of whether problems that arise in practice are
intractable, and whether the structure and characteristics of some real-world prob-
lems make them fundamentally easier to solve. For example, mobile robots are
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largely independent agents. They move and take actions using their private actua-
tors, which are often totally independent of the actions of other robots operating in
the environment. This property is called transition independence. Another useful
property that is sometimes satisfied is observation independence – guaranteeing
that the observations of one agent depend only on a component of the underlying
state that is not affected by the actions of the other agents. Analysis of the problem
shows that these assumptions could lead to a problem of lower complexity. For
example, a DEC-MDP that satisfies transition and observation independence can
be solved in exponential time [30].

5.2 Solving Finite-Horizon DEC-POMDPs

Dynamic programming algorithms for solving finite-horizon DEC-POMDPs con-
struct and evaluate policy trees incrementally, starting with the final step and mov-
ing backward toward the first step. Policy trees of the current iteration become
subtrees of the policies built in succeeding iterations. The key to success is re-
ducing the amount of time and space either by performing pruning of irrelevant
policies, or – in the case of approximate algorithms – pruning policies that are less
likely to be useful.

Let qi denote a policy tree and Qi a set of policy trees for agent i. Q−i denotes
the sets of policy trees for all agents but agent i. A joint policy�q = 〈q1,q2, · · · ,qn〉
is a vector of policy trees and �Q = 〈Q1,Q2, · · · ,Qn〉 denotes the sets of joint poli-
cies. Evaluating a joint policy�q can be done as follows:

V (s,�q) = R(s,�a)+∑
s′,�o

P(s′|s,�a)O(�o|s′,�a)V (s′,�q�o) (11.1)

where �a are the actions at the roots of trees �q and �q�o are the subtrees of �q after
obtaining observations�o.

In multiagent settings, agents have to reason about the possible future policies
of the other agents in order to choose optimal actions. The standard belief-state
of a POMDP – a probability distribution over world states – is no longer suitable.
Instead, it is necessary to use a multiagent belief state, which is a probability
distribution over system states and policies of all other agents: bi ∈ Δ(S×Q−i).
Other forms of multiagent belief states could be used to capture the uncertainty
about the beliefs or intentions of other agents, but the above form of belief state,
also called generalized belief state, is the one used in this chapter because it is
most commonly used in existing algorithms.

One of the early class of algorithms for solving DEC-POMDPs is the “Joint
Equilibrium-Based Search for Policies” (JESP), which seeks to find a joint policy
that is locally optimal. That is, the solution cannot be improved by any single
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1 Generate a random joint policy
2 repeat

3 foreach agent i do

4 Fix the policies of all the agents except i
5 for t=T downto 1 do // forwards
6 Generate a set of all possible belief states:

Bt(·|Bt+1,qt
−i,ai,oi),∀ai ∈ Ai,∀oi ∈Ωi

7 end

8 for t=1 to T do // backwards
9 foreach bt ∈ Bt do

10 Compute the best value for V t(bt ,ai)
11 end

12 end

13 forall the possible observation sequences do

14 for t=T downto 1 do // forwards
15 Update the belief state bt given qt

−i
16 Select the best action according to V t(bt ,ai)

17 end

18 end

19 end

20 until no improvement in the policies of all agents
21 return the current joint policy

Algorithm 11.3: DP-JESP for DEC-POMDPs.

agent, given the policies assigned to the other agents. The best algorithm in this
class, DP-JESP, incorporates three key ideas [44]. First, the policy of each agent
is modified while keeping the policies of the others fixed. Second, dynamic pro-
gramming is used to iteratively construct policies. Third, and most notably, only
reachable belief states of the DEC-POMDP are considered for policy construction.
This leads to a significant improvement, because there is only an exponential num-
ber of different belief states for one agent as opposed to the doubly exponential
number of possible joint policies. Algorithm 11.3 summarizes the operation of
DP-JESP [44]. This approach only guarantees local optimality and still leads to
exponential complexity due to the exponential number of possible belief points.
The algorithm could solve small benchmark problems up to horizon 7.

An exact dynamic programming (ExactDP) algorithm for solving DEC-
POMDPs has been developed as well [32]. In every iteration, this algorithm first
exhaustively backups the policy trees of the previous iteration, then prunes all the
dominated policies. A policy of an agent is dominated by another policy when the
value of every complete policy that includes it as a subtree can be improved (or
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1 Initialize all depth-1 policy trees
2 for t=1 to T do // backwards

3 Perform full backup on �Qt

4 Evaluate policies in �Qt+1

5 Prune dominated policies in �Qt+1

6 end

7 return the best joint policy in �QT for b0

Algorithm 11.4: Exact DP for DEC-POMDPs.

preserved) by replacing it with the other policy. This property must be satisfied
for every set of policies of the other agents and every belief state. It is clear that
dominated policies are not needed to construct an optimal solution. Dominance
can be tested efficiently using a linear program. The algorithm can solve partially-
observable stochastic games with minimal changes, as it can produce all the non-
dominated policies for each agent. This process, summarized in Algorithm 11.4,
is the first DP algorithm that could produce a globally optimal solution of a DEC-
POMDP. Unsurprisingly, this approach runs out of memory very quickly because
the number of possible (non-dominated) joint policies grows doubly exponentially
over the horizon. Even with very significant pruning, the algorithm can only solve
small benchmark problems with horizons 4–5. But it introduces important prun-
ing principles that prove useful in designing effective approximations.

Several improvements of the ExactDP algorithm have been proposed. Since
some regions of the belief space are not reachable in many domains, the point-
based DP (PBDP) algorithm computes policies only for the subset of reachable
belief states [58]. Unlike DP-JESP, PBDP generates a full set of current-step
policies and identifies the reachable beliefs by enumerating all possible top-down
histories. This guarantees optimality with a somewhat more aggressive pruning.
The worst-case complexity is thus doubly exponential due to the large number of
possible policies and histories.

While the above algorithms introduced important ideas, it became clear that
to improve scalability, it is necessary to perform more aggressive pruning and
limit the amount of memory used by solution methods. The memory-bounded
DP (MBDP) algorithm presented a new paradigm that allowed the algorithm to
have linear time and space complexity with respect to the problem horizon [53].
MBDP, shown in Algorithm 11.5, employs top-down heuristics to identify the
most useful belief states and keeps only a fixed number of policies selected based
on these belief states. The number of policies maintained per agent is a constant
called maxTrees. To assure linear space, however, it is not sufficient to limit the
number of policies per agent, because the size of each policy tree grows expo-
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1 Initialize all depth-1 policy trees
2 for t=1 to T do // backwards

3 Perform full backup on �Qt

4 Evaluate policies in �Qt+1

5 for k=1 to maxTrees do

6 Select a heuristic h from the heuristic portfolio
7 Generate a state distribution b ∈ Δ(S) using h
8 Select the best joint policy�q t+1 in �Qt+1 for b
9 end

10 Prune all the policies except the selected ones
11 end

12 return the best joint policy in �QT for b0

Algorithm 11.5: Memory-bounded DP for DEC-POMDPs.
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1

Figure 11.15: A set of maxTrees policy tree can be represented compactly by
reusing a fixed number of maxTrees subpolicies of the previous level.

nentially with the horizon. To address that, MBDP deploys an efficient method
to reuse subpolicies in a given policy tree. At each level, the new branches of the
tree point to one of the maxTrees policies of the previous level, as illustrated in
Figure 11.15. This memory-bounded policy representation enables the algorithm
to solve much larger problems with essentially arbitrary horizons. A number of al-
gorithmic improvements in MBDP and its variants have made it possible in recent
years to solve effectively larger problems using dozens of maxTrees per level.

5.3 Solving Infinite-Horizon DEC-POMDPs

As illustrated earlier, finite-state controllers can be used to summarize unbounded
observation histories using finite memory. One controller is used per agent, where
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the state of the controller changes based on the observation sequence of the agent,
and in turn the agent’s actions are based on the state of its controller. When these
functions are deterministic, optimizing controllers can be tackled using standard
heuristic search methods. When these mappings are stochastic, the search for
optimal controllers becomes a continuous optimization problem. We describe in
this section two approaches for optimizing such stochastic controllers.

Definition 11.8 (Local finite-state controller) Given a DEC-POMDP, a local
finite-state controller for agent i is a tuple 〈Qi,ψi,ηi〉, where Qi is a finite set
of controller nodes, ψi : Qi → ΔAi is a stochastic action selection function, and
ηi : Qi×Ai×Oi → ΔQi is a stochastic transition function.

An independent joint controller is a set of local finite-state controllers, one for
each agent, that together determine the conditional distribution P(�a,�q′|�q,�o). The
controllers are independent in that the local memory state transitions and action
selection functions of one agent are independent of the memory states and obser-
vations of the other agents, making the policy suitable for decentralized operation.

5.3.1 Correlated Joint Controllers

While agents do not have access to the local information of other agents in a
DEC-POMDP, they can benefit from performing correlated actions. This can be
achieved using a correlation device – a mechanism that can facilitate coordina-
tion using an additional finite-state controller whose state is accessible by all the
agents [6]. The correlation device mimics a random process that is independent
of the controlled system. Agents use the extra signal from the device to select
actions, but they cannot control the correlation device. Such mechanism can be
implemented in practice by giving each agent the same stream of random bits.

Definition 11.9 (Correlation device) A correlation device is a tuple 〈C,ψ〉,
where C is a finite set of states, and ψ : C → ΔC is a state transition function.
At each time step, the device makes a transition and all the agents observe its new
state.

The definition of a local controller can be extended to consider the shared sig-
nal c provided by a correlation device. The local controller for agent i becomes
a conditional distribution of the form P(ai,q′i|c,qi,oi). A correlation device to-
gether with the local controllers for each agent form a joint conditional distribu-
tion P(c′,�a,�q′|c,�q,�o), called a correlated joint controller.
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Figure 11.16: A slice of a two-agent DEC-POMDP where actions are selected
based on internal states qi with (right) and without (left) a correlation device qc.

The value of a correlated joint controller can then be computed by solving a
set of linear equations, one for each s ∈ S,�q ∈ �Q, and c ∈C:

V (s,�q′,c) =

∑
�a

P(�a|c,�q)
[
R(s,�a)+ γ ∑

s′,�o,�q′,c′
P(s′,�o|s,�a)P(�q′|c,�q,�a,�o)P(c′|c)V (s′,�q′,c′)

]
Figure 11.16 illustrates a slice (similar to a dynamic Bayesian network) of a

two-agent DEC-POMDP with and without a correlation device. The underlying
state s and observations oi are determined by the DEC-POMDP model, while the
controller state qi and action ai are determined by the policy parameters.

5.3.2 Policy Iteration for Infinite-Horizon DEC-POMDPs

An infinite-horizon DEC-POMDP could produce infinitely many observation se-
quences. To approach near-optimal value, it may be necessary to increase the con-
troller size. In fact, ε-convergence can only be guaranteed when we increase the
number of controller states using an exhaustive backup operation. An exhaustive
backup introduces new controller states for each possible action and each possi-
ble branch given an observation to existing controller states [5]. This is similar
to the exhaustive backup in the finite-horizon case, except that we grow existing
controllers rather than policy trees.

To formalize this process, let Qt
i denote the set of controller nodes for agent

i after iteration t. For each possible one-step policy, a new controller node is
added. Thus, for each agent i, |Ai||Qi||Ωi| nodes are added to the controller. In the
finite-horizon algorithm, the exhaustive backup was followed by a pruning step,
eliminating dominated policy trees. Here, an analogous procedure can be used [5].
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input : DEC-POMDP, correlated joint controller, convergence parameter ε
output: A correlated joint controller that is ε-optimal for all states.

1 begin

2 t ← 0
3 while γt+1 · |Rmax|/(1− γ)> ε do

4 t ← t +1
5 Evaluate correlated joint controller by solving a system of linear equations
6 Perform an exhaustive backup to add nodes to the local controllers
7 Perform value-preserving transformations on the controller
8 end

9 return correlated joint controller
10 end

Algorithm 11.6: Policy iteration for infinite-horizon DEC-POMDPs.

Definition 11.10 (Value-preserving transformation) Given two correlated joint
controllers C and D with node sets �Q and �R, respectively, we say that changing
controller C to D is a value-preserving transformation if there exist mappings
fi : Qi → ΔRi for each agent i and fc : Qc → ΔRc such that:

V (s,�q)≤∑
�r

P(�r|q)V (s,�r)

The goal of a value-preserving transformation is to reduce the size of a con-
troller without decreasing its value, or to improve the value without changing the
size. In general, reducing the size of the controller is necessary between exhaus-
tive backup steps because those steps increase the size of the controller in a doubly
exponential manner. Several such transformations that can be implemented effi-
ciently using linear programming have been formulated [5].

The complete policy iteration procedure, sketched in Algorithm 11.6, inter-
leaves exhaustive backups with value-preserving transformations. Unlike single
agent MDPs, there is no Bellman residual for testing convergence in this case.
Therefore, it is necessary to use the discount factor γ and the number of iterations
to define a simpler ε-convergence test. Let |Rmax| denote the largest absolute value
of a one-step reward in the DEC-POMDP. Then the algorithm terminates after it-
eration t if γt+1 · |Rmax|/(1− γ)≤ ε. Intuitively, the algorithm exploits the fact that
due to discounting, at some point the future rewards collected are negligible.

As with optimal algorithms for finite-horizon DEC-POMDPs, producing near-
optimal controllers is intractable. In practice, the value-preserving transforma-
tions cannot reduce the size of the controllers sufficiently to continue executing
the algorithm until the convergence criterion is met. However, several approx-
imate techniques for infinite-horizon DEC-POMDPs have been developed based
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For variables of each agent i: x(qi,ai), y(qi,ai,oi,q′i) and z(�q,s)

Maximize ∑
s

b0(s)z(�q0,s), subject to

The Bellman constraints:

∀�q,s z(�q,s) =

∑
�a

(
∏

i
x(qi,ai)

[
R(s,�a)+ γ∑

s′
P(s′|s,�a)∑

�o
O(�o|s′,�a)∑

�q ′
∏

i
y(qi,ai,oi,q′i)z(�q

′,s′)

])

And probability constraints for each agent i:

∀qi∑
ai

x(qi,ai) = 1, ∀qi,oi,ai ∑
q′i

y(qi,ai,oi,q′i) = 1

∀qi,ai x(qi,ai)≥ 0, ∀qi,oi,ai y(qi,ai,oi,q′i)≥ 0

Table 11.1: The NLP defining a set of optimal fixed-size DEC-POMDP
controllers. For each agent i, variable x(qi,ai) represents P(ai|qi), variable
y(qi,ai,oi,q′i) represents P(q′i|qi,ai,oi), and variable z(�q,s) represents V (�q,s)
where�q0 represents the initial controller node for each agent.

on these principles by simply restricting the size of each controller and optimizing
value with a bounded amount of memory. We discuss one such approach below.

5.3.3 Optimizing Fixed-Size Controllers Using Non-Linear Programming

With a fixed controller size, the problem of optimizing the joint controller can be
represented as a non-linear program (NLP) by creating a set of new variables that
represent the values of each set of controller states and underlying world state.
Unlike the dynamic programming backups, which iteratively improve the proba-
bilities and could get stuck in low-quality local optima, the NLP approach allows
both the values and probabilities in the controller to be optimized simultaneously.
While the NLP is generally harder to solve, the approach results in a search pro-
cess that is more sophisticated and can leverage state-of-the-art solvers. Existing
NLP solvers do not guarantee global optimality, but experimental results show
that the NLP formulation is advantageous [1]. In practice, DEC-POMDPs can
have small optimal controllers or can be approximated effectively with small con-
trollers. Furthermore, the NLP approach can optimize value for a specific given
initial belief state, thus making better use of limited controller size.

The non-linear program for a DEC-POMDP with an arbitrary number of
agents is shown in Table 11.1. It optimizes the value of a set of fixed-size con-
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trollers given an initial state distribution and the DEC-POMDP model. The vari-
ables for this problem are the action selection and node transition probabilities for
each node of each agent’s controller as well as the joint value of a set of controller
nodes. Hence, these variables are for each agent i, P(ai|qi) and P(q′i|qi,ai,oi), and
for the set of agents and any state, V (�q,s). The NLP objective is to maximize the
value of the initial set of nodes at the initial state distribution. The constraints in-
clude the Bellman constraints and additional probability constraints. The Bellman
constraints, which are non-linear, ensure that the values are correct given the ac-
tion and node transition probabilities. The probability constraints ensure that the
action and node transition values are proper probabilities. It is straightforward to
add a correlation device to the NLP formulation simply by adding a new variable
for the transition function of the correlation device. As expected, a correlation
device can improve the value achieved by the NLP approach, particularly when
each controller is small [1].

6 Multiagent Execution

We conclude this chapter by turning to the actual execution of multiagent planning
and control decisions. To the extent that the knowledge used for decision making
was correct, the actual trajectory of the world state should mimic the expectations
of the agents. Even in cases where actions or observations are uncertain, as is
modeled in DEC-POMDPs, the planning and control decisions should have antic-
ipated the possibilities and formulated responses to the foreseen contingencies.

Of course, the rosy picture above can fail to materialize, when the model of
the world used by agents for making planning and control decisions is incorrect
or incomplete relative to the agents’ true world. In such situations, agents can
find themselves in unanticipated states, and need to decide how to respond in the
near-term, and perhaps also how to update their models so as to make better plan-
ning and control decisions in the future. In this section, we can only scratch the
surface of the challenges posed in multiagent execution, and of some approaches
to overcoming them.

6.1 Multiagent Plan Monitoring

Detecting deviations from anticipated trajectories is one challenge that is signif-
icantly more difficult in multiagent settings than single-agent settings. A single
agent can use its observations to form beliefs about its current state, and then de-
termine whether it had anticipated possibly having such beliefs at this point in its
execution. If not, the agent can invoke a response that could attempt to repair its
existing plan by injecting new actions that in expectation will return it to an an-
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ticipated trajectory. Or the agent could treat its new beliefs about its current state
as the starting point for building a new plan to achieve its objectives. See [50] for
techniques of this kind.

In a multiagent system, certainly the same kind of process could occur, but
now recovery is harder: an agent cannot in general inject new actions or replace
its old plan with a new one without coordinating with other agents, resolving any
new interagent faults that its changed plan introduces. Furthermore, it could be
that a better way of recovering from such a deviation would be to have one or more
other agents change their plans, even though their old plans were proceeding as
expected.

Even more problematic are situations where no agent in isolation perceives a
deviation from expectations (each foresaw that its current state might have arisen)
but the agents collectively have reached an unexpected joint state. Detecting such
a deviation requires not only that agents share local information, but that one or
more agents are knowledgeable about which (partial) joint states are expected and
which are not. Effectively, monitoring the execution of a multiagent plan can
amount to a non-trivial collaborative problem-solving effort among the agents.

6.2 Multiagent Plan Recovery

In the multiagent setting, the same dilemma occurs as in single-agent planning
when execution diverges from what was planned: should the agent(s) try to reuse
some of the old plan(s) so as to take advantage of the effort that went into con-
structing them, or should the agent(s) build entirely new plan(s) to achieve their
objectives from the current state. If they choose the latter route, then replanning
in the multiagent context can be accomplished with any of the techniques already
discussed.

Plan repair is potentially more cost-efficient, but more complicated. If only
some agents need to repair their plans (the others have not deviated), repair
nonetheless could involve all of the agents as the repaired plans need to be coordi-
nated with others’ unchanged plans. This could lead to others needing to change
their plans, in a chain reaction of planning and coordination efforts. And this does
not even account for opportunities for agents to reallocate responsibilities among
themselves, such as if an agent that has deviated from expectations has exhausted
a resource in its attempt to establish a condition in the world, and it must now fall
to another agent that has reserve resources.

The preceding discussion has further made an important assumption – that the
agents should treat the deviation as an anomaly rather than as an indication that the
planning knowledge is itself flawed. More broadly, agents can view divergence
from expectations as a learning opportunity to correct/improve the models used
for planning.
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A simple example of such a response can occur in the case of social laws.
The designer(s) of the laws used the models of goals/rewards to identify states
to avoid, and of actions to identify and prohibit bad precursor state-and-action
combinations. If a state to avoid is reached nonetheless, the agents can update
their transition models to build better plans/laws in the future, or might perform
Q-learning to directly learn what actions not to take in particular states.

A danger in doing such learning, as discussed in Chapter 10, is that if mul-
tiple agents learn simultaneously, their local adaptations might not combine into
a coherent joint adaptation. For example, if mobile robotic agents collide in a
particular location, there is a danger that they all might now avoid that location,
which would make deliveries to that location impossible. Techniques for con-
trolling learning and adaptation in multiagent systems (see Chapter 10) is thus
pertinent in this context.

6.3 Multiagent Continuous Planning

The extreme case of multiagent plan monitoring and repair/replanning is where
agents are continually reconsidering and revising their plans. When repair/re-
planning is punctuated, it is not unreasonable to assume that agents can all sus-
pend their plan executions until that process is complete, and then they proceed
with executing their (new) coordinated plans unless and until another deviation
occurs. This is not without problems in dynamic domains, where the environment
keeps changing while agents are thinking. Thus, when planning is continuous,
agents cannot afford to wait for convergence to an assuredly coordinated joint
plan. Instead, agents should be able to revise and pursue plans despite those plans
perhaps being (temporarily) uncoordinated.

One of the earliest examples of this form of continuous planning in multiagent
systems was an approach called partial global planning (PGP) [20]. PGP was
applied to the interpretation problem of tracking vehicles in a distributed sensor
network. This kind of application is particularly forgiving of lack of coordination,
which at worst only wastes computational resources. That is, the interpretation
problem can be solved with functionally-accurate cooperation, as described in
Section 3.2.2. This is in contrast to problems, like air traffic control, where even
brief periods of mis-coordination can have catastrophic consequences.

Each sensor agent builds a plan as to how it will process its data: which data it
will process in what order, when it will combine partial interpretations into larger
interpretations, etc. Because agents’ sensor regions can overlap, if agents can
communicate about their plans, then by comparing its plans with its neighbors an
agent can decide which (if any) signals in an overlapping region it should process,
and which it should leave to others. Furthermore, because vehicles tend to not
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disappear at boundaries, agents can help each other by providing partial interpre-
tations near their boundaries to others, to help others focus interpretation problem
solving on compatible extensions.

Of course, over time new sensor signals can arrive, or data might prove more
noisy and take longer to process than expected. As a result, an agent might change
its plan. If others know of this change, then they might in turn change their plans,
possibly leading to chain reactions (and even cycles) of plan changes. At times
these efforts can lead to significant improvements in joint behavior, but at other
times the improvements might be smaller than the communication and computa-
tion overhead of attaining them. PGP combats the costs and delays in coordinating
responses to such dynamics with various mechanisms, including:

1. Abstraction: As already discussed in this chapter, abstraction benefits multi-
agent planning by allowing coordination decisions to be based on funda-
mental agent interactions without getting distracted by details of local plans.
In PGP, even though each agent builds a detailed plan for processing sig-
nals and constructing larger interpretations, the agents communicate with
each other only about what partial interpretations they plan to construct
and when. Thus, even though internally an agent might frequently make
changes to its detailed plan, other agents’ perceptions of its plans generally
evolve much more slowly.

2. Decentralization: PGP assumes that responsibility for coordination deci-
sions can be distributed among agents in any of a variety of ways, as ex-
pressed in a meta-level organization (MLO). The MLO defines roles, pro-
tocols, and authority structures that the agents use when solving the coordi-
nation problem, analogously to how the agents’ domain-level organization
guides the agents’ activities in solving the interpretation problem. In par-
ticular, the MLO can distribute coordination responsibility such that each
agent has authority to modify its own plans based on its current partial view
of the plans of (some of) the other agents.

3. Partial Global Reasoning: An agent forms a partial global plan by com-
bining the abstract plans it has received from others with its own. The
agent can then search through modifications to the partial global plan to
find a better joint plan. For example, it might determine that various agents
should reorder their tasks to change who is responsible for portions of the
overlapping regions, and who will formulate which interpretations. In the
PGP implementation, the search is done heuristically and in a greedy hill-
climbing fashion, since finding optimal solutions would take much more
time and such solutions will likely be made obsolete quickly due to further
dynamics. An agent then changes its local plan according to how it thinks
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the joint plan should change. A key assumption behind this strategy is that
all agents, given the same information, would formulate the same revised
partial global plan. Hence, unilateral changes to a plan in expectation that
other agents will make complementary changes to their plans is warranted
given sufficient propagation of planning information based on the MLO.

4. Communication Planning: By examining the partial global plan, an agent
can determine when an interpretation will be formed by one agent that could
be of interest to another agent, and can explicitly plan the communication
action to transmit the result. If results need to be integrated into a larger
partial interpretation, an agent using PGP will construct a tree of exchanges
such that, at the root of the tree, partially integrated results will be at the
same agent, who can then construct the complete result.

5. Asynchrony: Agents asynchronously adapt their local plans and communi-
cation plans to their partial global views. This sacrifices global consistency
across plans for rapid responsiveness to changing awareness. Depending
on the MLO and the relative domain dynamics, the agents could ultimately
converge on consistent joint plans, but PGP allows each agent to pursue its
best guess as to what its local plan should be at any given time. If it guesses
wrong, its efforts were wasted, but had it idled waiting for consistent plans
those cycles would have gone to waste anyway.

6. Dampened Responsiveness: As an agent’s plan changes in the dynamic en-
vironment, it can determine how its abstract plan that it has told other agents
about has been affected, if at all. Some changes to a local plan might, for
example, delay the formation and transmission of a partial interpretation.
The agent must determine whether a change to its abstract plan is worth
telling other agents about. In PGP, a simple thresholding strategy was used:
if an abstract plan step will occur earlier or later than expected by more that
a parameterized number of time steps, then the agent should alert others.
A larger threshold effectively introduced “slack” into the system, cutting
down on coordination overhead by allowing greater degrees of interagent
plan slippage. The parameter would be tuned empirically.

Advances in continual planning in multiagent systems have extended and re-
fined these types of strategies over the years. For example, the DARPA Coor-
dinators program [35] emphasized helping teams of humans who are distributed
geographically to manage and time their activities so as to achieve joint objectives.
One research thrust for this problem was for the teams to each represent a space
of possible schedules to follow, where unfolding events can narrow the space of
remaining possibilities, and where a threshold defined on this process determines
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whether an agent should inform others about such changes [3]. Another was for
agents to explicitly model the probabilities of satisfying their contributions to joint
objectives, and updating each other as these probabilities decreased significantly
[43].

7 Conclusions

Multiagent planning and control with more agents, capable of more behaviors, op-
erating in uncertain and partially-observable worlds, introduces and compounds
daunting computational challenges. Research has sought to exploit structure in
problems that allow solutions to be composed from solutions to localized sub-
problems, and this chapter has illustrated various strategies for different types of
problem structures and performance requirements. Significant progress has been
made, and yet substantial challenges remain. We conclude by summarizing other
important past and ongoing work in this area.

Multiagent planning has been studied since the founding of the field of dis-
tributed AI. Some of the earliest work in this area includes that of Georgeff
[26, 27], who developed some of the earliest multiagent plan deconfliction tech-
niques, and of Corkill [14], who developed a distributed version of the NOAH
planner created by Sacerdoti [51]. Corkill and colleagues, especially Lesser, pi-
oneered the use of organizational techniques for multiagent control [16]. Decker
and Lesser generalized techniques for coordinating agent plans in their work on
GPGP, and for representing complex multiagent task networks in their work on
TAEMS [39].

Planning for teams of agents was investigated not only by Tambe [49, 59]
(Section 4.3), but also by Grosz and Kraus [31], building on concepts from Co-
hen and Levesque [12]. Multiagent planning and scheduling, involving dealing
with temporal constraints, also has a rich literature (e.g., [8, 61]). Other work for
coordinating plans that agents largely form separately includes that of Tonino et
al. [60].

Other techniques that have formulated the multiagent planning problem in
decision-theoretic terms include those that solve problems where agents inter-
act through the assignment (and reassignment) of resources [19, 66], and where
agents interact by changing shared state in structured ways that enable each other
[4, 64].

Memory-bounded dynamic programming (MBDP) [53] has been dramatically
improved in recent years by introducing a variety of methods to reduce the number
of observations considered by the policy, and employing efficient pruning tech-
niques. Point-based methods have been recently introduced to cope with the NP-
hardness of the backup operation [37]. This algorithm exploits recent advances
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in the weighted CSP literature to offer a polytime approximation scheme that can
handle a much larger number of belief points (MaxTrees). Another technique,
trial-based dynamic programming (TBDP) [65], combines the main advantages of
DP-JESP with MBDP to avoid the expensive backup operations, allowing prob-
lems with much larger state spaces to be tackled.

The locality of agent interaction – the fact that each agent interacts with a small
number of neighboring agents – has proved crucial to the development of DEC-
POMDP algorithms that can handle dozens of agents. Specialized models such
as network distributed POMDPs (ND-POMDPs) have been introduced to capture
structured interactions and develop early algorithms that can exploit such struc-
tures [45]. More recently, the constrained-based dynamic programming (CBDP)
algorithm has been shown to provide magnitudes of speedup thanks to its linear
complexity in the number of agents [36]. Algorithms for solving loosely-coupled
infinite-horizon problems have also been developed. One promising direction is
based on transforming the policy optimization problem to that of likelihood maxi-
mization in a mixture of dynamic Bayesian networks [38]. Based on this reformu-
lation, the expectation-maximization (EM) algorithm has been used to compute
the policy via a simple message-passing paradigm guided by the agent interaction
graph.

8 Exercises

1. Level 1 Analyze a multiperson problem that you have been involved in solv-
ing. Identify localities in the structure of the problem, and strategies for
composing an overall solution from solutions to the localized subproblems.

2. Level 1 Do you agree with the stance taken in this chapter that multi-
agent planning requires both that the plan formulation process be distributed
among agents and that the resulting plan construct be distributed as well?
If so, justify in your own words why you believe this stance is warranted.
If not, give counterexamples to this stance and justify why they arguably
embody multiagent planning.

3. Level 2 The broad brushstrokes of social laws to avoid collisions between
robots operating in a gridworld was provided in this chapter. This question
asks you to elaborate a bit.

(a) For an 8 x 8 gridworld (empty other than robots), flesh out an example
of the social laws that avoid collisions, indicating for each location
where a robot is allowed to go, along with any other laws that the
robots should follow.
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(b) Are there gridworld shapes (again, empty other than robots) for which
useful social laws cannot be constructed? If so, give examples, and if
not, explain why not.

(c) Now, say in the 8 x 8 gridworld there is a wall that partitions the envi-
ronment in half except there is one pair of cells on each side that are
connected. How would you build social laws to handle such a case,
assuming that a robot might need to visit locations on both sides of the
world?

4. Level 4 Implement a simulation of a robot gridworld. Create in that world
simulated robots, and endow them with the capabilities and constraints as-
sociated with Traffic Law 2 in [56]. Experimentally investigate the perfor-
mance of the robots following that traffic law to determine how well they
perform as the number of robots increases in a fixed-size grid.

5. Level 2 Describe and analyze a real-world (human) instance of organiza-
tional redesign. What alternative decompositions of the larger problem into
interacting roles were possible, and why was the particular choice made
during the redesign? Develop a specification for the space of designs, and
suggest a search strategy for finding and implementing a good design from
that space. Is your search assured to return an optimal solution? Is it effi-
cient?

6. Level 1 Consider the contract net protocol where announcements can be
either about tasks that need to be done or the availability of resources that
could be assigned tasks.

(a) Name a real-life example where task announcement makes much more
sense than availability announcement. Justify why.

(b) Now name a real-life example where availability announcement makes
much more sense. Justify why.

(c) Let’s say that you are going to build a mechanism that oversees a dis-
tributed problem-solving system, and can “switch” it to either a task
or availability announcement mode.

i. Assuming communication costs are negligible, what criteria
would you use to switch between modes? Be specific about what
you would test.

ii. If communication costs are high, now what criteria would you
use? Be specific about what you would test.
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7. Level 2/3 We noted that task announcing can be tricky: If a manager is too
fussy about eligibility, it might get no bids, but if it is too open it might have
to process too many bids, including those from inferior contractors. Let us
say that the manager has n levels of eligibility specifications from which
it needs to choose one. Describe how it would make this choice based on
a decision-theoretic formulation. How would this formulation change if it
needed to consider competition for contractors from other managers?

8. Level 2 A folk theorem in the organization literature is that in human or-
ganizations, task decompositions invariably lead to clear assignments of
subtasks to members of the organization. Give an example of where de-
composition without look-ahead to available contractors can be detrimental.
Give an example where biasing decomposition based on available contrac-
tors can instead be detrimental. Finally, give an algorithm for alternating
between decomposition and assignment to incrementally formulate a dis-
tributed problem-solving system. Is your algorithm assured of yielding an
optimal result? Is it complete?

9. Level 1 Consider the pursuit task, with four predators attempting to sur-
round and capture a prey. Define an organizational structure for the preda-
tors. What are the roles and responsibilities of each? How does the structure
indicate the kinds of communication patterns (if any) that will lead to suc-
cess?

10. Level 2 Consider the following simple instance of the distributed delivery
task. Robot A is at position α and robot B is at position β. Article X is at
position ξ and needs to go to position ψ, and article Y is at position ψ and
needs to go to ζ. Positions α, β, ξ, ψ, and ζ are all different.

(a) Define in STRIPS notation, suitable for partial-order planning, sim-
ple operators Pickup, Dropoff, PickDrop, and Return, where Pickup
moves the robot from its current position to a pickup position where
it then has the article associated with that position; Dropoff moves a
robot and an article it holds to a dropoff position where it no longer
has the article; PickDrop combines the two (it drops off its article and
picks up another associated with that position); and Return moves a
robot back to its original position.

(b) Using these operators, generate the partial-order plan with the fewest
plan steps to accomplish the deliveries. Decompose and distribute this
plan to the robots for parallel execution, inserting any needed synchro-
nization actions. How does the use of multiple robots affect the plan
execution?
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(c) Using the operators, generate the partial-order plan that, when dis-
tributed, will accomplish the deliveries as quickly as possible. Is this
the same plan as in the previous part of this problem? Why or why
not?

11. Level 2 Given the previous problem, include in the operator descriptions
conditions that disallow robots to be at the same position at the same time
(for example, a robot cannot do a pickup in a location where another is
doing a dropoff). Assuming each robot was given the task of delivering a
different one of the articles, generate the individual plans and then use the
plan modification algorithm to formulate the synchronized plans, including
any synchronization actions into the plans. Show your work.

12. Level 2 Consider the delivery problem given before the previous problem.
Assume that delivery plans can be decomposed into 3 subplans (pickup,
dropoff, and return), and that each of these subplans can further be decom-
posed into individual plan steps. Furthermore, assume that robots should
not occupy the same location at the same time – not just at dropoff/pickup
points, but throughout their travels. Use the hierarchical behavior-space
search algorithm to resolve potential conflicts between the robots’ plans,
given a few different layouts of the coordinates for the various positions
(that is, where path-crossing is maximized and minimized). What kinds
of coordinated plans arise depending on at what level of the hierarchy the
plans’ conflicts are resolved through synchronization?

13. Level 3 Assume that distributed delivery robots are in an environment
where delivery tasks pop up dynamically. When a delivery needs to be
done, the article to be delivered announces that it needs to be delivered,
and delivery agents within a particular distance from the article hear the
announcement.

(a) Assume that the distance from which articles can be heard is small.
What characteristics would an organizational structure among the de-
livery agents have to have to minimize the deliveries that might be
overlooked?

(b) Assume that the distance is instead large. Would an organizational
structure be beneficial anyway? Justify your answer.

(c) As they become aware of deliveries to be done, delivery agents try to
incorporate those into their current delivery plans. But the dynamic
nature of the domain means that these plans are undergoing evolution.
Under what assumptions would partial global planning be a good ap-
proach for coordinating the agents in this case?
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(d) Assume you are using partial global planning for coordination in this
problem. What would you believe would be a good planning level for
the agents to communicate and coordinate their plans? How would the
agents determine whether they were working on related plans? How
would they use this view to change their local plans? Would a hill-
climbing strategy work well for this?

14. Level 1 Given a flawed multiagent plan M with more than one unflagged
causal link to adjust, which causal link should the plan modification algo-
rithm prefer to adjust? Justify your (heuristic) selection strategy.

15. Level 1 Give an example of a real-world situation in which multiple agents
operate under partial observability and each agent has access to different
partial information about the overall state. Can agents share all their knowl-
edge all the time in your example? If yes, explain how. If not, explain
why.

16. Level 2 The DEC-POMDP model (Definition 11.7) does not include ex-
plicit communication. Suppose that each agent can broadcast certain mes-
sages to all the other agents in each action cycle. Define precisely this kind
of a DEC-POMDP with two agents and explain why it is not an extension of
the standard model (i.e., show that every DEC-POMDP with explicit com-
munication can be reduced to a standard DEC-POMDP).

17. Level 3 The communication model presented in the previous question al-
lows each agent to broadcast a message to all the other agents in each step.
This means that the space of possible joint messages received by each agent
grows exponentially with the number of agents. Consider a more scalable
communication model that allows only one agent to broadcast a message in
each cycle (e.g, when multiple agents try to broadcast messages simultane-
ously, this may either result in failure or success of just one agent). Define
precisely one such model and determine whether it is reducible to a standard
DEC-POMDP or not.

18. Level 2 Consider the complete specification of the multiagent tiger problem
shown in Table 11.2.

(a) Derive the values of the deterministic policies for horizons 1–3 shown
in Figure 11.9.

(b) Derive the values of the deterministic finite-state controller policies
shown in Figure 11.11.
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Tiger observation table
Joint action State hl hr
〈L,L〉 TL 0.85 0.15
〈L,L〉 TR 0.15 0.85
〈O*,*〉 * 0.5 0.5
〈*,O*〉 * 0.5 0.5

Tiger transition table
Joint action Current state Next state Probability
〈L,L〉 TL TL 1.0
〈L,L〉 TR TR 1.0
〈O*,*〉 TL TL 0.5
〈O*,*〉 TL TR 0.5
〈*,O*〉 TR TR 0.5
〈*,O*〉 TR TL 0.5

Tiger reward table
Joint action State Value Joint action State Value Joint action State Value
〈L,L〉 * -2 〈OR,L〉 TR -101 〈OL,L〉 TR 9
〈L,OR〉 TR -101 〈OR,L〉 TL 9 〈OL,L〉 TL -101
〈L,OR〉 TL 9 〈OR,OR〉 TR -50 〈OL,OR〉 * -100
〈L,OL〉 TR 9 〈OR,OR〉 TL 20 〈OL,OL〉 TR 20
〈L,OL〉 TL -101 〈OR,OL〉 * -100 〈OL,OL〉 TL -50

Table 11.2: Tiger observation, transition, and reward tables.

19. Level 2 In the multiagent tiger problem, suppose that the reward for opening
the correct door (e.g., <OR,OR> when the state is TR) is increased to 50. Is
the horizon 1 policy in Figure 11.9 still optimal? If not, what is the optimal
policy (and its value)? Repeat the question for horizons 2 and 3.

20. Level 2 In the multiagent tiger problem, the optimal policy is to listen for
several steps before opening any door. If the observation probabilities in-
crease from 0.85 to 0.9, does that change the optimal horizon 1 policy?
What about horizons 2 and 3?

21. Level 2/3 If all agents share their observations with each other at each step,
the problem becomes centralized. In the multiagent tiger problem, what
would the resulting observations (and their probabilities) be for each agent
when observations are shared? How does this change the optimal policies
for horizons 1 and 2? Would the agents ever choose to open different doors?
Is a centralized solution (with shared observations) always guaranteed to
have value at least as high as a decentralized solution?

22. Level 2/3 If the transition and observation probabilities are independent for
each agent and the reward values are additive between the agents, the prob-
lem can be solved as a set of independent problems whose solutions can
be summed together. In the multiagent tiger problem, the observations are
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independent, but the transitions and rewards depend on all agents. Consider
the case where the tiger does not transition after a door is opened and each
agent receives a reward of 10 for opening the correct door, −50 for opening
the incorrect door and −1 for listening. What are the optimal horizon 1, 2,
and 3 policies for this case?

23. Level 2/3 Given the same number of nodes, stochastic controllers often al-
low higher-valued policies to be constructed compared to deterministic con-
trollers. Is there a one-node stochastic controller with a higher value than
the optimal one-node deterministic controller in the multiagent tiger prob-
lem? If there is, construct one. Otherwise, prove that this is not possible in
this case.
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Chapter 12

Distributed Constraint Handling

and Optimization

Alessandro Farinelli, Meritxell Vinyals, Alex Rogers, and Nicholas R. Jennings

1 Introduction

Constraints pervade our everyday lives and are usually perceived as elements that
limit solutions to the problems that we face (e.g., the choices we make everyday
are typically constrained by limited money or time). However, from a computa-
tional point of view, constraints are key components for efficiently solving hard
problems. In fact, constraints encode knowledge about the problem at hand, and
so restrict the space of possible solutions that must be considered. By doing so,
they greatly reduce the computational effort required to solve a problem.

Against this background, constraint processing can be viewed as a wide and
diverse research area unifying techniques and algorithms that span across many
different disciplines including planning and scheduling, operation research, com-
puter vision, automated reasoning, and decision theory. All these areas deal with
hard computational problems that can be made more tractable by carefully con-
sidering the constraints that define the structure of the problem.

Here we will focus on how constraint processing can be used to address op-
timization problems in multiagent systems. Specifically, we will consider dis-
tributed constraint optimization problems (DCOPs), whereby a set of agents must
come to some agreement, typically via some form of negotiation, about which
action each agent should take in order to jointly obtain the best solution for the
whole system. This framework has been frequently used in the MAS literature
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to address problems such as meeting scheduling in human organizations, where
agents must agree on a valid meeting schedule while maximizing the sum of indi-
vidual preferences about when each meeting should be held, or target tracking in
sensor networks, where sensors must agree on which target they should focus on
to obtain the most accurate estimation of the targets’ positions. A key common as-
pect of DCOPs for MAS is that each agent negotiates locally with just a subset of
other agents (usually called neighbors), who are those that can directly influence
its behaviors. Depending on the problem setting and on the solution technique
used, this aspect can greatly reduce the computational effort that each agent faces,
making hard problems tractable even for large-scale systems. For example, in the
meeting scheduling problem, an agent will directly negotiate with and care about
people that it must meet, which is usually a small subset of the agents involved in
the whole problem.

In more detail, this chapter aims to provide the reader with a broad knowledge
of the main DCOP solution approaches. It describes both exact algorithms and
approximate approaches, including those that provide quality guarantees. After
reading it, you will understand:

• The mathematical formulation of a DCOP, and how to model distributed
decision-making problems using the DCOP framework.

• The main exact solution techniques for DCOPs and the key differences be-
tween them in terms of benefits and limitations.

• Why and when approximate solution techniques should be used for DCOPs
and the main algorithms in this space.

• Why quality guarantees are important, how to differentiate between various
types of quality guarantees, and which techniques are currently available in
the literature to achieve them.

The chapter is organized as follows. First, Section 2 presents the mathematical
background for constraint networks and distributed constraint processing; next
Section 3 provides examples of practical problems that can be addressed using
DCOPs and a description of the abstract benchmarking problems commonly used
to empirically evaluate the different solution techniques. Section 4 introduces a
selection of exact solution algorithms for DCOPs, focusing on two representative
examples: (i) ADOPT, as an example of a search-based technique and (ii) DPOP,
as an example of a dynamic programming based approach. Section 5 discusses
the need for approximate solutions for DCOPs describing some representative
techniques in this area, and Section 6 discusses quality guarantees for approxi-
mate DCOP solution algorithms, focusing on two representatives: the k-optimality
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framework and the bounded max-sum approach. Finally, Section 7 concludes the
chapter.

2 Distributed Constraint Handling

A key element for distributed constraint handling is the concept of the constraint
network. Here we provide standard formal definitions relating to constraint net-
works and then we focus on the distributed constraint processing paradigm itself.

2.1 Constraint Networks

A constraint network N is formally defined as a tuple < X ,D,C >, where X =
{x1, · · · ,xn} is a set of discrete variables, D = {D1, · · · ,Dn} is a set of variable
domains, which enumerate all possible values of the corresponding variables, and
C = {C1, · · · ,Cm} is a set of constraints. A constraint Ci can be of two types: hard
or soft.

A hard constraint Ch
i is a relation Ri defined on a subset of variables Si ⊆ X .

Variables in Si are the scope of the constraint and the relation Ri enumerates all the
valid joint assignments of all variables in the scope of the constraint. Therefore Ri
is a subset of the Cartesian product of variable domains that are in the constraint’s
scope: Ri ⊆Di1×·· ·×Dir and r = |Si| is the arity of the relation. A soft constraint
Cs

i is a function Fi defined again on a subset of variables Si ⊆ X that comprise the
scope of the function. Each function Fi maps every possible joint assignment of
all variables in the scope to a real value, therefore Fi : Di1×·· ·×Dir ⇒ℜ and, as
above, r = |Si| is the arity of the function.

Notice that constraints can be defined over any subset of the variables; how-
ever, most of the work in constraint networks (both solution algorithms and theo-
retical analysis) focus on binary constraint networks, where each constraint (soft
or hard) is defined over two variables. Actually, it is possible to show that every
constraint network can be mapped to a binary constraint network;1 nonetheless
here we use the general formalization and specify when the analysis is restricted
to the binary case.

When the constraint set involves only hard constraints, the problem we face
is known as a constraint satisfaction problem (CSP). In this context, we aim to
find an assignment for all the variables in the network that satisfies all constraints.
An assignment satisfies a constraint if the tuple of values of variables in the con-
straint’s scope belongs to the constraint’s relation. If (ai1 , · · · ,air) ∈ Ri where

1In general this requires the combination or addition of both variables and constraints [4].
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a j ∈D j and Si = {xi1 , · · · ,xir}, then such an assignment is referred to as a solution
of the network.

If the constraint set involves soft constraints, then we face a constraint op-
timization problem (COP) and our aim is to find the best solution – that is,
an assignment for all variables that satisfies all constraints and that optimizes a
global function F(ā). The global function F(ā) is an aggregation of the func-
tions representing the soft constraints (local functions): F(ā) = ∑i Fi(āi), where
ā = (a1, · · · ,an) with a j ∈ D j, and āi is a restriction of ā to Si. A COP can be
a maximization or a minimization problem. Without loss of generality, we focus
here on maximization problems; therefore our aim is to find the assignment ā∗
that satisfies all hard constraints such that:

ā∗ = argmax
ā ∑

i
Fi(āi) (12.1)

In general, every CSP can be viewed as an optimization task, where we aim to
find the assignment that violates the least number of constraints. This is particu-
larly useful for overconstrained problems where a solution for the CSP might not
exist. Specifically, we can assign a constant fixed cost to every violated constraint
and search for an assignment that minimizes the sum of the costs. This problem
is known as the max-CSP problem.

Moreover, we can always encode hard constraints using only soft constraints
by using infinite values to penalize assignments that do not satisfy hard con-
straints. For example, assume, without loss of generality, that we are solving a
maximization problem, and let Ri be a relation that corresponds to a hard con-
straint Ci. We can construct a function Fi(ā) = −∞ if ā �∈ Ri and F(ā) = 0 other-
wise.2

2.2 Distributed Constraint Processing

Distributed constraint processing extends the standard constraint processing
framework by considering a set of agents that have control over variables and
interact to find a solution to the constraint network. As before, we can have satis-
faction or optimization tasks resulting in two types of problems: distributed CSP
(DCSP) and distributed COP (DCOP). The DCSP paradigm was originally pro-
posed to address coordination problems in a multiagent setting [41]. However
in recent years the DCOP framework has received increasing attention as it can
better represent many practical application scenarios.

Formally a DCOP can be represented as a constraint network N=< X ,D,C >
containing soft constraints, plus a set of agents A = {A1, · · · ,Ak}. Each agent can

2Notice that this may result in inferior solution techniques, as explicit hard constraints might
be exploited to reduce the solution search space [9].
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control only a subset of the variables Xi ⊆ X , and each variable is assigned to ex-
actly one agent. In other words, the assignment of variables to agents must be a
partition of the set of variables. Agents can control only the variables assigned to
them, meaning that they can observe and change the values of their assigned vari-
ables only. Moreover, agents are only aware of constraints that involve variables
that they can control. Such constraints are usually termed local functions and the
sum of these local functions is the local utility of the agent. Finally, two agents are
considered neighbors if there is at least one constraint that depends on variables
that each controls. Only neighboring agents can directly communicate with each
other.

Within this context, the goal for the agents is to find the optimal solution to the
constraint network, i.e., to find the assignment for all the variables in the system
that optimizes the global function. Thus, in a standard DCOP setting, agents are
assumed not to be self-interested, i.e., their goal is to optimize the global function
and not their local utilities.

Finding an optimal solution for a DCOP is an NP-hard problem, which can be
seen by reducing a DCOP to the problem of deciding on the 3-colorability of a
graph, a problem known to be NP-complete [26].

In the next section we will present a number of practical problems that can be
addressed using the DCOP framework, as well as some exemplar and benchmark-
ing DCOP instances.

3 Applications and Benchmarking Problems

To provide concrete examples of how the DCOP framework can be applied to
real-world scenarios we report here on a number of practical problems that can be
successfully addressed using the DCOP framework discussed above. Following
this we go on to show a set of abstract benchmarking problems that are commonly
used to evaluate and compare DCOP solution techniques.

3.1 Real-World Applications

Many real-world applications can be modeled using the DCOP framework, rang-
ing from human-agent organizations to sensor networks and robotics. Here we
focus on two such applications that have been frequently used as motivating sce-
narios for work in the MAS literature.
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3.1.1 Meeting Scheduling

The problem of scheduling a set of tasks over a set of resources (e.g., schedule
a set of lectures over a set of lecture halls or a set of jobs to a set of processors)
is a very common and important problem, which can be conveniently formalized
using constraint networks.

A typical example of this is the meeting scheduling problem, which is a very
relevant problem for large organizations (e.g., public administration, private com-
panies, research institutes, etc.), where many people, possibly working in different
departments, are involved in a number of work meetings. In more detail, people
involved in a meeting scheduling problem might have various private preferences
for meeting start times; for example, a given employee might prefer his or her
meetings to start in the afternoon rather than in the morning (to happily conju-
gate a late night social life with work!). Given this, the aim is to agree on a valid
schedule for the meeting while maximizing the sum of the individuals’ private
preferences. To be valid, a schedule must meet obvious hard constraints, for ex-
ample, two meetings that share a participant cannot overlap.

A possible DCOP formalization for the meeting scheduling domain involves
a set of agents representing the people participating in the meeting and a set of
variables that represent the possible starting time of a given meeting according
to a participant. Constraints force equality on variables that represent the start-
ing time of the same meeting across different agents and ensure that variables
that represent the starting times of different meetings for the same agent are non-
overlapping. Finally, preferences can be represented as soft constraints on meeting
starting times and the overall aim is to optimize the sum of all the soft constraints.
Notice that although in this setting we do have private preferences, we are maxi-
mizing the sum of preferences of all the agents, and thus we are still considering a
scenario where agents are fully cooperative, i.e., they are willing to diminish their
own local utility if it will maximize the global utility.

While this problem could be easily formalized as a centralized COP, in this
case a distributed approach not only provides a more robust and scalable solution,
but it can also minimize the amount of information agents must reveal to each
other (thus preserving their privacy). This is because, as mentioned above, in a
DCOP, agents are required to be aware only of constraints that they are involved
in. For example, consider a situation whereby Alice must meet Bob and Charles
in two separate meetings. In a centralized approach, Alice would have to reveal
the list of people she has to meet with. On the other hand, in a DCOP only people
involved in any particular meeting will be aware that the meeting is taking place.
Thus in our example, Bob does not need to know that Alice will also meet with
Charles.
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3.1.2 Target Tracking

Target tracking is a crucial and widely studied problem for surveillance and mon-
itoring applications. It involves a set of sensors tracking a set of targets in order to
provide an accurate estimate of their positions. Sensors can have different sensing
modalities that impact on the accuracy of the estimation of the targets’ positions.
For example a pan, tilt, and zoom (PTZ) camera could move to focus on a specific
area of the environment, reducing observation uncertainty for targets in that area.
Moreover, collaboration among sensors is crucial to improve the performance of
the system. For example two cameras could decide to track different targets to
maximize coverage of the environment, or to both focus on a potentially danger-
ous target, thus providing a more accurate estimate of its position.

There are several ways to formalize this scenario using the DCOP framework.
A widely accepted formulation is one where sensors are represented by agents,
and variables encode the different sensing modalities of each sensor. Constraints
are usually defined among sensors that have an overlapping sensing range. Each
constraint relates to a specific target and represents how the joint choice of sensor
modalities impacts on the tracking performance for that target. Constraints can
specify the minimum number, or particular number, of sensors that are required to
correctly identify a target, or provide a measure of position tracking accuracy for
each possible combination of agents’ sensing modalities. The global function for
the DCOP is the sum of constraints’ values. For example, the system could aim
to maximize the number of targets correctly identified or to maximize the sum of
tracking accuracy over all targets.

Within this context, the main reasons for using a distributed approach for the
optimization problem are robustness and scalability, which are both crucial issues
in surveillance and monitoring applications. Specifically, a distributed solution
improves scalability as it exploits the decomposition of the problem to reason lo-
cally – thus reducing the communication and computation that each agent must
perform. This is very important as this type of application typically involves the
use of hardware devices that have inherent constraints on communication and
computation. Furthermore, robustness is enhanced as each agent decides on its
own sensing modalities, thus avoiding a central point of failure.

3.2 Exemplar and Benchmarking Problems

As previously remarked, finding an optimal solution for a DCOP is known to be an
NP-hard problem. Therefore empirical evaluation of DCOP solution techniques
is a crucial point in order to evaluate their likely practical impact. In particular,
to have a meaningful comparison between the different solution techniques it is
essential to be able to run the various programs on a shared testbed. This prob-
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lem has been addressed by the DCOP community using benchmarking problem
instances inspired by practical applications, such as meeting scheduling and target
tracking.3

In addition, there are also a number of exemplar NP problems that are fre-
quently used to test solution techniques such as propositional satisfaction (SAT)
or graph coloring. Here we focus on the latter problem as it has been widely
used to evaluate the techniques that will be presented later in this chapter and is
particularly useful for illustrative purposes.

The graph coloring problem is an extremely simple problem to formulate and
is attractive, since the computational effort associated with finding the solution
can be easily controlled using few parameters (e.g., number of available colors,
and the ratio of number of constraints to the number of nodes). The constraint
satisfaction version of a graph coloring problem can be described as follows: given
a graph of any size and k possible colors, decide whether the nodes of the graphs
can be colored with no more than k colors, so that any two adjacent nodes have
different colors.

In the CSP formulation of the graph coloring problem, nodes are variables,
the set of k colors is the variable domain (which is the same for all the variables),
and constraints are not-equal constraints that hold between any adjacent nodes.
An assignment is a map from nodes to colors without constraint violations. The
optimization version is a max-CSP problem where the aim is to minimize the
number of constraint violations. The optimization version of the graph coloring
problem can be generalized in many ways, for example, by assigning different
weights to violated constraints or by giving different values to conflict violations
based on the color that causes the conflict (e.g., a penalty of 1 if both nodes are
blue and a penalty of 10 if both nodes are red).

4 Solution Techniques: Complete Algorithms

Given the previous description of a DCOP, we now focus on complete solution
techniques, i.e., those that always find a solution that optimizes the global ob-
jective function. These techniques are particularly interesting and elegant from a
theoretical point of view, but since we are dealing with an NP-hard problem they
also exhibit an exponentially increasing coordination overhead (either in the size
and/or number of messages exchanged, or in the computation required by each
agent) as the number of agents in the system increases.

Broadly, these complete approaches can be divided in two classes: those that
are search-based [7, 10, 15, 17, 25], and those that exploit dynamic program-

3For example see the repository of shared DCOP benchmarking problems created and main-
tained by the Teamcore research group, available at http://teamcore.usc.edu/dcop/.

http://teamcore.usc.edu/dcop/


Chapter 12 555

ming [30]. Moreover, search-based approaches can be further divided between
synchronous ones, such as SyncBB [17] and AND/OR search [10],4 and asyn-
chronous ones, such as ADOPT [25], NCBB [7], and AFB [15]. In the syn-
chronous execution model, agents wait for messages from other agents before
computing and sending out new messages themselves. In contrast, in the asyn-
chronous execution model, agents perform computation and send out messages
without waiting for messages from their neighbors. Asynchronous operation is
desirable in a multiagent context as it allows agents to make decisions without
waiting for other agents to complete their computation, thus fully exploiting par-
allel computation. On the other hand, the synchronous model ensures that agents
always have the most relevant and up-to-date information before executing their
computation, thus minimizing redundancy in both computation and communica-
tion.

All the above techniques are completely decentralized, in the sense that each
agent has complete control over its variables and is aware of only local constraints.
However, centralizing part of the problem can sometimes reduce the effort re-
quired to find a globally optimal solution. This is the key concept behind the
optimal asynchronous partial overlay (optAPO) approach [23]. In more detail,
optAPO aims to discover parts of the problem that are particularly hard to solve
in a decentralized fashion (parts that are strongly interconnected) and centralizes
them into subproblems that are delegated to mediator agents (which act as central-
ized solvers). OptAPO has been shown to consistently reduce the communication
overhead with respect to other decentralized techniques such as ADOPT. How-
ever, it is very hard to control how much of the problem will be centralized, and
thus, it is difficult to predict the computational effort that mediator agents must be
able to sustain.

Here we focus on two decentralized approaches that are good representatives
of the two general solution classes: ADOPT for search-based techniques and
DPOP for dynamic programming.

4.1 Search-Based: ADOPT

ADOPT (Asynchronous Distributed OPTimization) was proposed by Modi et
al. and both guarantees solution optimality and allows agents to asynchronously
change the values of the variables that they control [24, 25]. As is common in the
DCOP literature, the original ADOPT formulation assumes that each agent con-
trols only one variable and that the constraints are binary. Although there are ways
to remove these assumptions without significantly changing the algorithm, most

4AND/OR search was originally developed for centralized optimization problems but can eas-
ily be extended to work in decentralized settings (see [28]).
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of the work related to the ADOPT technique falls within this setting; therefore in
what follows we embrace these assumptions. Moreover, to maintain a close cor-
respondence with the original ADOPT description we assume that our task here
is a minimization problem. Hence constraints represent costs and agents wish to
find an assignment that minimizes the sum of these costs.

ADOPT is a search-based technique that performs a distributed backtrack
search using a best-first strategy; each agent always assigns to its variable the best
value based on local information. The key components of the ADOPT algorithm
are: (i) local lower-bound estimates, (ii) backtrack thresholds, and (iii) termina-
tion conditions. In particular, each agent maintains a lower-bound estimate for
each possible value of its variable. This lower bound is initially computed based
only on the local cost function, and is then refined as more information is passed
between the agents. Each agent will choose the value of its variable that mini-
mizes this lower bound, and this decision is made asynchronously as soon as the
local lower bound is updated.

Backtrack thresholds are used to speed up the search of previously explored
solutions. This can happen because the search strategy is based on local lower
bounds, and thus agents can abandon values before they are proven to be subopti-
mal. Backtrack thresholds are lower bounds that have been previously determined
and can prevent agents from exploring useless branches of the search tree.

Finally, ADOPT uses a bound interval to evaluate the search progress. Specifi-
cally, each agent maintains not only a lower bound but also an upper bound on the
optimal solution. Therefore, when these two values agree, the search process can
terminate and the current solution can be returned. In addition, this feature can be
used to look for solutions that are suboptimal but within a given predefined bound
of the optimal solution. The user can specify a valid error bound (i.e., the distance
between the optimal solution value and an acceptable suboptimal solution) and as
soon as the bound interval becomes less than this value the search process can be
stopped.

Before executing the ADOPT algorithm, agents must be arranged in a depth-
first search (DFS) tree. A DFS tree order is defined by considering direct par-
ent/child relationships between agents. DFS tree orderings have been frequently
used in optimization (see for example [30]) because they have two interesting
properties: (i) agents in different branches of the tree do not share any constraints,
and (ii) every constraint network can be ordered in a DFS tree and this can be
done in polynomial time with a distributed procedure [28]. The fact that agents
in different branches do not share constraints is an important property as it en-
sures that they can search for solutions independently of each other. Figure 12.1
shows an exemplar constraint network. Figure 12.2 reports a possible DFS order,
where solid lines show parent/child relationships and constraints are not repre-
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Figure 12.2: Message exchange in the ADOPT algorithm: Value and Cost mes-
sages for one possible trace of execution. Numbers within squares indicate the
(partial) order of the messages.

sented. Given a constraint network, the DFS ordering is not unique and ADOPT’s
performance (in terms of coordination overhead) depends on the actual DFS or-
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dering used. Finding the optimal DFS tree is a challenging problem, which the
ADOPT technique does not address.

Given a DFS ordering of the agents, the algorithm proceeds by exchanging
three types of messages: Value, Cost, and Threshold. When the algorithm starts,
all agents choose a random value for their variables, and initialize the lower bound
and upper bound of their variables’ possible values to zero and infinity, respec-
tively. These bounds are then iteratively refined as more information is transmit-
ted across the network. Figure 12.2 reports messages exchanged among the agents
during the first stages of the algorithm. Since the algorithm is asynchronous, we
report here one possible trace of execution, and numbers within squares indicate
the (partial) order of the messages.

In more detail, Value messages are sent by an agent to all its neighbors that
are lower in the DFS tree order than itself, reporting the value that the agent has
assigned to its variable. For example, in Figure 12.2 agent A1 sends three value
messages to A2, A3, and A4, informing them that its current value is 0. Notice
that this message is sent to A4 even though there is no parent/child relationship
between A1 and A4 because A4 is a neighbor of A1, who is lower in the DFS order.

Cost messages are sent by an agent to its parent, reporting the minimum lower
and upper bound across all the agent’s variable values, and the current context.
The current context is a partial variable assignment, and, in particular, it records
the assignment of all higher neighbors. For example, in Figure 12.2 the current
context for A4, c4, is {(x1,0),(x2,0)}. The minimum lower bound and minimum
upper bound are computed with respect to the current context. To compute the
minimum lower bound each agent evaluates its own local cost for each possible
value of its variable, adding all the lower-bound messages received from children
that are compatible with the current variable value. The local cost for an agent
is the sum of the values of local cost function for all the higher neighbors. For
example, consider the cost message sent by A4. The minimum lower bound (which
is 0) is computed by finding the minimum between δ(x4 = 0) = 4 and δ(x4 = 1) =
0, where δ(a) is the local cost function when the variable assumes the value a. The
local cost function is computed by summing up the values of the cost functions
for all neighbors higher in the DFS order and by assigning their values according
to the current context. A similar computation is performed for the upper bound.

Cost messages for agents that are not leaves of the DFS tree (e.g., A2) also
include the lower and upper bound for each child. For example consider the cost
message sent by A2 to A1 and let LB represent the minimum lower bound across all
variables’ values. LB is then computed by finding the minimum between LB(x2 =
0) = δ(x2 = 0)+ lb(x2 = 0,x4) = 2 and LB(x2 = 1) = δ(x2 = 1)+ lb(x2 = 1,x4) =
0, resulting in LB = 0. Here lb(a,xl) is the lower bound for the child variable xl
when the current variable is assigned to a in the current context.
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Figure 12.3: Message exchange in the ADOPT algorithm: Threshold messages
for a revisited context.

Threshold messages are sent from parents to children to update the agent’s
backtrack thresholds. Backtrack thresholds are particularly useful when a previ-
ously visited context is revisited. Each agent stores cost information (e.g., upper
and lower bounds) only for the current context and deletes previously stored in-
formation as soon as the context changes. In fact, if an agent did maintain such
information for every visited context, it will need an exponential space in mem-
ory. However, since a context might be visited multiple times during the search
process, whenever this happens the agent starts computing cost information from
scratch. Now, since this context was visited before, the agent reported the sum of
cost information to its parent and since the parent has that information stored, it
can now send it back to the agent via a threshold message. The threshold message
is used to set the agent’s threshold to a previous valid lower bound, and propagate
cost information down the tree, avoiding needless computation. Notice that the in-
formation that the parent stores is the accumulated cost information. Therefore, to
propagate information down the tree, the agent must subdivide this accumulated
cost across its children using some heuristic, as the original cost subdivision is
lost, and then correct this subdivision over time as cost feedback is received from
the children. For example, assume that during the search process, x1 changes its
value and then the context with x1 = 0 is visited again. Agent A1 will then send
threshold messages to A2 and A3 as shown in Figure 12.3. Notice that the value
of these messages is the lower-bound value sent by the corresponding child agent



560 Chapter 12

for that context, e.g. the message t(x1 = 0,x2) equals the lower bound sent by A2
to A1 with context {(x1,0)}.

Finally, agents asynchronously update a variable’s value whenever the stored
lower bound for the current value exceeds the backtrack threshold and the new
variable’s value is the one that minimizes the stored lower bounds. For example,
consider agent A2 in Figure 12.2, when receiving the cost message from A1. In this
case, the lower bound for the current value (LB(x2 = 0) = 2) exceeds the threshold
(initially set to 0). Therefore, the agent updates its variable value to the one that
minimizes the lower bound, which in our case is x2 = 1. It then sends cost and
value messages accordingly. When the minimum lower bound for a variable value
is also an upper bound for that value, the agent can stop propagating messages as
that value will be optimal given the current context. When this condition is true at
the root agent, a terminate message is sent to all the children. Agents propagate the
termination message if the termination condition is true for them as well. When
the terminate message has propagated to all the agents, the algorithm stops, and
the optimal solution has been found.

ADOPT is particularly interesting because it is asynchronous and because the
memory usage of each agent is polynomial in the number of variables. Moreover,
messages are all of a fixed size. However, the number of messages that agents
need to exchange is, in the worst case, exponential in the number of variables.
This impacts on the time required to find the optimal solution. In particular, the
number of message synchronization cycles, defined as all agents receiving incom-
ing messages and sending outgoing messages simultaneously, is exponential in
the number of variables. This is a frequently used measure to evaluate DCOPs so-
lution techniques as it is less sensitive to variations in agents’ computation speed
and communication delays than the wall clock. As previously remarked, such ex-
ponential elements are unavoidable in complete approaches and they can severely
restrict the scalability of the approach.

Several works build on ADOPT attempting to reduce computation time. For
example, Yeoh et al. propose BnB-ADOPT, which is an extension of ADOPT that
consistently reduces computation time by using a different search strategy: depth-
first search with branch and bound instead of best-first search [39]. Moreover,
Ali et al. suggest the use of preprocessing techniques for guiding ADOPT search
and show that this can result in a consistent increase in performance [3]. Finally,
Gutierrez and Meseguer show that many messages that are sent by BnB-ADOPT
are in fact redundant and most of them can be removed, resulting in significant
reduction in communication costs [16].

In the next section we describe a completely different approach based on dy-
namic programming.
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4.2 Dynamic Programming: DPOP

DPOP (dynamic programming optimization protocol) was proposed by Petcu and
Falting [30], and is based on the dynamic programming paradigm, and more
specifically, on the bucket elimination (BE) algorithm [9].

In more detail, BE is a dynamic programming approach for solving both con-
straint networks and also more general graphical models such as Bayesian net-
works, Markov random fields, and influence diagrams. BE takes as input a con-
straint network and an ordering of the network variables. It then associates a
bucket to each variable and partitions the constraints, assigning them to the bucket
following the given ordering. The optimal assignment is obtained by running two
phases. First, the buckets are processed (from last to first), essentially running a
variable elimination algorithm. Specifically, when processing a bucket, all con-
straints in the bucket are summed together and the variable that corresponds to
the bucket is eliminated by maximization. This results in a new constraint that is
placed in the first bucket, following the specified order, that contains one of the
variables that are in the constraint scope. When the first phase is completed, the
optimal value for the variable associated with the first bucket can be computed.
This optimal value can be fixed, and then, given this value, the optimal value for
the next variable in the ordering can be found. Proceeding in this way the entire
optimal assignment is generated.

Now, although BE is normally defined over a linear ordering of the variables,
it can be extended to work on a tree ordering via message-passing between the
nodes, resulting in the bucket tree elimination algorithm (BTE) [9]. Against this
background, DPOP can essentially be seen as a special case of BTE that oper-
ates on a DFS tree ordering of the constraint network. This specific arrangement
is important because it ensures that during the optimization process, agents have
knowledge of, and can control, only their own variables, and that they communi-
cate only with other agents that share at least one constraint.

The DPOP algorithm can be divided into three phases: (i) arrangement of the
variables into a DFS tree; (ii) propagation of Util messages bottom-up along the
DFS tree (from leaves to root); and (iii) propagation of Value messages top-down
(from root to leaves). We will briefly discuss these three phases in the following.
As with the ADOPT example, for ease of presentation, we assume that each agent
controls only one variable and that constraints are binary. However, relaxing this
assumption does not result in significant changes to the algorithm. In contrast to
the description of ADOPT, and in line with the original description of DPOP, we
deal here with maximization problems.

As with ADOPT, DPOP first preprocesses the constraint network to create a
DFS tree. In contrast to ADOPT, however, DPOP guarantees that the optimal
solution can be obtained with a linear number of messages, resulting in messages
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Figure 12.4: (a) Exemplar constraint network, with (b) induced graph with DFS
order {x4,x2,x3,x1}, and (c) induced graph with DFS order {x1,x2,x3,x4}.

whose size is exponential in the induced width of the DFS tree ordering.
More specifically, DPOP can operate on a pseudo-tree ordering of the con-

straint network. A pseudo-tree ordering is one where nodes that share a constraint
fall in the same branch of the tree. DFS tree ordering is thus a special case of a
pseudo-tree that can be easily obtained with a DFS traversal of the original graph.
Now, the complexity of the DPOP algorithm is strongly related to the DFS ar-
rangement on which the algorithm is run, and, in particular, it is exponential in
the induced width of the DFS tree ordering. Given a graph and an ordering of
its nodes, the width induced by the ordering is the maximum induced width of a
node, which is simply given by how many parents it has in the induced graph. The
induced graph can be computed by processing the nodes from last to first, and for
each node, adding edges to connect all the parents of that node (i.e., neighbors
that precede the node in the order).

In particular, Figure 12.4 shows a constraint network and two induced graphs
given by different orderings. The induced width for the graph in Figure 12.4(b)
is 3, while the induced width for the graph in Figure 12.4(c) is 2. Notice the
dashed edge between x3 and x4 in Figure 12.4(b) that was added when building
the induced graph. While there are various heuristics to generate DFS orderings
with small induced width, finding the one with the minimum induced width is
an NP-hard problem. Figure 12.5 reports a DFS arrangement for the constraint
network shown in Figure 12.4(a), along with messages that will be exchanged
during the following phases. Dashed edges represent constraints that are part of
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Figure 12.5: Message exchange in DPOP.

the constraint network but are not part of the DFS tree. These are usually called
back-edges.

Once the variables have been arranged in a DFS tree structure, the Util prop-
agation phase starts. Util propagation goes from leaves, up the tree, to the root
node. Each agent computes messages for its parent considering both the mes-
sages received from its children and the constraints that the agent is involved in.
In general, the Util message Ui→ j that agent Ai sends to its parent A j can be com-
puted according to the following equation:

Ui→ j(Sepi) = max
xi

⎛⎝ ⊕

Ak∈Ci

Uk→i⊕
⊕

Ap∈Pi∪PPi

Fi,p

⎞⎠ (12.2)

where Ci is the set of children for agent Ai, Pi is the parent of Ai, PPi is the set
of agents preceding Ai in the pseudo-tree order that are connected to Ai through
a back-edge (pseudo-parents), and Sepi is the set of agents preceding Ai in the
pseudo-tree order that are connected with Ai or with a descendant of Ai.5 The
⊕ operator is a join operator that sums up functions with different but overlap-
ping scopes consistently, i.e., summing the values of the functions for assignments
that agree on the shared variables. For example, considering again Figure 12.5,
agent A3 sends the message U3→2(x1,x2) = maxx3(F1,3(x1,x3)⊕F2,3(x2,x3)) be-
cause there are no messages from its children, while agent A2 sends the message

5This set is called the separator because it is precisely the set of agents that should be removed
to completely separate the subtree rooted at Ai from the rest of the network.
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U2→1(x1) = maxx2(U3→2(x1,x2)⊕U4→2(x1,x2)⊕F1,2(x1,x2)). It is possible to
show that the size of the largest separator in a DFS tree equals the induced width
of the tree, which clarifies the exponential dependence on the induced width of
message size.

Finally, the Value message propagation phase builds the optimal assignment
proceeding from root to leaves. Root agent Ar computes x∗r , which is the argu-
ment that maximizes the sum of the messages received by all its children (plus
all unary relations it is involved in) and sends a message Vr→c = {xr = x∗r} con-
taining this value to all its children Ac ∈Cr. The generic agent Ai computes x∗i =
argmaxxi(∑A j∈Ci Uj→i(x

∗
p)+∑A j∈Pi∪PPi Fi, j(xi,x∗j)), where x∗p =

⋃
A j∈Pi∪PPi

{x∗j} is
the set of optimal values for Ai’s parent and pseudo-parents received from Ai’s
parent. Finally, the generic agent Ai sends a message to each child A j with
value Vi→ j = {xi = x∗i }∪

⋃
xs∈Sepi∩Sep j

{xs = x∗s}. For example, assume agent A1’s
optimal value is x∗1 = 1, then agent A2 computes x∗2 = argmaxx2(U3→2(1,x2)⊕
U4→2(1,x2)⊕ F1,2(1,x2)) and propagates the message {(x1 = 1),(x2 = x∗2)} to
agents A3 and A4. Notice that the maximization performed by agent A4 in the
value propagation phase is the same as the one previously done to compute the
Util messages, but now with the aim of finding the value that maximizes the equa-
tion. Hence computation can be reduced by storing the appropriate values during
the Util propagation phase.

As discussed above, DPOP message size, and hence the computation that
agents need to compute it, is exponential. However, it is only exponential in the
induced width of the DFS tree ordering used, which, in general, is much less than
the total number of variables. Furthermore, there are many extensions of DPOP
that address various possible trade-offs in the approach. In particular, MB-DPOP
exploits the cycle-cut set idea to address the trade-off between the number of mes-
sages used and the amount of memory that each message requires [31]. On the
other hand, A-DPOP addresses the trade-off between message size and solution
quality [29]. Specifically, A-DPOP attempts to reduce message size by optimally
computing only a part of the messages and approximating the rest (with upper
and lower bounds). Given a fixed approximation ratio, A-DPOP can then reduce
message size to meet this ratio, or, alternatively, given a fixed maximum message
size, it propagates only those messages that do not exceed that size.

As a final remark, note that there is a close relationship between DPOP and
the generalized distributive law (GDL) framework, which we shall discuss further
in Section 5.2 [2]. GDL represents a family of techniques frequently used in in-
formation theory for decoding error correcting codes6 [21], and solving graphical

6Decoding turbo codes is probably the most important representative application for which
GDL techniques are used. See [21], Section 48.4, for details.
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models (e.g., to find the maximum a posteriori assignment in Markov random
fields [38], or the posterior probabilities [37]).

5 Solution Techniques: Approximate Algorithms

As discussed earlier, solving a constraint network is an NP-hard problem. There-
fore the worst-case complexity of complete methods are often prohibitive for prac-
tical applications. This is particularly the case for applications involving physical
devices, such as sensor networks or mobile robots, which have severe constraints
on memory and computation.

In these settings, approximate algorithms are often preferred, as they require
very little local computation and communication, and are, as such, well suited for
large-scale practical distributed applications in which the optimality of the solu-
tion can be sacrificed in favor of computational and communication efficiency (see
[6] for a review of such algorithms). Furthermore, such approximate techniques
have been shown to provide solutions that are very close to optimality in several
problem instances [12, 22]. However, these approaches do not provide guaran-
tees on the solution quality in general settings. This is particularly troublesome
because the quality of solution to which most approximate algorithms converge is
highly dependent on many factors that cannot always be properly assessed before
deploying the system. Therefore there is no guarantee against particularly adverse
behavior in specific pathological instances.

Thus, we next describe two classes of approximate algorithms for addressing
DCOPs: local greedy methods and GDL-based approaches.

5.1 Local Greedy Approximate Algorithms

A local greedy search starts with a random assignment for all the variables and
then performs a series of local moves trying to greedily optimize the objective
function. A local move usually involves changing the value of a small set of
variables (in most cases just one) so that the difference between the value of the
objective function with the new assignment and the previous value is maximized.
This difference is usually called the gain. The search stops when there is no local
move that provides a positive gain, i.e., when the process reaches a local maxi-
mum. Local greedy search is a very popular approximate optimization technique,
as it requires very little memory and computation, and can obtain extremely good
solutions in many settings. The main problem for this type of approach is the
presence of local maxima that can, in general, be arbitrarily far from the global
optimal solution. Many heuristics can be used to avoid local maxima such as us-
ing random restart (sometimes called stochastic local search [9]) or introducing



566 Chapter 12

stochastic steps in the search process (resulting in algorithms such as walkSAT
and simulated annealing [9]).

Greedy local search methods have been widely used for DCOPs resulting in
many successful approaches [12, 22]. When operating in a decentralized context,
an important issue for these techniques is that to execute a greedy local move,
agents need some type of coordination. In fact, the gain for a local move involving
a variable xi is computed assuming that all other variables X \{xi} do not change
their values. If all agents are allowed to execute in parallel, a potentially greedy
move can become harmful (i.e., result in negative gain) because each agent has
out-of-date knowledge about the choices of other agents. Such incoherence may
also compromise the convergence of the approach leading to thrashing behaviors.

5.1.1 The Distributed Stochastic Algorithm

A simple and effective way to reduce such incoherence is to introduce a stochastic
decision on whether agents should actually perform a move when they see the op-
portunity to optimize the gain [12]. This approach is usually called the distributed
stochastic algorithm (DSA) and has been widely studied and applied in many do-
mains. In more detail, assuming a synchronous execution model (each agent waits
for the messages from all its neighbors), DSA has an initialization phase, where
each agent chooses a random value for its variable, and then an infinite loop is exe-
cuted by each agent. At each execution step, each agent Ai executes the following
operations:

• Choose an activation probability pi ∈ [0,1].

• Generate a random number ri ∈ [0,1).

• If ri < pi choose a value ai such that the local gain is maximized.

• If ri ≥ pi do not change its value.

• If the variable value changed, send information to all neighbors notifying
them of the change.

• Receive messages from neighbors and update information accordingly.

DSA can also be used in an asynchronous context and empirical results show that
the algorithm is still effective if the rate of variable change is low with respect to
the communication latency, thus allowing information to be propagated coherently
in the system. Moreover, in most work, the activation probability is not decided
at each optimization step, but is fixed at the beginning of the execution and is the
same for all agents. The main strength of the DSA algorithm is its extremely low
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overhead in terms of memory, computation, and communication. In fact, each
agent needs to store and reason only about its direct neighbors, which, in general,
are far fewer than the total number of agents in the system. Moreover, there is
no exponential increase in computation and communication, as the optimization
step considers only the current values of neighbors, and the communication step
involves a message to communicate just the new value of the agent’s variable. Fi-
nally, empirical results show that the algorithm typically monotonically increases
the solution quality with each execution step, resulting in anytime behavior that is
very well suited for practical applications; a solution is always available and the
longer an agent waits before acting, the better the solution will be. Note, however,
that there is no theoretical guarantee of such anytime behavior, but this is often
obtained in practice with a suitable tuning of the activation probability.

The main drawback of DSA is that the solution quality can be strongly depen-
dent on the activation probability, and there is no way to compute its value from
an analysis of the problem instance. Moreover, the sensitivity of the algorithm’s
performance, with respect to the activation probability, is domain dependent, and
it is hard to generalize the behavior of the algorithm across different domains.

5.1.2 The Maximum Gain Message Algorithm

An alternative approach to address the possible out-of-date knowledge about other
agents’ variable values is for neighboring agents to agree on who the agent is that
can perform a move, while the others wait without changing their values. This
approach is the basic idea behind the maximum gain message algorithm (MGM)
[22]. MGM is based on the well-known distributed breakout algorithm (DBA),
but is adapted to avoid outdated knowledge of the agent about its neighbors. As-
suming again a synchronous execution model, at each execution step each agent
Ai executes the following operations:

• Send its current value ai to neighbors and receive values from neighbors.

• Choose a value a∗i such that the local gain g∗i is maximized (assuming neigh-
bors do not change value).

• Send the gain g∗i to neighbors and receive gain from neighbors.

• If the gain for the agent is the highest in the neighborhood, update the value
of xi to a∗i .

MGM is guaranteed to be anytime and several empirical evaluations show
that it has comparable performance with respect to DSA in various domains [22].
Moreover, unlike DSA, MGM does not require any parameter tuning.
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A common characteristic of both DSA and MGM is that decisions are made
considering local information only, i.e., when deciding the next value for its vari-
able each agent optimizes only with respect to the current assignments of its neigh-
bors. This provides for extremely low cost and scalable techniques; however,
solution quality is strongly compromised by local maxima, which can, in gen-
eral, be arbitrarily far from the optimal solution. In the next section, we present
an algorithm for solving DCOP, based on the generalized distributive law (GDL)
framework, that overcomes this limitation.

5.2 GDL-Based Approximate Algorithms

As previously mentioned, the GDL is a unifying framework to perform inference
in graphical models. Specifically, the GDL framework operates on commutative
semi-rings, and depending on the specific semi-ring used, we obtain different al-
gorithms such as the max-sum, max-product, or sum-product. Such algorithms are
widely used to perform inference tasks such as finding the maximum a posteriori
assignment in Markov random fields (max-product) [38], or computing marginal
distributions in Bayesian networks (sum-product or belief propagation) [21]. In
particular, the max-sum algorithm can be used to solve constraint networks as it
can find the argument that maximizes a global optimization function expressed as
the sum of local functions.

5.2.1 The Max-Sum Algorithm

In more detail, the max-sum algorithm is an iterative message-passing algorithm,
where agents continuously exchange messages to build a local function that de-
pends only on the variables they control. This function represents the dependence
of the global function on the agents’ values and is used to find the optimal as-
signment. The max-sum algorithm can directly handle n-ary constraints and more
variables per agent, however for ease of presentation, we report here a description
of the algorithm in line with the earlier assumptions that each agent controls one
variable and all constraints are binary. The interested reader can find the descrip-
tion of the algorithm in more general settings in [32]. Finally, we again assume a
synchronous execution model.

Given this, at each execution step each agent Ai updates and sends to each of
its neighbors A j the message, mi→ j(x j), given by:

mi→ j(x j) = αi j +max
xi

(
Fi j(xi,x j)+ ∑

k∈N(i)\ j
mk→i(xi)

)
(12.3)

where αi j is a normalization constant, N(i) is the set of indices for variables that
are connected to xi, and Fi j is the constraint defined over the variables controlled
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x3

Figure 12.6: Message exchange in max-sum.

by Ai and A j. The normalization constant αi j is added to all the components of the
message so that ∑x j mi→ j(x j) = 0. This is necessary on graphs with loops because
otherwise message values might grow indefinitely, possibly leading to numerical
errors.

At the first iteration all messages are initialized to constant functions, and at
each subsequent iteration, each agent Ai aggregates all incoming messages and
computes the local function, zi(xi), which is given by:

zi(xi) = ∑
k∈N(i)

mk→i(xi) (12.4)

This is then used to obtain the max-sum assignment, x̃, which, for every variable
xi ∈ X is given by:

x̃i = argmax
xi

zi(xi) (12.5)

Figure 12.6 shows input and output messages for agent A1. In this example, the
message to agent A2 is computed as m1→2(x2) = maxx1(F1,2(x1,x2)+m3→1(x1)+
m4→1(x1)) and z1(x1) = m2→1(x1)+m3→1(x1)+m4→1(x1).

The max-sum technique is guaranteed to solve the problem optimally on
acyclic structures, but when applied to general graphs that contain loops, only
limited theoretical results hold for solution quality and convergence. Nonetheless,
extensive empirical evidence demonstrates that, despite the lack of convergence
guarantees, the max-sum algorithm does in fact generate good approximate solu-
tions when applied to cyclic graphs in various domains [11, 13, 19]. When the
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algorithm does converge, it does not converge to a simple local maximum but
rather to a neighborhood maximum that is guaranteed to be greater than all other
maxima within a particular large region of the search space [38]. Characteriz-
ing this region is an ongoing area of research and to date has only considered
small graphs with specific topologies (e.g., several researchers have focused on
the analysis of the algorithm’s convergence in graphs containing just a single loop
[1, 38]).

The max-sum algorithm is attractive for decentralized coordination of compu-
tationally and communication constrained devices since the messages are small
(they scale with the domain of the variables), and the number of messages ex-
changed typically varies linearly with the number of agents within the system.
Moreover, when constraints are binary, the computational complexity to update
the messages and perform the optimization is polynomial. In the more general
case of n-ary constraints, this complexity scales exponentially with just the num-
ber of variables on which each function depends (which is typically much less
than the total number of variables in the system). However, as with the previously
discussed approximate algorithms, the lack of guaranteed convergence and guar-
anteed solution quality in general cases limits the use of the standard max-sum
algorithm in many application domains.

A possible solution to address this problem is to remove cycles from the con-
straint graph by arranging it into tree-like structures such as junction trees [20] or
pseudo-trees [30]. However, such arrangements result in an exponential element
in the computation of the solution or in the communication overhead. For exam-
ple, DPOP is functionally equivalent to performing max-sum over a pseudo-tree
formed by depth-first search of the constraint graph, and the resulting maximum
message size is exponential with respect to the width of the pseudo-tree. This ex-
ponential element is unavoidable in order to guarantee optimality of the solution
and is tied to the combinatorial nature of the optimization problem. However, as
discussed in the introduction of this chapter, such exponential behavior is undesir-
able in systems composed of devices with constrained computational resources.

To address these issues, low overhead approximation algorithms that can pro-
vide quality guarantees on the solution are a key area of research, and we discuss
the most prominent approaches in this area in the next section.

6 Solution Techniques with Quality Guarantees

Developing approximate algorithms that can provide guarantees on solution qual-
ity is a growing area of research that is gaining increasing attention. Such ap-
proaches are particularly promising as they can conveniently address the unavoid-
able trade-off between guarantees on solution quality and computation effort. Ad-
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dressing this trade-off is particularly important in dynamic settings and when the
agents have severe constraints on computational power, memory, or communica-
tion (which is usually the case for applications involving embedded devices, such
as mobile robots or sensor networks). Moreover, having a bound on the quality
of the provided solutions is particularly important for safety-critical applications
(such as disaster response, surveillance, etc.) because pathological behavior of the
system is, in this case, simply unacceptable.

Guarantees that can be provided by approximate algorithms can be broadly di-
vided in two main categories: off-line and online. The former can provide a char-
acterization of the solution quality without running any algorithm on the specific
problem instances. In contrast, the latter can only provide quality guarantees for
a solution after processing a specific problem instance. Off-line guarantees rep-
resent the classical definition of approximation algorithms [8], and they provide
very general results not tied to specific problem instances. In this sense they are
generally preferred to online guarantees. However, online guarantees are usually
much tighter than off-line ones, precisely because they can exploit knowledge on
the specific problem instance, and, thus, better characterize the bound on solution
quality.

Here we present two representative approaches for these two classes: the k-
optimality framework and the bounded max-sum approach.

6.1 Off-line Guarantees

A widely used approach to providing off-line guarantees for solution quality in
DCOPs is based on the k-size optimality framework. The main idea behind k-size
optimality is to consider optimal solutions for subgroups of k agents, and then
provide a bound on the globally optimal solution. More specifically, a solution is
k-optimal if the corresponding value of the objective function cannot be improved
by changing the assignment of k or fewer agents. For example, consider again
the constraint network in Figure 12.1. The solution x̂ = {x1 = 1, x2 = 1, x3 =
1, x4 = 1} is a 2-optimal solution but not a 3-optimal solution. In fact, F(x̂) =
F1,2+F1,3+F1,4+F2,4 = 1+1+1+1= 4, and, thus, clearly if only two agents can
change their variables’ values, there is no solution that obtains a value higher than
four. However, if we allow three agents to change their values, then we can obtain
a better solution. Consider for example the assignment x̂′ = {x1 = 0, x2 = 0, x3 =
1, x4 = 0}; we can see that F(x̂′) =F1,2+F1,3+F1,4+F2,4 = 2+0+2+2= 6≥ 4.
Moreover, notice that x̂′ is not the optimal solution, as the optimal solution is
x∗ = {x1 = 0, x2 = 0, x3 = 0, x4 = 0} and F(x∗) = 8.

Building on the k-optimality concept, Pearce and Tambe were able to provide
an approximation ratio (i.e., the ratio between the unknown optimal solution and
the approximate solution [8]) for k-optimal algorithms that is valid for any DCOP
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with non-negative reward structure7 [27]. The accuracy of such an approximation
ratio, in any particular setting, depends on the number of agents, on the arity of the
constraints, and on the value of k. Specifically, for any DCOP with non-negative
rewards, the following equation holds:

F(x̂)≥
(n−m

k−m

)(n
k

)− (n−m
k

)F(x∗) (12.6)

where x̂ is a k-size optimal solution, x∗ is the optimal solution, n is the number of
agents, and m is the maximum constraint arity and m ≤ k < n. Notice that every
DCOP that does not have infinite negative costs can be normalized to one with
all non-negative rewards. However the analysis is not applicable to DCOPs that
include hard constraints.

For the usual case of a binary network (i.e., m = 2) the above equation simpli-
fies to:

F(x̂)≥ k−1
2n− k−1

F(x∗) (12.7)

Thus, for the constraint network in Figure 12.1, we can immediately conclude that
for any 2-optimal solution, x̂, we will have that F(x̂)≥ 1/5 ·F(x∗) simply because

k−1
2n−k−1 = 1/5 when k = 2 and n = 4. In fact it is easy to see that this inequality
holds for the 2-optimal solution considered above.

Notice that the above inequalities hold for every possible constraint network
with every possible reward structure (as long as all rewards are non-negative). For
example, if we add a constraint between x3 and x4 in our exemplar constraint net-
work, no matter what function we define for that constraint, we are still guaranteed
that the value of any 2-optimal solution will be greater than 1/5 of the value of
the optimal solution. This is clearly a very strong and general result, but unfortu-
nately, the accuracy of this bound depends on the number of agents, on the arity
of the constraints, and on the value of k. Specifically, the bound is more accu-
rate when k is higher, but less accurate when the number of agents in the system
grows, and the maximum arity of constraints is high. Clearly, by increasing k it
is possible to achieve better bounds; however this would result in an exponential
increase in computation and communication required to obtain a k-size optimal
solution.

From an algorithmic point of view, the k-size optimal framework assumes
that we are able to find a k-size optimal solution. This basically requires that a
group of k agents coordinate their choice to find a solution that is optimal for
the group. Now, any local hill climbing algorithm is k-size optimal for k = 1.
Hence, approaches such as DSA [12] and MGM [22] are able to find a 1-optimal

7Reward structure here makes reference to the particular values that return the functions of the
DCOP.
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solution. However, for k = 1 we are unable to provide any guarantees as the k-
optimal analysis is valid only if m ≤ k. Therefore, k = 2 variants of MGM and
DSA, termed MGM-2 and DSA-2, have been devised [22]. Moreover, there are
also algorithms to find k-size optimal solutions with arbitrary k [18].

The k-size optimality framework has been recently extended introducing a
different criterion for local optimality; in particular, t-distance optimality. This
is based on the distance between nodes on the constraint graphs, rather than on
the size of the groups. Furthermore, Vinyals et al. recently introduced the C-
optimality framework, which generalizes both k-optimality and t-optimality by
providing quality guarantees for local optima in regions that can be defined by
arbitrary criteria [36]. Specifically, they propose a new criterion to define regions
(i.e., the size-bounded-distance criterion), showing that this criterion outperforms
both k-size and t-distance, yielding more precise control of the computational ef-
fort required to provide such local optimal solutions. Finally, the C-optimality
framework has been recently used to provide quality guarantees for fixed-point
assignments of the max-sum algorithm (i.e., assignments to which the algorithm
converged). Specifically, building on the results obtained by Weiss that charac-
terized any fixed-point max-product assignment as a local optima for a specific
region (named single loops and trees) [38], Vinyals et al. were able to character-
ize the quality guarantees for the max-sum algorithm in that region [33]. Thus,
if the max-sum algorithm converges, it is possible to provide a worst-case quality
guarantee equivalent to 3-optimal solutions of the k-optimality framework.

As mentioned above, Equation 12.6 is valid for every possible constraint net-
work. This is because the bound is the result of a worst-case analysis on a com-
pletely connected graph. If we restrict our attention to specific constraint net-
work topologies it is possible to obtain better bounds. For example, for a network
with a ring topology, where each agent has only two constraints, we have that
F(x̂)≥ k−1

k+1F(x∗). This is a much better bound as it does not depend on the num-
ber of agents in the system, but applies only to a very specific topology. Similar
considerations hold for assumptions about the reward structure. Specifically, bet-
ter guarantees can be provided assuming some a priori knowledge on the reward
structure. For example, Bowring et al. show that the approximation bounds can
be improved by knowing the ratio between the minimum reward to the maximum
reward [5]. In addition, they also extend the k-optimality analysis to DCOPs that
include hard constraints. However, while they are able to significantly improve
on the accuracy of the bound by exploiting a priori knowledge on the reward, the
bound is still dependent on the number of agents, and decreases as the number of
agents grows; thus, it is of little help for large-scale applications.
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6.2 Online Guarantees

Online approaches for providing quality guarantees are complementary to off-line
ones, as they usually give accurate bounds but only for specific problem instances
[32, 34]. In this respect, the bounded max-sum (BMS) approach is a good repre-
sentative for this kind of technique [32]. The main idea behind BMS is to remove
cycles in the original constraint network by simply ignoring some of the depen-
dencies between agents. It is then possible to optimally solve the resulting tree-
structured constraint network, while simultaneously computing the approximation
ratio for the original problem instance. The BMS approach uses the max-sum
algorithm to provide an optimal solution for the tree-structured problem, hence
the name; but any distributed constraint optimization technique that is guaran-
teed to provide optimal solutions on a tree-structured constraint network could be
used. The choice of the max-sum approach is driven by its efficiency in terms of
low communication overhead (specifically in the number of messages), low com-
putational requirement, and ease of decentralization. The main issue with this
approach is to choose which dependencies should be removed to form the tree-
structured constraint network, and to somehow relate the solution quality of the
new problem to that of the original loopy one.

To do this, BMS assigns weights to constraints, where the weights quantify the
maximum impact that removing any constraint may have on the optimal solution.
In other words, the weight of a constraint specifies the worst-case outcome if
we were to solve the problem ignoring that constraint. BMS will then remove
constraints that have the least impact on the solution quality (i.e., constraints that
have smaller weights). This can be done by computing a maximum spanning tree
of the original constraint network.

For ease of presentation, we again provide a description of the algorithm under
the usual assumptions that each agent controls exactly one variable, and that all
constraints are binary. The interested reader can find the description of the algo-
rithm in more general settings in [32]. In this context, the steps of the algorithm
are the following:

1. Define the weight of each constraint as: wi j = min{w′i j,w
′′
i j} where w′i j =

maxx j

[
maxxi Fi j−minxi Fi j

]
and w′′i j = maxxi

[
maxx j Fi j−minx j Fi j

]
. For

example, Figure 12.7 reports a constraint network and the weights that
the BMS algorithm would compute. Specifically, for the constraint be-
tween x1 and x4 we have that w′14 = maxx4 [maxx1G14−minx1G14] = 3 and
w′′14 = maxx1 [maxx4G14−minx4G14] = 1 therefore w14 = 1.

2. Remove constraints from the original cyclic constraint network by building
a maximum weight spanning tree. In this way it is possible to minimize
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Figure 12.7: Loopy constraint network with two types of constraints.
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Figure 12.8: Tree-like constraint network formed by the BMS algorithm when run
on the loopy constraint network of Figure 12.7. Numbers represent weights for
binary constraints.

the sum of the weights of the removed edges, pursuing the objective of
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removing constraints that have least impact on the solution.

Moreover, define the sum of the weights of the removed constraints as:

W = ∑
ci j∈Cr

wi j (12.8)

where Cr is the set of constraints removed from the constraint network.

For example, in Figure 12.7 we have that Cr = {G14,G23} therefore W =
w14 +w23 = 2.

3. Run the max-sum algorithm on the remaining tree-structured constraint net-
work. For constraints that have been removed, add unary constraints ob-
tained by minimizing out one of the two variables. The removed variable is
the one that yields the minimum weight for that constraint. For example, in
our case the assignment we obtain after running max-sum on the spanning
tree solves the constraint network shown in Figure 12.8, thus optimizing
the global function Gm

1 +F12 +F13 +Gm
2 +F24 where Gm

1 = minx4 G14 and
Gm

2 = minx3 G23.

4. The resulting variable assignment, x̃, represents the approximate solution to
the original optimization problem, and it is possible to prove that this ap-
proximate solution is within a calculated bound from the optimum solution.
More precisely:

V ∗ ≤ ρṼ (12.9)

where the approximation ratio ρ= (Ṽ m +W )/Ṽ , and Ṽ m represents the op-
timal solution to the tree-structured constraint network. Here V ∗ represents
the value of the unknown optimal solution to the original cyclic constraint
network and Ṽ is the approximate solution, found using the tree-structured
constraint network, but evaluated on the original cyclic constraint network.

All the above steps can be performed using a decentralized approach. In par-
ticular, the computation of the maximum spanning tree can be performed in a
distributed fashion using various message-passing algorithms, such as, for exam-
ple, the minimum spanning tree algorithm by Gallager, Humblet and Spira (GHS),
modified to find the maximum spanning tree [14].

As previously mentioned, this approach is able to provide guarantees on solu-
tion quality that are instance-based. Therefore the algorithm must be run on the
specific problem instance in order to obtain the bound. By exploiting knowledge
of the particular problem instance, BMS is able to provide bounds that are very
accurate. For example, the BMS approach has been empirically evaluated in a
mobile sensor domain, where mobile agents must coordinate their movements to
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sample and predict the state of spatial phenomena (e.g., temperature or gas con-
centration). When applied in this domain, BMS is able to provide solutions that
are guaranteed to be within 2% of the optimal solution.

Other data dependent approximation approaches with guarantees have also
been investigated. For example, Petcu and Faltings propose an approximate ver-
sion of DPOP [29], and Yeoh et al. provide a mechanism to trade off solution
quality for computation time for the ADOPT and BnB-ADOPT algorithms [40].
Such mechanisms work by fixing an approximation ratio and reducing computa-
tion or communication overhead as much as possible to meet that ratio.

More specifically, BnB-ADOPT fixes a predetermined error bound for the op-
timal solution, and stops when a solution that meets this error bound is found. In
this approach, the error bound is fixed and predetermined off-line, but the num-
ber of cycles required by the algorithm to converge is dependent on the particular
problem instance, and, in the worst case, remains exponential. The BMS approach
discussed above, in contrast, is guaranteed to converge after a polynomial num-
ber of cycles, but the approximation ratio is dependent on the particular problem
instance.

Similar considerations hold with respect to A-DPOP [29]. A-DPOP attempts
to reduce message size (which is exponential in the original DPOP algorithm in
the width of the pseudo-tree) by optimally computing only a part of the messages,
and approximating the rest (with upper and lower bounds). In this case, given a
fixed predetermined approximation ratio, A-DPOP reduces message size to meet
this ratio. Alternatively, given a fixed maximum message size, A-DPOP propa-
gates only those messages that do not exceed that size. As a result of this, the
computed solution is not optimal, but approximate. If the algorithm is used by
fixing a desired approximation ratio, the message size remains exponential. In
contrast, if we fix the maximum message size, the approximation ratio is depen-
dent on the specific problem instance.

7 Conclusions

The constraint processing research area comprises powerful techniques and algo-
rithms that are able to exploit problem structure, and, thus, solve hard problems
efficiently. In this chapter we focused on the DCOP framework where constraint
processing techniques are used to solve decision-making problems in MAS.

This chapter provides an overview of how DCOPs have been used to ad-
dress decentralized decision making problems by first presenting the mathemat-
ical formulation of DCOPs and then describing some of the practical problems
that DCOPs can successfully address. We detailed exact solution techniques for
DCOPs presenting two of the most representative algorithms in the literature:
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ADOPT and DPOP. We then discuss approximate algorithms, including DSA and
MGM, before presenting GDL and the max-sum algorithm. Finally, we presented
recent ongoing work that is attempting to provide quality guarantees for these
approaches.

Overall, the DCOP framework, and the algorithms being developed to solve
such problems, represent an active area of research within the MAS community,
and one that is increasingly being applied within real-world contexts.

8 Exercises

1. Level 1 Consider the coordination problem faced by intervention forces in
a rescue scenario. In particular, consider a set of fire fighting units that
must be assigned to a set of fires in order to minimize losses to buildings,
infrastructure, and civilians. Each fire fighting unit can be assigned to just
one fire. However, if more than one unit works on the same fire at the same
time, they can extinguish it faster (collaboration has a positive synergy).
Furthermore, a fire fighting unit can only be assigned to fires that are within
a given distance from its initial position (due to the travel time required
to reach the fire). As a result, any particular fire fighting unit can only be
assigned to a subset of the fires that exist.

• Formalize this task assignment problem as a DCOP specifying (i) what
the variables represent, (ii) the domain of the variables, and (iii) the
constraints.

• Present an example involving about five fire fighting units and three
fires, instantiating each of the features above.

2. Level 2 Consider the coordination problem described in Exercise 1, but now
extended to include two types of intervention forces: fire fighting units and
ambulance units. Assume that instead of minimizing loses, we must now
assign exactly one fire fighting unit and one ambulance unit to each fire.
As before, any particular fire fighting or ambulance unit can only attend a
subset of the existing fires. Provide a CSP formulation of this problem.

3. Level 4 Consider the coordination problem described in Exercise 1, and
specifically, a situation with two fire fighting units and two fires, where
both units can be assigned both fires. Depending on the units’ travel times,
the severity of the fires, and the function that defines the losses that result,
the best solution could result in both units being assigned to the same fire,
leaving the other one uncontrolled. Assume now that we want to have a fair
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assignment of fire fighting units to tasks. Can we formalize this as a DCOP?
Which approach could be used to tackle this problem?

4. Level 2 Consider the following constraint network representing a graph col-
oring problem:

• X = {x1, ..,x6}
• D = {d1 = d3 = d4 = d6 = {Red,Blue},d2 = d5 = {Red,Blue,Green}}
• C = {< x1,x2 >,< x1,x3 >,< x1,x6 >,< x2,x3 >,< x3,x4 >,< x4,x5 >,

< x4,x6 >,< x5,x6 >}

Assume that every node in the graph is controlled by one agent. Find the
computational complexity of DPOP with the following pseudo-tree order-
ing: o1 =< x1,x2,x3,x4,x5,x6 >. State whether there is a pseudo-tree order-
ing that would result in less computational complexity and, if so, present an
instance of one.

5. Level 1 Show a complete execution of DPOP that solves the max-CSP for-
mulation of the constraint network provided in Exercise 4 (use either o1 or
a pseudo-tree ordering of your choice).

6. Level 1 Give an execution example of MGM where the algorithm finds the
global optimum, and another where it gets trapped in a local minimum.

7. Level 3 The max-sum algorithm is guaranteed to converge to the optimal
solution on graphs that do not contain cycles. However, if there are several
optimal assignments, the distributed maximization performed in Equation
12.5 is problematic, and may lead to suboptimal solutions. Discuss whether
a value propagation phase would solve this problem. Provide an execution
example.

8. Level 4 The DPOP algorithm is based on a pseudo-tree arrangement of the
agents. In particular, DFS trees that are a specific class of pseudo-tree are
typically used. On the other hand, many constraint optimization approaches
[9], including GDL-based techniques, are based on the concept of a junc-
tion tree [20]. Discuss the relationship between these two structures, and
their impact with respect to computation and communication on DCOP so-
lution techniques. Can you find a junction tree that allows a GDL algorithm
to solve a DCOP with significantly less computation (and/or communica-
tion) than when using a pseudo-tree? What about DFS trees? We suggest
the reader start from [35] where these questions were investigated for unre-
stricted pseudo-trees.
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9. Level 2 Provide a DCOP problem with at least five variables and a solution
that is 3-optimal but not 4-optimal.

10. Level 3 Consider the bound expressed by Equation 12.9 for the bounded
max-sum approach. Assuming that you know the constraint network topol-
ogy, and the maximum and minimum value for all the functions (but not the
actual values of the functions) in a particular DCOP example, modify the
bounded max-sum technique to provide a bound in this setting. Can you
provide some bounds even before running the max-sum algorithm? Can
you extend the analysis assuming you do not know the constraint network
topology?

11. Level 3 Consider the bounded max-sum technique presented in Section 6.2.
Elaborate on how this technique can be applied to problems that include
hard constraints. In particular, how is the approximation ratio affected by
hard constraints? Under which assumptions can this technique still provide
useful bounds?

12. Level 4 Consider the problem of minimizing the running time of a DCOP
solution algorithm when agents have heterogeneous computation and com-
munication. In this setting it might be beneficial to delegate computation to
agents that have additional computation capabilities, or to minimize mes-
sage exchange between agents that are connected by poor communication
links. Formalize this problem and provide an approach that can take such
heterogeneity into account.
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Chapter 13

Programming Multiagent Systems

Rafael H. Bordini and Jürgen Dix

1 Introduction

The first two chapters of this book covered the general ideas of the agent comput-
ing paradigm, how it differs from traditional approaches such as object orientation,
and what features are expected of multiagent organizations. Chapters 3–12 dis-
cussed other very important aspects of agents: communication, learning, planning,
coalition formation, and many others. In this chapter, we consider the question of
how to effectively program multiagent systems: what are the new techniques and
principles suitable for multiagent systems as opposed to traditional software engi-
neering methods?

All current trends in computing point toward a vision of the future whereby
autonomous software will be needed everywhere, and required to work together
with huge numbers of other autonomous software entities regardless of their lo-
cations. Traditional software engineering and programming languages were not
built with this vision in mind and therefore lack the appropriate methods and tools
to deal with these challenges.

Agent-oriented programming was first introduced by Shoham in 1993 (this is
discussed below in greater detail). While the first decade saw mainly theoretical
approaches, many of which were not yet mature enough for practical program-
ming, the creation of the ProMAS and DALT workshop series (both held with
AAMAS since 2003) and related activity helped to change the picture. With those
efforts, there was a substantial increase in the numbers of researchers interested
in doing research in multiagent programming over the years. ProMAS in par-
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ticular was conceived at a Dagstuhl seminar (http://www.dagstuhl.de/
en/program/calendar/semhp/?semnr=02481), which helped to pro-
mote a fresh start for research in this area. As a consequence, a plethora of
languages were devised; some of the most prominent appeared in two volumes
of contributed chapters [9, 11]. Other Dagstuhl seminars specific to agent pro-
gramming took place later (for example, http://www.dagstuhl.de/en/
program/calendar/semhp/?semnr=08361) and are still planned for the
future.

Originally agent programming languages were mostly concerned with pro-
gramming individual agents, and very little was available in terms of program-
ming abstractions covering the social and environmental dimensions of multiagent
systems as well as the agent dimension. This chapter will focus precisely on these
relatively recent developments into multiagent-oriented programming (MAOP).

Both theoretically and practically, some languages are now arguably mature.
Many current (multi-)agent programming languages have usable integrated devel-
opment environments (IDEs) and debugging tools (in particular, tools to inspect
the state of an agent or an organization), although much work is still needed in
comparison to the best tools used for object-oriented programming. However, the
main promise of multiagent orientation as a software development paradigm is in
the features that the inspiration of reactive planning systems [31] and a societal
view of computing have helped to create.

Some agent languages are based on computational logic (we refer to the
CLIMA workshop series http://centria.di.fct.unl.pt/~clima/
and the collections of papers from recent editions in [25, 26]). While there are
similarities to traditional logic programming languages, agent languages provide
a combination of theoretical reasoning (i.e., reasoning about beliefs) and prac-
tical reasoning (i.e., reasoning about the best action to take at each moment in
time) whereas logic programming languages most often deal only with the former.
The features of multiagent-oriented programming form a powerful alternative for
the high-level conception and implementation of complex distributed autonomous
systems.

The best way to find technical papers and currently ongoing research is to
look at the proceedings of ProMAS [20], DALT [48], CLIMA, AAMAS (as well
as the main AI conferences), LADS [22], and various other workshops. There
have also been tutorials at the AAMAS conferences run by IFAAMAS (http:
//www.aamas-conference.org/); at EASSS, the European Agent Sys-
tems Summer School, now under the auspices of EURAMAS (http://www.
euramas.org/); and recently at a DALT Spring School (http://lia.
deis.unibo.it/confs/dalt_school/). The interested reader may also
appreciate some of the survey papers published in the last few years [8, 23, 29, 45]
as well as some journal special issues [10, 12].

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=02481
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=02481
http://www.dagstuhl.de/en/
http://centria.di.fct.unl.pt/~clima/
http://www.aamas-conference.org/
http://www.euramas.org/
http://www.euramas.org/
http://lia.deis.unibo.it/confs/dalt_school/
http://lia.deis.unibo.it/confs/dalt_school/
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1.1 Relation to Other Chapters

Although this chapter is self-contained and does not depend on the rest of the
book, some knowledge of Chapter 2 (on organizations) helps to understand the
organizational level of programming. An important part of this chapter is to pro-
vide the program code (in JACAMO, a combination of JASON, CARTAGO and
MOISE) of the example given in Chapter 15 about an assembly cell of a manufac-
turing plant. Thus the reader can compare the agent-oriented software engineer-
ing approach to dealing with this example with our solution using a fully-fledged
multiagent programming language. This scenario is also used as an example for
model checking a multiagent system in Chapter 14.

1.2 Organization of This Chapter

This chapter is organized as follows. In Section 2, we briefly describe the progress
from the beginning of agent-oriented programming toward modern agent lan-
guages in use today and their important features. Section 3 is devoted to the var-
ious levels of abstractions in agent programming: the level of individual agents,
the shared environment, and the social level of a multiagent system.

Section 4 is the main part of the chapter. It describes a particular agent pro-
gramming language, JASON, which is used throughout the chapter to illustrate the
paradigm through several examples. We also mention, very briefly, other agent
languages (mainly those based on the BDI paradigm and those based on executable
logics) and give pointers and references. MAOP is not only about programming
agents, it is also meant to deal with the environment and the social/organizational
context – two other very important levels of programming in this paradigm. There-
fore, we consider these two levels in more detail in Section 5.

Section 6 is the largest in this chapter. It is built around an example defined in
Chapter 15 and gives a detailed solution of how to program this example in JASON.
To be more precise, we use JACAMO, a combination of three platforms, JASON,
CARTAGO, and MOISE to deal with the agent, the social, and the environmental
levels.

Finally we conclude with an outlook on the future of multiagent programming
and a collection of exercises of different levels of difficulty.
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2 From AGENT0 to Modern Agent Languages

In this section we very briefly review the development of agent-oriented program-
ming in the last two decades. While Subsection 2.1 gives a short historical ac-
count, Subsection 2.2 highlights the main features of multiagent-oriented pro-
gramming as opposed to traditional software engineering.

2.1 A Brief History of Agent-Oriented Programming (AOP)

The seminal paper on agent-oriented programming (AOP) appeared in the early
1990s [59]. In that paper, Yoav Shoham advocated a new programming paradigm
combining a societal view of computation with an “intentional stance” to support
practical reasoning of the individual, autonomous components of the system. Al-
though AGENT0, the programming language appearing in that paper, had many of
the essential ideas for establishing such a new programming paradigm, it failed to
show usefulness and popularity as a programming language, which in a way led
some to question the whole paradigm. The work done throughout the 1990s was
mostly theoretical without much interest, apart from the odd exceptions, in how
the paradigm ought to be used concretely in practical programming. Also miss-
ing were serious considerations about the tools that are required for programming
agent systems: Is the paradigm useful in practical software development for com-
plex applications in dynamic, unpredictable environments where rational, social,
and autonomous behavior is essential?

Apart from AGENT0, the work on programming languages for agents in the
1990s was dominated by Concurrent METATEM [27], Golog variants [32, 43, 57],
AgentSpeak(L) [52], and 3APL [35]. All these languages had fundamental his-
torical importance in an area of research that was to see a completely different
picture in the naughts, as mentioned in Section 1.

While many approaches emphasized the idea of mental states, there were also
approaches that stressed the importance of the action-selection mechanisms in
multiagent systems (quite a few of them based on reactive planning): e.g., Müller’s
InteRRaP architecture [46], Bryson’s POSH [49], Laird’s SOAR [42], and Sub-
rahmanian et al.’s IMPACT [62].

Various technical issues have been tackled in the last decade. One example
is the issue of declarative goals. In [18], Braubach and Pokhar studied a number
of different types of goals that could be practically included in agent languages
to facilitate the programming of rational autonomous behavior. Much work has
been done on declarative goals since then, for example [67], as well as on the
management of a goal “life-cycle” [63].

Another example of an important issue addressed in the last decade is that
originally agent programming languages were mostly concerned with program-
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ming individual agents, and very little was available in terms of programming
abstractions covering the social and environmental dimensions of a multiagent
system as well as agents individually. Important work in that direction is [24, 37],
and we will discuss this progression throughout this chapter.

2.2 Features of Multiagent-Oriented Programing (MAOP)

The importance of the multiagent-oriented programming paradigm is that by get-
ting inspiration in the areas of multiagent systems and artificial intelligence, a
concrete programming paradigm has emerged that is specially suited for the de-
velopment of highly social, autonomous software, which is difficult to develop
with traditional approaches and increasingly needed in computing applications.
Obviously the approach does not make hard problems disappear, but it gives the
right abstractions and tools for programmers to be able to develop this particularly
complex type of software. It does so because of various features that are intrin-
sic to the architectures that have been developed and made available in concrete
platforms for multiagent-oriented software development. We summarize some of
these features below.

Reacting to Events × Long-Term Goals: In a dynamic environment, an au-
tonomous agent will have to be attentive to changes and react to them ap-
propriately, because changes in the environment might lead to situations
where, for example, the course of action the agent has adopted to achieve
a goal will not succeed or perhaps other more important things will require
the agent’s attention. Yet an agent cannot lose track of the long-term goals
it has been asked to achieve by its designer or “owner.” In a highly dynamic
environment, not reacting to events means losing opportunities for the agent
to achieve what is expected of it.

Courses of Action Depend on Circumstances: Agents will be constantly de-
ciding which courses of action to take in order to react to events or to achieve
long-term goals or other subgoals. Typically, the best course of action to
handle external events or goals depends on the current circumstances (of
the agent, other agents, the environment, etc.). So agent languages will typ-
ically allow various alternative courses of action to be specified for the same
event or goal, and the agent will use its most up-to-date information about
the state of itself, other agents, and the environment in order to decide at
run-time what needs to be done.

Choosing Courses of Action only When About to Act: Exactly because envi-
ronments in multiagent applications are very dynamic, the course of action
to be used should not be decided too early: things might have changed by



592 Chapter 13

the time the agent is actually about to act. Agent languages often use par-
tially instantiated plans so that not only the details of a plan but also the
particular (sub)plan to be used for each (sub)goal is only chosen when the
agent is about to act on achieving a particular goal.

Dealing with Plan Failure: Even delaying the decision on particular courses of
action might not be enough to ensure that the agent has chosen a suitable
course of action in a dynamic environment. While executing a plan, the
agent may realize a failure has occurred, so agent languages still need to
provide mechanisms to deal with plan failure.

Rational Behavior: In general, agent applications will require that agents be-
have rationally. Of course even for humans the notion of rational behavior
can be arguable, but the BDI literature [53] has pointed to very concrete
aspects of rationality, and agent programming languages facilitate the task
of programmers who want to ensure rational behavior of their autonomous
software. One example is that if an agent has an intention (i.e., is committed
to the goal of achieving a particular state of affairs) we expect it to reason
about how to achieve that intention, and we do not expect the agent to give
up before the intention is believed to have been effectively achieved, unless
there is good reason to believe it will not be possible to achieve it at all, or
the reason why it became an intention in the first place no longer holds.

Social Ability – High-Level Communication, Organization: An essential fea-
ture of multiagent systems is that some tasks are only possible if agents
interact. In order to cooperate or to coordinate their action, agents typi-
cally use a high-level form of communication based on the idea of speech
acts [3, 58]. Recently, it has become possible to program agents to take
part in an agent organization all within the context of multiagent-oriented
programming. These are also features that can greatly facilitate the devel-
opment of complex multiagent systems.

Code Modification at Run-Time: In a platform for multiagent-oriented pro-
gramming, changing the system program at run-time comes almost for free.
First, an agent can have its plan library changed at run-time, which implies
that the agent’s behavior also changes accordingly. In fact, this is sometimes
so simple that it can be done through speech act–based communication: thus
not only other agents but humans as well can communicate new plans (i.e.,
know-how or behavior) for the agents. More than that, with some platforms
for agent organizations the specification of the social structure and overall
social plan and norms that agents ought to follow can be changed on-the-fly
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(again by both humans and agents who can reason about their own organi-
zation). Needless to say, this means there is the potential for truly adaptive
autonomous systems from a practical perspective.

3 Abstractions in the MAOP Paradigm

Abstraction is fundamental in programming and, more generally, in software engi-
neering. Much of the achievement and social impact of current computing systems
was only possible by computer scientists endowing programmers with the increas-
ing levels of abstractions that have become available in programming languages.
It is precisely the significantly more sophisticated abstractions related to multi-
agent systems, in comparison to the “object” abstraction in object-oriented pro-
gramming, that characterize MAOP as a new programming paradigm – one that
has a whole lot of higher-level abstractions to help programmers with the coming
challenges of developing more autonomous computational systems for highly dy-
namic environments. For this reason, this section is dedicated to describing some
of the main abstractions related to MAOP, and describing the three clearly distinct
levels of a multiagent system, each one leading to specific abstractions that relate
to that level.

3.1 Agent Level

MAOP provides abstractions to facilitate the development of software that is both
autonomous and social. Autonomy implies making decisions on the most ap-
propriate goals to pursue and the most appropriate courses of action in order to
achieve such goals. Social ability implies at least the ability to communicate with
other autonomous (software or human) entities in order to cooperate or coordi-
nate. While from the point of view of agent-oriented programming alone social
ability is often no more than speech act–based interagent communication, from
the point of view of the development of complex multiagent systems the social
level involves much more than that. We leave these aspects for later consideration
in this section and first concentrate on the features of agent-oriented programming
languages, which allow for the development of autonomous software that operates
in a social context within a shared environment.

Beliefs are used to represent the information currently available to the agent,
regarding the current state of the agent itself and its environment (including other
agents sharing the same environment), as well as any past information that the
agent may need to recall. The abstraction covering an agent’s informational state
is termed belief because in dynamic, unpredictable environments (as in most areas
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of applications of multiagent systems) it is in general not possible to ensure an
agent will have complete and only correct information about its environment.

Agents need to be able not just to represent beliefs but to continuously update
them in regard to the perceived state of the environment. Together with the ability
to update its beliefs repeatedly comes an important aspect of autonomous agents:
the ability to react to (believed) changes in the environment. An agent needs to
be able to adapt its goals and courses of action to a changing environment, so
reacting to changes in beliefs is paramount. More than that, because typically it
is not possible to obtain complete information about the given environment, and
agents’ perception mechanisms might be faulty (or untrustworthy agents might be
around), agents need to be able to cope with information that might be neither
complete nor guaranteed to be correct.

Perhaps the most important abstraction in agent programming is that of a goal.
We expect agents to act autonomously and proactively on our behalf, so there
needs to be an explicit representation within each agent of what the long-term
goals are that it needs to achieve. A goal is typically represented as a property that
is currently not believed to be true and that will lead the agent into action in order
to make that property true (of the environment, for example).

The most common type of goal in agent languages is that of a declarative
achievement goal: the agent wishes to bring about a certain state of affairs, which
it currently believes not to hold, and is willing to commit itself to acting so as to
bring about such a state of affairs. Furthermore, in dynamic environments, it is
possible that after completing a course of action that was expected to achieve the
desired state of affairs, it might actually turn out that the course of action failed to
do so. If that happens, the agent should not just carry on with its other duties; that
would be “irrational” from the intentional point of view [16].

This is precisely where the importance of goals for agent programming lies:
knowing what property of the world it needs to bring about, and being able to
perceive its state, allows an agent to try the relevant courses of action to achieve a
goal until it is believed to have been achieved or it is believed not to be possible
to achieve (or the reasons that led the agent to adopting the goal in the first place
no longer apply). This facilitates the programming of software that can appear to
be proactive as well as recovering from failure due to a quickly changing environ-
ment. It can also be used to justify the actions of a particular agent in a particular
circumstance, and it helps programmers ensure rational agent behavior.

Different agent programming languages differ in which goal types they offer
to programmers and how they are to be programmed (e.g., by having different syn-
tactic constructs for different types of goals or by having fewer more general con-
structs and providing particular programming techniques for more complex types
of goals). One of the first comprehensive typologies for goals in agent program-
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ming was published by Braubach and Pokhar [18], with much work following it,
e.g., by van Riemsdijk [67].

Finally, at the agent level there are two more important (and related) notions:
plan and intention. A plan is a course of action that under specific circumstances
might help the agent handle a particular event (achieving a long-term goal or re-
acting to changes in beliefs, for example, about the environment). An intention
is an instance of a plan that has been chosen to handle a particular event and has
been partially instantiated with information about the event. This intended means
may contain further goals to achieve, but the particular plan among several possi-
ble alternative plans to achieve the same goal will only be chosen at the time the
goal is selected to be achieved in a later reasoning cycle. This ensures the agent
uses information as up-to-date as possible when committing to particular means
to achieve its goals. The agent abstractions will be discussed in more detail in
Section 4.1, using JASON as a concrete example.

3.2 Environment Level

When we think of a multiagent system, we tend to think that the environment is
“given” rather than designed. Even when that is the case, validation of multiagent
systems often requires a simulation of the given environment and, in any case, a
notion of environment can be used to ease certain aspects of agent coordination, as
is often emphasized in the work on the “Agents and Artifacts” model [47] (which
led to the CARTAGO platform discussed in Section 5.2.1), for example. There-
fore, we need first-class programming abstractions at the environment level of a
multiagent system.

A typical abstraction at the environment level is that of an artifact: a non-
autonomous, non-proactive entity, which however is not an object in object ori-
entation. It needs to transparently encapsulate two other important abstractions
connecting agents and their environment: actions and percepts. Actions are fun-
damental as they represent the ways agents can change the environment where
they are situated, and percepts are the abstractions used to represent the aspects
of the environment that agents can perceive or observe. Artifacts can be used
to transparently give agents access to software services, for example. They can
also be used to create a model of a real-world environment. Whether leveraging
objects and services or being used as modeling tools, the important thing is that
they facilitate many aspects of software development by automatically interacting
at the same degree of abstraction as agents in the multiagent-oriented program-
ming paradigm. The environment abstractions will be discussed in more detail in
Section 5.2.1, using CARTAGO as a concrete example.



596 Chapter 13

3.3 Social Level

There are many important programming abstractions at the social level in a multi-
agent system. Some of the best known are groups, roles, norms, and social plans.
Since the concepts related to agent organizations are meant to be covered in Chap-
ter 2 of this book, we here only describe them very briefly. An agent organization
typically has a structure, possibly hierarchical, formed by groups of agents, where
individual agents might play specific roles.

If an agent autonomously chooses to adopt a specific role in an agent orga-
nization, it will commit to specific obligations that the organization expects of
agents playing that role; in addition, agents might acquire permissions to do, or be
prevented from doing, certain things as a consequence of agreeing to play a partic-
ular role. Such obligations, prohibitions, and permissions are specified by means
of social norms. Norms can be enforced by regimentation, i.e., the system pre-
vents the violation of the norm to even take place, or sanctions might be specified
so as to punish agents that do not comply with particular norms. Finally, social
plans can be used to explicitly represent the specific subgoals that each agent in
a group is expected to achieve in order for a task that requires the joint work of
a team of agents to be accomplished. The social abstractions will be discussed in
more detail in Section 5.1.1, using MOISE as a concrete example.

4 Examples of Agent Programming Languages

In this section, we introduce one particular agent programming language, JA-
SON, as a representative of the BDI approach. We illustrate how to model and
program agents in this language through various examples. In Section 6, JASON

will be used, as part of JACAMO, to solve a non-trivial problem introduced in
detail in Chapter 15. While the focus in this section is on individual agent pro-
grams, in Section 6 we will deal with the organizational and environmental level
of multiagent-oriented programming.

Other approaches to BDI agent programming will be briefly mentioned in
Subsection 4.2, with appropriate links to further studies. Finally, Section 4.3
deals with approaches based on executable logics (METATEM, ConGolog, and
IndiGolog). METATEM will be discussed also in the next chapter, which deals
with verification of multiagent systems.

4.1 JASON

As seen above, agent-oriented programming is based on various abstractions that
facilitate the development of software that is both autonomous and social. The
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view of agent-oriented programming introduced below is organized according to
the main programming abstractions and illustrated by JASON code (i.e., the JA-
SON [14] variant of the AgentSpeak [52] programming language). The illustrative
code excerpts are for the simplified Mars rover scenario used in [64]; Figure 13.1
shows the goal-plan tree1 used in [64]. Later, we show JASON plans that corre-
spond to that goal-plan tree.

G1: PerformSoilExpAt(A)

P1: SoilExpPlan

SG1: MoveToLoc(A) SG2: PerformSoilAnalysisAt(A) SG3: TransmitResults

P2: MoveToPlan(A) P3: AnalyseSoilPlan(A) P4: TransmitResultsPlan1 P5: TransmitResultsPlan2

SG4: TransmitData SG5: MoveCloseToLander SG6: TransmitData

P6: TransmitDataPlan P7: MoveClosePlan P8: TransmitDataPlan

Figure 13.1: A goal-plan tree for a Mars rover scenario [64].

4.1.1 Beliefs

In JASON, a belief is represented as a predicate, similar to a Prolog fact. For
example,

lander_signal(low).

However, in JASON beliefs are annotated automatically with the source of the
information represented by the belief (the source can be either sensing, commu-
nication, or created by the agent program itself). The belief above would actually
appear in the belief base as:

1A goal-plan tree is a structure that shows alternative plans to achieve a goal and the goals that
must all be achieved in order for a plan to finish successfully. Such structure is very useful for
depicting an agent programmed in a BDI-based agent-oriented programming language.
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lander_signal(low)[source(percept)]

if the information was obtained by perceiving the state of the environment by the
agent’s own sensing mechanisms. Programmers can also create their own anno-
tations if other meta-level information about individual beliefs are useful in their
particular applications. Examples of meta-level information related to a belief are
the time it was created and the degree of certainty with which the belief is held.

In JASON, beliefs may also include reasoning rules, similar to Prolog, and
beliefs can be stored in databases when useful. Of course there are variations
for different agent programming languages but the essential aspect of beliefs is to
represent part of the system state and, importantly, be able to update such repre-
sentation as often as possible.

4.1.2 Goals

In JASON, a goal is represented also with a predicate, as for beliefs, but it is
prefixed with the symbol ‘!’. So, for example

!battery(charged)

means that the agent wishes to bring about a state of affairs in which the battery is
believed to be charged (which normally implies that the agent believes the battery
is not currently charged and therefore this will lead the agent to commit itself to
acting so as to bring about such state of affairs).

As mentioned earlier, the best-known type of goal in agent programming refers
to the notion of declarative achievement goals. This is precisely the type of goal
in the example above: the agent currently believes battery(charged) is not
true and will act so as bring about a state of the world where it does believe so.
It is up to the programmer to use the right pattern of plans [39] to ensure that the
agent will continue to act rationally towards achieving that goal, even if initial
attempts fail to do so.

In the goal-plan tree example, at least by the way the goals were written, they
would all seem to be perform goals (i.e., the goal to execute a sequence of ac-
tions without further consideration about the state of affairs), although some of
them might be better modeled as achievement goals and some even as mainte-
nance goals. For example, the goal to be at a particular location is typically an
achievement goal, and the plan to transmit results could have used a maintenance
goal for the rover to keep sufficiently close to the lander while transmitting data
to earth (i.e., the goal to maintain a position sufficiently close to the lander).
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4.1.3 Plans

An AgentSpeak plan has three parts: the trigger, the context, and the body. The
trigger part of the plan is used to formulate in which kind of events the plan is to
be used (events are additions or deletions of beliefs or goals). The context says
in which circumstances the plan is expected to succeed, so that the best course of
action might be chosen in different circumstances. The body, finally, has a course
of action, containing also further (sub)goals that the agent should commit to in
order to handle the particular event. The syntax is as follows:

event : context <- body.

The examples below show the plans required for an agent to handle the declar-
ative achievement goal of positioning itself at some particular location.

// already where supposed to be, nothing else to do;
+!at(L) : at(L).
// if not already there, move towards it and
// check if there yet;
+!at(L) : battery(charged) <- move_towards(L); ?at(L).
// if failed to achieve the goal, try it again
-!at(L) : !at(L).

The simplest JASON agent implementation that would lead to a goal-plan tree
for the goal to do a soil experiment as shown in Figure 13.1 is as follows, where
the actions in the plans have been invented so as to keep the example as simple as
possible. Note that the preconditions for the plans are not shown in the diagram,
so the plans’ contexts are all empty although it is not difficult to guess what they
should be; also, the ‘@’ symbol is used to label (i.e., to name) a plan in JASON,
which is not necessary but included here as it might help with matching the goal-
plan tree to the code.2

@p1_SoilExpPlan
+!performSoilExpAt(A)
<- !moveToLoc(A);

!performSoilAnalysisAt(A);
!transmitResults.

@p2_MoveToPlan(A)
+!moveToLoc(A) <- move_to(A).

2It is not clear in this example whether the authors meant for plans P6 and P8 to be different
means of achieving the same goal, but we assume in this code excerpt that this is not the case.
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@p3_AnalyseSoilPlan(A)
+!performSoilAnalysisAt(A) <- perform_analysis.

@p4_TransmitResultsPlan1
+!transitResults <- !transmitData.

@p5_TransmitResultsPlan2
+!transitResults <- !moveCloseToLander; !transmitData.

@p6_TransmitDataPlan
+!transmitData <- transmit_all_data.

@p7_MoveClosePlan
+!moveCloseToLander <- move_to(lander).

4.1.4 Semantics

For most of the BDI-based programming languages that have formal semantics, the
semantics has traditionally been given using structural operational semantics [50].
Operational semantics for AgentSpeak including some of the extended features
made available in JASON has appeared, e.g., in [13, 15, 68], and see also [14]. We
do not aim at showing the semantics of an agent programming language in this
chapter, but we show a couple of rules of the semantics of JASON to give a flavor
of what the semantics of such languages look like. In the references above, full
details of the semantics of AgentSpeak/JASON can be found, and the references
in Section 4.2 can be used to find the semantics of other BDI-based languages
(out of the ones discussed in that section, only GOAL and 2APL also have formal
semantics).

Operational semantics is given by a transition system where a transition rela-
tion on configurations of the system is induced by logical rules. A configuration of
the system is formally defined as representing a state and abstractly also the archi-
tecture of an agent programmed in that particular programming language. As for
rules, the part of the rule below the horizontal line states that an agent in a given
state (i.e., configuration) can transition to another (the transition relation is repre-
sented by a long right arrow) if the conditions above the line are met. Examples
of the semantic rules for the AgentSpeak language are as follows.

An agent’s reasoning cycle starts with the selection of a particular event (rep-
resenting changes in beliefs or goals of the agent) to be handled in that particular
cycle. An event is represented by a plan triggering event te and an intention i. The
rule for event selection below assumes the existence of a (user-defined) selection
function SE that selects events from a set of events E (which is a component of
the configuration element C representing the agent’s current circumstances). The
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selected event is removed from E and it is assigned to the ε component of the el-
ement of the configuration T that is used to record temporary information needed
in later stages of the reasoning cycle. Note how the last component of the config-
uration keeps track of the various stages a reasoning cycle goes through: from the
stage where an event is being selected we go to the one where the relevant plans
(plans written to handle that type of event) will be selected. Another rule, SelEv2
(not shown here), skips to the intention execution part of the cycle, in case there
is no event to handle.

SE(CE) = 〈te, i〉
〈ag,C,M,T,SelEv〉 −→ 〈ag,C′,M,T ′,RelPl〉

where: C′
E = CE \{〈te, i〉}

T ′ε = 〈te, i〉

(SELEV1)

The next example we give is from a much later part of the reasoning cycle
where the agent has already selected one of its intentions to execute. The formula
that appears at the beginning of the body of the plan at the top of the intention will
be executed, and there are various rules depending on the type of that particular
formula. The rule below is for the case where an action is to be executed. The
action a in the body of the plan is added to the set of actions A. The action is
removed from the body of the plan and the intention is updated to reflect this re-
moval. It is part of the overall agent architecture to then take that action execution
request from the A component and to associate that request with the particular
agent “effectors” to which the action corresponds.

Tι = i[head ← a;h]
〈ag,C,M,T,ExecInt〉 −→ 〈ag,C′,M,T ′,ClrInt〉

where: C′
A = CA∪{a}

T ′ι = i[head ← h]
C′

I = (CI \{Tι})∪{T ′ι }

(ACTION)

4.2 Other BDI-Based Languages

There exist many BDI-based programming languages, some of them started as
prototypes developed within a PhD project. We list here some languages that we
consider more mature, which have been developed over a few years, and that are
actively maintained and applied: JADEX, 2APL, AGENTFACTORY, GOAL, and
BRAHMS.

JADEX is a Java-based, modular, and standards compliant agent platform that
allows the development of goal-oriented agents following the BDI model (see
Figure 13.2). JADEX provides a framework including a run-time infrastructure
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Figure 13.2: The abstract architecture of JADEX.

for agents, the agent platform, and an extensive run-time tool suite. It allows
for programming intelligent software agents in XML and Java and can be de-
ployed on different kinds of middleware such as JADE. The developed software
framework is available under GNUs LGPL license, and is continuously evolv-
ing (available on SourceForge.net). We refer the interested reader to http:
//jadex-agents.informatik.uni-hamburg.de/ and [17, 51].

2APL provides programming constructs both (1) to specify a multiagent sys-
tem in terms of a set of individual agents and a set of environments, as well
as (2) to implement cognitive agents based on the BDI architecture (agent’s be-
liefs, goals, plans, actions, events, and a set of rules through which the agent
can decide which actions to perform). 2APL is a modular programming lan-
guage allowing the encapsulation of cognitive components in modules. Its graph-
ical interface, through which a user can load, execute, and debug 2APL multi-
agent programs using different execution modes and several debugging/obser-
vation tools, is shown in Figure 13.3. For further detail we refer the reader to
http://apapl.sourceforge.net/ and [2, 21].

AGENTFACTORY (see Figure 13.4) has at its core a FIPA-standards-based
run-time environment (RTE), which provides support for the deployment of het-
erogeneous agent types, ranging from pure Java-based agents to customizable
agent architectures and agent programming languages. While much work in the
past has focused on the development of the AGENTFACTORY agent program-

http://apapl.sourceforge.net/
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Figure 13.3: A screenshot of the 2APL platform.

ming language (AFAPL), more recent work has resulted in the common language
framework, a suite of components for AGENTFACTORY that are intended to help
simplify the development of diverse logic-based agent programming languages
(APLs). For further references see http://www.agentfactory.com and
[41, 44].

BRAHMS (see Figure 13.5) can be seen both as a programming language
as well as a behavioral modeling language. It allows users to model com-
plex agent organizations to simulate people, objects, and environments. Agents
can deal with time and can be easily integrated with Java agents. A partic-
ularly exciting application is the multiagent system OCAMS that was devel-
oped with BRAHMS and is running continually in NASA’s ISS mission con-
trol: http://ti.arc.nasa.gov/news/ocams-jsc-award/. Refer to
http://www.agentisolutions.com/ and [19, 61, 66] for details.

4.3 Approaches Based on Executable Logics

In this section we present two approaches that are tightly connected to logics
and their underlying deductive engine. The first one is Concurrent METATEM,
a language that can be seen as an executable specification in a temporal logic.

http://www.agentfactory.com
http://ti.arc.nasa.gov/news/ocams-jsc-award/
http://www.agentisolutions.com/
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Figure 13.4: The architecture of AGENTFACTORY.
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A GOAL agent program
is a set of modules
that consist of vari-
ous sections including
knowledge, beliefs,
goals, a program section
that contains action
rules, and action speci-
fications. Each of these
sections is represented
in a knowledge repre-
sentation language such
as Prolog, answer set
programming, SQL (or
Datalog), or the plan-
ning domain definition
language. The figure
on the right illustrates
these sections. For
details, refer to http:
//mmi.tudelft.
nl/trac/goal and
[34, 36].

init module{
knowledge{

clear(table)  . clear(X) :- block(X), not(on(_, X)), not(holding(X)) .
…

}
% no initial beliefs about block configuration.
goals{

on(a,b), on(b,c), on(c,table), on(d,e), on(e,f), on(f,table).
}
actionspec{

pickup(X) { pre{ clear(X), not(holding(_)) }  post{ true }  }
…

}
}

% moving X on top of Y is a constructive move if that move results in X being in position.
#define constructiveMove(X, Y) a-goal(tower([X, Y|T])), … .

main module{
program{

if a-goal( holding(X) ) then pickup(X) . % put a block you're holding down.
if bel( holding(X) ) then {

if constructiveMove(X,Y) then putdown(X, Y) .
if true then putdown(X, table) .

}
}

}

event module{
program{

#define inPosition(X) goal-a( tower([X|T]) ) . % block in position if it achieves a goal.

% rules for processing percepts (assumes full observability).
forall bel( block(X), not(percept(block(X))) ) do delete( block(X) ) .
forall bel( percept(block(X)), not(block(X)) ) do insert( block(X) ) .
…

}
}

module adoptgoal{
…

}

The init module 
initializes the agent, 

here by defining 
knowledge, an initial 

goal, and action 
specifications

The main module is 
used to code the 

agent’s deliberation 
using rules for 

selecting actions.

Rules in the event 
module are used to 

process percepts and 
messages that the 

agent receives.

Macro definitions to create 
more readable code.

User-defined modules.

Figure 13.6: The structure of a module in GOAL.

The second one is ConGolog, a language based on the situation calculus of first-
order logic (to be more precise it is a dynamic logic combined with ideas from the
situation calculus).

We follow [45] to compare Concurrent METATEM and ConGolog on a simple
contract-net protocol (Figure 13.7 from [45]), consisting of the following steps.
(1) The seller agent may receive a contractProposal message from a buyer agent.
(2) According to the amount of merchandise required and the price proposed by
the buyer, the seller may accept the proposal, refuse it, or try to negotiate a new
price by sending a contractProposal message back to the buyer. (3) The buyer
agent can do the same (accept, refuse, or negotiate) when it receives a contract-
Proposal message back from the seller. (4) If there is enough merchandise in the
warehouse and the price is greater or equal to a max value, the seller accepts by
sending an accept message to the buyer and concurrently ships the required mer-
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contractProposal

acknowledge

contractProposal

accept

refuse

Buyer Seller

accept

refuse

contractProposal

acknowledge

Figure 13.7: The contract-net protocol.

chandise to the buyer (if no concurrent actions are available, answering and ship-
ping merchandise will be executed sequentially). (5) If there is not enough mer-
chandise in the warehouse or the price is lower or equal to a min value, the seller
agent refuses by sending a refuse message to the buyer. (6) If there is enough mer-
chandise in the warehouse and the price is between min and max, the seller sends a
contractProposal to the buyer with a proposed price evaluated as the mean of the
price proposed by the buyer and max. (7) The merchandise to be exchanged are
oranges, with minimum and maximum price of 1 and 2 euro, respectively. The
initial amount of oranges that the seller possesses is 1,000.
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4.3.1 METATEM

Concurrent METATEM is the concurrent extension of METATEM, a programming
language for multiagent systems based on a first-order temporal logic (with dis-
crete, linear models with finite past and infinite future) [27, 28]. A Concurrent

METATEM system contains a number of concurrently executing agents that are
able to communicate through message-passing. Each agent executes a first-order
temporal logic specification of its desired behavior. An agent has two main com-
ponents: (1) an interface, which defines how the agent may interact with its en-
vironment (i.e., other agents), and (2) a computational engine, defining how the
agent may act.

An agent interface consists of three components: (1) a unique agent identifier,
which names the agent; (2) a set of predicates defining what messages will be
accepted by the agent – they are called environment predicates; and (3) a set of
predicates defining messages that the agent may send – these are called component
predicates.

The computational engine of an agent is based on the METATEM paradigm of
executable temporal logics. The idea behind this approach is to directly execute a
declarative agent specification given as a set of program rules, which are temporal
logic formulae of the form: “antecedent about past → consequent about future.”
The intuitive interpretation of such a rule is “on the basis of the past, do so in the
future.”

Besides the usual temporal operators (see also Chapter 14, Section 3.4) �,
·U ·, we also use �ϕ (which can be defined as a macro): it expresses “the current
state is not the initial state, and ϕ was true in the previous state”.

The internal knowledge base of the seller agent contains the following rigid
predicates (predicates whose value never changes): min-price(orange, 1), max-
price(orange, 2). It also contains the following flexible predicates (predicates
whose value changes over time): storing(orange,1000).

The most important program rule of the seller agent is the following one:

∀Buyer, Merchandise, Req_Amnt, Price
�[contractProposal(Buyer,seller,Merchandise,Req_Amnt,Price) ∧
storing(Merchandise,Old_Amount) ∧Old_Amount ≥ Req_Amnt ∧
max-price(Merchandise,Max) ∧ Price≥Max] =⇒
[ship(Buyer,Merchandise,Req_Amnt,Price) ∧
accept(seller,Buyer,Merchandise,Req_Amnt,Price)]

If there was a previous state where Buyer sent a contractProposal message to
seller, and in that previous state all the conditions were met to accept the proposal,
then accept the Buyer’s proposal and ship the required merchandise.
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The other two temporal logic rules look very similar. They formalize (1) If
there was a previous state where Buyer sent a contractProposal message to seller,
and in that previous state the conditions were not met to accept the Buyer’s pro-
posal, then send a refuse message to Buyer, and (2) If there was a previous state
where Buyer sent a contractProposal message to seller, and in that previous state
the conditions were met to send a contractProposal back to Buyer, then send a
contractProposal message to Buyer with a new proposed price.

4.3.2 ConGolog and IndiGolog

ConGolog ([32]) and IndiGolog ([33]) are languages extending Golog, a language
based on the situation calculus introduced by McCarthy. Golog stands for alGOl
in LOGic.

Actions are described as in the classical STRIPS approach: they have precon-
ditions that must be satisfied in order to apply the action. The postcondition then
describes the change of the world. The evolution of the world is described within
the logical language by fluents, which are terms in the language. The effects of an
action is formalized by successor-state axioms: they describe what the successor
state of a given state looks like if an action is applied.

Whereas first-order logic as a specification language using deduction (i.e., a
theorem prover) as the underlying procedural mechanism is often too slow and
difficult to handle for the non-expert, Golog is a programming language that hides
the application of the situation calculus and is thus much more user-friendly. Pro-
cedures in Golog actions are reduced to primitive actions which refer to actions in
the real world, such as picking up objects, opening doors, moving from one room
to another, and so on. Golog allows programmers to state procedures of the form

while (∃block) ontable(block) do remove_a_block end-while

proc remove_a_block (Πx)[pickup(x); putaway(x)] end-proc

In general the evaluation of a Golog procedure results in a trace of the primitive
actions to be executed. Thus a plan is produced to lead from the initial state to the
goal state.

Successor state axioms:
(1) do(send(Sender,Receiver,Message),S)) ≡ �.

This formalizes that Receiver receives Message from Sender in situa-
tion do(send(Sender,Receiver,Message),S), which is reached by executing
send(Sender,Receiver,Message) in situation S.
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(2) storing(Merchandise,Amount,do(A,S))≡
(A = ship(Buyer,Merchandise,Required-amount)∧
storing(Merchandise,Required-amount +Amount,S))∨
(A �= ship(Buyer,Merchandise,Required-amount)∧
storing(Merchandise,Amount,S)).

This formalizes “The seller has a certain Amount of Merchandise if it had
Required-amount + Amount of Merchandise in the previous situation and it
shipped Required-amount of Merchandise, or if it had Amount of Merchandise
in the previous situation and it did not ship any Merchandise”.

proc seller-life-cycle
if receiving(Buyer,seller,

contractProposal(Merchandise,Required-amount,Price),now)
then

if storing(Merchandise,Amount,now)
∧ Amount ≥ Required-amount
∧ Price≥ max-price(Merchandise)

then ship(Buyer,Merchandise,Required-amount) ‖
send(seller,Buyer,accept(Merchandise,Required-amount,Price))

else

if storing(Merchandise,Amount,now)∧ Amount ≥ Required-amount
∧ min-price(Merchandise)< Price < max-price(Merchandise)
then send(seller,Buyer,contractProposal(Merchandise,

Required-amount,(Price+max-price(Merchandise))/2))
else nil

5 Organization and Environment Programming

Originally agent programming languages concentrated on agents and not the envi-
ronment where they were situated nor the social/organizational context to which
they were supposed to adhere. These are two other separate levels of programming
that are essential for MAOP, and will be discussed in this section.

5.1 Organizations

Organizations for multiagent systems and normative systems for agent societies
have turned into major research topics in multiagent systems in the last few years.
Many different approaches and related frameworks have been developed through
multidisciplinary research. As is common in computer science, some research
work focuses exclusively on theoretical aspects, and only some frameworks are
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worked out so as to became sufficiently practical for actual use in the develop-
ment of software for multiagent applications. In this section, we concentrate on
a few approaches available in the literature that have direct relevance to agent
programming. Chapter 2 of this book covers some of the topics in multiagent
organizations.

5.1.1 MOISE

MOISE is one of the best-known approaches for modeling and programming
multiagent organizations. The MOISE organization modeling language explicitly
decomposes the specification of organizations into structural, functional, and nor-
mative dimensions [38, 40]. The modeling language is accompanied by a graph-
ical language (examples of MOISE diagrams will appear in Section 6) and XML
is used to store the organizational specifications. Those specifications are then
managed by an organization management infrastructure at run-time. Because the
organization is managed at run-time from its explicit representation, agents can
in principle reason about their own organization and change it during the system
execution.

The structural dimension specifies the roles, groups, and links (e.g., communi-
cation) that exist within the organization. The definition of roles is such that when
an agent chooses to play some role in a group, it is accepting some behavioral con-
straints and rights related to this role. The functional dimension determines how
the global collective goal should be achieved, i.e., how these goals are decom-
posed (through social plans) and grouped into coherent sets of subgoals (called
missions) to be distributed among the agents. Such decomposition of a global goal
results in a goal tree, called scheme, where the leaf-goals can be achieved individ-
ually by the agents. The normative dimension binds the structural dimension with
the functional one by means of the specification of permissions and obligations
toward missions assigned to particular roles. When an agent chooses to play some
role in a group, it accepts these permissions and obligations.

A mission defines all the goals an agent playing a given role commits to when
participating in the execution of a scheme. The normative specification relates
roles and missions through norms. Note that a norm in MOISE is always an obli-
gation or permission to commit to a mission. Goals are therefore indirectly linked
to roles since a mission is a set of goals. Prohibitions are assumed “by default”
with respect to the specified missions: if the normative specification does not in-
clude a permission or obligation for a particular role-mission pair, it is assumed
that the role does not grant the right to commit to the mission.

We do not give details of MOISE here although some MOISE diagrams appear
in Section 6 where we give an example of a multiagent program written for the
JACAMO platform. Further details can be found in the references given above.
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5.1.2 Other Approaches

As mentioned earlier, there are many different approaches to agent organizations
and normative multiagent systems. We only mention here some of the approaches
that can be used in practical software development, namely Electronic Institutions,
OperettA, and 2OPL.

One of the best-known and practical approaches to organized multiagent sys-
tems resulted from the continued research efforts referred to as Electronic Insti-
tutions (EI) [60]. Besides having roles and norms, one distinguishing aspect of
EI is that interaction is guided by scenes representing agent encounters. In par-
ticular, multiagent interaction protocols are specified in a graphical tool called
ISLANDER, and electronic institutions written in ISLANDER are run on a soft-
ware infrastructure called AMELI.

Another relevant tool is OperettA [1], which is based on Eclipse and allows
the specification and analysis of OperA organizations. Since Chapter 2 of this
book covers OperA in detail, we refer the interested reader to that chapter rather
than describe it here.

The 2OPL project (http://oopluu.sourceforge.net/) is particu-
larly worth mentioning here because it is based on a normative programming lan-
guage [65], similar to the one used in JACAMO for the automatic generation of
an artifact-based organization management infrastructure [37]. The 2OPL pro-
gramming language has norms and sanctions as primary programming constructs.
It is meant to define the overall organization of a multiagent system without any
restrictions on (or support for) how to develop individual agents that will take part
in the organization.

5.2 Environments

Sometimes an agent is developed for a whole class of applications, not just for a
single one. When an agent should be usable for many applications, it might be sit-
uated in different environments where it should do its duties accordingly. From an
abstract point of view, it would be desirable if agents could be developed as inde-
pendently of a particular environment as possible. That would make it possible to
develop interesting environments and powerful multiagent systems independently
of each other. Unfortunately, this is not normally the case as there is no general
agreement upon what belongs to shared environments and what belongs to the
agent platforms, and how exactly they interact.

In this section we describe two approaches that complement each other:

CARTAGO: an implementation of a general-purpose model for environment pro-
gramming, based on the notion of artifact (see Section 5.2.1). CARTAGO

http://oopluu.sourceforge.net/
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Figure 13.8: Ideal world: Heterogenous agents acting within a shared environ-
ment.

is rooted in the idea that the environment should be seen as a first-class
abstraction for MAS engineering, as a suitable place to encapsulate func-
tionalities and services to support agents’ activities [71].

EIS: an implemented platform for connecting agent systems to existing environ-
ments (Subsection 5.2.2). EIS adopts the more classical view that the notion
of environment is used to identify the external world (with respect to the sys-
tem, being a single agent or a set of agents), which is perceived and acted
upon by the agents so as to fulfill their tasks [56].

While CARTAGO is used for creating environments, EIS is a programming in-
frastructure for interfacing between agent platforms and existing environments.

Although there are quite a few sophisticated environments around, coupling
a particular agent platform to it requires a lot of tedious work. In an ideal world
(shown in Figure 13.8), one would like to couple different agent platforms at the
same time to such environments in order to perform the required tasks: a het-
erogeneous agent system where agents written in different languages can work
together. We refer to [4].

A combination of EIS and CARTAGO is an interesting research line. Cur-
rently, there are particular bridges available for connecting agent platforms such
as JADEX, JASON, and 2APL to CARTAGO (see [54]). Implementing an EIS

bridge for CARTAGO could be used to connect CARTAGO to any kind of agent
platform that supports EIS.

We note that there are more frameworks available in the literature than we can
address in this chapter. We would like to mention at least Kaminka et al.’s Game-
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Bots (http://gamebots.sourceforge.net/) and Brom et al.’s Poga-

mut (https://artemis.ms.mff.cuni.cz/pogamut/, [30]). These and
similar frameworks are used in the area of serious games.

5.2.1 CARTAGO

CARTAGO (Common Artifact infrastructure for Agent Open environment) [55]
is a framework and infrastructure for programming and executing MAS environ-
ments based on the A&A (Agents and Artifacts) meta-model [47].3 The approach
allows the design and programming of an environment in terms of a dynamic set
of first-class computational entities called artifacts, collected in logical localities
called workspaces, which can be distributed over the network.

The responsibilities and functionalities that can be suitably encapsulated in
such a notion of environment can be summarized by the following three different
levels of support [71] (see Figure 13.9): (i) a basic level, where the environment is
exploited to simply enable agents to access the deployment context, i.e., the given
external hardware/software resources that the MAS interacts with (sensors and
actuators, a printer, a network, a database, a web service, etc.); (ii) abstraction
level, exploiting an environment abstraction layer to bridge the conceptual gap
between the agent abstraction and low-level details of the deployment context,
hiding such low-level aspects from the agent programmer; and (iii) interaction-
mediation level, where the environment is exploited to both regulate the access
to shared resources, and mediate the interaction between agents. These levels
represent different degrees of functionality that agents can use to achieve their
goals.

On the one hand, artifacts are first-class abstractions for MAS designers and
programmers to shape environment functionalities by defining the types of arti-
facts – and with that the structure and the computational behavior of the concrete
artifact instances that can be instantiated in workspaces. On the other hand, arti-
facts are first-class entities of the agents’ world, which agents perceive, use, and
dynamically instantiate and compose as such – analogously to resources and tools
used by humans in organization environments (Figure 13.10 shows metaphorically
a bakery as an artifact-based environment).

Through its approach to artifacts as first-class abstraction, CARTAGO pro-
vides direct support to all the three levels identified above. At the basic level,
artifacts can be used to wrap and enable access to resources in the deployment
context. At the abstraction level, artifacts can be used to define a new abstrac-
tion layer both hiding the low-level details of the deployment context and pos-

3CARTAGO sources and technology are available as an open-source project at http://
cartago.sourceforge.net

http://gamebots.sourceforge.net/
https://artemis.ms.mff.cuni.cz/pogamut/
http://cartago.sourceforge.net
http://cartago.sourceforge.net
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Figure 13.9: Environment support levels [71].

sibly containing computational resources that are fully virtual, independent of
the deployment context. At the interaction-mediation level, artifacts can be de-
signed to encapsulate and enact coordination mechanisms, so as to realize forms
of environment-mediated interaction and coordination.

Figure 13.11 shows the CARTAGO meta-model, including the main concepts
that characterize an artifact-based environment. To be used, an artifact provides
a usage interface containing a set of operations that agents can execute to obtain
some functionality. Operations correspond to agent actions, so the repertoire of
actions available to an agent working within an artifact-based environment is given
by the set of operations provided by the overall set of artifacts currently instan-
tiated in the environment (which can be changed dynamically during run-time).
To be perceived, an artifact can have one or multiple observable properties, as
data items that can be perceived by agents as environment state variables, whose
value can change dynamically through operation executions. Such executions may
generate observable events as environment signals that can be relevant for agents
using/observing the artifact. By using CARTAGO with BDI agent programming
languages, when an agent starts observing an artifact, the artifact’s observable
properties are mapped into the beliefs base of the agent as beliefs about the cur-
rent (observable) state of the environment. So changes to the observable properties
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Figure 13.10: A bakery used as a metaphor to frame the notion of workspaces and
artifacts as resources and tools used by agents to work.
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Figure 13.11: CARTAGO meta-model based on A&A.
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class Counter extends Artifact {
void init(){

defineObsProperty("count",0);
}

@OPERATION void inc(){
ObsProperty p = getObsProperty("count")
updateObsProperty("count",p.intValue()+1);

}
}

inc

count 5

Figure 13.12: Java-based implementation of a Counter artifact type having one
operation inc and one observable property count.

/* Jason agent creating and using
the counter */

!create_and_use.

+!create_and_use : true
<- makeArtifact("c0","Counter",[],Id);

inc;
inc[artifact_id(Id)].

// Jason agent observing the counter

!observe

+!observe
<- lookupArtifact("c0",Id);

focus(Id).

+count(N)
<- println("perceived new value: ",N).

Figure 13.13: Snippets of two JASON agents creating and using a shared counter
(on the left) and observing the shared counter (on the right).

are then directly perceived as changes in the beliefs related to those properties.

From a programming point of view, CARTAGO provides a Java-based API
to program artifacts and a run-time environment to execute artifact-based envi-
ronments, along with a library of predefined general-purpose artifact types. Be-
sides, it also provides the API and the underlying mechanism to extend existing
agent programming languages/frameworks so as to program agents to work within
CARTAGO environments. So, by integrating CARTAGO with existing agent pro-
gramming languages, heterogeneous agents written in different agent program-
ming languages can cooperatively work inside the same workspaces, sharing and
co-using the same artifacts.

As a simple example illustrating the CARTAGO API for implementing arti-
facts (for MAS designers) and for using artifacts (for the agents), Figure 13.13
shows two JASON agents working inside a CARTAGO environment. One agent
creates a Counter artifact – whose implementation is shown in Figure 13.12 –
and uses it by executing the inc action (operation) twice. The other agent ob-
serves the counter, reacting to changes in the beliefs about its observable state
(the count observable property).
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Criterion 2APL GOAL JADEX JASON

Portability jar-files jar-files everything jar-files
Perceiving sense-actions

and external
events

getting all
percepts via
a provided
method

accessing
env-objects
or requesting
percepts
from an
env-agent

getting all
percepts via
a provided
method

Acting invoking
methods

invoking a
method

manipulating
env-object
or sending a
message to
an env-agent

invoking a
method

Abstract
environment
functionality

mapping
from ag-
names to
ag-objects

no special
functionality

no abstract
environment
defined

logging
and action-
scheduling

Formats terms/atoms
encoded as
Java-objects

strings java-objects logical lit-
erals and
structures
encoded as
Java-objects

Java accessi-
bility

jar-files jar-files everything
that is in the
class-path

jar-files

Table 13.1: Comparison of some agent platforms regarding their environment
interface.

5.2.2 EIS

The overall idea of EIS is to set up a standard interface for connecting agent plat-
forms to environments. As a result, agent platforms that support the interface can
connect to any environment that implements the interface. This will significantly
reduce the effort required from agent and environment programmers: the environ-
ment code needed to implement the interface needs to be written only once for
each platform.

EIS has been crafted based upon a detailed analysis of some agent languages
shown in Table 13.1 (taken from [7]).
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APL Side Environment SideInterface Layer

Environment

Management

System

Platform

Agents

Environment

Interface

Standard

Environment

Model

Figure 13.14: Components of EIS. The platform containing the agents is separated
from the environment model. The interface layer acts as a link to facilitate the
interaction of the components.

ure 13.14):

• Agent: The objective of defining an environment interface standard is to
provide a generic approach for connecting agents to environments.

• Environment model: It is assumed that an environment contains control-
lable entities. Controllable entities establish the connection between agents
and the environment by providing (1) effectoric capabilities and (2) sen-
soric capabilities to agents, thus facilitating agent situatedness. Such en-
tities may be controlled from outside the environment (by agents) and are
capable of performing actions in the environment to change the state of that
environment. EIS assumes that each entity has its own repertoire of ac-
tions, and does not assume anything particular about how these actions are
performed in the environment.

Controllable entities may be linked one-to-one to concrete Java objects at
the code level but need not be so. That is, entities may be implicit and it is
not required that entities can be matched to particular Java objects that are
part of an environment. Entities are thus primarily used conceptually and
refer to abstract containers for actuators and sensors to which agents can
connect. The only representation that is obligatory for each controllable
entity is an identifier.

We identify five components from a software engineering perspective (see Fig-
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Figure 13.15: Environment-MAS model.

The model of the environment is illustrated in Figure 13.15. It assumes
(possibly) intersecting spheres of influence of multiple agents acting in an
environment. The sphere of influence of an agent is defined by the effecting
and sensory ranges of its associated controllable entities. Note that it is not
assumed that there is a one-to-one relation between agents and controllable
entities. Different perspectives may be taken toward these spheres of influ-
ence: (i) an action perspective (agents may interfere with each other, they
are able to change the same parts of the environment) and (ii) a perception
perspective (agents may have different views of the environment).

Controllable entities can be something very simple like thermostats or
something quite complex like a robot. In the Multi-Agent Program-
ming Contest 2008–2010,4 the “cowboys” are the controllable entities. The
sensory capabilities are limited to some sort of camera, which provides
agents with a limited visual range. The effecting capabilities consist of
moving the cowboy in different directions.

Finally, although it is natural to refer to states of the environment, this
should not be taken to imply that EIS imposes any additional structure on
an environment, e.g., requiring it to be a discrete state system. The en-
vironment model is generic and can be instantiated to all sorts of specific
environments.

• Platform: We assume the platform to be responsible for instantiating and

4http://www.multiagentcontest.org

http://www.multiagentcontest.org
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executing agents. Furthermore, we assume that it facilitates connecting
agents with environments, and associating agents to controllable entities
in environments through EIS.

• Environment management system (EMS): We assume this component to
provide all the actions for managing an environment. Such actions might
be: initializing an environment using a configuration file, releasing the re-
sources of the environment and terminating its execution, and further ac-
tions such as pausing, resuming, and resetting. The environment manage-
ment system may be run independently of an APL platform.

• Environment interface standard (EIS): The environment interface stan-
dard is the layer that connects the platform, the environment management
system, and the agents with the environment(s).

Figure 13.14 presents the meta-model schematically. It also depicts the re-
lations that need to be supported between the various components. One of the
most important relations that should be part of an agent-environment interface
is what we call the agents-entities-relation. This relation associates agents with
controllable entities in the environment. The relation is maintained to provide
basic bookkeeping functionality. This bookkeeping functionality provides a key
role as it determines which agents are allowed to control which entities and also
determines which percepts should be provided to which agents.

For further details on EIS, we refer the reader to http://sf.net/
projects/apleis/, http://cig.in.tu-clausthal.de/apleis,
[4, 6, 69, 70] and the references therein.

6 Example of Full MAOP in JaCaMo

In Section 4, we have seen examples of agent programs. However, the latest
trends in agent programming point to a paradigm coined as multiagent-oriented
programming to emphasize the important recent interaction of agent-oriented pro-
gramming languages with programming approaches developed in the multiagent
systems research communities interested in agent organizations and shared en-
vironments. It is in the combination of the strengths from each of these three
different levels of abstraction in multiagent systems that we are able to harness
all the benefits of agent societies as metaphors for developing complex distributed
systems.

To demonstrate this, we use a concrete example in JACAMO, the integration of
the well-known platforms JASON, CARTAGO, and MOISE. However, JACAMO

http://sf.net/
http://cig.in.tu-clausthal.de/apleis
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is a lot more than three platforms working together. By offering first-class ab-
stractions for the agent (JASON), social (MOISE), and environment (CARTAGO)
levels of a multiagent system, it has for the first time in fully working operation
unraveled the full potential of MAOP: it allows the development of fully-fledged
multiagent systems using very high-level programming. JACAMO can be down-
loaded from http://jacamo.sourceforge.net.

6.1 The Application Scenario

We shall use the running example that appears also in Chapters 14 and 15 to
demonstrate the use of a combination of organization-oriented programming with
agent-oriented programming and environment-oriented programming. We repro-
duce here only the main ideas of the scenario, as it is presented in more detail in
Chapter 15. Note however that the chosen running example centers mostly on the
organization level and, in our design, partly on the environment; agents are very
simple and in general they only execute the required action at the right time in
orchestration with the team; this is mostly handled by the organization.

The solution presented here should be extended (see Exercises below in Sec-
tion 8) with an artifact for managing instances of the contract-net protocol sug-
gested by the running example for allocating orders to manufacturing units – we
here concentrate on the functioning of a single unit. An implementation of the
contract-net protocol in the JASON variant of AgentSpeak can be found in [14]
and we later show as an example of artifact, the artifact available with CARTAGO
to manage instances of the contract-net protocol. Further, it should be noted that
this is one particular software design, and other agent-based solutions can also be
implemented. For example, in the absence of social and environment constructs,
a purely agent-based solution would potentially require significantly more direct
agent-to-agent (speech act-based) communication.

Although the solution shown here does not provide much scope for complex
(individual) agent behavior, as this was already partly illustrated earlier in this
chapter, it makes sense to use the running example anyway, even if mostly for the
purpose of showing the integration of agent programming with organization and
environment abstractions.

The scenario used here is explained in detail in Chapter 15, and in particular
Figure 15.3 is very illustrative. It shows that the assembly cell of a manufacturing
plant is assumed to have two jigs in a rotating table, with two manufacturing robots
located at two ends of the table: one that mostly does loading and unloading tasks
and another that is able to join separate parts that have been loaded into a jig. To
summarize the manufacturing process, and so that this chapter is self-contained,
we quote from Section 2 of Chapter 15:

http://jacamo.sourceforge.net
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1. robot1 loads an A part into one of the jigs on the rotating table

2. robot1 loads a B part on top of it

3. the table rotates so the A and B parts are at robot2

4. robot2 joins the parts together, yielding an “AB” part

5. the table rotates back to robot1

6. robot1 moves the AB part to the flipper

7. the flipper flips the part over (“BA”) at the same time as robot1 loads a C
part into the jig

8. the BA part is loaded on top of the C part

9. the table rotates

10. robot2 joins the C and BA parts, yielding a complete ABC part

11. the table is rotated, and

12. robot1 then unloads the finished part.

Although this process may sound straightforward, it is made more complex by
the need to manage a number of concurrent assembly jobs. In other words, we
want to be able to exploit parallelism, for instance, having robot2 be assembling
one part while robot1 is unloading a different order. On the other hand, we need
to respect synchronization requirements such as not moving the table while robot1
or robot2 are operating.

Note that in general in holonic manufacturing there are multiple interchange-
able entities so that the process of selecting a table, or an assembly robot, needs
some mechanism to manage load-balancing (e.g., using the contract net).

The code we have developed using JACAMO to control a manu-
facturing cell is available at http://www.inf.ufrgs.br/~bordini/
WeissBookChapter13Ex. Below, we explain the main points about that solu-
tion and include some code excerpts with the intention of illustrating some of the
features of fully-fledged multiagent-oriented programming with JACAMO. Note
that this is not necessarily the best JACAMO design for a solution to this prob-
lem. It was created with the aim of illustrating this approach; in fact, some of
the exercises at the end of this chapter suggest other possible design options to be
considered and compared.

http://www.inf.ufrgs.br/~bordini/
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6.2 Organization Program

By glancing over Figures 13.16 and 13.17, it should be clear how simple5 it is
to use MOISE to solve the manufacturing coordination problem of the running
example. Figure 13.16 shows the structural specification where we specify the
relevant roles. As we mentioned, most agents are very simple, with effectively
the same JASON code, so we have three roles that just inherit from a “simple
controller” role. The same simple controller agent can be used for the robot at
one end of the manufacturing unit, which is in charge of operations related to
loading the various parts (which we have called the “loader” robot), and for the
robot at the other end, which is responsible for joining together two parts (called
the “joiner” robot); and we also have a simple controller agent that will play a role
in controlling the flipping of joined parts (the “flipper”). The only manufacturing
agent that needs a bit more JASON code is the one that rotates the table (called
the “rotator”) thereby controlling which of the two robots can operate on each jig.
We need one agent playing each of these four roles in order to have a functional
“assembly cell group.” Note that MOISE has much more expressive power; we
only used the most basic features of MOISE to solve this problem.

In order to run a simulation of the system with the code available at http://
www.inf.ufrgs.br/~bordini/WeissBookChapter13Ex, that sys-
tem also includes another agent called “cellmngr”, which uses an artifact to sim-
ulate the appearance of orders for assembling tasks and an artifact to simulate the
operations of the assembly cell, so that we can test if the code appears to work.
That agent also creates the MOISE group for the manufacturing unit agents to join,
and creates, for each order it accepts, an instance of the manufacture_ABC
scheme in the functional specification shown in Figure 13.17. This means that in
the example code we already took care of allowing two orders to be concurrently
processed in a single cell, which is possible since the rotating table has two jigs.

In the specification in Figure 13.16, we define the whole social plan. For read-
ability, we have divided the whole task into three main parts: (1) assembling an
AB part, then (2) the complete ABC part, and finally (3) finishing up (by unload-
ing the complete piece). In this manufacturing process most tasks are sequential;
the only two tasks that are to be done in parallel are indicated by the parallel hor-
izontal lines in that diagram (see also the legend). It is not difficult to imagine
how much interagent communication was saved by delegating the coordination
task to the organization rather than doing it all at the level of pure agent-oriented
programming. At run-time, the organization will assign goals to agents at the ap-
propriate times, taking into consideration the partial ordering of the goals to be

5For the time being, the diagrams need to be manually coded into an XML file in order to run
the system, but at the time of writing, work is in progress to use graphical interfaces for automating
this task.

http://www.inf.ufrgs.br/~bordini/WeissBookChapter13Ex
http://www.inf.ufrgs.br/~bordini/WeissBookChapter13Ex
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Figure 13.16: MOISE organization: Structural specification.
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Figure 13.17: MOISE organization: Functional specification.

achieved according to the functional specification.
The careful reader will have also noticed that the diagram in Figure 13.17

annotates each goal to be achieved with one of four different missions (namely
loading, joining, flipping, and rotating). This way, we can easily specify, through
the normative specification in Table 13.2, which sets of goals the agents playing
each of the four roles will be asked to achieve (by the organization management
infrastructure, at run-time).
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norm role mission

n1 loader loading
n2 joiner joining
n3 rotator rotating
n4 flipper flipping

Table 13.2: MOISE organization: Normative specification.

6.3 Agent Programs

There are a number of generic JASON plans available with JACAMO that facilitate
interaction with MOISE and CARTAGO when programming the agents. Some
such plans appear in file common.asl in our example code, which is included by
all agents that take part in the MOISE organization discussed above. An example
of a plan from such a generic library of plans is given below.

// obligation to achieve a goal
+obligation(Ag,Norm,achieved(Scheme,Goal,Ag),Deadline) :

.my_name(Ag) <-
!Goal[scheme(Scheme)];
lookupArtifact(Scheme,Id);
goalAchieved(Goal)[artifact_id(Id)].

The plan above says that whenever the agent comes to believe that it has a new
obligation toward an organizational goal Goal (note the use of JASON higher-
order variables here), it just tries to achieve that goal and, if all goes well, the
agent (through an ORA4MAS artifact) tells the organization that the goal it was
obliged to achieve has been achieved (this is important so that the organization
can then delegate further goals to be achieved, possibly by other agents).

In this application, the actual behavior for agents “loader,” “joiner,” and “flip-
per” is to simply adopt its predetermined role (done by the first plan below) and
then do whatever it is asked to do. For example, when the MOISE scheme de-
termines the adoption of goal !a_loaded, the agent should just do the action
a_loaded that activates the loading mechanism in the actual factory. This is
possible because the name of such an operation (i.e., an external action for the
JASON agent that executes the corresponding artifact operation) in the artifact
simulating the manufacturing cell is the same as the goal itself. The second plan
below shows that this can be done in a generic way (through the use of the higher-
order variable G below) for any organizational goal received. The first plan makes
the agent join the ORA4MAS workspace so as to take part in the organization;
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then it also needs to focus on the ORA4MAS organizational artifact so as to au-
tomatically perceive information about the group such as newly created schemes.
Finally, it adopts a role in the group (the group and specific role for each of the
three agents using this code are specified as initial goals in the JASON project file).

// Join the organization and play a role in it
+!join_and_play(GroupName, RoleName)
<- !in_ora4mas;

lookupArtifact(GroupName, GroupId);
focus(GroupId);
adoptRole(RoleName)[artifact_id(GroupId)].

// Then, just do whatever told by the organization
+!G[scheme(S)] <- G; .print("Doing ", G, " - Scheme ", S).

These three agents have only the code above, nothing else. The only agent
that requires more complex behavior is the “rotator.” In the MOISE scheme for the
manufacturing process, the rotator is assigned two different goals: to wait for an
empty jig and to get the table rotated. Below we show the various plans needed
to achieve these goals. In the beginning there are two simple Prolog-like rules
used to facilitate the plan contexts. They check the number of instances of the
manufacturing scheme in MOISE so as to check if there are one or two concurrent
orders being manufactured by this cell (each order is handled by one scheme in-
stance; this will be further detailed later in this section). In the code below, note
that the name of the scheme that requested the achievement of a particular goal is
annotated in the new goal events generated by the agent architecture.

// rule to check if we have two concurrent orders (2 Moise schemes)
two_orders :- schemes(L) & .length(L)==2.
// or only one order so far
one_order :- schemes(L) & .length(L)==1.

// 1st organizational goal of the rotator (wait for empty jig)

// avoid conflicts when 2 orders are simultaneously waiting for empty jigs
+!wait_for_empty_jig[scheme(S1)] :

.desire(wait_for_empty_jib[scheme(S2)]) & S1\==S2 <-
.wait(500); // wait a bit
!wait_for_empty_jig[scheme(S1)]. // and try again

// already got an empty jig
+!wait_for_empty_jig[scheme(S)] :

jig_loader("empty") <-
reserve_jig(S). // make sure another order doesn’t get it too

// will have to wait until the jig at the loader end is empty
+!wait_for_empty_jig[scheme(S)] <-

.wait({+jig_loader("empty")}); // wait until this event happens
reserve_jig(S); // make sure empty jig is allocated to this order
// if there are pending requests to rotate the table
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if (.desire(table_rotated[scheme(S)])) {
// might need reconsidering which plan to use for rotating
.drop_desire(table_rotated[scheme(S)]);
!!table_rotated[scheme(S)];

}.

// 2nd organizational goal of the rotator (rotate table)

// Only 1 assembling task, rotate whenever asked
+!table_rotated : one_order <- table_rotated.

// Let it rotate if another job needs it and we’re waiting for an empty jig
+!table_rotated :

two_orders & .desire(wait_for_empty_jig) & not jig_loader("empty") <-
table_rotated.

// If there are 2 concurrent assembling tasks, wait for both
// to want to rotate before actually rotating

// This is actually the second request to rotate
@tr[atomic] // both goals need to be considered achieved simultaneously
+!table_rotated[scheme(S1)] :

two_orders & .desire(table_rotated[scheme(S2)]) & S1\==S2 <-
table_rotated; // one rotation achieves both requests
.succeed_goal(table_rotated[scheme(S2)]).

// The first attempt just waits, 2nd request releases both
+!table_rotated[scheme(S)] :

two_orders <-
.wait(1000); // wait a bit
!table_rotated[scheme(S)]. // try again

The comments in the code above explain all of the details. It will be noted that
as a new order can be started at any time during the manufacturing of another, it
is a rather difficult synchronization problem that the rotator has to solve.

Finally, the cell manager agent has mostly procedural code to create the sim-
ulation artifacts and initialize the organization. Other than that, it has only a few
plans, the following one being the longest:

// each order generates an instance of the Manufacture scheme
@op1[atomic] // needs to be an atomic operation: changing the no. of schemes
+order(N) :

formationStatus(ok)[artifact_id(GrArtId)]
& schemes(L) & .length(L)<=1 <- // no more than 1 order under way

// wait until empty jig is correctly positioned at loader robot
.concat("order", N, SchemeName);
makeArtifact(SchemeName, "ora4mas.nopl.SchemeBoard",

["src/manufacture-os.xml", manufacture_schm, false, true], SchArtId);
focus(SchArtId); // get all info about this Moise scheme
addScheme(SchemeName)[artifact_id(GrArtId)].

This plan accepts at most two concurrent manufacturing orders, and creates the
necessary ORA4MAS scheme artifact to handle a new (simulated) manufacturing
order. Focusing on the scheme allowed the cell manager to automatically perceive
the state of the scheme; for example, it needs to know when the order has been
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completed so that a new one can be accepted. This plan also needs to add the
newly created scheme to the (well-formed) MOISE group.

6.4 Environment Program

We mentioned a few environment artifacts above when describing our implemen-
tation. Besides those, it makes sense to use an artifact to manage instances of
the contract-net protocol (CNP), required in the scenario as a mechanism for load
balancing (i.e., selecting the best assembly cell for a particular part assembling
request). While in most cases artifacts required for particular tasks have to be
developed using the CARTAGO API, in this case we do not need to do that as
CARTAGO already offers an artifact-based implementation of CNP management.
Of course CNP can also be managed directly by agents, as in the example given
in [14, Section 6.3]. However, there are many advantages of using the artifact-
based implementation in this case. For example, it reduces the amount of direct
agent-to-agent communication required, and, most importantly, allows the use of
CNP in open multiagent systems: when agents join a CARTAGO workspace, they
will be able to automatically perceive the available CNP instances and join in if
they so wish.

Even though it is not necessary to program the artifact in this case, we show
the code of one of the artifacts (the task board) just to illustrate the environment
side of the system, and to show how artifacts are at a different level of abstracts
as normal objects in Java. The observable properties and operations automatically
become percepts/actions available to all agents that enter the shared workspace.
In the code for the task board6 below, agents use the announce operation on
this artifact when they wish to start a new CNP instance for a particular task.
This artifact will then create another artifact to manage that particular instance of
the CNP, with an observable property with the task description (which again is
accessible to any agents joining the workspace at run-time). It is in that newly
created artifact that agents will be able to bid, and the agent being awarded the
contract will be announced there too.

public class TaskBoard extends Artifact {
private int taskId;

void init() {
taskId = 0;

}

@OPERATION void announce
(String taskDescr, int duration, OpFeedbackParam<String> id){

taskId++;
try {

6Available at http://cartago.sourceforge.net.

http://cartago.sourceforge.net
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String artifactName = "cnp_board_"+taskId;
makeArtifact(artifactName, "c4jexamples.ContractNetBoard",

new ArtifactConfig(taskDescr,duration));
defineObsProperty("task", taskDescr, artifactName);
id.set(artifactName);

} catch (Exception ex) {
failed("announce_failed");

}
}

@OPERATION void clear(String id) {
String artifactName = "cnp_board_"+taskId;
this.removeObsPropertyByTemplate("task", null, artifactName);

}
}

Note that in this section we only included excerpts, although all the important
parts of the code were covered. Still, we strongly encourage the reader to look
at the complete (fully commented) code and run the system. The working ex-
ample for one manufacturing cell can be downloaded from http://www.inf.
ufrgs.br/~bordini/WeissBookChapter13Ex, and we leave as an ex-
ercise to use the CNP artifacts for extending to multiple cells.

7 Conclusions

The type of programming made available in practice for the first time with
JACAMO is effectively very new. Although agent-oriented programming has
been around for many years, it was only with the combination of agent-oriented
programming with organization-oriented programming and environment-oriented
programming that the true potential of a programming paradigm inspired by multi-
agent systems was unraveled.

Of course there are many open issues in this programming paradigm. There
are specific issues at the various levels, for example, the issue of encapsulation
of agent code has some proposed solutions but more is required in the way of
experimentation so that the best approaches can be determined. The combination
of the three levels of abstraction, being rather recent, is also likely to require
much further research still. Equally, we should expect much progress in practical
programming tools in order to make the approach usable in industry.

However, with the trends in computing toward a vision of the future where
autonomy and large-scale interaction will be required by so much software, it is
reasonable to expect that MAOP will play an important role in the mainstream
computing industry in that future.

http://www.inf
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8 Exercises

1. Level 1 Discuss how the programming techniques presented in this chapter
address each of the required features of autonomous systems presented in
Subsection 2.2.

2. Level 1 Create a mind map of all the programming abstractions at the three
different levels of a multiagent system, available in full MAOP as well as
related concepts and ideas.

3. Level 1 Using JASON, give the Mars rover agent used as an example in
Section 4.1 further know-how (for example taking panoramic pictures and
performing spectrometric analysis of rock samples) and write a complex
plan with a particular mission for the rover using both the old and new
know-how.

4. Level 1 Develop a simple simulated environment and perform experiments
with your JASON code for the Mars rover.

5. Level 2 The solution presented in Section 6 for the manufacturing scenario
concentrated on the functioning of a single manufacturing unit. Extend the
provided code with an artifact for managing instances of the contract-net
protocol – as suggested in the description of the scenario in Chapter 15 – for
allocating incoming orders to the various manufacturing units. Remember
that you can use the contract-net artifact that is available in CARTAGO’s
own library.
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6. Level 2 Re-implement the agent code of the manufacturing example in
other agent-oriented programming languages; compare the different pro-
gramming styles.

7. Level 2 Propose an alternative mechanism for allocating the assembling
requests to the various manufacturing units and run simulations to evaluate
the performance of both mechanisms (including overall productivity of the
factory, communication overhead, etc.).

8. Level 3 Redesign the whole manufacturing system so that the levels of ab-
straction in JACAMO take responsibility for different aspects of the appli-
cation. For example, avoid coordination at the organization level and leave
it for direct agent communication, or avoid using contract-net at the level of
the environment. Compare the performance of the system (as in the exercise
above) and, most importantly, compare also the elegance of the new version
of the code with the original solution.

9. Level 3 Propose a methodology for designing multiagent systems applica-
tions that assumes that the programming platform has first-class abstractions
at the three main levels of abstractions of a multiagent system.

10. Level 3 Design and implement a multiagent system for a complex applica-
tion using JACAMO.

11. Level 4 In the version of JACAMO used in this book, there are no program-
ming constructs to create interaction protocols. Propose a general mech-
anism for this and integrate it within the JACAMO platform as a concrete
implementation.

12. Level 4 Propose an approach to formally verify JACAMO systems, in such
a way that properties to be verified could refer to social constructs such as
roles as well as individual mental attitudes and artifact states.

13. For the next few exercises, we refer to the multiagent contest site http:
//www.multiagentcontest.org. There, a whole platform, contest
scenarios, as well as several dummy agents to start with (in several agent
languages) are available. The following exercises can be based on your
favorite agent language.

14. Level 1 In this exercise you learn how to start the server, the monitor, and
some dummy agents. Please note that a Unix-Shell, preferable a bash, is
needed. For Windows you can use MSYS http://www.mingw.org/
wiki/MSYS.

http://www.multiagentcontest.org
http://www.mingw.org/
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(a) Download and extract the MASSim package from
http://multiagentcontest.org/teaching-downloads.

(b) Start the server with massim/scripts/startServer.sh,
choose one simulation and press <Enter>.

(c) Start the Mars-Monitor with
massim/scripts/startMarsMonitor.sh.

(d) Start the dummy-agents with
javaagents/scripts/startAgents.sh.

(e) Read the scenario description.

For more information consult the documentation of the MASSim package.

15. Level 2 Write a reactive agent that does random walks and recharges its
battery whenever the energy is low. Use the subsumption architecture for
the implementation.

16. Level 2 Modify the agent by adding a belief and a goal base to it. Imple-
ment a modified Dijkstra algorithm that computes the shortest path to an
unexplored node. The agent should now be able to analyze the topology
and store the information observed in the belief base by repeatedly walking
to the nearest unexplored node.

17. Level 2 Add a communication mechanism to the agents. Design a commu-
nication protocol that allows the agents to efficiently exchange the informa-
tion about the map topology.

18. Level 2 Implement a strategy that allows the agents to explore the map as
fast as possible.

19. Level 2 Implement a strategy for the agent team that has two phases: first,
explore the map; and second, conquer the zone with the highest value.

20. Level 3 Extend your agent team with the concept of roles. Each two agents
should implement one of the five roles (Explorer, Sentinel, Repairer, Sabo-
teur, Inspector).

21. Level 3 Your agent team has to achieve at least these achievements: (1)
probe 5 nodes, (2) analyze 10 edges, (3) inspect 5 agents, (4) attack the op-
ponent’s agents at least 5 times successfully, and (5) the zone value should
be greater than 20.

22. Level 2 Develop a method for the agent team of when and how to buy new
equipment for the agents.

http://multiagentcontest.org/teaching-downloads
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23. Level 2 Design a strategy for defending your own zones and attacking the
zones of the opponents.

24. Level 2 Implement agent teams for the gold-miners scenario.

25. Level 4 Implement agent teams for the cows-and-cowboys scenario.
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Chapter 14

Specification and Verification of

Multiagent Systems

Jürgen Dix and Michael Fisher

1 Introduction

As we have seen from the previous chapter, there are many ways to implement a
multiagent system. Although certainly not trivial, the task of producing a working
multiagent system is relatively straightforward. However, producing a multiagent
system that always “works” is much more challenging. But how can we assess
this? How can we describe exactly what we want our system to do? And then how
can we ensure that any system we build actually conforms to this description? A
further aspect that is increasingly becoming important is how we can assess that a
multiagent system built by someone else conforms to our requirements.

In this chapter we will address these important problems. Specifically, we will
show how formal logics and logical procedures can form the basis for the compre-
hensive analysis of multiagent systems with respect to their formal requirements.
While we aim to focus on the analysis, through verification, of systems, we must
naturally explore ways of describing our requirements in a formal way. Thus, we
begin by considering the formal specification of agents and multiagent systems.
From this we move on to the formal verification of these systems, examining the
many different ways that designs, models, and programs can be exhaustively as-
sessed with respect to a formal specification.

Although this can be quite a technical topic, we will present only the basic
ideas and exhibit them through simple examples. In addition, there are many
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existing verification systems that we will point the reader toward as we proceed
through the chapter. As this area is still very much at the forefront of research
activity, many of the tools are prototypes under active development. As such, they
are not so refined or stable; nevertheless, we encourage you to try some of these
(leading edge) tools and aid their development.

1.1 Why Logic, Specification, and Verification?

We might ask, at this point, why is verification needed at all? As multiagent sys-
tems grow in popularity they are beginning to be used in safety-critical areas, such
as aerospace or factory processes. It is clearly vital that such systems behave as
expected in all situations, especially if human lives are at risk. Yet before we even
reach such safety-critical applications there is a class of business-critical applica-
tions. Here, any failure in our agents might not be life-threatening but could well
compromise the viability of the business, for example, through failures involving
finance, security, or privacy. Even if we do not consider the multiagent systems
we are dealing with to be involved in any critical scenarios, it is important that our
multiagent software works as expected, even in “non-critical” applications. Soft-
ware failure can have severe effects, such as bad publicity, legal aspects, product
recall, or software revision and re-testing.

Here are three famous (but not specifically agent-based) events that might have
been avoided with better specification and verification methods:

AT&T Telephone Network Outage (1990): There was a 9-hour network outage
in New York City of large parts of the US telephone network [90]. It cost
several 100 million US$ and the cause was the incorrect interpretation of a
break statement in the C programming language [73].

Pentium FDIV BUG (1994): Problems occurred with the floating point division
unit (FDIV) of Pentium chips [91, 130]. Under certain circumstances, a flaw
in this unit resulted in incorrect results. This cost an estimated 500 million
US$ and resulted in a serious image loss for the company. (Following this,
chip designers invested heavily in formal verification techniques.)

Ariane 5 Disaster (1996): This is the famous crash of the Ariane-5 rocket [56,
127]. The source of the crash is believed to be in the data conversion from a
64-bit floating point to a 16-bit signed integer. It cost over 500 million US$
and had a very negative impact on the image of space reliability.

These, along with several other less high profile problems, have led to companies
increasingly employing formal verification techniques to build confidence, find
bugs early, improve efficiency, etc. Yet another important aspect is that verified
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software is likely to inspire more confidence in the public and so lead to increased
“trust” in computational solutions and so greater opportunities for uptake/use of
software in general. In the particular case of multiagent systems, this is especially
important. Since autonomy is a central aspect of agent-based systems, public
confidence will be quickly eroded if we cannot guarantee that the autonomous
choices made by an agent are both safe and secure.

Consequently, we require some specification to describe our requirements and
some verification process to match these requirements against a system to be ana-
lyzed. We use logic as our basis for both specification and verification. But why?

1. Formal logic provides a clear, concise, and unambiguous notation for de-
scribing systems and scenarios. Compare this to a functional documenta-
tion sheet, which is often written in natural language and prone to all sorts
of misunderstandings.

2. The formal properties of logical descriptions are well understood. For ex-
ample, the expressive capabilities of various logics (what can be described
at all, what can be easily described in the logic, and what cannot) have been
comprehensively explored.

3. Along with a formal logic comes a range of logical procedures that we can
utilize in verification, such as decision procedures, proof systems, model
checkers, etc. Again, most of these have well-established complexity and
completeness results and often have implementations that we can take ad-
vantage of.

4. Finally, one aspect of formal logics that we find particularly useful when
considering multiagent systems is the flexibility of logic. There are very
many different logics, capturing many different aspects. Logics have been
developed to capture time, space, belief, desire, wishes, cooperation, inten-
tion, probability, etc. [15, 43, 122]. Indeed, we can design our own logics
to capture relevant, new activities.

These four properties make logic a suitable candidate. In particular, they help to
devise an appropriate logic providing a level of abstraction close to the key con-
cepts of the multiagent system. In addition, we can combine logics together to
represent multifaceted systems. As we have seen already in this book, agents are
often multifaceted and their description typically requires combinations of logics.
For example, the BDI theory combines several modal logics (for beliefs, desires,
and intentions) with a temporal (or dynamic) logic describing the underlying sys-
tem evolution.
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1.2 Limits and Relation to Other Chapters

This chapter builds on some notions introduced in Chapter 13, in particular on
the running example introduced there. This example is assessed in order to show
several features of verification in general. The next chapter, Chapter 15, also
builds on this example and extends it slightly to illustrate specific features of the
software engineering approach in agent systems. Finally, the precise notions of
the logics involved in this chapter can be found in Chapter 16.

1.3 Organization of This Chapter

In Section 2 we introduce the basic terminology to be used throughout this chapter,
specifically the logics for agent systems and specification languages. In Section 3
we describe how to bridge the gap between specifications and implementations.
We start by presenting methods for formal verification (as opposed to just testing)
in Section 4. Then we turn to approaches that have been specifically developed
for the formal verification of agents and multiagent systems. There are, as yet,
few1 run-time verification tools explicitly developed for agents and so we pri-
marily consider the deductive verification of agents in Section 5, the algorithmic
verification of agent models in Section 6, and the direct algorithmic verification
of agent programs in Section 7.

2 Agent Specification

In this section we first provide a description and the basic terminology to talk
about formal, concise, and relevant specifications of agent-based and multiagent
systems. While Section 2.1 deals with logics and specifications in general, we
introduce in Section 2.2 several variants of temporal logics. We briefly describe
some approaches based on dynamic logics in Section 2.3. An important aspect
is to combine temporal logics with other logics, such as logics of knowledge and
belief; we elaborate on this in Section 2.4. Finally, the running example from the
last chapter is discussed in Section 2.5.

2.1 Logics of Agency and Specification Languages

Many of the logics described in Chapter 16 are used in some form or another for
specifying agents or multiagent systems. Rather than surveying all the different
varieties, we will outline one style, which turns out to be quite common. This

1For one such, see [2].
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typical approach involves a logical basis that is, in turn, a combination of log-
ics [42, 52]. Primarily this is a logic describing the core abstract “state” of an
agent, combined with a logic showing how such abstract states change or evolve
dynamically.

As an example, let us imagine that our agent is primarily concerned with ac-
cessing, selecting, and distributing information. We might decide that the best way
to formalize such an agent is in terms of a logic of knowledge. This will allow us
to describe what the agent knows, what it knows that it knows, what it knows that
others know, and so on. A standard approach to representing such knowledge is to
use a multimodal logic of the S5 style. Here, the modal necessitation operator, Ki,
can be parametrized by an agent, i. Thus, KJürgenϕ means that “Jürgen knows ϕ”,
while KMichaelψ means that “Michael knows ψ”. With such a logic we can describe
a variety of interesting agent behaviors concerning knowledge, for example

KJürgenraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jürgen knows it is raining

KJürgenKJürgenraining . . . . . . . . . . . . . . . Jürgen knows that he knows it is raining

KJürgen¬KJürgenwarm . . . . . . . . . . Jürgen knows that he doesn’t know it is warm

KJürgenKMichaelwarm . . . . . . . . . . . . Jürgen knows that Michael knows it is warm

We can also consider schemata of the form KJürgenΦ → KMichaelΦ for all formulae Φ.
This means that whatever Jürgen knows, Michael knows and so Michael knows at
least as much as Jürgen.

This gives quite a strong mechanism for describing static agent knowl-
edge [40], but it is not yet enough. We need to add a more dynamic dimension,
allowing our agent “state” to evolve or change to a new “state.” This might be due
to some action occurring, some time passing, or any other dynamic event. Thus
we need a logic that captures such aspects; the primary candidates for this are
dynamic logic [59] or temporal logic [36, 47, 62, 115].

Continuing our example, let us use a simple linear temporal logic [51] to de-
scribe dynamic change. Recall that typical connectives in such a logic are “©”,
meaning “at the next moment in time,” and “♦”, meaning “at some future moment
in time.” Such operators allow us to navigate between states at distinct moments
in time. Once we combine this logic with our logic of knowledge (technically a
fusion of the two logics [42]), we can describe statements such as

©KJürgenwarm . . . . . . . . . . . . in the next moment, Jürgen will know it is warm

KMichael♦raining . . . . . . . . . . . . . . . Michael knows it will eventually be raining
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However, while the above represents an interesting combination for describing
how the knowledge within an agent evolves [40], it is typically still not enough
to be able to describe truly autonomous agents. For this we need some way to
capture the reasons for an autonomous agent making the choices it does; in other
words, some motivation for doing what it does.

This leads us to a very common structure for agent theories, and so for agent
specification languages, comprising

1. a logical dimension describing the underlying dynamic/temporal nature of
the agents, for example, dynamic logic or temporal logic;

2. a logical dimension describing the information the agent has, for example,
a logic of belief or logic of knowledge (as above); and

3. a logical dimension describing the motivations an agent has, for example, a
logic of goals, desires, wishes, or intentions.

For example, the logical basis for the BDI approach comprises a temporal logic, a
modal logic of belief (for the information dimension), and modal logics of desire
and intention (for the motivational dimensions) [106]. Alternatively, the KARO
framework (for Knowledge, Abilities, Results, and Opportunities) [88, 123] com-
bines a dynamic logic basis with a modal logic of knowledge (information) and a
modal logic of wishes (motivation).

2.2 Approaches Based on Temporal Logics

We have already mentioned some simple temporal logic statements above. In any
temporal logic, one can talk about properties that are true at certain time intervals.
The LLTL-formula �(ϕ∧ψ), for instance, expresses the fact that both ϕ and ψ
hold in the next moment; ϕUψ states that ϕ is true at least until ψ becomes true,
which will eventually be the case. The additional operators ♦ (sometime from
now on) and � (always from now on) can be defined as macros by ♦ϕ ≡ �Uϕ
and �ϕ ≡ ¬♦¬ϕ, respectively. The standard Boolean connectives �,⊥,∨,→,
and ↔ are defined in their usual way.

In the next few subsections we define several variants of temporal logic that
are increasingly more expressive. While LTL talks about linearly ordered time-
points (so there is only one possible execution of the system), CTL* deals with
branching time and thus needs new quantifiers E,A to talk about all possible tem-
poral paths (in addition to talking about time-points on such paths). In CTL* we
can model many different executions of a system. ATL* finally extends CTL*

by replacing E,A by cooperation modalities. This allows us to deal with abilities
(or strategies) of groups of agents.
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Figure 14.1: Two robots and a carriage: a schematic view (left) and a transition
system M0 that models the scenario (right).

In this section we introduce the logics that we investigate later more thoroughly.
We do not give precise semantics here (we refer to Chapter 16 and to [18]).

We illustrate these logics with the following example.

Example 14.1 (Robots and Carriage) Two robots push a carriage from opposite
sides (Figure 14.1). As a result, the carriage can move clockwise or counter-
clockwise, or it can remain in the same place – depending on who pushes with
more force (and, perhaps, who refrains from pushing). We identify 3 different
positions of the carriage, and associate them with states q0, q1, and q2. The
arrows in transition system M0 indicate how the state of the system can change in
a single step. We label the states with propositions pos0,pos1,pos2, to refer to the
current position of the carriage.

As we are investigating the precise complexity of the model checking problem
later, we need to be a bit more precise. The transition system above is also called
a Kripke model.

Definition 14.1 (Kripke Model, Path) A Kripke model (or unlabeled transition
system) is given by M = 〈St,R,Π,π〉 where St is a non-empty set of states (or
possible worlds), R⊆ St×St is a serial transition relation on states, Π is a set of
atomic propositions, and π : Π→ 2St is a valuation of propositions. A path λ (or
computation) in M is an infinite sequence of states that can result from subsequent
transitions, and refers to a possible course of action. For q ∈ St we use ΛM(q) to
denote the set of all paths of M starting in q and we define ΛM as

⋃
q∈St ΛM(q).

The subscript “M” is often omitted when clear from the context.
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2.2.1 LTL

Definition 14.2 (Language LLTL [99]) The language LLTL is given by all formu-
lae generated by the following grammar, where p ∈ Π is a proposition: ϕ ::= p |
¬ϕ | ϕ∧ϕ | ϕUϕ | �ϕ.

The logic is termed linear-time because formulae are interpreted over infinite lin-
ear orders of states. It allows us to reason about a particular computation of a
system: there is always exactly one next time moment. A model is an infinite
sequence of states, such as

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

This describes a computation that consists of the same 3 states occurring again
and again: the carriage moves forever in a cycle from position 0 via position 1 to
position 2.

What about the formulae �pos1, ♦pos2, and �♦pos2? They are all true in
this model (we evaluate these formulae in the first state of the series).

There are several important classes of property that can be expressed easily in
LTL:

Reachability: A particular state is reachable from the present state.

Safety: A (bad) property will never be satisfied at any future state.

Liveness: A (good) property will eventually be satisfied by some state in the fu-
ture.

Deadlock freedom: A dead-end state will never be reached.

The formula �♦pos1 →♦pos2 expresses the statement: “If it is infinitely often
the case that pos1 is true then at some point in the future pos2 will be true.” Formu-
lae such as this, especially when they incorporate subformulae such as �♦pos1,
are very useful for representing fairness properties [50].

Fairness: If something is attempted a certain (either finite or infinite) number of
times, then it will eventually occur a certain (finite or infinite) number of
times.

LTL can be viewed in many ways [48], for example, as a decidable fragment of
first-order logic (see one of the exercises).

There is one important observation to make here: models of LTL are infinite
paths (see one of the exercises where we show how to make finite paths infinite
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by adding loops). How can we represent such an infinite path? Clearly we need a
finite representation of it. In fact, we use the Kripke model M (see Definition 14.1)
and define

M,q |=LTL ϕ

to mean that ϕ is true on all resulting paths starting in q in the model M. Note
again that LTL formulae are always evaluated on one individual path: in the
definition just presented we consider, in addition, all possible paths the system
could take.

Clearly, �pos1 is not true at q0 in M as there is a path from q0 where pos1 is
not true (using the transition that leads into q0 or the one that leads into q2).

2.2.2 CTL and CTL*

The logic CTL* [38] explicitly refers to patterns of properties that can occur
along a particular temporal path, as well as to the set of possible time series, and
thus extends LTL. This extra dimension is handled by path quantifiers: E (there
is a path) and A (for all paths) where the A quantifier is defined as the macro:
Aϕ ≡ ¬E¬ϕ. Hence, the language of CTL*, LCTL∗ , essentially extends LLTL by
adding the ability to quantify over different paths.

Definition 14.3 (Language LCTL∗ [38]) The language LCTL∗ is given by all for-
mulae generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ∧ϕ | Eγ where γ ::=
ϕ | ¬γ | γ∧ γ | γU γ | �γ and p ∈ Π. Formulae ϕ (respectively, γ) are called state
(respectively, path) formulae.

For example, E♦ϕ states that there is at least one path on which ϕ holds at some
(future) moment in time.

We now consider the formulae E♦pos1, A♦pos1, and ¬A�♦pos2 and evaluate
them in our Kripke model and in state q0. While the first one is true (from state
q0 it is possible to reach position 1 in the future via a computation), the second is
not (because this is not possible for all paths). The third formula is also true (as
its negation is false).

Finally, we mention that there is a fragment2 of CTL*, called CTL [23],
which is strictly less expressive but has significantly better computational prop-
erties. The language is restricted so that each temporal operator must be directly
preceded by a path quantifier. For example, A�E �p is a LCTL-formula whereas
A�♦p is not. The complexity of these logics is investigated in Section 4.3.

2To be precise, it is not just a fragment, i.e., a subset, of the language. In order to make sure
that all operators are definable, the definition of the language requires some care.
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So CTL formulae are directly evaluated in a Kripke model and we can express
“on all paths it is always true that there exists a path such that . . . ”: A�E�pos1.
This cannot be expressed in LTL.

2.2.3 ATL and ATL*

The logic ATL* [6, 7] (Alternating-time Temporal Logic) is a generalization of
CTL*. In LATL∗ the path quantifiers E,A are replaced by cooperation modality
〈〈A〉〉 where A ⊆ Agt is a team of agents. Thus, formula 〈〈A〉〉γ expresses the
property that

the team of agents, A, has a collective strategy to enforce γ.

Thus we can formulate statements of the form it is possible that a certain group
of agents is able to bring about a certain formula ϕ. This is to be understood as,
whatever all other agents are doing, this group can make sure that ϕ holds. The
recursive definition of the language syntax is given below.

Definition 14.4 (Language LATL∗ [6]) The language LATL∗ is given by all
formulae generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ |
〈〈A〉〉γ where γ ::= ϕ | ¬γ | γ∧ γ | γU γ | �γ, A ⊆ Agt, and p ∈ Π. Formulae ϕ
(respectively, γ) are called state (respectively, path) formulae.

For example, the formula 〈〈A〉〉�♦p expresses the statement that coalition A can
guarantee that p is satisfied infinitely many times (ever and ever again in the fu-
ture).

The semantics for LATL∗ is defined over a variant of transition systems where
transitions are labeled with combinations of actions, one per agent.

Definition 14.5 (Concurrent Game Structure) A concurrent game structure
(CGS) is a tuple M = 〈Agt,St,Π,π,Act,d,o〉, which includes a non-empty fi-
nite set of all agents Agt = {1, . . . ,k}, a non-empty set of states St, a set of atomic
propositions Π and their valuation π : Π → 2St , and a non-empty finite set of
(atomic) actions Act. Function d : Agt× St → 2Act defines non-empty sets of ac-
tions available to agents at each state, and o is a (deterministic) transition func-
tion that assigns the outcome state q′ = o(q,α1, . . . ,αk) to state q and a tuple of
actions 〈α1, . . . ,αk〉 for αi ∈ d(i,q) and 1 ≤ i ≤ k, which can be executed by Agt
in q. We also write da(q) instead of d(a,q).

So, it is assumed that all the agents execute their actions synchronously: the com-
bination of the actions, together with the current state, determines the transition to
the next state of the system.
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Figure 14.2: Two robots and a carriage: a refined version of our example and a
concurrent game structure (CGS).

Example 14.2 (Robots and Carriage, ctd.) Consider the modified version of
our example, as shown in Figure 14.2. What about the following formulae?

1. pos0 → 〈〈1〉〉�¬pos1
2. pos0 → 〈〈1,2〉〉 �pos1

3. pos0 →¬〈〈2〉〉 �pos1

The first one expresses that when one is in position 0, then agent 1 alone can
ensure that position 1 will never be reached in the future. Indeed, agent 1 should
not push while in position 0, but should do so in position 2 (otherwise it might end
up in position 1 if agent 2 does not push). The appropriate strategy is s1(q0) =
wait,s1(q2) = push (the action that we specify for q1 is irrelevant). The second
formula above says that both agents can make sure that they reach position 1 in
the next step. Indeed, agent 1 should push and agent 2 should refrain from doing
so. Clearly they need to work together. The final formula above says that, in
position 0, it is not possible for agent 2 on its own to ensure that the carriage ends
up in position 1 in the next time-point. Indeed, the next position of the carriage
depends on the action carried out by agent 1.

Can cooperation modalities be compared to diamonds or rather to boxes? The
answer is “neither”! They are essentially combinations of both. Their structure
can be described by “∃∀”’ (we ask for the existence of a strategy of the proponents
that is successful against all responses of the opponents).

As for CTL, we define the language LATL that restricts LATL∗ in the same way
as LCTL restricts LCTL∗: each temporal operator must be directly preceded by a
cooperation modality.
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As an example, the formula 〈〈A〉〉�♦p is not a formula of LATL (it contains
two consecutive temporal operators). LATL does not allow us to express abilities
related to, for example, fairness properties, where we often need this ‘�♦’ com-
bination. Still, many interesting properties are expressible. We can express the
fact that agent a has a strategy that permanently takes away the ability to enforce
�p from coalition B: 〈〈a〉〉�¬〈〈B〉〉 �p. This is clearly quite powerful.

As is the case for CTL and CTL*, the choice between LATL∗ and LATL re-
flects the trade-off between expressiveness and practicality.

2.3 Approaches Based on Dynamic Logic

In an attempt to make modal logic more applicable to the specification of com-
puter programs, dynamic logic was introduced [58, 103]. Dynamic logic extends
modal logic by allowing modal operators to be parameterized by programs. So,
in dynamic logic, “[α]ψ” means that the formula ψ is true in every state in which
program α terminates while “〈α〉ϕ” means that ϕ is true in at least one state in
which program α terminates.

Along with the usual propositional operators for combining formulas, dynamic
logic includes operators to combine programs. This gives the ability to build com-
plex programs from a simple set of atomic programs. Typical program operators
are “∪”, “;”, and “∗”, representing non-deterministic choice, sequential compo-
sition, and non-deterministic iteration, respectively. Often, dynamic logics also
include the test operator, “?”. The informal descriptions of these four operators
are:

α∪β — is a program that does α or β non-deterministically,
α;β — is a program that does α followed by β,
α∗ — is a program that does a non-deterministic (unbounded) number

of α’s sequentially,
p? — is a program that aborts if p is false, but continues if p is true.

Dynamic logic has proved very popular and useful across many areas. In addi-
tion to application, much research has gone into categorizing the relative power
and complexity of dynamic logics that are allowed differing sets of program op-
erators [59]. The semantics of dynamic logic, particularly simple versions such
as propositional dynamic logic (PDL), are straightforward, essentially following
that of multimodal logics. Along with the simplicity of this semantics for PDL,
axiomatizations of PDL tend to be equally as simple as decision procedures, at
least for basic dynamic logics.

Perhaps one of the most appealing aspects of dynamic logic is its close links to
Hoare logic, and partial correctness assertions in general [95]. Thus, {p}α{q} in
Hoare logic can be expressed as p⇒ [α]q in PDL, while termination of a program
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α can be expressed by 〈α〉�. These aspects make dynamic logic a viable alterna-
tive to temporal logic in providing the basis for agent specification formalisms.

2.4 Combinations

As we have said already, the key logical foundation for agent specification is the
combination of logical domains [78]. Typically, formalisms for agent specifica-
tion consist of a temporal/dynamic basis combined at least with a logic of in-
formation (e.g., knowledge or belief) and usually at least one logic of motivation
(e.g., goals, intentions, desires, wishes). In the following subsections we highlight
useful and popular combinations.

2.4.1 BDI

As the BDI approach to representing and implementing rational agents [107] is the
predominant one within the area, this is described in detail in several other chap-
ters. We will not recap all this but just mention how the formal BDI framework fits
in with this section. As described above, the core of any agent formalism is some
dynamic base, and there are variations of the BDI approach using either dynamic
logics or temporal logics. On top of this, we usually need a logical framework
for the information the agent has and, again, the BDI approach uses beliefs cap-
tured logically by KD45 modal logic. For rational agents that must have some
explicit motivation for making their choices, an additional logical dimension for
this is required. Indeed, in the BDI approach, there are two varieties of motiva-
tion: desires, representing long-term goals; and intentions, representing goals that
the agent is actively undertaking. Both of these are formally represented by (dis-
tinct) KD modal logics. The combination of all these logical dimensions provides
a logical basis for specifying BDI agents [106], in particular, a basis upon which
the key aspect of deliberation can be described. In the BDI approach, delibera-
tion consists of two aspects: deciding which desires will be selected to become
intentions; and deciding the best way (plan) to achieve these intentions.

2.4.2 KARO

The KARO approach (Knowledge, Abilities, Results, and Opportunities) [88, 123]
is based on dynamic logic. Essentially it is a formal system aimed at specifying
and reasoning about the behavior of rational agents.

In the basic framework [123], an agent has knowledge, usually expressed
through an S5 modal logic. The dynamic logic basis provides the action lan-
guage, thus allowing analysis of whether the agent is able to perform a certain
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action or has the opportunity to perform it. Beyond this the motivational aspect of
a rational agent is described via a KD modal logic of wish.

2.4.3 Dynamic Epistemic Logic

Dynamic epistemic logic (DEL) [120] is a combination of S5 multimodal logic
(providing an informational dimension) together with a standard dynamic logic
(providing the underlying dynamic framework). A typical use is where some ac-
tion, for example, a public announcement, forces a dynamic change in the knowl-
edge of agents [119, 121]. Note that there are no explicit motivational attitudes
here.

2.5 Sample Specifications

We here provide some examples of formal specifications of agent behavior, par-
ticularly relating to some of the examples considered in Chapter 13.

Consider a simple contract-net protocol between agents and begin with just the
seller agent. A naive requirement for this seller might be that the seller will accept
the first proposal it receives, e.g.,

received(offer) ⇒ �accept(offer) .

Of course, it may well be that the offer is not acceptable, so

(received(offer) ∧ acceptable(offer)) ⇒ �accept(offer)

and, quite possibly, the acceptance will take some time:

(received(offer) ∧ acceptable(offer)) ⇒ ♦accept(offer) .

However, this is quite a strong requirement. More likely, we will require the agent
to accept one of the reasonable offers, and so, using some additional first-order
syntax,

[∃O1. received(O1) ∧ acceptable(O1)]
⇒

[∃O2. received(O2) ∧ acceptable(O2) ∧ ♦accept(O2)] .

An alternative way to capture such a specification is to record the incoming offers
within the agent’s knowledge, and then

KSellerbest(offer) ⇒ ♦accept(offer) .
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More typically, within an agent working in the real world, we will not have cer-
tainty about information or environmental constraints, and so will use belief. In
addition, since we often do not know what might stop the agent from accepting an
offer, we often require that the seller agent intends to accept the best offer. So:

BSellerbest(offer) ⇒ ISelleraccept(offer) .

Separately, we might require that

(ISelleraccept(x) ∧ no_problem_with(x)) ⇒ ♦accept(x) .

Now, we can also specify the multiagent interaction, for example

send(seller,offer) ⇒ ♦KSellerreceived(offer)

and by combining all the specifications together, we can (ideally) describe the
chain of steps to achieve

∃O. ♦accept(O) .

Now we consider the scenario outlined in Chapter 15 and Section 6 of Chapter 13
involving two robots collaborating in a manufacturing plant. As in the contract-
net example above, there are a number of different aspects we might require. For
example, robot1 should ensure that

♦on(A, table)

and also
♦on(B,A) .

Clearly, we eventually require that

♦unloaded(completed_ABC)

but this specification can be decomposed to multiple steps, for example⎡⎢⎣ Krobot1
in_front_of (robot1,C)∧

Krobot1
in_front_of (robot1,AB)∧

table_rotates

⎤⎥⎦ ⇒ ♦
[

Krobot2
in_front_of (robot2,C)∧

Krobot2
in_front_of (robot2,AB)

]
[

Krobot2
in_front_of (robot2,C)∧

Krobot2
in_front_of (robot2,AB)

]
⇒ �Krobot2

in_front_of (robot2,ABC)

[
Krobot2

in_front_of (robot2,ABC)∧
unload(ABC)

]
⇒ ♦unloaded(ABC)
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And so on. An important aspect to notice here is that the overall system re-
quirement is dependent on the appropriate actions of the environment. Specifi-
cally, that “table_rotates” is true at relevant times. Typically, we might require
�♦table_rotates, i.e., that the table rotates infinitely often.

This leads us to consider the cooperation between the robots required in order
to achieve the (completed and) unloaded part “ABC”. Intuitively, we might expect
a requirement such as

〈〈robot1,robot2〉〉♦unloaded(ABC) .

However, as we have seen, this is not the case and we must take into account the
movements of the table. Actually, we can consider the table to be a separate agent
since it can choose to rotate when it likes. Given this, we might require

〈〈robot1,robot2, table〉〉♦unloaded(ABC)

and so the two robots and the table can together ensure that the “ABC” part is
completed and unloaded. Finally, we note that the table can, in principle, stop the
part being made:

〈〈table〉〉�¬completed(ABC)

since the table can choose to move at exactly the wrong places.

3 From Specifications to Implementations

We have seen how a logical formalism can be used to specify agent behavior. But
there remains a gap between such a specification and an actual implemented agent
system. As in standard formal methods there are a number of ways to bridge this
gap.

3.1 Toward Formal Verification

In subsequent sections we will consider how to generate an agent implementa-
tion from an agent specification using formal development methods such as re-
finement, synthesis, or direct execution. However, as we will see in Section 4,
the most likely use of formal specifications is as a formal requirement that we
can measure implementations against. In most cases such implementations will
be developed by informal approaches, such as traditional software engineering
methods. Once we have an agent, or multiagent system, developed in this way, it
is important that we are able to assess how well this implementation matches our
formal requirement. Automated and effective techniques for achieving this will
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be the main focus of our discussion in Section 4 and beyond. Before that, how-
ever, we look at several ways to generate an agent implementation from a logical
specification.

3.2 Refinement

Given some logical specification of agent behavior, ϕS, then we might choose
to refine this to a new, perhaps more detailed, specification. As we move to-
ward a “real” implementation we would like to increasingly be specific about the
agent’s behavior. So, while ϕS might be quite vague and high level, we would aim
xxxxxxx for the refined specification, say ϕR, to describe behaviors that still cor-
respond to some of those in ϕS but likely remove some of those we now consider
irrelevant. Thus, it is typical (and expected) that � ϕR ⇒ ϕS. So, we know that all
implementations satisfying ϕR will also still satisfy ϕS, though there may well be
some implementations allowed by ϕs that are now disallowed by ϕR. Two things
are important here:

1. whatever logical properties we established for ϕS can, because we know that
ϕR ⇒ ϕS, also be established for ϕR; and

2. ϕR is more detailed, more deterministic, or at least closer to a possible im-
plementation of the agent.

Thus, we can develop a series of refinements, ϕR1 , ϕR2 , ϕR3 , . . ., successively
moving us toward an implementation in a formally defined way [19, 89]. While
this approach is well-known in traditional formal methods, it can also be used for
agent specifications. Yet, there still remains the problem of getting from a logical
specification, say ϕRi , to an actual agent implementation; we will consider these
aspects in the subsequent sections.

3.3 Synthesis

Ideally, we would like to automatically synthesize an agent program directly from
an agent specification. This sounds ideal, especially if we can guarantee that
the agent will definitely implement its specification. This is, of course, a very
appealing direction in traditional formal methods but has some underlying diffi-
culties [84]. A typical approach is to synthesize a finite-state automaton from a
logical (usually temporal) specification [100, 101]; and though in some cases this
can be automatic and effective, in many situations the complexity of undertak-
ing this is very large. Thus, the underlying synthesis problem even for a system
of two very simple agents may well be quite complex (2-EXPTIME). So, as yet,
such approaches are impractical. However, current work looking at both reduced
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scenarios and at bounded search for an implementation [98, 109] have promise
both in the non-agent and agent cases.

3.4 Specifications as Programs

A formal specification essentially characterizes a set of models of the entity being
specified. In the case of agents, a logical agent specification describes a set of
agent executions that satisfies the specification. So, if we have some process for
extracting one (or more) of these models/executions from the specification, then
this effectively gives us a way of implementing the formal specification.

Of course, you have seen this before. Logic programming, primarily in the
form of PROLOG [114], provides a mechanism for trying to build a model (ex-
ecution) of a set of Horn clauses. Indeed, we could use many other methods
for model-building from a set of Horn clauses [75]. If we wish to do something
similar for agent specifications, then we must invoke suitable model-building pro-
cedures for the logics underlying these specifications. Fortunately, the basis for
many agent specifications is linear temporal logic, and the models of this logic
are linear sequences of states, which correspond directly to program executions
(see Section 2.2 earlier).

How do we go about building models from temporal specifications and then
extending this to agent specifications? An obvious first step is to extend the res-
olution approach, which is central to logic programming for the temporal logic
case. Unfortunately, this is quite complex and, sometimes, gives counterintuitive
results. For example, if we build a model/execution for a set of temporal Horn
clauses using an extension of SLD-resolution for such clauses, then we might
generate the first parts of the model/execution from the future all the way back to
the present.

In spite of this, such temporal languages have been developed, most notably
TEMPLOG [1, 14] and CHRONOLOG [92, 93], both of which execute a subset of
temporal Horn clauses using TSLD-resolution, an extension of SLD-resolution.
Perhaps more relevant to agent implementation, CHRONOLOG(Z) is a more recent
version, which has been shown to be useful in parallel contexts [80].

An alternative approach, and one which builds the underlying temporal mod-
els in the correct order, i.e., from the beginning onward, is the METATEM ap-
proach [13, 49]. Since this was described in detail in Chapter 13, we just recap
the essential features. Again we wish to execute logical specifications in order to
build a model that satisfies the specification. In the basic METATEM case [13],
a temporal specification is executed, but contrary to the TEMPLOG approach, a
lightweight forward chaining procedure is used to build an execution sequence
that is a model for the temporal specification. A particular feature of the way
models are built, called the “Imperative Future” approach [13], is that they are
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built from the beginning; the model is constructed step by step, starting from the
initial state. In the basic case this is complete in that the temporal specification for
an agent can be executed if, and only if, the specification is satisfiable.

As we have seen, however, a temporal specification on its own is not enough
and, consequently, METATEM has been extended and developed over the years.
The basic specification is extended with beliefs, which provide the information
the agent decides upon. An interesting aspect of these beliefs is that a form of
resource-bounding can be captured by considering the depth of nesting allowed
in reasoning about such beliefs [44]. In addition, motivations are developed. In-
deed two varieties are considered: the temporal “♦” modality, which provides a
very strong motivation since the semantics of “♦g” require that g will definitely
happen; and the combination “B♦”, where “B” is the belief operator, which pro-
vides a weaker motivation for the agent. Overlaying all this is a framework, called
Concurrent METATEM, which takes a set of such agents, each executing its own
formal specifications asynchronously, and allows them to communicate, cooper-
ate, and self-organize [48]. See Chapter 13 for more details.

4 Formal Verification

Once we decide to analyze a system with respect to a formal property, there are
a number of ways to achieve this. One particularly popular approach is to carry
out testing [8, 16, 61]. Here, the system/program is executed under a specific set
of conditions and the execution produced is compared to an expected outcome.
The skill in testing is to carry this out for enough different conditions so that the
developer can be relatively confident that the program/system is indeed correct.

While testing is, of course, very useful, it only examines a subset of all the
possible executions. What if we want to be sure that the logical specification is
met, whichever way the program/system executes? Assessing whether this is the
case or not is the core of formal verification.

4.1 What Is Formal Verification?

The Latin origin of “verification” is veritas facere: “making something true.” A
more recent dictionary definition is

Verification: additional proof that something that was believed (some fact or hy-
pothesis or theory) is correct [31]

Moving on to “formal verification,” we find,

Formal Verification: the act of proving or disproving the correctness of a system
with respect to a certain formal specification or property [30]
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As described above, we essentially want to examine all possible executions of
our system/program in order to assess whether they all satisfy our formal require-
ments. If there is only a finite set of different executions, then we might be able
to enumerate them all and check their properties; if there is an infinite number
of possible executions, then we must do something more sophisticated. We will
briefly describe some alternative verification approaches below before specifically
looking at these in an agent context in Sections 5, 6, and 7.

4.2 Deductive Verification

If we have a complex system, with an infinite (or at least very large) number of
possible executions, then a typical approach is to use some logical description to
capture the behavior of our system. This logical formula, say “Sys”, is likely to
have been devised from the formal semantics of the system/program. If we then
have our formal specification of our requirements, say Req, given in the same
logic, then the aim of deductive verification is to prove � Sys ⇒ Req. If this is
proved, then all executions, characterized by Sys, satisfy the required property,
Req.

Of course, logical proof can be difficult. If we are lucky, Sys and Req can
be described in a quite simple logic and the formula Sys ⇒ Req can be decided
in a fast and automated way. More likely, either the proof process cannot be
fully automated or, even if it can, it is likely to be very slow. In the former case,
it is often essential to invoke human intervention and so utilize semi-automated
theorem provers such as Isabelle [96] and PVS [94]. In the latter case, more
sophisticated heuristics and abstractions are typically used.

4.3 Algorithmic Verification

As described above, if we want to establish some property of all executions of a
system, and if there is only a finite number of such executions, then an obvious
approach is to enumerate the executions and check the property on each in turn.
While this is a gross simplification, it is essentially the basis of the model check-
ing approach to algorithmic verification, which has been so successful and influen-
tial [10, 12, 22, 129]. Here, a mathematical model of the system in question is pro-
duced such that the model captures all relevant system executions. (Such a model
is typically generated from an operational semantics for the system.) Then the
model checker exhaustively checks that all paths through the model (and, there-
fore, running through the system) satisfy the requirement. Within this context the
formal requirement is often given in a form of temporal logic, as introduced in
Section 3.4. If all paths satisfy the logical requirement, then the system is re-
ported as being correct with respect to its specification. If, however, a path fails
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Figure 14.3: Automata-theoretic view of model checking.

to satisfy the specification, then this gives us an execution that violates the formal
requirement.

The typical way of visualizing this is in terms of finite-state automata, in par-
ticular Büchi automata. The essential idea here is to capture all the possible exe-
cutions of the system to be verified as a B’́uchi automaton (a finite-state automa-
ton with infinite runs) and generate a separate B’́uchi automaton describing all
bad runs, i.e., executions that do not satisfy the property being verified. Then we
take the synchronous product of these two B’́uchi automata [113, 125] (see Fig-
ure 14.3). If the product automaton is empty, then there is no sequence that is a
legal run of the system while at the same time satisfying the “bad” property. How-
ever, if the product automaton is non-empty, then there is indeed a sequence that
is a legal run of the system while at the same time satisfying our “bad” property.
This highlights a failing run of the system.

The model-checking approach has been extremely successful, not only in ana-
lyzing hardware systems [70] and protocols [64], but increasingly in software sys-
tems [12, 126]. While the basic idea is quite simple, the success of the technology
is, to a large part, due to the improvements in implementation and efficiency that
have occurred over the last 25 years. As well as a characterization in terms of
automata [113], on-the-fly [53], symbolic [87], and SAT-based [102] techniques
have all improved the efficacy of model checkers.

The “on-the-fly” approach will be particularly interesting with respect to our
later descriptions, and so we will say a little more about this here. Recall from
Figure 14.3 that the basic automata-theoretic view of model checking involves
constructing the product of two B’́uchi automata. In many practical cases, this
product turns out to be much too large to realistically construct. So, rather than
constructing the actual product automaton, the idea with the “on-the-fly approach”
is to explore paths through this product automaton without actually constructing
it! This is achieved by exploring the two automata in parallel (see Figure 14.4).
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Figure 14.4: “On-the-fly” exploration of the product automaton.

To see how this works, recall that a run of the product automaton must, simul-
taneously, be a run of each of the automata separately. Thus, we explore the “sys-
tem” automaton, ensuring that every transition we take is mirrored by a transition
in the “bad” automaton. We keep exploring this pair synchronously until either
a path has been found that satisfies both, or until the exploration of the “system”
automaton can go no further. In the former case, we have found our “bad” path;
in the latter case, we roll back our execution to any previous choice point in the
“system” automaton and continue exploration. If we have explored all possible
paths through the “system” automaton and none of them have yielded a run of
the “bad” automaton, then we can assert that no execution has the “bad” property.
Notice that in order to be able to achieve this, the model-checking implementation
needs to have (a) a way to synchronously step through two representations, and
(b) a mechanism for backtracking the execution. The predominant model checker
exhibiting this technology is the SPIN model checker [64], though we will see
how this approach is used in Section 4.4.

Finally, while we have described model checking as a technique for analyzing
finite-state systems, there has been considerable work in providing coherent ab-
straction mechanisms to reduce infinite-state systems down to a finite-state form
suitable for model checking (see [20, 21]).

4.4 Program Verification

An important development, in recent years, has involved refining the model-
checking approach. Traditionally a “model” of the executions of the system is
built and then that model is explored and checked with respect to the property.
However, if the system we are to verify is a program, then why not use the pro-
gram itself as the model? In this approach, often termed “software model check-
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ing” or “program model checking,” a logical property is directly checked against
the program code [65, 66, 126].

In essence this approach is closely related to the “on-the-fly” technique from
Figure 14.4 above. If we recall what is needed for this, it is (a) a way of syn-
chronously stepping through a program at the same time as checking a property,
and (b) a mechanism for backtracking execution of the program. So, as long
as we have implementation technology that allows these two, we can implement
program verification. The program to be checked is run and the execution is dy-
namically assessed against the requirement. Once checked, the program is forced
to explore an alternative execution path, which is again checked. And so on. This
has led to the development of model checkers for various high-level languages
such as JAVA and C [63, 126, 128]. In particular, the JAVA PATHFINDER system
implements this approach for model checking JAVA programs [126, 128]. To allow
it to achieve (a) it utilizes a modified JAVA virtual machine that can backtrack, and
to achieve (b) it uses synchronous listener threads. We will see in Section 7 how
JAVA PATHFINDER forms the basis for a model-checking system for JAVA-based
rational agent programs.

4.5 Runtime Verification

Once we have the idea that a form of model checking can be invoked directly on
the program, by forcing it to run numerous times, then this leads us to thinking
about run-time verification [60]. The idea here is to use (lightweight) formal
verification technology to check executions as they are being created. In this way,
errors are also spotted at run-time. Referring back to Figure 14.4, we see that all
the possible program executions are checking against a parallel automaton looking
for “bad” runs. Now we can take this automaton and use it to check the current
execution as it is being created. In this way we can monitor the execution and
recognize when a quite complex error condition has occurred (see Figure 14.5).

5 Deductive Verification of Agents

As we saw earlier, the essence of deductive verification is to provide a logical
description capturing the full behavior of our agent, say “Ag.” Then, if we wish
to verify some property of our agent, such as the agent will eventually terminate,
we describe this property as another logical formula, Req, and then attempt to
prove � Ag⇒ Req. If we succeed with this proof, then Req is true for all possible
behaviors of the agent.
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Figure 14.5: A general view of run-time model checking.

5.1 The Problem

While this deductive approach is very appealing, there are some difficulties to be
overcome when using it:

1. For our particular agent, what logic should “Ag” be described in, and how
do we actually generate “Ag”?

2. What logic should Req be described in, and can we be sure this is sufficient
to allow us to say what we want?

3. Given Ag and Req, will it be possible to prove � Ag ⇒ Req? And will we
be able to automate this proof process?

4. If we fail to prove � Ag⇒ Req, then what does that mean?

Some of these are, of course, quite difficult and fundamental questions, but let us
start to describe answers to some of the above, beginning with (1). For any formal
method, we need some variety of formal semantics that provides a formal (often
logical) representation of all the behaviors of the agent. If agents are described
in terms of enhanced finite-state machines, then this is fairly straightforward. If,
however, we have an agent program, then we require a semantics for the agent
programming language. In the case of deductive verification we consider here,
we specifically need a logical semantics for the agent programming language.
As with traditional formal methods, other varieties of formal semantics, notably
operational semantics, are more popular. Indeed, there are few agent languages
with logical semantics; some exceptions are [4, 33, 46, 116, 117]. In general, it
is easier to develop an operational semantics for an agent programming language
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(especially since such an operational semantics can form the basis for language
implementation) than to develop a logical semantics; consequently, much more
verification work has occurred via operational semantics. Nevertheless, there are
quite a few areas where agent verification based on some form of proof has been
achieved, and we will mention a selection of these below.

Concerning some of the other questions mentioned above, the decision about
what logical basis to use must clearly be driven by the requirements of both the
logical semantics (i.e., what logic the semantics is provided in) and the formal
requirements (i.e., what logic allows us to state the questions we wish to ask). As
we saw earlier, some logical basis combining a temporal/dynamic dimension with
at least a knowledge/belief dimension and probably a motivational dimension is
often used.

5.2 Direct Proof

Some examples of using direct proof methods for agent logics are given below.

2APL, 3APL: In [4] the authors consider a fragment of 3APL and define a
series of propositional dynamic logics that can be used to prove safety and live-
ness properties of programs in this fragment under different deliberation strate-
gies. This is done by relating the operational semantics of programs to models
in the appropriate logic. It requires, among others, the axiomatization of fully
interleaved strategies.

METATEM: As described earlier, METATEM is a little unusual, having no ex-
plicit motivational dimension but using combinations of temporal and belief op-
erators to achieve such “goals.” Consequently, we might prove some (simple)
properties of METATEM programs using deductive proof methods for temporal
logics of belief [35, 45].

However, as we will see in Section 6, this is non-standard – and true “BDI-like”
agents usually require a logic with some motivational dimension, such as in-
tentions or goals. Although Schild [110] showed how Rao and Georgeff’s BDI
logic [106] could be translated to the μ-calculus [76], this target is quite complex
and intricate.

IMPACT: Agents are specified in IMPACT through agent programs. These have
the form of rules and are treated as clauses with negation in logic programming.
Therefore, the semantics is given by the well-known fix-point semantics (the least
Herbrand model in the case of Horn clauses or stable semantics in the case of rules
with negation-as-failure). Whereas the basic language of IMPACT does not allow
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us to formalize mental attitudes and temporal and probabilistic reasoning, these
features have been investigated elsewhere (see [33, 34, 116]) and can be modeled
with annotated logic programs.

Golog and SITCALC: The Cognitive Agent Specification Language (CASL)
[112] is, like GOLOG, based on the situation calculus, but is extended with knowl-
edge and goal operators. Alongside this, the authors described CASLve, a verifi-
cation environment for CASL, which translates a CASL specification into a prob-
lem for the PVS verification system [94].

5.3 Use of Logic Programming

If our agent language is based on logic programming, then there are likely to
be several advantages concerning the questions highlighted in Section 5.1. First,
since it is traditional that declarative as well as operation and fixed-point seman-
tics are provided for logic programming languages, then generating a logical for-
mula describing the full agent behavior is likely to be more straightforward. A
second potential advantage is that as the underlying execution mechanism is es-
sentially deductive (often some variety of SLD-resolution), then we might use the
execution system itself to carry out the deductive verification we are interested in.
In some cases this can be expressive and efficient.

However, it is important to note that often not all the aspects we might wish
for from “BDI-like” languages are present. Here we list three approaches, where
agent attitudes are translated to some variant of computational logic.

Abductive logic programming [72]: Here, standard logic programs are ex-
tended with abducible predicates. These are predicates whose values can be set
in such a way as to explain certain observations. Thus, given a program and a set
of observations, an abduction process is used to suggest which of our abducible
predicates explain the observations. This is particularly useful in “intelligent”
agent computation, where agents often have only partial knowledge of their en-
vironment and so must work out what is the most reasonable explanation for the
things it perceives. Importantly, for our purposes, an abductive proof procedure is
used as part of this process.

KGP and SCIFF: The KGP agent approach is based on logic programming but
extended with specific agent aspects: Knowledge, Goals, and Plans [108]. Ab-
ductive logic programming is used via the SCIFF procedure for interaction veri-
fication [3]. SCIFF was originally developed to verify the compliance of agents
to interaction protocols; it uses (1) abducibles to represent hypotheses about agent
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behavior, (2) CLP constraints, and (3) existentially quantified variables in integrity
constraints.

Action logics: In a series of papers [11, 54, 55], the authors tackle the prob-
lem of specifying and verifying systems of communicating agents and interaction
protocols (e.g., verification of a priori conformance to the agreed upon protocol).
This applies to the case where protocols are specified with finite-state automata
or when the policies can be implemented in DYLOG, a computational logic. The
last approach [55] is based on a dynamic linear-time temporal logic.

5.4 Example

Recall the example of two robots working together to manufacture an artifact,
introduced in Chapters 13 and 15. We considered some of the requirements of
such a scenario in Section 2.5. Now, if we wish to apply deductive verification to
assess some of these requirements, we need a logical description of the system in
question. Typically, this would contain logical representations of all the steps of
the robots, for example⎡⎢⎣ Krobot1

in_front_of (robot1,A) ∧
Krobot1

in_front_of (robot1,B) ∧
do(robot1, load(A,B))

⎤⎥⎦ ⇒ �in_front_of (robot1,AB)

Once we have a suitable specification of the system (say Sys), possibly comprising
formulae such as the above, then we can verify this with respect to some of the
formal requirements (say Req) from Section 2.5 in the way described earlier, i.e.,

� Sys⇒ Req

Of course, we require suitable, preferably automated proof systems for the rele-
vant logics. For example, the above will need at least a proof in temporal logics
of knowledge [40].

6 Algorithmic Verification of Agent Models

In this section we consider the algorithmic model-checking problem for the logics
introduced in Section 2.2: given a model M, a state q in it, and a property Φ wrt.
a logic L, we determine whether the model satisfies the property:

M,q |=L Φ.
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This variant of model checking is called local, because we evaluate the formula
in a given state q. Global model checking, on the other hand, is the problem of
computing all states q, such that the above relation holds (where M, a property Φ
in a logic L are given).

In Section 6.1, we deal with the problem of how exactly to measure the in-
put of a model-checking problem. Subsection 6.2 extends the logics introduced
in Section 2.1 along two dimensions: taking into account the past history of the
agent; and taking into account that the perceptions of an agent are not perfect. In
Subsection 6.3 we introduce an approach with a highly compact representation of
a model. Finally, in Subsection 6.4 we present a table highlighting the complexi-
ties of the logics considered so far.

6.1 The Representation and Size of the Model

How do we measure the size of a given model? Should we simply consider the
number of states? Should we assume the model is given explicitly and we just
count the number of symbols that are necessary to represent it?

Maybe an implicit, for example, symbolic, representation is more appropriate?
We might have available operations to extract information from the model without
unfolding (or unraveling) it.

Let us illustrate these problems in an area that most computer scientists know
quite well.

Example 14.3 (Explicit versus implicit representation) We here consider the
famed primality problem: checking whether a given natural number n is prime.
A very simple and well-known algorithm uses

√
n-many divisions (starting with

2, then 3, etc., until
√

n) and thus runs in less than linear-time when the input is
represented in unary.

But a symbolic representation of n needs only log(n) bits and thus the above
algorithm runs in exponential time:

√
n is exponential as a function of log(n).

This does not necessarily imply that the problem itself is of exponential complex-
ity. In fact, the famous and deep result of Agrawal, Kayal, and Saxena shows that
the primality problem can be solved in polynomial time: there is an ingenious
algorithm that runs in time polynomial in log(n).

We distinguish between the following approaches for measuring the complex-
ity of the model-checking problem in multiagent systems:

Explicit: The input size is given by the number of transitions in the model and the
length of the formula. Thus, we assume the model is given explicitly. How-
ever, many realistic multiagent systems are characterized by an immensely
huge state space that cannot be handled efficiently.
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Implicit: We assume that the transition function is implicitly encoded in a suffi-
ciently small way. The input size can then be viewed as a function of the
number of states and the number of agents (and the length of the formula).

Highly compact: For many systems, some symbolic and thus very compact rep-
resentations are possible. The model can be defined in terms of a compact
high-level representation, plus an unfolding procedure that defines the pre-
cise relationship between representations and explicit models of the logic.
Of course, unfolding a higher-level description to an explicit model involves
usually an exponential blowup in its size.

We are now ready to tackle the questions at the beginning of this subsection. Tak-
ing only the number of states into account would give a misleading measure. Let n
be the number of states in a concurrent game structure M, let k denote the number
of agents, and d the maximal number of available decisions (moves) per agent per
state. Then, m = O(ndk).

Thus, if we consider explicit models, the size of the input is measured as ndk.
If we consider, however, implicit models, then the size of the input is viewed as a
function of n and k. Therefore, many model-checking algorithms (e.g., from [7])
are polynomial in ndk but they run in exponential time if the number of agents is
a parameter of the problem (implicit models).

6.2 (Im-)Perfect Information, (Im-)Perfect Recall

When we introduced the logics CTL* and ATL*, we made two simplifying as-
sumptions:

Perfect Information: Agents have perfect information about the current state.
All states can be distinguished and all agents know the current state.

However, often agents do not perceive their environment perfectly. Some
are able to distinguish certain states, whereas others might do so for differ-
ent states. This requires that each agent only knows an equivalence relation
of the set of states. And then the strategy of an agent has to be compatible
with this relation. We refer to Example 14.4.

Imperfect Recall: Agents base their decisions only on the current state. This
means that whenever an agent gets back to this state, its decision must be
the same. Thus a strategy is defined as sa : St → Act where sa(q) ∈ da(q), a
memoryless strategy.

A more flexible (and powerful) method would be to base the decision not
only on the current state, but on the whole history of events until now. A
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Figure 14.6: Two robots and a carriage: a schematic view (left) and an imperfect
information concurrent game structure M2 that models the scenario (right).

history is a finite sequence of states of the system. Thus sa : St+ → Act
where sa(q) ∈ da(q). This is then called perfect recall.

IR, Ir, iR, ir: Combining the two dimensions mentioned above gives us four dif-
ferent logics. ATLIR: ATL with perfect information and perfect recall;
ATLIr: ATL with perfect information and imperfect recall; ATLiR: ATL

with imperfect information and perfect recall; and ATLir: ATL with im-
perfect information and imperfect recall.

We note that ATLIr and ATLIR are equivalent, which does not hold for the ATL∗
version. Consider Figure 14.2 and the formula 〈〈1,2〉〉(♦pos1∧♦halt). Does this
formula hold in state q0? In order to make it true, we have to first go to q1 and
then back to q0 to finally switch to the halting state. But this is only possible when
we have perfect recall! This shows that ATL∗

IR and ATL∗
Ir are different.

But the formula just considered does not belong to the language of ATL. How
can one show that ATLIr and ATLIR are equivalent? One can show by induction
on the structure of a formula that the following holds. If a formula Φ is true in
a model, then there is a strategy that leads to a certain (infinite) path. So there
must be a prefix that contains for the first time a state twice. Thus it is of the form
q0, . . .q, . . .q. Then there must be a strategy (maybe a different one) that makes Φ
true in this prefix. This implies that perfect recall is not needed because all this
depends on the first prefix: no history is needed (as in our counterexample).

Example 14.4 (Robots and Carriage, ctd.) We refine the scenario from Exam-
ples 14.1 and 14.2 by restricting the perception of the robots. We assume that
robot 1 is only able to observe the color of the surface on which it is standing,
and robot 2 perceives only the texture (cf. Figure 14.6). As a consequence, the
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first robot can distinguish between position 0 and position 1, but positions 0 and 2
look the same to it. Likewise, the second robot can distinguish between positions
0 and 2, but not 0 and 1. We also assume imperfect recall.

With these observational capabilities, no agent can make the carriage reach
or avoid any selected states single-handedly. E.g., we have that M2,q0 |=ir
¬〈〈1〉〉�¬pos1. Note, in particular, that strategy s1 from Example 14.2 cannot
be used here because it is not uniform (indeed, the strategy tells robot 1 to wait in
q0 and push in q2 but both states look the same to the robot). The robots cannot
even be sure to achieve the task together: M2,q0 |=ir ¬〈〈1,2〉〉�pos1 (when in q0,
robot 2 considers it possible that the current state of the system is q1, in which case
all the hope is gone). So, do the robots know how to play to achieve anything? Yes,
for example they know how to make the carriage reach a particular state eventu-
ally: M2,q0 |=ir 〈〈1,2〉〉♦pos1, etc. – it suffices that one of the robots pushes all
the time and the other waits all the time. Still, M2,q0 |=ir ¬〈〈1,2〉〉♦�posx (for
x = 0,1,2): there is no memoryless strategy for the robots to bring the carriage to
a particular position and keep it there forever.

6.3 Modular Interpreted Systems

Most real multiagent systems are characterized by a huge state space that is im-
possible to represent explicitly. Thus it would be better to consider a compact
high-level representation of this model accompanied by an unfolding procedure
that defines the relationship between representations and models of the logic. Of
course, one cannot escape the overall complexity problem: unfolding a high-level
description to an explicit model will remain an exponential blowup in its size.

A trivial example is a system whose state space is defined by just r binary at-
tributes. The number of global states in the system is then n = 2r. A more refined
approach from [77] defines “high-level descriptions” in terms of concurrent pro-
grams, which can be used for simulating binary variables, but also for processes
or agents acting in parallel.

A concurrent program P is composed of k concurrent processes, each de-
scribed by a labeled transition system Pi = 〈Sti,Acti,Ri,Πi,πi〉, where Sti is the
set of local states of process i, Acti is the set of local actions, Ri ⊆ Sti×Acti×Sti
is a transition relation, and Πi,πi are the set of local propositions and their valu-
ation. The behavior of program P is given by the product of P1, . . . ,Pk (viewed
as a labeled transition system) under the assumption that processes work asyn-
chronously, actions are interleaved, and synchronization is obtained through com-
mon action names.

While concurrent programs seem to be sufficient for reasoning about purely
temporal properties of systems, they are not for reasoning about agents’ strategies
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and abilities. For the latter kind of analysis, we need to allow for more sophisti-
cated interferences between agents’ actions (and enable modeling agents that play
synchronously).

A modular interpreted system (MIS) is defined as a tuple M =
〈Agt,env,Act,In〉, where Agt = {a1, . . . ,ak} is a set of agents, env is the environ-
ment, Act is a set of actions, and In is a set of symbols called interaction alphabet.
Each agent has the following internal structure: ai = 〈Sti,di,outi, ini,oi,Πi,πi〉.

The unfolding of a MIS M to a concurrent game structure is naturally in-
duced by the synchronous product of the agent (and the environment) in M,
with interaction symbols being passed between local transition functions at every
step. The unfolding can also determine indistinguishability relations as follows:
〈q1, . . . ,qk,qenv〉 ∼i 〈q′1, . . . ,q′k,q′env〉 iff qi = q′i, thus yielding a full iCGS.

ATL model checking for such higher-order representations was first analyzed
in [118] over a class of simple reactive modules, based on the synchronous prod-
uct of local models. However, such reactive modules do not allow us to model
interference between agents’ actions.

Note. This section is taken from [18], and we refer to the work of Jamroga and
Agotnes for further details [68]. It is inspired by interpreted systems [40], reactive
modules [5], and are in many respects similar to ISPL specifications [104]. A
recent application is [74].

6.4 MC Complexity for LTL, CTL, ATL, and MIS

Theorem 14.1 (MC LTL has the same complexity as CTL* [24, 37]) The
LTL and CTL* model-checking problems are PSPACE-complete, and can be
done in time 2O(|ϕ|)O(|M|), where |M| is given by the number of transitions.

What does Table 14.1 tell us? The variables n and m stand for the number of
states and transitions, respectively, and k is the number of agents in the model; l
is the length of the formula, and nlocal is the number of local states in a modular
interpreted system.

The P-completeness results in the first two columns look good only at first
sight: they are calculated with respect to the explicit model, which is huge. There-
fore the fact that the problem is polynomial in the (huge) size of the model is not
surprising.

The third column gives an overview of the complexity results for modular
interpreted systems, as discussed in Subsection 6.3. The PSPACE-completeness
result corresponds to the P-completeness results of the first two columns. The
drop in complexity from EXPTIME- to P-completeness from ATLIr,IR to ATLir

looks astonishing at first. Why is the complexity going down for a more difficult
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Table 14.1: Overview of the complexity results: most are completeness results.

problem? The reason is that the representation of a concurrent game structure by
a MIS can be in general more compact than that of an iCGS. In the latter case, the
MIS encodes the epistemic relations explicitly, while for CGS, the epistemic aspect
is completely ignored.

The results for ATLIr and ATLir in the first two columns are interesting. When
we compare model-checking agents with perfect information versus those with
imperfect information, the first problem appears to be much easier against explicit
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models measured by their number of transitions. Then, we get the same complex-
ity class against explicit models measured using the number of states and agents.
Finally, model checking imperfect information turns out to be easier than model
checking perfect information for modular interpreted systems. Why is that so?

The number of available strategies (relative to the size of input parameters)
is the crucial factor here. It is exponential in the number of global states. For
uniform strategies, there are usually fewer of them but still exponentially many in
general. Thus, the fact that perfect information strategies can be synthesized in-
crementally has a substantial impact on the complexity of the problem. However,
measured in terms of local states and agents, the number of all strategies is dou-
ble exponential, while there are “only” exponentially many uniform strategies –
which settles the results in favor of imperfect information.

A comment on the two rows that state that the model-checking problems for
ATLiR and ATL*iR are undecidable: This has been open for some time (although
it has been stated without proof) and a (complicated and not very insightful) proof
has only recently been presented in [32, 57]. The main point is that the perfect re-
call helps to distinguish histories that are, in the case of ATLir, indistinguishable.
These can be then used to encode arbitrary runs of Turing machines and thus to
encode undecidable problems like the halting problem.

MCMAS. An important system here is MCMAS [82, 83, 86], which builds on
work on model checking temporal logics of knowledge and the efficient, symbolic
verification of interpreted systems [81, 97, 105]. MCMAS has been evaluated on
real systems, in particular, to verify properties of underwater autonomous vehi-
cles [39].

6.5 Model Checking Agent Language Models

As should be clear from the preceding sections, there has been a great deal of
work on the algorithms for, and complexity of, model checking within temporal,
strategic, and epistemic logics. However, while such logics neatly capture the
dynamic and informational dimensions we are interested in, they say little about
motivations such as goals or intentions. In particular, the model-checking tech-
niques above are not appropriate either for the BDI model or for programming
languages based on this model.

So, what are we to do? As we see in Chapter 13, the vast majority of agent
programming languages are based on the BDI approach, or at least some variation
of it. An obvious, and viable, route is to utilize the operational semantics for the
programming language in question. Recall that an operational semantics describes
the configurations the system/program can be in and gives rules for transforming
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between these configurations. In this way, it provides an abstract view of the po-
tential execution (i.e., sequence of configuration changes) of any program. Now,
given a specific program, we can work through the program and by examining the
operational semantics, can build a model of all the potential configurations that
the particular program can generate. This model can then be checked against a
logical requirement.

This approach has been used often, and in the following some selected exam-
ples are given.

To PROMELA and SPIN: In [133] simple agent programs were verified via
a translation to SPIN. In [17], AgentSpeak programs were translated to the
PROMELA language, and then the SPIN model checker is used to verify its proper-
ties. Note that subsequent work translated to JAVA and used JPF (see Section 7.4).

GOAL: In [71], the operational semantics of the GOAL agent programming lan-
guage is used to describe all the possible executions of a specific GOAL program.
The on-the-fly algorithmic verification techniques are used to explore all these
potential executions. This provides quite an efficient verification mechanism for
GOAL programs.

Rewriting: Given that the formal semantics of an agent language is often given
in terms of rewrite rules (especially if it is an operational semantics), then an al-
ternative way to tackle verification would be to base it on some underlying rewrite
system. This clearly has some link to the use of an underlying logic programming
system (as in Section 5.3) as well as a link to the model-checking approaches
based on operational semantics that we consider here.

The predominant rewrite system is MAUDE, which provides an efficient and
flexible rewriting basis [25]. Indeed, the operational semantics of several agent
languages have been translated to MAUDE input [41, 124].

In [9], a programming language is defined that facilitates the implementa-
tion of coordination artifacts, which are used to regulate the behavior of individ-
ual agents. This language provides constructs inspired by social and organiza-
tional concepts and allows different operational semantics (vis-a-vis the schedul-
ing mechanism of such constructs). They show that a particular semantics can be
prototyped in MAUDE. As an example, they define certain properties, enforce-
ment and regimentation, and verify them using the MAUDE LTL model checker.

Throughout this section we have assumed that the models analyzed, and often
produced through the language’s operational semantics, exactly match the agent
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program executions. However, as an operational semantics is likely to be imper-
fect, this is far from straightforward. So, in the next section, we will consider
how to verify the actual agent program being used, rather than a model of its
executions.

7 Algorithmic Verification of Agent Programs

As we have seen, it is certainly possible to verify an agent program by building a
model of its execution and then algorithmically verifying this model with respect
to some requirement. Yet, as we described in Section 4.4, a very appealing ap-
proach to verification is to verify the actual program rather than a model of it. But,
is this possible for agent programs? If so, how does this work? And will it work
for many different agent programs? We will consider all these questions in this
section.

7.1 General Problem

So, we wish to verify an agent program by exploring its executions directly, rather
than building a model (typically a finite-state automaton) and checking that. Once
we have an operational semantics then, in principle, we should be able to achieve
such program checking. However, this is far from simple to implement! Con-
sequently, the only agent program verification system (the one we will describe
in this section) takes advantage of sophisticated program verification systems for
non-agent programs. Specifically, it extends the JAVA PATHFINDER system for
checking JAVA programs.

Recall how program verification works, based on the “on-the-fly” model
checking in Figure 14.4. In the particular case of JAVA PATHFINDER, a modi-
fied JAVA virtual machine has been developed that allows both the parallel check-
ing of properties and the backtracking of system executions. Now we outline the
MCAPL framework [29, 85], which comprises the AIL semantic toolkit (Sec-
tion 7.2), the MCAPL interface, and the AJPF model checker (Section 7.4).

Note: Agent program verification is a leading-edge research technique; and
while the system is available for use/experimentation at [85], it is perhaps not as
sophisticated as other tools you will see in this book. Since the need is obvious, an
increasing user community will lead to more refined tools that can be used in the
future. In addition, it is well-known that program model checking is significantly
slower than standard model checking applied to models of the program execu-
tion. Thus, verifications in AJPF take minutes and hours, rather than seconds,
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with tools such as SPIN or NUSMV. In spite of this, agent program verification is
clearly very useful.

7.2 AIL Semantic Toolkit

Let us recall what we do when we write an operational semantics for our favorite
agent programming language. We decide on the essential configurations in the
system; for example, in a BDI-like language we might record the current beliefs,
current intentions, suspended intentions, applicable plans, etc. Then we define
allowable transitions between these configurations, corresponding to how the lan-
guage works. A basic transition could be

add_belief(b)
〈Beliefs, Intentions, . . .〉 −→ 〈Beliefs∪{b}, Intentions, . . .〉

where the set of beliefs is updated with the new belief, “b,” to generate a new
configuration. We must generate many, usually more complex, rules in order to
provide the operational semantics of our language.

Then there are two particular ways in which we might use the operational se-
mantics. The first is to provide an implementation. Since such an operational
semantics essentially describes a language interpreter, then the language can be
implemented just by encoding the operational semantic rules. Then, as we have
seen in previous sections, we might use the operational semantics as the basis
for a model checker. However, every time we tackle a new language, we must
go through this process again, defining configurations, transitions, practical im-
plementation, and model-checking procedures. A particularly awkward aspect is
defining how the model-checking procedure accesses/evaluates beliefs, intentions,
etc., within the agent execution. Finally, since many agent languages are actually
very similar, then there is surely scope for some re-use of the above aspects.

The Agent Infrastructure Layer (AIL) is essentially a toolkit that aids the de-
velopment of all the above aspects for BDI-like, JAVA-based, agent programming
languages [29].

The idea is as follows. When you have an idea for a new agent programming
language, you can access the AIL toolkit to build an operational semantics for
the language. Once such a semantics is built, the AIL toolkit naturally provides a
JAVA implementation (since the semantic elements are all objects/classes within
JAVA) and also provides ways in which a special model checker (called AJPF) can
access the components of the semantics. Although AIL provides a wide range
of “ready made” semantic components and rules corresponding to typical BDI
language features, the developer still has the capability to write new semantic
rules (so long as they respect the interfaces and interactions required).
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Thus when we run a program in our new agent programming language, we
run it in an AIL-based interpreter, which utilizes special AIL data structures to
store the agent’s internal configuration (typically, beliefs, intentions, plans, etc.).
Importantly, AIL also provides support for describing the agent’s reasoning cycle
within the operational semantics. Such a reasoning cycle defines how the agent’s
practical reasoning progresses, depending on its current internal configuration.
AIL provides support for constructing reasoning cycles, along with a number of
rules that typically appear in the operational semantics of agent programming lan-
guages. More details of the AIL toolkit are given in [29] and a schematic diagram
is given in Figure 14.7.

7.3 Multiple Semantic Definitions

By using a common semantic base, we are able to define the formal semantics
for many agent programming languages. For example, in [27], the AIL is used
to provide semantics for GOAL [26], SAAPL [132], and GWENDOLEN [28].
Not only can such agents be developed and verified separately, but the fact that
the semantics for all three are built on a common basis means that heterogeneous
multiagent systems can be verified. Thus, in [27], a system comprising GOAL,
SAAPL, and GWENDOLEN agents communicating together is verified. Since
we have not yet explained how agents built using AIL semantic definitions are
verified, we will turn to this next.
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Java Interpretation of
  the Agent Program

 Java listener object encapsulating
a model of the "Bad" possible paths

   Parallel
Exploration

  ||

Figure 14.8: AJPF “On-the-fly” exploration.

7.4 Model Checking AIL Through MCAPL/AJPF

The AIL toolkit collects JAVA classes that can be verified through AJPF, an ex-
tended version of the JAVA PATHFINDER model checker for JAVA programs [126],
mentioned in Section 4.4. When a language interpreter that has been developed
using AIL is executed, then the interpreter communicates with the AJPF model
checker. In particular, the interpreter will notify AJPF each time a new state
is reached that is relevant to the verification, while at the same time AJPF can,
through the AIL structures, access all the internal details of the agent’s execution.

Since AJPF is based on the JPF JAVA model checker, it exhaustively explores
the execution of the agent, backtracking if necessary through the underlying vir-
tual machine. In parallel, a JAVA listener object “watches” for important steps
through the execution (where “important” is defined within the AIL semantic def-
initions) and tries to match its internal automaton to the execution it is seeing; a
modified version of Figure 14.4 is provided in Figure 14.8.
Thus, not only does AIL make it easier to develop agent programming language
interpreters, but it also provides easy access to sophisticated model-checking ca-
pabilities. Importantly, the program that is model checked is the program that is
run.

7.5 Example

Recall again the example of two robots working together to manufacture an arti-
fact, introduced in Chapters 13 and 15. We considered some of the requirements
of such a scenario in Section 2.5. Now, if we wish to apply algorithmic verifica-
tion techniques to assess some of these requirements, we need either a model of
all possible executions in the system, or a program for the system. If we have a
model, for example, generated through the operational semantics, then we can use
traditional model checking as in Section 6. Alternatively, if we have a program,
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such as the one described in Chapter 13, we might apply program verification
techniques as described above. Note again, however, that such direct program
verification is particularly slow.

Finally, in this section, we note that the MCAPL (i.e., AIL+AJPF) framework is
increasingly used for verifying non-trivial agent-based systems. As well as the
heterogeneous agent system from [27], the ORWELL normative agent language
has been verified through AIL. On a more practical level, in [131], this approach
is used to verify key parts of the control for an unmanned air vehicle.

8 Conclusions

As agents are being found to be useful in more and more application areas,
the need for formal specification and verification techniques specifically devised
for agents becomes more acute. Agents are not only being used in “harmless”
software for INTERNET search and user interfaces, but are increasingly used in
business-critical areas. Here, the viability of businesses depends on the reliabil-
ity and effectiveness of the agent systems. Yet it is safety-critical applications
for which agent reliability will have the most impact. Sophisticated autonomous,
pervasive, and ubiquitous systems are being developed and deployed, with many
incorporating some form of “intelligent decision making” encapsulated within an
agent. Systems such as robots, space probes, intelligent homes, medical monitor-
ing, and unmanned vehicles typically involve agents of some form or other. The
critical nature of all of these, often with human life at risk, means that it is vital
to have techniques for comprehensively analyzing the reliability of the underlying
agent software.

As we have seen in this chapter, the use of formal logics is central to research
involved in providing sophisticated analysis tools. The flexibility and range of
logics available allows us to specify the properties we require of our agents; and
the variety of techniques available allows us to verify (often automatically) the
properties of our agent systems. While there is a great deal of important and in-
teresting research that continues to be produced, it should be clear that these areas
are still under active investigation. There are increasingly practical verification
tools for agents, such as MCAPL [29, 85] and MCMAS [82, 86], but these es-
sentially remain prototypes. In spite of this, however, they are beginning to be
tried out in industrial situations. This is because the speed of development of the
autonomous, pervasive, and autonomic systems described above is increasing, yet
there are concerns about the reliability of the agents within them. For example,
many aerospace companies are developing unmanned air vehicles (UAVs) for use
in civilian applications, yet few have a clear idea about the reliability of the “in-
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telligent” decision-making agents that are often at the heart of such vehicles. So,
the need for comprehensive analysis, preferably through formal verification, is
acute [131].

As much of the work described in this chapter, particularly that on agent veri-
fication, is leading-edge research, there are clearly many open research issues. We
have already mentioned some of these within the text, but will recap a few of them
here. While there has been significant work on the model checking of temporal
logics, and indeed of temporal logics of knowledge, we have seen that this is not
enough. Rational agents incorporate explicit representations of the motivations for
their choices, and these are typically captured through goals, intentions, desires,
etc. So, it is crucial to be able to model check combinations of time, knowledge,
and goals. There has been some work in this direction, but much more is required.

Another obvious direction, especially when real systems are being targeted,
is to address the uncertain and continuous nature of real-world interactions. If
our agents must deal with environmental sensors, then such sensors will never be
infallible or precise. If our agents deal with physical processes or control systems,
then these are typically represented as continuous systems. And so on. So, if we
wish to verify the behavior of agents in such real systems, then we are likely to
need to incorporate probabilistic and hybrid verification. Again, while some work
on this has been carried out, there is much left to do.
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9 Exercises

1. Level 1 State a formula in LTL that expresses deadlock freedom.

2. Level 1 Show that LTL can be seen as a fragment of first-order logic. Trans-
form a LTL formula into first-order logic extended by the natural numbers
and including the binary predicate “≤”.
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3. Level 1 The models of LTL are infinite paths. Show that we can also handle
Kripke models that contain finite paths.

4. Level 1 We transform LTL formulae into CTL formulae as follows: each
temporal operator is preceded by A. Is the transformed formula equivalent
(in CTL) to the original one? Prove or disprove.

5. Level 1 Prove that �p ⇒ ♦p is valid, by using an LTL proof tool
such as TSPASS: http://www.csc.liv.ac.uk/~michel/software/
tspass

6. Level 2 Try the online Mocha demonstration at http://mtc.epfl.ch/
cgi-bin/mocha-trial.cgi

7. Level 2 Specify a simple contract-net protocol in terms of either linear tem-
poral logic or linear temporal logic combined with S5n modal logic (to
represent agent knowledge).

8. Level 2 Prove formally that ATLIr and ATLIR are equivalent.

9. Level 2 Work out the differences between the ∗ versions and their restricted
versions for ATL, CTL, and LTL. Show that the ∗ versions are really more
expressive by giving example formulae and explaining how these cannot be
expressed in the restricted variety.

10. Level 3 Agent specifications typically require multidimensional logics; for
example, temporal/dynamic logics combined with knowledge/belief (for in-
formation) and goals/intentions (for motivation). There are often interac-
tions between these dimensions. So, describe the intuitive effect of the fol-
lowing interactions:

a) �K p → K �p,

b) Bq → Kq,

c) Dr → Ir,

d) Is → B s.

11. Level 3 Check the undecidable entries in Table 14.1 by finding the appro-
priate references, and work through the proofs.

12. Level 3 Check the last column in Table 14.1, and work through the proofs
(by consulting the appropriate literature) for modular interpreted systems.

http://www.csc.liv.ac.uk/~michel/software/
http://mtc.epfl.ch/
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13. Level 4 Consider the cognitive agent language CASL and the verification
environment for it. Try to formalize the example in this chapter (or the one
in Chapter 13) in this language, and verify it using the PVS verification
system.

14. Level 4 Choose a BDI-based agent programming language that you have
an operational semantics for. Then implement (at least the core of) this
semantics within the AIL. Define the semantic configurations and syntax,
recast the operational semantic rules in terms of AIL primitives, and then
test and evaluate the semantics.
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Chapter 15

Agent-Oriented Software

Engineering

Michael Winikoff and Lin Padgham

1 Introduction

Increasingly, software is called upon to operate successfully in complex and
dynamic environments, and to be adaptable, flexible, and robust. This can be
achieved by software designed as a collection of agents: software entities that op-
erate autonomously within their environment, and are able to proactively achieve
goals, while responding to changes in the environment [132]. For example, in a
transport logistics application [46], autonomous agents negotiate with each other
to schedule deliveries, and renegotiate in the event of delays.

There have been many demonstrated applications of agents including [88,
105]: production scheduling, simulation in a range of domains, energy production
and distribution, transport logistics [46], crisis management [113], flexible man-
ufacturing [59], air traffic control [82], and business process management [16].
There is certainly anecdotal evidence that agent technology leads to much faster
and more modular development of somewhat complex applications, particularly
those operating in dynamic domains. Unfortunately this is difficult to verify sci-
entifically or to quantify objectively. The only substantial study we are aware of
was written by an agent technology provider, based on a study done by one of
its customers. This study indicated productivity gains of up to 350% [7]. The
reason for substantial efficiency gains results at least in part from the fact that
the execution engine manages plan selection (based on context evaluation) and
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failure recovery (based on program structure), thus relieving the programmer of
explicitly coding such details. The gain in efficiency that is provided by having an
infrastructure that allows abstraction from coding details can be likened to the or-
ders of magnitude efficiency gains in moving from assembly languages to modern
programming languages.

The field of agent-oriented software engineering (AOSE; and sometimes also
known as agent-based software engineering) is concerned with the engineering as-
pects of developing agent-based systems, and how to support their development.
Specifically, work in AOSE aims to provide the practitioners with methodologies
for the design of agent systems, and with supporting tools. Because methodolo-
gies are used by humans, the nature of work in the area of AOSE is less about
algorithms, theories, formal models (although they are sometimes used), or theo-
rems – and more about (human-oriented) models, processes, and tools. Work in
the field varies in its focus: some papers take a higher-level view and describe
whole methodologies, whereas others focus on a particular part or aspect of the
software development process, for example, extending the modeling notation to
better represent organizational aspects, or providing techniques for testing agent
systems.

In this chapter (and in our own work) we take a broad view of the notion of
a methodology, viewing it as comprising a range of aspects that are required by
a software engineer who is developing an agent system. Specifically, we view a
methodology as defining an overall process, which uses design artifacts (“mod-
els”) to capture key outcomes of the process. These models are expressed using
one or more notations (which may be more or less formally defined). We also view
it as important that a methodology provide detailed guidelines for how to carry out
key steps. For example, if a methodology says that the second step in the overall
process is to identify the goals of the system, this is not much use to the designer
without some indication of the sorts of techniques that could be used to identify
the goals. To summarize, we view a methodology as comprising the following el-
ements: process, models, notation, and techniques. Additionally, a methodology
rests upon a foundation of concepts. In the case of object-oriented (OO) design
the concepts were previously defined by OO programming languages (e.g., class,
object, inheritance). In the case of agent-based software engineering, it is useful
for a methodology to also include a definition of the relevant underlying concepts
that it uses (see Section 2). Finally, tool support is extremely valuable, in order to
help ensure a consistent design. However, that is not a focus of this chapter; for a
recent survey of tools, see Pokahr and Braubach [102].

One natural question is whether designing agent systems requires a specific
agent-based methodology in the first place. Or should we simply use existing
methodologies? The answer is that while there are clearly some similarities be-
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tween agents and objects, there are also key differences (e.g., autonomy, proactive-
ness), and these differences are sufficiently significant to justify the development
and use of agent-specific design methodologies. For example, when designing
an agent system, which, by definition, exhibits proactiveness, and which tends to
be conceptualized and implemented using goals, it is important to identify and
model the goals in the system. This activity, and resulting model, are not covered
by existing OO design methodologies.

However, as mentioned, there are similarities between agents and objects, and
as we will see, AOSE methodologies in general do adopt and adapt various el-
ements (techniques, notations, models, processes) from OO design where it is
applicable.

Furthermore, the phases of software development do not change because we
are using agents: we still need to identify the purpose and scope of the system-
to-be (“requirements”), plan the system’s overall structure (“design”), flesh out
the details of parts of the system (“detailed design”), implement the system, and
test and debug it. Furthermore, as with non-agent development, these phases are
typically performed in an iterative fashion, not in a strict waterfall-like sequence.
Thus, the high-level process followed by an agent-oriented methodology is similar
to any methodology in that it includes activities that are concerned with defining
the purpose of the system, designing the system (with varying degrees of detail),
and implementing, testing, and refining the system. We also note that in many
cases a system being developed will not be purely agent based, but may include
parts that are best conceptualized, designed, and implemented in terms of objects,
or in terms of procedural code. However, in this chapter we focus on those aspects
of a system which are agent based.

The aims of this chapter are, first, to give a feeling for what an AOSE method-
ology looks like, without going into full details (which would require a whole
book!), and, second, to give a sense of the current state of work in the field: what
has been done and what the outstanding challenges are. Most of the chapter (Sec-
tions 4–9) describes the activities that one might find in a typical AOSE method-
ology – that is, requirements, design, detailed design, implementation, assurance
(e.g., testing), as well as software maintenance. Each section begins by discussing
the common “core,” i.e., activities and models that are common to a number of
methodologies. Each section then goes on to discuss some of the interesting vari-
ations, i.e., particular activities or models that are unique to a small number of
methodologies. In this way we hope to give a sense of where there is general
agreement in the field on the use of particular models and activities, and where
there are differences between the various proposed methodologies. Sections 4–9
are preceded by a discussion of the foundational concepts (Section 2) and by an
introduction to the running example (Section 3). The presentation is followed by a
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Year Methodologies

1995 DESIRE
1996 AAII, MAS-CommonKADS
1999 MaSE
2000 Gaia (v1), Tropos
2001 MESSAGE, Prometheus
2002 PASSI, INGENIAS
2003 Gaia (v2)
2005 ADEM
2007 O-MaSE

Figure 15.1: A brief history of AOSE.

discussion of work on comparing methodologies (Section 10), and we close with
a look at the state of the field, future directions, and challenges (Section 11).

Finally, an apology: we have tried to strike a balance between covering the
various approaches that are currently well-established, without unduly cluttering
the chapter by trying to mention all of the more than 50 AOSE methodologies
that can be found in the literature. To the extent that we may not have succeeded
completely in making the right judgments, we extend our apology to any authors
whose work may have been unjustly omitted.

1.1 History of AOSE

Figure 15.1 gives a rough timeline in terms of the development of prominent
AOSE methodologies. We intentionally do not present a detailed figure with a
complete list of methodology and indications of influences. Constructing such a
figure is difficult, and every single such figure that we have seen in other papers
contains significant errors. More importantly, a cluttered figure with dozens of
methodologies is not particularly useful in gaining insight.

The list of methodologies in Figure 15.1 includes those methodologies that we
feel can be argued to be significant. We consider a methodology to be significant
if it either influenced subsequent methodologies in a significant way, or if it was
significant in its own right (e.g., widely adopted, mature, with tool support). Note
that we excluded methodologies that were only described in a single paper, which
includes some of the early pioneering work. A description of some of the early
work in the field can be found in the 1999 survey by Iglesias et al. [69], which
covers methodologies such as MASB, CoMoMAS, and Cassiopeia. One notable
omission from the list is AUML (Agent UML) [67]. AUML has been quite in-
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fluential, and hence is clearly significant, but, like UML, it is a notation, not a
methodology.

Roughly speaking, we can see the history of AOSE methodologies in terms
of three generations. The first generation of methodologies emerged in the mid
to late 1990s. They can be characterized as being generally briefly described
(e.g., a single brief paper), lacking tool support, and sometimes not covering all
of the core activities of analysis, design, and detailed design. This first generation
includes1 DESIRE [14], AAII [78], MAS-CommonKADS [70], and Gaia [131].

The second generation of methodologies emerged in the late 1990s and early
2000s. They can be characterized as having detailed descriptions (multiple or
longer papers, and in the case of Prometheus a text book), having tool support,
and covering all the core activities from analysis through to implementation. The
second generation of methodologies includes MaSE [37, 40], Tropos [15, 89],
MESSAGE [31, 54], and Prometheus [94, 95, 130]. Tropos is interesting in that
for a long time it didn’t have tool support. The extended version of Gaia [137]
can also be viewed as a second-generation methodology, although for a long time
it too lacked tool support.

A third generation of methodologies emerged in the mid to late 2000s. Com-
pared with the second generation, these third-generation methodologies (PASSI,
INGENIAS, and ADEM) can be characterized as having an increased focus on
compatibility with UML as a notation and/or a focus on model-driven develop-
ment. They also tend to be more complex than second-generation methodologies.
Note that although initial papers on PASSI [17] and INGENIAS [58] appeared
in 2002, the INGENIAS methodology didn’t really crystalize until the mid 2000s
[100], and, similarly, the definitive PASSI paper appeared in 2005 [29]. It is
also notable that some of the INGENIAS developers were involved in developing
MESSAGE. The ADEM methodology was first described in 2005 [24], and the
associated notation (AML) was first described in 2004 [25]. However, the defini-
tive description of AML is a 2007 book [23]. ADEM and AML are influenced by
many earlier methodologies, including most of the methodologies in Figure 15.1,
and also by UML, OCL, and RUP.

There are two key observations that can be made. First, there is limited recent
work on developing new AOSE methodologies: the prominent and significant
second- and third-generation methodologies are well-developed and supported,
and it is hard to justify developing yet another methodology.

The second key observation concerns diversity and convergence. In the early
years of work on AOSE methodologies, there was a lot of diversity and dozens
of methodologies. Over the years, most of these methodologies have faded away,

1Note that citations given are sometimes the definitive description, rather than the earliest paper
available.
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Property Supporting Concepts

Situated Action, Percept
Proactive & Autonomous Goal

Reactive Event
Social Message, Protocol . . .

Figure 15.2: Relationship between properties and supporting concepts.

and a smaller number of methodologies, which have seen significant work – and
typically the development of tool support – have remained active and prominent.
More recently, there is increasing awareness of the drawback of diversity, and the
need to standardize (e.g., [60]) or, at least, to try and reduce unnecessary differ-
ences between methodologies (e.g., [96]). Looking forward, we might expect the
future of AOSE research to focus on consolidation and standardization, rather than
on the development of more methodologies. See Section 11 for further discussion
of future directions.

2 Agent Concepts

As discussed earlier in this book (see Chapter 1), agents are defined as having
certain properties, such as being proactive, and being situated in an environment.
In order to design systems of agents that have these properties, we need to use
certain design concepts. For example, one way of designing agents that display
proactive behavior is to model, design, and implement them in terms of the con-
cept of goals. We now consider in turn each of the defining properties of agents,
and which concepts can be used to support the design and implementation of
agents that possess a given property. The properties and concepts used to support
them are summarized in Figure 15.2.

The first, and most basic, property of agents and agent systems is that they
are situated in an environment. In order to design agents and agent systems
that inhabit environments, we need to model the environment in some way. At
a minimum we need to capture the interface between the agent system and its
environment. This can be done in terms of the ways in which agents affect their
environment (“actions”), and the ways in which the agent system is affected by
its environment, typically by receiving information from the environment (“per-
cepts”). For example, a manufacturing robot may have certain actions that it can
perform (“load a part,” “join two parts”), and may be able to perceive certain infor-
mation from outside the system (“manufacturing request,” “table malfunction”).
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In describing actions and percepts one also considers properties of the environ-
ment such as [112]: do actions have predictable outcomes?, is the environment
fully visible?, and can actions fail? For example, a robot’s actions may be sub-
ject to failure, but may nonetheless have predictable outcomes: an action either
succeeds or reports an error, in which case it has no effect. Finally, although mod-
eling the environment in terms of its interface with the agent system is sufficient
for many systems, in some situations a richer model of the environment can be
valuable (e.g., [109], and see Chapter 13).

A key property of agents that distinguishes them from objects is that they are
expected to behave in a way that balances the pursuit of goals (“proactive”) with
responding to significant changes in their situation (“reactive”). In order to design
and implement agents that exhibit proactive behavior we use the concept of goals.
A goal is a certain condition that the agent persistently strives to bring about [63].
Although the literature discusses a range of goal types (e.g., [13, 36, 47, 62, 123]),
in practice it is often sufficient to consider so-called “achievement” goals. These
are goals that are described in terms of a condition that is required to hold at a
single point in time (for example, having completed manufacturing a part). Since
goals are persistently pursued by the agent, they result in autonomous behavior:
the agent continues to actively pursue its goals without requiring external guidance
or stimulus.

In order to design and implement agents that are able to be reactive (i.e., re-
spond in a timely manner to changes in the situation), we design them using the
concept of events. An event is some change of status that is significant to the
agent. For example, a machine breaking down, or the arrival of a new order re-
quest. Events can arise from the receipt of messages from other agents, or from
internal changes. They can also arise from percepts, if the information from the
environment is significant.

Finally, agent systems are comprised of a number of agents that interact (i.e.,
are social). There are many concepts and approaches that could be used to design
interacting agents, including norms, social commitments, institutions, and agent
society models (see Section 11 for further discussion, and also see Chapters 2 and
13). However, the minimal concept that is almost invariably used to support the
design of social agents is messages. When designing message-based interaction,
it is often useful to consider a collection of related messages together, which is
usually done by grouping related messages in an interaction protocol (“protocol”
for short).2 It is worth noting that it is also possible to design agents that interact
without messages, by making changes to the environment which other agents ob-

2These protocols are specifications of the message types exchanged in a particular interaction,
or conversation, and their ordering, not the details of the low-level exchange mechanisms and their
transfer protocols.
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serve [97]. This approach, which is called “stigmergy,” is often used with systems
that comprise a large number of very simple agents, and in which goals are not
represented in the agents, but are hardwired into their behavior. In the remainder
of this chapter we will focus on the so-called cognitive approach, in which agents
are more coarse-grained, use some form of (limited) deliberation to select their
actions, and communicate directly using messages.

3 Running Example

This chapter uses a running example to illustrate the design of a multiagent sys-
tem. The example used is that of a holonic manufacturing system. We now briefly
introduce this example. Since this chapter is about agent-oriented software engi-
neering and not holonic manufacturing per se, our coverage of holonic manufac-
turing is very brief, and we refer the interested reader to the literature for further
information (e.g., [74]).

Traditional approaches to manufacturing tend to use a fixed layout and pro-
cess, which works well when manufacturing jobs are consistent and identical, but
are not well suited to flexible manufacturing where jobs may vary in details (e.g.,
packing different items into a box), and the sizes of orders may be relatively small.
Holonic manufacturing has been proposed as a means of realizing flexible manu-
facturing by conceptualizing a manufacturing process in terms of a collection of
autonomous entities that interact to realize system goals.

A holon (from the Greek word “holos,” whole, and the suffix “-on,” part-of)
is an independent entity that does not exist in isolation, but is part of something
larger. Specifically, holons are viewed as being part of a holarchy, which is a
hierarchy of holons. Although proposed independently, it is clear (and recognized)
that there is much similarity between holons and autonomous agents [19]: both
agents and holons are autonomous entities that interact with each other to realize
design goals. One difference is that holons are viewed as existing in a hierarchical
structure, whereas agents may or may not exist in a hierarchical structure.

The simple manufacturing scenario that we use is based on the assembly cell
described by Jarvis et al. [74]. There are three parts – labeled A, B, and C – and
the assembly unit needs to assemble these into combined parts, which may be
“ABC” parts or “AB” parts, using the following process (see Figure 15.3):

1. robot1 loads an A part into one of the jigs on the rotating table

2. robot1 loads a B part on top of it

3. the table rotates so the A and B parts are at robot2

4. robot2 joins the parts together, yielding an “AB” part
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robot1  
(loads & 
unloads) 

A buffer 

B buffer 

C buffer 

robot2  
(joins) 

flipper 

rotating table 

jig 1 jig 2 

Figure 15.3: A simple example of a manufacturing assembly cell (redrawn from
[74, Figure 1]).

5. the table rotates back to robot1

6. if an AB part is required, robot1 unloads the part, else continue with step 7

7. robot1 moves the AB part to the flipper

8. the flipper flips the part over (“BA”) at the same time as robot1 loads a C
part into the jig

9. robot1 loads the BA part on top of the C part

10. the table rotates

11. robot2 joins the C and BA parts, yielding a complete ABC part

12. the table is rotated, and

13. robot1 then unloads the finished part.

Although this process may sound straightforward, it is made more complex by the
need to manage a number of concurrent assembly jobs. In other words, we want
to be able to exploit parallelism, for instance, having robot2 be assembling one
part while robot1 is unloading a different order. On the other hand, we need to
respect synchronization requirements such as not moving the table while robot1
or robot2 are operating. Additionally, we would like our system design to include
manufacturing of BAC or BC parts, or even adding additional D parts into the pro-
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cess. Furthermore, in a realistic manufacturing situation we also need to deal with
failures of individual actions, and with persistent malfunctioning of equipment.

In a full system we would also need mechanisms for keeping track of the
number of items in an order, possibly prioritization of orders, selection of which
cells (table, robots, flipper groupings) to use for manufacturing the items in a given
order, and so on. However, for simplicity we focus here only on a single cell and
do not consider these broader aspects.

We will assume that robot1 receives a percept of the form manufac-
ture(composite) to manufacture a composite part whose components and their
order are given by the form of “composite” (ABC or AB in Jarvis’s example,
but also our potential BAC, BC, BACD, etc.). We will also assume the following
primitive actions:

• robot1:

– load(part), which loads a particular part type onto the jig at R1’s posi-
tion (E(ast) in this example).

– unload(), which unloads the part at R1’s position.

– moveToFlipper(), which moves the part on the jig at R1’s position to
the flipper.

– moveFromFlipper(), which moves the part on the flipper, to the jig at
R1’s position.

• robot2:

– join(jig), which joins the bottom part at specified jig to the top part
(which may be a composite part).

• flipper:

– flip(), which turns upside down the item at the flipper.

• table:

– rotateTo(jig,pos) where jig is the jig number and position is E(ast) or
W(est).

4 Requirements

The requirements activity is concerned with defining the required functionality of
the agent system-to-be. Our description will focus on techniques, notations, and
general processes that are used in a number of AOSE methodologies. We will
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finish this section with a brief discussion of some techniques that are specific to
certain AOSE methodologies. The sections on design and detailed design will also
follow this pattern of discussing the “commonalities” first, and then highlighting
interesting differences.

There are three commonly used activities in agent-oriented requirements:

• specifying instances of desired system behavior using scenarios;

• capturing system goals and their relationships; and

• defining the interface between the system-to-be and its environment.

Although we have described these sequentially, in practice these are done in par-
allel in an iterative manner. In addition, some methodologies (e.g., O-MaSE,
Prometheus, Gaia) define roles. A role can be seen as a coherent grouping of
actions, percepts, and goals that relate to a given functionality. As will be seen,
agent types are typically formed by considering combinations of roles.

Using scenarios for requirements is not unique to agent-oriented methodolo-
gies. It is in essence similar to use cases common in OO methodologies [73],
where the basic idea is that eliciting and describing the functionality of a system
can be done in terms of specific instances of the system’s behavior for given situ-
ations, usually initiated externally. However, the details and exact structure differ.
For example, when describing the holonic manufacturing system (Section 3), we
described its operation in terms of an example trace – i.e., a specific instance of
system behavior. While many AOSE methodologies use scenarios, they vary in
the degree to which the format is prescribed. Henderson-Sellers [60, p. 14] argues
that it is important to use a “textual description of each use case” to facilitate un-
derstanding. Furthermore, using structured objects can facilitate some automated
processing. For example, in the Prometheus methodology, scenarios are described
in a structured format as a sequence of steps, where each step is an action, per-
cept, goal, or subscenario, performed by a given role, and accessing certain data.
As an example, a scenario for the holonic manufacturing system is depicted in
Figure 15.4. As can be seen, each step is described in a structured way, showing
the type of each step (G for Goal, A for Action), the name of the action or goal
(e.g., “build2”), and which roles are involved. We use the following five roles in
our design:

manager: this role is responsible for overall management of the manufacturing
process. It does not perform any actions.

pickAndPlacer: this role is responsible for moving parts in and out of the jig
when it is located on the East side of the table. Associated actions are: load,
moveToFlipper, moveFromFlipper, unload.
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Scenario: manufacturePart(ABC)
Type Name Roles

G build2 manager, pickAndPlacer, fastener
G decideParts manager
G loadPart pickAndPlacer

A load(A) pickAndPlacer
G loadPart pickAndPlacer

A load(B) pickAndPlacer
G fastenParts fastener, transporter

A rotateTo(1,W) transporter
A join(1) fastener

G addPart manager, pickAndPlacer, fastener
G decideNext manager
G flipOver manager

A rotateTo(1,E) transporter
A moveToFlipper() pickAndPlacer
A flip() flipper

G loadPart pickAndPlacer
A load(C) pickAndPlacer [in parallel with flip]
A moveFromFlipper() pickAndPlacer

G fastenParts fastener, transporter
A rotateTo(1,W) transporter
A join(1) fastener

G complete manager
G assess manager
A rotateTo(1,E) transporter
A unload() pickAndPlacer

Figure 15.4: Scenario steps.

fastener: this role is responsible for joining parts together. Associated action:
join.

transporter: this role is responsible for transporting items by rotating the table.
Associated action: rotateTo.

flipper: this role is responsible for flipping parts using the “flip” action.

Note that actions are always associated with the role that performs the action.
Goals need to be associated with roles. Typically, low-level goals are associ-

ated with a single role, whereas high-level goals are associated with multiple roles.
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For example, the goal “fastenParts” has two roles that are jointly responsible for
the achievement of the goal. However, in some cases we may choose to assign
a high-level goal to a single role, which initiates, or has overall responsibility for
the goal. For example, the goal “complete” is assigned to the “manager” role only,
even though its achievement involves other roles as well.

The notation used in Figure 15.4 also indicates the “nesting” by using inden-
tation of the step type. The first step (“build2”) has its type, G, unindented, rep-
resenting a top-level goal. The second step (“decideParts”) is indented to indicate
that decideParts is a subgoal of build2. Similarly, the load(A) action is indented
to indicate that it is a part of the achievement of the loadPart goal. The structure
of goals implied by the indentation is based on the goal model, which is derived
in parallel with the scenario. However, as explained below, it may be the case
that subgoals of different higher-level goals are interleaved, so that a subgoal may
not belong to its nearest outer goal, but to something earlier. Finally, note that
a scenario only captures one possible execution trace, rather than capturing all
possibilities.

The second commonly used activity in requirements is to capture the goals of
the system using a goal model. The goal model is complementary to the use case
scenarios [110] in that it captures the different system functionalities and their
relationships, and is not specific to a given execution trace. It is worth noting
that the use of goals for requirements is motivated both by the fact that agents are
defined in terms of goals, but also by evidence (from non-agent work) that goals
are a good way to model requirements [122].

Creating a goal model can be done by identifying certain goals from the sce-
narios, and then refining them. One technique for refinement is asking “why” a
particular goal is achieved, which identifies its parent goal, and “how” a particular
goal is achieved, which identifies its subgoals [122]. Another technique is to con-
sider how goals influence other goals. In the case of the holonic manufacturing
system, the goal model is actually quite simple. One possible goal model might
be defined by beginning with a top-level goal (“manufacturePart”) and asking how
the goal is achieved, leading to the identification of subgoals. Asking why regard-
ing an identified goal can lead to identification of motivating goals, which in turn
leads to identification of additional subgoals. For example, asking why for manu-
facturePart could lead to identifying a goal of filling orders, which in turn leads to
identification of subgoals to obtain orders and prioritize orders.

Some methodologies capture the goal model using a tree structure where each
goal has as children its subgoals. Other methodologies use more sophisticated
models, which can capture the influences between goals, e.g., that one goal in-
hibits or supports the achievement of another goal [15]; or that particular goals
are triggered by certain events [53]. Figure 15.5 shows a simple goal model for
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Key
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decideParts loadPart fastenParts decideNext flipOver assess

goal<action>

Figure 15.5: Simple goal model.

the holonic manufacturing system. This goal model does not show dependencies
between goals, other than the parent-child relationship (depicted by an arrow from
the parent goal to the subgoal). Note that Figure 15.5 also depicts actions, which
can be helpful in understanding the design, but is actually not normally done by
methodologies.

Finally, as discussed earlier, since the agent system is situated in an environ-
ment, the requirements need to include information on the environment, which can
be done by specifying the interface with the environment in terms of actions and
percepts. In some systems the interface is prescribed by existing hardware or sys-
tems. For instance, in the holonic manufacturing example, we have assumed that
each robot and piece of equipment has specific invocable actions (e.g., load(part),
rotateTo(jig,pos), etc.) In some systems the boundary between the agent system
and its environment is more flexible, and can be fully specified by the designer. In
others it may be that there is a defined low-level interface, but the designer chooses
to specify the agent interface at a higher level and implement separately the low-
level controls. For example, it may be that the interface to a robot is specified in
terms of low-level primitives such as “open-pincer,” and “move-to-position,” but
that the designer chooses a more abstract interface (e.g., load()) for developing the
agent specification. Particularly with robotic or vision systems, it is common that
a separate layer is needed to abstract from the lowest level of sensor input (e.g.,
pixel maps) and effector actions (which often need feedback control mechanisms
at the low level, and do not benefit from an agent level abstraction).

There is overlap between these three models – scenarios, goals, and environ-
ment interface – for instance, scenarios may include goals, actions, and percepts.
This overlap means that each of the three models influences the others. For ex-
ample: the goals in the scenario may be a starting point for the goal model; the
refined goal model may suggest additional goals for the use case scenarios; and
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the actions identified in the use case scenario need to be defined as part of the
environmental model.

However, it is worth noting that although there is a close correspondence be-
tween the scenario and the goal overview diagram, they are not identical. The
goal overview shows structural relationships – which subgoals are part of parent
goals – whereas the scenario shows a process, with relevant sequencing infor-
mation. In particular, we note that the subgoals of “flipOver” are not sequenced
directly after each other, but rather are interleaved with the subgoals of “loadPart”
(in particular, “moveFromFlipper” is after “load(C)”).

Having discussed the common activities, we now consider some variations and
differences. One significant variation is the use of an early requirements phase. As
the name suggests, this phase, which exists in Tropos [15], based on earlier work
on i* [136], is performed before the requirements phase. The aim of the early
requirements phase is to capture the organizational context in which the system-
to-be will exist. This is done by identifying the stakeholders (e.g., users, owners,
and other relevant organizations), their goals, and the ways in which they depend
on each other and on the system-to-be. The early requirements phase allows the
requirements of the system-to-be to be motivated in relation to its organizational
context. One key benefit of doing early requirements is that the resulting models
allow for systematic consideration of how changes in the organizational context
affect the requirements of the system. Another benefit is that it is possible for
alternatives to be investigated and assessed.

Capturing the domain concepts (or ontology) is important. However, perhaps
because it is not agent-specific, explicitly covering this activity, including having
a model for capturing the domain concepts (using a suitable notation), is some-
thing that a number of methodologies omit. Some methodologies (such as MAS-
CommonKADS [71], O-MaSE [53], and PASSI [29]) do specify an activity to
capture the domain concepts. PASSI and O-MaSE both use UML class diagrams
as a notation to capture the domain. Another possible notation for capturing do-
main concepts is Protégé. Certainly it is common to do some analysis of data
available and/or needed during the requirements phase. For example, Prometheus
suggests designers identify data required in order to achieve goals, execute ac-
tions, or that process percepts within scenarios. This information can then be used
to help determine the agent architecture.

Finally, the environment model described in this section, although generally
adequate, is fairly minimal. There has been work on richer environmental models
(see Chapters 2 and 13). Additionally, as noted earlier in this section, a number of
methodologies also use some sort of role model.
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5 Design

The design phase in AOSE methodologies aims to define the overall structure of
the system. It addresses the following key questions:

• What agent types exist, and what (roles and) goals do they incorporate?

• What are the communication pathways between agents?

• How do agents interact to achieve the system’s goals?

The answers to these questions are captured in two key models: a static view of
the structure of the system, and a model that captures the dynamic behavior of the
system. Further details of data, in particular, shared data, are also determined at
this stage, although this is not specifically agent-oriented.

As in the previous section, we begin by presenting certain models and pro-
cesses that are common to a number of methodologies, and thus can be regarded
as “core.” We then briefly describe some interesting differences between method-
ologies.

The first question that needs to be answered in defining the system’s structure
is, which agent types should exist? A common technique for identifying agent
types is to consider smaller “chunks” of functionality (e.g., capabilities in Tropos,
roles in Prometheus), and to make a trade-off design decision based on the various
factors that support certain chunks being grouped together. For instance, when
two chunks have a related purpose or make use of common data, then there is a
force pulling them together; in other words, there is a reason for grouping them
together in a single agent type. Some of the factors that might be considered are:

• The degree of coupling between agents. Having a system design where
each agent type needs to interact with every other agent type is undesirable
because it implies a high level of coupling: any change that is made to an
agent type may require consequent changes in some or even all other agent
types.

• The cohesiveness of agent types. A system design is easier to understand if
each agent type has a clearly defined purpose. On the other hand, if there are
agent types that do a number of unrelated things, then they become complex
and harder to understand and work with.

• Whether there are reasons to keep certain chunks in separate agents. There
are a number of reasons why it might be a good idea not to have two partic-
ular chunks in the same agent type. One reason is that we may require the
two chunks to exist on different hardware, for instance, in the holonic man-
ufacturing example, the pickAndPlacer role and the transporter role interact
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closely to manufacture composite parts, but correspond to different robots.
Another reason is that there may be certain data that only certain chunks or
roles should have access to (i.e., security and privacy).

Note that in some cases the decision as to which agent types to use is already
given, or is quite clear. For instance, in a simulation where agents represent ex-
isting entities in a human organization, we would simply map each human or
organizational entity into an agent type. Similarly, in the holonic manufactur-
ing scenario it is natural to have each robot represented as a separate agent type.
Indeed, this is basically the approach that we adopt. The manager role we also
include in Robot1 as the manager role is making the decisions about what to load
and when to unload, which are closely associated with the pickAndPlacer role. If
we were including an agent that coordinates the whole system of cells, we may
have decided to put the manager role in that agent. However, in our small example,
we assign the manager role to the Robot1 agent. Assigning goals to agent types
can be done based on the assignment of goals to roles, or may be done during the
process of determining agent types. In this case, the assignment is based on the
assignment of goals to roles (see Figure 15.4). Where goals that have subparts are
assigned to an agent that does not itself do all the subparts, then the responsible
agent will need to request other agents to do the necessary subparts. An example
is the goal flipOver, which is assigned to Robot1, who will need to request as-
sistance from Table and FlipperRobot to do the actions required for this subgoal.
Similarly, the goal fastenParts, which is assigned to both the fastener and trans-
porter role, is assigned to a single agent (Robot2, which is assigned the fastener
role).

Role Agent Type Goals and Actions3

pickAndPlacer → Robot1 loadPart, load, unload,
moveToFlipper, moveFromFlipper

manager → Robot1 decideParts, decideNext, flipOver, assess
transporter → Table rotateTo
fastener → Robot2 fastenParts, join
flipper → FlipperRobot flip

We also need to define how the agents interact with the environment; that is,
which actions and percepts each agent deals with. If these have been assigned to
roles, then they are simply assigned to the appropriate agent along with the role.
In our example the actions were predefined based on the hardware, as specified
on page 704. We must also ensure that each percept is handled by some agent. In

3Actions are shown in italics.
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our example we have the manufacture(composite) percept. We could assign this
to Robot1 (which performs the first action in the sequence needed to assemble a
part), or alternatively we could introduce a new agent type, coordinator, which
manages which parts will be manufactured in which cells, etc. However, to keep
our example simple, we assign this percept to Robot1.

Once the agents have been determined, the next step is to define the struc-
ture of the system. Specifically, we need to define which agents communicate,
what messages they use, and what the sequences are of messages (i.e., interac-
tion protocols). However, this is not done from scratch. Instead, the previously
defined scenarios help guide this process. For example, considering the manufac-
turePart(ABC) scenario (Figure 15.4), we see that the first few steps are performed
by the same agent, so no message is needed. However, after Robot1 has loaded
the B part, in order for the table to rotate, there needs to be a message that links
the completion of the load(B) action with the need to rotate the table. This could
be a message directly from Robot1 to the Table agent, or could be a sequence of
messages via another agent such as Robot2 in our example. Each time control of
a process needs to be transferred to a different agent, some mechanism must be in
place to facilitate this happening.

Once a protocol has been specified that allows a particular scenario to occur,
this must also be generalized. One way to do this is at each point to ask the
question – what else could happen here? Alternatives may involve different mes-
sages, finishing the interaction early (e.g., if an error occurs), or simply different
orderings of messages. For example in the Lock protocol (Figure 15.6), we see
alternatives where in one variation the interaction is as desired, but in the other
the locking fails, in which case the protocol specifies that the robot will continue
trying until it succeeds.

There are several options here as to exactly what the communications should
be and how they should be specified. In most contemporary methodologies, inter-
actions are specified by defining the patterns of messages that occur in the system,
i.e., interaction protocols. These interaction protocols are often defined using the
sequence diagrams within the AUML notation [67]. For the reader who is not
familiar with this notation, a brief description is provided in the Appendix.

In our example we choose to define a top-level protocol (“ManufacturePart”,
Figure 15.7), along with a number of subprotocols. The ManufacturePart protocol
indicates that the overall process of manufacturing a part begins with an initial
loading process (locking the jig in the East position, then loading the first two
parts) followed by fastening the two parts together (the “Fasten” subprotocol).
This is followed by setting up with an additional part (the “AddPart” subprotocol)
and joining this to the composite (“Fasten” subprotocol again), both of which are
done zero or more times (“loop”), and then the jig is locked in the East position
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Robot Table 

lock-at(Jig, Pos)

lockFailed

opt

locked-at

alt

loop until locked

Lock(Jig)

[table locked] 

else

<rotateTo(Jig,Pos)> 

Figure 15.6: Lock protocol.

and the final part unloaded.
The Fasten protocol simply involves a request from Robot1 to Robot2 to fasten

a part, the jig is positioned (using the Lock subprotocol), then the part is joined,
and Robot1 notified.

In the AddPart protocol (Figure 15.8), we see that the first message exchange
involves the Lock protocol, which results in the relevant jig being positioned at the
East position. Following this, there is an action by Robot1 to move the composite
part to the flipper. Then there are two things that (potentially) happen in parallel:
the new part is loaded by Robot1, and if needed (shown by an optional box) the
composite part is flipped by the flipper, with the appropriate message request from
Robot1 and acknowledgment from the FlipperRobot agent. The Robot1 agent then
moves the (possibly flipped) composite part back into the jig, ready for the parts
to be fastened (using the Fasten protocol again), and sends the message to unlock
the table. We assume that the FlipperRobot agent is only able to receive a sim-
ple flip request and respond that it is done, so Robot1 requests the positioning of
the table and the lock. There are two interesting things to notice about this pro-
tocol. First, showing actions within the protocol greatly assists in understanding
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ref AddPart
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ref Lock(R1,jigE)

<unload> 

Figure 15.7: Top-level protocol to manufacture a part.

the scenario(s) the protocol supports. In particular it is necessary to show actions
within the protocol if we wish to capture the requirement to load the new part in
parallel with flipping the composite part if that is required. Second, capturing the
optional flipping, within the parallel box, is slightly tricky to get correct. We note
that designing correct protocols is where designers/developers, even those with
substantial experience, often have the most difficulty.

Finally, the Lock protocol captures the message exchanges and actions to en-
sure that the table is locked in the required position. The locking is needed because
we want to be able to interleave manufacturing of multiple parts (e.g., be loading
a part while another part is being joined). If we were only manufacturing one part
at a time, then we could simply rotate the table whenever we wanted to, and the
Lock protocol would reduce to a simple request-action-response. However, since
we do want to be able to interleave the manufacturing of multiple parts, we need
to introduce locking to ensure that the table does not move while an action (e.g.,
loading) is being performed. In essence, the Table agent is responsible for not
rotating when it is locked (i.e., between a “locked-at” and an “unlock” message),
so if a lock-at message is received while the table is locked, the Table agent re-
sponds with a message indicating that the request failed (“lockFailed”) and does
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Figure 15.8: AddPart protocol.

not rotate. An alternative to this design could be to have a central coordinator that
oversees and coordinates all aspects. However, it is simpler and more robust to
allow each agent to manage its own part of the process. We note that the rotateTo
action in the Lock protocol is actually optional: if the jig is already in the desired
position, then no action needs to be taken.

One can verify that with these protocols in place it is possible to obtain the
scenario described earlier. It is left as an exercise for the reader to verify that with
this design it is not possible for a rotation to be performed at the same time as
another action.

Finally, in addition to communication between agents and other agents, and
between agents and the environment, we also define data. Often a good design will
not have data that is shared between agents (which is the case in the holonic man-
ufacturing example), so that data definition is done in the detailed design phase,
when the internals of each agent type are designed in detail. Again, to the extent
that the requirements phase defined the data used, this can be used as a basis for
defining data in the design phase.
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Figure 15.9: System overview diagram.

The basic structure of the system can now be captured with a model that spec-
ifies the agent types, any shared data that is used, and the communication links
between agents. For example, in Prometheus a system overview diagram is used
to capture the system’s (static) structure. Figure 15.9 shows the system overview
model for the holonic manufacturing example.4 It shows the agent types, which
agents perform which actions, which agent handles the manufacture percept, and
which agents communicate with which other agents. In many methodologies com-
munication pathways are shown in terms of individual messages between agents,
or just as links between agents that communicate. In the system overview diagram
in Figure 15.9 we use a number of interaction protocol nodes (e.g., “AddPart”),
which hide a number of messages.

To summarize, the two key models that result from the design phase are:

1. Some type of overview model, which shows the (static) structure of the sys-
tem, including the agent types, communication paths between them, and
shared data (if any). In some methodologies (e.g., Prometheus and O-
MaSE), the overview model also includes the interface between the system
and its environment.

2. Some sort of model of the dynamic behavior of the system. Most often,

4Although there have been limited attempts to standardize notation, there is no widely accepted
standard. Consequently, we have used a set of simple graphical symbols that are not specific to
any given methodology.
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this is defined in terms of patterns of messages, using AUML sequence
diagrams.

The “core” aspects of design are in fact common to most of the more promi-
nent contemporary AOSE methodologies, where the key aspects involve defin-
ing agent types by grouping smaller chunks, specifying interaction protocols to
capture system dynamics, and making use of some sort of overview diagram to
capture the static structure.

However, there are a number of extensions to the core design process pre-
sented. One area of difference is the use of richer models of the relationships
between agent types. The approach discussed above merely captured whether any
two given agent types communicated or not, and whether they share any data.
What is not captured in any depth is the relationship between the agents. Is one
agent a controller or supervisor of another? Are they part of a team? Further-
more, the approach discussed above assumes that the system’s structure is static.
However, if we assume that agents may take on and drop roles, or may join and
leave groups or teams, then these aspects need to be considered, designed, and
modeled. There has been a range of work that deals with richer organizational
modeling (e.g., [42, 43, 44, 64, 65], and see also Chapters 2 and 13). Addition-
ally, in the context of open systems (where agents designed by different people
can join and leave), there has been work on institutions [4], and there has been
some work on how to design such systems [116].

6 Detailed Design

We now need to describe the internals of agents, using as a basis the static and
dynamic behavior of the system as a whole, as captured in the system overview
diagram and the protocols. That is, we need to specify how agents operate to
achieve their goals, and how they respond to messages in order to achieve the
desired interactions. The aim of the detailed design phase is to define the internal
structure of agents in sufficient detail to allow implementation to be done.

In order to define the details of agent internals in a way that supports im-
plementation of the agents, it is necessary to know the kind of implementation
platform that will be used. Will the agents be implemented in terms of finite-state
machines, Petri nets, collections of event-triggered plans, or JADE behaviors?
The more that is known about the implementation platform, the more detailed and
specific the design can be. For example, both Tropos and Prometheus assume that
agents will be implemented in terms of event-triggered plans, making them well
suited to BDI agent platforms [108] such as JACK [18, 126], Jason [12], Jadex
[103], and others. On the other hand, O-MaSE [38] assumes that agent inter-
nals are defined in terms of finite-state machines, and uses finite-state automata
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Figure 15.10: Fasten protocol.

to model the internal behavior of agents. Similarly, PASSI [29] uses activity dia-
grams or state charts to describe the behavior of individual agents.

In this section we will describe (briefly) the basic idea of how detailed design
is done, and then illustrate it using the holonic manufacturing scenario. We will
consider two cases: first, where the agents are implemented using a BDI program-
ming language (see Chapter 13); and second, where agents’ behaviors are defined
in terms of a finite-state machine.

Regardless of the agent architecture that is used, the process of detailed de-
sign begins with the interface of each agent. In the design phase, each agent was
defined as being able to receive and send certain messages, to perform certain
actions, to deal with certain percepts, and to realize certain goals. These are the
starting points for detailed design. For example, consider Robot1 in the overview
diagram (Figure 15.9). We see that it participates in the AddPart protocol (Fig-
ure 15.8), the Lock protocol (Figure 15.6), and the Fasten protocol (Figure 15.10);
and that it sends and receives messages to and from Robot2, the FlipperRobot,
and the Table. We also know that it has actions load, unload, moveToFlipper, and
moveFromFlipper, and that it receives a percept manufacture(composite) (or if we
have a coordinator managing whole orders, this may be a message). We also know
(see page 711) that it has goals loadPart, decideParts, decideNext, and flipOver.
This implies (from the goal hierarchy, Figure 15.5) that it participates in:

• the goal build2 by achieving subgoals decideParts and loadPart (the latter
of which requires the action “load”)

• the goal addPart by achieving subgoals decideNext, flipOver, and loadPart
(as well as doing actions moveToFlipper and moveFromFlipper)



Chapter 15 719

action “unload”)

We focus here on the part Robot1 plays in the manufacturePart goal, although
in general there may be multiple high-level goals an agent participates in, some
of which may share subgoals. Each subgoal represents an identified chunk of ac-
tivity, which will need to be triggered either by an internally posted goal, by a
percept from the environment, or by a message from another agent. Both the sce-
narios and the protocols provide guidance about the ordering of activities, which
also inform the detailed design.

Just as for earlier stages, we need some notation for capturing and commu-
nicating our detailed design. As discussed earlier, which notation is appropriate
depends on the underlying agent architecture that will be used to implement the
agents. If the design notation and the implementation approach are well aligned,
then implementation maps each design entity to an implementation entity. For
example, when implementing a UML class diagram using an object-oriented lan-
guage, each UML class is mapped to a class in the programming language. Simi-
larly, if the design of an agent’s internals is done in terms of event-triggered plans,
and the implementation is done using a BDI agent programming language, then
each design entity (e.g., event or plan) is mapped to a corresponding implementa-
tion entity.

6.1 Example Design: BDI Platform

We now consider our example and how the activities required to achieve the goals
might be specified in terms of event-triggered plans. Each (sub)goal will need to
be realized by one or more plans, each of which will need a trigger.5

6.1.1 Initial Structure

We know that the goal manufacturePart is triggered by the percept manufac-
ture(composite), which is handled by the Robot1 agent. So we can put in place
a plan, triggered by this percept,6 which can then post subgoal events to build2,
addPart, and complete. Each of these events will then need to be associated with
at least one plan (we will discuss later the use of multiple plans). Let us call
these build2Plan, addPartPlan, and completePlan. This initial step is shown in
Figure 15.11.

5An event that is derived from a (sub)goal (within the agent), a message (from another agent),
or a percept (from the environment).

6We assume the parameter(s) carried by a percept, message, or subgoal are hidden within the
“contents” of the entity, and not shown in the name.

• the goal “complete” by achieving the subgoal “assess” (as well as doing the
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Figure 15.11: Initial step in design development for Robot1 internals.

6.1.2 Subgoal Structure for build2

Looking at our goal hierarchy we see that build2plan has subgoals decideParts,
loadPart, and fastenParts. The fastenParts subgoal is also done by Robot1 so
we generate a subgoal and associated plan for it. As the loadPart plan is very
simple, being essentially two load actions, we can consider collapsing away this
subgoal and associated plan, and simply have the actions done by the build2Plan.
A good question to ask when deciding whether to collapse in this way is whether
there could potentially be alternative ways to do the subgoal that is going to be
eliminated. If the answer is yes, then it is better to leave the structure in place,
to facilitate later adding of flexibility. However, in this case we see no alternative
approach to loading the two parts, and so we do the action directly in the build2
plan, adding these two actions in our Figure 15.12. The fastenPart subgoal is done
by Robot2, so we generate a message fasten(jig) to be sent to Robot2, as specified
in our Fasten protocol. The details of how this subgoal is accomplished are then
specified within this agent. Looking further at the top-level protocol (and the Lock
protocol nested within it), we see that Robot1 also needs to lock and unlock the
table, so we add these messages to Figure 15.12.

6.1.3 Subgoal Structure for addPart and complete

We now need to complete the addPartPlan and the completePlan. Looking again
at the goal hierarchy we see that addPart (and therefore its plan addPartPlan) has
subgoals loadPart, fastenParts, decideNext, and flipOver. As with build2Plan,
loadPart becomes the action load, and fastenPart requires the message request fas-
ten(jig). We then add subgoals and associated plans for decideNext and flipOver.
Looking at the AddPart protocol we see that the plan needs to send a flipRequest
message, and that the agent will receive a flipped message. Looking at the Ad-
dPart protocol we also see that Robot1 needs to lock and unlock the table as well
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Figure 15.12: Developing the build2Plan for Robot1 internals.

as do actions moveToFlipper and moveFromFlipper, so we add all these to our
Figure 15.13.7

We now come to the completePlan. Looking at our goal hierarchy again, we
see that this has a subgoal assess, and actions to rotate the table (which is an
action belonging to the Table agent) and unload the piece. Looking at the Manu-
facturePart protocol, we understand that the intent is to continue adding parts and
fastening them (AddPart and Fasten protocols) in a loop, until finally (when the
part is completed) the jig should be locked in position (the Table agent will rotate
the table itself if needed), the part unloaded, and the jig unlocked again. So we
have the completePlan do this final step by sending the message lock-at, doing the
action unload, and sending the message unlock, as in Figure 15.13. Note that the
subgoal assess is not shown. Assessment needs to be done in order to determine
whether we are in a position to complete the manufacturing of the composite part
(i.e., do the complete plan). We therefore decide to represent the assessment as
part of the context condition of the completePlan: if we are in fact done, then the
plan will be applicable; if not, the plan will not be applicable, and will therefore
not be used.

7We note that if looking at the goal hierarchy alone, we would not add moveToFlipper and
moveFromFlipper here, but rather in the flipOverPlan. However, the protocol is a more precise
description, and there we see that in fact these actions need to happen outside the flipOverPlan in
order to obtain the desired parallelism of flipping and load actions.
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Figure 15.13: Developing the addPartPlan and completePlan for Robot1 internals.

6.1.4 Finalizing the Design

We now proceed to finalize the design. We need to check to ensure that all mes-
sages that Robot1 can expect to receive are handled properly, and that it generates
all messages required of it by the protocols. The messages sent by Robot1 are
lock-at, fasten, flipRequest, and unlock, whereas those received are lockFailed,
locked-at, fastened, and flipped. We see that all sent messages are already present
in Figure 15.13, but that the received messages lockFailed, locked-at, and fastened
are not present.

The locked-at and lockFailed messages are not yet shown in Figure 15.13. We
decide to use a modularization construct, often referred to as a capability, to ab-
stract out the process of potentially receiving lockFailed messages and retrying
lock-at until receiving a successful locked-at message. Because designs are typi-
cally much larger than our simple example, some ability to package related plans
and events into abstract entities is important for understandability. These mod-
ules/packages/capabilities may often map back to the roles of the requirements
phase. In Figure 15.14, we see that the lock-at message has now become an in-
ternal subgoal to be handled by this capability, which will send and receive the
relevant messages (not shown in Figure 15.14). Capabilities must then have their
internal structure defined in a similar way to an agent. Capabilities can be nested
within each other as required.
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Figure 15.14: Agent overview design diagram for Robot1 internals.

We also do not yet have the fastened message shown, so we add this to Fig-
ure 15.14 as an incoming message, and consider what should happen when this
is received. Looking at our ManufacturePart protocol, we see that this can be re-
ceived either when we have joined our first two parts, or after we have added a
part. In both cases what we want to do is ascertain whether the part is now com-
plete (in which case we would do completePlan), or whether we need to add a
further part (i.e., generate the subgoal addPart). We add a plan called “continue,”
to allow us to generate the addPart subgoal in the latter case. We have already
provided a context condition that will make completePlan applicable only if the
part is completed. We should then add a context condition to the “continue” plan,
to ensure that it is applicable only when the part still requires additional compo-
nents. In this way, the context conditions of the two plans relevant for responding
to the fastened message will be chosen appropriately, depending on the situation.
If our current composite matches the part to be made, we will choose the com-
pletePlan. If not, we choose the continue plan and repeat the process of adding a
suitable part. This illustrates a situation in which an event (in this case a message
event) can have multiple plans potentially responding to it, with selection gov-
erned by the context condition. We can now see the completed design for Robot1
in Figure 15.14.
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6.1.5 Multiple Plans

The ability of a given event to be handled by more than one plan is one of the
strengths of the BDI architecture. This can be used to readily add additional flexi-
bility into the system. For example, in our system, we may sometimes need to flip
a composite part before adding to it, whereas in other cases we may not. Let us as-
sume now that we are manufacturing a CABD part, and that we already have built
AB. The Robot1 agent now has a choice for the next part of the process: to simply
move away AB, load D beneath it, and then arrange joining (yielding ABD), or,
alternatively, to move away and flip AB (giving BA), load C, and again arrange
joining (yielding BAC, which can be flipped to yield CAB). This decision may be
driven by the immediate availability of C and D parts to load. We can envisage two
alternative plans to add a part: SimpleAdd and FlipAndAdd. SimpleAdd would
have the context condition that the bottom part is needed and available, and would
simply move the composite aside, load the bottom part, then move the compos-
ite back and request a fasten. FlipAndAdd would have the context condition that
the top part is needed and available and would include requesting a flip. If both
plans are applicable, a default could be used – perhaps having the SimpleAdd used
first on the basis that the less that has to be done, the less there is to go wrong.
Alternatively, further reasoning could be done to choose between the alternatives.

In addition to facilitating modular encoding of variations for different situa-
tions, the use of multiple plans to respond to an event also facilitates robustness
when coupled with a failure recovery mechanism that is common in most BDI
platforms. In the above example, suppose that we have selected SimpleAdd, but
while obtaining a lock, some other process has taken the required C part, and
when we go to do load(C) the action fails as there is no C part available. At this
point, rather than having to fail the whole process, we could potentially select the
FlipAndAdd plan, in order to achieve the goal of AddPart in an alternative way.8

One can also envision a situation in which at a higher level it is not possible
to add the next part in building a particular composite (perhaps no next part is
available). Rather than stalling the system and waiting for availability, we could
add a plan to deal with this situation. Such a plan could temporarily remove the
partially built composite and watch for the availability of the required part in order
to continue. These kinds of plans to provide additional robustness are often added
after the core functionality is built.

8Implementation would need to address the fact that if the composite part had already been
moved to the flipper, then the goal to move the composite part succeeds without any action re-
quired. This is straightforward to do in a clean goal-oriented way. The goal is for the composite
to be at the flipper. If that is already achieved, then the goal succeeds trivially.
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6.1.6 Control Information

We note that control information such as loops or sequencing is not captured in
the agent overview diagram in Figure 15.14, but is often important for full under-
standing. One approach is to have the designer include pseudo-code or a textual
description with each plan. Another is to include graphical notations such as a
loop icon and sequencing arrows. Yet another option, which is used by Tropos
[15], is to specify the behavior of a single plan using a precise notation (Tropos
uses UML activity diagrams for this purpose).

6.2 Example Design: Finite-State Automaton

We have considered an example of a detailed design that targets a BDI-like im-
plementation platform. We now consider how the detailed design might instead
be specified in terms of a finite-state automaton. Specifically, we use the nota-
tion used by O-MaSE [38], in which states represent activities, and transitions are
annotated with guards, and received and sent messages, in the format:

[guard] receive(message,sender) / send(message,receiver).

Typically, each agent will have a single finite-state automaton, which describes its
behavior. For example, the behavior of the Robot1 agent can be described by the
automaton of Figure 15.15.

Figure 15.15 was derived from the interaction protocols by identifying the
possible states of the interaction (corresponding to the gaps between messages in
the protocol) and considering them as states of the system. Messages correspond
to transitions between interaction states. For the finite-state machine (FSM) of a
given agent, we compress interactions that do not involve that agent. For example,
Figure 15.15 describes the behavior of Robot1, and so the interaction between
Robot2 and the Table (to Lock the Table, as part of the Fasten subprotocol) is not
shown.

One issue that arose in this example is that whereas the AUML notation sup-
ports subprotocols (such as “Lock"), the FSM notation used by O-MaSE does not
support subprotocols. This means that subprotocols need to be expanded in the
FSM. However, in this case, this would result in multiple copies of the Lock pro-
tocol. In order to avoid a needlessly complex FSM, the protocol was modified
by lifting out the Lock protocol, and positioning it as a common prefix, which is
then followed by either loading two parts, adding a part, or unloading the final
product – where loading two parts as well as adding a part are both followed by
fastening the parts together. This gives slightly different possible behaviors to the
original interaction protocol. For instance, it does not require that the initial load-
ing (“load(A)” and “load(B)”) only occur at the start of the interaction. However,
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Figure 15.15: Behavior of Robot1 (finite-state automaton a la O-MaSE).

although the FSM permits the agent to load(A) and load(B) in the middle of a
manufacturing process, in practice the Assess condition would be defined in such
a way as to avoid this from occurring.

6.3 Final Features

Regardless of whether the behavior of an agent is specified as a single finite-
state machine, or as a collection of plans, one issue that needs to be considered
is whether the set of behaviors specified by an interaction protocol is equivalent
to the behaviors specified by the collection of individual agents’ behaviors. One
aspect which must be considered is that in general agents can be pursuing mul-
tiple goals, and the protocols that govern the interactions between agents must
ensure the desired behavior, even when this happens. In our example, there may
be multiple (actually only two unless the system is extended in some way) Man-
ufacturePart protocols, running in parallel and interleaved. Our design and im-
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plementation must ensure proper behavior, even when planned sequences of (in-
ter)actions are interleaved with the parallel pursuit of other tasks (or additional
instances of the same task). It is left as an exercise for the reader to ensure that
two instances of the ManufacturePart protocol can in fact be interleaved, without
causing problems.

As in previous sections, having described the common core of the various
methodologies, we now briefly touch on a few interesting differences. One feature
that is unique to MaSE (but that does not appear to have been retained in O-MaSE)
is the use of a deployment diagram to capture the run-time location of agents.
Another difference that has been mentioned earlier is that methodologies differ
in the notations used to capture behaviors (e.g., informal pseudocode vs. UML
activity diagram).

7 Implementation

While work in AOSE tends to focus on software engineering aspects (e.g., require-
ments, design), it is clearly necessary for a design to be implemented, and, there-
fore, there is a close relationship between AOSE and the related field of agent-
oriented programming languages (and other support tools for implementing agent
systems).

The result of detailed design is intended to be easily mapped to an implementa-
tion. Clearly, there needs to be an alignment between the type of implementation
platform used and the implementation platform type assumed by the methodol-
ogy. For example, if a methodology’s detailed design phase assumes a BDI-style
implementation, then the results of the detailed design will be expressed in terms
of agents that have event-triggered plans, and these will map naturally to a BDI-
style implementation platform (see Chapter 13). On the other hand, if the detailed
design phase assumes agents that are message-exchanging black boxes, and spec-
ifies the behavior of each agent using, say, a finite-state machine, then the results
of the detailed design will map more naturally to an agent platform such as JADE
[6].

Mapping design to implementation is generally done manually, with some as-
sistance from tools in specifying skeleton code, which is then fleshed out. This is
similar to the way that a UML design is mapped to an object-oriented language,
resulting in class definitions, where the internal details of methods need to be com-
pleted. Several of the tools associated with AOSE methodologies provide support
for implementation in the form of production of skeleton code. Specifically, the
PDT tool (supporting Prometheus) can generate JACK code, the TAOM4E tool
(supporting Tropos) can generate Jadex code, the IDK tool (supporting INGE-
NIAS) can generate JADE code, agentTool III (supporting O-MaSE) can generate
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JADE code, and the PTK tool (supporting PASSI) can generate JADE code using
AgentFactory [29]. However, there is still room for improvement in tool support
for the transition from design to implementation [9], and one area in particular
is to support “round trip” engineering, where changes to generated code can be
reflected in the design. This is partially supported by PDT, but, as far as we are
aware, not by any other tools.9

One approach to improving the link between design and implementation is
to use model-driven development [84] of agent systems (e.g., [75, 100]). The
aim is to produce a complete executable system directly from the design model.
This requires that the design models are specified with enough detail that this
is possible. The benefits of this approach are that the implementation phase is
eliminated and that it is no longer possible for the implementation and design
to diverge over time. However, the cost is that the design must contain a lot of
additional detail, which makes it harder to develop: in effect the implementation
work is shifted into the detailed design phase. Furthermore, the model is more
complex, which tends to reduce its value as a means of understanding the system.
Nevertheless for some systems and user targets, this can be a good approach. The
work of Jayatilleke et al. [75] showed that this approach could facilitate the work
of domain experts who are not programmers in extending and refining a system
through the design models.

8 Assurance

Whereas support for the “core” activities of specification, design, and implemen-
tation is now well developed in AOSE methodologies, support for other activities,
such as testing, debugging, and software maintenance, is less well developed. This
section briefly summarizes the state of the art in the assurance of agent systems:
how can we be confident that a developed multiagent system meets its specifica-
tion? This is usually accomplished through testing and debugging (Section 8.1).
However, due to the characteristics of agent systems, it has been argued that test-
ing (at least if done manually) is not likely to be adequate, and so there is also work
on assurance of agent systems using formal methods, which we briefly survey in
Section 8.2. The topic of support for the ongoing maintenance and modification
of agent software is covered in the next section (Section 9).

Much of the work on testing and debugging takes advantage of the existence of
structured design models. These models can potentially be used in a comprehen-
sive approach to support testing of agent systems (ideally in an automated way).

9INGENIAS provides support for repeated generation of code from the design, but not for code
changes to be propagated back to the design.
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For example, it is possible to monitor the execution of an agent system and auto-
matically detect behaviors that contradict information in the design models, such
as two agents communicating when they are not supposed to do so. An additional
advantage of using design models in testing is that this helps to ensure that the
design models and the code remain in sync, i.e., it assists in avoiding divergence
between design and code.

8.1 Testing and Debugging

Testing of agent systems is acknowledged to be inherently complex due to the
nature of agent systems, which are essentially distributed, parallel systems that can
be non-deterministic due to the autonomous nature of agents, and which are often
realizing complex applications. For these reasons, testing is both challenging and
important.

Generally speaking testing starts with unit testing, where the basic units of the
system are tested in isolation to ensure that individually they perform as expected.
Then there is some sort of integration testing, or module testing, where the units
within a module are tested together. This is then followed by interaction testing
to consider interactions between modules. Finally there is system testing and
acceptance testing to investigate the behavior of the system as a whole.

In addition to the level of testing being addressed, there are also different as-
pects of the testing process that can be supported or automated. First, there is the
design of test cases, which is often the main focus of test support tools. To define
a test case, key variables must be identified, and values must be assigned to these
variables. This specifies different possible configurations under which the unit or
subsystem should be executed to observe behavior. Having specified a set of test
cases, it is necessary to execute these, either manually or automatically. Typically
this requires some sort of test driver, which initializes the system (or subsystem)
being tested, sets the test case variables as specified, executes the system, and
collects information about outputs. The observed outputs must then be checked
against expected outputs. The expected outputs can either be specified explicitly,
as part of the test case, as is done in tools such as JUnit,10 or they can be deter-
mined from a system model in the form of some kind of modeling artifacts. Each
of these aspects – test case generation, test case execution, and checking of test
case output – can be done either manually or automatically. Often support tools
allow or require a combination of manual and automated processes.

Testing is probably the area in which there is the greatest difference between
the current well-established AOSE methodologies, even though most do address it
to some level, with the exception of O-MaSE. Most of the well-developed contem-

10See www.junit.org.

http://www.junit.org
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porary methodologies, including Tropos, Prometheus, PASSI, and INGENIAS, as
well as some other less prominent ones (e.g., Seagent [120]), provide at least basic
support for automated execution and monitoring of test cases, often by integration
with JUnit. Most commonly this requires the developer to manually define test
cases – including input, deployment setup, and expected output. The details of
how this is done and what is provided differs from system to system. PASSI,
for example, interfaces with JUnit with a tool that takes a system implemented in
JADE and provides a GUI to assist the user in specifying test cases to test each
task within an agent [20]. INGENIAS [57] also interfaces with JUnit, but pro-
vides some additional debugging features, such as visualization of which agents
interact. As JUnit is quite general, it can potentially be used for tests associated
with any unit type represented directly in the implementation – from the low-level
plans within agents, to agents themselves.

The Tropos methodology attempts to provide a systematic approach to testing
of agent systems across all the phases of unit, agent, integration, system, and
acceptance testing, based on goals at various levels of abstraction [90]. However,
only the agent and integration levels are developed in any detail and included in
their testing tool called eCAT.

At the agent level, Tropos provides tool support for generating skeleton test
cases for agent testing, based on the agent’s goals. However, as with the agent de-
velopment tools that integrate JUnit, the details of the test cases must be specified
by the developer.

At the integration, or interaction level, eCAT provides support for automated
testing of agent interactions using ontology tools to create message content for
a broad range of automatically generated test cases. The interaction testing tem-
plate is manually created, but the tool then obtains data by analyzing the ontology
specified in the application, and obtaining values for concepts within messages.
Messages are then automatically generated and used by a testing agent to send to
an agent under test to ensure that it responds appropriately. By continuously gen-
erating messages using this tool, taking care to use diverse inputs where possible,
agent interactions can be tested much more extensively than is possible manually.
As interaction between agents is a common source of errors in agent systems, this
is an important area for testing and testing support.

Prometheus does not have a single integrated testing tool, although automated
unit testing has been integrated within a version of the Prometheus Design Tool
(PDT), allowing design, implementation, and, then, testing to be done from the
one environment. Prometheus takes the approach of automating the entire testing
process, from test case generation, to execution, checking of outputs, and report-
ing. This is currently done comprehensively only at the level of the basic units of
plans, events, and beliefs. This approach means that many thousands of test cases
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can readily be executed, and has been shown to isolate complex sporadically oc-
curring bugs in existing programs, which had defied manual debugging [138].
As the entire process is automated,11 an oracle is required to determine whether
output produced is correct or not. The detailed design models produced by the
methodology are used for this purpose [139]. Prometheus also has preliminary
work on testing system requirements or acceptance testing, using scenario specifi-
cations [119]. For a scenario to pass the acceptance test, all test cases must result
in some valid sequence of inputs and outputs according to the scenario definition.

An important question in any testing regime is whether the test cases have
adequately tested the system. A common testing concept here is that of “cover-
age.” In traditional systems it is common to consider “statement coverage” (each
statement is executed at least once), “branch coverage” (each branch is executed
at least once), and “path coverage” (each combination of branches is executed). In
general, path coverage is not possible due to loops and recursion, though in prac-
tice these are capped. Low et al. [83] propose a representation of plans in terms
of arcs and nodes, and then provide some coverage criteria that involve these arcs
and nodes, as well as the plans. They explore the subsumption hierarchy of the
coverage criteria, showing that this is more complex than for traditional cover-
age where path coverage subsumes branch coverage, which subsumes statement
coverage.

Zheng and Alagar [140] also explore coverage criteria for agent system testing,
although this is not implemented, and appears to be based on a finite-state machine
representation, which would involve a computational explosion for many agent
systems, making it impractical in practice.

The notion of coverage is further explored by Miller et al. [85], where it is
applied to the testing of agent interactions. In this approach the simplest level of
coverage is one in which each message in a protocol is sent and received. The
most complete is plan-path coverage, which addresses the notion of paths that
traverse different plans to produce the messages, and ensures that each such path
is traversed. To our knowledge, none of the implemented agent testing tools ex-
plicitly use notions of coverage, although the Prometheus unit testing implicitly
includes some coverage notions in that it provides warnings where sets of test
cases do not show generation of an event, or execution of a plan, which would be
expected at some point according to the design.

In summary, all the major current methodologies include some support for
testing within their tools, with the exception of O-MaSE. However this is primarily
support for automated execution (often using JUnit) with test cases; the correct
results need to be manually specified. Only Prometheus and Tropos have tools
for fully automated testing process, and in both cases these are limited to specific

11It is also possible to manually add test cases if desired.
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aspects: in the case of Prometheus, that of unit testing, and in the case of Tropos,
that of receipt of messages. Both do allow execution of a very large number of test
cases in the particular testing subspace. Clearly, testing of agent-based systems is
an area where there is a need for substantial additional work.

8.2 Formal Methods

As noted earlier, agent systems are distributed, parallel, and potentially non-
deterministic. Additionally, the space of possible behaviors for agents can be
extremely large (e.g., see [129] for an analysis of the behavior space size for BDI
agents). These factors suggest that testing alone may be a less effective means
of obtaining assurance for agent systems than for traditional software systems.
These observations have motivated work on the development of formal verifica-
tion techniques for multiagent systems. For a detailed discussion of verification
of multiagent systems, see Chapter 14.

Broadly speaking, much of the work uses model checking, often using existing
tools, typically by translating to formalisms for which tools exist, such as Promela.
Some work aims to verify actual agent programs, written in an agent-oriented
programming language, whereas other work aims to verify abstract agent systems.

An example of verifying agent programs is the early work of Wooldridge et
al. [133]. It verified agents written in a simple imperative language (MABLE)
against specifications written in a notation that combined temporal logic, dynamic
logics, and modal operators for belief, desire, and intention. This work was ex-
tended by Bordini et al. [10, 11] by using an agent-oriented programming lan-
guage, AgentSpeak(F), which is a limited subset of the AgentSpeak(L) language.
More recently this work has developed a means of supporting a wide range of pro-
gramming languages, by defining a common notation (AIL) and translating other
languages into AIL [41]. In terms of practicality, it is worth noting that the pro-
grams being verified are quite limited, for instance a six-line contract-net protocol
with three agents.

An example of verifying abstract agent systems is the ongoing work of Lo-
muscio and colleagues (e.g., [49, 107]), which verifies interpreted systems, where,
roughly speaking, each agent is modeled as a finite-state machine. These abstract
systems are verified against properties expressed in temporal logic extended with a
knowledge operator. This work is useful in verifying properties of algorithms and
protocols, but does not assist in the verification of implemented agent systems.

Whereas most of the work in this area uses model checking [28], there is also
some work that uses theorem proving. One example is the work of Shapiro et
al. [114], which proves properties of ConGolog programs by translating to PVS,
a typed higher-order logic. The program verified was a simple meeting scheduler,
more complex than a six-line contract-net protocol, but still a long way from real
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agent systems. Another more recent example is the work of Alechina et al. [1, 2,
3], which takes agent programs written in a simple agent language (SimpleAPL)
and translates them into propositional dynamic logic. These translations, along
with the agent’s starting state, can be used to prove safety and liveness properties
using an existing PDL theorem prover. Their key contribution is the ability to
model the agent’s execution strategy, and prove properties that may rely on a
given execution strategy (e.g., interleaved vs. non-interleaved execution of plans).
The approach appears to have only been applied to toy programs (single agent, a
couple of plans, and propositional beliefs).

To summarize, current work on formal methods for verifying agent systems
(see [35]) tends to be applicable to toy programs only. We would expect the
efficiency of tools to improve over time. However, the logics that tend to be used
for stating desired properties tend to have a high computational complexity for
model checking (see Chapter 14). Theorem proving is, in general, less promising
than model checking, since it is less amenable to full automation. Additionally,
model checking has a significant advantage in that it provides a counterexample
to a failed property [27].

Finally, all formal verification work is concerned with showing that all execu-
tions of an agent program P will satisfy a specification ϕ. One issue that needs
to be considered is – where does the specification ϕ come from? In particular, it
is possible for a specification to be incomplete. Indeed, it has been argued that
it is quite likely that specifications are incomplete due to assumptions about the
interface between software and its environment [76], or due to easily-made im-
plicit assumptions about the execution model that allow proofs to be incorrect.
For example, Jackson [72, p. 87] describes a bug that was found in a widely-used
implementation of a binary search algorithm (which had been proved correct).
Winikoff [128] presents a proof of correctness for a simple waste disposal robot,
and then goes on to describe various errors in the simple program that exist despite
it having been proved to be correct!

More broadly, it has been argued that “Problems with requirements and us-
ability dwarf the problems of bugs in code, suggesting that the emphasis on cod-
ing practices and tools, both in academia and industry, may be mistaken” [72,
pp. 86–87]. Based on these observations, a number of authors (e.g., [72, 111])
have argued for the use of safety cases to provide direct end-to-end evidence of
correctness, that is, an end-to-end argument that provides evidence that the system
exhibits desired properties [72], and which establishes which (explicit) assump-
tions need to be made in order for certain properties to follow from the system.
Jackson also argues that properties should be expressed in real-world terms rather
than in software terms. For example, specifying a safety property in terms of the
radiation dose received by a patient, rather than in terms of the software comput-
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ing a correct dose. These ideas have yet to be explored in the context of agent
systems.

Quality assurance is unequivocably a very important issue, especially in com-
plex systems, which is often where an agent paradigm gives the most benefit. Con-
sequently, a broad range of techniques that contribute to this endeavor – from au-
tomated testing to formal verification, as well as approaches such as safety cases –
are likely to be of value.

9 Software Maintenance

Once software has been designed, implemented, assured, and deployed, it is sub-
ject to ongoing maintenance to fix bugs (“corrective maintenance”), adapt to
changes in the application’s environment (“adaptive maintenance”), or adapt to
changes in user requirements (“perfective maintenance”). The ongoing mainte-
nance of existing software is an important issue, since maintenance activities can
account for the majority of the costs of software (as much as two-thirds [124]).
Software maintenance (also termed “software evolution”) is an active area of re-
search for non-agent-based software.

The agent-oriented approach to design and implementation is inherently ad-
vantageous for maintenance, especially adaptive or perfective maintenance, due
to its modular nature. This has been demonstrated to some extent by Bartish and
Thevathayan [5] and by Jayatilleke et al. [75]. The former compared the effort
and amount of code required to extend and modify a game implemented as both
a finite-state machine and as an agent system, finding that the agent system was
much more efficient. The latter extended an aircraft weather alerting system based
on temperature and wind predictions to include alerts involving volcanic ash. This
extension was built and integrated extremely efficiently and with little modifica-
tion required to existing code.

However, little has been done specifically on software maintenance of agent-
based software. Perhaps due to the relative youth of the field, there has been very
little work on software maintenance of agent systems. In fact, the only work we
are aware of on software maintenance for agent systems is by Dam et al. [32, 33].

Dam et al. deal with change propagation in design models. Change prop-
agation is concerned with the issue that making changes to a software system
involves making some initial changes, but these initial changes almost invariably
have consequences, and require additional secondary changes to be made. Change
propagation tools aim to support the software developer in identifying and making
these secondary changes.

The approach used by Dam et al. is to focus on design models, rather than
code, and to define consistency constraints (expressed in OCL) which capture
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consistency requirements of the design – for example, that when a message type
is defined to be received by a certain agent type, then that agent type must have a
plan that deals with the message type. Change propagation is then performed by
repairing violations of these constraints, caused by primary changes. For example,
creating a new message and linking it to an agent violates the constraint above,
and a possible secondary change is to define a new plan in the agent, and have this
new plan handle the new message type.

The framework and techniques proposed by Dam et al. are generic, and have
been applied to both agent-oriented designs (Prometheus) and object-oriented de-
signs (UML). Interestingly, the underlying change propagation engine uses ab-
stract repair plans expressed as BDI event-triggered plans. These plans are derived
directly from the OCL constraints, and are provably sound and complete.

Evaluation has shown that the approach is effective in performing a significant
proportion (around two-thirds) of secondary changes, including some that would
be likely to be missed because they concern parts of the design that would not
normally be considered by the designer (e.g., updating analysis-related design
artifacts when making changes to the detailed design). In terms of efficiency
and scalability, the approach is viable for small to medium design models, but
further opportunities for efficiency improvement exist, since constraint checking
is a bottleneck, and there exist known techniques for making constraint checking
“instant” [48].

10 Comparing Methodologies

As noted in Section 1.1, the early years of work on agent-oriented software engi-
neering saw the development of a large number of methodologies. This raised a
question: given many competing methodologies, how could one select a method-
ology to use? This question saw the appearance of a body of work that focused on
comparing different methodologies. Roughly speaking, this body of work devel-
oped around 2001–2003 [22, 34, 115, 118]. By the middle of the decade the area
of AOSE methodologies had begun to consolidate, resulting in fewer method-
ologies being serious contenders for adoption, and therefore there was reduced
interest in comparing methodologies, although there was some continued work
(e.g., [121]).

All of the work in this area adopted a feature-based comparison approach.
This approach compares methodologies by first identifying a set of features (e.g.,
[117]), such as which phases the methodology covered, whether it supported the
design of proactive agents, whether it provided good traceability support, whether
its notation was intuitive, and whether the methodology was well-documented.
Each methodology being compared was then evaluated against the (typically fairly
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long) list of features.
This exercise resulted in a large table with methodologies on one axis, features

on the other, and each table cell containing an assessment such as “High” (i.e., the
methodology provides a high level of support for the feature in question). One
benefit of the feature-based approach to comparing methodologies is that for a
given project, one could assess the needs of the project (e.g., “for this project we
need a methodology that has strong support for designing complex interactions,
but we don’t need support for proactive agents”). This assessment of important
and less important features could be used, together with the large assessment table,
to select a suitable methodology [92]. However, in order for this to work well, all
potentially important features had to be identified, which tended to result in a long
list of features being used.

Feature-based comparison suffers from a number of weaknesses. One is
that typically the assessments are given in terms of coarse-grained levels (e.g.,
low/medium/high). This provides quite limited information on each feature, and
how well it is supported. A more significant weakness of feature-based com-
parison is its subjectivity: the assignment of a rating to a given feature for a
methodology is subjective, and not without controversy. It is not uncommon for
a methodology’s creator to see an assessment table and object to certain ratings
(“but my methodology does support [feature X]!”). Furthermore, even the creators
of a given methodology were not reliable assessors. Dam & Winikoff [34] used
a feature-based approach, and for each methodology asked its creators to assess
the methodology against the various features. They found that in a number of
cases where a methodology had more than one creator, the two creators assigned
significantly different scores to their methodology’s support for features.

Although it may not be productive to try to directly compare methodologies
on long lists of possible features, it is clear that some methodologies have spe-
cialized in particular aspects of AOSE, or particular kinds of agent systems. The
ideas that have been developed in these methodologies may eventually be incor-
porated into other, more mainstream or general-purpose methodologies. Some
specific aspects around which specialized methodologies have been developed in-
clude: organizations and norms (OperA [42], Moise+ [66]); open systems (SODA
[86, 93]); strategies for negotiating agents (STRATUM [106]); emergent systems
(ADELFE [101]); and stakeholder engagement (ROADMAP [77]).

11 Conclusions

The bulk of this chapter was devoted to describing the state of the art in agent-
oriented software engineering. It is now time to look ahead and try to answer
the question: What’s next? What are the current areas of research? The big
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challenges?
We consider two broad areas for future work: those that require research, and

those that address hurdles to wider adoption but are not research topics as such.
One area where we believe there is an urgent need for research is in under-

standing the benefits of the agent paradigm. Although agent technologies have
been around for a while now, our understanding of the benefits that they offer, and
of the context in which these benefits may be realized, is still, in essence, a col-
lection of well-documented anecdotes in the form of case studies (e.g., [88, 105]).
What is largely missing is measurement of the costs and benefits of agent tech-
nologies. Although some early results have been reported by Benfield et al. [7],
they lack detail, and are only a small number of data points. Another possible area
for work is conducting experiments comparing the development of systems using
agent technologies, and using traditional approaches, along the lines of Prechelt’s
work comparing programming languages [104].

Another area for research concerns designing flexible interactions. As was dis-
cussed earlier in this chapter, most methodologies use interaction protocols that
are message-centric (using a notation such as AUML’s sequence diagrams). The
issue is that this approach is not a good match for agent systems: message-centric
interaction protocols define precisely and explicitly the legal message sequences,
and tend to result in overly prescriptive designs that do not always support max-
imum flexibility, robustness, or autonomy [26]. There is ongoing work on de-
veloping alternative methods and models for designing agent interaction (e.g.,
[51, 52, 79, 80, 81, 134, 135], and see Chapter 3), but at present none of the ap-
proaches proposed have been widely accepted, and it could be argued that they
are not yet ready for use on real systems.

More broadly, it has been observed [45] that there are different types of agent
systems, and that in fact many of the well-known methodologies have focused
on supporting the design of particular types of systems, typically those that are
relatively closed, and which involve coarse-grained agents with a certain degree
of cognitive capabilities (such as BDI agents). However, there are three types of
agent systems that are not well-supported by current methodologies.

One such type of system is one in which there is a need to model a complex
organizational structure, which may change during execution. There has been
considerable work in recent years on organizational modeling (see Chapter 2),
and this is gradually finding its way into methodologies (e.g., [42]).

Another type of system which is not well supported by current AOSE work
is one involving large numbers of very simple agents that rely on emergence of
desired behavior. Although there has been some work in this area (e.g., [98]), one
issue is that the work on designing emergent agent systems is proceeding inde-
pendently of work on the design of cognitive agent systems. However, ultimately,
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what are needed are integrated methodologies that can support the design of sys-
tems with both emergent and cognitive aspects [99].

A third type of system is one in which agents are developed by different people
and organizations, and in which agents join an “open” society of agents. Again,
there has been some work on methodologies to support the design of open agent
systems (e.g., [4, 116]), but more work is needed.

Thus, a significant longer-term challenge for the AOSE community is to de-
velop methodologies (along with tools) that support the engineering of a wider
range of types of agent systems, including emergent systems, open systems, and
systems with complex and dynamic organizational aspects.

Finally, as noted in Section 8.2, obtaining assurance that an agent system will
never malfunction is a significant challenge, given that agent systems are en-
gineered to be adaptive, and to exhibit a complex range of possible behaviors.
Munroe et al. [88, section 3.7.2] note that “. . . validation through extensive tests
was mandatory” but go on to observe that “. . . the task proved challenging for
several reasons. First, agent-based systems explore realms of behavior outside
people’s expectations and often yield surprises.” Similarly, Hall et al. identify the
question of how “. . . the aggregate behavior of the agent-based system be guar-
anteed to meet all the system requirements?” [59] as being a key obstacle to the
adoption of agent technology in manufacturing.

As argued earlier, the complex range of behaviors that can be exhibited by
agent systems makes manual testing an ineffective means of obtaining assurance,
and so there is a need for research in this area. There are a number of approaches
to be explored, including (fully) automated testing, formal verification, the use
of safety cases, and end-to-end evidence. The issue of assurance is probably one
of the most crucial areas for further development if multiagent systems are to be
extensively used by industry. While there is some substantial work in some areas,
much remains to be done to ensure that agent systems can be extensively and
easily tested, giving some reasonable assurance of robustness in the face of the
myriad of potential executions possible.

The areas of work described next are not major research challenges, but pri-
marily involve the engineering, development, and integration of software (such as
design tools). However, the following challenges are significant, and do need to
be addressed in order to enable wider adoption of agent technologies.

One area of work concerns standardization. As noted earlier, the number of
viable methodologies competing for adoption has shrunk in recent years, but there
are still a number of methodologies; and while these methodologies are in some
ways quite similar, there are still differences, some of which are significant, and
others merely gratuitous. One area of work, therefore, is to work toward the de-
velopment of a standardized methodology [39, 60, 96]. It is recognized that in
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general there won’t be a single methodology that will suit all users, but it should
be possible to define a core methodology along with a number of variations or
customizations for different purposes and settings.

One approach that needs to be mentioned with regard to standardization is
method engineering [61]. Briefly, the idea is that methodologies are broken up
into “fragments,” which describe either a process or a product resulting from car-
rying out a design process. These fragments are captured within a framework that
includes a metamodel (e.g., SPEM12) defining the notions of work product, work
process, etc. The key idea of method engineering is that a methodology instance is
created by assembling it from a collection of fragments, held in a repository. We
believe that there may be contexts in which method engineering is valuable and
applicable, but we argue that in many cases, it is more appropriate to begin with
a complete methodology and customize it as needed, rather than beginning with
a repository of fragments. This is because assembling an effective and sensible
methodology out of fragments is not only a significant effort, but doing so requires
expertise and experience in AOSE development. This explains why method engi-
neering has not seen widespread adoption [50]. For further information on method
engineering in an AOSE context, see the recent survey by Cossentino et al. [30].

The wider industrial adoption of agent technologies is also hindered by a num-
ber of other factors [21, 55, 56, 125, 127]. One factor is that mainstream (including
object-oriented) practices, standards, and tools need to be integrated13 with agent-
oriented practices, standards, and tools. Companies and software engineers have
a great deal invested in current (especially object-oriented) approaches to design
and development. The more that agent-oriented approaches can leverage this ex-
isting expertise and be consistent with it when possible – while being clear about
where agent-oriented design is unique and different – the more likely it is that in-
dustry will be willing to use and invest in agent technology. Also, real applications
typically are not a standalone agent system, but involve a multiagent system that is
part of a broader system, which includes object-oriented software, databases, and
other components. So there is a real need for tools and methodologies that incor-
porate both agent and non-agent aspects. This line of work is arguably best driven
by companies, rather than by academic researchers. However, if researchers can
clearly articulate the value proposition of agent technologies, then companies may
be more likely to invest in the integration of these technologies with existing tool
sets and approaches.

12Software Process Engineering Metamodel.
13It is interesting to note that the issue of AOSE having limited industrial impact due to the lack

of integration with mainstream approaches had been discussed at least as far back as 2002 [87].
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12 Exercises

1. Level 1 Extend and modify the presented design for the cell system to in-
clude a coordinator agent that will make the decision as to which part should
be manufactured by the cell. This decision should be based on prioritizing
orders that are highest priority. Orders arrive dynamically, and if a higher
priority order comes in, the coordinator should shift to manufacturing parts
for that order, once parts currently in production on the cell are completed.

2. Level 1 Design a smart printer system that will monitor paper levels in
printers, sending a message to refill as needed; and intelligently re-route
jobs to a nearby printer if a given printer is overloaded, out of paper, or not
functioning.

3. Level 2 Extend the above design to incorporate automated calling of main-
tenance if a printer is not functioning, and maintenance of user statistics
(pages printed/day by each user). Implement and document the system, en-
suring that design and documentation are consistent.

4. Level 2 Select three agent-oriented software engineering methodologies
and compare them using existing criteria (e.g., [22, 115]).

5. Level 2 Implement the holonic manufacturing design using a suitable pro-
gramming language.

6. Level 2 Extend the holonic manufacturing example with the ability to re-
cover from failures, such as an attempt to join two parts failing, or the table
jamming. Assume that when an action fails, the failure is reported to the
system.

7. Level 2 Extend the holonic manufacturing example with variations (e.g.,
manufacturing BAC as well as ABC).

8. Level 3 Find a way of convincing a skeptical but rational critic that your
holonic manufacturing implementation will never misbehave, i.e., that the
table never moves while loading, unloading, or joining are being done. Are
the synchronization constraints sufficient?

9. Level 2 Consider the following version of the Lock protocol. If this proto-
col is used instead of the one in Figure 15.6 (on page 713), is it possible for
a rotation to occur at the same time as another action?
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robot table 

lock-at(Jig, Pos)

locked-at

lockFailed

alt

loop until locked

Lock(Jig)

<rotateTo(Jig,Pos)> 

10. Level 2 Assume that we add the possibility of resting a partially finished
composite piece by having the unload() action do either an unload(bin) or
an unload(shelf) action. The load(part) action can then load a composite part
(from the shelf) as well as single parts. How will this change the design?
Extend the existing design, making as few changes as possible to what is
there, to allow this extension. Include in your design some mechanism for
deciding when it makes sense to do this.

11. Level 3 Expand the simple cell design discussed in this chapter to capture
a hierarchical organization of agents, where the bottom level contains the
agents described in this chapter that control specific machines; then there
would be a layer of cell coordinators that each manage their cell, and, above
this, a supervisor agent that does the prioritization of orders. Investigate
some of the approaches to team and organizational structures, and suggest
how the basic methodology (process and notation) described in this chapter
could be extended to incorporate the development of organizational or team
design.

12. Level 3 Develop a smart meeting scheduler that schedules meetings be-
tween participants based on their availability and the availability of rooms.
The system should be able to automatically reschedule a meeting if a pre-
viously booked meeting room or participant is subsequently required for a
more important meeting, and if the new, more important meeting cannot
be scheduled within the required timeframe without modifying some other
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meeting. Rescheduling should be kept to a minimum, especially reschedul-
ing of time.

13. Level 4 Design a multiagent system for managing the logistics of a courier
system that must continuously take in and assign jobs in an efficient manner,
where jobs have a pickup and delivery location, and also a priority level of
1, 2, or 3. Compare the resulting approach with state-of-the-art approaches
within logistics.

14. Level 4 Interactions between agents in a complex system, in which multiple
things may be happening simultaneously, can lead to race conditions and
deadlocks. However such problems can be very difficult to find and test for.
Consider how you might approach the development of test cases that would
be likely to uncover such problems if they existed.

Appendix: Agent UML Sequence Diagram Notation

This appendix briefly explains the essential elements of the Agent Unified Mod-
eling Language (AUML) sequence diagram notation, which is used in Section 5
to specify interaction protocols. For brevity we use “AUML” as shorthand for
“AUML sequence diagram,” since the sequence diagram is arguably the most used
of the diagram types proposed by AUML. For more details, see the AUML web-
site (www.auml.org) or relevant publications [68, 91]

The AUML sequence diagram notation is an extension of the interaction di-
agram. As such, an AUML sequence diagram has lifelines for each agent with
messages depicted by arrows between the lifelines and with time increasing as
one moves downward. An interaction protocol is placed within a frame, with the
name of the protocol in the “tag” at the top left side of the frame. The example
below shows a User agent sending a Query message to a System agent followed
by the System agent sending a Response message to the User agent.

User System 

Query
Response

Example Protocol 

The primary way that AUML allows alternatives, parallelism, etc., to be spec-
ified is using boxes. A box is a region within the sequence diagram that contains
messages and may contain nested boxes. Each box has a tag that describes the

http://www.auml.org
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type of box (for example, Alternative, Parallel, Option, etc.). A box can affect the
interpretation of its contents in a range of ways, depending on its type. For exam-
ple, an Option box (abbreviated “opt”) indicates that its contents may be executed
as normal, or may not be executed at all (in which case the interpretation of the
sequence diagram continues after the Option box).

Whether or not the box is executed can be specified by guards. A guard,
denoted by text in square brackets, indicates a condition that must be true in order
for the Option box to execute.

Most box types can be divided into regions, indicated by heavy horizontal
dashed lines. For example, an Alternative box (abbreviated “alt”) can have a num-
ber of regions (each with its own guard) and exactly one region will be executed.
The example below shows an example of nested boxes. The Option box indicates
that nothing happens if the system is not operational. If the system is operational,
then we have two alternatives (separated by a horizontal heavy dashed line). The
first alternative is that the System sends the user a Response message. The second
alternative is that the System indicates that the user’s query was not understood.

User System 

Query

Response

Not Understood

alt

opt

sd Example Protocol

[System Operational] 

The following are some of the box types that are defined by AUML (and in-
clude all of the box types that we use):

• Alternative: Specifies that one of the box’s regions occurs. One of the
regions may have “else” as the guard.

• Option: Can only have a single region. Specifies that this region may or
may not occur.

• Parallel: Specifies that each of the regions takes place simultaneously and
the sequence of messages is interleaved.
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• Loop: Can only have a single region. Specifies that the region is repeated
some number of times. The tag gives the type (“Loop”) and also an indica-
tion of the number of repetitions, which can be a fixed number (or a range)
or a Boolean condition.

• Ref: This box type is a little different in that it doesn’t contain subboxes
or messages. Instead, it contains the name of another protocol. This is
basically a form of procedure call – the interpretation of the Ref box is
obtained by replacing it with the protocol it refers to.

Finally, in our use of the AUML sequence diagram notation to capture inter-
action protocols, we find it useful to be able to indicate the places in a protocol
where actions are performed. Since the AUML sequence diagram notation does
not provide a way to do this, we have extended the notation to do so. We place an
action indicator, the name of the action in angled brackets (“<action>”), on an
agent’s lifeline to indicate that the agent performs the action.
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Chapter 16

Logics for Multiagent Systems

Wiebe van der Hoek and Michael Wooldridge

1 Introduction

If one wants to reason about an agent or about a multiagent system, then logic
can provide a convenient and powerful tool. First of all, logics provide a language
with which to specify properties: properties of the agent, of other agents, and of the
environment. Ideally, such a language also provides a means to then implement an
agent or a multiagent system, either by somehow executing the specification, or by
transforming the specification into some computational form. Second, given that
such properties are expressed as logical formulas that are part of some inference
system, they can be used to deduce other properties. Such reasoning can be part
of an agents’ own capabilities, but it can also be done by the system designer,
the analyst, or the potential user of (one of) the agents. Third, logics provide a
formal semantics in which the sentences from the language get a precise meaning:
if one manages to come up with a semantics that closely models (part of) the
system under consideration, one then can verify properties of a particular system
(model checking). This, in a nutshell, sums up the three main characteristics
of any logic (language, deduction, semantics), as well as the three main roles
that logics play in system development (specification, execution, and verification)
(see also Chapter 14 for a discussion on the role of logic in specification and
verification of agent systems).

If the role and value of logic for multiagent systems (MAS) is clear, then why
are there so many logics for MAS, with new variants proposed at almost every
multiagent conference? What most of these logics compete for is a proper balance
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between expressiveness, on the one hand, and complexity on the other. What kinds
of properties are interesting for the scenarios of interest, and how can they be
“naturally" and concisely expressed? Then, how complex are the formalisms, in
terms of how easily the key relevant properties can be expressed and grasped by
human users, and how costly is it to use the formalism when doing verification or
reasoning with it? Of course, the complexity of the logic under consideration will
be related to the complexity of the domain it tries to formalize.

In multiagent research, this complexity often depends on a number of issues.
Let us illustrate this with a simple example, say the context of traffic. If there
is only one agent involved, the kinds of things we would like to represent to
model the agent’s sensing, planning, and acting could probably be done in a sim-
ple propositional logic, using atoms like gn (light n is green), ok (gate k is open),
and ei,m (agent i enters through gate m). However, taking the agent perspective
seriously, one quickly realizes that we need more: there might be a difference
between what actually is the case and what the agent believes is the case, and
also between what the agent believes to hold and what the agent would like to be
true – otherwise there would be no reason to act! So, we would like to be able to
say things like ¬ok ∧Biok ∧Di(ok → ei,k) (although the gate is closed, the agent
believes it is open and desires to establish that in that case it enters through it).

Things get more interesting when several agents enter the scene. Not only does
our agent i need a model of its operational environment, but also a model of j’s
mental state, the latter involving a model of i’s mental state. We can then express
properties like BiB jg j → stopi (if i believes that j believes that the latter’s light is
green, then i will stop). Higher-order information enters the picture, and there is
no a priori level where this would stop (this is for instance important in reasoning
about games: see the discussion on common knowledge for establishing a Nash
equilibrium [12]). In our simple traffic scenario,1 assume that i is a pedestrian who
approaches a crossing without traffic lights while motorist j advances as well. It
might well be that both believe that j is advancing (Biad j ∧B jad j) so, being the
more vulnerable party, one would expect that i will wait. However, if i has a strong
desire to not lose time with waiting, it may try to make j stop for i by “making j
believe that i is not aware of j" (Biad j∧B jad j∧DiBi¬B jBiad j), i.e., it is i’s desire
to be convinced that j does not believe that i is aware of j advancing (i can avoid
eye contact, for instance, and approach the crossing in a determined way, the aim
of this being that j prefers no accident over being involved in one and hence will
stop). In other words, i plans to act contrary to its own beliefs.

Another dimension that makes multiagent scenarios (and hence their log-
ics) complex is their dynamics: the world changes (this is arguably the goal of
the whole enterprise) and the information, the desires, and the goals of agents

1This example is adapted from one given in a talk by Rohit Parikh.



Chapter 16 763

change as well. So, we need tools to reason either about time, or else about ac-
tions explicitly. A designer of a crossing is typically interested in properties like
A ¬(gi ∧ g j) (this is a safety property requiring that in all computations, it is
always the case that no two lights are green) and cli → A♦gi (this is a liveness
property expressing that if there is a car in lane i, then no matter how the system
evolves, eventually light i will be green). Combining the aspects of multiagents
and dynamics is where things really become intriguing: there is not just “a fu-
ture,” or a “possible future depending on an agent’s choice": what the future looks
like will depend on the choices of several agents at the same time. We will come
across languages in which one can express ¬〈〈i〉〉♦s∧¬〈〈 j〉〉♦s∧ 〈〈i, j〉〉♦s (al-
though i cannot bring about that eventually everybody has safely crossed the road,
and neither can j, by cooperating together, i and j can guarantee that they both
cross in a safe manner).

Logics for MAS are often some variant of modal logic; to be more precise,
they are all intensional, contrary to propositional and first-order logic, which are
extensional. A logic is extensional if the truth-value of a formula is completely
determined given the truth-value of all its constituents, the sub-formulas. If we
know the truth-value of p and q, we also know that of (p∧q), and of ¬p→ (q→
p). For logics of agency, extensionality is often not realistic. It might well be that
“rain in Utrecht” and “rain in Liverpool” are both true, while our agent knows one
without the other. Even if one is given the truth value of p and of q, one is not
guaranteed to be able to tell whether Bi(p∨q) (agent i believes that p∨q), whether
♦(p∧q) (eventually, both p and q), or whether Bi (p→ Bhq) (i believes that it
is always the case that as soon as p holds, agent h believes that q).

These examples make clear why extensional logics are so popular for multi-
agent systems. However, the most compelling argument for using modal logics for
modeling the scenarios we have in mind lies probably in the semantics of modal
logics. They are built around the notion of a “state,” which can be the state of
a system, of a processor, or a situation in a scenario. Considering several states
at the same time is then rather natural, and usually, many of them are “related”:
some because they “look the same” for a given agent (they define its beliefs), some
because they are very attractive (they comprise its desires), or some of them may
represent some state of affairs in the future (they model possible evolutions of the
system). Finally, some states are reachable only when certain agents make certain
decisions (those states determine what coalitions can achieve).

In the remainder of this section, we demonstrate some basic languages, infer-
ence systems, and semantics that are foundational for logics of agency. The rest
of the chapter is then organized along two main streams, reflecting two trends in
multiagent systems research when it comes to representing and reasoning about
environments:
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Knowledge Axioms
Kn1 ϕ where ϕ is a propositional tautology
Kn2 Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)
Kn3 Kiϕ→ ϕ
Kn4 Kiϕ→ KiKiϕ
Kn5 ¬Kiϕ→ Ki¬Kiϕ
Rules of Inference
MP � ϕ,� (ϕ→ ψ) ⇒ � ψ
Nec � ϕ ⇒ � Kiϕ

Figure 16.1: An inference system for knowledge.

Cognitive models of rational action: The first main strand of research in repre-
senting multiagent systems focuses on the issue of representing the attitudes
of agents within the system: their beliefs, aspirations, intentions, and the
like. The aim of such formalisms is to derive a model that predicts how a
rational agent would go from its beliefs and desires to actions. Work in
this area builds largely on research in the philosophy of mind. The logical
approaches presented in Section 2 focus on this trend.

Models of the strategic structure of the system: The second main strand of re-
search focuses on the strategic structure of the environment: what agents
can accomplish in the environment, either together or alone. Work in this
area builds on models of effectivity from the game theory community, and
the models underpinning such logics are closely related to formal games. In
Section 3 we present logics that deal with this trend.

1.1 A Logical Toolkit

In this section, we very briefly touch upon the basic logics to reason about knowl-
edge, about time, and about action. Let i be a variable over a set of agents
Ag = {1, . . . ,m}. For reasoning about knowledge or beliefs of agents (we will
not dwell here on the distinction between the two), one usually adds, for every
agent i, an operator Ki to the language, where Kiϕ then denotes that agent i knows
ϕ. In the best-known epistemic logics [31, 72], we see the axioms as given in
Figure 16.1.

This inference system is often referred to as S5m if there are m agents. Axiom
Kn1 is obvious, Kn2 denotes that an agent can perform deductions upon what
it knows, and Kn3 is often referred to as veridicality: what one knows is true.
If Kn3 is replaced by the weaker constraint Kn3′, saying ¬Ki⊥, the result is a
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logic for belief (where “i believes ϕ” is usually written as Biϕ). Finally, Kn4 and
Kn5 denote positive and negative introspection, respectively: they indicate that an
agent knows what it knows, and knows what it is ignorant of. Modus Ponens (MP)
is a standard logical rule, and Necessitation (Nec) guarantees that it is derivable
that agents know all tautologies.

Moving on to the semantics of such a logic, models for epistemic logic are
tuples M = 〈S,Ri∈Ag,V 〉 (also known as Kripke models), where S is a set of states,
Ri ⊆ S× S is a binary relation for each agent i, and V : At → 2S gives for each
atom p the states V (p) where p is true. Truth of ϕ in a model M with state s,
written as M,s |= ϕ, is standard for the classical connectives (cf. Figure 16.2, left),
and the clause M,s |= Kiϕ means that for all t with Rist, M, t |= ϕ holds. In other
words, in state s agent i knows ϕ iff ϕ is true in all states t that look similar to s
for i. Ki is called the necessity operator for Ri. M |= ϕ means that for all states
s ∈ S, M,s |= ϕ. So the states describe some atomic facts p about some situation,
and Rist means that for agent i, the states s and t look the same, or, given its
information, are indistinguishable. Let S5m be all models in which each Ri is an
equivalence relation. Let S5m |= ϕ mean that in all models M ∈ S5m, we have
M |= ϕ. The system S5m is complete for the validities in S5m, i.e., for all ϕ we
have S5m � ϕ iff S5m |= ϕ.

Whereas in epistemic logics the binary relation on the set of states represents
the agents’ ignorance, in temporal logics it represents the flow of time. In its most
simple appearance, time has a beginning, and advances linearly and discretely
into an infinite future: this is linear-time temporal logic (LTL, [84]). So a simple
model for time is obtained by taking as the set of states the natural numbers N, and
for the accessibility relation “the successor” of, i.e., R = {(n,n+ 1)}, and V , the
valuation, can be used to specify specific properties in states. In the language, we
then would typically see operators for the “next state,” ( �), for “all states in the
future” ( ), and for “some time in the future” (♦). The truth conditions for those
operators, together with an axiom system for them, are given in Figure 16.2. Note
that is the reflexive transitive closure of R, and♦ is its dual: ♦ϕ= ¬ ¬ϕ.

To give a simple example, suppose that atom p is true in exactly the prime
numbers, e is true in all even numbers, and o in all odd numbers. In the nat-
ural numbers, in state 0 we then have ♦p (there are infinitely many primes),
♦(p∧e∧ � ¬(p∧e)) (there is a number that is even and prime, and for which
all greater numbers are not even and prime), and (♦(e∧ �♦o)) (for every
number, one can find a number at least as big that is even and for which one can
find a bigger number that is odd).

Often, one wants a more expressive language, adding, for instance, an operator
for until:

M,n |= ϕUψ iff ∃m≥ n(M,m |= ψ & ∀n≥ k ≥ m M,k |= ϕ)
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Truth Conditions
M,n |= p iff n ∈V (p)
M,n |= ¬ϕ iff not M,n |= ϕ
M,n |= ϕ∧ψ iff M,n |= ϕ and

M,n |= ψ
M,n |= �ϕ iff M,n+1 |= ϕ
M,n |= ϕ iff ∀m≥ n,M,m |= ϕ
M,n |=♦ϕ iff ∃m≥ n,M,m |= ϕ

LTL Axioms
LT L1 ϕ (ϕ a prop. taut.)
LT L2 �(ϕ→ ψ)→ ( �ϕ→ �ψ)
LT L3 ¬ �ϕ↔ �¬ϕ
LT L4 ϕ→ (ϕ∧ � ϕ)
Rules of Inference
MP � ϕ,� (ϕ→ ψ) ⇒ � ψ
Nec � ϕ ⇒ � �ϕ
Ind � ϕ→ ψ,� ϕ→ �ϕ⇒� ϕ→ ψ

Figure 16.2: Semantics and axioms of linear temporal logic.

A rational agent deliberates about its choices, and to represent those, branching-
time seems a more appropriate framework than linear-time. To understand
branching-time operators, though, an understanding of linear-time operators is
still of benefit. Computational tree logic (CTL) (see [29]) is a branching-time logic
that uses pairs of operators; the first quantifies over paths, and the second is an LTL

operator over those paths. Let us demonstrate this by mentioning some properties
that are true in the root ρ of the branching-time model M of Figure 16.3. Note that
on the highlighted path, in ρ, the formula ¬q is true. Hence, on the branching-
model M,ρ, we have E ¬q, saying that in ρ, there exists a path through it, on
which q is always false. A♦ϕ means that on every path starting in ρ, there is some
future point where ϕ is true. So, in ρ, A♦¬p holds. Likewise, EpUq is true in
ρ because there is a path (the path “up,” for example) in which pUq is true. We
leave it to the reader to check that in ρ, we have E♦(p∧A ¬p). In CTL ∗, the
requirement that path and tense operators need to occur together is dropped: CTL ∗
formulas true in ρ are, for instance, A( ♦p∧ ♦¬p (all paths have infinitely
many p states and infinitely many ¬p states), and AEp (for all paths, there is a
path such that p).

Rather than giving an axiom system for CTL here, we now describe frame-
works where change is not imposed by nature (i.e., by passing of time), but where
we can be more explicit about how change is brought about. By definition, an
agent is supposed to act, so rather than thinking of the flow of time as the main
driver for change, transitions between states can be labeled with actions, or, more
generally, a pair (i,α), where i is an agent and α an action. The formalism dis-
cussed below is based on dynamic logic [41, 42], which is again a modal logic. On
page 772 we will see how temporal operators can be defined in terms of dynamic
ones.

Actions in the set Ac are either atomic actions (a,b, . . . ) or composed (α,β, . . . )
by means of testing of formulas (ϕ?), sequencing (α;β), conditioning (if ϕ then
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Figure 16.3: A branching-time model. One branch is highlighted.

α else β), and repetition (while ϕ do α). The informal meaning of such constructs
is as follows:

ϕ? denotes a “test action” ϕ
α;β denotes α followed by β
if ϕ then α else β if ϕ holds, action α is executed, else β
while ϕ do α as long as ϕ is true, α is executed

Here, the test must be interpreted as a test by the system; it is not a so-called
“knowledge-producing action” (like observations or communication) that can be
used by the agent to acquire knowledge.

These actions α can then be used to build new formulas to express the possible
result of the execution of α by agent i (the formula [doi(α)]ϕ denotes that ϕ is a
result of i’s execution of α), the opportunity for i to perform α (〈doi(α)〉�), and i’s
capability of performing the action α (Aiα). The formula 〈doi(α)〉ϕ is shorthand
for ¬[doi(α)]¬ϕ, thus expressing that one possible result of performance of α by
i implies ϕ.

In the Kripke semantics, we then assume relations Ra for individual actions,
where the relations for compositions are then recursively defined: for instance,
Rα;βst iff for some state u, Rαsu and Rβut. Indeed, [doi(α)] is then the neces-
sity operator for Rα. Having epistemic and dynamic operators, one has already
a rich framework to reason about an agent’s knowledge about doing actions. For
instance, a property like perfect recall

Ki[doi(α)]ϕ→ [doi(α)]Kiϕ
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which semantically implies some grid structure on the set of states: If Rαst and
Ritu, then for some v, we also have Risv and Rαvu. For temporal epistemic logic,
perfect recall is captured in the axiom Ki

�ϕ→ �Kiϕ, while its converse, no
learning, is �Kiϕ→ Ki

�ϕ. It is exactly this kind of interaction properties that
can make a multiagent logic complex, both conceptually and computationally.

In studying the way that actions and knowledge interact, Robert Moore argued
that one needs to identify two main issues. The first is that some actions produce
knowledge, and therefore their effects must be formulated in terms of the epistemic
states of participants. The second is that of knowledge preconditions: what an
agent needs to know in order to be able to perform an action. A simple example is
that in order to unlock a safe, one must know the combination for the lock. Using
these ideas, Moore formalized a notion of ability. He suggested that in order for
an agent to be able to achieve some state of affairs ϕ, the agent must either:

• know the identity of an action α (i.e., have an “executable description” of
an action α) such that after α is performed, ϕ holds; or else

• know the identity of an action α such that after α is performed, the agent
will know the identity of an action α′ such that after α′ is performed, ϕ
holds.

The point about “knowing the identity” of an action is that in order for me to be
able to become rich, it is not sufficient for me simply to know that there exists
some action I could perform that would make me rich. I must either know what
that action is (the first clause above), or else be able to perform some action that
would furnish me with the information about which action to perform in order to
make myself rich. This subtle notion of knowing an action is rather important, and
it is related to the distinction between knowledge de re (which involves knowing
the identity of a thing) and de dicto (which involves knowing that something ex-
ists) [31, p. 101]. In the example of the safe, most people would have knowledge
de dicto to open the safe, but only a few would have knowledge de re. We will
see later, when we review more recent work on temporal logics of ability, that this
distinction also plays an important role there.

It is often the case that actions are ontic: they bring about a change in the
world, like assigning a value to a variable, moving a block, or opening a door.
However, dynamic epistemic logic (DEL) [113] studies actions that bring about
mental change: change of knowledge in particular. So in DEL, the actions them-
selves are epistemic. A typical example is announcing ϕ in a group of agents:
[ϕ]ψ would then mean that after announcement of ϕ, it holds that ψ. Surprisingly
enough, the formula [ϕ]Kiϕ (after the announcement that ϕ, agent i knows that
ϕ, is not a validity, a counterexample being the infamous Moore sentences [74]
ϕ= (¬Ki p∧ p): “although i does not know it, p holds”).
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Let us make one final remark in this section. We already indicated that things
become interesting and challenging when one combines several notions into one
framework (like knowledge and action, or knowledge and time). In fact it already
becomes interesting if we stick to one notion, and take the aspect of having a
multiagent system seriously. For instance, interesting group notions of knowledge
in S5m gives rise to are

• Eϕ (“everybody knows ϕ”, i.e., K1ϕ∧·· ·∧Kmϕ),

• Dϕ (“it is distributed knowledge that ϕ”, i.e., if you would pool all the
knowledge of the agents together, ϕ would follow from it, like in (Ki(ϕ1 →
ϕ2)∧Kjϕ1)→ Dϕ2)), and

• Cϕ (“it is common knowledge that ϕ”: this is axiomatized such that it re-
sembles the infinite conjunction Eϕ∧EEϕ∧EEEϕ∧ . . . ).

In DEL for instance, this gives rise to the question of which formulas are success-
ful, i.e., formulas for which [ϕ]Cϕ (after ϕ is announced, it is public knowledge) is
valid [114]. Different questions arise when taking the multiagent aspect seriously
in the context of actions. What happens with the current state if all agents take
some action? How to “compute” the result of those concurrent choices? This lat-
ter question will in particular be addressed in Section 3. First, we focus on logics
that amplify aspects of the mental state of agents. The next two sections heavily
borrow from [111].

2 Representing Cognitive States

In attempting to understand the behavior of agents in the everyday world, we
frequently make use of folk psychology:

Many philosophers and cognitive scientists claim that our everyday
or “folk” understanding of mental states constitutes a theory of mind.
That theory is widely called “folk psychology” (sometimes “common
sense” psychology). The terms in which folk psychology is couched
are the familiar ones of “belief,” “desire,” “hunger,” “pain,” and so
forth. According to many theorists, folk psychology plays a central
role in our capacity to predict and explain the behavior of ourselves
and others. However, the nature and status of folk psychology re-
mains controversial. [126]

The philosopher Dennett coined the phrase intentional system to refer to an entity
that is best understood in terms of folk psychology notions such as beliefs, de-
sires, and the like [25]. The intentional stance is essentially nothing more than an
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abstraction tool. If we accept the usefulness of the intentional stance for charac-
terizing the properties of rational agents, then the next step in developing a formal
theory of such agents is to identify the components of an agent’s state. There are
many possible mental states that we might choose to characterize an agent: be-
liefs, goals, desires, intentions, commitments, fears, and hopes are just a few. We
can identify several important categories of such attitudes, for example:

Information attitudes: those attitudes an agent has toward information about its
environment. The most obvious members of this category are knowledge
and belief.

Pro-attitudes: those attitudes an agent has that tend to lead it to perform actions.
The most obvious members of this category are goals, desires, and inten-
tions.

Moreover, there is also a social state when modeling agents which includes:

Normative attitudes: including obligations, permissions, and authorization.

We will not say much about normative attitudes in this chapter other than giving
some pointers for further reading in Section 4.

Much of the literature on developing formal theories of agency has been taken
up with the relative merits of choosing one attitude over another, and investigating
the possible relationships between these attitudes.

2.1 Intention Logic

One of the best-known, and most sophisticated attempts to show how the various
components of an agent’s cognitive makeup could be combined to form a logic of
rational agency is that of Cohen and Levesque [22]. The logic has proved to be so
useful for specifying and reasoning about the properties of agents that it has been
used in an analysis of conflict and cooperation in multiagent dialogue [36], [35],
as well as in several studies in the theoretical foundations of cooperative problem
solving [61, 62, 65]. This section will focus on the use of the logic in developing a
theory of intention. The first step is to lay out the criteria that a theory of intention
must satisfy.

When building intelligent agents – particularly agents that must interact with
humans – it is important that a rational balance is achieved between the beliefs,
goals, and intentions of the agents.

For example, the following are desirable properties of intention: An
autonomous agent should act on its intentions, not in spite of them;
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adopt intentions it believes are feasible and forego those believed to be
infeasible; keep (or commit to) intentions, but not forever; discharge
those intentions believed to have been satisfied; alter intentions when
relevant beliefs change; and adopt subsidiary intentions during plan
formation. [22, p. 214]

Following [15, 16], Cohen and Levesque identify seven specific properties that
must be satisfied by a reasonable theory of intention:

1. Intentions pose problems for agents, who need to determine ways of achiev-
ing them.

2. Intentions provide a “filter” for adopting other intentions, which must not
conflict.

3. Agents track the success of their intentions, and are inclined to try again if
their attempts fail.

4. Agents believe their intentions are possible.

5. Agents do not believe they will not bring about their intentions.

6. Under certain circumstances, agents believe they will bring about their in-
tentions.

7. Agents need not intend all the expected side effects of their intentions.

Given these criteria, Cohen and Levesque adopt a two-tiered approach to the prob-
lem of formalizing a theory of intention. First, they construct the logic of rational
agency, “being careful to sort out the relationships among the basic modal opera-
tors” [22, p. 221]. On top of this framework, they introduce a number of derived
constructs, which constitute a “partial theory of rational action” [22, p. 221]; in-
tention is one of these constructs.

Syntactically, the logic of rational agency is a many-sorted, first-order, multi-
modal logic with equality, containing four primary modalities (see Table 16.1).
The semantics of Bel and Goal are given via possible worlds, in the usual way:
each agent is assigned a belief accessibility relation and a goal accessibility rela-
tion. The belief accessibility relation is Euclidean, transitive, and serial, giving a
belief logic of KD45. The goal relation is serial, giving a conative logic KD. It
is assumed that each agent’s goal relation is a subset of its belief relation, imply-
ing that an agent will not have a goal of something it believes will not happen.
A world in this formalism is a discrete sequence of events, stretching infinitely
into the past and future. The system is only defined semantically, and Cohen and
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Operator Meaning
(Bel i ϕ) agent i believes ϕ
(Goal i ϕ) agent i has goal of ϕ
(Happens α) action α will happen next
(Done α) action α has just happened

Table 16.1: Atomic modalities in Cohen and Levesque’s logic.

Levesque derive a number of properties from that. In the semantics, a number of
assumptions are implicit, and one might vary on them. For instance, there is a
fixed domain assumption, giving us properties such as

∀x(Bel i ϕ(x))→ (Bel i∀xϕ(x)) (16.1)

The philosophically-oriented reader will recognize a Barcan formula in (16.1),
which in this case expresses that the agent is aware of all the elements in the
domain. Also, agents “know what time it is”; we immediately obtain from the se-
mantics the validity of formulas like 2 : 30PM/3/6/85→ Bel i 2 : 30PM/3/6/85.

Intention logic has two basic operators to refer to actions, Happens and Done.
The standard future time operators of temporal logic, “ ” (always), and “♦”
(sometime), can be defined as abbreviations, along with a “strict” sometime oper-
ator, Later:

♦α =̂ ∃x · (Happens x;α?)
α =̂ ¬♦¬α

(Later p) =̂ ¬p∧♦p

A temporal precedence operator, (Before p q), can also be derived, and holds if p
holds before q. An important assumption is that all goals are eventually dropped:

♦¬(Goal x (Later p))

The first major derived construct is a persistent goal.

(P-Goal i p) =̂ (Goal i (Later p)) ∧
(Bel i ¬p) ∧⎡⎣ Before

((Bel i p)∨ (Bel i ¬p))
¬(Goal i (Later p))

⎤⎦
So, an agent has a persistent goal of p if:
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1. It has a goal that p eventually becomes true, and believes that p is not cur-
rently true.

2. Before it drops the goal, one of the following conditions must hold:

(a) the agent believes the goal has been satisfied;

(b) the agent believes the goal will never be satisfied.

It is a small step from persistent goals to a first definition of intention, as in “in-
tending to act.” Note that “intending that something becomes true” is similar, but
requires a slightly different definition (see [22]). An agent i intends to perform
action α if it has a persistent goal to have brought about a state where it had just
believed it was about to perform α, and then did α.

(Intend i α) =̂ (P-Goal i
[Done i (Bel i (Happens α))?;α]

)

Cohen and Levesque go on to show how such a definition meets many of Brat-
man’s criteria [15] for a theory of intention (outlined above). In particular, by
basing the definition of intention on the notion of a persistent goal, Cohen and
Levesque are able to avoid overcommitment or undercommitment. An agent will
only drop an intention if it believes that the intention has either been achieved, or
is unachievable.

A critique of Cohen and Levesque’s theory of intention is presented in [103];
space restrictions prevent a discussion here.

2.2 BDI Logic

One of the best-known (and most widely misunderstood) approaches to reasoning
about rational agents is the belief-desire-intention (BDI) model [17]. The BDI

model gets its name from the fact that it recognizes the primacy of beliefs, desires,
and intentions in rational action. The BDI model is particularly interesting because
it combines three distinct components:

• A philosophical foundation

The BDI model is based on a widely respected theory of rational action in
humans, developed by the philosopher Michael Bratman [15].

• A software architecture

The BDI model of agency does not prescribe a specific implementation. The
model may be realized in many different ways, and indeed a number of
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different implementations of it have been developed. However, the fact that
the BDI model has been implemented successfully is a significant point in
its favor. Moreover, the BDI model has been used to build a number of
significant real-world applications, including such demanding problems as
fault diagnosis on the space shuttle.

• A logical formalization

The third component of the BDI model is a family of logics. These logics
capture the key aspects of the BDI model as a set of logical axioms. There
are many candidates for a formal theory of rational agency, but BDI logics
in various forms have proved to be among the most useful, longest-lived,
and most widely accepted.

Intuitively, an agent’s beliefs correspond to information the agent has about the
world. These beliefs may be incomplete or incorrect. An agent’s desires represent
states of affairs that the agent would, in an ideal world, wish to be brought about.
(Implemented BDI agents require that desires be consistent with one another, al-
though human desires often fail in this respect.) Finally, an agent’s intentions
represent desires that it has committed to achieving. The intuition is that an agent
will not, in general, be able to achieve all its desires, even if these desires are con-
sistent. Ultimately, an agent must therefore fix upon some subset of its desires and
commit resources to achieving them. These chosen desires, to which the agent has
some commitment, are intentions [22]. The BDI theory of human rational action
was originally developed by Michael Bratman [15]. It is a theory of practical
reasoning – the process of reasoning that we all go through in our everyday lives,
deciding moment by moment which action to perform next.

The BDI model has been implemented several times. Originally, it was real-
ized in IRMA, the intelligent resource-bounded machine architecture [17]. IRMA

was intended as a more or less direct realization of Bratman’s theory of practical
reasoning. However, the best-known implementation is the procedural reasoning
system (PRS) [37] and its many descendants [26, 33, 55, 87]. In the PRS, an agent
has data structures that explicitly correspond to beliefs, desires, and intentions. A
PRS agent’s beliefs are directly represented in the form of PROLOG-like facts [21,
p. 3]. Desires and intentions in PRS are realized through the use of a plan library.2

A plan library, as its name suggests, is a collection of plans. Each plan is a recipe
that can be used by the agent to achieve some particular state of affairs. A plan
in the PRS is characterized by a body and an invocation condition. The body of a
plan is a course of action that can be used by the agent to achieve some particular
state of affairs. The invocation condition of a plan defines the circumstances under

2In this description of the PRS, we have modified the original terminology somewhat to be more
in line with contemporary usage; we have also simplified the control cycle of the PRS slightly.
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which the agent should “consider” the plan. Control in the PRS proceeds by the
agent continually updating its internal beliefs, and then looking to see which plans
have invocation conditions that correspond to these beliefs. The set of plans made
active in this way corresponds to the desires of the agent. Each desire defines a
possible course of action that the agent may follow. On each control cycle, the
PRS picks one of these desires, and pushes it onto an execution stack for subse-
quent execution. The execution stack contains desires that have been chosen by
the agent, and thus corresponds to the agent’s intentions.

The third and final aspect of the BDI model is the logical component, which
gives us a family of tools that allow us to reason about BDI agents. There have
been several versions of BDI logic, starting in 1991 and culminating in Rao and
Georgeff’s 1998 paper on systems of BDI logics [88, 90, 91, 92, 93, 94, 95]; a
book-length survey was published as [121]. We focus on [121].

Syntactically, BDI logics are essentially branching-time logics (CTL or CTL*,
depending on which version one is reading about), enhanced with additional
modal operators Bel, Des, and Intend, for capturing the beliefs, desires, and in-
tentions of agents, respectively. The BDI modalities are indexed with agents, so
for example the following is a legitimate formula of BDI logic:

(Bel i (Intend j A♦p))→ (Bel i (Des j A♦p))

This formula says that if i believes that j intends that p is inevitably true even-
tually, then i believes that j desires p is inevitable. Although they share much
in common with Cohen-Levesque’s intention logics, the first and most obvious
distinction between BDI logics and the Cohen-Levesque approach is the explicit
starting point of CTL-like branching-time logics. However, the differences are ac-
tually much more fundamental than this. The semantics that Rao and Georgeff
give to BDI modalities in their logics are based on the conventional apparatus of
Kripke structures and possible worlds. However, rather than assuming that worlds
are instantaneous states of the world, or even that they are linear sequences of
states, it is assumed instead that worlds are themselves branching temporal struc-
tures: thus each world can be viewed as a Kripke structure for a CTL-like logic.
While this tends to rather complicate the semantic machinery of the logic, it makes
it possible to define an interesting array of semantic properties, as we shall see be-
low.

Before proceeding, we summarize the key semantic structures in the logic.
Instantaneous states of the world are modeled by time points, given by a set T ;
the set of all possible evolutions of the system being modeled is given by a binary
relation R ⊆ T ×T . A world (over T and R) is then a pair 〈T ′,R′〉, where T ′ ⊆ T
is a non-empty set of time points, and R′ ⊆ R is a branching-time structure on T ′.
Let W be the set of all worlds over T . A pair 〈w, t〉, where w = 〈Tw,Rw〉 ∈ W
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and t ∈ Tw, is known as a situation. If w ∈W , then the set of all situations in w
is denoted by Sw. We have belief accessibility relations B, D, and I, modeled as
functions that assign to every agent a relation over situations. Thus, for example:

B : Ag→ 2W×T×W

We write Bw
t (i) to denote the set of worlds accessible to agent i from situation

〈w, t〉: Bw
t (i) = {w′ | 〈w, t,w′〉 ∈ B(i)}. We define Dw

t and Iw
t in the obvious way.

The semantics of belief, desire, and intention modalities are then given in the
conventional manner:

• 〈w, t〉 |= (Bel i ϕ) iff 〈w′, t〉 |= ϕ for all w′ ∈ Bw
t (i)

• 〈w, t〉 |= (Des i ϕ) iff 〈w′, t〉 |= ϕ for all w′ ∈ Dw
t (i)

• 〈w, t〉 |= (Intend i ϕ) iff 〈w′, t〉 |= ϕ for all w′ ∈ Iw
t (i)

The primary focus of Rao and Georgeff’s early work was to explore the possible
interrelationships between beliefs, desires, and intentions from the perspective of
semantic characterization. In order to do this, they defined a number of possible
interrelationships between an agent’s belief, desire, and intention accessibility re-
lations. The most obvious relationships that can exist are whether one relation is a
subset of another: for example, if Dw

t (i)⊆ Iw
t (i) for all i,w, t, then we would have

as an interaction axiom (Intend i ϕ)→ (Des i ϕ). However, the fact that worlds
themselves have structure in BDI logic also allows us to combine such properties
with relations on the structure of worlds themselves. The most obvious structural
relationship that can exist between two worlds – and the most important for our
purposes — is that of one world being a subworld of another. Intuitively, a world
w is said to be a subworld of world w′ if w has the same structure as w′ but has
fewer paths and is otherwise identical. Formally, if w,w′ are worlds, then w is a
subworld of w′ (written w 1 w′) iff paths(w) ⊆ paths(w′) but w,w′ agree on the
interpretation of predicates and constants in common time points.

The first property we consider is the structural subset relationship between
accessibility relations. We say that accessibility relation R is a structural subset of
accessibility relation R̄ if for every R-accessible world w, there is an R̄-accessible
world w′ such that w is a subworld of w′. Formally, if R and R̄ are two accessibility
relations, then we write R ⊆sub R̄ to indicate that if w′ ∈ Rw

t (i), then there exists
some w′′ ∈ R̄w

t (i) such that w′ 1 w′′. If R ⊆sub R̄, then we say R is a structural
subset of R̄.

We write R̄ ⊆sup R to indicate that if w′ ∈ Rw
t (i), then there exists some w′′ ∈

R̄w
t (i) such that w′′ 1 w′. If R⊆sup R̄, then we say R is a structural superset of R̄.

In other words, if R is a structural superset of R̄, then for every R-accessible world
w, there is an R̄-accessible world w′ such that w′ is a subworld of w.
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Name Semantic Corresponding Formula Schema
Condition

BDI-S1 B⊆sup D⊆sup I (Intend i E(ϕ))→ (Des i E(ϕ))→ (Bel i E(ϕ))

BDI-S2 B⊆sub D⊆sub I (Intend i A(ϕ))→ (Des i A(ϕ))→ (Bel i A(ϕ))

BDI-S3 B⊆ D⊆ I (Intend i ϕ)→ (Des i ϕ)→ (Bel i ϕ)

BDI-R1 I ⊆sup D⊆sup B (Bel i E(ϕ))→ (Des i E(ϕ))→ (Intend i E(ϕ))

BDI-R2 I ⊆sub D⊆sub B (Bel i A(ϕ))→ (Des i A(ϕ))→ (Intend i A(ϕ))

BDI-R3 I ⊆ D⊆ B (Bel i ϕ)→ (Des i ϕ)→ (Intend i ϕ)

BDI-W1 B∩sup D �= /0 (Bel i A(ϕ))→¬(Des i ¬A(ϕ))
D∩sup I �= /0 (Des i A(ϕ))→¬(Intend i ¬A(ϕ))
B∩sup I �= /0 (Bel i A(ϕ))→¬(Intend i ¬A(ϕ))

BDI-W2 B∩sub D �= /0 (Bel i E(ϕ))→¬(Des i ¬E(ϕ))
D∩sub I �= /0 (Des i E(ϕ))→¬(Intend i ¬E(ϕ))
B∩sub I �= /0 (Bel i E(ϕ))→¬(Intend i ¬E(ϕ))

BDI-W3 B∩D �= /0 (Bel i ϕ)→¬(Des i ¬ϕ)
D∩ I �= /0 (Des i ϕ)→¬(Intend i ¬ϕ)
B∩ I �= /0 (Bel i ϕ)→¬(Intend i ¬ϕ)

Table 16.2: Systems of BDI logic. (Source: [90, p. 321].) In the first six rows, the
corresponding formulas of type A→ B→C are shorthand for (A→ B)∧(B→C).

Finally, we can also consider whether the intersection of accessibility relations
is empty or not. For example, if Bw

t (i)∩ Iw
t (i) �= /0, for all i,w, t, then we get the

following interaction axiom:

(Intend i ϕ)→¬(Bel i ¬ϕ)

This axiom expresses an intermodal consistency property. Just as we can under-
take a more fine-grained analysis of the basic interactions among beliefs, desires,
and intentions by considering the structure of worlds, so we are also able to under-
take a more fine-grained characterization of intermodal consistency properties by
taking into account the structure of worlds. We write Rw

t (i)∩sup R̄w
t (i) to denote

the set of worlds w′ ∈ R̄w
t (i) for which there exists some world w′′ ∈ Rw

t (i) such
that w′ 1 w′′. We can then define ∩sub in the obvious way.

Putting all these relations together, we can define a range of BDI logical sys-
tems. The most obvious possible systems, and the semantic properties that they
correspond to, are summarized in Table 16.2.
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2.3 Discussion

Undoubtedly, formalizing the informational and motivational attitudes in a context
with evolving time, or where agents can do actions, has greatly helped to improve
our understanding of complex systems. At the same time, admittedly, there are
many weaknesses and open problems with such approaches.

To give one example of how a formalization can help us to become more clear
about the interrelationship between the notions defined here, recall that Rao and
Georgeff assume the notion of belief-goal compatibility, saying

Goaliϕ→ Biϕ

for formulas ϕ that refer to the future.
Cohen and Levesque, however, put a lot of emphasis on their notion of realiz-

ability, stating exactly the opposite:

Biϕ→Goaliϕ

By analyzing the framework of Cohen and Levesque more closely, it appears that
they have a much weaker property in mind, which is

Goaliϕ→¬Bi¬ϕ
To mention just one aspect in which the approach mentioned here is still far from
completed, we recall that the three frameworks allow one to reason about many
agents, but are in essence still one-agent systems. Although notions such as dis-
tributed and common knowledge are well-understood epistemic notions in multi-
agent systems, their motivational analogues seem to be much harder and are yet
only partially understood (see Cohen and Levesque’s [23], and Tambe’s [105] or
Dunin-Kȩplicz and Verbrugge’s [28] on teamwork).

2.4 Cognitive Agents in Practice

Broadly speaking, logic plays a role in three aspects of software development:
as a specification language; as a programming language; and as a verification
language. In the sections that follow, we will discuss the possible use of logics of
rational agency in these three processes.

2.4.1 Specification Language

The software development process begins by establishing the client’s require-
ments. When this process is complete, a specification is developed, which sets
out the functionality of the new system. Temporal and dynamic logics have found
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wide applicability in the specification of systems. An obvious question is there-
fore whether logics of rational agency might be used as specification languages.

A specification expressed in such a logic would be a formula ϕ. The idea is
that such a specification would express the desirable behavior of a system. To
see how this might work, consider the following formula of BDI logic (in fact
from [121]), intended to form part of a specification of a process control system.

(Bel i Open(valve32))→ (Intend i (Bel j Open(valve32)))

This formula says that if i believes valve 32 is open, then i should intend that j
believes valve 32 is open. A rational agent i with such an intention can select
a speech act to perform in order to inform j of this state of affairs. It should
be intuitively clear how a system specification might be constructed using such
formulae, to define the intended behavior of a system.

One of the main desirable features of a software specification language is that
it should not dictate how a specification should be satisfied by an implementation.
It should be clear that the specification above has exactly these properties. It does
not dictate how agent i should go about making j aware that valve 32 is open. We
simply expect i to behave as a rational agent given such an intention.

There are a number of problems with the use of such logics for specification.
The most worrying of these is with respect to their semantics. As we set out in
Section 1, the semantics for the modal operators (for beliefs, desires, and inten-
tions) are given in the normal modal logic tradition of possible worlds [19]. There
are several advantages to the possible worlds model: it is well studied and well un-
derstood, and the associated mathematics of correspondence theory is extremely
elegant. These attractive features make possible worlds the semantics of choice
for almost every researcher in formal agent theory. However, there are also a
number of serious drawbacks to possible worlds semantics. First, possible worlds
semantics imply that agents

• are logically perfect reasoners (in that their deductive capabilities are sound
and complete, this follows for instance from the axiom Kn2 and the rule
Nec that we gave in Figure 16.1 for knowledge, and, moreover, this axiom
and inference rule are part of any modal axiomatization of agent’s attitudes)
and

• have infinite resources available for reasoning (see axioms Kn1andKn2 and
rule Nec again).

No real agent, artificial or otherwise, has these properties.
Second, possible worlds semantics are generally ungrounded. That is, there is

usually no precise relationship between the abstract accessibility relations that are
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used to characterize an agent’s state, and any concrete computational model. As
we shall see in later sections, this makes it difficult to go from a formal specifica-
tion of a system in terms of beliefs, desires, and so on, to a concrete computational
system. Similarly, given a concrete computational system, there is generally no
way to determine what the beliefs, desires, and intentions of that system are. If
temporal modal logics of rational agency are to be taken seriously as specification
languages, then this is a significant problem.

2.4.2 Implementation

Once given a specification, we must implement a system that is correct with re-
spect to this specification. The next issue we consider is this move from abstract
specification to concrete computational system. There are at least two possibilities
for achieving this transformation that we consider here:

1. somehow directly execute or animate the abstract specification; or

2. somehow translate or compile the specification into a concrete computa-
tional form, using an automatic translation technique.

Directly Executing Agent Specifications. Suppose we are given a system spec-
ification, ϕ, which is expressed in some logical language L. One way of obtaining
a concrete system from ϕ is to treat it as an executable specification, and interpret
the specification directly in order to generate the agent’s behavior. Interpreting an
agent specification can be viewed as a kind of constructive proof of satisfiability,
whereby we show that the specification ϕ is satisfiable by building a model (in the
logical sense) for it. If models for the specification language L can be given a com-
putational interpretation, then model building can be viewed as executing the spec-
ification. To make this discussion concrete, consider the Concurrent METATEM
programming language [34]. In this language, agents are programmed by giv-
ing them a temporal logic specification of the behavior it is intended they should
exhibit; this specification is directly executed to generate each agent’s behavior.
Models for the temporal logic in which Concurrent METATEM agents are spec-
ified are linear discrete sequences of states: executing a Concurrent METATEM
agent specification is thus a process of constructing such a sequence of states.
Since such state sequences can be viewed as the histories traced out by programs
as they execute, the temporal logic upon which Concurrent METATEM is based
has a computational interpretation; the actual execution algorithm is described
in [13]. A somewhat related language is the IMPACT framework of Subrahmanian
et al. [104]. IMPACT is a rich framework for programming agents, which draws
upon and considerably extends some ideas from logic programming. Agents in
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IMPACT are programmed by using rules that incorporate deontic modalities (per-
mitted, forbidden, obliged [73]). These rules can be interpreted to determine the
actions that an agent should perform at any given moment [104, p. 171].

Note that executing Concurrent METATEM agent specifications is possible
primarily because the models upon which the Concurrent METATEM temporal
logic is based are comparatively simple, with an obvious and intuitive computa-
tional interpretation. However, agent specification languages in general (e.g., the
BDI formalisms of Rao and Georgeff [89]) are based on considerably more com-
plex logics. In general, possible worlds semantics do not have a computational
interpretation in the way that Concurrent METATEM semantics do. Hence it is
not clear what “executing” a logic based on such semantics might mean.

In response to this issue, a number of researchers have attempted to develop
executable agent specification languages with a simplified logical basis that has a
computational interpretation. An example is Rao’s AGENTSPEAK(L) language,
which although essentially a BDI system, has a simple computational seman-
tics [87]. The 3APL project [44] is also an attempt to have an agent program-
ming language with a well-defined semantics, based on transition systems. One
advantage of having a thorough semantics is that it enables one to compare differ-
ent agent programming languages, such as AGENTSPEAK(L) with 3APL [43] or
AGENT0 with 3APL [45]. One complication in bridging the gap between the
agent programming paradigm and the formal systems of Sections 2.1–2.2 is that
the former usually takes goals to be procedural (a plan), whereas goals in the latter
are declarative (a desired state). A programming language that tries to bridge the
gap in this respect is the language GOAL [107].

GOLOG [64, 96] and its multiagent sibling CONGOLOG [63] represent another
rich seam of work on logic-oriented approaches to programming rational agents.
Essentially, GOLOG is a framework for executing a fragment of the situation calcu-
lus; the situation calculus is a well-known logical framework for reasoning about
action [70]. Put crudely, writing a GOLOG program involves expressing a logical
theory of what action an agent should perform, using the situation calculus; this
theory, together with some background axioms, represents a logical expression
of what it means for the agent to do the right action. Executing such a program
reduces to constructively solving a deductive proof problem, broadly along the
lines of showing that there is a sequence of actions representing an acceptable
computation according to the theory [96, p. 121]; the witness to this proof will be
a sequence of actions, which can then be executed.

Compiling Agent Specifications. An alternative to direct execution is compi-
lation. In this scheme, we take our abstract specification, and transform it into a
concrete computational model via some automatic synthesis process. The main
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perceived advantages of compilation over direct execution are in run-time effi-
ciency. Direct execution of an agent specification, as in Concurrent METATEM,
above, typically involves manipulating a symbolic representation of the specifica-
tion at run-time. This manipulation generally corresponds to reasoning of some
form, which is computationally costly. Compilation approaches aim to reduce
abstract symbolic specifications to a much simpler computational model, which
requires no symbolic representation. The “reasoning” work is thus done off-line,
at compile-time; execution of the compiled system can then be done with little or
no run-time symbolic reasoning.

Compilation approaches usually depend upon the close relationship between
models for temporal/modal logic (which are typically labeled graphs of some
kind), and automata-like finite-state machines. For example, Pnueli and Ros-
ner [85] synthesize reactive systems from branching temporal logic specifications.
Similar techniques have also been used to develop concurrent system skeletons
from temporal logic specifications. Perhaps the best-known example of this ap-
proach to agent development is the situated automata paradigm of Rosenschein
and Kaelbling [98]. They use an epistemic logic to specify the perception compo-
nent of intelligent agent systems. They then used a technique based on construc-
tive proof to directly synthesize automata from these specifications [97].

The general approach of automatic synthesis, although theoretically appeal-
ing, is limited in a number of important respects. First, as the agent specification
language becomes more expressive, then even off-line reasoning becomes too ex-
pensive to carry out. Second, the systems generated in this way are not capable
of learning (i.e., they are not capable of adapting their “program” at run-time).
Finally, as with direct execution approaches, agent specification frameworks tend
to have no concrete computational interpretation, making such a synthesis impos-
sible.

2.4.3 Verification

Once we have developed a concrete system, we need to show that this system
is correct with respect to our original specification. This process is known as
verification, and it is particularly important if we have introduced any informality
into the development process. We can divide approaches to the verification of
systems into two broad classes: (1) axiomatic; and (2) semantic (model checking).

Axiomatic approaches to program verification were the first to enter the main-
stream of computer science, with the work of Hoare in the late 1960s [47]. Ax-
iomatic verification requires that we can take our concrete program, and from this
program systematically derive a logical theory that represents the behavior of the
program. Call this the program theory. If the program theory is expressed in the
same logical language as the original specification, then verification reduces to a
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proof problem: show that the specification is a theorem of (equivalently, is a logi-
cal consequence of) the program theory. The development of a program theory is
made feasible by axiomatizing the programming language in which the system is
implemented. For example, Hoare logic gives us more or less an axiom for every
statement type in a simple PASCAL-like language. Once given the axiomatization,
the program theory can be derived from the program text in a systematic way.

Perhaps the most relevant work from mainstream computer science is the spec-
ification and verification of reactive systems, using temporal logic in the way pio-
neered by Pnueli, Manna, and colleagues [69]. The idea is that the computations
of reactive systems are infinite sequences, which correspond to models for linear
temporal logic. Temporal logic can be used both to develop a system specifica-
tion, and to axiomatize a programming language. This axiomatization can then be
used to systematically derive the theory of a program from the program text. Both
the specification and the program theory will then be encoded in temporal logic,
and verification hence becomes a proof problem in temporal logic.

Comparatively little work has been carried out within the agent-based systems
community on axiomatizing multiagent environments. We shall review just one
approach. In [120], an axiomatic approach to the verification of multiagent sys-
tems was proposed. Essentially, the idea was to use a temporal belief logic to ax-
iomatize the properties of two multiagent programming languages. Given such an
axiomatization, a program theory representing the properties of the system could
be systematically derived in the way indicated above. A temporal belief logic
was used for two reasons. First, a temporal component was required because,
as we observed above, we need to capture the ongoing behavior of a multiagent
system. A belief component was used because the agents we wish to verify are
each symbolic AI systems in their own right. That is, each agent is a symbolic
reasoning system, which includes a representation of its environment and desired
behavior. A belief component in the logic allows us to capture the symbolic repre-
sentations present within each agent. The two multiagent programming languages
that were axiomatized in the temporal belief logic were Shoham’s AGENT0 [100],
and Fisher’s Concurrent METATEM (see above). Note that this approach relies
on the operation of agents being sufficiently simple that their properties can be
axiomatized in the logic. It works for Shoham’s AGENT0 and Fisher’s Concurrent
METATEM largely because these languages have a simple semantics, closely re-
lated to rule-based systems, which in turn have a simple logical semantics. For
more complex agents, an axiomatization is not so straightforward. Also, captur-
ing the semantics of concurrent execution of agents is not easy (it is, of course, an
area of ongoing research in computer science generally).

Ultimately, axiomatic verification reduces to a proof problem. Axiomatic ap-
proaches to verification are thus inherently limited by the difficulty of this proof
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problem. Proofs are hard enough, even in classical logic; the addition of temporal
and modal connectives to a logic makes the problem considerably harder. For this
reason, more efficient approaches to verification have been sought. One particu-
larly successful approach is that of model checking [20]. As the name suggests,
whereas axiomatic approaches generally rely on syntactic proof, model checking
approaches are based on the semantics of the specification language. The model
checking problem, in abstract, is quite simple: given a formula ϕ of language L,
and a model M for L, determine whether or not ϕ is valid in M, i.e., whether or
not M |=L ϕ. Model checking-based verification has been studied in connection
with temporal logic. The technique once again relies upon the close relationship
between models for temporal logic and finite-state machines. Suppose that ϕ is
the specification for some system, and π is a program that claims to implement
ϕ. Then, to determine whether or not π truly implements ϕ, we take π, and from
it generate a model Mπ that corresponds to π, in the sense that Mπ encodes all
the possible computations of π. We then determine whether or not Mπ |= ϕ, i.e.,
whether the specification formula ϕ is valid in Mπ; the program π satisfies the
specification ϕ just in case the answer is “yes.” The main advantage of model
checking over axiomatic verification is in complexity: model checking using the
branching-time temporal logic CTL [20] can be done in polynomial time, whereas
the proof problem for most modal logics is quite complex.

In [94], Rao and Georgeff present an algorithm for model checking BDI logic.
More precisely, they give an algorithm for taking a logical model for their (propo-
sitional) BDI agent specification language, and a formula of the language, and
determining whether the formula is valid in the model. The technique is closely
based on model checking algorithms for normal modal logics [40]. They show
that despite the inclusion of three extra modalities (for beliefs, desires, and in-
tentions), into the CTL branching-time framework, the algorithm is still quite ef-
ficient, running in polynomial time. So the second step of the two-stage model
checking process described above can still be done efficiently. However, it is not
clear how the first step might be realized for BDI logics. Where does the logical
model characterizing an agent actually come from – can it be derived from an ar-
bitrary program π, as in mainstream computer science? To do this, we would need
to take a program implemented in, say, JAVA, and from it derive the belief, desire,
and intention accessibility relations that are used to give a semantics to the BDI
component of the logic. Because, as we noted earlier, there is no clear relationship
between the BDI logic and the concrete computational models used to implement
agents, it is not clear how such a model could be derived.

One approach to this problem was presented in [122], where an imperative
programming language called MABLE was presented, with an explicit BDI seman-
tics. Model checking for the language was implemented by mapping the language
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to the input language for the SPIN model checking system [54], and by reducing
formulae in a restricted BDI language to the linear temporal logic format required
by SPIN. Here, for example, is a sample claim that may be made about a MABLE

system, which may be automatically verified by model checking:

claim
[]
((believe agent2

(intend agent1
(believe agent2 (a == 10))))

->
<>(believe agent2 (a == 10))

);

This claim says that it is always ([]) the case that if agent 2 believes that agent
1 intends that agent 2 believes that variable a has the value 10, then subsequently
(<>), agent 2 will itself believe that a has the value 10. MABLE was developed
primarily as a testbed for exploring possible semantics for agent communication,
and was not intended for large-scale system verification.

Several model checkers for logics combining knowledge, time, and other
modalities have been developed in recent years. For example, using techniques
similar to those used for CTL model checkers [20], Raimondi and Lomuscio im-
plemented MCMAS, a model checker that supports a variety of epistemic, tempo-
ral, and deontic logics [67, 86]. Another recent approach to model checking multi-
agent systems is [48], which involves model checking temporal epistemic logics
by reducing the model checking problem to a conventional LTL model checking
problem.

3 Representing the Strategic Structure of a System

The second main strand of research that we describe focuses not on the cognitive
states of agents, but on the strategic structure of the environment: what agents can
achieve, either individually or in groups. The starting point for such formalisms
is a model of strategic ability.

Over the past three decades, researchers from many disciplines have attempted
to develop a general purpose logic of strategic ability. Within the artificial intel-
ligence (AI) community, it was understood that such a logic could be used in
order to gain a better understanding of planning systems [6, 32, 66]. The most no-
table early effort in this direction was Moore’s dynamic epistemic logic, referred
to above [75, 76]. Moore’s work was subsequently enhanced by many other re-
searchers, perhaps most notably Morgenstern [77, 78]. The distinctions made by
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Moore and Morgenstern also informed later attempts to integrate a logic of abil-
ity into more general logics of rational action in autonomous agents [121, 124]
(see [123] for a survey of such logics).

In a somewhat parallel thread of research, researchers in the philosophy of
action developed a range of logics underpinned by rather similar ideas and moti-
vations. A typical example is that of Brown, who developed a logic of individual
ability in the mid-1980s [18]. Brown’s main claim was that modal logic was a
useful tool for the analysis of ability, and that previous – unsuccessful – attempts
to characterize ability in modal logic were based on an oversimple semantics.
Brown’s account of the semantics of ability was as follows [18, p. 5]:

[An agent can achieve A] at a given world iff there exists a relevant
cluster of worlds, at every world of which A is true.

Notice the ∃∀ pattern of quantifiers in this account. Brown immediately noted that
this gave the resulting logic a rather unusual flavor, neither properly existential nor
properly universal [18, p. 5]:

Cast in this form, the truth condition [for ability] involves two met-
alinguistic quantifiers (one existential and one universal). In fact, [the
character of the ability operator] should be a little like each.

More recently, there has been a surge of interest in logics of strategic ability, which
has been sparked by two largely independent developments: Pauly’s development
of coalition logic [80, 81, 82, 83], and the development of the alternating-time
temporal logic (ATL) by Alur, Henzinger, and Kupferman [9, 27, 38]. Although
these logics are very closely related, the motivation and background of the two
systems is strikingly different.

3.1 Coalition Logic

Pauly’s coalition logic was developed in an attempt to shed some light on the links
between logic – and in particular, modal logic – and the mathematical theory of
games [79]. Pauly showed how the semantic structures underpinning a family of
logics of cooperative ability could be formally understood as games of various
types. He gave correspondence results between properties of the games and ax-
ioms of the logic; gave complete axiomatizations of the various resulting logics;
determined the computational complexity of the satisfiability and model checking
problems for his logics; and, in addition, demonstrated how these logics could be
applied to the formal specification and verification of social choice procedures.
The basic modal operator in Pauly’s logic is of the form [C]ϕ, where C is a set of
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agents (i.e., a subset of the grand coalition Ag), and ϕ is a sentence; the intended
reading is that “C can cooperate to ensure that ϕ”.

The semantics of cooperation modalities are given in terms of an effectivity
function, which defines for every coalition C the states that C can cooperate to
bring about. The effectivity function E : S → (2Ag → 22S

), gives for any state
t and coalition C a set of sets of end-states EC(t), with the intended meaning of
S∈ EC(t) that C can enforce the outcome to be in S (although C may not be able to
pinpoint the exact outcome that emerges with this choice; this generally depends
on the choices of agents outside C, or “choices” made by the environment). This
effectivity function comes on a par with a modal operator [C] with truth definition

t |= [C]ϕ iff for some S ∈ EC(t) : for all s(s |= ϕ iff s ∈ S)

In words: coalition is effective for or can enforce ϕ if there is a set of states S that
it is effective for, i.e., which it can choose and which is exactly the denotation of
ϕ: S = [|ϕ|]. It seems reasonable to say that C is also effective for ϕ if it can choose
a set of states S that “just” guarantees ϕ, i.e., for which we have S ⊆ [|ϕ|]. This
will be taken care of by imposing monotonicity on effectivity functions: we will
discuss constraints on effectivity at the end of this section.

In games and other structures for cooperative and competitive reasoning, ef-
fectivity functions are convenient when one is interested in the outcomes of the
game or the encounter, and not so much about intermediate states, or how a cer-
tain state is reached. Effectivity is also a level in which one can decide whether
two interaction scenarios are the same. The two games G1 and G2 in Figure 16.4
are “abstract” in the sense that they do not lead to payoffs for the players but
rather to states that satisfy certain properties, encoded with propositional atoms p,
q, and u. Such atoms could refer to which player is winning, but also denote other
properties of an end-state, such as some distribution of resources, or “payments.”
Both games are two-player games: in G1, player A makes the first move, which it
chooses from L (Left) and R (Right). In that game, player E is allowed to choose
between l and r, respectively, but only if A plays R; otherwise the game ends after
one move in the state satisfying p. In game G2, both players have the same reper-
toire of choices, but the order in which the players choose is different. It looks as
if in G1, player A can hand over control to E, whereas the converse seems to be
true for G2. Moreover, in G2, the player that is not the initiator (i.e., player A)
will be allowed to make a choice, regardless of the choice of its opponent.

Despite all these differences between the two games, when we evaluate them
with respect to what each coalition can achieve, they are the same! To be a little
more precise, let us define the powers of a coalition in terms of effectivity func-
tions E. In game G1, player A’s effectivity gives EA(ρ1)= {{a},{c,d}}. Similarly,
player E’s effectivity yields {{a,c},{a,c}}: E can enforce the game to end in a or
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Figure 16.4: Two games G1 and G2 that are the same in terms of effectivity. H is
an imperfect information game (see Section 3.3).

c (by playing l), but it can also enforce the end-state among a and d (by playing r).
Obviously, we also have E{A,E}(ρ1) = {{a},{c},{d}}: players A and E together
can enforce the game to end in any end-state. When reasoning about this, we have
to restrict ourselves to the properties that are true in those end-states. In coalition
logic, what we have just noted semantically would be described as:

G1 |= [A]p∧ [A](q∨u)∧ [E](p∨q)∧ [E](p∨u)∧ [A,E]p∧ [A,E]q∧ [A,E]r

Being equipped with the necessary machinery, it now is easy to see that the
game G2 verifies the same formula. Indeed, in terms of what propositions can
be achieved, we are in a similar situation as in the previous game: E is effective
for {p,q} (by playing l) and also for {p,u} (by playing r). Likewise, A is effective
for {p} (play L) and for {q,u} (play R). The alert reader will have recognized the
logical law (p∧ (q∨ r))≡ ((p∧q)∨ (p∧u)) resembling the “equivalence” of the
two games: (p∧ (q∨ r)) corresponds to A’s power in G1, and ((p∧q)∨ (p∧u))
to A’s power in G2. Similarly, the equivalence of E’s powers is reflected by the
logical equivalence (p∨ (q∧ r))≡ ((p∨q)∧ (p∨u)).

At the same time, the reader will have recognized the two metalinguistic quan-
tifiers in the use of the effectivity function E, laid down in its truth-definition
above. A set of outcomes S is in EC iff for some choice of C, we will end up in
S, under all choices of the complement of C (the other agents). This notion of
so-called α-effectivity uses the ∃∀-order of the quantifiers: what a coalition can
establish through the truth-definition mentioned above, their α-ability, is some-
times also called ∃∀-ability. Implicit within the notion of α-ability is the fact that
C have no knowledge of the choice that the other agents make; they do not see
the choice of C (i.e., the complement of C), and then decide what to do, but rather
they must make their decision first. This motivates the notion of β-ability (i.e.,
“∀∃”-ability): coalition C is said to have the β-ability for ϕ if for every choice
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(⊥) ¬[C]⊥
(N) ¬[ /0]¬ϕ→ [Ag]ϕ
(M) [C](ϕ∧ψ)→ [C]ψ
(S) ([C1]ϕ1∧ [C2]ϕ2)→ [C1∪C2](ϕ1∧ϕ2)

where C1∩C2 = /0
(MP) from ϕ and ϕ→ ψ infer ψ
(Nec) from ϕ infer [C]ϕ

Figure 16.5: The axioms and inference rules of coalition logic.

σC available to C, there exists a choice σC for C such that if C choose σC and C
choose σC, then ϕ will result. Thus C being β-able to ϕ means that no matter what
the other agents do, C have a choice such that, if they make this choice, then ϕ will
be true. Note the “∀∃” pattern of quantifiers: C are implicitly allowed to make
their choice while being aware of the choice made by C. We will come back to
information about other player’s moves in Section 3.3, and to the pairs of α and β
ability in Section 3.4.

We end this section by mentioning some properties of α-abilities. The axioms
for [C]ϕ based on α-effectivity (or effectivity, for short) are summarized in Fig-
ure 16.5; see also Pauly [82]. The two extreme coalitions /0 and the grand coalition
Ag are of special interest. [Ag]ϕ expresses that some end-state satisfies ϕ, whereas
[ /0]ϕ holds if no agent needs to do anything for ϕ to hold in the next state.

Some of the axioms of coalition logic correspond to restrictions on effectivity
functions E : S→ (2Ag → 22S

). First of all, we demand that /0 �∈ EC (this guarantees
axiom ⊥). The function E is also assumed to be monotonic: for every coalition
C ⊆ Ag, if X ⊆ X ′ ⊆ S, X ∈ E(C) implies X ′ ∈ E(C). This says that if a coalition
can enforce an outcome in the set X , it also can guarantee the outcome to be in
any superset X ′ of X (this corresponds to axiom (M)). An effectivity function E is
C-maximal if for all X , if X �∈ E(C), then X ∈ E(C). In words: if the other agents C
cannot guarantee an outcome outside X (i.e, in X), then C is able to guarantee an
outcome in X . We require effectivity functions to be Ag-maximal. This enforces
axiom (N) – Pauly’s symbol for the grand coalition is N: if the empty coalition
cannot enforce an outcome satisfying ϕ, then the grand coalition Ag can enforce
ϕ. The final principle governs the formation of coalitions. It states that coalitions
can combine their strategies to (possibly) achieve more: E is superadditive if for
all X1,X2,C1,C2 such that C1 ∩C2 = /0, X1 ∈ E(C1) and X2 ∈ E(C2) imply that
X1∩X2 ∈ E(C1∪C2). This obviously corresponds to axiom (S).

One of the fascinating aspects of coalition logic is its use in social choice the-
ory, and in particular in the specification, development, and verification of social
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choice procedures. Consider the following scenario, adapted from [80].

Two individuals, A and B, are to choose between two outcomes, p and
q. We want a procedure that will allow them to choose that will satisfy
the following requirements. First, we definitely want an outcome to
be possible – that is, we want the two agents to bring about either p
or q. We do not want them to be able to bring about both outcomes
simultaneously. Similarly, we do not want either agent to dominate:
we want them both to have equal power.

The first point to note is that we can naturally axiomatize these requirements using
coalition logic:

[A,B]x x ∈ {p,q}
¬[A,B](p∧q)
¬[x]p x ∈ {A,B}
¬[x]q x ∈ {A,B}

It should be immediately obvious how these axioms capture the requirements as
stated above. Now, given a particular voting procedure, a model checking algo-
rithm can be used to check whether or not this procedure implements the specifi-
cation correctly. Moreover, a constructive proof of satisfiability for these axioms
might be used to synthesize a procedure; or else to announce that no implementa-
tion exists.

3.2 Strategic Temporal Logic: ATL

In coalition logic one reasons about the powers of coalitions with respect to final
outcomes. However, in many multiagent scenarios, the strategic considerations
continue during the process. It would be interesting to study a representation
language for interaction that is able to express the temporal differences in the
two games G1 and G2 of Figure 16.4. Alternating-time temporal logic (ATL) is
intended for this purpose.

Although it is similar to coalition logic, ATL emerged from a very different
research community, and was developed with an entirely different set of motiva-
tions in mind. The development of ATL is closely linked with the development
of branching-time temporal logics for the specification and verification of reac-
tive systems [29, 30, 116]. Recall that CTL combines path quantifiers “A” and
“E” for expressing that a certain series of events will happen on all paths and on
some path, respectively, and combines these with tense modalities for expressing
that something will happen eventually on some path (♦), always on some path
( ), and so on. Thus, for example, using CTL logics, one may express proper-
ties such as “on all possible computations, the system never enters a fail state”
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(A ¬ f ail). CTL-like logics are of limited value for reasoning about multiagent
systems, in which system components (agents) cannot be assumed to be benev-
olent, but may have competing or conflicting goals. The kinds of properties we
wish to express of such systems are the powers that the system components have.
For example, we might wish to express the fact that “agents 1 and 2 can cooperate
to ensure that the system never enters a fail state.” It is not possible to capture
such statements using CTL-like logics. The best one can do is either state that
something will inevitably happen, or else that it may possibly happen: CTL-like
logics have no notion of agency.

Alur, Henzinger, and Kupferman developed ATL in an attempt to remedy this
deficiency. The key insight in ATL is that path quantifiers can be replaced by
cooperation modalities: the ATL expression 〈〈C〉〉ϕ, where C is a group of agents,
expresses the fact that the group C can cooperate to ensure that ϕ. (Thus the ATL

expression 〈〈C〉〉ϕ corresponds to Pauly’s [C]ϕ.) So, for example, the fact that
agents 1 and 2 can ensure that the system never enters a fail state may be captured
in ATL by the following formula: 〈〈1,2〉〉 ¬ f ail. An ATL formula true in the root
ρ1 of game G1 of Figure 16.4 is 〈〈A〉〉 �〈〈E〉〉 �q: A has a strategy (i.e., play R
in ρ1) such that the next time, E has a strategy (play l) to enforce u.

Note that ATL generalizes CTL because the path quantifiers A (“on all
paths. . . ”) and E (“on some paths. . . ”) can be simulated in ATL by the coop-
eration modalities 〈〈 /0〉〉 (“the empty set of agents can cooperate to. . . ”) and 〈〈Ag〉〉
(“the grand coalition of all agents can cooperate to. . . ”).

One reason for the interest in ATL is that it shares with its ancestor CTL the
computational tractability of its model checking problem [20]. This led to the
development of an ATL model checking system called MOCHA [7, 10]. With
MOCHA, one specifies a model against which a formula is to be checked, using
a model definition language called REACTIVE MODULES [8]. REACTIVE MOD-
ULES is a guarded command language, which provides a number of mechanisms
for the structured specification of models, based upon the notion of a “module,”
which is basically the REACTIVE SYSTEMS terminology for an agent. Interest-
ingly, however, it is ultimately necessary to define for every variable in a REAC-
TIVE MODULES system which module (i.e., agent) controls it. The powers of
agents and coalitions then derive from the ability to control these variables: and
this observation was a trigger for [53] to develop a system for propositional con-
trol, CL-PC, as a system in its own right. We will come briefly back to this idea in
Section 3.4.

ATL has begun to attract increasing attention as a formal system for the spec-
ification and verification of multiagent systems. Examples of such work include
formalizing the notion of role using ATL [99], the development of epistemic ex-
tensions to ATL [49, 50, 51], and the use of ATL for specifying and verifying
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cooperative mechanisms [83].
To give a precise definition of ATL, we must first introduce the semantic struc-

tures over which formulae of ATL are interpreted. An alternating transition system
(ATS) is a 6-tuple

S = 〈Π,Ag,Q,π,δ〉, where:

• Π is a finite, non-empty set of Boolean variables;

• Ag = {1, . . . ,n} is a finite, non-empty set of agents;

• Q is a finite, non-empty set of states;

• π : Q→ 2Π gives the set of Boolean variables satisfied in each state;

• δ : Q×Ag → 22Q
is the system transition function, which maps states and

agents to the choices available to these agents. Thus δ(q, i) is the set of
choices available to agent i when the system is in state q. We require that
this function satisfy the requirement that for every state q ∈ Q and every
set Q1, . . . ,Qn of choices Qi ∈ δ(q, i), the intersection Q1 ∩ ·· · ∩Qn is a
singleton.

One can think of δ(q, i) as the possible moves agent i can make in state q. Since in
general agent i cannot determine the next state on its own, each specific choice that
i makes at q yields a set of possible next states Qi, which can be further constrained
by the choices of the other agents. Indeed, the constraint that Q1∩ ·· ·∩Qn gives
a singleton {q′} resembles that the system as a whole is deterministic: once every
agent i has made a decision Qi at q, the next state q′ of q is determined.

The games G1 and G2 of the previous section can be conceived of as special
cases of alternating transition systems: turn-based synchronous systems, where at
every decision point (state) of the system, exactly one agent is responsible for the
next state. For instance, we have in G1 that δ(ρ1,A) = {{a},{b}}, and δ(ρ1,E) =
{{a,b}}, denoting that E leaves the choice in ρ1 to A. To make G1 a real transition
system, the transition function should specify choices for every state, also for the
leaves a,c, and d. One could do this, for instance, by looping those states to
themselves: δ(a,A) = δ(a,E) = {{a}}. In order to reason about them as leaves,
one could add a proposition end that is true in exactly those states. Turn-based
systems satisfy the following property (cf. [51]), which is not valid in ATL in
general:

〈〈Ag〉〉 �ϕ→
∨

i∈Ag

〈〈i〉〉 �ϕ

An ATL formula, formed with respect to an alternating transition system S =
〈Π,Ag,Q, π,δ〉, is then defined by the following grammar:

ϕ ::=� | p | ¬ϕ | ϕ∨ϕ | 〈〈C〉〉 �ϕ | 〈〈C〉〉 ϕ | 〈〈C〉〉ϕUϕ
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where p ∈Π is a Boolean variable, and C ⊆ Ag is a set of agents. We assume the
remaining connectives (“⊥”, “→”, “←”, “↔”, “∧”) are defined as abbreviations
in the usual way, and define 〈〈C〉〉♦ϕ as 〈〈C〉〉�Uϕ.

To give the semantics of ATL, we need some further definitions. For two states
q,q′ ∈ Q and an agent i ∈ Ag, we say that state q′ is an i-successor of q if there
exists a set Q′ ∈ δ(q, i) such that q′ ∈ Q′. Intuitively, if q′ is an i-successor of q,
then q′ is a possible outcome of one of the choices available to i when the system
is in state q. We denote by succ(q, i) the set of i-successors to state q, and say
that q′ is simply a successor of q if for all agents i ∈ Ag, we have q′ ∈ succ(q, i);
intuitively, if q′ is a successor to q, then when the system is in state q, the agents
Ag can cooperate to ensure that q′ is the next state the system enters.

A computation of an ATS 〈Π,Ag,Q,π,δ〉 is an infinite sequence of states λ =
q0,q1, . . . such that for all u > 0, the state qu is a successor of qu−1. A computation
λ ∈ Qω starting in state q is referred to as a q-computation; if u ∈ N, then we
denote by λ[u] the uth state in λ; similarly, we denote by λ[0,u] and λ[u,∞] the
finite prefix q0, . . . ,qu and the infinite suffix qu,qu+1, . . . of λ, respectively.

Intuitively, a strategy is an abstract model of an agent’s decision-making pro-
cess; a strategy may be thought of as a kind of plan for an agent. Formally, a
strategy fi for an agent i ∈ Ag is a total function fi : Q+→ 2Q, which must satisfy
the constraint that fi(λ ·q)∈ δ(q, i) for all λ∈Q∗ and q∈Q. Given a set C⊆ Ag of
agents, and an indexed set of strategies FC = { fi | i ∈C}, one for each agent i ∈C,
we define out(q,FC) to be the set of possible outcomes that may occur if every
agent i ∈C follows the corresponding strategy fi, starting when the system is in
state q∈Q. That is, the set out(q,FC) will contain all possible q-computations that
the agents C can “enforce” by cooperating and following the strategies in FC. Note
that the “grand coalition” of all agents in the system can cooperate to uniquely de-
termine the future state of the system, and so out(q,FAg) is a singleton. Similarly,
the set out(q,F/0) is the set of all possible q-computations of the system.

We can now give the rules defining the satisfaction relation “|=” for ATL,
which holds between pairs of the form S,q (where S is an ATS and q is a state
in S), and formulae of ATL:

S,q |=�;

S,q |= p iff p ∈ π(q) (where p ∈Π);

S,q |= ¬ϕ iff S,q �|= ϕ;

S,q |= ϕ∨ψ iff S,q |= ϕ or S,q |= ψ;

S,q |= 〈〈C〉〉 �ϕ iff there exists a set of strategies FC, such that for all λ ∈
out(q,FC), we have S,λ[1] |= ϕ;
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S,q |= 〈〈C〉〉 ϕ iff there exists a set of strategies FC, such that for all λ ∈
out(q,FC), we have S,λ[u] |= ϕ for all u ∈ N;

S,q |= 〈〈C〉〉ϕUψ iff there exists a set of strategies FC, such that for all λ ∈
out(q,FC), there exists some u ∈ N such that S,λ[u] |= ψ, and for all 0 ≤
v < u, we have S,λ[v] |= ϕ.

Pauly’s coalition logic is the fragment of ATL in which the only cooperation
modalities allowed are of the form 〈〈C〉〉 � [38, 80, 81]. The truth of a coali-
tion logic formula is determined on an ATS by using the first five items of the
definition for satisfaction above. The satisfiability problem for ATL is EXPTIME-
complete [27, 118], whereas for coalition logic it is PSPACE-complete in the gen-
eral case [80, p. 63].

A number of variations of ATL have been proposed over the past few years,
for example, to integrate reasoning about obligations into the basic framework of
cooperative ability [125], to deal with quantification over coalitions [4], to add the
ability to refer to strategies in the object language [108], and to add the ability to
talk about preferences or goals of agents [2, 3]. In what follows, we will focus on
one issue that has received considerable attention: the integration of knowledge
and ability.

3.3 Knowledge in Strategic Temporal Logics: ATEL

The semantics of coalition logic and of ATL assume that agents have perfect infor-
mation about the game. This is immediately apparent in the notion of strategy in
ATL: by having an agent decide its next action given an element of Q+, this makes
two strong assumptions. First of all, the agents have perfect information about the
state they are in, which obviously is an idealized assumption: typically, agents
don’t know exactly what the state is. They may be unsure about certain facts in
the state they are in, but also about the mental states of other agents, which is cru-
cial in any strategic decision making. Second, the definition of a strategy assumes
that the agents have perfect recall: they remember exactly what has happened
in reaching the current state, so that they can make different decisions even in
identical states.

We first address the issue of imperfect information. [51] adds modalities for
knowledge to ATL to obtain ATEL (alternating-time temporal epistemic logic). For
every individual i, add an operator Ki to the language (Kiϕ is read as “i knows
ϕ”), and for every coalition G, add operators EG (everybody in G knows), DG
(it is distributed knowledge in G), and CG (it is common knowledge in C). The
following examples of what can be expressed in ATEL are taken from [51].

As we argued in Section 1.1, action and knowledge interact in at least two
ways: for some actions, in order to be able to do them properly, some knowledge
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is required, and, on the other hand, actions may add to an agent’s knowledge.
We have already mentioned knowledge preconditions in Section 3. We can for-
mulate knowledge preconditions quite naturally using ATEL and its variants, and
the cooperation modality naturally and elegantly allows us to consider knowledge
preconditions for multiagent plans. The requirement that in order for an agent
a to be able to eventually bring about state of affairs ϕ, it must know ψ, might,
as a first attempt, be specified in ATEL as 〈〈a〉〉♦ϕ→ Kaψ. This intuitively says
that knowing ψ is a necessary requirement for having the ability to bring about ϕ.
However, this requirement is usually too strong. For instance, in order to be able
to ever open the safe, I don’t necessarily in general have to know the key right
now. A slightly better formulation might therefore be 〈〈a〉〉 �ϕ→ Kaψ. As an
overall constraint of the system, this property may help the agent to realize that
it has to possess the right knowledge in order to achieve ϕ. But taken as a local
formula, it does not tell us anything about what the agent should know if it wants
to bring about ϕ the day after tomorrow, or “sometime” for that matter. Taken
as a local constraint, a necessary knowledge condition to bring about ϕ might be
(¬〈〈i〉〉 �ϕ)UKiψ. This expresses that our agent is not able to open the safe until
it knows its key. The other way around, an example of an ability that is generated
by possessing knowledge is the following, expressing that if Bob knows that the
combination of the safe is s, then he is able to open it (〈〈b〉〉 �o), as long as the
combination remains unchanged.

Kb(c = s)→ 〈〈b〉〉(〈〈b〉〉 �o)U¬(c = s) (16.2)

One of the properties of the most widely embraced systems for knowledge (see
Figure 16.1) is introspection, of which the positive variant says Kiϕ→KiKiϕ. An-
other well-accepted principle of knowledge has it that from Kiϕ and Ki(ϕ→ ψ),
it follows that Kiψ. Such idealized properties have been criticized, since they
assume agents to be perfect reasoners who know all the consequences of their
knowledge in a blow. One may also use ATEL-formulas to model limited reason-
ers, i.e., reasoners that do not make all inferences in one strike, but where this can
be approximated over time. Positive introspection might then look like

Kiψ→ 〈〈i〉〉 �KiKiψ (16.3)

As a final example, in security protocols where agents i and j share some com-
mon secret (a key Si j, for instance), what one typically wants is (16.4), expressing
that i can send private information to j, without revealing the message to another
agent h:

Kiϕ∧¬Kjϕ∧¬Khϕ∧〈〈i, j〉〉 �(Kiϕ∧Kjϕ∧¬Khϕ) (16.4)
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Semantically, ignorance of the agents is usually modeled by specifying that
each agent is unable to distinguish certain states: the more states it considers
indistinguishable from a given state, the weaker its knowledge in that state. In
game theory, such an indistinguishability relation is often called a partition [11].
Take the game H in Figure 16.4, for example. The dashed line labeled with agent
A denotes that this agent does not know what E’s move was: A cannot distinguish
state x from y. It seems reasonable to require strategies of agents to be uniform:
if an agent does not know whether it is in state s or s′, it should make the same
decision in both. But there is more to adding knowledge to decision making. Let
us assume that atom p in game H denotes a win for A. Then, in the root ρ we have
that [[E]] �〈〈A〉〉 �p: saying that whichever strategy E plays in ρ, in the next state
A will be able to reach a winning state in the next state. Note that this is even true
if we restrict ourselves to uniform strategies! We even have H,x |= KA〈〈A〉〉 �p,
saying that A knows that it has a winning strategy in x. This, of course, is only
true in the de dicto reading of knowledge of A: it knows in x that it has a uniform
strategy to win, but it does not know which one it is! To obtain a de re type of
reading of knowledge of strategies, work is still in progress, but we refer to [58]
and the recent [60, 119].

3.4 CL-PC

Both ATL and coalition logic are intended as general purpose logics of cooperative
ability. In particular, neither has anything specific to say about the origin of the
powers that are possessed by agents and the coalitions of which they are a mem-
ber. These powers are just assumed to be implicitly defined within the effectivity
structures used to give a semantics to the languages. Of course, if we give a spe-
cific interpretation to these effectivity structures, then we will end up with a logic
with special properties. In [53], a variation of coalition logic was developed that
was intended specifically to reason about control scenarios, as follows. The basic
idea is that the overall state of a system is characterized by a finite set of variables,
which for simplicity are assumed to take Boolean values. Each agent in the sys-
tem is then assumed to control some (possibly empty) subset of the overall set of
variables, with every variable being under the control of exactly one agent. Given
this setting, in the coalition logic of propositional control (CL-PC), the operator
♦Cϕ means that there exists some assignment of values that the coalition C can
give to the variables under its control such that, assuming everything else in the
system remains unchanged, then if they make this assignment, then ϕ would be
true. The box dual Cϕ is defined in the usual way with respect to the diamond
ability operator♦C. Here is a simple example:

Suppose the current state of the system is that variables p and q are
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false, while variable r is true, and further suppose that agent 1 con-
trols p and r, while agent 2 controls q. Then in this state, we have
for example: ♦1(p∧ r), ¬♦1q, and ♦2(q∧ r). Moreover, for any
satisfiable propositional logic formula ψ over the variables p, q, and
r, we have♦1,2ψ.

The ability operator ♦C in CL-PC thus captures contingent ability, rather along
the lines of “classical planning” ability [66]: the ability under the assumption that
the world only changes by the actions of the agents in the coalition operator ♦C.
Of course, this is not a terribly realistic type of ability, just as the assumptions of
classical planning are not terribly realistic. However, in CL-PC, we can define α
effectivity operators 〈〈C〉〉αϕ, intended to capture something along the lines of the
ATL 〈〈C〉〉 �ϕ, as follows:

〈〈C〉〉α =̂♦C C̄ϕ

Notice the quantifier alternation pattern ∃∀ in this definition, and compare this to
our discussion regarding α- and β-effectivity on page 788.

One of the interesting aspects of CL-PC is that by using this logic, it becomes
possible to explicitly reason in the object language about who controls what. Let
i be an agent, and let p be a system variable; let us define ctrl(i, p) as follows:

ctrl(i, p) =̂ (♦i p)∧ (♦i¬p)

Thus, ctrl(i, p) means that i can assign p the value true, and i can also assign
p the value false. It is easy to see that if ctrl(i, p) is true in a system, then
this means that the variable p must be under the control of agent i. Starting
from this observation, a more detailed analysis of characterizing control of ar-
bitrary formulae was developed, in terms of the variables controlled by individual
agents [53]. In addition, [53] gives a complete axiomatization of CL-PC, and
shows that the model checking and satisfiability problems for the logic are both
PSPACE-complete. Building on this basic formalism, [52] investigates extensions
into the possibility of dynamic control, where variables can be “passed” from one
agent to another.

4 Conclusion and Further Reading

In this paper, we have motivated and introduced a number of logics of rational
agency; moreover, we have investigated the role(s) that such logics might play in
the development of artificial agents. We hope to have demonstrated that logics for
rational agents are a fascinating area of study, at the confluence of many different
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research areas, including logic, artificial intelligence, economics, game theory,
and the philosophy of mind. We also hope to have illustrated some of the popular
approaches to the theory of rational agency.

There are far too many research challenges open to identify in this article.
Instead, we simply note that the search for a logic of rational agency poses a
range of deep technical, philosophical, and computational research questions for
the logic community. We believe that all the disparate research communities with
an interest in rational agency can benefit from this search.

We presented logics for MAS from the point of view of modal logics. A state-
of-the-art book on modal logic is [14], and, despite its maturity, the field is still
developing. The references [31, 72] are reasonably standard for epistemic logic
in computer science: the modal approach modeling knowledge goes back to Hin-
tikka [46] though. In practical agent applications, information is more quantitative
than just being binary-represented as knowledge and belief though: for a logical
approach to reasoning about probabilities see [39].

In Section 2, we focused on logics for cognitive attitudes. Apart from the refer-
ences mentioned, there are many other approaches: in the KARO framework [115],
for instance, epistemic logic and dynamic logic are combined (there is work on
programming KARO agents [71] and on verifying them [56]). Moreover, whereas
we indicated in Section 1.1 how epistemic notions can have natural “group vari-
ants,” [5] defines some group proattitudes in the KARO setting. And in the same
way as epistemics becomes interesting in a dynamic or temporal setting (see Sec-
tion 1.1), there is work on logics that address the temporal aspects and the dy-
namics of intentions as well [109] and, indeed, on the joint revision of beliefs and
intentions [57].

Whereas our focus in Section 2 was on logics for cognitive attitudes, due to
space constraints we have neglected the social attitude of norms. Deontic logic
is another example of a modal logic with roots in philosophy, with work by von
Wright [117], which models attitudes like permissions and obligations for indi-
vidual agents. For an overview of deontic logic in computer science, see [73];
for a proposal to add norms to the social, rather than the cognitive, aspects of a
multiagent system, see, e.g., [112].

There is also work on combining deontic concepts with, for instance, knowl-
edge [68] and the ATL-like systems we presented in Section 3: [1] for instance
introduce a multidimensional CTL, where, roughly, dimensions correspond with
the implementation of a norm. The formal study of norms in multiagent systems
was arguably set off by work by Shoham and Tennenholtz [101, 102]. In norma-
tive systems, norms are studied more from the multiagent collective perspective,
where questions arise like: which norms will emerge, why would agents adhere
to them, and when is a norm “better” than another one?
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There is currently a flurry of activity in logics to reason about games (see [110]
for an overview paper) and modal logics for social choice (see [24] for an exam-
ple). Often these are logics that refer to the information of the agents (“players,”
in the case of games), and their actions (“moves” and “choices,” respectively).
The logics for such scenarios are composed from the building blocks described
in this chapter, with often an added logical representation of preferences [106] or
expected utility [59].

5 Exercises

1. Level 1 S5 Axioms:

(a) To what extent do you believe that each of the 5 axioms for knowledge
captures realistic properties of knowledge as we understand it in its
everyday sense?

(b) Now consider a god-like omniscient entity, able to reason perfectly,
although with an incomplete view of its environment (i.e., not able to
completely perceive its environment). To what extent do the axioms
make sense for such “idealized” reasoners?

2. Level 1 Branching time:

Give examples of branching-time models in which the following formulae
are true:

(a) A �p∧E �¬q

(b) ApU(q∧¬r)

(c) (A p)∧ (E♦¬q)

3. Level 1 Perfect recall:

(a) Argue that for temporal epistemic logic, perfect recall implies that
Ki ϕ → Kiϕ. Hint: use the fact that ψ is equivalent to
(ψ∧ �(ϕ∧ ψ).

(b) What would be wrong if we replaced perfect recall with Kiϕ →
�Kiϕ? Hint: think about statements that refer to “now,” or state-

ments that refer to ignorance, i.e., ¬Kiψ. See also [31, p. 130].

(c) Discuss the converse of perfect recall, i.e., �Kiϕ→ Ki
�ϕ. What

does it express? Discuss situations where this makes sense, and situa-
tions where it does not apply.
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[28] B. Dunin-Kȩplicz and R. Verbrugge. Teamwork in Multi-Agent Systems: A Formal
Approach. Wiley and Sons, 2010.

[29] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science Volume B: Formal Models and Semantics, pages
996–1072. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

[30] E. A. Emerson and J. Srinivasan. Branching time temporal logic. In J. W.
de Bakker, W.-P. de Roever, and G. Rozenberg, editors, REX Workshop on Linear
Time, Branching Time, and Partial Order in Logics and Models for Concurrency
(LNCS Volume 354), pages 123–172. Springer-Verlag: Berlin, Germany, 1988.

[31] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.
The MIT Press: Cambridge, MA, 1995.

[32] R. E. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[33] K. Fischer, J. P. Müller, and M. Pischel. A pragmatic BDI architecture. In
M. Wooldridge, J. P. Müller, and M. Tambe, editors, Intelligent Agents II (LNAI
Volume 1037), pages 203–218. Springer-Verlag: Berlin, Germany, 1996.

[34] M. Fisher. A survey of Concurrent METATEM — the language and its applications.
In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic — Proceedings of
the First International Conference (LNAI Volume 827), pages 480–505. Springer-
Verlag: Berlin, Germany, July 1994.

[35] J. R. Galliers. A strategic framework for multi-agent cooperative dialogue. In
Proceedings of the Eighth European Conference on Artificial Intelligence (ECAI-
88), pages 415–420, Munich, Federal Republic of Germany, 1988.

[36] J. R. Galliers. A Theoretical Framework for Computer Models of Cooperative
Dialogue, Acknowledging Multi-Agent Conflict. PhD thesis, Open University, UK,
1988.

[37] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings
of the Sixth National Conference on Artificial Intelligence (AAAI-87), pages 677–
682, Seattle, WA, 1987.

[38] V. Goranko. Coalition games and alternating temporal logics. In J. van Benthem,
editor, Proceeding of the Eighth Conference on Theoretical Aspects of Rationality
and Knowledge (TARK VIII), pages 259–272, Siena, Italy, 2001.

[39] J. Y. Halpern. Reasoning about Uncertainty. Massachusetts Institute of Technol-
ogy, Cambridge, MA, 2003.



Chapter 16 803

[40] J. Y. Halpern and M. Y. Vardi. Model checking versus theorem proving: A mani-
festo. In V. Lifschitz, editor, AI and Mathematical Theory of Computation — Pa-
pers in Honor of John McCarthy, pages 151–176. The Academic Press: London,
England, 1991.

[41] D. Harel. First-Order Dynamic Logic (LNCS Volume 68). Springer-Verlag: Berlin,
Germany, 1979.

[42] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press: Cambridge,
MA, 2000.

[43] K. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. A formal embed-
ding of AgentSpeak(L) in 3APL. In G. Antoniou and J. Slaney, editors, Advanced
Topics in Artificial Intelligence, number 1502 in LNAI, pages 155–166. Springer,
1998.

[44] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent pro-
gramming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–402,
1999.

[45] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. A formal se-
mantics for the core of AGENT-0. In E. Postma and M. Gyssens, editors, Proceed-
ings of the Eleventh Belgium-Netherlands Conference on Artificial Intelligence,
pages 27–34. 1999.

[46] J. Hintikka. Knowledge and Belief. Cornell University Press: Ithaca, NY, 1962.

[47] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–583, 1969.

[48] W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In
D. Bos̆nac̆ki and S. Leue, editors, Model Checking Software, Proceedings of SPIN
2002 (LNCS Volume 2318), pages 95–111. Springer-Verlag: Berlin, Germany,
2002.

[49] W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epistemic
goals. In Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2002), pages 1167–1174, Bologna, Italy,
2002.

[50] W. van der Hoek and M. Wooldridge. Model checking cooperation, knowledge, and
time — a case study. Research in Economics, 57(3):235–265, September 2003.

[51] W. van der Hoek and M. Wooldridge. Time, knowledge, and cooperation:
Alternating-time temporal epistemic logic and its applications. Studia Logica,
75(1):125–157, 2003.



804 Chapter 16

[52] W. van der Hoek and M. Wooldridge. On the dynamics of delegation, cooperation,
and control: A logical account. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2005), pages
701–708, Utrecht, The Netherlands, 2005.

[53] W. van der Hoek and M. Wooldridge. On the logic of cooperation and propositional
control. Artificial Intelligence, 164(1-2):81–119, May 2005.

[54] G. Holzmann. The Spin model checker. IEEE Transactions on Software Engineer-
ing, 23(5):279–295, May 1997.

[55] M. Huber. JAM: A BDI-theoretic mobile agent architecture. In Proceedings of the
Third International Conference on Autonomous Agents (Agents 99), pages 236–
243, Seattle, WA, 1999.

[56] U. Hustadt, C. Dixon, R. A. Schmidt, M. Fisher, J.-J. Ch. Meyer, and W. van der
Hoek. Verification with the KARO agent theory (extended abstract). In J. L. Rash,
C. A. Rouff, W. Truszkowski, D. Gordon, and M. G. Hinchey, editors, Procs For-
mal Approaches to Agent-Based Systems, FAABS 2000, number 1871 in LNAI,
pages 33–47, 2001.

[57] Thomas Icard, Eric Pacuit, and Yoav Shoham. Joint revision of beliefs and inten-
tion. In KR’10, pages 572–574, 2010.

[58] W. Jamroga and W. van der Hoek. Agents that know how to play. Fundamenta
Informaticae, 63(2-3):185–219, 2004.

[59] Wojciech Jamroga. A temporal logic for Markov chains. In Padgham, Parkes,
Müller, and Parsons, editors, Proc. of 7th Int. Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS 2008), pages 697–704, 2008.

[60] Wojciech Jamroga and Thomas Ågotnes. Constructive knowledge: What agents
can achieve under incomplete information. Journal of Applied Non-Classical Log-
ics, 17(4):423–475, 2007.

[61] N. R. Jennings. On being responsible. In E. Werner and Y. Demazeau, editors,
Decentralized AI 3 — Proceedings of the Third European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW-91), pages 93–102. Else-
vier Science Publishers B.V.: Amsterdam, The Netherlands, 1992.

[62] N. R. Jennings. Towards a cooperation knowledge level for collaborative problem
solving. In Proceedings of the Tenth European Conference on Artificial Intelligence
(ECAI-92), pages 224–228, Vienna, Austria, 1992.

[63] Y. Lésperance, H. J. Levesque, F. Lin, D. Marcu, R. Reiter, and R. B. Scherl.
Foundations of a logical approach to agent programming. In M. Wooldridge, J. P.



Chapter 16 805

Müller, and M. Tambe, editors, Intelligent Agents II (LNAI Volume 1037), pages
331–346. Springer-Verlag: Berlin, Germany, 1996.

[64] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. Golog: A logic pro-
gramming language for dynamic domains. Journal of Logic Programming, 31:59–
84, 1996.

[65] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes. On acting together. In Proceedings
of the Eighth National Conference on Artificial Intelligence (AAAI-90), pages 94–
99, Boston, MA, 1990.

[66] V. Lifschitz. On the semantics of STRIPS. In M. P. Georgeff and A. L. Lansky,
editors, Reasoning About Actions & Plans — Proceedings of the 1986 Workshop,
pages 1–10. Morgan Kaufmann Publishers: San Mateo, CA, 1986.

[67] A. Lomuscio and F. Raimondi. MCMAS: a tool for verifying multi-agent sys-
tems. In Proceedings of The Twelfth International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS-2006). Springer-
Verlag: Berlin, Germany, 2006.

[68] A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–
92, 2003.

[69] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems — Safety.
Springer-Verlag: Berlin, Germany, 1995.

[70] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463–502. Edinburgh University Press, 1969.

[71] J.-J. Ch. Meyer, F. S. de Boer, R. M. van Eijk, K. V. Hindriks, and W. van der Hoek.
On programming KARO agents. Logic Journal of the IGPL, 9(2):245–256, 2001.

[72] J.-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for AI and Computer Sci-
ence. Cambridge University Press: Cambridge, England, 1995.

[73] J.-J. Ch. Meyer and R. J. Wieringa, editors. Deontic Logic in Computer Science —
Normative System Specification. John Wiley & Sons, 1993.

[74] G. E. Moore. A reply to my critics. In P. A. Schilpp, editor, The Philosophy of
G. E. Moore, volume 4 of The Library of Living Philosophers, pages 535–677.
Northwestern University, Evanston, Illinois, 1942.

[75] R. C. Moore. Reasoning about knowledge and action. In Proceedings of the Fifth
International Joint Conference on Artificial Intelligence (IJCAI-77), Cambridge,
MA, 1977.



806 Chapter 16

[76] R. C. Moore. A formal theory of knowledge and action. In J. F. Allen, J. Hendler,
and A. Tate, editors, Readings in Planning, pages 480–519. Morgan Kaufmann
Publishers: San Mateo, CA, 1990.

[77] L. Morgenstern. A first-order theory of planning, knowledge, and action. In J. Y.
Halpern, editor, Proceedings of the 1986 Conference on Theoretical Aspects of
Reasoning About Knowledge, pages 99–114. Morgan Kaufmann Publishers: San
Mateo, CA, 1986.

[78] L. Morgenstern. Knowledge preconditions for actions and plans. In Proceedings
of the Tenth International Joint Conference on Artificial Intelligence (IJCAI-87),
pages 867–874, Milan, Italy, 1987.

[79] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press:
Cambridge, MA, 1994.

[80] M. Pauly. Logic for Social Software. PhD thesis, University of Amsterdam, 2001.
ILLC Dissertation Series 2001-10.

[81] M. Pauly. A logical framework for coalitional effectivity in dynamic procedures.
Bulletin of Economic Research, 53(4):305–324, 2002.

[82] M. Pauly. A modal logic for coalitional power in games. Journal of Logic and
Computation, 12(1):149–166, 2002.

[83] M. Pauly and M. Wooldridge. Logic for mechanism design — a manifesto. In
Proceedings of the 2003 Workshop on Game Theory and Decision Theory in Agent
Systems (GTDT-2003), Melbourne, Australia, 2003.

[84] A. Pnueli. The temporal logic of programs. In Proceedings of the Eighteenth IEEE
Symposium on the Foundations of Computer Science, pages 46–57, 1977.

[85] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings
of the Sixteenth ACM Symposium on the Principles of Programming Languages
(POPL), pages 179–190, January 1989.

[86] F. Raimondi and A. Lomuscio. Symbolic model checking of multi-agent systems
via OBDDs: An algorithm and its implementation. In Proceedings of the Third In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS-
04), pages 630–637, New York, NY, 2004.

[87] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In W. Van de Velde and J. W. Perram, editors, Agents Breaking Away: Pro-
ceedings of the Seventh European Workshop on Modelling Autonomous Agents in
a Multi-Agent World, (LNAI Volume 1038), pages 42–55. Springer-Verlag: Berlin,
Germany, 1996.



Chapter 16 807

[88] A. S. Rao. Decision procedures for propositional linear-time Belief-Desire-
Intention logics. In M. Wooldridge, J. P. Müller, and M. Tambe, editors, Intelligent
Agents II (LNAI Volume 1037), pages 33–48. Springer-Verlag: Berlin, Germany,
1996.

[89] A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95), pages
312–319, San Francisco, CA, June 1995.

[90] A. S. Rao and M. Georgeff. Decision procedures for BDI logics. Journal of Logic
and Computation, 8(3):293–344, 1998.

[91] A. S. Rao and M. P. Georgeff. Asymmetry thesis and side-effect problems in linear-
time and branching-time intention logics. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-91), pages 498–504, Syd-
ney, Australia, 1991.

[92] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
In R. Fikes and E. Sandewall, editors, Proceedings of Knowledge Representation
and Reasoning (KR&R-91), pages 473–484. Morgan Kaufmann Publishers: San
Mateo, CA, April 1991.

[93] A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In
C. Rich, W. Swartout, and B. Nebel, editors, Proceedings of Knowledge Represen-
tation and Reasoning (KR&R-92), pages 439–449, 1992.

[94] A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of sit-
uated reasoning systems. In Proceedings of the Thirteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-93), pages 318–324, Chambéry, France,
1993.

[95] A. S. Rao, M. P. Georgeff, and E. A. Sonenberg. Social plans: A preliminary re-
port. In E. Werner and Y. Demazeau, editors, Decentralized AI 3 — Proceedings of
the Third European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW-91), pages 57–76. Elsevier Science Publishers B.V.: Amster-
dam, The Netherlands, 1992.

[96] R. Reiter. Knowledge in Action. The MIT Press: Cambridge, MA, 2001.

[97] S. Rosenschein and L. P. Kaelbling. The synthesis of digital machines with prov-
able epistemic properties. In J. Y. Halpern, editor, Proceedings of the 1986 Confer-
ence on Theoretical Aspects of Reasoning About Knowledge, pages 83–98. Morgan
Kaufmann Publishers: San Mateo, CA, 1986.

[98] S. J. Rosenschein and L. P. Kaelbling. A situated view of representation and con-
trol. In P. E. Agre and S. J. Rosenschein, editors, Computational Theories of Inter-
action and Agency, pages 515–540. The MIT Press: Cambridge, MA, 1996.



808 Chapter 16

[99] M. Ryan and P.-Y. Schobbens. Agents and roles: Refinement in alternating-time
temporal logic. In J.-J. Ch. Meyer and M. Tambe, editors, Intelligent Agents VIII:
Proceedings of the Eighth International Workshop on Agent Theories, Architec-
tures, and Languages, ATAL-2001 (LNAI Volume 2333), pages 100–114, 2002.

[100] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92,
1993.

[101] Y. Shoham and M. Tennenholtz. Emergent conventions in multi-agent systems. In
C. Rich, W. Swartout, and B. Nebel, editors, Proceedings of Knowledge Represen-
tation and Reasoning (KR&R-92), pages 225–231, 1992.

[102] Y. Shoham and M. Tennenholtz. On the synthesis of useful social laws for artifi-
cial agent societies. In Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI-92), San Diego, CA, 1992.

[103] M. P. Singh. A critical examination of the Cohen-Levesque theory of intention.
In Proceedings of the Tenth European Conference on Artificial Intelligence (ECAI-
92), pages 364–368, Vienna, Austria, 1992.

[104] V. S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross.
Heterogeneous Agent Systems. The MIT Press: Cambridge, MA, 2000.

[105] M. Tambe. Towards flexible teamwork. Journal of AI Research, 7:83–124, 1997.

[106] J. van Benthem, Patrick Girard, and Olivier Roy. Everything else being equal:
A modal logic approach to ceteris paribus preferences. Journal of Philosophical
Logic, 38:83–125, 2009.

[107] W. van der Hoek, K. V. Hindriks, F. S. de Boer, and J.-J. Ch. Meyer. Agent pro-
gramming with declarative goals. In C. Castelfranchi and Y. Lespérance, editors,
Intelligent Agents VII, Proceedings of the 6th Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL), number 1986 in LNAI, pages 228–243, 2001.

[108] W. van der Hoek, W. Jamroga, and M. Wooldridge. A logic for strategic reasoning.
In Proceedings of the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2005), pages 157–153, Utrecht, The Nether-
lands, 2005.

[109] W. van der Hoek, W. Jamroga, and M. Wooldridge. Towards a theory of intention
revision. Synthese, 155(2):265–290, 2007.

[110] W. van der Hoek and M. Pauly. Modal logic for games and information. In P. Black-
burn, J. van Benthem, and F. Wolter, editors, Handbook of Modal Logic, pages
1077–1148. Elsevier, Amsterdam, 2006.



Chapter 16 809

[111] W. van der Hoek and M. Wooldridge. Multi-agent systems. In F. van Harmelen,
V. Lifschitz, and B. Porter, editors, Handbook of Knowledge Representation, pages
887–928. Elsevier, 2008.

[112] Leendert van der Torre. Contextual deontic logic: Normative agents, violations and
independence. Annals of Mathematics and Artificial Intelligence, 37:33–63, 2001.

[113] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic.
Springer, Berlin, 2007.

[114] H. P. van Ditmarsch and B. Kooi. The secret of my success. Synthese, 151(2):201–
232, 2006.

[115] B. van Linder, W. van der Hoek, and J. J. Ch. Meyer. Formalizing abilities and
opportunities of agents. Fundameta Informaticae, 34(1,2):53–101, 1998.

[116] M. Y. Vardi. Branching vs. linear time: Final showdown. In T. Margaria and
W. Yi, editors, Proceedings of the 2001 Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2001 (LNCS Volume 2031), pages
1–22. Springer-Verlag: Berlin, Germany, April 2001.

[117] G. H. von Wright. Deontic logic. Mind, 60:1–15, 1951.

[118] D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL satisfiability is indeed
ExpTime-complete. Journal of Logic and Computation, 16:765–787, 2006.

[119] Gerhard Weiss and Peter Stone, editors. Knowing How to Play: Uniform Choices
in Logics of Agency. ACM Press, 2006.

[120] M. Wooldridge. The Logical Modelling of Computational Multi-Agent Systems.
PhD thesis, Department of Computation, UMIST, Manchester, UK, October 1992.

[121] M. Wooldridge. Reasoning about Rational Agents. The MIT Press: Cambridge,
MA, 2000.

[122] M. Wooldridge, M.-P. Huget, M. Fisher, and S. Parsons. Model checking multi-
agent systems: The MABLE language and its applications. International Journal
on Artificial Intelligence Tools, 15(2):195–225, April 2006.

[123] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.

[124] M. Wooldridge and N. R. Jennings. The cooperative problem solving process.
Journal of Logic and Computation, 9(4):563–592, 1999.

[125] M. Wooldridge and W. van der Hoek. On obligations and normative ability. Journal
of Applied Logic, 3:396–420, 2005.



810 Chapter 16

[126] E. N. Zalta. Stanford encyclopedia of philosophy. See
http://plato.stanford.edu/.

http://plato.stanford.edu/


Chapter 17

Game-Theoretic Foundations of

Multiagent Systems

Edith Elkind and Evangelos Markakis

1 Introduction

Multiagent systems can be roughly grouped into two categories: the cooperative
systems, where all the agents share a common goal and fully cooperate in order
to achieve it, and the non-cooperative systems, where each agent has its own de-
sires and preferences, which may conflict with those of other agents. The former
situation typically occurs when all agents are controlled by a single owner, which
might be the case in multirobot exploration or search-and-rescue missions. In con-
trast, the latter situation is more likely to occur when agents have different owners.
This is the case, for instance, in e-commerce settings, where agents represent dif-
ferent participants in an electronic marketplace, and all participants are trying to
maximize their own utility.

Even with cooperative agents, ensuring smooth functioning of a multiagent
system is not easy due to a variety of factors, ranging from unreliable communi-
cation channels to computational constraints. Going one step further and allowing
for non-cooperative agents adds a new dimension to the complexity of this prob-
lem, as the agents need to be incentivized to choose a desirable plan of action. This
difficulty is usually addressed by using the toolbox of game theory. Game theory
is a branch of mathematical economics that models and analyzes the behavior of
entities that have preferences over possible outcomes, and have to choose actions
in order to implement these outcomes. Thus, it is perfectly suited to provide a
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theoretical foundation for the analysis of multiagent systems that are composed of
self-interested agents.

In this chapter, we give a brief overview of the foundations of game theory.
We provide formal definitions of the basic concepts of game theory and illustrate
their use by intuitive examples; for a more detailed motivation of the underlying
theory and more elaborate examples and applications the reader is referred to [13],
or, for a multiagent perspective, to [18]. Further reading suggestions are listed in
Section 5.

We start by discussing normal-form games, i.e., games where all players have
complete information about each others’ preferences, and choose their actions si-
multaneously (Section 2). Then, we consider games where agents act sequentially
(Section 3). Finally, we explore the effects of randomness and incomplete infor-
mation (Section 4).

2 Normal-Form Games

In game theory, a game is an interaction among multiple self-interested agents.
To begin our exposition, we focus first on games where all participants know each
others’ likes and dislikes, and select their actions simultaneously. To describe
such a setting, we need to specify the following components:

• The set of agents, or players, that are involved in the game.

• For each agent, the set of actions, or strategies, available to this agent. We
refer to a vector of chosen actions (one for each agent) as an action profile.

• The set of possible outcomes, i.e., the results of collective actions: for now,
we assume that the outcomes are deterministic, i.e., are uniquely determined
by the actions selected by all agents.

• For each agent, a payoff function, which assigns a numeric value (this
agent’s “happiness”) to each outcome.

We limit ourselves to games with a finite number of players, though games with
a continuum of players have been considered in the literature as well, e.g., in the
context of traffic routing [16]. However, we do not assume that the players’ sets
of actions are finite.

It is assumed that all agents simultaneously choose their actions from their
respective sets of available actions; these actions determine the outcome, which,
in turn, determines the agents’ payoffs. Since the outcomes are uniquely deter-
mined by action profiles, to simplify notation, we can omit the outcomes from
the description of the game, and define payoff functions as mappings from action
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profiles to real numbers. Clearly, each agent would like to select an action that
maximizes its payoff; however, the optimal choice of action may depend on other
agents’ choices.

More formally, a normal-form game is defined as follows:

Definition 17.1 A normal-form game is a tuple G = 〈N,(Ai)i∈N ,(ui)i∈N〉, where
N = {1, . . . ,n} is the set of agents and for each i ∈ N, Ai is the set of actions,
or strategies, available to agent i and ui : × j∈NA j → R is the payoff function of
agent i, which assigns a numeric payoff to every action profile a = (a1, . . . ,an) ∈
A1× . . .×An.

We will often have to reason about the actions of one player while keeping the
actions of all other players fixed. For this reason it will be convenient to have a
special notation for the vector of actions of all players other than player i. Thus,
given an action profile a = (a1, . . . ,an) and a player i ∈ N, we will denote by a−i
the vector (a1, . . . ,ai−1,ai+1, . . . ,an) ∈ × j∈N, j �=iA j. We will also write (a−i,b) to
denote the action profile (a1, . . . ,ai−1,b,ai+1, . . . ,an), where b is some action in
Ai. Finally, we set A= A1× . . .×An, and A−i = A1× . . .×Ai−1×Ai+1× . . .×An.

We will now illustrate the notions we have just introduced with a simple, but
instructive example; the game described in Example 17.1 is one of the most well-
known normal-form games.

Example 17.1 (Prisoner’s Dilemma) Two suspects X and Y are accused of a
crime. The prosecution does not have enough evidence to convict them unless
one of the suspects confesses, and is therefore willing to cut a deal with the con-
fessor. If both suspects remain silent, they will be convicted of a minor infraction,
so each of them will be jailed for 1 year. If one of them confesses, but the other re-
mains silent, the cooperative witness walks free, while the other suspect is jailed
for 4 years. However, if both of them confess, each suspect will be jailed for 3
years. Both suspects are placed in solitary confinement, and each of them has to
choose whether to confess (C) or remain silent (S), without consulting with the
other suspect.

This situation can be modeled as a normal-form game with N = {X ,Y}, AX =
AY = {S,C}, and payoff functions uX ,uY given by

uX(S,S) =−1, uX(S,C) =−4, uX(C,S) = 0, uX(C,C) =−3;
uY (S,S) =−1, uY (S,C) = 0, uY (C,S) =−4, uY (C,C) =−3.

For two-player games with a finite number of actions, the players’ payoffs are
usually specified more compactly using a payoff matrix. In this matrix, the rows
correspond to the actions of the first player (who is also called the row player); the
columns correspond to the actions of the second player (who is called the column
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S C
S (−1,−1) (−4,0)
C (0,−4) (−3,−3)

Table 17.1: The payoff matrix for the Prisoner’s Dilemma.

player); and the cell at the intersection of the i-th row and the j-th column contains
a pair (x,y), where x is the first player’s payoff at the action profile (ai,a j), and
y is the second player’s payoff at this action profile. (You can also think of this
matrix as a combination of two matrices, one for each player.) For instance, for
the Prisoner’s Dilemma example considered above, the payoff matrix is given by
Table 17.1.

Now, the main question studied by game theory is how to predict the outcome
of a game, i.e., how to determine what strategies the players are going to choose.
Such predictions are known as solution concepts. We will now discuss several
classic solution concepts.

2.1 Dominant Strategy

In the Prisoner’s Dilemma, it is not hard to predict what a rational agent would
do. Indeed, agent X can reason as follows. If Y confesses, it is more profitable for
X to confess (a payoff of −3) than to remain silent (a payoff of −4). Similarly,
if Y remains silent, it is more profitable for X to confess (a payoff of 0) than to
remain silent (a payoff of −1). Thus, X does not need to know what Y intends to
do: in any case, it prefers to confess. Player Y reasons in the same way, so the
only rational outcome of this game is for both players to confess.

In this example, it happens that for each player strategy C is preferable to
strategy S irrespective of the other player’s choice of action. Such strategies are
called dominant. More formally, we have the following definition.

Definition 17.2 Given a normal-form game G = 〈N,(Ai)i∈N ,(ui)i∈N〉 and a pair
of actions ai,a′i ∈ Ai, the action ai is said to weakly dominate a′i if

ui(a−i,ai)≥ ui(a−i,a′i) (17.1)

for every a−i ∈A−i, and the inequality in (17.1) is strict for at least one a−i ∈A−i.
An action ai is said to strictly dominate a′i if the inequality in (17.1) is strict for
every a−i ∈A−i.

A strategy ai of agent i is said to be weakly/strictly dominant if it weak-
ly/strictly dominates all other strategies of that agent. Similarly, a strategy a′i of
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F M
F (1,3) (0,0)
M (0,0) (3,1)

Table 17.2: The payoff matrix for the Battle of the Sexes.

agent i is said to be weakly/strictly dominated if it is weakly/strictly dominated
by some other strategy of that agent.

Using the terminology of Definition 17.2, we can see that for both players
in the Prisoner’s Dilemma game, strategy C strictly dominates strategy S and is
therefore a strictly dominant strategy. Suppose now that we change the description
of the game so that when X confesses, Y is jailed for 3 years whether it confesses
or not. Then, confessing remains a weakly dominant strategy for Y , but it is no
longer strictly dominant: if X confesses, Y is indifferent between confessing and
remaining silent.

It is easy to see that each player can have at most one weakly dominant strategy
(and, a forteriori, at most one strictly dominant strategy). Further, if a player
possesses such a strategy, it has a very strong incentive to choose it, as it can do
no better by choosing any other strategy. However, in many games some or all of
the players do not have dominant strategies.

Example 17.2 (Battle of the Sexes) Alice and Bob would like to spend the
evening together. Each of them has to choose between a football game (F) and a
movie (M). Bob prefers football to the movies, Alice prefers movies to the football
game, but both of them have a strong preference for spending the evening together.
Thus, if they end up choosing different activities, the evening is ruined for both of
them, so each of them gets a payoff of 0. If they both choose football, Bob’s payoff
is 3, and Alice’s payoff is 1. If they both choose the movie, Alice’s payoff is 3,
and Bob’s payoff is 1. This game can be represented by the payoff matrix given in
Table 17.2, where Alice is the row player, and Bob is the column player.

In Example 17.2, neither player has a (weakly) dominant strategy: Alice
prefers M to F when Bob chooses M, but she prefers F to M when Bob chooses F .
Indeed, both outcomes (F,F) and (M,M) appear reasonable in this situation. On
the other hand, common sense suggests that the outcome (M,F) is less plausible
than either (F,F) or (M,M): indeed, if the outcome is (M,F), Alice’s payoff is 0,
but she can unilaterally change her action to F , thereby increasing her payoff to
1. Similarly, Bob can unilaterally increase his payoff from 0 to 1 by changing his
action from F to M.

We will now try to formalize the intuition that allows us to say that in this
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game, (M,M) is more plausible than (F,M), so as to apply it to a wider range of
settings.

2.2 Nash Equilibrium

In the Battle of the Sexes game, the outcome (M,F) is inherently unstable: a
player (or, in this particular case, both players) can change his or her action so as
to increase his or her payoff. The notion of Nash equilibrium aims to capture the
set of outcomes that are resistant to such deviations.

Definition 17.3 Given a normal-form game G = 〈N,(Ai)i∈N ,(ui)i∈N〉, a strategy
profile a = (a1, . . . ,an) is said to be a Nash equilibrium if for every agent i ∈ A
and for every action a′i ∈ Ai we have

ui(a−i,ai)≥ ui(a−i,a′i), (17.2)

i.e., no agent can unilaterally increase its payoff by changing its action.

We say that an action a is a best response of player i to a strategy profile a−i
if ui(a−i,a) ≥ ui(a−i,a′) for every a′ ∈ Ai. Thus, a Nash equilibrium is a strat-
egy profile in which each player’s action is a best response to the other players’
actions.

It is immediate that in the Battle of the Sexes game (M,M) and (F,F) are Nash
equilibria, but (M,F) and (F,M) are not.

We will now analyze another normal-form game. Unlike the examples that we
have considered so far, it has more than two players.

Example 17.3 (Building a Bridge) The council of a town is running a fund-
raising campaign to collect money for building a bridge. The town has 10,000
inhabitants, and each of them has to decide whether to contribute or not. Any
person who decides to contribute donates $10. The bridge costs $50,000 to build.
Thus, if at least half of the inhabitants decide to contribute, then the bridge is
built; if there is any surplus, it is kept by the council. Otherwise the bridge is not
built, but the money donated is kept by the council for potential future use. Each
person assigns a utility of 20 to having the bridge built.

This scenario can be described by a normal-form game with 10,000 players
and two actions per player (“contribute”, “do not contribute”). A player’s utility
is $10 if it contributes and the bridge is built,−$10 if it contributes and the bridge
is not built, $20 if it does not contribute and the bridge is built, and $0 if it does
not contribute and the bridge is not built. Thus, a player prefers to contribute if
and only if 4,999 other players chose to contribute, and prefers not to contribute
in all other cases. Consequently, an action profile where exactly 5,000 players
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H T
H (1,−1) (−1,1)
T (−1,1) (1,−1)

Table 17.3: The payoff matrix for the Matching Pennies.

contribute to building the bridge is a Nash equilibrium, and so is the profile where
none of the players contributes. We leave it as an exercise for the reader to show
that this game does not have any other Nash equilibria.

Nash equilibrium is perhaps the most prevalent solution concept in game the-
ory. However, it has a few undesirable properties. First, playing a Nash equilib-
rium strategy is only rational if all other agents are playing according to the same
Nash equilibrium; while this assumption is reasonable if other agents are known
to be rational, in many real-life scenarios the rationality of other agents cannot be
assumed as given. In contrast, if an agent has a dominant strategy, it does not need
to assume anything about other agents. Assuming that all other agents act accord-
ing to a fixed Nash equilibrium is especially problematic if the Nash equilibrium
is not unique. This is the case, for instance, in the Battle of the Sexes game: if Al-
ice and Bob have to choose their actions simultaneously and independently, there
is no obvious way for them to choose between (M,M) and (F,F). Further, there
are games that do not have a Nash equilibrium, as illustrated in the next example.

Example 17.4 (Matching Pennies) Consider a 2-player game where each of the
players has a 1p coin, and has to place it on the table so that the upper side is
either heads (H) or tails (T ). If both coins face the same way (H,H or T,T ), the
first player (“matcher”) takes both coins, and hence wins 1p. Otherwise, (i.e., if
the outcome is H,T or T,H), the second player (“mismatcher”) takes both coins.
This game corresponds to the payoff matrix given in Table 17.3.

It is not hard to check that in this game none of the action profiles is a Nash
equilibrium: if the two players choose the same action, the second player can
deviate and change its payoff from−1 to 1, and if the two players choose different
actions, the first player can profitably deviate.

However, the game in Example 17.4 does have a stable state if we allow the
players to randomize. In the next section, we will discuss the effects of random-
ization in normal-form games.



818 Chapter 17

2.3 Mixed Strategies and Mixed Nash Equilibrium

If we try to actually engage in a game of matching pennies, either as player 1 or
as player 2, we will quickly realize that the best strategy is to toss the coin so that
it has equal chances of landing heads or tails. The corresponding game-theoretic
notion is a mixed strategy.

Definition 17.4 Given a normal-form game G = 〈N,(Ai)i∈N ,(ui)i∈N〉 in which
each agent’s set of actions is finite (without loss of generality, we can assume that
each agent has exactly m strategies available to it), a mixed strategy of an agent i
with a set of actions Ai = {a1

i , . . . ,a
m
i } is a probability distribution over Ai, i.e., a

vector si = (s1
i , . . . ,s

m
i ) that satisfies s j

i ≥ 0 for all j = 1, . . . ,m, s1
i + · · ·+ sm

i = 1.
A mixed strategy profile is a vector (s1, . . . ,sn) of mixed strategies (one for each
agent).

The support supp(si) of a mixed strategy si is the set of all actions that are
assigned non-zero probability under si: supp(si) = {a j

i | s j
i > 0}.

Given a mixed strategy profile (s1, . . . ,sn), the expected payoff of player i is
computed as

Ui(s1, . . . ,sn) = ∑
(a

i1
1 ,...,ain

n )∈A
si1

1 . . .sin
n ui(a

i1
1 , . . . ,a

in
n ). (17.3)

We are now ready to define our next solution concept, namely, the mixed Nash
equilibrium.

Definition 17.5 Given a normal-form game G = 〈N,(Ai)i∈N ,(ui)i∈N〉, a mixed
strategy profile (s1, . . . ,sn) is a mixed Nash equilibrium if no agent can improve
its expected payoff by changing its strategy, i.e.,

Ui(s1, . . . ,sn)≥Ui(s1, . . . ,s
′
i, . . .sn)

for every agent i ∈ N and every mixed strategy s′i of player i.

Observe that an action a j
i corresponds to a mixed strategy si given by s j

i = 1,
s�i = 0 for � �= j; we will refer to strategies of this form as pure strategies of
player i, and the notion of Nash equilibrium defined in Section 2.2 as pure Nash
equilibrium.

While the notion of mixed Nash equilibrium suffers from many of the same
conceptual problems as the pure Nash equilibrium, as well as some additional
ones, it has the following attractive property:

Theorem 17.1 Any normal-form game with a finite number of players and a finite
number of strategies for each player admits a Nash equilibrium in mixed strate-
gies.
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This result was proved by John Nash in his PhD thesis [11], and is one of the
cornerstones of modern game theory.

Going back to Example 17.4, we can verify that the mixed strategy profile
(s1,s2), where s1 = s2 = (1/2,1/2), is a mixed Nash equilibrium for the Matching
Pennies game; it can be seen that it is the only mixed Nash equilibrium of this
game.

We will now list several important properties of mixed Nash equilibria that can
be used to simplify the computation of the equilibrium strategies; for the proofs,
the reader is referred to [13].

(1) If (s1, . . . ,sn) is a mixed Nash equilibrium in a normal-form game G =
〈N,(Ai)i∈N ,(ui)i∈N〉, then for each player i ∈ N, all actions in supp(si) are
i’s best responses to (s1, . . . ,si−1,si+1, . . . ,sn): if ai ∈ supp(si), then

Ui(s1, . . . ,si−1,ai,si+1, . . . ,sn)≥Ui(s1, . . . ,si−1,s
′
i,si+1, . . . ,sn)

for every mixed strategy s′i of player i. Hence for any two actions ai,a j ∈
supp(si), we have

Ui(s1, . . . ,si−1,ai,si+1, . . . ,sn) =Ui(s1, . . . ,si−1,a j,si+1, . . . ,sn).

(2) To verify if a profile (s1, . . . ,sn) is a mixed Nash equilibrium, it suffices
to check deviations to pure strategies only. That is, (s1, . . . ,sn) is a mixed
Nash equilibrium in a normal-form game G = 〈N,(Ai)i∈N ,(ui)i∈N〉 if for
every player i and every action ai of player i it holds that

Ui(s1, . . . ,si−1,si,si+1, . . . ,sn)≥Ui(s1, . . . ,si−1,ai,si+1, . . . ,sn).

(3) If a strategy profile (ai1
1 , . . . ,a

in
n ) is a pure Nash equilibrium in a normal-form

game G = 〈N,(Ai)i∈N ,(ui)i∈N〉, then it is also a mixed Nash equilibrium
in G.

As an illustration, consider the Matching Pennies game. Suppose that we want
to verify that the strategy profile (s1,s2), where s1 = s2 = (1/2,1/2), is a mixed
Nash equilibrium of this game. First, let us compute the expected payoffs. We
have

U1(s1,s2) =
1
4

u1(T,T )+
1
4

u1(T,H)+
1
4

u1(H,T )+
1
4

u1(H,H) = 0;

U2(s1,s2) =
1
4

u2(T,T )+
1
4

u2(T,H)+
1
4

u2(H,T )+
1
4

u2(H,H) = 0.

By property (2), it suffices to verify that no player can increase its payoff by
deviating to a pure strategy. We have U1(H,s2) =

1
2u1(H,H)+ 1

2u1(H,T ) = 0,
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U1(T,s2) =
1
2u1(T,H)+ 1

2u1(T,T ) = 0, and similarly U2(s1,H) =U2(s1,T ) = 0.
Hence, (s1,s2) is a mixed Nash equilibrium for this game.

Now, let us try to compute the mixed Nash equilibria of the Battle of the
Sexes game. By property (3), (M,M) and (F,F) are mixed Nash equilibria of this
game. To determine if the game has any other mixed Nash equilibria, we will
use property (1). Suppose that (s1,s2) is a mixed Nash equilibrium with s1

1 �= 0,
s2

1 �= 0. Then by property (1) we have U1(F,s2) =U1(M,s2), or, equivalently,

s1
2u1(F,F)+ s2

2u1(F,M) = s1
2u1(M,F)+ s2

2u1(M,M).

From this, we can derive that s1
2 = 3s2

2; together with s1
2 + s2

2 = 1, this implies that
s1

2 = 3/4, s2
2 = 1/4. Similarly, we can derive that if s1

2 �= 0, s2
2 �= 0, then s1

1 = 1/4,
s2

1 = 3/4. Thus, the Battle of the Sexes game admits a mixed Nash equilibrium in
which each player chooses its preferred action with probability 3/4.

2.4 Elimination of Dominated Strategies

In this section, we will discuss a solution concept that is weaker than equilibrium
in dominant strategies, but stronger than Nash equilibrium.

We have argued that if a player possesses a dominant strategy, it has a very
strong incentive to use it. Similarly, if one of the player’s strategies is dominated,
it is unlikely to ever use it (this is especially true if this strategy is strictly dom-
inated, so in what follows we focus on strict dominance). This makes it rational
for other players to assume that this strategy will never be used and therefore
eliminate it from that player’s list of strategies; in the modified game, some of
their own strategies may become dominated, and can therefore be eliminated, etc.
This procedure is usually referred to as iterated elimination of strictly dominated
strategies. While it does not always lead to a single strategy profile, it may reduce
the number of strategies considerably.

Example 17.5 Consider two players X and Y who are engaged in the following
game: each player needs to name an integer between 1 and 10, and a player wins
(and gets a payoff of 1) if its number is closer to half of the average of the two
numbers; if both players name the same number, none of them wins. For instance,
if player X names nX = 9 and player Y names nY = 5, then Y wins, since 5 is
closer to 3.5 than 9 is.

Player X can reason as follows. Half of the average of the two numbers never
exceeds 5, so for player Y setting nY = 10 is strictly dominated by setting nY = 1.
Thus, it can assume that player Y never chooses nY = 10. The same argument
works for player X itself. Thus, both players can assume that the action space
is, in fact, limited to all integers between 1 and 9. Hence, half of the average of
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L R
T (2,2) (3,1)
B (1,3) (3,3)

(a) Nash equilibrium in weakly
dominated strategies

L R
T (4,1) (0,1)
C (0,2) (4,0)
B (1,4) (1,5)

(b) Domination by a mixed
strategy

Table 17.4: Elimination of strictly dominated strategies: two examples.

the two numbers does not exceed 4.5, and therefore for both players choosing 9
is strictly dominated by choosing 1. By repeating this argument, we can conclude
that the only pair of strategies that cannot be eliminated in this way is (1,1). Note
that under this strategy profile neither of the players wins.

It can be shown that any pure Nash equilibrium will always survive iterated
elimination of strictly dominated strategies. For instance, in Example 17.5 the
strategy profile (1,1) is a Nash equilibrium. Moreover, if an action belongs to
the support of a mixed Nash equilibrium, it will not be eliminated either. Thus,
iterated elimination of strictly dominated strategies can be viewed as a useful pre-
processing step for computing mixed Nash equilibria. Further, the set of strategies
surviving this procedure is independent of the elimination order. However, none of
these statements remains true if we eliminate weakly dominated strategies rather
than strictly dominated strategies: indeed, in the game given in Table 17.4a, R
is weakly dominated by L and B is weakly dominated by T , yet (B,R) is a pure
Nash equilibrium. Nevertheless, every game admits a (mixed) Nash equilibrium
that does not have any weakly dominated strategies in its support.

We remark that the notion of dominance introduced in Definition 17.2 extends
naturally to mixed strategies. Further, it can be shown that if an action a of player
i ∈ N dominates its action b in the sense of Definition 17.2, this remains to be
the case when the other players are allowed to use mixed strategies. On the other
hand, an action that is not dominated by any other action may nevertheless be
dominated by a mixed strategy. For instance, in the game given in Table 17.4b,
action B is not dominated (strictly or weakly) by either T or C, but is dominated
by their even mixture. Thus, when eliminating strictly dominated strategies, we
need to check for dominance by mixed strategies.

2.5 Games with Infinite Action Spaces

Whereas in all of our examples so far each player had a finite action space, all def-
initions in this chapter except for the ones in Section 2.3 apply to games whereby
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players possess infinite action spaces. Such games may appear at first glance to be
esoteric, but they are in fact quite common: a player’s strategy may be the amount
of time it spends on a certain activity, the amount of an infinitely divisible com-
modity it produces, or the amount of money it spends (money is usually assumed
to be infinitely divisible in game-theoretic literature). The reader can easily verify
that the notions of pure Nash equilibria, best response, and weakly/strictly dom-
inated strategies make perfect sense in these settings. The notion of mixed Nash
equilibrium can be extended to infinite action spaces as well, although a some-
what heavier machinery is required, which we do not discuss here. However, for
this more general setting Nash’s celebrated result [11] no longer applies and the
existence of a mixed Nash equilibrium is, in general, not guaranteed.

We will now present a simple example that highlights some of the issues that
arise in the analysis of games with infinite action spaces.

Example 17.6 Alice and Bob are bidding for a painting that is being sold by
means of a first-price sealed-bid auction (see Chapter 7): first, each player sub-
mits a bid in a sealed envelope, and then the envelopes are opened and the player
who submits the higher bid wins and pays his or her bid; the ties are broken in
Alice’s favor.

Suppose Alice values the painting at $300, Bob values the painting at $200,
and they both know each other’s values. Then if Alice wins the painting and
pays $x, her payoff is $300− x, whereas if Bob wins and pays $y, his payoff is
$200− y; note that both players’ payoffs may be negative. Each player can bid
any non-negative real number, i.e., each player’s strategy space is R+.

We can immediately observe that (200,200) is a Nash equilibrium of the game
described in Example 17.6. Indeed, under this bid vector Alice wins because of
the tie-breaking rule, and her payoff is 100. If Alice bids more, she will have to
pay more, and if she bids less, she will lose the auction, so her payoff will go
down from 100 to 0. On the other hand, if Bob bids less, the outcome will remain
the same, and if he bids more, he wins, but his payoff will be negative. The same
argument shows that any action profile of the form (x,x), where 200≤ x≤ 300, is
a Nash equilibrium. In contrast, no action profile of the form (x,y), where x �= y,
can be a Nash equilibrium of this game: the player who submits the higher bid has
an incentive to lower his or her bid a little (so that he or she remains the winning
bidder, but pays less).

Now, suppose that Alice values the painting at $200, whereas Bob values it at
$300. We claim that in this case our game has no pure Nash equilibrium. Indeed,
the same argument as above shows that in any Nash equilibrium, Alice and Bob
submit the same bid (and hence Alice wins). Further, this bid is at least $300,
since otherwise Bob can profitably deviate by increasing his bid. However, this
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means that Alice is losing money and can profitably deviate by lowering her bid
so as to lose the auction.

2.5.1 Games with Differentiable Payoff Functions

In some classes of games with infinite action spaces, we can argue about the Nash
equilibria in a more systematic way, provided that the payoff functions satisfy
some “niceness” conditions. This is the case for games where for each i ∈ N it
holds that Ai = R and ui is continuous and differentiable. Note that this does
not hold for the auction of Example 17.6: there the payoff for Alice can drop
from 100 to 0 if at the state (200,200) she lowers her bid by an arbitrarily small
amount, hence there is no continuity. Under differentiable payoff functions, and
when there are no restrictions on the strategy spaces, the best response of a player
to the other players’ strategies is achieved at the point where the partial derivative
of ui with respect to player i’s choice becomes zero. Hence, we can identify the
set of Nash equilibria by solving the following system of n equations, and then
verifying that the obtained solutions are indeed Nash equilibria of the game.

∂ui(a1, ...,an)

∂ai
= 0, i = 1, ...,n. (17.4)

If the set Ai is a strict subset of R, e.g., a bounded interval, or if there are any
other restrictions on the strategy space, we should take them into account when
solving the system (17.4). We illustrate this approach with the following simple
example.

Example 17.7 Consider a task allocation scenario with two agents. Each agent
is assigned one individual task, and there is also a joint task that they need to
work on. Each agent derives utility from both tasks and the utility is a function
of the total effort spent. Let ai denote the percentage of time that agent i devotes
to the joint task, with ai ∈ [0,1]. The remaining percentage, 1− ai, is then spent
on the individual task. For given choices (a1,a2) of the two agents, the payoff to
agent i is given by

ui(a1,a2) = βi ln(a1 +a2)+1−ai, i = 1,2,

where βi ∈ (0,1] shows the relative importance that each agent assigns to the joint
task.

To analyze this example, note first that the tuple (0,0) is not a Nash equilib-
rium: at this strategy profile each player has an incentive to work on the joint
task so as to avoid a payoff of −∞. Hence we restrict ourselves to the region
a1 + a2 > 0, so that the derivative of the logarithm is defined. Now, to find the
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best response of each agent, we should solve the equations ∂ui/∂ai = 0 and at
the same time take into account the fact that ai should be in [0,1]. We obtain the
following best-response equations within the feasible region:

a1 = β1−a2, a2 = β2−a1.

It will be convenient to split the rest of the analysis into three cases:
Case 1: β1 = β2 = β. We can conclude that there are many Nash equilibria, which
are given by the set

{(a1,a2) | a1 +a2 = β,ai ∈ [0,1]}.

For example, if β = 0.7, then the Nash equilibria are given by the tuples of the
form {(a1,0.7−a1) | a1 ∈ [0,0.7]}.

Case 2: β1 > β2. Combining the best-response equations above with the con-
straint ai ∈ [0,1] for i = 1,2, we see that the best response of player 1 when player
2 chooses a2 is

a1 =

{
β1−a2 if a2 ≤ β1
0 if β1 ≤ a2 ≤ 1

We have a similar best-response description for player 2. As β1 > β2, we cannot
have a1 = β1− a2 and a2 = β2− a1 simultaneously, and hence either a1 = 0 or
a2 = 0. In fact, we can see that the first of these options does not lead to a Nash
equilibrium, and hence the only Nash equilibrium is (β1,0), i.e., the player who
assigns more value to the joint task is the only person to put any effort into it.

Case 3: β2 > β1. By a similar argument, (0,β2) is the only Nash equilibrium.

2.6 Zero-Sum Games

In this section, we will focus on normal-form games that express direct competi-
tion among the players. These are games where the benefit of one player equals
the loss of the other players. Historically, this is the first class of games that was
studied extensively before moving to general normal-form games. Indeed, zero-
sum games were the focus of the first textbook on game theory by von Neumann
and Morgenstern [23]. For simplicity we will only consider the two-player case.
For two players, zero-sum games have a number of useful properties that make
them easier to analyze than general two-player games.

Definition 17.6 A 2-player normal-form game G is a zero-sum game if for every
strategy profile (s, t) it holds that u1(s, t)+u2(s, t) = 0.
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For games with more than two players this definition is adjusted in a natural
way: the sum of the utilities of all players is required to be 0. We can replace the
constant 0 in Definition 17.6 with any other constant: any game in the resulting
class can be transformed into a zero-sum game that has the same set of Nash
equilibria by subtracting this constant from the payoff matrix of one of the players.
Obviously, a two-player zero-sum game is completely specified by the payoffs of
the row player, since the payoffs of the column player are simply the negative of
those of the row player. We will adopt this convention within this subsection, and
we will use the following running example to illustrate our exposition.

Example 17.8 Consider the 2×2 game represented by the following payoff ma-
trix for the row player.

A =

[
4 2
1 3

]
One way to start thinking about how to play in such a game is to be pessimistic

and assume the worst-case scenario for any chosen strategy. For the row player,
this means to assume that, no matter what it chooses, the other player will make
the choice that minimizes the payment to the row player, i.e., that for every row
i that it might choose, the value min j Ai j will be realized. Hence the row player
would play so as to maximize this minimum value. In the same spirit, if the
column player also thinks pessimistically, it will think that, no matter what it
chooses, the other player will pick the action that maximizes the payment, i.e., for
a column j the column player will end up paying maxi Ai j. The column player
will then want to ensure that it minimizes this worst-case payment. Therefore, the
two players are interested in achieving, respectively, the values

v1 := max
i

min
j

Ai j, and v2 := min
j

max
i

Ai j.

Let us now look at Example 17.8. We see that if the row player chooses the
first row, the worst-case scenario is that it receives 2 units of payoff. If it picks
the second row, it may do even worse and receive only 1 unit of payoff. Hence, it
would select the first row and v1 = 2. Similarly, we can argue that v2 = 3 and that
the column player would choose the second column. We can see, however, that
this type of pessimistic play does not lead to a Nash equilibrium, since the row
player would have an incentive to deviate. In fact, this game does not have a Nash
equilibrium in pure strategies.

We can now carry out the same reasoning over the space of mixed strategies.
For this we need to define the values

v̄1 := max
s

min
t

u1(s, t), and v̄2 := min
t

max
s

u1(s, t),
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where the maximization and minimization above are over the set of mixed strate-
gies. Since we are now optimizing over a larger set, it follows that

v1 ≤ v̄1 ≤ v̄2 ≤ v2.

To compute v̄1 in Example 17.8 (and generally for any 2×2 zero-sum game),
we observe that for any mixed strategy s = (s1,1− s1) of the row player, the
payoff of each pure strategy of the column player will be a linear function of
s1. Further, when computing mint u1(s, t) for a given s, it suffices to consider the
pure strategies of the column player only. Hence, in the absence of dominated
strategies, the solution will be found at the intersection of two linear functions. In
particular, for our example, we have:

v̄1 = max
s

min
t

u1(s, t)

= max
s1

min{4s1 +1− s1,2s1 +3(1− s1)}
= max

s1
min{3s1 +1,3− s1)}.

We are seeking to maximize the minimum of two linear functions, an increas-
ing one and a decreasing one. This is achieved at the intersection of the two lines.
It follows that the strategy s = (1/2,1/2) guarantees a payoff of 2.5 to the row
player. Hence, we see that v̄1 > v1 in this case, i.e., the row player can do better
by playing a mixed strategy. In the same manner, we can analyze the behavior
of the column player and find that the strategy t = (1/4,3/4) guarantees to the
column player that it never has to pay more than v̄2 = 2.5, which is better than v2.
Furthermore, one can check that (s, t) is a Nash equilibrium of the game.

The fact that in Example 17.8 we obtained v̄1 = v̄2 and that the recommended
strategies led to a Nash equilibrium was not an accident. On the contrary, this
holds for every finite zero-sum game, and was one of the first theoretical results,
proved by von Neumann in [22], which spurred the development of game theory.
The main theorem about zero-sum games can be stated as follows:

Theorem 17.2 For every finite zero-sum game:

1. v̄1 = v̄2, and this common value, denoted by v̄, is referred to as the value of
the game.

2. The profile (s, t) where v̄ is achieved is a Nash equilibrium.

3. All Nash equilibria yield the same payoffs to the players, v̄ and −v̄, respec-
tively. Furthermore, if (s, t) and (s′, t′) are Nash equilibria, then (s, t′) and
(s′, t) are also Nash equilibria with the same payoff.
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Therefore, in zero-sum games the notion of Nash equilibrium does not face the
criticism regarding the existence of multiple equilibria and the problem of choos-
ing among them, since all equilibria provide the same payoffs and coordination
is never an issue. Furthermore, from the algorithmic perspective, even though
finding v̄ for an arbitrary zero-sum game is not as easy as for the 2× 2 case of
Example 17.8, it is still a tractable problem (for more details, see Section 2.7).

2.7 Computational Aspects

Many researchers have argued that for game-theoretic approaches to be relevant
in practice, the game in question should admit a succinct representation and the
chosen solution concept should be efficiently computable. These criteria are usu-
ally taken to mean that the representation size of a game and the running time of
the algorithms for computing solution concepts should be at most polynomial in n
and m, where n is the number of players and m is the number of actions available
to each player.

For two-player games (and generally, for games with a constant number of
players) representation complexity is not an issue: if each of the players has m
actions and all payoffs can be rescaled to be integers with absolute value that
does not exceed 2poly(m), the size of the matrix representation is polynomial in
m. However, if the number of players is large, the size of the matrix representa-
tion explodes: for an n-player game with two actions per player, the matrix has
2n cells. This is, in a sense, inevitable: a standard counting argument shows that
any formalism that can express every n-player game will produce exponential-
sized descriptions for most games. Therefore, for multiplayer games one usu-
ally considers application-specific representation formalisms that may fail to be
universally expressive, but provide a succinct encoding for the relevant class of
games; two prominent examples are congestion games and graphical games (see,
respectively, [21] and [7] for details).

As for efficient computability of solution concepts, strictly/weakly dominant
strategies and pure Nash equilibria fare well in this respect, at least for games with
a constant number of players: it is straightforward to check whether a strategy is
dominant or whether a strategy profile forms a pure Nash equilibrium. However,
mixed Nash equilibria fail this test: computing a Nash equilibrium is known to be
complete for the complexity class PPAD [1, 4], even for two-player games with
0–1 payoffs [2]. While PPAD is a somewhat exotic complexity class, it is known
to contain several important problems that many experts believe do not admit a
polynomial-time algorithm. Moreover, finding a Nash equilibrium with certain
desirable properties (such as, e.g., a Nash equilibrium that maximizes the sum
of players’ utilities) is known to be NP-complete [3, 6]. In fact, even finding an
approximate Nash equilibrium, i.e., a strategy profile in which each player only
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2

A B

C D E F

(1, 1) (3, 4) (1, 2)(2, 5)

1

2

Figure 17.1: An extensive-form game with two players.

has a small incentive to deviate, appears to be computationally difficult: the best
of the currently known polynomial-time algorithms are only guaranteed to output
a solution in which no player can increase its payoff by more than approximately
33% [19]. If one is willing to move to higher running times, then for games
with a constant number of players there exist superpolynomial algorithms (which
achieve a better than exponential – yet not polynomial – running time) that can
find strategy profiles where the incentive to deviate is at most ε, for any constant
ε > 0 (see [8, 20]). Finally, we note that for zero-sum games, a mixed Nash
equilibrium can be computed efficiently. This is done by using arguments from
linear programming duality, and the resulting algorithm is based on solving a
single linear program.

3 Extensive-Form Games

The games studied in Section 2 clearly cannot capture situations where players
move sequentially. There are, however, many examples, such as board games
(chess, go, etc.), negotiation protocols, and open-cry auctions, which may evolve
in several rounds, so that players take turns and make a decision after they are
informed of the decisions of their opponents. In this section, we develop the tools
for analyzing such games.

To start, we will describe a simple game with sequential moves that will be
used as our running example throughout this section.

Example 17.9 Consider the game with two players depicted in Figure 17.1. In
this game, player 1 moves first and has to decide between the alternatives A and
B. After that, player 2 moves; depending on what player 1 chose, it will have
to decide either between C and D or between E and F. Finally, after the move
of player 2, the game ends and each player receives a payoff depending on the
terminal state that the game reached. For instance, if player 1 chooses A and
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player 2 chooses C, their payoffs are 2 and 5, respectively.

This example illustrates what needs to be specified to define an extensive-form
game. Such a game is typically represented by a rooted tree, where the root de-
notes the start of the game and each leaf is a possible end of the game. Throughout
this section, we assume that this tree has a finite depth, i.e., there is a finite bound
on the maximum length of a path from the root to a leaf; however, nodes may
have infinite fan-outs, corresponding to an infinite number of actions available to
a player. All internal nodes of the tree depict states of the game. In each state,
either one of the players has to make a decision or there is a random event (such
as a coin toss) that determines the next state; we will refer to the choice made at
a node of the latter type as a move by nature. Given a tree that represents a game,
a history is simply a valid sequence of actions starting from the beginning of the
game, i.e., it is a path from the root to some node of the tree. We also allow the
empty set, /0, to be a valid history. A terminal history is a history that ends in
a leaf. Hence, a terminal history depicts a possible play of the game. In a tree,
there is a unique path from the root to a leaf, and therefore there is a one-to-one
correspondence between terminal histories and leaves. We will now make this
description more formal.

Definition 17.7 An extensive-form game is given by a tuple G = 〈N,T,(ui)i∈N〉,
where

• N = {1, . . . ,n} is a set of agents;

• T = (V,E) is a rooted tree, where the set of nodes is partitioned into disjoint
sets V = V1∪V2∪ ·· · ∪Vn∪Vc∪VL. Here Vi, i = 1, ...,n, denotes the set of
nodes where it is agent i’s turn to make a decision, Vc denotes the set of
nodes where a move is selected by chance, and VL denotes the set of leaves.
For every node v ∈ Vc, we are also given a probability distribution on the
set of edges leaving u.

• For each i ∈ N, ui : VL → R is a payoff function that maps each leaf of T to
a real value.

Given that there is a one-to-one correspondence between terminal histories
and leaves, in what follows, by a slight abuse of notation, we will sometimes view
the payoff functions as mappings from terminal histories to real numbers.

To illustrate the notions introduced in Definition 17.7, consider again
the game of Figure 17.1. There, the set of all histories is H =
{ /0,A,B,(A,C),(A,D),(B,E),(B,F)} and the set of terminal histories is HT =
{(A,C),(A,D),(B,E),(B,F)}. The set of nodes is partitioned into V1,V2,VL,
where V1 contains only the root, V2 contains the two children of the root, and
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VL is the set of the four leaves. There are no chance moves, so Vc = /0. The payoff
function of player 1 is given by

u1((A,C)) = 2, u1((A,D)) = 1, u1((B,E)) = 3, u1((B,F)) = 1,

whereas the payoff function of player 2 is given by

u2((A,C)) = 5, u2((A,D)) = 1, u2((B,E)) = 4, u2((B,F)) = 2.

We will now present a less abstract example that illustrates the applicability of
extensive-form games in the analysis of realistic scenarios.

Example 17.10 Alice and Bob have to share 8 identical cupcakes; the cupcakes
cannot be cut into pieces, so each player has to be allocated an integer number of
cupcakes. The cupcakes become stale quickly, so after each round of negotiation
half of them will have to be thrown out. The negotiation procedure consists of two
rounds of offers. In the first round, Alice proposes the number of cupcakes nA that
she should receive, where 0 ≤ nA ≤ 8. Bob can either accept this offer (in which
case Alice gets nA cupcakes, Bob gets 8−nA cupcakes, and the game terminates),
or reject it. If Bob rejects, in the second round he can decide on the number of
cupcakes nB that he should receive; however, by this time half of the cupcakes will
have perished, so we have 0 ≤ nB ≤ 4. This game can be described by the tree
given in Figure 17.2.

1

A

BB B B B B B B B

(4, 4) (4, 0) (3, 1) (2, 2) (1, 3) (0, 4)

86 7542 30

acc 10 2 3 4

Figure 17.2: Cupcake division game. A branch labeled with i corresponds to the
number of cupcakes the player decides to keep, and “acc” corresponds to Bob’s
decision to accept Alice’s offer. To save space, we only show Bob’s responses to
one of Alice’s actions.
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3.1 Nash Equilibrium and Critiques

In order to define an appropriate solution concept for extensive-form games, we
need to formalize the notion of a strategy. To begin, observe that each player i may
have to move several times throughout the game. Further, at every node where it
is player i’s turn to move, the available choices correspond to the edges leaving
that node. A strategy in game theory is perceived as a complete plan of action, so
that even a representative (e.g., a robot) could carry it out for you once you have
decided upon it. Therefore, in the context of extensive-form games, a strategy for
player i must specify a choice for every node that belongs to Vi, even if a node
may not be reachable in a particular play of the game.

Definition 17.8 Let G = 〈N,T,(ui)i∈N〉 be an extensive-form game. For an agent
i∈N and a node v∈Vi, let A(v) denote the set of actions available to agent i when
the game reaches node v. Then a (pure) strategy for agent i in G is a function that
assigns to each node v ∈Vi an action from A(v).

The reason for demanding that a player specifies an action in each node of Vi
is that the player cannot a priori know what the other players will do, and hence
needs to be prepared if it finds itself in any node where it is required to make
a decision. For instance, in Example 17.9, player 1 has two available strategies,
whereas player 2 has four strategies that correspond to the choices at the two nodes
of V2; one such strategy is (C if A, E if B). In general, we can represent a strategy
by a sequence of actions, starting from the top node of Vi and going downward in a
left-to-right fashion. In this notation, the strategy described above can be encoded
as (C,E).

Given a strategy profile s = (s1, ...,sn), let o(s) be the terminal history (leaf)
that results when players act according to the profile s. The payoff for player i
will then be ui(o(s)). Hence, analogous to Section 2, a Nash equilibrium in this
context can be defined as follows.

Definition 17.9 A strategy profile s = (s1, ...,sn) is a Nash equilibrium of an
extensive-form game G= 〈N,T,(ui)i∈N〉 if for every agent i∈N and every strategy
s′i of player i it holds that

ui(o(s))≥ ui(o(s′i,s−i)).

Revisiting again Example 17.9, we can check that the profiles that form Nash
equilibria are (B,(C,E)), (B,(D,E)), and (A,(C,F)). Let us inspect, for instance,
the first of these profiles. Player 1 has decided to play B, and player 2 has decided
to play C if it sees that player 1 played A, and E if player 1 played B. This results
in payoffs of 3 and 4, respectively. If player 1 were to change to strategy A, it
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would obtain a payoff of 2, hence there is no incentive to switch. Similarly, player
2 has no incentive to switch, because given that player 1 chooses B, E is the best
action to take. Note that since player 1 chooses B, player 2 is indifferent toward
its choices in the left subtree.

We now want to argue that Nash equilibria in extensive-form games may fail
to take into account the sequential structure of the game. Let us inspect the profile
(B,(D,E)) in more detail. This is a Nash equilibrium, because given that player 1
has chosen B, player 2 has no incentive to switch to another strategy, i.e., player
2 is simply indifferent toward the possible choices it has in the left subtree. How-
ever, imagine the situation in which player 1, either by mistake or due to other
reasons, fails to play B and decides to choose A. We can see that in this case
(D,E) is not a good strategy for player 2: its payoff is 1, so it would rather switch
to play C and obtain a payoff of 5. Thus, the equilibrium (B,(C,E)) is “better”
than the equilibrium (B,(D,E)) in the sense that in the former profile, player 2 is
prepared to play the best possible action at every node where it is its turn to move,
regardless of whether the first player has stuck to its plan of action.

3.2 Subgame-Perfect Equilibrium

The discussion above motivates the definition of a different solution concept,
which is more suitable for extensive-form games. Before we define this concept,
which was introduced by Selten [17], we need to introduce the notion of a sub-
game. Given a history h of chosen actions from the start of the game up until an
internal node of the tree, the subgame following h is simply the game that remains
after history h has occurred. A formalization of this is given below.

Definition 17.10 Let G = 〈N,T,(ui)i∈N〉 be an extensive-form game. Given a
nonterminal history h = (a1, ...,ak), let p be the node where h ends and let Tp be
the subtree that is rooted at p. The subgame that corresponds to history h, denoted
by G(h), is the game where

1. the set of agents is the same as in G.

2. the nodes of the tree Tp follow the partitioning of the original tree into the
disjoint sets V1∩Tp,V2∩Tp, . . . ,Vn∩Tp, Vc∩Tp, VL∩Tp.

3. the set of (terminal) histories is simply the set of all sequences h′ for which
(h,h′) is a (terminal) history in G.

4. the payoffs for all agents at all leaves of Tp are the same as their payoffs at
the respective leaves of T .
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In Example 17.9, there are three subgames, namely the game G itself, which
corresponds to G( /0); the game G(A), in which player 1 has no choice, but player
2 has to choose between C and D; and the subgame G(B), where player 1 has no
choice and player 2 has to choose between E and F . In other words, the number
of subgames is equal to the number of nonterminal histories.

Given the notion of a subgame, what we would like to capture now is a stability
concept that is robust against possible mistakes or changes in the plan of action of
the other players. Consider a strategy profile s = (s1, ...,sn). Suppose now that the
game has started some time ago, and a (non-terminal) history h has occurred. This
history may or may not be consistent with the profile s: due to possible mistakes
or unexpected changes some of the players may have deviated from s. Intuitively,
the profile s is robust if for every player i, the strategy si projected on the subgame
G(h) is the best that i can do if, from the beginning of G(h) and onward, the rest
of the players adhere to s. This approach can be formalized as follows.

Definition 17.11 Given a strategy profile s = (s1, . . . ,sn) in an extensive-form
game G = 〈N,T,(ui)i∈N〉, let oh(s) be the terminal history that arises if, after
the occurrence of a history h, the agents play according to the profile s. Then s is
a subgame-perfect equilibrium (SPE) if for every agent i, for every history h after
which it is agent i’s turn to move, and for every strategy s′i of agent i in the game
G(h), we have

ui(oh(s))≥ ui(oh(s′i,s−i)).

That is, at a subgame-perfect equilibrium, each strategy is not just a best re-
sponse at the start of the game, but also remains a best response to the other play-
ers’ strategies at any possible point that the game may reach. It is worth looking at
Example 17.9 again to clarify the definition. We can see that out of the three Nash
equilibria that we identified, (B,(C,E)) is indeed a subgame-perfect equilibrium,
since at both nodes where player 2 has to move, it is playing its optimal strat-
egy. On the other hand, (B,(D,E)) is not an SPE. Indeed, B is a best response of
player 1 to (D,E); however, in the left subtree where it is player 2’s turn to move,
it is not playing an optimal strategy and should have chosen C instead. Similarly,
(A,(C,F)) is not an SPE because player 2 is not playing optimally in the right
subtree. This shows that the concept of subgame-perfect equilibrium is stronger
than that of a Nash equilibrium.

Fact 17.1 Every subgame-perfect equilibrium is a Nash equilibrium; however,
the converse is not true.
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3.3 Backward Induction

In this section, we will argue that subgame-perfect equilibria always exist and
can be found in a systematic way; the procedure for computing them is known as
backward induction.

In Example 17.9, we were able to conclude that there is a unique SPE, since an
SPE has to be a Nash equilibrium (see Fact 17.1 mentioned above), and two of the
three Nash equilibria did not qualify as an SPE. Actually, we could have derived
this unique SPE by the following simple argument: Consider the smallest possible
subgames, i.e., the subgames where player 2 has to move, which correspond to
the left and right subtree. In the left subtree, the optimal strategy for player 2 is to
play C. In the right subtree, the optimal strategy for player 2 is to play E. Next,
at the root, where player 1 has to decide what to play, we can argue that given the
optimal choices of player 2, the best choice for player 1 is to play B. This yields
the equilibrium (B,(C,E)). Hence, player 1 uses the assumption that player 2 will
behave as a rational agent in order to decide what action to take at the root of the
tree.

The above procedure, which is known as backward induction, can be easily
applied to any game as follows. We define the length of a subgame to be the length
of the longest history in this subgame (i.e., the longest path from the root to a leaf).
We start by finding the optimal strategies in all subgames of length 1 (games where
only one player has to make a move). Then we continue inductively, moving
toward the root, and at step k we find the optimal strategies of the players who
move at the beginning of all subgames of length k, given the optimal strategies
that we have found in the shorter subgames.

There are, however, a few issues that need to be handled carefully. First, if
some agents have an infinite number of actions available to them at some nodes,
the procedure may get stuck simply because there is no attainable optimal strategy.
Consider, for instance, a game where a player has to choose a rational number in
the interval [0,B) for some bound B, and the payoff is an increasing function of the
chosen number. Then there is no optimal strategy. Second, nodes that correspond
to chance moves require special processing. For any such node we need to com-
pute the expected payoffs for all players given the strategies we have computed in
the subgames rooted at the descendants of this node. Third, an optimal strategy at
a given node may not be unique. In this case, every combination of optimal strate-
gies that we identify throughout the analysis yields a different subgame-perfect
equilibrium. We illustrate the second and the third issue in the following example.

Example 17.11 Consider the game with two players given in Figure 17.3.
Player 1 has to move first and decide between the alternatives A and B. After that,
there is a random event represented by the two chance nodes, and then player 2
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(1, 2)

1

22 2 2

0 1 0 1 0 1 0 1

1/3 2/3

BA
c c

(1, 1)

3/4 1/4

(3, 1) (1, 1)(2, 0)(5, 1) (2, 2) (0, 2)

Figure 17.3: An extensive-form game with two players, chance moves, and non-
unique optimal strategy for player 2.

has to move. Note that among the terminal states, there are states where player
2 is indifferent, e.g., when choosing an action in the leftmost and the rightmost
subtree.

For games with finite strategy spaces, or, more generally, for games where an
optimal action exists at every node (given any strategy profile for the subgame
downward from this node), the extension of backward induction to handle all the
above-mentioned issues is as follows:

• Starting with k = 1, examine at round k all subgames of length k.

• Look at the root of a subgame of length k under consideration.

– If it is a chance node, then simply compute the expected payoffs for
all players, given the probability distribution at the chance node. Do
this for every combination of optimal strategies that has already been
computed for the shorter subgames.

– If it is a node where player i needs to make a move, then for every
combination of optimal strategies for the shorter subgames, we find
the optimal action of player i at this node. If there is more than one, we
record them all, so that we continue to keep track of all combinations
of optimal actions at all nodes considered so far.

Let us consider again Example 17.11. To make the notation more compact, we
can use a 4-bit string to encode the strategy of player 2 for the four nodes where
it has to move, with the intended meaning that 0 stands for choosing the left leaf
and 1 stands for choosing the right leaf. Given this notation, the analysis proceeds
as follows:
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1. There are four subgames of length 1, in all of which player 2 has to move.
We can see that player 2 is indifferent in the leftmost subgame and in the
rightmost subgame. In the other two subgames there is a unique optimal
action. Hence, in total we have four optimal strategies for player 2, namely,
0100, 0101, 1100, and 1101.

2. There are two subgames of length 2, which both start with a chance move.
For all four choices of player 2 identified in the previous round, we find the
expected payoffs for the two players.

• In the left chance node, these are, respectively, (5/3,1), (5/3,1),
(7/3,1), and (7/3,1).

• In the right chance node, these are, respectively, (6/4,2), (7/4,2),
(6/4,2), and (7/4,2).

3. There is only one subgame of length 3, namely the game itself, and player
1 has to decide at the root whether to play A or B. For each of the opti-
mal actions of player 2, it can compare its expected payoff and see that it
should play B only when player 2 chooses the strategy 0101. Hence we have
identified four subgame-perfect equilibria, namely, (A,0100), (B,0101),
(A,1100), and (A,0101).

One can prove that the above procedure indeed captures all the subgame-
perfect equilibria of a game. For games where an optimal action does not exist for
some node in the tree, the procedure cannot terminate with a solution, and we can
conclude that the game does not possess a subgame-perfect equilibrium. Hence
the main conclusion of this subsection can be summarized in the theorem below.

Theorem 17.3 The strategy profiles returned by the backward induction proce-
dure are precisely the subgame-perfect equilibria of the game.

When the action spaces of all players are finite, we always have an optimal
action at every node of the game. Hence, the procedure of backward induction
will always terminate. This leads to the following corollary.

Corollary 17.1 Every extensive-form game where each node has a finite fan-out
has at least one subgame-perfect equilibrium.

4 Bayesian Games

So far we have assumed that players have full knowledge regarding the game they
are playing, i.e., they know all the possible plays of the game, they are always
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informed about the current configuration of the game, and they know the pref-
erences of the other players. However, in many settings in multiagent systems,
players may not be aware of what the other players think, and will have to choose
their strategy under uncertainty. Hence, there is a need for a framework that can
capture selfish behavior in such circumstances.

We will now present a model that addresses this issue. To keep the presentation
simple, we will focus on games that are played simultaneously, and we will first
illustrate some of the main concepts with two examples.

4.1 Two Examples

We start with a simple variant of the Battle of the Sexes game. Again, Alice
(player 1) and Bob (player 2) are choosing between football (F) and movies (M).
This time, each of them is indifferent toward the two activities, so the only thing
that matters to each of them is whether they end up choosing the same activity.
Now, Alice has a positive payoff only when she manages to coordinate with Bob
and choose the same action, and Bob is aware of this. On the other hand, Alice is
uncertain about Bob, and thinks that with probability 2/3 Bob also wants to coor-
dinate, but with probability 1/3 he does not. To describe things more compactly,
we will say that Bob is of type m2 (“meet”) when he wants to coordinate with
Alice, and he is of type a2 (“avoid”) when he wants to avoid Alice. Hence, Alice
thinks that with probability 2/3 the game she is playing is the one on the left-hand
side of Table 17.5, whereas with probability 1/3 she is playing the game on the
right-hand side of the figure.

F M
F (3,3) (0,0)
M (0,0) (3,3)

(a) The game when Bob is
of type m2.

F M
F (3,0) (0,3)
M (0,3) (3,0)

(b) The game when Bob is
of type a2.

Table 17.5: An example of a Bayesian game.

We can view this situation as a game with two possible states that are com-
pletely specified by the type of player 2 (Bob). We can imagine that the game
is played as follows. Just before the game starts, the actual state is not known.
Then a random coin flip occurs that determines Bob’s type, i.e., his type is drawn
according to some probability distribution, which is public, and hence known to
Alice. For example, Bob may represent an entity chosen from some population
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that follows this distribution (i.e., all guys Alice ever socialized with). Alter-
natively, the type may depend on certain parameters of the environment, which
follow this publicly known distribution. Therefore, when the game starts, Bob
is fully informed of his own type and of Alice’s preferences, whereas Alice only
knows the probability distribution over Bob’s possible types.

To continue, we first need to determine what constitutes a strategy for Bob in
this game. Bob receives a signal (in our example, learns his type) in the beginning
of the game. Therefore, a strategy here is a plan of action for every possible value
of the signal (for every possible realization of the state of the game). For instance,
a possible strategy for Bob is to play M if his actual type is m2 and F if his actual
type is a2. When the game starts, Bob receives his signal (and hence learns his
type) and performs the action that corresponds to this type.

To start analyzing the game, let us consider Alice first. In order for Alice to
choose an action, she needs to estimate her expected payoff for all possible strate-
gies of Bob. Since there are two possible actions, and two possible types, there
are exactly four different strategies for Bob. In Table 17.6, we see the expected
payoff of each action of Alice, against Bob’s possible strategies. We denote each
strategy of Bob by a tuple (x,y), where x is Bob’s action when he is of type m2
and y is Bob’s action when he is of type a2.

(F,F) (F,M) (M,F) (M,M)
F 3 2 1 0
M 0 1 2 3

Table 17.6: Payoffs in a Bayesian game.

For instance, in the strategy profile (F,(F,M)), where Alice chooses F , her
payoff is 3 with probability 2/3 and 0 with probability 1/3, yielding an expected
payoff of 2. It is now easy to verify that the pair of strategies (F,(F,M)) is stable,
i.e., no player wants to change his or her actions. Indeed, given Bob’s strategy
(F,M), Alice cannot improve her expected payoff by switching to M. As for
Bob, when he is of type m2, the final outcome will be that both players select F ,
hence Bob receives the maximum possible payoff. Similarly, when he is of type
a2, he will play M, which means that the outcome of the game is (F,M); again,
this yields the maximum possible payoff for Bob, according to the right-hand side
of Table 17.5. As we see, for Bob we need to check that he does not have an
incentive to deviate for every possible type. This notion of stability is referred to
as the Bayes–Nash equilibrium, which we will define formally later in this section.

We now move to a slightly more complicated example. Building on the first
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example, suppose now that Alice’s type is uncertain as well. Let m1 and a1 be the
two possible types for Alice: Alice wants to meet Bob if she is of type m1, and
avoid him if she is of type a1. Suppose that these types occur with probability
1/2 each. Hence, when the game begins, the actual type of each player is deter-
mined and communicated to each player separately, and each player retains the
uncertainty regarding the type of the other player.

We can see that in this example there are 4 possible states of the game, namely,
the states (m1,m2), (m1,a2), (a1,m2), and (a1,a2). Alice cannot distinguish be-
tween states (m1,m2) and (m1,a2) since she receives the signal m1 in both of them,
and neither can she distinguish between (a1,m2) and (a1,a2). Similarly, Bob can-
not distinguish between the states (m1,m2) and (a1,m2). For each player, and for
each possible type of player, the beliefs induce a probability distribution on the
state space, e.g., for Alice’s type m1, the distribution assigns probability 2/3 to
the state (m1,m2), 1/3 to the state (m1,a2), and 0 to the other two states, whereas
for Alice’s type a1, the distribution is 2/3 on state (a1,m2), 1/3 on state (a1,a2),
and 0 on the remaining states.

To state the stability conditions, as in the first example, we assume that the
players select their plan of action before they receive their signal. Hence a strat-
egy for either player is to choose an action for every possible type that may be
realized. Informally, a strategy profile is in equilibrium if for each type of player,
the expected payoff cannot be improved, given (1) the belief of the player about
the state that the game is in and (2) the actions chosen for each type of other player.
Essentially this is as if we treat each type of a player as a separate player and ask
for a Nash equilibrium in this modified game.

Before moving to the formal definitions, we claim that in the second example
the tuple of strategies ((F,M),(F,F)) is stable under this Bayesian model. To see
this, consider first Alice’s type m1. Under the given strategy profile, when Alice
is of type m1, she chooses F . We can easily see that playing F is optimal, given
Alice’s belief about Bob’s type and given Bob’s strategy (F,F). This is because
when Alice is of type m1, she wants to coordinate with Bob. Since Bob’s strategy
is (F,F), then obviously the best choice for Alice is to choose F . In a similar
way we can verify that the same holds when Alice is of type a1, in which case she
chooses M. Then, given that she does not want to meet Bob, this is the best she
can do against (F,F). Regarding Bob, when he is of type m2, his expected payoff
by playing F is 3/2, as he coordinates with Alice only half the time (according to
Bob’s belief). This is the best that he can achieve given his belief, hence there is
no incentive to deviate. The same holds when he is of type a2.
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4.2 Formal Definitions

Here we provide the formal definitions of a Bayesian game and of a Bayes–Nash
equilibrium. Since this requires some setup that may seem heavy at first sight,
we encourage the reader to first understand well the examples given above before
moving on to this part.

For ease of presentation, we define here a slightly restricted version of
Bayesian games. We discuss some extensions later on. Like all other games, a
Bayesian game consists of a set of agents N = {1, . . . ,n}, where each agent i has
an available set of actions Ai. The extra ingredient in these games is that for each
player i, there is a set of possible types Ti, modeling all possible avatars of player
i. The type of player can describe his or her behavior (e.g., in the previous ex-
amples, it indicates whether the player wants to coordinate), or it may model the
amount of information that the player has about the game; more generally, the
type captures all relevant characteristics of the player. A profile of types for the
players determines the state that the game is in. Hence the set of possible states is
T = T1×T2× . . .×Tn, and we set T−i = T1× . . .×Ti−1×Ti+1× . . .×Tn.

We assume that at the start of the game each player receives a signal specifying
his or her own type, and hence a particular state is realized. The players do not
observe the state of the game, but only their own type. The uncertainty about the
state is captured for each player by a probability distribution on the type profiles
of the remaining players, which in turn induces a distribution on the set of states.
A strategy for player i in this setting is a plan of action that specifies the action that
this player will choose for each possible type in Ti, i.e., a mapping si : Ti → Ai. As
before, we write s= (s1, . . . ,sn) to denote the vector of all players’ strategies; note,
however, that the components of this vector are functions rather than numbers.
Finally, for every possible type ti ∈ Ti and for every strategy profile, the payoff of
i is the expected payoff given the belief of i about the state that the game is in, and
given the strategies of all other players.

Definition 17.12 A Bayesian game consists of a set of agents N = {1, . . . ,n}, and
for each agent i:

• a set of actions Ai;

• a set of types Ti;

• a belief pi that for each type ti of agent i specifies a probability distribution
over all states consistent with ti: pi(ti, t−i) is the probability that agent i
assigns to the profile t−i ∈ T−i when it is of type ti;

• a utility function ui defined on pairs (a, t), where a is an action profile and t

is a state. Abusing notation, we write ui(s, t) to denote the payoff of agent i
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in state t when all players choose their actions according to s. The expected
payoff for agent i under a strategy profile s, given that it is of type ti, is then

∑
t−i

pi(ti, t−i)ui(s,(ti, t−i)).

In the Bayesian games discussed in the beginning of this section, both players
had finitely many possible types. While Bayesian games with infinite type spaces
may appear esoteric, they model a very important class of multiagent interactions,
namely, auctions. Auctions and their applications to multiagent system design are
discussed in detail in Chapter 7; here, we will just explain how they fit into the
framework of Bayesian games.

For concreteness, consider the first-price auction with one object for sale and
n players (bidders). Each player’s action space is the set of all bids it can submit,
i.e., the set R+ of all non-negative real numbers. Given the bids, the mechanism
selects the highest bidder (say, breaking ties according to a fixed player ordering),
allocates to it the item, and charges it the bid it has submitted. Each player’s type
is the value it assigns to the object, which can be any real number in a certain
interval; by normalizing, we can assume that each player’s value for the object
is a real number between 0 and 10. This value determines the utility it derives
from different auction outcomes: if it receives the object after bidding $5, its
utility is 1 when its value is $6, and −1 if its value is $4. The players’ types
are assumed to be drawn from a distribution D over [0,10]n; at the beginning of
the auction, each player learns its value, but, in general, does not observe other
players’ values. Then each player’s belief about the state of the game when its
value is vi is the probability density function of D, conditioned on i’s value being
vi. For instance, in the setting of independent private values, where D is a product
distribution, player i remains ignorant about other players’ types, and therefore
p(vi,v−i) = p(v′i,v−i) for any vi,v′i ∈ [0,10] and any v−i ∈ [0,10]n−1. In contrast,
in the case of common values, where D only assigns non-zero weight to vectors
of the form (v, . . . ,v), once player i learns that its value is vi, it assigns probability
1 to the state (vi,vi, . . . ,vi) and probability 0 to all other states.

We can now formalize our intuition of what it means for an outcome of a
Bayesian game to be stable.

Definition 17.13 A Bayes–Nash equilibrium of a Bayesian game

〈N,(Ai)i∈N ,(Ti)i∈N ,(pi)i∈N ,(ui)i∈N〉

is a strategy profile s = (s1, . . . ,sn) such that for each i ∈ N and each ti ∈ Ti the
expected payoff of agent i with type ti at s is at least as high as its expected payoff
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if it were to change its strategy to any other available strategy s′i : Ti → Ai:

∑
t−i

pi(ti, t−i)ui(s,(ti, t−i))≥∑
t−i

pi(ti, t−i)ui((s′i,s−i),(ti, t−i)).

One can see from this definition that an alternative way to define a Bayes–Nash
equilibrium is to consider each type of player as a separate player and consider the
Nash equilibria of this expanded game. The reader can easily verify that for the
second variant of the Battle of the Sexes game considered in this section (where
both Alice and Bob can be of type “meet” or “avoid”), the argument given in the
end of Section 4.1 shows that the strategy profile ((F,M),(F,F)) is a Bayes–Nash
equilibrium. In contrast, ((F,M),(M,F)) is not a Bayes–Nash equilibrium of this
game. Indeed, under this strategy profile, if Alice is of type m1, her expected
payoff is 1: she coordinates with Bob only if he is of type a2, i.e., with probability
1/3. On the other hand, by playing M when her type is m1, she would increase her
expected payoff for this type to 2, i.e., she can profitably deviate from this profile.

Also, for the first-price auction example considered above, it can be verified
that if n = 2 and each player draws its value independently at random from the
uniform distribution on [0,10] (i.e., D=U [0,10]×U [0,10]), then the game admits
a Bayes–Nash equilibrium in which each player bids half of its value, i.e., si(vi) =
vi/2 for i = 1,2.

5 Conclusions

We have provided a brief overview of three major classes of non-cooperative
games, namely, normal-form games, extensive-form games, and Bayesian games,
and presented the classic solution concepts for such games. A recent textbook of
Shoham and Leyton–Brown [18] discusses game-theoretic foundations of multi-
agent systems in considerably more detail. Undergraduate-level textbooks on
game theory include, among others, [5] and [12]; finally, there are plenty of more
advanced or graduate-level books ranging from classic ones such as [9, 14] to
more modern ones like [10, 13, 15].

6 Exercises

1. Level 1 Two players decide to play the following game. They start driving
toward each other and a collision is unavoidable unless one (or both) of
the drivers decides to change its driving course (chickens out). For each
player, the best outcome is that it keeps driving straight while the other
player chickens out. The next best outcome is that they both chicken out.
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The third-best option is that the player itself chickens out while the other
player drives straight, and finally the worst outcome is that they both keep
driving straight till the collision occurs. Write down a normal-form game
that represents this situation, and find its pure Nash equilibria.

2. Level 1 Consider a two-player game defined by the following payoff ma-
trix:

W X Y Z
A (15,42) (13,23) (9,43) (0,23)
B (2,19) (2,14) (2,23) (1,0)
C (20,2) (20,21) (19,4) (3,1)
D (70,45) (3,11) (0,45) (1,2)

Decide whether the following statements are true or false. Explain your
answer.

(a) A strictly dominates B.

(b) Z strictly dominates W .

(c) C weakly dominates D.

(d) X weakly dominates W .

(e) C is a best response to X .

(f) Z is a best response to A.

3. Level 1 Show that (1
3L+ 2

3M, 1
2T + 1

2B) is a mixed Nash equilibrium of the
following game:

L M R
T (6,22) (3,26) (47,22)
C (4,4) (4,2) (99,42)
B (3,22) (4.5,18) (19,19)

Does this game have any pure Nash equilibria?

4. Level 1 Find all actions that are strictly dominated (possibly by mixed
strategies) in the following game:

L M R
T (1,5) (3,16) (10,10)
C (7,8) (9,3) (0,5)
B (5,0) (7,6) (2,3)
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5. Level 2 Two business partners are working on a joint project. In order for
the project to be successfully implemented, it is necessary that both partners
engage in the project and exert the same amount of effort. The payoff from
the project is 1 unit to each partner, whereas the cost of the effort required
is given by some constant c, with 0 < c < 1. This can be modeled by the
following game (where W stands for Work and S for Slack):

S W
S (0,0) (0,−c)
W (−c,0) (1− c,1− c)

Find all pure and mixed Nash equilibria of this game. How do the mixed
equilibria change as a function of the effort c?

6. Level 2 Show that every 2× 2 normal-form game that has more than two
pure strategy Nash equilibria possesses infinitely many mixed Nash equi-
libria.

7. Level 2 Find all pure and mixed Nash equilibria in the following game.

A B C D
X (0,0) (5,2) (3,4) (6,5)
Y (2,6) (3,5) (5,3) (1,0)

Hint: One way to reason about 2×n normal-form games is to consider first
a candidate mixed strategy for player 1, say (π,1− π). Then one should
consider the payoff provided by the pure strategies of player 2, given (π,1−
π), and find all the possible values of π for which a mixed Nash equilibrium
is possible, i.e., one should find the values of π for which at least two of the
column player’s strategies can belong to the support of an equilibrium. For
this, you may exploit the properties listed after Theorem 17.1.

8. Level 2 Two students have to complete a joint assignment for a course. The
final grade depends on the amount of effort exerted by the students. Each
student wants to have the assignment completed, but at the same time each
does not want to work much more than the other. This is captured by the
following utility function: let a1 and a2 denote the amount of effort exerted
by each of the students, a1,a2 ∈ R. Then

ui(ai,a j) = ai(c+a j−ai), i = 1,2, j = 3− i,

where c is a given constant.

This function captures the fact that if ai exceeds a j by at least c, then the
utility of player i becomes negative. Find the pure Nash equilibria of this
game.
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9. Level 2 Find the value and the Nash equilibria in the following zero-sum
games:

(i)
A B

X 2 7
Y 4 3

(ii)
A B C D

X 5 2 3 4
Y 4 6 5 8

Hint: For (ii), try to generalize the technique described in Section 2.6 to
2×n zero-sum games.

10. Level 2 Show that the existence of a polynomial-time algorithm for solving
3-player zero-sum games with finitely many actions per player would imply
the existence of a polynomial-time algorithm for finding a Nash equilibrium
in any 2-player normal-form game with finitely many actions per player.

11. Level 2 Consider the following game G with two players P1 and P2:

2

A B

C D E F

(1, 1) (3, 4) (1, 2)(2, 5)

1

2

a) Use backward induction to compute all subgame-perfect equilibria of
this game.

b) Describe the normal-form game N(G) that corresponds to G.

(c) Find all pure Nash equilibria of N(G). Does it have any equilibria that
are not subgame-perfect equilibria of G?

12. Level 2 Two candidates A and B compete in an election. There are n voters;
k of them support A, and m = n− k of them support B. Each voter can
either vote (V) or abstain (A), and incurs a cost c, 0 < c < 1, when he or she
votes. Each voter obtains a payoff of 2 when its preferred candidate wins
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(gets a strict majority of votes), a payoff of 1 if both candidates get the same
number of votes, and a payoff of 0 if its preferred candidate loses. Thus, if a
voter abstains, its payoffs for win, tie, and loss are 2, 1, and 0, respectively,
and if he or she votes, the payoffs are 2− c, 1− c, and −c, respectively.
Find the pure Nash equilibria of this game.

13. Level 2 Consider the voting game with abstentions described in the previ-
ous exercise, but suppose that players vote one by one in a fixed order, and
each player observes the actions of all players that vote before him or her.
For any fixed ordering of the players, the resulting game is an extensive-
form game with n players, in which each player moves exactly once and
chooses between voting (V) and abstaining (A). We will say that a voter is
an A-voter if he or she prefers candidate A over candidate B, and a B-voter
otherwise. Compute the subgame-perfect equilibrium for the following se-
quences of 3 voters:

(a) A, B, A.

(b) B, A, A.

(c) A, A, B.

14. Level 2 The process of backward induction in extensive-form games can be
applied even when the nodes of the tree have an infinite fan-out as long as
one can find an optimal action among the infinity of choices. To illustrate
this, consider the following game, known in the literature as the ultimatum
game. Two players have to decide how to split one unit of money with the
following protocol: First, player 1 will offer a split of the form (x,1− x),
where x ∈ [0,1]. Then player 2 will decide whether to accept or reject the
split. If the split is accepted by player 2, then every player receives the
amount specified by the split. Otherwise the split is rejected and no player
receives anything. Find the subgame-perfect equilibria of this game.

15. Level 2 Consider a variant of the previous exercise that intends to capture
the fact that players in such games do care about the amount of money
received by the other players. Suppose that the protocol is the same as
before, but now the utility of each player is given by ui = xi−βx3−i, i = 1,2,
where xi is the amount received by player i, x3−i is the amount received by
the opponent, and β is a positive constant capturing how envious the players
are, i.e., how much each player cares about the amount received by the other
player. Find the subgame-perfect equilibria of this new game.

16. Level 2 Consider the following extensive-form game: we have placed n
disks on a vertical axis. Two players take turns, and each time one of the
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players has to decide whether to remove one or two disks from the axis.
The person who will remove the last disk wins 1 unit of money, paid by the
other player. Suppose that player 1 moves first.

(a) For n = 3 and n = 4, draw the corresponding representation as an
extensive-form game and find the subgame-perfect equilibria. Is there
a winning strategy for either of the two players?

(b) Generalize to arbitrary n. Is there a winning strategy for some player
for every value of n?

17. Level 2 Two agents are involved in a dispute. Each of them can either fight
or yield. The first agent is publicly known to be of medium strength; the
second agent is either strong (i.e., stronger than the first agent) or weak
(i.e., weaker than the first agent). The second agent knows its strength; the
first agent thinks that agent 2 is strong with probability α and weak with
probability 1−α. The payoffs are as follows: if an agent decides to yield,
its payoff is 0 irrespective of what the other agent chooses. If an agent
fights and its opponent yields, its payoff is 1, irrespective of their strength.
Finally, if they both decide to fight, the stronger agent gets a payoff of 1,
and the weaker agent gets a payoff of −1. Find all Bayes–Nash equilibria
of this game if

(a) α< 1/2.

(b) α> 1/2.
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