
Stéphane Boeuf

Arabic Font
Production
Tutorial
Part II Calligraphic Fonts

Khatt Books

Arabic Font Production Tutorial

This tutorial is the result of an interview of Stéphane Boeuf by Edo Smitshuijzen.
While working together on the interview the idea arose to produce a much needed
tutorial about how to produce an Arabic font. Stéphane Boeuf wrote the text of the
tutorial and Edo Smitshuijzen was a sounding board for it.

Stéphane has worked as computer engineeer for more than 15 years. He studied the
Arabic language at the University of Grenoble and continued studying with the
cned (Centre National d’Education à Distance). He joined WinSoft International
in 2006, and worked since, he worked on the Middle Eastern versions of FileMaker
and Adobe Dreamweaver, and to a lesser extent on InDesign. He was also involved in
the design of the shaping engine which is the basis for every Middle Eastern product,
where he added to the engine the OpenType support for scripts of India and South
East Asia.

This tutorial is the second of a series of three. The first tutorial deals with Arabic
typographic fonts and the third with Arabic web fonts.

Copyright © 2011.Stéphane Boeuf

This edition is first published in 2011
© Khatt Books

Khatt Books
Van Tuyll Van Serooskerkenweg
1076 JT Amsterdam
The Netherlands
www.khattbooks.com

Book Design: Huda Smitshuijzen AbiFares,

This book is set in the bilingual font Fedra Serif and Fedra Sans by Peter Bilak
(www.typotheque.com).

All rights reserved. No parts of this book may be reproduced in any form or by any means
without prior written permission from the publisher.

The information in this book is distributed without warranty. While every effort has been made
to insure the accuracy of the information in this book, neither the author nor the publisher are
responsible for inadvertently overlooking any copyright holders and will be pleased to include
any necessary credits in any subsequent edition.

The Basics of Arabic Calligraphic Font Making 3

Introduction

In the first tutorial we have covered the basics of OpenType. The
present tutorial is going one step further and explains more ad-
vanced OpenType features and strategies, in particular we will dis-
cuss the notions of context, alternates and an alternative approach
to dots positioning. In this tutorial we assume that you are familiar
with volt and are able to create features, lookups, etc.

Arabic Calligraphic Font Making

The kind of fonts we could create using the features described in the
first part of the tutorial have many limitations. For instance, each
positional form can only be represented by a single glyph. However,
when trying to make more calligraphic fonts, we would need more
glyph variations for a single positional form.
For example, let’s consider the word بحر, the output displayed here
is somehow simple, people familiar with the traditional Arabic
writing styles would rather see something like this:

The purpose of this tutorial is to explain the techniques that are
required to be able to produce such calligraphic results. To do so, we
need to introduce the following new notions:

1. The decomposition feature
2. The alternate feature
3. The context feature
4. The <calt> feature
5. The cursive positioning feature

1. the decomposition feature

The first thing that comes to mind when looking at the samples
above, is that we have to design new glyphs for these new shapes.
In our sample, it would require a new glyph for the initial ba that is
adapted to the connection with the medial hah. We know that this
new shape can also be used for other characters; using that same
shape we can write any of the following words (existing or not, is

Calligraphic styles from left to right:
Thuluth, Ruqah and Nastaliq.

Arabic Font Production Tutorial4

not important here, only the possibility of writing them is what
counts):

Considering this, it makes sense to separate the dots from the basic
shape. It simplifies matters and limits the number of glyphs to be
created and manipulated.
To do so, you need to use an OpenType feature called <ccmp> (which
stands for character composition/decomposition), this feature is the
first one to be applied by the text engine, therefore you can put aside
the dots very early in the process and then forget about them until
the moment when you need to position them correctly (which is not
always simple to do…)
<ccmp> is a substitution feature, it usually replaces one glyph into 2
(or more) glyphs, here is a sample output of a typical ccmp lookup:

 A typical <ccmp> lookup. The ‘dotless’
glyph decompositions don’t need to have
an Unicode value attached to them,
therefore you are free to name these new
glyphs as you wish. It is best to devise a
system that makes them easily identifi-
able. Here you see a naming convention
using groups (g) and shapes (s) to struc-
ture the names of the glyphs. But you are
totally free to create your own naming
convention for these glyphs.

حر حر �پ حر �ي
حر �ن

حر �ث
حر �ت �ب

ص �ت�ن �تمي
س �ت

ح�ت �تر �ت
ح �ت

�تا �ت

�ب�ي�ت

حح�ت ح ح ح
ح �ب

دع�يد

ار �ث
ع الع�تد�ت �ني الم�ن

و�ن

Step by Step Guide 5

As you can see, you just need to replace the glyph representing the
isolated form of each character into two separate items: a basic
shape (sometimes called grapheme) and a dot or mark. Remember
that at the end of the process you will need to position the dot, so be
sure to separate dots appearing above from below a character even if
it means duplicating the same glyph. If you don’t do that you won’t
be able to make the difference between an initial ta and an initial
yeh, because both glyphs have the same (glyph) shape. In order to
position to dots correctly (above or below) you need to give each a dif-
ferent name although they share an identical (glyph) shape.
Following this concept of font production, you just need to create
‘dotless’ shapes for the glyphs that normally carry one, and make
separately a set of isolated dots. Finally, you need to create ‘com-
plete’ glyphs (that bear the Unicode value) for the isolated glyphs,
that act as starting points. But as soon as the <ccmp> feature is ap-
plied, all the original glyphs are replaced and the originals won’t be
used anymore in the process.

NB: It is wise to create a duplicate glyph also for glyphs that don’t have dots (like
alef for instance), in our sample the alef (coded u0627) is replaced by a similar
glyph called (g2071_s452). The idea behind this action is to completely separate the
glyphs used before <ccmp> and after.

2. the alternate feature

Now that we have put aside the dots we can focus entirely on the
shapes of the glyphs. In this tutorial, we limit the variations to two
(glyph) shapes for each character; the ‘regular’ (or standard one) and
a dedicated one that is used before a jim shape. If you want to create
a complete calligraphic font, you certainly will have to create dozens
of variations for each glyph shape:

In the OpenType terminology these various shapes are called alter-
nates; OpenType defines two kinds of alternates:

1. The stylistic alternates, where the (glyph) shape can be selected
optional by the user for aesthetic reasons.
2. The contextual alternates, where the alternate shape is selected
automatically depending on its context (i.e the glyphs appearing
before and/or after the glyph).

The stylistic alternates (<salt> feature) are simple to use. The only
constraint in the design is that they all require the same stroke
connection. To make use of stylistic alternates, we need to select
the menu option to make use of alternates and thereafter to select
a specific glyph of the given options. Text engines do not apply this

Various shapes of the initial ta grapheme

ص �ت�ف �تمي
س �ت

ح�ت �تر �ت
ح �ت

�تا �ت

�ب�ي�ت

حح�ت ح ح ح
ح �ب

دع�يد

ار �ش
ع الع�تد�ت �في الم�ف

و�ف

Arabic Font Production Tutorial6

feature automatically. Only sophisticated text engines (such as
the one of InDesign me) allow you to explicitly apply a feature on a
single character. Therefore, to be able to use the <salt> features is
rather discretionary.
In this tutorial we only focus on the contextual alternates and leave
stylistic alternates aside. The contextual alternates require the defi-
nition of a context and since many alternates can happen, the order
in which the alternates are applied can be sometimes tricky. Let’s
take a closer look at the context feature.

3. the context feature

A context as defined by OpenType is a definition stating which glyph
(or glyphs) may precede or follow a given glyph. To define a context
in volt you have a designated area in each lookup:

The vertical bar appearing in the context defines the current posi-
tion, and since we are dealing with Right-To-Left lookups, what ap-
pears on the left side defines what follows and what appears on the
right side defines what precedes. In the sample displayed above, the
context can be translated as: ‘We stand before a medial heh shape’.

Since this font possesses many medial heh shapes I used a group
with all the similar shapes. You can define a context using a single
glyph, a glyph group, many glyphs or many groups.
To limit the number of lookups you need to carefully define your
contexts, making them as general as possible.

You can also define contexts enclosing the current glyph, for in-
stance the traditional way of writing the word بيت is to use a taller
medial form like this:

To do so, you need to create the following context:

ص �ت�ف �تمي
س �ت

ح�ت �تر �ت
ح �ت

�تا �ت

�ب�ي�ت

حح�ت ح ح ح
ح �ب

دع�يد

ار �ش
ع الع�تد�ت �في الم�ف

و�ف

The context area in a lookup

The beginning of a context made of many
glyphs

Step by Step Guide 7

However, since these contexts are very precise try to avoid using
them unless you absolutely need them.

Now that the notion of context is clearly established (at least I
hope…) let’s see how we are going to use them in combination with
contextual alternates.

4. the <calt> feature

The <calt> feature (<calt> stands for contextual alternates) is the
feature you need to use to create the substitutions we need for our
purposes.
In the text engine the <calt> feature is called in this order: first, the
decomposition (<ccmp>) feature is applied, second, the positional
features (<isol>,<init>,<medi>,<fina>), and third, the required
ligatures (<rlig>) are put into place.

An ‘enclosing’ context

A <calt> lookup for our sample. As you
will notice, all Unicodes have disappeared
from the list now. It is important to elimi-
nate all Unicode during the first reading
(call) of the font by the text engine, which
happens when the <ccmp> features are
applied.

Arabic Font Production Tutorial8

The standard positional features substitute the isolated letter forms
into the ‘standard’ positional form. What we need to do in the <calt>
feature is to substitute the ‘standard’ positional form into the appro-
priate (glyph) shape depending on the context in which this glyph
must appear.
In our original sample (the word بحر) we need to create the <calt>
lookup appearing on the previous page.

Let’s sum up what this lookup describes:
—The context states that we currently stand before a medial heh
—The substitute describes what to do in that context (substitute the
‘standard’ shape with the appropriate one)
—In this sample we do that for every character and positional forms,
as you can see we also substitute the sin, sad… and their medial
shapes.

The <calt> feature is very powerful and allows many substitutions.
One very important thing to remember is that the lookups are ap-
plied from the start of the word and are applied following the order
of appearance in the volt lookup list, from top to bottom. So if you
create many lookups be very careful, once you have applied a lookup,
the glyphs have changed, and so all the lookups that follow must
take into account these changes and anticipate on the substituted
glyphs. This can become very complicated when you deal with many
lookups and may require some time to sort things out properly. Test
your font regularly during the process of writing <calt> lookups.
It is not uncommon for a complex font to require dozens of <calt>
lookups.
But before you can test your font, there is one more feature we need
to take a look at, which deals with positioning of the glyphs.

5. the cursive positioning feature

With the simple ‘typographic’ fonts, base glyph positioning is not
an issue since all the glyphs have very linear connections. To posi-
tion the glyphs, you just need to put them next to one another on a
baseline.
However, if we consider the kind of connections that are required to
write our sample word:

We notice that these connections involve very precise positioning of
each individual glyph.

To achieve this, we need to introduce a new feature called <curs>
(for cursive positioning). It is a positioning feature using exclu-
sively a special kind of attachment (called ‘Cursive Attachment’) to
describe how to position glyphs.

Step by Step Guide 9

You should be familiar with the anchor positioning to make use of
this feature, if not, please see the first tutorial. I am not going to
get into the details of this lookup.

One important thing to remember when you are using these kinds
of attachment is that the font is no longer sitting on one baseline.
This can create problems with the leading of text lines. For instance
if we consider this silly fake word:

In this case, the line feed (leading) must be very large.
Some text engines will not handle this feature properly, so you prob-
ably have to use a sophisticated text engine (like Adobe’s InDesign
me for instance) to get the best out of your font.

A typical <curs> lookup describing the
relative positioning of glyphs.
The <curs> feature uses the internal units
of the font (the EM), so no additional
‘metric’ information is needed.

ص �ت�ف �تمي
س �ت

ح�ت �تر �ت
ح �ت

�تا �ت

�ب�ي�ت

حح�ت ح ح ح
ح �ب

دع�يد

ار �ش
ع الع�تد�ت �في الم�ف

و�ف

Arabic Font Production Tutorial10

Conclusion

Designing with these new features, you are now able to expand the
possibilities at hand and create very sophisticated fonts.
I didn’t cover in this tutorial another important feature of position-
ing which is called kerning. The kerning (feature <kern>) lets you
position non-connecting glyphs next to one another. For instance,
you want to get a nice position for the combination دعيد like this:

Arriving at this level of sophistication, you need to create a very
large amount of kerning lookups, contexts, and so on. I am not sure
OpenType is powerful enough to manage all these related situations
properly, but that is another subject. What is sure is that if you
want to explore these directions, you are likely to face the limita-
tions of the OpenType technology and you might have to use more
powerful tools than volt, you might have to write your own tools
using the Adobe Font Development Kit afdko for OpenType which is
available from:

https://www.adobe.com/devnet/opentype/afdko.html

When we start to use afdko, we are leaving the subject of font
development are getting into software development which is out of
the scope of this tutorial.

Anyway, making use of the features described in this tutorial you
can create very powerful and interesting fonts, but remember that
when you start to use many alternate glyphs, the positioning of dots
becomes increasingly complicated, and sometimes you would need
to use contextual dot positioning to get the best position for the dots
in various contexts.

Also, the finalization of a font is a very extensive work which
requires a lot of time and skills, but the result is worth the work!

ص �ت�ف �تمي
س �ت

ح�ت �تر �ت
ح �ت

�تا �ت

�ب�ي�ت

حح�ت ح ح ح
ح �ب

دع�يد

ار �ش
ع الع�تد�ت �في الم�ف

و�ف

ص �ت�ف �تمي
س �ت

ح�ت �تر �ت
ح �ت

�تا �ت

�ب�ي�ت

حح�ت ح ح ح
ح �ب

دع�يد

ار �ش
ع الع�تد�ت �في الم�ف

و�ف

www.khattbooks.com

