
Stéphane Boeuf

Arabic Font
Production
Tutorial
Part I Typographic Fonts

Khatt Books

Arabic Font Production Tutorial

This tutorial is the result of an interview of Stéphane Boeuf by Edo Smitshuijzen.
While working together on the interview the idea arose to produce a much needed
tutorial about how to produce an Arabic font. Stéphane Boeuf wrote the text of the
tutorial and Edo Smitshuijzen was a sounding board for it.

Stéphane has worked as computer engineeer for more than 15 years. He studied the
Arabic language at the University of Grenoble and continued studying with the
cned (Centre National d’Education à Distance). He joined WinSoft International
in 2006, and worked since, he worked on the Middle Eastern versions of FileMaker
and Adobe Dreamweaver, and to a lesser extent on InDesign. He was also involved in
the design of the shaping engine which is the basis for every Middle Eastern product,
where he added to the engine the OpenType support for scripts of India and South
East Asia.

This tutorial is the first of a series of three. The other tutorials will deal with Arabic
calligraphic and web fonts.

Copyright © 2011.Stéphane Boeuf

This edition is first published in 2011
© Khatt Books

Khatt Books
Van Tuyll Van Serooskerkenweg
1076 JT Amsterdam
The Netherlands
www.khattbooks.com

Book Design: Huda Smitshuijzen AbiFares,

This book is set in the bilingual font Fedra Serif and Fedra Sans by Peter Bilak
(www.typotheque.com).

All rights reserved. No parts of this book may be reproduced in any form or by any means
without prior written permission from the publisher.

The information in this book is distributed without warranty. While every effort has been made
to insure the accuracy of the information in this book, neither the author nor the publisher are
responsible for inadvertently overlooking any copyright holders and will be pleased to include
any necessary credits in any subsequent edition.

The Basics of Arabic Font Making 3

Introduction

The purpose of this booklet is to explain the basics and provide a step
by step guide for the creation of an Arabic OpenType font. Before
you start, you must be familiar with the font creation process; in
particular you should already have designed the glyphs of the font.

First, we will present the various technologies and tools involved in
the process and describe how to use them. Second, we will provide a
step by step guide on how to use FontLab and Volt.

The Basics of Arabic Font Making

The process in which a series of characters typed on the keyboard are
transformed into a series of glyphs displayed on the screen is quite
complex. It involves three basic components:
1. A character encoding technology (Unicode)
2. A text engine software (there are many, that can be as basic as
Notepad or as sophisticated as Adobe’s InDesign me)
3. A font technology (OpenType)

1. unicode

Unicode is, among other things, a huge catalog of characters in-
cluding all the writing scripts in the world. One of the objectives of
Unicode is to provide a unique code for every character ever writ-
ten. The latest version Unicode 6.0 (www.unicode.org) defines tens
of thousands of characters ranging from Egyptian hieroglyphs to
Braille…
The Arabic script is mainly defined within a range of character
starting with the code 0x600 (0x means hexadecimal encoding) and
ending with the code 0x6FF. (http://www.unicode.org/charts/PDF/
U0600.pdf shows the complete chart). Additional ranges are defined
but let’s focus on this range since the other ranges (in particular the
Arabic extensions A et B) are outdated and can only lead to confu-
sion.

If you want to type for instance فثل (it is not a real Arabic word but
it does not matter here) the corresponding Unicode encoding is:
0x641(fa) 0x62B (tha) 0x644 (lam). When you type these letters on
your keyboard, what are actually transmitted to the software you
are using are these codes, we’ll call it the input code; it is a series of
character codes.

2. text engine

Let’s see now how the software (which contains the text engine)
transforms the input code (0x641 0x62B 0x644) into the nice look-
ing output فثل. The output is constituted by glyphs. Glyphs are the
graphic signs of a font. They can take various forms: they can be
linked to a character code or not, they can represent one or more

Arabic Font Production Tutorial4

characters, or even a part of a character.
First, the software will analyze the input and determine the contex-
tual forms of each character, as you know, a letter in Arabic usually
has 4 different shapes; the initial, the medial, the final and the
isolated. In my example we have an initial fa, a medial tha and a
final lam.
The software will “discuss” with the font to get the information
it requires.There are many different font technologies and many
different ways of achieving this, let’s focus on the OpenType font
technology which is the dominant one at the moment.

3. opentype

OpenType is a font technology essentially co-developed by Microsoft
and Adobe which allows the creation of ‘rules’ (or features in the
OpenType terminology, indicated by 4-letter tags) inside the font.
The idea behind OpenType is that the font designer is the best per-
son to determine how the font should behave. OpenType does not
deal with the design of the glyphs of the font, but rather with how
these glyphs can interact with one another.

OpenType defines 3 categories (categories are also called font tables):
1. The gdef (for definitions) which lets you define names and proper-
ties for the glyphs.
2. The gsub (for substitutions) which lets you define replacement
rules, i.e. how a glyph can be replaced by another one and under
which circumstances.
3. The gpos (for positioning) which lets you define the position of
glyphs against the position of other glyphs.

Microsoft offers a free tool called volt (acronym for Visual OpenType
Layout Tool) which can be downloaded from http://www.microsoft.
com/typography/VOLT.mspx

Using volt you will be able to define the rules for your font, but you
can’t define any rule you want, you need to follow the specifications
for the particular script you’re aiming to support. For the Arabic
script those specifications can be found at:
http://www.microsoft.com/typography/OpenType%20Dev/arabic/
intro.mspx

Some glyphs from the me_quran font
which can be downloaded from http://
arabicfonts.wikispaces.com/. As one can
see, some glyph represent one character,
those who represent more than one are
called ligatures.

The Basics of Arabic Font Making 5

Since these specifications are very technical and not very easy to
understand, let’s take a closer look at them. The important thing in
these specifications for a font designer is the kind of features that
are applied and the order in which they are applied. Depending on
the complexity of the font you are designing, you might need to
implement all of these features or only a subset of them.

Let’s consider the case of a simple ‘modern’ Arabic font. By this I
mean, a font where the connections between the glyphs are fairly
regular and linear (on the left and right sides of the glyphs).

￼

With these fonts the number of features to implement is restricted,
you will need at least:
‘isol’: to define the isolated positional forms
‘init’: to define the initial positional forms
‘medi’: to define the medial positional forms
‘fina’: to define the final positional forms
‘rlig’: to define the required ligatures (usually only lam-alef لا is a
required ligature)
‘mark’: to define the position of marks against base letters
‘mkmk’: to define the position of marks against other marks

A typical ‘modern’ glyph with equal hori-
zontal connections

Arabic Font Production Tutorial6

Step by Step Guide

To produce Arabic fonts, two different tools must (still) be used: a
font editor, like FontLab and - since FontLab cannot define your font
sufficiently - the Microsoft volt editor is needed to complete the
required definitions.
Adobe Indesign me will show Arabic fonts properly even without the
definitions, because this software has a built-in Arabic font engine
that only needs the proper Unicodes to function. All other software,
including web browsers will need the definitions made with volt.

fontlab studio

Let’s see how to implement these features using FontLab Studio and
Microsoft volt.
The first thing to do is to define the glyphs; you need to give each
glyph a unique name, affect a Unicode value if needed and specify
the OpenType value.

A very important thing is that only a few glyphs in the font should have a Unicode
value, most of the glyphs are only used through the features that we will define and
therefore don’t need a Unicode value.

All this information can be set from the Glyph Properties panel of
FontLab Studio.

The ‘name’ field is where you specify the name you have chosen for
the glyph; it is up to you to choose a name, the only constraint is
that the name must be unique and that every glyph must have a
name.

Step by Step Guide 7

The ‘uni’ field is where you specify the Unicode value (code) associ-
ated with the glyph. As I said earlier, it is not necessary for all the
glyphs to have a Unicode value. For a typical modern font you would
need to define at least the basic character set for Arabic. On the
picture below, you see the typical set of Unicode values that need to
be defined:

The ‘ot’ field is where you specify the OpenType value (tag) associ-
ated with the glyph. You have the choice between:
—Unassigned: the default value which needs to be changed
—Simple: the value to use for most glyphs
—Ligature: the value for ligature glyphs, when you select this value,
a numeric field is activated to let indicate how many characters are
present in the ligature glyph.
—Mark: the value to use for marks like fatha, shadda, etc.
—Component: the value to use if the glyph represents only a part of
a character.

NB. FontLab creates automatically a numeric glyph index. Each glyph is given a
sequential number following the order of introduction of the glyph.
All these values constitute the gdef part defined by OpenType that
was presented earlier.

Once all the glyphs are defined and therefore the gdef part is com-
pleted, it is time to export these definitions to volt. To do so, you
need to open the OpenType panel in FontLab (using the menu entry
Windows | Panels | OpenType).
You need to create a ‘dummy’ feature to get things started; to do so,
click on the + button in the OpenType panel (below, right), a feature
called ‘xxxx’ (below, left) is created.

You need to delete the sub by; text and leave just:
feature xxxx {

} xxxx;

Arabic Font Production Tutorial8

Now that a feature is created, click on the arrow on the ‘Save’ button
of the OpenType panel and select from the menu ‘Save Features’. In
the ‘Save As…’ dialog, select volt project files (*.vtp).

The final thing to do in FontLab is to generate the font as a ttf file
(and not as a otf file).

NB. If we take a look under the hood at the contents of the vtp file, we see defini-
tions that look like these:
DEF_GLYPH “uniFE9B” ID 285 UNICODE 65179 TYPE BASE END_

GLYPH

We recognize the various elements already defined, the name
(« uniFE9B »), the glyph index (285), the Unicode value (65179), the
OpenType value (base).

microsoft’s volt

Now let’s start volt and open the ttf file (menu File | Open font),
then in the Import menu, select Import Project and select the vtp file
which we just created.
Now if you click on the Edit Glyphs button, a new dialog appears and
you can see that the glyph name, code, etc. are preserved from the
FontLab file.

That part was somehow fastidious but necessary to start working in
volt.
Please note: if you make changes in your FontLab file you need to export a new vtp
and do it all over again. Therefore it is recommended to start the volt part of the
font when the design of the font is completely done. However, you can modify exist-
ing glyphs but if you add or delete glyphs you would need to export a new Volt Project
File.

The volt interface is very plain and split into three parts to work on:
1. features
2. lookups
3. groups

Step by Step Guide 9

1. Features
The first step is to define the script (or scripts) that the font will
address. A script is basically a writing system, it is important to
distinguish writing system from languages; for instance the Arabic
script is used to write Arabic, Farsi, Urdu, Sindhi, Uyghur etc., the
Latin script is used to write English, French, German etc.
A font can address many scripts, usually Arabic fonts also support
the Latin script, and many Latin fonts also support the Cyrillic
script or the Greek script.
Here we are focusing on the Arabic script, so we will just define this
one. To do so, click on the “Add Script” button on the bottom left of
the interface.

An item appears, labeled ‘New Script<>’:

You need to change it to ‘arab’. It is very important to define the
script tag.

As you can see another item was created automatically (Default
<dflt>). This item indicates the language that will be associated
with the script.
The default value applies to any language; if you need to create
specific rules for Urdu for instance you will need to define an Urdu
language tag here, the 4-letter tags for the various languages are
defined here :
http://www.microsoft.com/typography/otfntdev/arabicot/appen.
aspx
For our purpose Default will be enough.

The volt interface

Arabic Font Production Tutorial10

The next step is to implement the features.
We will start with the ‘init’ feature which indicates what the initial
form for the letters is. Just click on the ‘Add Feature’ button, and
type <init> in the new item that was created.

NB: for some strange reason, when you type a script name you don’t need to type the
brackets (< >), but these brackets are required for the features…

To complete our font, we need to define the following features :
<init>, <isol>, <medi>, <fina> and <rlig>. Add them the same way
we did for <init>.

The interface should now look like this:

￼
2. Lookup
It is now time to concentrate on the ‘lookups’ section. A lookup is
a set of basic rules that are applied when a feature is activated. A
lookup usually applies to only one feature, but a feature can be rep-
resented by numerous lookups.
OpenType defines two kinds of lookups, the substitution lookups (to
build the gsub part) and the positioning lookups (to build the gpos
part).
The features we have defined so far all require substitution lookups
so let’s create a substitution lookup by clicking on the ‘Add Substitu-
tion’ button.

A lookup called ‘New substitution’ is created, the first thing to do is
to give it a better name. Since we are working on the <init> feature,
let’s call it <init0>. If we need more lookups for the <init> feature,
we’ll call them <init1>, <init2>…
The names by themselves have no importance; it is just easier to
give them a name that relates to the feature.

A double-click on the lookup opens the lookup dialog.

Step by Step Guide 11

There are a few things to set before starting to work on the glyphs;
first the direction of the script, since we are dealing with Arabic,
we need to change the ltr (left to right) value to rtl (right to left) in
the right upper corner.
Then we need to change the value of the ‘Process Marks’ field. By de-
fault it is set to all which signifies that all the glyphs that we have
set as marks (vocalisation marks and other diacritics) earlier will
be taken into account. Since the <init> feature only deals with the
form of (unvocalised) base letters we don’t want to consider marks
here, so let’s set it to none.
This being done, it is time to enter our first rule, I recommend to
work alphabetically, it is easier. We are working on the <init> fea-
ture, so we need to indicate how a letter is transformed when it is in
the initial position (beginning of a word, or after a non-connecting
letter such as alef, dal…).

Let’s open the glyph panel (by clicking on the Edit Glyphs button),
let’s search for the ba.

The substitution lookup dialog

VOLT’s glyph panel

-

Arabic Font Production Tutorial12

There can be many ba in the font, the one we are looking for, is the
isolated shape which has the Unicode U+0628, it is the starting
point for the whole process.
In our example its name in the glyph index is glyph289, so in the
first line of the ‘From glyphs -> To glyphs’ section of the lookup let’s
type glyph289. You can also drag the glyph from the glyph panel to
the lookup dialog.
Then you need to type the symbol ‘->’ (if you click outside the lookup
dialog it usually is automatically written). And then type (or drag)
the name of the initial form of the letter ba, in our case ‘glyph291’,
then press Enter.

If all went well you should see:
The rule we have entered roughly translates:
‘When you encounter the glyph named glyph289 you replace it with the glyph
glyph291’.

You just need to do the same for all the other letters. When done,
you should get something like:

The first rule for the <init0> lookup

Step by Step Guide 13

The alef should not appear here, since it does not connect with the
next letter, so it can be only be isolated or final. Yet, we must enter
a ‘silly’ rule where the alef will be transformed into itself, this way
we prevent potential problems with some text engines.

The final step is to link the lookup with the <init> feature; to do so
close the lookup dialog and drag the name of the lookup in the mid-
dle column and drop it on the feature <init> in the left column.

The lookup will appear under the feature, like this:
￼
To make sure everything is fine, click on the ‘Compile’ button, and
if no error message appears, you’re fine! Otherwise you need to
try and figure out what the error message indicates, which is not
always easy!

You should hit ‘Compile’ quite often just to make sure that you
didn’t insert an incorrect rule. Once ‘Compile’ has successfully run
you can test your font, after saving the font and putting it into the
font library of your system. In case you were to test the font after
implementing only the <init> feature, you should see the begin-
ning of words displayed correctly but the rest of the characters still
displayed in the isolated form.

For the other positional features (<medi>, <fina>, <isol>) the same
process applies ; the <isol> feature seems useless, since it trans-
forms glyphs into themselves, but for more complicated fonts it can
be useful, so you need to implement it anyhow.

All these features involve very simple substitutions (one glyph is
replaced by another glyph), yet you can define more complicated
substitutions (one glyph into many glyphs, many glyphs into one or
more glyphs). Let’s illustrate this with the feature <rlig>.
<rlig> signifies required ligatures, in Arabic there is one required
ligature, the lam-alef (لا). Many fonts also define a required ligature
for the word Allah (الله) since this usually has a precise graphic form.

The OpenType norm also defines the <liga> feature (standard
ligature) and <dlig> feature (discretionary ligature), where you can
define other ligatures, it is up to you to decide the classification.
It is important to remember that most of the text engines don’t apply the <liga>
or <dlig> features, only sophisticated engines (such as the one in Adobe’s InDesign
me for instance) lets you choose precisely which features you want to apply to a
given text.

Arabic Font Production Tutorial14

Let’s take a look at the implementation of the <rlig> feature, the
principle is very simple, you just need to define the sequence of
glyphs that is transformed, your lookup should look like:

As you can see in the lookup, you just need to indicate that an initial
or a medial lam followed by a final alef should be transformed into
a single glyph representing the lam-alef ligature.
Here we also see various possible alef (alef madda, alef hamza …)
if you have defined such possibilities in your font; you need to cover
them all.

With this feature we have completed the substitutions. It is now
time to define the positioning features.

2. Positioning
The positioning features are useful if you want your font to support
the ‘harakat’ (or short vowels). For each glyph you need to define
where the vowels (or other marks) should appear.
To do so, OpenType defines two features that are interesting for the
Arabic script, the feature <mark> (mark positioning) and <mkmk>
(mark to mark positioning).

A typical rlig lookup

Step by Step Guide 15

Let’s add them to our font, and create a new positioning lookup; the
positioning lookup dialog is quite different from the substitution
lookup dialog, it looks like this:

As usual, we need to switch from ltr to rtl, and select the kind of
positioning we want to do, the choices are:
—Unknown Positioning: default value, it has no meaning and
should never be used
—Single adjustment
—Pair adjustment
—Caret positioning
—Cursive attachment
—Anchor attachment

I am not going to describe each item at this point, for a simple font
the only one interesting is ‘Anchor attachment’. So let’s select this
one.
Finally, the value of ‘Process Marks’ should be ‘all’, because we are
dealing with marks here and we want them to appear.
To populate the two columns (Position First, Position Second) there
are two possibilities; either you type or drag the glyphs in the col-
umns, or you create one or more groups containing all the glyphs
that we want to use.

-

-
-
-
-
-
-

Arabic Font Production Tutorial16

In this sample, I have created three groups; a group called <all_base>
containing all the possible forms for the base letters, and two groups
containing marks, one called <above_mark> and the other
<below_mark>.

There are a few important things to know here;
—First, always name your anchors. Here you see in the Anchor col-
umn the names ‘above’ and ‘below’, if you don’t name the anchors
they will merge and you won’t be able to define different positions
for above marks and below marks.
—To reference a group you need to add the < > brackets around its
name
—If you are working with groups you can select the various elements
using the combo boxes on the upper right side of the dialog.
—You need to create 2 separate lookups for the single base letters and
the ligatures. You can’t mix them.

The process is quite simple, each glyph possesses one anchor, sym-
bolized by and + sign on the right panel and you simply need to posi-
tion the anchors. To help you, you can lock one anchor using the
checkboxes ‘Lock 1st Anchor’ or ‘Lock 2nd Anchor’. The best practice
is to position the mark anchor first, lock it and then adjust the other
anchor.
A very instructive video is available on Microsoft’s Typography web-
site http://www.microsoft.com/typography/VOLT.mspx then click
on ‘New VOLT Training video’.

This is it! Press the ‘Compile’ button, and you can now test
your font.

Step by Step Guide 17

Once you are satisfied with the result, you should create the final
state of the font, with the menu entry ‘Ship Font’ in the ‘File’ menu.
Please note, the result of ‘Ship Font’ is a font which you can’t edit with volt, so
always keep a volt editable version which you get using ‘Save’ or ‘Save As…’ for
future update.

conclusion

We have reached the end of this tutorial; you should now have the
basic knowledge to make modern Arabic fonts. If you want to go
further and build more complex fonts, there are a few more features
you need to be familiar with, I’ll cover them in the next tutorial that
will present and explain more advanced functionalities.

 www.khattbooks.com

