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To Ximena, Anais and Valeria
who show me everyday
the X-rays of love



Foreword

The wavelengths of X-rays are far shorter than those of visible light, and even
shorter than those of ultraviolet light. Wilhelm Conrad Röntgen (1845–1923) was
awarded the first Nobel prize in Physics in 1901 for his contributions to the
detection of electromagnetic radiation, and to the generation of X-rays, which are a
form of electromagnetic radiation. Radiographs are produced by having X-rays,
emitted from a source, geometrically assumed to be a point in three-dimensional
(3D) space, recorded on a screen. This screen might have a slightly curved surface,
but we can also see it (via defined mapping) as an image plane.

X-ray technology provides a way to visualize the inside of visually opaque
objects. Pixel intensities in recorded radiographs correspond basically to the density
of matter, integrated along rays; those readers interested in a more accurate
description may wish to look up the interaction of X-rays with matter by way of
photo-absorption, Compton scattering, or Rayleigh scattering by reading the first
chapter of this book.

X-ray technology aims at minimizing scattering, by having nearly perfect rays
pass through the studied object. Thus, we have a very particular imaging modality:
objects of study need to fit into a bounded space, defined as being between source
and image plane, and pixel intensities have a meaning which differs from our
commonly recorded digital images when using optical cameras.

When modeling an X-ray imaging system we can apply much of the projective
geometry, mathematics in homogeneous spaces, or analogous parameter notations:
we just need to be aware that we are looking “backwards,” from the image plane to
the source (known as projection center), and no longer from the image plane into
the potentially infinite space in front of an optical camera. Thus, it appears that the
problem of understanding 3D objects is greatly simplified by simply studying a
bounded space: using a finite number of source-plus-screen devices for recording
this bounded space; applying photogrammetric methods for understanding
multi-view recordings, and applying the proper interpretation (e.g., basically den-
sity) to the corresponding pixel values. Thus, this very much follows a common
scenario of a computer vision, while also including image preprocessing and
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segmentation, object detection, and classification. The book addresses all of these
subjects in the particular context of X-ray testing based on computer vision.

The briefly sketched similarities between common (i.e., optical-camera-based)
computer vision and X-ray testing techniques might be a good motif to generate
curiosity among people working in computer vision, in order to understand how
their knowledge can contribute to, or benefit from, various methods of X-ray
testing.

The book illustrates X-ray testing for an interesting range of applications. It also
introduces a publically available software system and an extensive X-ray data base.
The book will undoubtedly contribute to the popularity of X-ray testing among
those in the computer vision and image analysis community, and may also serve as
a textbook or as support material for undertaking related research.

Auckland Reinhard Klette
April 2015
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Preface

This book has been written in many spatiotemporal coordinates. For instance, some
equations and figures were performed during my Ph.D. at the Technical University
of Berlin (1996–2000). During that period, but in Hamburg, I took several X-ray
images—that have been used in this book—in YXLON X-ray International Labs.
After completing my Ph.D., and during my work in Santiago, Chile as associate
researcher at the University of Santiago of Chile (2001–2003) and faculty member
at the Catholic University of Chile (2004–to date) I have written more than 40
journal papers on computer vision applied to X-ray testing. During this time, I have
developed a Matlab Toolbox that has been used in my research projects and in my
classes teaching image processing, pattern recognition and computer vision for
graduate and undergraduate students. Over the last few years, my graduate students
have taken thousands of X-ray images in our X-ray Testing Lab at the Catholic
University of Chile. Moreover, in my sabbatical year at the University of Notre
Dame (2014–2015), I had the time and space to teach the computer vision course
for students of computer sciences, electrical engineering, and physics, and I have
been able to bring together all those related papers, diagrams, and codes in this
book.

The present work has been written not only in three different countries
(Germany, Chile, and the United States) over the last 15 years, but also in many
different small places that provided me with the time and peace to write a para-
graph, a caption of a figure, a code, or whatever I could. For example, I remember a
Café in Michigan City where I spent various hours last winter writing this book
with a delicious cappuccino beside me; or my study room in Fisher Apartments on
Notre Dame Campus, looking out the window at a squirrel holding a nut; or on a
narrow tray table while taking an Inter-Regio train between Berlin and Hamburg,
which was where I drew a diagram using a pen and probably a napkin; and of
course, my delightful office at the Catholic University of Chile with its breathtaking
view of the Andes Mountains.

This book has been put together on the basis of four main pillars that have been
constructed over the last 15 years: the first pillar is the set of journal and conference
papers that I have published. The second corresponds to the material used in my
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classes and the feedback received from students when I have been teaching image
processing, pattern recognition, and computer vision. The third pillar is the Matlab
Toolbox that I was able to develop during this time, and which has been tested in
several experiments, classes, and research projects, among others. The fourth pillar
is the thousands of X-ray images that my research group has been taking in recent
years at our Lab, and the X-ray images of die castings that I took in Hamburg. Over
all this time, I have realized that this amount of work can all be brought together in
a book that collects the most important contributions in computer vision used in
X-ray testing.

Scope

X-ray imaging has been developed not only for its use in medical imaging for
humans, but also for materials or objects, where the aim is to analyze—nonde-
structively—those inner parts that are undetectable to the naked eye. Thus, X-ray
testing is used to determine if a test object deviates from a given set of specifica-
tions. Typical applications are analysis of food products, screening of baggage,
inspection of automotive parts, and quality control of welds. In order to achieve
efficient and effective X-ray testing, automated and semi-automated systems are
being developed to execute this task. In this book, we present a general overview of
computer vision methodologies that have been used in X-ray testing. In addition,
some techniques that have been applied in certain relevant applications are pre-
sented: there are also some areas—like casting inspection—where automated sys-
tems are very effective, and other application areas—such as baggage screening—
where human inspection is still used. There are certain application areas—like
welds and cargo inspections—where the process is semi-automatic; and there is
some research in areas—including food analysis—where processes are beginning to
be characterized by the use of X-ray imaging. In this book, Matlab programs for
image analysis and computer vision algorithms are presented with real X-ray
images that are available in a public database created for testing and evaluation.

Organization

The book is organized as follows:
Chapter 1 (X-ray Testing): This chapter provides an introduction to the book.

It illustrates principles about the physics of X-rays, and describes X-ray testing and
imaging systems, while also summarizing the most important issues on computer
vision for X-ray testing.

Chapter 2 (Images for X-ray Testing): This chapter presents a description of the
GDXray database, the dataset of more than 19,400 X-ray images used in this book
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to illustrate and test several computer vision methods. The database includes five
groups of X-ray images: castings, welds, baggage, natural objects and settings.

Chapter 3 (Geometry in X-ray Testing): This chapter presents a mathematical
background of the monocular and multiple view geometry that is normally used in
X-ray computer vision systems.

Chapter 4 (X-ray Image Processing): This section covers the main techniques of
image processing used in X-ray testing, such as image pre-processing, image fil-
tering, edge detection, image segmentation, and image restoration.

Chapter 5 (X-ray Image Representation): This chapter covers several topics that
are used to represent an X-ray image (or a specific region of an X-ray image). This
representation means that new features are extracted from the original image; this
can provide us with more data than the raw information expressed as a matrix of
gray values.

Chapter 6 (Classification in X-ray Testing): This section covers known classi-
fiers with several examples that can be easily modified in order to test different
classification strategies. Additionally, the chapter covers how to estimate the
accuracy of a classifier using hold-out, cross-validation and leave-one-out
approaches.

Chapter 7 (Simulation in X-ray Testing): This chapter reviews some basic
concepts of the simulation of X-ray images, and presents simple geometric and
imaging models that can be used in the simulation.

Chapter 8 (Applications in X-ray Testing): This section describes relevant
applications for X-ray testing such as the inspection of castings and welds, baggage
screening, quality control of natural products, and inspection of cargos and elec-
tronic circuits.

Who Is This Book For

This book covers an introduction to computer vision algorithms that can be used in
X-ray testing problems such as defect detection, baggage screening, 3D recognition,
quality control of food products, and inspection of cargos and electronic circuits,
among others. This work may not be ideal for students of computer science or
electrical engineering who want to obtain a deeper knowledge of computer vision
(for which purpose there are many wonderful textbooks on image processing,
pattern recognition, and computer vision1). Rather, it is a good starting point for
undergraduate or graduate students who wish to learn basic computer vision and its
application in problems of industrial radiology.2 Thus, the aim of this book is
to cover complex topics on computer vision in an easy and accessible way.

1See for example [1–8].
2Obviously, the algorithms outlined in this book can be used in similar applications such as glass
inspection [9] or quality control of food products using optical images [10]—to name but a few.
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For instance, we present complex topics (such as support vector machines and SIFT
descriptors) in such a straightforward way that any student who does not have much
knowledge of these fields, can still understand how they work without having to
analyze complicated equations.

Hands on!

In this book there is a Matlab Toolbox called XVIS Toolbox.3 with around 150
functions for computer vision in X-ray testing. Each function has a ‘help’ with an
example in order to show its use in X-ray testing. Additionally, the book gives
several Matlab examples that can be followed by the reader. These examples use
XVIS Toolbox. Moreover, there are around 19,400 X-ray images on the GDXray
database4 that can be used to test different algorithms and codes. The available
examples, toolbox and X-ray images can help people to learn more about computer
vision for X-ray testing. The reader can modify the codes and can create his/her
own codes in order to develop new functions for X-ray testing. The reader does not
need any advance knowledge of Matlab to read and understand this document;
however, he/she must have familiarity with basic linear algebra, geometry, and
general knowledge of programming. If the reader does not (want to) use Matlab,
he/she can also understand the examples from a traditional perspective by way of
analyzing the input and the output given in each example. For more online
resources, such as papers, figures and slides, the reader can visit the webpage of the
present book at the following address: http://dmery.ing.puc.cl/index.php/book/.

Notre Dame and Santiago de Chile Domingo Mery
2015
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Chapter 1
X-ray Testing

Abstract X-ray testing has been developed for the inspection of materials or
objects, where the aim is to analyze—nondestructively—those inner parts that are
undetectable to the naked eye. Thus, X-ray testing is used to determine if a test
object deviates from a given set of specifications. Typical applications are inspec-
tion of automotive parts, quality control of welds, baggage screening, analysis of
food products, inspection of cargos, and quality control of electronic circuits. In
order to achieve efficient and effective X-ray testing, automated and semiautomated
systems based on computer vision algorithms are being developed to execute this
task. In this book, we present a general overview of computer vision approaches
that have been used in X-ray testing. In this chapter, we offer an introduction to our
book by covering relevant issues of X-ray testing.

Cover image: X-ray images of woods (series N0010 colored with ‘hot’ colormap).
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2 1 X-ray Testing

1.1 Introduction

Since Röntgen discovered in 1895 [1] that X-rays can be used to identify inner
structures, X-rays have been developed not only for their use in medical imaging
for human beings, but also in nondestructive testing (NDT) for materials or objects,
where the aim is to analyze (nondestructively) the inner parts that are undetectable
to the naked eye [2]. NDT with X-rays, known as X-ray testing, is used in many
applications such as inspection of automotive parts, quality control of welds, bag-
gage screening, analysis of food products, inspection of cargos, and quality control
of electronic circuits among others. X-ray testing usually involves measurement of
specific part features such as integrity or geometric dimensions in order to detect,
recognize, or evaluate wanted (or unwanted) inner parts. Thus, X-ray testing is a
form of NDT defined as a task that uses X-ray imaging to determine if a test object
deviates from a given set of specifications, without changing or altering that object
in any way.

The most widely used X-ray imaging systems employed in X-ray testing are dig-
ital radiography (DR) and computed tomography (CT) imaging.1 On the one hand,
DR emphasizes high throughput. It uses electronic sensors (instead of traditional
radiographic film) to obtain a digital X-ray projection of the target object, conse-
quently it is simple and quick. A flat amorphous silicon detector can be used as an
image sensor in X-ray testing systems. In such detectors, and using a semiconductor,
energy from the X-ray is converted directly into an electrical signal that can be dig-
italized into an X-ray digital image [4]. On the other hand, CT imaging provides a
cross-section image of the target object so that each object is clearly separated from
any others; however, CT imaging requires a considerable number of projections to
reconstruct an accurate cross-section image, which is time consuming.

In order to achieve efficient and effective X-ray testing, automated and semiau-
tomated systems are being developed to execute this task that can be difficult (e.g.,
recognition of very small defects), tedious (e.g., inspection of thousand of simi-
lar items), and sometimes dangerous (e.g., explosive detection in baggage screen-
ing). Compared to manual X-ray testing, automated systems offer the advantages of
objectivity and reproducibility for every test. Fundamental disadvantages are, how-
ever, the complexity of their configuration, the inflexibility to any change in the
evaluation process, and sometimes the inability to analyze intricate images, which
is something that people can generally do well. Research and development is, how-
ever, ongoing into automated adaptive processes to accommodate modifications.

X-ray testing is one of the more accepted ways for examining an object without
destroying it. The purpose of this nondestructive method is to detect or recognize
certain parts of interest that are located inside a test object and are thus not detectable
to the naked eye. A typical example is the inspection of castings [5]. The material
defects occurring in the casting process such as cavity, gas, inclusion, and sponge

1Computed tomography is beyond the scope of this book due to space considerations. For NDT
applications using CT, the reader is referred to [3].
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Fig. 1.1 Simple model of an X-ray computer vision system. In this example, a computer vision
algorithm is used to detect a defect inside the test object automatically

must be detected to satisfy the security requirements; consequently, it is necessary
to check 100% of the parts.

The principle aspects of an X-ray testing system is illustrated in Fig. 1.1. Typi-
cally, it comprises the following steps:

• The test object is located in the desired position.
• The X-ray source generates X-rays which pass through the test object.
• The X-rays are detected and converted (e.g., by a flat panel or by an image inten-
sifier and CCD camera) in order to obtain a digital X-ray image.

• Computer vision algorithms are used to evaluate the X-ray image.

In recent years, flat detectors made of amorphous silicon have been widely used as
image sensors in some industrial inspection systems [6, 7]. In these detectors, the
energy from the X-ray is converted directly into an electrical signal by a semicon-
ductor (without an image intensifier). However, using flat detectors is not always
feasible because of their high cost compared to image intensifiers.

The properties of the X-rays that are used in X-ray testing are summarized in the
following: (i) X-rays can penetrate light blocking materials (e.g., metal) depending
on a material’s thickness; (ii) X-rays can be detected by photographic materials or
electronic sensors; (iii) X-rays can spread a straight line; and (iv) X-rays can use
many substances to stimulate fluorescence (fluoroscopy).

1.2 History

The discovery of X-rays by Röntgen in November 1895 [1] defines the beginning of
the X-ray testing of metallic parts. A couple of days after the discovery of the ‘X’
radiation, he made radiographs of balance-weights in a closed box and a chamber
of a shotgun (see Fig. 1.2). Röntgen observed that using X-rays, one can look not
only into the inside of a human body, but also into metallic articles, if the strength
and intensity of the X-rays are strong enough [8]. The potential use in the detection
of hidden defects within armor-plates and machine parts was already envisioned at
Yale University in 1896 [9].
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Fig. 1.2 X-ray image of balance-weights in a closed box and a shotgun taken by Wilhelm Conrad
Röntgen in the summer of 1896. Courtesy of the Deutsches Röntgen-Museum in Würzburg

The industrial use of X-rays began in Germany only two decades after their dis-
covery. X-ray testing took place at that time with the help of radiographic films
[10]. Radioscopy with fluorescent screens was developed only toward the end of
the 1930s and at the beginning of the 1940s. In the following years, closed cabinets
were already being used for X-ray testing of aluminum castings in the automobile
industry [11].

In 1948, the image intensifier was developed, which converts X-rays into a visi-
ble light [12]. Image intensifier technology was originally developed as a low-light
enhancer for military night-vision devices [13]. The introduction of the image inten-
sifier led to considerable progress in the inspection technique, since otherwise the
examiner would have to regard the X-ray image on a fluorescent screen. The bright-
ness of the image was so small that the eyes needed a long time to adapt to the dark.
Into the image amplifier, an examiner could always look in the radiograph directly
with the help of special optics. Image intensifiers, television equipment, and elec-
trically controlled manipulators were developed further in the 1960s as radioscopic
systems, which were widely used for casting and welding inspection in the 70s [9].

Computer tomography (CT) was developed in 1972 [12, 14]. With 2D-CT cross-
section pictures of the object computed from its projections. These slices, which
represent a reconstruction of the local distribution of the absorption coefficients
of the object, are processed in order to find objects of interest in the test object.
However, one disadvantage of the procedure is the high time requirement: for the
reconstruction of meaningful slice images, both a minimum gate time per object
position is necessary for a sufficient signal/noise ratio along with a minimum num-
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ber of projections. For this reason, the use of computer tomography is so far limited
in X-ray testing to the material development and research range, as well as to the
examination of particularly important and expensive parts [15]. Later 3D-CT was
developed, with which the whole object is reconstructed as voxels. State-of-the art
industrial computer tomography used this kind of CT [3].

Approaches to the automatic image evaluation as well as image restoration were
already used in the 1980s with the help of the image-processing techniques and
CCD cameras [11]. The first fully automatic X-ray testing systems were installed
in the industry at the beginning of the 1990s. One example can be found in the
quality control of aluminum wheels performed by Alumetall Co. in Nuremberg, in
which an automatic casting part recognition is also integrated using bar codes for
the adjustment of the image analysis algorithms for different types of wheel [9].

At the end of the 1990s, flat panel detectors from amorphous silicon were indus-
trially used in some test systems [16, 17]. With these detectors, the X-rays are con-
verted by a semiconductor directly into electrical signals (without image intensifier).
However, the X-ray testing with flat detectors was not always profitable due to their
high costs (in the comparison to the image intensifier).

Today, novel X-ray detectors have been developed based on new semiconduc-
tors like CdTe or CZT [18]. They can count photons at high rates by discriminat-
ing different energy channels. Thus, image noise can be decreased, contrast can be
enhanced, and specific materials can be imaged.

In the last few decades, fully automatic and semiautomatic test systems have been
used in many applications as we will cover in Chap. 8.

1.3 Physics of the X-rays

In general, X-rays are from same physical nature as visible light, radiowaves,
microwaves, ultraviolet, or infrared. They are all electromagnetic waves, which
spread at the speed of light, although with different wavelengths (see Table 1.1).

In the following, the formation of X-rays and their interaction with matter are
explained. These principles of physics can be found in many textbooks (see for
example [19]).

1.3.1 Formation of X-rays

The formation of X-rays is performed in an X-ray tube in five steps as shown in
Fig. 1.3:

1. A high DC voltage U is applied between cathode and anode.
2. The cathode is strongly heated by the voltage Uh , so that the kinetic energy of

the heat is transferred to the mobile electrons in the cathode. The electrons are
thus in a position to withdraw from the cathode.

http://dx.doi.org/10.1007/978-3-319-20747-6_8
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Fig. 1.3 Basic diagram of an X-ray tube

3. The electrons emitted by the hot cathode are accelerated by high-voltage U .
4. These high energy electrons, which are called cathode rays, are incident on the

anode.
5. X-rays are produced when electrons of sufficiently high energy incident on the

anode are suddenly decelerated.

There is a distinction between discrete and continuous X-rays (commonly known
as Bremsstrahlung).

Discrete X-rays
These result in transitions of electrons in the inner shells of an atom (see Fig. 1.4a).
This happens when a highly accelerated electron e− 1© knocks an electron e−

1 from
the atomic shell. Since both electrons leave the atom 2©, a hole is formed (where
e−
1 was) that is immediately filled by an outer electron (e.g., e−

2 ) 3©. In an atom,
the electrons may be shown only on certain bands with a precisely specified energy
level. The deeper the band is in the atom, the greater is the energy of that electron.
When jumping from the electron to a lower band (in our example e−

2 ) the energy

Fig. 1.4 X-ray formation and spectrum. a Characteristics X-rays (discrete). b Bremsstrahlung
(continuous). c Spectrum
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difference between the two energy levels is emitted as electromagnetic radiation.
Energy transitions in the region of the inner electron shells which have high binding
energies leads to the emission of X-rays 4©. Therefore, the spectrum of this radiation
consists of lines at specific wavelengths or energies that are exclusively dependent
on the nature of the atom (see Fig. 1.4c). These are called characteristic X-ray lines.

Continuous X-rays (Bremsstrahung)
In addition to the discrete X-rays, there is a continuos radiation called Brems-
strahlung. This occurs when a highly accelerated electron approaches the domain of
attraction of the atomic nucleus of the anode and are deflected due to the Coulomb
force (Fig. 1.4b). There is no collision between nucleus and electron. Since the elec-
tron interacts with the Coulomb force, the direction and velocity of the electron are
changed. In this deceleration, the electron loses some or all of the kinetic energy
that is emitted in the form of X-rays to the outside. The closer the electron is to the
nucleus, the greater is the deceleration and thus the energy of the Bremsstrahlung.
As electrons can come close to the nucleus at any distance, this electromagnetic radi-
ation has a continuous spectrum with an upper cutoff frequency Emax (see Fig. 1.4c).
The maximum energy is obtained when an electron is completely decelerated, i.e.,
when the kinetic energy of the electron (Ekin = e ·U ) is converted entirely into pho-
ton energy (Ephoto = h ·ν), where e is the electric charge, U the anode voltage, h the
Planck’s constant, and ν the frequency of the electromagnetic wave. The smallest
possible X-ray wavelength becomes of Ekin = Ephoto(= Emax) and c = λν with:

λmin = h · c

Emax
= h · c

e · U
(1.1)

where c is the speed of light in vacuum. Changes to the heating of the cathode Ih

(see Fig. 1.3) result in a proportional change of the energy flux density. An increase
in the high-voltage U leads to the displacement of the maximum energy flux density
to a higher energy.

1.3.2 Scattering and Absorption of X-rays

One aspect particularly important for X-ray testing is the attenuation of the inten-
sity of X-rays when passing through matter. The attenuation is a function of X-ray
energy and the material structure of the irradiated material (considerably in terms
of density and thickness). The attenuation occurs by two processes: scattering and
absorption. The scattering via classical scattering (Rayleigh scattering and Comp-
ton effect); and absorption through the photoelectric effect, pair production and
partly by the Compton effect. In the following, these are explained as interactions of
X-rays with atoms.
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Fig. 1.5 Interaction of X-rays with matter. a Photoelectric effect. b Compton effect. c Pair
production

Rayleigh Scattering
In this process, there is a scattering of X-rays from their original path, in which the
radiation loses no energy. The lower the energy of the radiation, the more they are
deflected from the original path of the rays.

Photo Effect
The photoelectric effect that occurs is likely to happen when the radiation energy
just exceeds the binding energy of the electron. In the photoelectric effect, the energy
of the incident photon is completely transferred to an electron, and mainly on one
of the inner electron shells. The electron takes over the energy that the quantum
of radiation it emits as kinetic energy and leaves the atomic union (Fig. 1.5a). This
effect increases proportionally to E−3Z5, where E is the energy of the radiation
and Z is the atomic number. The photoelectric effect plays a role in the small and
medium energies of X-rays.

Compton Effect
In case the radiation energy is very much larger than the binding energy of the
atomic electron, the X-ray radiation strikes out the electron from the atom. A portion
of the energy of the X-ray radiation is transferred to the electron and converted
into kinetic energy. The radiation is scattered and loses energy (see. Fig. 1.5b). This
results in a scattering due to the change of direction of the photons at the same
time and absorption due to the energy loss. This effect is proportional to the atomic
number of the atom Z and inversely proportional to the energy of the radiation to E .

Pair Production
In case the radiation energy is greater than 1.02MeV and passes it straight into
the proximity of the nucleus, the radiation can be turned into matter, producing
an electron e− and e+ positron (see Fig. 1.5c), whose masses are me− = me+ =
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511 keV/c2. The pair production is more frequent, the greater the quantum energy
and the higher the atomic number of the irradiated material. In cases, where X-rays
come from X-ray tubes there is no pair production, as the energy is always in the
keV range.

Absorption and scattering can be described mathematically by the X-ray absorp-
tion law, which characterizes the intensity distribution of X-rays through matter:

ϕ(x) = ϕ0e−μx (1.2)

with ϕ0 incident energy flux density, μ absorption coefficient, x thickness of the
irradiated matter and ϕ energy flux density after passage through matter with the
thickness of x (see Fig. 1.6a). The absorption coefficient μ depends on the incident
photon energy and the density and atomic number of the irradiated material. It is
composed of the coefficients of the classical dispersion σR , the photoelectric effect
τ , the Compton effect σC , and the pair production χ :

μ = σR + τ + σC + χ (1.3)

Because of the continuous distribution of the energy of the Bremsstrahlung (see
Fig. 1.4c), X-rays contain photons of different energies. In practice, therefore, the
course of the absorption curve can only be determined empirically. In the case of
aluminum, the course of the absorption coefficient in Fig. 1.7.

(a)

(b)

Fig. 1.6 X-ray image formation according to absorption law: a X-ray image of a homogenous
object, and b X-ray image of an object with two different materials
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Fig. 1.7 Absorption coefficient for aluminum [20]

1.4 X-ray Testing System

The essential components of an automatic X-ray testing system (see Fig. 1.8), such
as X-ray source, manipulator, image acquisition system are explained below.

Fig. 1.8 X-ray testing systems. There are two kinds of image acquisition system: based on image
intensifiers (top) and based on flat panels (bottom). In this example, an aluminumwheel is inspected
using a manipulator
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1.4.1 X-ray Source

There are six requirements for an X-ray source [21]:

1. Adjustable quantum energy.
2. Possible large adjustable dose rate.
3. Intensity of the radiation as uniform as possible in the field of the object to be

irradiated.
4. Smallest possible intensity of radiation outside the area to be irradiated.
5. Acceptable price.
6. Long life with constancy of features.

In this section, we describe the essential components of an X-ray source that
fulfill the conditions mentioned. An explanation of the formation of X-rays can be
found in Sect. 1.3.1.

Hot Cathode
The cathode is made of a filament, from which the electrons emerge through the
thermoelectric effect in the vacuum of the X-ray tube. Usually, tungsten (W), also
known as wolfram, is used because of its high melting point (about 3380 ◦C). An
influence of the dose rate (independent of the quantum energy of the X-rays) is
achieved by controlling the electron emission over the heating current (Figs. 1.3 and
1.9). The quantum energy is adjusted by the high voltage between electrodes. Using
an aperture that surrounds the filament, a thin, sharply defined electron beam is
generated.

Anode
At the anode surface, the kinetic energy of the cathode beam is converted 99%
into heat and only 1% into the desired X-rays. To reduce the geometric blur of the
imaging process a small focal spot is required. In the focal spot of an X-ray tube,
however, so much heat is created that the anode material may melt if the heat is not
dissipated quickly and effectively. In order to increase the performance of an X-ray
source and at the same time to reduce the focal spot, the anodes are constructed as
follows:

Anode Material
The surface layer should be made of materials with a high melting point, high atomic
number, and high thermal conductivity. The element tungsten (W) best meets the
three criteria. In order to reduce the roughening during the operation, as well as to
avoid cracking, it is alloyed with rhenium (Re).

Line Focus
To reduce the optical focus, the electron beam strikes the anode surface in the focal
spot inclined by about α = 7◦ ∼ 20◦ from the vertical axis.
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Fig. 1.9 Basic structure of an anode

Rotating Anode
By rotating the anode, the applied heat can be distributed over an entire ring with-
out changing the size of the optical spot (see Fig. 1.9). The distribution of the high
thermal load is better the larger the diameter of the ring and the higher the rotation
speed.

Envelope
Given that between the electrodes the voltage is high voltage, anode and cathode
must be electrically isolated from each other. In addition, the tube envelope forms
the vacuum vessel and the mechanical attachment of the tube components. Up until
now, glass has been used for this purpose. However, in recent years envelopes made
of metal and ceramics have been used.

1.4.2 Manipulator

A manipulator is a device that can be handled with the test objects in the desired
manner without the operator using his/her hands to touch [22]. In an X-ray com-
puter vision system, the task of the manipulator is the handling of the test objects.
Due to the possibilities of movement, degrees of freedom of the manipulator, the
test object can be brought into the desired position. For a manual inspection, the
axes of a manipulator are moved by means of one or more joysticks. When an auto-
matic inspection of this task is undertaken, it is handled by a programmable logic
controller (PLC) or an industrial computer.
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A manipulator consists of sliding elements and rotary elements with which a
translation or rotation of the object test can be performed. Previously, the manip-
ulator moved the test object trough the X-ray beam [23]. This solution resulted
in a complicated mechanical construction with a high mechanical load, wear and
increased maintenance. Today it is possible to move the X-ray tube and the detec-
tor that is rigidly connected to it by a C-arm manipulator. These manipulators are
much easier to control, and are faster and cheaper [16, 17]. An example of such a
manipulator is described in Sect. 3.3.4 (see Fig. 3.15).

1.4.3 Image Intensifier

The X-ray image intensifier has two functions: (i) possible lossless conversion of
X-ray projection information into a visible image and (ii) its brightness gain [13]. On
the basis of the structure of an X-ray image intensifier shown in Fig. 1.10, the oper-
ation is explained. The X-ray radiation enters through an input screen into a vacuum
tube. As the radiolucent input screen has to withstand the atmospheric pressure, it
should not be too thin. Here metals are used with low atomic numbers that are trans-
parent to X-rays, in which the absorption and scattering are relatively small. There-
after, the radiation incident on the X-ray fluoroscopy screen, in which the conversion
of X-radiation into visible light takes place. The X-rays are absorbed and about 2000
photons per X-ray quantum are triggered. The light strikes the photocathode and sets
photoelectrons. These electrons are accelerated by approximately 25 kV, which are
represented with reduced electron optics on an output phosphor screen. The output
image of the image intensifier is then captured by a CCD camera.

The disadvantage of the image intensifier is the geometric distortion due to the
curvature of the input screen; details for this can be found in Sect. 3.3.2.

Fig. 1.10 Schematic illustration of the operation of an image intensifier

http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
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Fig. 1.11 Operation of a CCD-Array

1.4.4 CCD Camera

CCD cameras use solid-state imaging sensors based on CCD (charge-coupled
device) arrays. In these imaging sensors, the active detector surface is divided into
individual pixels in the CCD-sensor, while incident light is converted and trans-
ported into an electrical charge. The principle of the charge transport is based on the
charge transfer that takes place in the shift registers (Fig. 1.11).

The CCD cameras are characterized by very good image geometry, high light-
sensitivity, and several mega pixels for conventional cameras. In modern days, there
are HDTV (High Definition Television) cameras up to 2,200,000 pixels. Further-
more, a CCD camera can achieve a resolution of 24 megapixels and the exposure
time can be in a range between seconds and 1/4,000 s.

Due to the low sensitivity of the CCD-image sensor for direct X-ray radiation,
the radiation must be converted into visible light. In an X-ray testing system with
CCD camera, this conversion happens in the image intensifier (see Sect. 1.4.3).

1.4.5 Flat Panel

A second possible image acquisition system is the flat panel detector based on amor-
phous silicon (a-Si), in which the X-ray, without going through an image intensifier
with CCD camera, is converted from a semiconductor directly into electrical signals
(see Fig. 1.12). In this technology a thin view of a-Si is deposited on a glass plate
as a support. As in a CCD-chip, a pixel array with switching elements is generated
in the silicon layer so that the charge which is stored in the individual pixels can be
read out serially and electronically [14].

The advantages of this detector are: larger image receiving surface, no geometric
distortion, a high gray-level resolution (12 ∼ 16Bit/Pixel), that is very light and
small. Due to the high gray-level resolution and greater imaging surface less test
positions are required for the inspection. The low weight allows for easier and faster
mechanics [16, 17]. An flat detector is shown in Fig. 1.12.
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(a)

(b)

Fig. 1.12 Flatpanel: a Basic structure [24] und b Example: Canon, model CXDI-50G (resolution:
2208 × 2688 pixels and 4,096 grayscale image). In this example, the X-ray emitter tube is Poskom,
model PXM-20BT

1.4.6 Computer

In the context of X-ray testing, a computer system is typically used for the following
tasks:

1. To control the image acquisition system.
2. To store acquired X-ray images.
3. To run computer vision algorithms that evaluate X-ray images.
4. To compute statistical analysis.
5. To display results.
6. To control the X-ray source.
7. To control the manipulator.

1.5 X-ray Imaging

In this section we present image formation, acquisition, and visualization.

1.5.1 X-ray Image Formation

In X-ray testing, X-ray radiation is passed through the test object, and a detec-
tor captures an X-ray image corresponding to the radiation intensity attenuated
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Fig. 1.13 Simulation of an X-ray image of object of Fig. 1.1 from four different points of view.
Each arrow represents the orientation of the X-ray projection where the beginning corresponds to
the X-ray source

by the object.2 According to the principle of photoelectric absorption (1.2): ϕ =
ϕ0 exp(−μx), where the transmitted intensity ϕ depends on the incident radiation
intensity ϕ0, the thickness x of the test object, and the energy dependent linear
absorption coefficient μ associated with the material, as illustrated in Fig. 1.6.

In a photographic image, the surface of the object is registered. On the contrary,
in an X-ray image, the inside of the object is captured. In order to illustrate the
formation, we simulate the X-ray image of the object of Fig. 1.1 in several posi-
tions (in this example we use the approach outlined in Chap. 7). In this case, we
have a homogenous test object with a spherical cavity inside. The result is shown in
Fig. 1.13. In this example, we can observe, on the one hand, the absorption phenom-
enon. The thicker the object the more attenuated the X-rays. In our visualization,
bright gray values are used for high output energy (low attenuation), and dark gray
values for low output energy (high attenuation). On the other hand, we can see the
phenomenon of the summation of shadows, i.e., the output intensity of an image
point corresponds to the summation of all the attenuations the X-ray encountered.

It is worth noting that if X-ray radiation passes through n different materials,
with absorption coefficients μi and thickness xi , for i = 1, . . . , n, the transmitted
intensity ϕ can be expressed as

ϕ = ϕ0 exp

(
−

n∑
i=1

μi xi

)
. (1.4)

2As explained in Sect. 1.3, X-rays can be absorbed or scattered by the test object. In this book,
we present only the first interaction because scattering is not commonly used for X-ray testing
applications covered in this book. For an interesting application based on the X-ray scattering
effect, the reader is referred to [25].

http://dx.doi.org/10.1007/978-3-319-20747-6_7
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(a) (b)

i

j

j i

x(i,j)

Fig. 1.14 Image formation process: a X-ray image of a wheel with two defects, b 3D plot of the
gray values of the image

This explains the image generation of regions that are present within the test object,
as shown in Figs. 1.6 and 1.13, where a gas bubble is clearly detectable. The con-
trast in the X-ray image between a flaw and a defect-free area of the object test is
distinctive. In such X-ray images, we can see that the defects, like voids, cracks, or
bubbles, show up as bright features. The reason is that the absorption in these areas
is shorter. Hence, according to the principle of differential absorption, the detec-
tion of flaws can be achieved automatically using image-processing techniques that
are able to identify unexpected regions in a digital X-ray image. A real example is
shown in Fig. 1.14 which clearly depicts two defects.

Another example is illustrated in Fig. 1.15a, where a backpack containing a
knives and a handgun is shown. However, X-ray images sometimes contain over-
lapped objects, making it extremely difficult to distinguish them properly, as shown
in Fig. 1.15b where a handgun (superimposed onto a laptop) is almost impossible to
detect.

Fig. 1.15 X-ray images of a backpack. Left It is easy to recognize a handgun (and two knives).
Right It is extremely difficult to detect the handgun (see red rectangle)
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1.5.2 Image Acquisition

In X-ray examination, X-ray radiation is passed through the material under test,
and a detector senses the radiation intensity attenuated by the material(s) of the test
object. The spacial distribution of the attenuation coefficients of the elements of the
object test define the X-ray information that is acquired by the sensor.

The X-ray image is usually captured with a CCD camera (see Sect. 1.4.4) or a
flat panel (see Sect. 1.4.5). The digitalized image is stored in a matrix. An example
of a digitized X-ray image is illustrated in Fig. 1.16. The size of the image matrix
corresponds to the resolution of the image. In this example, the size is 286 × 384
picture elements, or pixels. Each pixel has a gray value associated. This value is
between 0 and 255 for a scale of 28 = 256 gray levels. Here, ‘0’ means 100%
black and a value of ‘255’ corresponds to 100% white, as illustrated in Fig. 1.17.
Typically, the digitized X-ray image is stored in a 2D matrix, e.g., X, and its pixels
are arranged in a grid manner. Thus, element x(i, j) denotes the gray value of the
i th row of the j th column, pixel (i, j), as shown in the matrix of Fig. 1.16.

The eye is only capable of resolving around 40 gray levels [26]; however, for
computer vision applications, gray-level resolution must be a minimum of 256
levels. In some applications, 216 = 65,536 gray levels are used [17], which allows
one to evaluate both very dark and very bright regions in the same image.
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Fig. 1.16 Digital X-ray image

255

Fig. 1.17 256 gray-level scale
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1.5.3 X-ray Image Visualization

In many X-ray testing applications, it is necessary to display X-ray images. For
example, when we present a result based on an X-ray image, or when a human
evaluation of an X-ray image is required (e.g., baggage screening). In those cases, it
is useful to have a suitable visualization of X-ray images.

A simple way to visualize an X-ray image is using a grayscale as shown in
Fig. 1.16 that uses the grayscale of Fig. 1.17. Conventionally, X-ray images have
been ‘black and white’ because of the gray nature of the radiographies and fluores-
cent screens. Usually, a common human eye can distinguish less than 50 gray values
[26], however, a trained human eye is able to recognize up to 100 gray values [27].

Nowadays, it is possible to assign colors to grayscale images. With today’s com-
puting technology, especially with the ongoing advancements in displays, there is no
reason to think that X-ray images must be visualized in grayscale only. In the seven-
teenth century, Newton said indeed rays, properly expressed, are not colored [28].
He was referring to light rays. Now, one can say that X-rays, properly expressed, are
not gray because they are not visible! We can just find a suitable way to visualize
them. Thus, we can use the power of human vision that can distinguish thousands
of colors [27].

In order to improve the visualization of an X-ray image, pseudo coloring can
be used. In pseudo coloring, a gray value is converted into a color value. That
is, we need a map function that relates the gray value x with a color value
(R(x), G(x), B(x)) for red, green and blue respectively if we use a RGB-based
color map [29]. Some examples of the color maps are illustrated in Fig. 1.18 in
which the transformations (R(x), G(x), B(x)) are shown for ‘jet’, ‘hsv’, ‘parula’,
‘hot’, ‘rainbow’, and ‘sinmap’ [27, 29, 30]. An example of a pseudocolored X-ray
image is illustrated in Fig. 1.19.

The mentioned transformations correspond to linear mappings that can be loaded
from a look-up table. In addition, there are some interesting algebraic or trigonomet-
ric transformations that can be used in pseudocoloring [31]. One of them is the ‘sin
transformation’ generally defined as:

R(x) = | aR + kR sin(cos(ωR x) + θR) |
G(x) = | aG + kG sin(cos(ωG x) + θG) |
B(x) = | aB + kB sin(cos(ωB x) + θB) |

(1.5)

where ωC , θC , kC and aC are frequency, phase, amplitude and offset for channel
C = R, G, B. This color map is implemented in function Xsincolormap (see
Appendix B) of XVIS Toolbox.3 An example of a pseudocolored X-ray image is
illustrated in Fig. 1.19 for ‘rainbow’ and ‘sinmap’.

3Matlab toolbox used in this book (see Sect. 1.6.4).
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Fig. 1.18 Color maps used in pseudo coloring

Matlab Example 1.1 In Fig. 1.19, we have an X-ray image of a pen case.
In this example, we show different visualizations of a small region of this image,
namely the pencil sharpener. The example shows the classical grayscale representa-
tion, pseudocolors, and a 3D representation:

Listing 1.1 : X-ray image representation.

% ImageVisualization.m
close all
I = Xloadimg(’B’,2,4); % input image
figure(1); imshow(I); title(’X−ray image’)
hold on
i1 = 250; i2 = 399; j1 = 340; j2 = 529;
plot([j1 j2 j2 j1 j1],[i1 i1 i2 i2 i1],’r’); % crop
J = I(i1:i2,j1:j2); % cropped image
Xcolorimg(J,[],0); % color representation

The output of this code is in Fig. 1.19. We can see the use of a color map for
pseudocolor representations. A very interesting visualization is the 3D represen-
tation, where the z-axis corresponds to the gray value, in which the screw of the
sharpener is clearly distinguishable. The output of this example is obtained using
Xcolorimg (see Appendix B) of XVIS Toolbox. The reader can experiment a dif-
ferent visualization using command Xdyncolor (see Appendix B) of XVIS Toolbox,
where a video of an X-ray image is presented. In this video, each frame is displayed
using a different colormap that slightly varies from frame to frame. �
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Fig. 1.19 Different visualizations of an X-ray image (→ Example 1.1 )

1.5.4 Dual Energy

Coefficient μ in (1.2) can be modeled as μ/ρ = α(Z , E), where ρ is the density
of the material, and α(Z , E) is the mass attenuation coefficient that depends on
the atomic number of the material Z , and the energy E of the X-ray photons. The
absorption coefficient varies with energy (or wavelength) according to [32]:
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μ

ρ
= kλ3Z3 (1.6)

where k is a constant. Values for α(Z , E) are already measured and available in
several tables (see [33]). In order to identify the material composition—typically
for explosives or drug detection—the atomic number Z cannot be estimated using
only one image, as a thin material with a high atomic number can have the same
absorption as a thick material with a low atomic number [25]. For this purpose, a
dual-energy system is used [34], where the object is irradiated with a high energy
level E1 and a low level energy E2. In the first case, the absorbed energy depends
mainly on the density of the material. In the second case, however, the absorbed
energy depends primarily on the effective atomic number and the thickness of the
material [35].

Using dual energy, it is possible to calculate the ratio

R = log(ϕ2/ϕ0)/ log(ϕ1/ϕ0), (1.7)

where ϕ1 and ϕ2 are the transmitted intensities ϕ obtained by (1.2) using energies
E1 and E2, respectively. Thus, from

R = α(Z , E2)/α(Z , E1), (1.8)

the term −ρz is canceled out, Z can be directly found using the known measure-
ments α(Z , E) [36]. From both images, a new image is generated using a fusion
model, usually a look-up table that produces pseudo color information [37, 38], as
shown in Fig. 1.20.

Matlab Example 1.2 In Fig. 1.20, we have two X-ray images acquired from
the same object at the same position but with different energies: the first one was
taken at 5mA and 70 kV and the second one at 5mA and 100 kV. For an image
generation of dual energy, we can use the following Matlab code:

Listing 1.2 : Dual energy.

% DualEnergy.m
close all
X1 = Xloadimg(’B’,60,1,0); % low energy image
X2 = Xloadimg(’B’,60,2,0); % high energy image
x = Xloaddata(’B’,60,’DualEnergyLUT’); % LUT
map = parula; % color map
Y = Xdualenergy(X2,X1,x.LUT,map,1); % conversion

The output of this code is in Fig. 1.20. We can see the use of a color map for pseudo-
color representations. The output image is a grayscale image, however, the each
gray value is displayed according to a 256 colors palette as shown in right bar. In
this example, we use Xdualenergy (see Appendix B) of XVIS Toolbox. �
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Fig. 1.20 Generation of a pseudocolor image using dual energy. In this example, the colors cor-
respond to different materials (→ Example 1.2 )

1.6 Computer Vision

Computer Vision is the science and technology of giving computers the ability to
‘see’ and ‘understand’ images taken by one or more cameras. The goal of computer
vision is to study and develop algorithms for interpreting the visual world captured
in images or videos. Typical topics of computer vision are: detection and recogni-
tion, automated visual inspection, image stitching, image processing and analysis
(enhancement, filtering, morphological operations, edge detection and segmenta-
tion), video processing (optical flow and tracking), recognition of patterns, feature
extraction and selection, local descriptors and classification algorithms, and finally,
geometric vision topics such as projective geometry, camera geometric model, cam-
era calibration, stereovision, and 3D reconstruction [29, 39–45].

In order to give an introduction to the topics of computer vision that have been
used in X-ray testing and will be covered in this book, we follow Fig. 1.21 which
illustrates an extended version of our simple model presented in Fig. 1.1.

In this general schema, X-ray images of a test object can be generated at differ-
ent positions and different energy levels. Depending on the application, each block
of this diagram can be (or not be) used. For example, there are applications such
as weld inspection that use a segmentation of a single monoenergetic X-ray image
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Fig. 1.21 General schema for X-ray testing using computer vision (see text)

(black square), sometimes with pattern recognition approaches (red squares); appli-
cations like casting inspection that use monoenergetic multiple views where the
decision is taken analyzing individual views (green squares) or corresponding mul-
tiple views (blue squares); applications including baggage screening that use dual
energy of single views (magenta squares) and multiple views (yellow squares); and
finally, applications for cargo inspections that employ active vision where a next-
best view is set according to the information of a single view (cyan squares). In
each case, the blocks without the corresponding color square are not used.

1.6.1 Geometric Model

The X-ray image of a test object corresponds to a projection in perspective, where a
3D point of the test object is viewed as a pixel in the digital X-ray image, as illus-
trated in Fig. 1.21. A geometric model that describes this projection can be highly
useful for 3D reconstruction and for data association between different views of the
same object. Thus, 3D features or multiple view 2D features can be used to improve
the diagnosis performed by using a single view.
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As we will learn in Chap. 3, for the geometric model, four coordinate systems
are used (see Fig. 1.21):

• OCS (X, Y, Z): Object Coordinate System, where a 3D point is defined using
coordinates attached to the test object.
• WCS (X̄ , Ȳ , Z̄): World Coordinate System, where the origin corresponds to the
optical center (X-ray source) and the Z̄ axis is perpendicular to the projection plane
of the detector.
• PCS (x, y): Projection Coordinate System, where the 3D point is projected into
the projection plane Z̄ = f , and the origin is the intersection of this plane with Z̄
axis.
• ICS (u, v): Image Coordinate System, where a projected point is viewed in the
image. In this case, (x, y)-axes are set to be parallel to (u, v)-axes.

The geometric model OCS → ICS, i.e., transformation P : (X, Y, Z) → (u, v),
can be expressed in homogeneous coordinates as [46]:

λ

⎡
⎣ u

v
1

⎤
⎦ = P

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , (1.9)

where λ is a scale factor and P is a 3 × 4 matrix modeled as three transformations:

(i) OCS → WCS, i.e., transformation T1 : (X, Y, Z) → (X̄ , Ȳ , Z̄), using a 3D
rotation matrix R, and 3D translation vector t;
(ii) WCS → (PCS), i.e., transformation T2 : (X̄ , Ȳ , Z̄) → (x, y), using a perspec-
tive projection matrix that depends on focal distance f ; and
(iii) PCS → ICS, i.e., transformation T3 : (x, y) → (u, v), using scales factor αx

and αy , and 2D translation vector (u0, v0).

The three transformations OCS → WCS → PCS → ICS are expressed as

P =
⎡
⎣αx 0 u0

0 αx v0
0 0 1

⎤
⎦

︸ ︷︷ ︸
T3

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
T2

[
R t
0T 1

]
︸ ︷︷ ︸

T1

(1.10)

The parameters included in matrix P can be estimated using a calibration approach
[42].

In order to obtain multiple views of the object, n different projections of the test
object can be achieved by rotating and translating it (for this task a manipulator can
be used). For the pth projection, for p = 1 . . . n, the geometric model Pp used in
(1.9) is computed from (1.10) including 3D rotation matrix Rp and 3D translation
tp. Matrices Pp can be estimated using a calibration object projected in the n dif-
ferent positions [46] or using a bundle adjustment algorithm where the geometric
model is obtained from the n X-ray images of the test object [47].

http://dx.doi.org/10.1007/978-3-319-20747-6_3
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1.6.2 Single View Analysis

A computer vision system for single view analysis, as shown in Fig. 1.21, consists
typically of the following steps: an X-ray image of the test object is taken and stored
on a computer. The digital image is improved in order to enhance the details. The
X-ray image of the parts of interest is found and isolated from the background of
the scene. Significant features of the segmented parts are extracted. Selected fea-
tures are classified or analyzed in order to determine if the test object deviates from
a given set of specifications. Using a supervised pattern recognition methodology,
the selection of the features and the training of the classifier are performed using rep-
resentative images that are to be labeled by experts [44]. In this book, we will cover
several techniques of image processing (Chap. 4), image representation (Chap. 5),
and classification (Chap. 6) that have been in X-ray testing.

For the segmentation task, two general approaches can be used: a traditional
image segmentation or a sliding-window approach. In the first case, image-
processing algorithms are used (e.g., histograms, edge detection, morphological
operations, filtering, etc. [29]). Nevertheless, inherent limitations of traditional
segmentation algorithms for complex tasks and increasing computational power
have fostered the emergence of an alternative approach based on the so-called
sliding-window paradigm. Sliding-window approaches have established themselves
as state-of-art in computer vision problems where a visually complex object must
be separated from the background (see, for example, successful applications in face
detection [48] and human detection [49]). In the sliding-window approach, a detec-
tion window is moved over an input image in both horizontal and vertical directions,
and for each localization of the detection window, a classifier decides to which class
the corresponding portion of the image belongs according to its features. Here, a
set of candidate image areas are selected and all of them are fed to the subsequent
parts of the image analysis algorithm. This resembles a brute force approach where
the algorithm explores a large set of possible segmentations, and at the end the most
suitable is selected by the classification steps. An example for weld inspection using
sliding-windows can be found in Chap. 8.

1.6.3 Multiple View Analysis

It is well known that A picture is worth a thousand words, however, this is not
always true if we have an intricate image as illustrated in Fig. 1.15b. In certain
X-ray applications, e.g., baggage inspection, there are usually intricate X-ray images
due to overlapping parts inside the test object, where each pixel corresponds to the
attenuation of multiple parts, as expressed in (1.4).

In some cases, active vision can be used in order to adequate the viewpoint of the
test object to obtain more suitable X-ray images to analyze. Therefore, an algorithm
is designed for guiding the manipulator of the X-ray imaging system to poses where
the detection performance should be higher [50] (see Fig. 1.21).

http://dx.doi.org/10.1007/978-3-319-20747-6_4
http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_6
http://dx.doi.org/10.1007/978-3-319-20747-6_8
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In other cases, multiple view analysis can be a powerful option for examining
complex objects where uncertainty can lead to misinterpretation. Multiple view
analysis offers advantages not only in 3D interpretation. Two or more images of
the same object taken from different points of view can be used to confirm and
improve the diagnosis undertaken by analyzing only one image. In the computer
vision community, there are many important contributions in multiple view analysis
(e.g., object class detection [51], motion segmentation [52], simultaneous localiza-
tion and mapping (SLAM) [53], 3D reconstruction [54], people tracking [55], breast
cancer detection [56], and quality control [57]). In these fields, the use of multiple
view information yields a significant improvement in performance.

Multiple view analysis in X-ray testing can be used to achieve two main goals: (i)
analysis of 2D corresponding features across the multiple views, and (ii) analysis of
3D features obtained from a 3D reconstruction approach. In both cases, the attempt
is made to gain relevant information about the test object. For instance, in order
to validate a single view detection—filtering out false alarms—2D corresponding
features can be analyzed [58]. On the other hand, if the geometric dimension of a
inner part must be measured a 3D reconstruction needs to be performed [59].

As illustrated in Fig. 1.21, the input of the multiple view analysis is the associ-
ated data, i.e., corresponding points (or patches) across the multiple views. To this
end, associated 2D cues are found using geometric constraints (e.g., epipolar geom-
etry and multifocal tensors [42, 60]), and local scale-invariant descriptors across
multiple views (e.g., like SIFT [61]).

Finally, 2D or 3D features of the associated data can be extracted and selected,
and a classifier can be trained using the same pattern recognition methodology
explained in Sect. 1.6.2.

Depending on the application, the output could be a measurement (e.g., the vol-
ume of the inspected inner part is 3.4 cm3), a class (e.g., the test object is defective),
or an interpretation (e.g., the baggage should be inspected by a human operator
given that uncertainty is high).

1.6.4 XVIS Toolbox

In this book, we use many commands of XVIS Toolbox, i.e., a Matlab Toolbox
that we developed for X-ray testing with computer vision.4 XVIS Toolbox contains
approximately 150 functions for image processing, feature extraction, feature trans-
formation, feature analysis, feature selection, data selection and generation, classifi-
cation, clustering, performance evaluation, multiple view analysis, image sequence
processing, and tracking with geometrical constraints.

4
XVIS Toolbox is available on: http://dmery.ing.puc.cl/index.php/book/.

http://dmery.ing.puc.cl/index.php/book/
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Commands of XVIS Toolbox starts with letter ‘X’. For example Ximmedian (see
Appendix B) corresponds to the implemented function of XVIS Toolbox for median
filtering.

Each function of XVIS Toolbox has a ‘help’ with one or more examples. For
example, this is the help for Ximmedian (see Appendix B):

Listing 1.3 : Help of command Ximmedian of XVIS Toolbox.

% J = Ximmedian(I,k)
%
% Toolbox Xvis: Median filtering of image I.
%
% Input data:
% I grayvalue image.
%
% Output:
% J: filtered image using median mask of k x k pixels.
%
% Example:
% I = imread(’circuit.tif’);
% figure(1)
% imshow(I,[]); title(’original image’)
% J = Ximmedian(I,7);
% figure(2)
% imshow(J,[]); title(’transformed image’)

In addition, as we will see in this book, XVIS Toolbox includes a general frame-
work that designs a computer vision system automatically in a few lines of code, or
using two powerful graphic user interfaces one for feature extraction (Fig. 5.28) and
one for feature and classifier selection (Fig. 6.20). The interface automatically finds
the features and the classifiers for a given visual task avoiding the classical trial and
error framework commonly used by human designers.

A quick reference for XVIS Toolbox can be found in Appendix B.

1.6.5 GDXray Database

We developed an X-ray database that contains more than 19,400 X-ray images.5 The
database is described in detail in Chap. 2 and Appendix A. The database includes
five groups of X-ray images: castings, welds, baggage, natural objects, and settings.
Each group has several series, and each series several X-ray images.

Most of the series are annotated or labeled. In those cases, the coordinates of the
bounding boxes of the objects of interest or the labels of the images are available in
standard text files. The size of GDXray is 3.5GB.

5
GDXray is available on: http://dmery.ing.puc.cl/index.php/material/gdxray/.

http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_6
http://dx.doi.org/10.1007/978-3-319-20747-6_2
http://dmery.ing.puc.cl/index.php/material/gdxray/
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1.7 Summary

In this book, we present a general overview of computer vision approaches that have
been used in X-ray testing. In this chapter, we gave an introduction to our book by
covering relevant issues of X-ray testing.

X-ray testing has been developed for the inspection of materials or objects, where
the aim is to analyze—nondestructively—those inner parts that are undetectable to
the naked eye. Thus, X-ray testing is used to determine if a test object deviates from
a given set of specifications.

Typical applications are:

• Inspection of automotive parts
• Quality control of welds
• Baggage screening
• Analysis of food products
• Inspection of cargo
• Quality control of electronic circuits

In order to achieve efficient and effective X-ray testing, automated and semiauto-
mated systems based on computer vision algorithms are being developed to execute
this task.

We gave an introduction to some physic and geometric principles related to com-
puter vision. Following which, an overview of single and multiple view analysis was
presented.

References

1. Röntgen, W.: Eine neue Art von Strahlen: I Mitteilung. In: Sitzungsbericht der Würzburger
Physikal.-Medicin. Gesellschaft. Verlag und Druck der Stahel’schen K. Hof- und Universitäts-
Buch- und Kunsthandlung. Würzburg (1895)

2. Hellier, C.: Handbook of Nondestructive Evaluation, 2nd edn. McGraw Hill, New York (2013)
3. Goebbels, J.: Handbook of technical diagnostics, chap. Computed Tomography. Springer,

Berlin (2013)
4. Rowlands, J.: The physics of computed radiography. Phys. Med. Biol. 47(23), R123 (2002)
5. Mery, D., Jaeger, T., Filbert, D.: A review of methods for automated recognition of casting

defects. Insight 44(7), 428–436 (2002)
6. Hanke, R., Fuchs, T., Uhlmann, N.: X-ray based methods for non-destructive testing and mate-

rial characterization. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect.
Assoc. Equip. 591(1), 14–18 (2008)

7. Purschke, M.: IQI-sensitivity and applications of flat panel detectors and X-ray image
intensifiers—a comparison. Insight 44(10), 628–630 (2002)

8. Lossau, N.: Röntgen: Eine Entdeckung verändert unser Leben, 1st edn. Köln, vgs (1995)
9. Richter, H.U.: Chronik der Zerstörungsfreien Materialprüfung, 1st edn. Deutsche Gesellschaft

für Zerstörungsfreie Prüfung DGZfP, Verlag für Schweißen und verwendete Verfahren, DVS-
Verlag GmbH, Berlin, (1999)

10. Schaefer, M.: 100 Jahre Röntgenprüftechnik - Prüfsysteme früher und heute. In: DGZfP
Jahrestagung, pp. 13–26. Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V., Aachen
(1995)



References 31

11. Purschke, M.: Radioskopie – Die Prüftechnik der Zukunft? In: DGZfP Jahrestagung, vol.
Berichtsband 68.1, pp. 77–84. Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V., Celle
(1999)

12. Völkel: Grundlagen für den Prüfer mit Röntgen- und Gammastrahlung (Durchstrahlungsprü-
fung). Amt für Standarisierung, Meßwesen und Warenprüfung, Fachgebiet Zerstörungsfreie
Werkstoffprüfung (1989)

13. Heinzerling, J.: Bildverstärker-Fernseh-Kette. In: Ewen, K. (ed.) Moderne Bildgebung:
Physik, Gerätetechnik, Bildbearbeitung und -kommunikation, Strahlenschutz, Qualitätskon-
trolle, pp. 115–126. Georg Thieme Verlag, Stuttgart (1998)

14. Bunke, J.: Computertomographie. In: Ewen, K. (ed.) Moderne Bildgebung: Physik,
Gerätetechnik, Bildbearbeitung und -kommunikation, Strahlenschutz, Qualitätskontrolle, pp.
153–170. Georg Thieme Verlag, Stuttgart (1998)

15. Jaeger, T.: Optimierungsansätze zur Lösung des limited data problem in der Computertomo-
graphie. Verlag Dr. Köster, Berlin (1997)

16. Bavendiek, K., Krause, A., Beyer, A.: Durchsatzerhöhung in der industriellen Röntgenprüfung
– Eine Kombination aus innovativem Prüfablauf und optimierter Bildauswertung. In: DGZfP
Jahrestagung, vol. Berichtsband 63.1, pp. 301–306. Deutsche Gesellschaft für Zerstörungs-
freie Prüfung e.V., Bamberg (1998)

17. Jaeger, T., Heike, U., Bavendiek, K.: Experiences with an amorphous silicon array detector in
an ADR application. In: International Computerized Tomography for Industrial Applications
and Image Processing in Radiology, DGZfP Proceedings BB 67-CD, pp. 111–114. Berlin
(1999)

18. Szeles, C., Soldner, S.A., Vydrin, S., Graves, J., Bale, D.S.: CdZnTe semiconductor detectors
for spectroscopic X-ray imaging. IEEE Trans. Nucl. Sci. 55(1), 572–582 (2008)

19. Als-Neielsen, J., McMorrow, D.: Elements of Modern X-ray Physics, 2nd edn. Wiley, West
Sussex (2011)

20. Kuchling, H.: Taschenbuch der Physik, 12th edn. Harri Deutsch, Thun-Frankfurt, Main (1989)
21. Heinzerling, J.: Röntgenstrahler. In: Ewen, K. (ed.) Moderne Bildgebung: Physik,

Gerätetechnik, Bildbearbeitung und -kommunikation, Strahlenschutz, Qualitätskontrolle,
pp. 77–85. Georg Thieme Verlag, Stuttgart (1998)

22. Schwieger, R.: Stillegung, sicherer Einschluß und Abbau kerntechnischer Anlagen. Institut für
Werkstoffkunde, Universität Hannover, Technischer Bericht (1999)

23. Kosanetzky, J.M., Krüger, R.: Philips MU231: Räderprüfanlage. Technischer Bericht, Philips
Industrial X-ray GmbH, Hamburg (1997)

24. Horbaschek, H.: Technologie und Einsatz von Festkörperdetektoren in der Röntgentechnik
(1998). Vortrag der Firma Siemens Pforchheim in der 9. Sitzung des Unterausschusses Bild-
verarbeitung in der Durchstrhlungprüfung (UA BDS) der Deutschen Gesellschaft für Zer-
störungsfreie Prüfung e.V. (DGZfP), Ahrensburg

25. Wells, K., Bradley, D.: A review of X-ray explosives detection techniques for checked bag-
gage. Appl. Radiat. Isot. 70(8), 1729–1746 (2012)

26. Castleman, K.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1996)
27. Neri, E., Caramella, D., Bartolozzi, C.: Image processing in radiology. In: Baert, A.L., Knauth,

M., Sartor, K. (eds.) Medical Radiology. Diagnostic Imaging. Springer, Berlin (2008)
28. Agoston, G.A.: The concept of color. Color Theory and Its Application in Art and Design, pp.

5–10. Springer, New York (1987)
29. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Pearson Prentice Hall, Upper

Saddle River (2008)
30. MathWorks: Image Processing Toolbox for Use with MATLAB: User’s Guide. The Math-

Works Inc. (2014)
31. Abidi, B.R., Zheng, Y., Gribok, A.V., Abidi, M.A.: Improving weapon detection in single

energy X-ray images through pseudocoloring. IEEE Trans. Syst. Man Cybern. Part C: Appl.
Rev. 36(6), 784–796 (2006)

32. Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction. Pearson, New Jersey (2001)



32 1 X-ray Testing

33. Hubbell, J., Seltzer, S.: Tables of X-ray mass attenuation coefficients and mass energy-
absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional
substances of dosimetric interest. http://www.nist.gov/pml/data/xraycoef/index.cfm (1996)

34. Rebuffel, V., Dinten, J.M.: Dual-energy X-ray imaging: benefits and limits. Insight-Non-Destr.
Test. Cond. Monit. 49(10), 589–594 (2007)

35. Singh, S., Singh, M.: Explosives detection systems (EDS) for aviation security. Signal Process.
83(1), 31–55 (2003)

36. Heitz, G., Chechik, G.: Object separation in X-ray image sets. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR-2010), pp. 2093–2100 (2010)

37. Franzel, T., Schmidt, U., Roth, S.: Object detection in multi-view x-ray images. Pattern Recog-
nit. pp. 144–154 (2012)
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Chapter 2
Images for X-ray Testing

Abstract In this chapter, we present the dataset that is used in this book to illustrate
and test several methods. The database consists of 19,407 X-ray images. The images
are organized in a public database called GDXray that can be used free of charge,
but for research and educational purposes only. The database includes five groups of
X-ray images: castings, welds, baggage, natural objects, and settings. Each group has
several series, and each series several X-ray images. Most of the series are annotated
or labeled. In such cases, the coordinates of the bounding boxes of the objects of
interest or the labels of the images are available in standard text files. The size of
GDXray is 3.5GB and it can be downloaded from our website.

Cover image: X-ray image of cherries in an egg crate (X-ray image N0006_0027 colored with
‘jet’ colormap).

© Springer International Publishing Switzerland 2015
D. Mery, Computer Vision for X-Ray Testing, DOI 10.1007/978-3-319-20747-6_2
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2.1 Introduction

Public databases of X-ray images can be found for medical imaging,1 however, to the
best knowledge of the author, up until now there have not been any public databases
of digital X-ray images for X-ray testing.2

As a service to the X-ray testing community, we collectedmore than 19,400 X-ray
images for the development, testing and evaluation of image analysis and computer
vision algorithms. The images are organized in a public database calledGDXray.3 In
order to illustrate our database, a random selection of 120 X-ray images is shown in
Fig. 2.1. The database includes five groups ofX-ray images: castings,welds, baggage,
natural objects, and settings. Each group has several series, and each series several
X-ray images. Some samples of each series are illustrated in Fig. 2.2. Most of the
series are annotated or labeled. In those cases, the coordinates of the bounding boxes
of the objects of interest or the labels of the images are available. In Table2.1, we
can see some statistics. The size of GDXray is 3.49 GB and it can be downloaded
from our website (see Fig. 2.2).

In this chapter, we will view the structure of GDXray database, a description
for each group (with some series examples), some examples of applications that
have been published using images of GDXray and some examples in Matlab that
can be used to manipulate the database. More details about GDXray are given in
Appendix A.

2.2 Structure of the Database

GDXray is available in a public repository. The repository contains five group folders
one for each group:Castings,Welds,Baggage,Nature, andSettings. For
each group we define an initial: C, W, B, N, and S, respectively. As shown in Table2.1,
each group has several series. Each series is stored in an individual subfolder of the
corresponding group folder. The subfolder name is Xssss, where X is the initial of
the group andssss is the number of the series. For example, the third series of group
Castings is stored in subfolder C0003 of folder Castings (see more examples in
Fig. 2.2). The X-ray images of a series are stored in file Xssss_nnnn.png. Again

1See for example a good collection in http://www.via.cornell.edu/databases/.
2There are some galleries of X-ray images available on the web with a few samples, see for instance
http://www.vidisco.com/ndt_solutions/ndt_info_center/ndt_x_ray_gallery with approximately 50
X-ray images.
3Available on http://dmery.ing.puc.cl/index.php/material/gdxray. The name comes originally from
‘The Grima X-ray database’ (Grima is the name of our Machine Intelligence Group at the Depart-
ment of Computer Science of the Pontificia Universidad Católica de Chile http://grima.ing.puc.cl).
The X-ray images included in GDXray can be used free of charge, but for research and educational
purposes only. Redistribution and commercial use is prohibited. Any researcher reporting results
which use this database should acknowledge the GDXray database by citing [1].

http://www.via.cornell.edu/databases/
http://www.vidisco.com/ndt_solutions/ndt_info_center/ndt_x_ray_gallery
http://dmery.ing.puc.cl/index.php/material/gdxray
http://grima.ing.puc.cl
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Fig. 2.1 Random X-ray images of GDXray database

Xssss is the name of the series. The number nnnn corresponds to the number of
the X-ray image of this series. For example, the fifth X-ray image of series C0003
is C0003_0005.png and is stored in folder Castings/C0003. The whole
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Fig. 2.2 Screenshot of GDXray website. Some X-ray images of ten series are shown at the right-
hand side: C0001 and C0034 for castings, W0001 and W0003 for welds, B0001 and B0046 for
baggage, N0006 (cherry), N0010 (wood), and N0011 (salmon) for natural objects and S0001
for settings (a calibration pattern)

Table 2.1 Statistics of
GDXray database

Groups Series Images Size (MB)

Castings 67 2,727 307.5

Welds 3 88 209.4

Baggage 77 8,150 2,734.8

Nature 13 8,290 191.9

Settings 7 152 45.5

Total 167 19,407 3,489.0

structure is summarized in Table2.2. All X-ray images of GDXray are stored in
‘png’ (Portable Network Graphics)4 format.

2.3 Castings

The group Castings contains 2,727 X-ray images arranged in 67 series. The X-ray
images were taken mainly from automotive parts (aluminum wheels and knuckles).
Some examples are illustrated in Figs. 2.3, 2.4 and 2.5. The details of each series are

4See http://www.libpng.org/pub/png/.

http://www.libpng.org/pub/png/
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Table 2.2 Structure of GDXray

Database Groups Series X-ray images

GDXray→ Castings → C0001 → C0001_0001.png . . . C0001_0072.png

:

C0067 → C0067_0001.png . . . C0067_0083.png

Welds → W0001 → W0001_0001.png . . . W0001_0010.png

:

W0003 → W0003_0001.png . . . W0003_0068.png

Baggage→ B0001 → B0001_0001.png . . . B0001_0014.png

:

B0077 → B0077_0001.png . . . B0077_00576.png

Nature → N0001 → N0001_0001.png . . . N0001_0013.png

:

N0013 → N0013_0001.png . . . N0013_0006.png

Settings → S0001 → S0001_0001.png . . . S0001_0018.png

:

S0007 → S0007_0001.png . . . S0007_0029.png

Fig. 2.3 Some X-ray images of an aluminum wheel (group Castings series C0001)

Fig. 2.4 Some X-ray images of a knuckle (group Castings series C0059)

given in Table A.2. Experiments on these data can be found in several publications
as shown in Table 2.3. It is interesting to highlight that series C0001 (see Fig. 2.3)
contains not only a sequence of 72 X-ray images taken from an aluminum wheel by
rotating its central axis in 5◦, but also annotations of bounding boxes of the ground
truth of 226 small defects and the calibration matrix of each image that relates the
3D coordinates of the aluminum wheel with 2D coordinates of the X-ray image.
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Table 2.3 Applications of series Castings

Series Application References

C0001 Detection of defects in multiple views [2–7]

Estimation of epipolar geometry with distortion [8]

Calibration of X-ray imaging system with image intensifiers [2]

Simulation of casting defects [2]

C0002 Experiments on detection of defects in single views [9–12]

C0008 Simulation of casting defects [13]

C0017 Simulation of casting defects [14, 15]

C0032 Experiments on detection of defects in multiple views [3]

C0037 Simulation of casting defects [14, 15]

C0049 Image restoration in blurred X-ray images [16]

C0054 Detection of casting on moving castings [17]

C0055 Image restoration in blurred X-ray images [16]

Fig. 2.5 Some annotated images showing bounding boxes of casting defects

2.4 Welds

The group Welds contains 88 images arranged in 3 series. The X-ray images were
taken by the Federal Institute for Materials Research and Testing, Berlin (BAM).5

Some examples are illustrated in Fig. 2.6. The details of each series are given in
Table A.4. Experiments on these data can be found in several publications as shown
in Table2.4. It is interesting to highlight that series W0001 and W0002 (see Fig. 2.7)
contains not only 10 X-ray images selected from the whole BAM database (series
W0003), but also annotations of bounding boxes and the binary images of the ground
truth of 641 defects.

5TheX-ray images of seriesW0001 andW0003 are included in GDXray thanks to the collaboration
of the Institute for Materials Research and Testing (BAM), Berlin http://dir.bam.de/dir.html.

http://dir.bam.de/dir.html
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Fig. 2.6 Some X-ray images of group Welds series W0003. This series corresponds to the BAM
database

Table 2.4 Applications of
series Welds

Series Application References

W0001 Detection of defects in welds [18–21]

Simulation of welding defects [15, 20]

W0002 Evaluation of performance of
detection algorithm

[18]

W0003 Detection of defects in welds [22, 23]

2.5 Baggage

The group Baggage contains 8,150 X-ray images arranged in 77 series. The X-ray
images were taken from different containers such as backpacks, pen cases, wallets,
etc. Some examples are illustrated in Figs. 2.8, 2.9 and 2.10. The details of each
series are given in Table A.3. Experiments on these data can be found in several
publications as shown in Table2.5. It is interesting to highlight that series B0046,
B0047 and B0048 (see for example Fig. 2.8) contains 600 X-ray images that can
be used for automated detection of handguns, shuriken and razor blades (bounding
boxes for these objects of interest are available as well). In this case, the training can
be performed using series B0049, B0050, and B0051 that includes X-ray images
of individual handguns, shuriken and razor blades respectively taken from different
points of view as shown in Fig. 2.9.

2.6 Natural Objects

The group Nature contains 8,290 X-ray images arranged in 13 series. The X-ray
images were taken from different natural objects such as salmon filets, fruit, and
wood pieces. Some examples are illustrated in Figs. 2.11, 2.12 and 2.13. The details
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Fig. 2.7 Some images of group Welds series W0001 (X-ray images) and W0002 (ground truth)

Fig. 2.8 Some X-ray images of a bag containing handguns, shuriken and razor blades (group
Baggage series B0048)

of each series are given in Table A.1. Experiments on these data can be found in
several publications as shown in Table2.6. It is interesting to highlight that series
N0012 and N0013 (see Fig. 2.14) contains not only six X-ray images of salmon
filets, but also annotations of bounding boxes and the binary images of the ground
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Fig. 2.9 Some X-ray images of handguns (series B0049), shuriken (series B0050) and razor
baldes (series B0051) of group Baggage

Table 2.5 Applications of series Baggage

Series Application References

B0005 Experiments on detection of pins in multiple views [3, 24]

Detection of razor blades using active vision [24]

B0007 Training of a classifier of razor blades [24]

B0009-43 Experiments on detection of handguns [25, 26]

B0045 Experiments on detection of objects in multiple views [27, 28]

Active vision [24]

B0055 Experiments on detection of objects in sequences of four views [27]

B0056 Experiments on detection of objects in sequences of six views [27]

B0057 Experiments on detection of objects in sequences of eight views [27]

B0058 Training of a classifier for clips, springs, and razor blades [27, 28]

B0061-73 Detection of razor blades using active vision [24]

truth of 73 fish bones. For training purposes, there are more than 7,500 labeled small
crops (10 × 10 pixels), of regions of X-ray of salmon filets with and without fish
bones in series N0003.

2.7 Settings

The group Settings contains 151X-ray images arranged in 7 series. TheX-ray images
were taken from different calibration objects such checkerboards and 3D objects with
regular patterns. Some examples are illustrated in Figs. 2.15 and 2.16. The details
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Fig. 2.10 Aknifewas rotated in 1◦ and by each position anX-ray imagewas captured. In this figure,
X-ray images at 0◦, 10◦, 20◦, . . . 350◦ are illustrated (see series B00008 of group Baggage)

Fig. 2.11 Some X-ray images of salmon filets (group Nature series N0011)

of each series are given in Table A.5. Experiments on these data can be found in
several publications as shown in Table2.7. It is interesting to highlight that series
S0001 (see Fig. 2.15) contains not only 18 X-ray images of a copper checkerboard,
but also the calibration matrix of each view. In addition, series S0007 can be used
for modeling the distortion of an image intensifier. The coordinates of each hole
of the calibration pattern in each view are available, and the coordinates of the 3D
model are given as well.

2.8 Matlab Commands

In order to manipulate GDXray database easily, some helpful Matlab commands
were developed inXVIS Toolbox. In this section, we present a summary of them with
some examples.
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Fig. 2.12 Some X-ray images of cherries (group Nature series N0006)

Fig. 2.13 Some X-ray images of wood (group Nature series N0010)

• Xgdxbrowse (see AppendixB): This GUI function6 is used to browseGDXray dat-
base. An example is illustrated in Fig. 2.17. An additional example using pseudo-
coloring is shown in Fig. 2.18, the user can select one of 10 different color maps.

• Xshowseries (see AppendixB): This function is used to display several images of
a series in only one figure. For example, Fig. 2.10 was obtained using command:

6GUI: Graphic User Interface.
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Table 2.6 Applications of series Nature

Series Application References

N0003 Automated design of a visual food quality system [29]

N0003 Automated fish bone detection [30]

N0008 Quality control of kiwis [31]

N0011 Automated fish bone detection [30]

Fig. 2.14 Some images of group Nature series S0012 (X-ray images of salmon filets) and
S0013 (ground truth for fish bones)

I = Xshowseries(’B’,8,1:10:351,18,0.2);

In this example, the images 1, 11, . . . , 351 of the eighth series of group ‘B’ are
displayed using 18 images per row, and a new size per image scaled to 0.2 of the
original size. The output is stored in matrix I.

• Xgdxdir (see AppendixB): This function is used to ascertain the path of a series
of GDXray. For example, the directory of series N0012 can be obtained with
command:

str = Xgdxdir(’N’,12);

• Xgdxstats (see AppendixB): This function is used to compute some statistics of
GDXray. The output is Table2.1.

• Xloadimg (see AppendixB): This function is used to load an image of GDXray.
For example, N0012_0004.png can be stored in matrix I using command:

I = Xloadimg(’N’,12,4,1);

In this example, the last parameter can be ‘1’ or ‘0’, if the user wants to display
the image or not.
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Fig. 2.15 Some X-ray images of a copper checkerboard used by calibration (group Settings
series S0001)

Fig. 2.16 Some X-ray images of circular pattern in different points of view used by calibration
(group Settings series S0007)

Table 2.7 Applications of series Settings

Series Application References

S0001 Calibration of a multiple view X-ray imaging system for active vision [24]

S0002 Distortion model of an image intensifier [2, 8]

S0007 Explicit geometric model of a radioscopic imaging system [32]
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Fig. 2.17 Example of command Xgdxbrowse (see AppendixB) that can be used to browse
GDXray. The user can click buttons [Previous] and [Next] to display the next groups, series
or images. In addition, the ground truth option can be used to display manual annotations when they
are available. In this example, the fish bones of a salmon filet are highlighted. For colored images
see Fig. 2.18

Fig. 2.18 Example of command Xgdxbrowse (see AppendixB) using pseudo coloring of a wood
X-ray image. For another example in grayscale see Fig. 2.17

• XshowGT (see AppendixB): This function is used to display the bounding boxes of
an X-ray image. For example, in figure N0012_0004.png the bounding boxes
of the ground truth (see Fig. 2.17) can be displayed using command:

[I,bb] = XshowGT(’N’,12,4,’ground_truth.txt’);

In this example, imageN0012_0004.png is stored inmatrix I, and each bound-
ing box in a row of matrix bb. The ground truth was previously stored in ASCII
file ground_truth.txt. The format of this file is as follows: one bounding
box per row; the first number of the row is the number of the image of the series,
and the next four values are the coordinates x1, x2, y1, y2 of a bounding box. Thus,
the rectangle of a bounding box is defined by its opposite vertices: (x1, y1) and
(x2, y2). Another example is given in Fig. 2.5.
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Fig. 2.19 Example of command Xgdxannotate (see AppendixB) that can be used to manually
annotate the ground truth of a series. In this example, the user is annotating the razor blades of
series B0065. With buttons [Previous] and [Next], the user can browse the series. Button
[New] is used to define a new bounding box in the current image by giving two clicks (the red
axes can help to define the vertices of the bounding box). Button [Delete] is used to delete the
last defined bounding box

• Xloaddata (see AppendixB): This function is used to load a file into workspace.
For instance, the ground truth data of series N0012 can be stored in matrix GT
using command:

GT = Xloaddata(’N’,12,’ground_truth.txt’);

• Xgdxannotate (see AppendixB): This function is used tomanually annotate bound-
ing boxes of a series of GDXray. Function Xgdxannotate (see AppendixB) calls
GUI function Xannotate (see AppendixB) that is used to annotate the images of
current directory. See an example in Fig. 2.19.

2.9 Summary

In this chapter, we presented the details of a new public dataset called GDXray. It
consists of more than 19,400 X-ray images. The database includes five groups of
X-ray images: castings, welds, baggage, natural objects, and settings. Each group
has several series and X-ray images with many labels and annotations that can be
used for training and testing purposes in computer vision algorithms. To the best
knowledge of the author, up until now there have not been any public databases of
digital X-ray images for X-ray testing.

In this chapter, we explained the structure of the GDXray database, we gave a
description for each group (with some series examples), we presented some exam-
ples of applications that have been published using images of GDXray, and some
examples in Matlab with XVIS Toolbox, that can be used to manipulate the database.
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We believe that GDXray represents a relevant contribution to the X-ray testing
community.On the one hand, students, researchers, and engineers can use theseX-ray
images to develop, test, and evaluate image analysis and computer vision algorithms
without purchasing expensive X-ray equipment. On the other hand, these images can
be used as a benchmark in order to test and compare the performance of different
approaches on the same data. Moreover, the database can be used in the training
programs of human inspectors.
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Chapter 3
Geometry in X-ray Testing

Abstract Geometry is of basic importance for understanding in X-ray testing. In
this chapter, we present a mathematical background of the monocular and multi-
ple view geometry which is normally used in X-ray computer vision systems. The
chapter describes an explicit model which relates the 3D coordinates of an object
to the 2D coordinates of the digital X-ray image pixel, the calibration problem, the
geometric and algebraic constraints between two, three, and more X-ray images
taken at different projections of the object, and the problem of 3D reconstruction
from n views.

Cover image: Average of X-ray images of a wheel in motion (series C0008 colored with
“parula” colormap).
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3.1 Introduction

In certain nondestructive testing and evaluation applications, it is necessary to deal
with some geometric problems. For example, the geometric distortion of an image
amplifier must be reduced; 3D information of the object under test must be inferred;
or multiple view X-ray images of the same object from different points of view must
be analyzed. Multiple view information is required, for example, for inspecting the
internal and external geometry of an object under test, for locating its features using
stereoscopic techniques, and for finding regions of interest—such as defects—using
correspondences of multiple views.

In this chapter, we present a background of geometry which is normally used in
X-ray computer vision systems. We start by presenting in Sect. 3.2 projective trans-
formations that are very common in X-ray imaging. In Sect. 3.3, a model which
relates the 3D coordinates of an object to the 2D coordinates of the digital X-ray
image pixel. In Sect. 3.4, different approaches that can be used to estimate the para-
meters of the geometric model are outlined. In Sect. 3.5, we establish the geomet-
ric and algebraic constraints between two, three, and more X-ray images obtained
as different projections of the object. The problem of the 3D reconstruction is
explained in Sect. 3.6.

3.2 Geometric Transformations

Before we begin a detailed description of the geometric model of our X-ray com-
puter vision system, it is worthwhile to outline certain geometric transformations
that are used by the model.

3.2.1 Homogeneous Coordinates

We are familiar with Cartesian coordinates in 2D (x, y) and in 3D (X, Y, Z). As
we will see in this section, in an X-ray computer vision system the geometric trans-
formations between different coordinate systems can be handled in an easy way if
homogeneous coordinates are used [1]. In this approach, the commonly used Carte-
sian coordinates are called nonhomogeneous coordinates.

In general, a point a ∈ R
N given in nonhomogeneous coordinates can be

expressed as a point b ∈ R
N+1 in homogeneous coordinates as follows:

(a1, a2, . . . , aN ) → (b1, b2, . . . , bN , bN+1) (3.1)

where ai = bi/bN+1 for i = 1, . . . N .
Using (3.1), a 2D point (x, y) is expressed as a homogeneous vector with three

elements (b1, b2, b3), where x = b1/b3 and y = b2/b3. Thus, we can convert a
nonhomogeneous point (x, y) into a homogeneous point as (x, y, 1), or as λ(x, y, 1)
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Table 3.1 Transformation nonhomogeneous ↔ homogeneous coordinates

Nonhomogeneous coordinates ↔ Homogeneous
coordinates

2D: (x, y)

(x = b1/b3, y = b2/b3)
→
←

λ(x, y, 1)
(b1, b2, b3)

3D: (X, Y, Z)

(X = b1/b4, Y = b2/b4, Z = b3/b4)
→
←

λ(X, Y, Z , 1)
(b1, b2, b3, b4)

where λ is a scalar λ �= 0. It is worth noting that the homogeneous coordinates
(4, 8, 2) and (6, 12, 3) represent the same 2D nonhomogeneous point because they
can be expressed as 2 · (2, 4, 1) and 3 · (2, 4, 1), respectively. That means, x = 2 and
y = 4 in nonhomogeneous coordinates.

Similar examples could be given for a 3D point (X, Y, Z). The transforma-
tions between homogeneous and nonhomogeneous coordinates are summarized in
Table 3.1 for 2D and 3D.

In this book we use the notation of Faugeras [1], where we differentiate between
the projective geometric objects themselves and their representations, e.g., a point in
the 2D space will be denoted by m whereas its vector in homogeneous coordinates
will be denoted by m.

We can use homogeneous coordinates to represent points and lines as well. For
instance, a point m and a line � in 2D space can be represented as m = [x y 1]T and
� = [a b 1]T, respectively. Thus, if m lies on � then m · � = mT� = 0. It is worth
noting that λm for λ �= 0 represents the same 2D point and k� for k �= 0 represents
the same line, and they fulfill mT� = 0.

Two 2D points m1 and m2 that lie on lines � fulfill mT
1 � = 0 and mT

2 � = 0, where
m1 and m2 are homogeneous representations of points m1 and m2, respectively (see
Fig. 3.1). Using cross product, we find a new vector w = m1 × m2 with following
properties: (i) w is a 3D vector, (ii) m1 ⊥ w, (iii) m2 ⊥ w. According to properties
(ii) and (iii) , mT

1 w = 0 and mT
2 w = 0, interestingly that means that w = �. Thus,

Fig. 3.1 Two points on a line in 2D space
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given m1 and m2 the homogeneous representation of the line that contains both
points can be easily calculated by:

� = m1 × m2. (3.2)

The reader can demonstrate that given �1 and �2 (the homogeneous representations
of two lines in 2D space), the homogenous representation of the intersection of both
lines can be computed by:

m = �1 × �2. (3.3)

3.2.2 2D → 2D Transformation

Sometimes, a 2D point that is given in a coordinate system (x ′, y′), must be
expressed in another coordinate system (x, y) as illustrated in Fig. 3.2. In this
example, there is a rotation θ and a translation (tx , ty). It is the same 2D point m,
however, it is defined in two different coordinate systems. It is easy to demonstrate
that the transformation between both coordinate systems is given in nonhomoge-
neous coordinates by:

[
x
y

]
=

[+cos(θ) −sin(θ)

+sin(θ) +cos(θ)

]
︸ ︷︷ ︸

R

[
x ′
y′

]
+

[
tx
ty

]
︸ ︷︷ ︸

t

= R
[

x ′
y′

]
+ t. (3.4)

Matrix R is known as the rotation matrix in 2D. It is an orthonormal matrix, i.e.,
RTR = I2×2, where I2×2 is the 2-by-2 identity matrix. The same transformation
(3.4) can be expressed in homogenous coordinates as:

⎡
⎣ x

y
1

⎤
⎦ =

⎡
⎣+cos(θ) −sin(θ) tx

+sin(θ) +cos(θ) ty

0 0 1

⎤
⎦

⎡
⎣ x ′

y′
1

⎤
⎦ (3.5)

Fig. 3.2 Euclidean transformation: left 2D (→ Example 3.1 ), right 3D (→ Example 3.2 )



3.2 Geometric Transformations 57

or using a matrix notation as:
m = Hm′ (3.6)

where m = [x y 1]T, m′ = [x ′ y′ 1]T, and H is a 3 × 3 matrix defined as:

H =
[

R t
0 1

]
, (3.7)

where 0 = [0 0].
Equation (3.6) defines the transformation m′ → m. The inverse transformation

m → m′ can be established by computing the inverse of matrix H, i.e., m′ = H−1m.
Since R is orthonormal, R−1 = RT. Thus, the inverse of H is:

H−1 =
[

RT −RTt
0 1

]
. (3.8)

Matlab Example 3.1 In Fig. 3.2, tx = 4.1 cm, ty = 3.2 cm, and θ = 35◦.
The coordinates of m are given as x = 4.9 cm and y = 5.5 cm. If we want to find
the coordinates of this point in (x ′, y′) coordinate system, we can use the following
Matlab code:

Listing 3.1 : Euclidean transformation 2D → 2D.

% EuclideanTrans2D.m
th = 35/180*pi; % Rotation in radians
t = [4.1 3.2]’; % Translation tx,ty in cm
R = Xmatrixr2(th); % Rotation matrix
H = [R t; 0 0 1]; % Euclidean transformation matrix
x = 4.9; % x coordinate
y = 5.5; % y coordinate
m = [x y 1]’; % 2 D point in homogeneous coordinates
m p = inv(H)*m; % Transformation m −> m p
x p = mp(1)/mp(3) % x’ coordinate
y p = mp(2)/mp(3) % y’ coordinate

The output of this code is: xp = 1.9745 cm and yp = 1.4252 cm. In this
code, we use function Xmatrixr2 (see Appendix B) of XVIS Toolbox. This func-
tion computes matrix R as defined in (3.4). It is worth noting that the division by
mp(3) in this case is not necessary because mp(3) = 1, since the last row of H
is [0 0 1]. �

This projective transformation is known as Euclidean or isometric transforma-
tion because the Euclidean distance between two points in both coordinate systems,
(x, y) and (x ′, y′), is invariant. That means, the distance d ′ between two points
in the first coordinate systems m′

i = [x ′
i y′

i 1]T, for i = 1, 2, is equal to the
distance d between the two transformed points in the second coordinate systems
mi = [xi yi 1]T using (3.6): mi = Hmi . The distances are the same (d ′ = d) and
they can be calculated by:
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d =
√

(x1 − x2)2 + (y1 − y2)2 and d ′ =
√

(x ′
1 − x ′

2)
2 + (y′

1 − y′
2)

2 (3.9)

Other projective transformations are:

• Similarity transformation, in which matrix R is replaced by sR in (3.7). Factor s
is a scalar that is used to change the scale of the original coordinate system. Thus,
using (3.9) if the distance between two points in (x ′, y′) coordinate system is d ′,
in the transformed coordinate system (x, y) the distance between the transformed
points will be d = sd ′. In this transformation, matrix sR is no longer orthonormal
but still orthogonal: [sR]T[sR] = s2I2×2.

• Affine transformation, in which matrix R is replaced by any rank 2 matrix A in
(3.7). In affine transformation, parallel lines in (x ′, y′) coordinate system remain
parallel in the transformed coordinate system (x, y).

• General transformation, in which matrix H in (3.7) is a general nonsingular
matrix. In general transformation, a straight line in (x ′, y′) coordinate system
remains a straight line in the transformed coordinate system (x, y). This transfor-
mation is known as homography [2].

3.2.3 3D → 3D Transformation

A 3D point M can be defined as (X, Y, Z) and (X ′, Y ′, Z ′) in two different coordi-
nate systems as shown in Fig. 3.2, where the axes are translated and rotated. Using
homogeneous coordinates (similar to 2D → 2D transformation), a 3D Euclidean
transformation can be expressed by:

M = HM′ (3.10)

where M = [X Y Z 1]T, M′ = [X ′ Y ′ Z ′ 1]T, and H is a 4 × 4 matrix defined as

H =
[

R t
0 1

]
. (3.11)

where 0 = [0 0 0]. Again we differentiate between M and M. The first notation is a
3D point in space, where the second notation is its homogenous representation in a
specific coordinate system. Note that M and M′ represent the same 3D point M but
in different coordinate systems.

The transformation is considered as rigid displacement of the coordinate system
(X ′, Y ′, Z ′) represented by a 3 × 1 translation vector t = [tX tY tZ ]T and a 3 × 3
rotation matrix R. Matrix R considers three rotations as shown in Fig. 3.3. Each
rotation can be modeled using a rotation matrix of two coordinates as shown in
Table 3.2. Thus, matrix R can be modeled as a rotation about axis Z , then a rotation
in Y -axis, and finally a rotation in X -axis:
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.

X'

Y'

Z' X
Z

Y

ω Z .

Z'

X'

Y' Z
Y

X

ω Y .

Y'

Z'

X' Y
X

Z

ω X

Fig. 3.3 Rotation of axes Z , Y , and X

Table 3.2 Rotation matrices
of axes Z , Y , and X

Rotation Rotation matrix

Axis Z RZ =
⎡
⎢⎣ cos(ωZ ) −sin(ωZ ) 0

sin(ωZ ) cos(ωZ ) 0

0 0 1

⎤
⎥⎦

Axis Y RY =
⎡
⎢⎣ cos(ωY ) 0 sin(ωY )

0 1 0

−sin(ωY ) 0 cos(ωY )

⎤
⎥⎦

Axis X RX =
⎡
⎢⎣ 1 0 0

0 cos(ωX ) −sin(ωX )

0 sin(ωX ) cos(ωX )

⎤
⎥⎦

R(ωX , ωY , ωZ ) = RX (ωX )RY (ωY )RZ (ωZ ) =
⎡
⎣ R11 R12 R13

R21 R22 R23
R31 R32 R33

⎤
⎦ , (3.12)

where the elements Ri j can be expressed as a function of cosine and sine of the
Euler angles ωX , ωY , and ωZ that describe the rotation of the X , Y , and Z axes,
respectively [3]:

R11 = cos(ωY ) cos(ωZ )

R12 = −cos(ωY ) sin(ωZ )

R13 = sin(ωY )

R21 = sin(ωX ) sin(ωY ) cos(ωZ ) + cos(ωX ) sin(ωZ )

R22 = −sin(ωX ) sin(ωY ) sin(ωZ ) + cos(ωX ) cos(ωZ )

R23 = −sin(ωX ) cos(ωY )

R31 = −cos(ωX ) sin(ωY ) cos(ωZ ) + sin(ωX ) sin(ωZ )

R32 = cos(ωX ) sin(ωY ) sin(ωZ ) + sin(ωX ) cos(ωZ )

R33 = cos(ωX ) cos(ωY )

. (3.13)
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Matlab Example 3.2 In Fig. 3.2, tX = 1mm, tY = 3mm, tZ = 2mm, ωX =
35◦, ωY = 0◦, and ωZ = 0◦. The coordinates of the blue point are given as X ′ =
0mm, Y ′ = 1mm, and Z ′ = 1mm. If we want to find the coordinates of this point
in (X, Y, Z) coordinate system, we can use the following Matlab code:

Listing 3.2 : Euclidean transformation 3D → 3D.

% EuclideanTrans3D.m
w = 35/180*pi; % Rotation wX in radians
t = [1 3 2]’; % Translation tX,tY,tZ in mm
R = Xmatrixr3(w,0,0); % Rotation matrix
H = [R t; 0 0 0 1]; % Euclidean transformation matrix
Xp = 0; % Xp coordinate
Yp = 1; % Yp coordinate
Zp = 1; % Zp coordinate
Mp = [Xp Yp Zp 1]’; % 3D point in homogeneous coordinates
M = H*Mp; % Transformation Mp −> M
X = M(1)/M(4) % X coordinate
Y = M(2)/M(4) % Y coordinate
Z = M(3)/M(4) % Y coordinate

The output of this code is: X=1mm, Y=3.2456mm and Z=3.3927mm. In this
code, we use function Xmatrixr3 (see Appendix B) of XVIS Toolbox. This func-
tion computes matrix R as defined in (3.13). It is worth noting that the division by
M(4) in this case is not necessary because M(4) = 1, since the last row of H is
[0 0 0 1]. �

3.2.4 3D → 2D Transformation

In an X-ray computer vision system, a 3D point is projected using a perspective
transformation as illustrated in Fig. 3.4. Besides applying different physical princi-
ples and technologies, it is common in X-ray testing to use terminology as intro-
duced for optical imaging, such as optical axis, focal length, and so forth. In this
model, a 3D point M is defined in (X, Y, Z) coordinate system, which is projected
into projection plane Z = f (called the retinal plane Π ), where f is the focal
length. All X-rays come from optical center C defined in (X = 0, Y = 0, Z = 0).
We define t as the straight line on which C and M lie (see Fig. 3.4). This line will be
denoted as 〈C, M〉. Thus, the projection point m defined in (x, y) coordinate system
is given by the intersection of t with the projection plane Π . This operation is called
central projection [2]. The origin o of (x, y) coordinate system is pierced by the
optical axis (Z -axis). After intercept theorem, it should be clear that:

Z

f
= Y

y
= X

x
, (3.14)

that can be expressed as: {
Z x = f X

Z y = f Y
(3.15)
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Fig. 3.4 Perspective transformation in an X-ray computer vision system (→ Example 3.3 )

or using a matrix notation:

Z

⎡
⎣ x

y
1

⎤
⎦ =

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
P

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ . (3.16)

Matrix P is a 3 × 4 matrix known as the perspective projection matrix. Thus, the
projected point given in homogeneous coordinates m = [x y 1]T is proportional to
PM, where M is the 3D point given in homogeneous coordinates M = [X Y Z 1]T.
Usually, (3.16) is written in the following form:

λm = PM. (3.17)

where λ is a scale factor with λ �= 0.

Matlab Example 3.3 In Fig. 3.4, f = 100 cm, X = 20 cm, Y = 30 cm, and
Z = 50 cm. If we want to find the coordinates of projected point in (x, y) coordinate
system, we can use the following Matlab code:
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Listing 3.3 : Euclidean transformation 3D → 2D.

% PerspectiveTrans.m
f = 100; % Focal distance in cm
X = 20; % X coordinate in cm
Y = 30; % Y coordinate in cm
Z = 50; % Z coordinate in cm
M = [X Y Z 1]’; % 3D point in homogeneous coordinates
P = Xmatrixp(f); % Rotation matrix
m = P*M; % Transformation M −> m
x = m(1)/m(3) % X coordinate
y = m(2)/m(3) % Y coordinate

The output of this code is: x = 40 cm and y = 60 cm. In this code, we use func-
tion Xmatrixp (see Appendix B) of XVIS Toolbox. This function computes matrix P
as defined in (3.16). �

As we can see, if nonhomogeneous coordinates are used, will be nonlinear (see
(3.14)), however, it is linear in homogeneous coordinates (see (3.17)). In addition,
all explained transformations are linear in homogeneous coordinates. This is the
reason why we use homogeneous coordinates in X-ray computer vision systems.
Thus, we can handle all projective transformations easily. For instance, if M is given
in another coordinate system (X ′, Y ′, Z ′) (M = HM′ as shown in (3.11)), it is very
simple to replace this transformation in (3.17) yielding λm = PHM′. The reader
can note that the same is valid for point m that can be given in another coordinate
system.

3.3 Geometric Model of an X-ray Computer Vision System

The geometric model of the X-ray computer vision system establishes the relation-
ship between 3D coordinates of the object under test and their corresponding 2D
digital X-ray image coordinates. The model is required by both reconstructing 3D
information from image coordinates and reprojecting 2D image coordinates from
3D information. As explained in Sect. 1.4, the principal aspects of an X-ray com-
puter vision system are shown in Fig. 1.8, where an X-ray image of a casting is
taken. Typically, it comprises the following five steps: (i) a manipulator for handling
the test piece, (ii) an X-ray source, which irradiates the test piece with a conical
beam to generate an X-ray image of the test piece, (iii) an image intensifier which
transforms the invisible X-ray image into a visible one, (iv) a CCD camera which
records the visible X-ray image, and (v) a computer to process the digital image of
the X-ray image and then classify the test piece by accepting or rejecting it. Steps
(iii) and (iv) can be replaced by a flat panel. Flat amorphous silicon detectors can
be used as image sensors in some industrial inspection systems. In such detectors,
using a semiconductor, energy from the X-ray is converted directly into an electri-
cal signal (without image intensifier). Nevertheless, NDT using flat detectors is less
feasible due to their higher cost compared to image intensifiers. In this section, we
will present a geometric model for computer vision systems for both flat detectors

http://dx.doi.org/10.1007/978-3-319-20747-6_1
http://dx.doi.org/10.1007/978-3-319-20747-6_1
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Fig. 3.5 Geometric and electromagnetic distortions obtained in an X-ray image of a regular object
using an image intensifier

and image intensifiers. Image intensifiers suffer from two significant distortions:
geometric and electromagnetic field distortions (see an example in Fig. 3.5). On the
other hand, computer vision systems based on flat detectors do not suffer from these
distortions, and they can be easily modeled with a simple pinhole camera model [1].

In this section, we will give a geometric viewpoint about how an X-ray computer
vision system can be explicitly modeled. When using explicit models, the physical
parameters of the computer vision system, like image center, focal length, etc., are
considered independently [4]. The model presented in this section maps the 3D
object into a digital X-ray image using two transformations as shown in Fig. 1.8:
(i) linear central projection in the X-ray projection; (ii) digital image formation, i.e.,
perspective transformation in the image intensifier and 2D projective transformation
in the CCD camera, or a single 2D projective transformation when using a flat panel.
When modeling the image intensifier a high accuracy explicit model is presented,
which takes into account the nonlinear distortion caused by the curved input screen
of the image intensifier (see Fig. 1.8), and the nonlinear projection in the image
intensifier caused by electromagnetic fields.

3.3.1 A General Model

In this section, we present a general model which relates the 3D coordinates of the
test object to the 2D coordinates of the digitalized X-ray image pixel. The model
consists of two parts as shown in Fig. 1.8: X-ray projection and digital image for-
mation. The coordinate systems used in our approach are illustrated in Fig. 3.6.

First, we will describe how a 3D point M is projected onto a projection plane Π ,
called the retinal plane of the X-ray projection, in which the X-ray image is formed
through central projection. In case of image intensifiers, the retinal plane is fictitious
and is located tangentially to the input screen of the image intensifier, as shown in
Fig. 3.7. The optical center C of the central projection corresponds to the X-ray
source, modeled as a point.1 The optical center is located at a distance f , the focal

1Although industrial X-ray generators use standard tubes with larger focal size that blur the
X-ray images slightly, the assumption that the X-ray source can be modeled as a point is valid for

http://dx.doi.org/10.1007/978-3-319-20747-6_1
http://dx.doi.org/10.1007/978-3-319-20747-6_1
http://dx.doi.org/10.1007/978-3-319-20747-6_1


64 3 Geometry in X-ray Testing
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Fig. 3.6 Diagram of the coordinate systems (see Fig. 1.8)

Fig. 3.7 X-ray projection using an image intensifier (see S surface) or a flat panel (see Π plane)

length of the retinal plane. The central projection of M onto projection plane Π is
the point m. It is defined as the intersection of the line that contains the points C and
M with the retinal plane Π . The optical axis is defined as the line going through the
optical center C and perpendicular to the retinal plane Π .

We define a 3D world coordinate system (WCS) in the optical center C of the
central projection. The coordinates of this coordinate system are X̄ , Ȳ , and Z̄ , where
the Z̄ -axis coincides with the optical axis, as represented in Fig. 3.7. In WCS, the

(Footnote 1 continued)
geometrical measurements. This is because the position of a point in the X-ray image can still be
estimated as the center of the blurred point [5].

http://dx.doi.org/10.1007/978-3-319-20747-6_1
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retinal plane Π is defined by Z̄ = f . The coordinates of the 3D point M are denoted
by (X̄ , Ȳ , Z̄) in this coordinate system.

Now, we define a 3D object coordinate system (OCS) that is attached to the
object to be projected. The coordinates of the 3D point M are denoted by (X, Y, Z)

in OCS. The center of the object is assumed to be at the origin O of this coordinate
system, as shown in Fig. 3.7. The OCS is then considered as a rigid displacement
of the WCS represented by a translation 3-component vector t = [tX tY tZ ]T and a
3 × 3 rotation matrix R as explained in Sect. 3.2.3. Vector t represents the origin of
OCS given in coordinates of WCS, and matrix R depends on the Euler angles ωX ,
ωY , and ωZ as explained in (3.13).

The perspective projection of M onto the projection plane is the 2D point m that
is represented as (x̄, ȳ) in a new 2D coordinate system called the X-ray projection
coordinate system (PCS). The x̄, ȳ-axis are parallel to the X̄ , Ȳ -axis, respectively.
Applying intercept theorem, the coordinates of m in this 2D system are x̄ = f X̄/Z̄
and ȳ = f Ȳ/Z̄ . Using homogenous coordinates as in Sects. 3.2.3 and 3.2.4 we
obtain:

λ

⎡
⎣ x̄

ȳ
1

⎤
⎦ =

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
P

[
R t
0 1

]
︸ ︷︷ ︸

H

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , (3.18)

where 0 = [0 0 0], and λ is a scale factor λ �= 0. Equation (3.18) can be rewritten
in matrix form as:

λm = AM, (3.19)

where A = PH, and the 3-component vector m and the 4-component vector M
are homogeneous representations of (x̄, ȳ) and (X, Y, Z), respectively (e.g., m =
[x̄ ȳ 1]T and M = [X Y Z 1]T). Equation (3.19) is a linear equation that maps
object coordinates to projection plane coordinates. This equation depends on seven
parameters:

θext = [ f ωX ωY ωZ tX tY tZ ]T. (3.20)

They are called the extrinsic parameters of the X-ray computer vision system. Thus,
A := A(θext ).

Finally, we introduce the 2D image coordinate system (ICS) to represent the pixel
coordinates (u, v) of the digital image. The point (u, v) in ICS can be calculated
from the point (x̄, ȳ) in PCS using a function γ :

w = γ (m, θint ), (3.21)

where the 3-component vectors w and m are homogeneous representations of (u, v)
and (x̄, ȳ), respectively, and θint is a vector with the parameters of the transfor-
mation called the intrinsic parameters. Several linear and nonlinear models of γ ,
that were developed for X-ray computer vision systems and CCD cameras, will be
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discussed in Sect. 3.3.2. On the one hand, the geometric model of image formation
using a flat panel is linear and can be modeled using a 2D → 2D geometric trans-
formation as explained in Sect. 3.2.2. On the other hand, image intensifiers must
be modeled using nonlinear transformations due to geometric and electromagnetic
distortions.

To summarize, using (3.19) for the perspective projection and (3.21) for the
digital image formation, an object point M , whose homogeneous coordinates are
M = [X Y Z 1]T (in OCS), can be mapped into a 2D point of the digital X-ray
image as w, the homogeneous coordinates of which are w = [u v 1]T (in ICS) using
the following expression:

w = γ (A(θext )M, θint ) := F(θ, M) (3.22)

where θT = [θext ; θint ] is the vector of parameters involved in the projection
model.

As we will explain in Sect. 3.4, in a process termed calibration, we estimate
the parameters θ of the model based on n points whose object coordinates Mi =
[Xi Yi Zi 1]T are known and whose image coordinates w̃i = [ũi ṽi 1]T are
measured, for i = 1, . . . , n. Using (3.22) we obtain the reprojected points wi =
[ui vi 1]T, i.e., the inferred projections in the digital image computed from the cal-
ibration points Mi and the parameter vector θ . The parameter vector is then esti-
mated by minimizing the distance between measured points (w̃i ) and inferred points
(wi = F(θ, Mi )). Thus, the calibration is performed by minimizing the objective
function μ(θ) defined as the mean-square discrepancy between these points:

μ(θ) = 1

n

n∑
i=1

‖ w̃i − wi ‖→ min. (3.23)

The calibration problem is a nonlinear optimization problem. Generally, the mini-
mization of μ(θ) has no closed-form solution. For this reason, the objective function
must be iteratively minimized starting with an initial guess θ◦ that can be obtained
from nominal values or preliminary reference measurements.

3.3.2 Geometric Models of the Computer Vision System

In this section, we present seven existing models that can be used to calibrate an
X-ray computer vision system. Five models were conceived to calibrate cameras
with and without distortion. The others were developed to calibrate computer vision
systems with image intensifiers. In all these models, the perspective projection
OCS → PCS is done using (3.19). For this reason, in this section only the trans-
formation PCS → ICS will be described. We use the definition given in (3.21),
where a point m = [x̄ ȳ 1]T in PCS is transformed by a function γ into a point
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w = [u v 1]T in ICS. Recall that the parameters of γ are the intrinsic parameters of
the computer vision system.

Camera models
Faugeras and Toscani present in [6] a linear model without considering distortion:

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ ku s u0

0 kv v0
0 0 1

⎤
⎦

⎡
⎣ x̄

ȳ
1

⎤
⎦ . (3.24)

The five (intrinsic) parameters of the model consider scale factors (ku , kv) in each
ordinate, a skew factor (s) that models non-orthogonal u, v-axis, and a translation
of the origin (u0, v0) that represents the projection of (x̄, ȳ) = (0, 0) in ICS. This
model can be used to model an X-ray computer vision system with a flat panel. In
this linear model, the focal length is normalized to f = 1. A linear approach based
on a least squares technique is proposed in [6] to estimate the intrinsic and extrinsic
parameters in a closed form. However, Faugeras in [1] proposes minimizing the dis-
tances between the observations and the model in ICS using the objective function
μ of (3.23). Faugeras reported that this nonlinear method clearly appears to be more
robust than the linear method of Faugeras and Toscani when the measured data is
perturbed by noise.

In order to model the distortion, a positional error (δu, δv) can be introduced:

⎡
⎣ u

v
1

⎤
⎦

︸ ︷︷ ︸
w

=
⎡
⎣ ku 0 u0

0 kv v0
0 0 1

⎤
⎦

⎡
⎣ x̄

ȳ
1

⎤
⎦

︸ ︷︷ ︸
w′

+
⎡
⎣ δu(x̄, ȳ)

δv(x̄, ȳ)

0

⎤
⎦ . (3.25)

In this model, the ideal nonobservable position w′ is displaced to the real position
w as illustrated in Fig. 3.8. The amount of the displacements, δu and δv, usually
depends on the point position (x̄, ȳ). Several models for the positional error were
reported in the literature to calibrate a camera [3, 5, 7, 8]. In these models, the
skew s is zero, because in modern digital cameras the u, v-axis can be considered as
orthogonal.

The distortion is decomposed into two components: radial and tangential distor-
tions as shown in Fig. 3.8.

Radial and tangential distortions depend on r and φ, respectively, where (r, φ)

are the polar coordinates of the ideal position (x̄, ȳ) represented in PCS. Tsai in [3]
uses a simple radial distortion model with only one additional parameter, because
his experience with cameras shows that only radial distortion, which is principally
caused by flawed radial curvature of the lens elements, needs to be considered.

Weng et al. propose in [5] an implicit model that includes radial, decentering,
and prism distortions. Decentering distortion arises when the optical centers of the
lens elements are not exactly collinear, whereas the prism distortion occurs from
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Fig. 3.8 Radial and tangential distortions [5]

imperfection in lens design, manufacturing, and camera assembly. The last two dis-
tortions, modeled with five parameters, have both radial and tangential components.

Heikkilä introduces in [7] an implicit model for radial and decentering distortions
that take into account an inverse distortion model to express the distorted image
coordinates in terms of their undistorted coordinates. The number of parameters of
this model is four.

Swaminathan and Nayar present in [8] a model for wide-angle lenses and poly-
cameras. The model considers a shift of the optical center, radial distortion, and
decentering distortion. A shift of the optical center means a shift of the image detec-
tor in the image plane. The suggested total distortion includes four parameters.

Image intensifier models
Two models were reported in the literature to calibrate an X-ray computer vision
system composed by image intensifier and CCD camera. The first model was pro-
posed independently by Jaeger in [9] and Brack et al. in [10]. They propose an
implicit model between PCS and ICS. The transfer function γ (3.21) is a third
degree polynomial with 20 intrinsic parameters (ai , bi , i = 0, . . . 9) given by:[

u
v

]
=

[
a0 a1 . . . a9
b0 a2 . . . b9

] [
1 x̄ ȳ x̄ ȳ x̄2 ȳ2 ȳ x̄2 x̄ ȳ2 x̄3 ȳ3

]T
. (3.26)

This cubic function can model not only the distortion caused by the (curved) input
screen, but also the distortion introduced by electromagnetic fields present around
the image intensifier. An example of this model is shown in Example 3.4.

The second model was developed by Mery and Filbert in [11, 12], in which a
hyperbolic surface is used to model the input screen of the image intensifier [13]
that is defined by:

Z̄ = S(X̄ , Ȳ ) = f
√
1 + (X̄/a)2 + (Ȳ/b)2, (3.27)
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with f (the focal length of the X-ray projection) being the real half axis of the hyper-
boloid; and a and b the imaginary half axis. The projection of point M onto the input
screen of the image intensifier is denoted by p. It is calculated as the intersection
of the line that contains points C , M , and m with the 3D surface S (see Fig. 3.7).
Its coordinates are given by: x ′ = x̄/k(x̄, ȳ) and y′ = ȳ/k(x̄, ȳ), with k(x̄, ȳ) =√
1 − (x̄/a)2 − (ȳ/b)2. The point p is imaged at the CCD camera as w, whose

coordinates can be estimated approximately using an affine transformation [1]:

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ ku 0 u0

0 kv v0
0 0 1

⎤
⎦

⎡
⎣+cos(α) +sin(α) 0

−sin(α) +cos(α) 0
0 0 1
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⎦

⎡
⎣ x̄/k(x̄, ȳ)

ȳ/k(x̄, ȳ)

1

⎤
⎦ , (3.28)

where α represents rotation between x̄, ȳ-, and u, v-axis. This model has only three
additional parameters a, b, and α.

Matlab Example 3.4 In Fig. 3.5, the holes of the calibration plate are
uniformly distributed in a grid. The horizontal and vertical distance between
two consecutive holes is 1 cm. The parameters of the cubic model (3.26) can be
obtained using a regression approach as illustrated in the following Matlab code:

Listing 3.4 : Cubic model of an image intensifier

% CubicModel.m
close all

I = Xloadimg(’S’,2,1); % input image of a plate
Data = Xloaddata(’S’,2,’points’); % centers of mass of the holes
figure
imshow(I,[]);
hold on
um = Data.ii(:); % u coordinate of measured holes
vm = Data.jj(:); % v coordinate of measured holes
plot(vm,um,’go’)
xb = repmat((−6.5:6.5),[11 1]); xb = xb(:); % x bar coordinate of holes in cm
yb = repmat((−5:5)’ ,[1 14]); yb = yb(:); % y bar coordinate of holes in cm
n = length(xb);
XX = [ones(n,1) xb yb xb.*yb xb.^2 yb.^2 yb.*xb.^2 xb.*yb.^2 xb.^3 yb.^3];
a = regress(um,XX); % linear regression for a
b = regress(vm,XX); % linear regression for b
us = XX*a; % reprojected coordinate u
vs = XX*b; % reprojected coordinate v
iis = zeros(size(Data.ii)); iis(:) = us;
jjs = zeros(size(Data.jj)); jjs(:) = vs;
plot(vs,us,’r+’)
legend({’Detected points’,’Reprojected points’})
d = [um−us vm−vs];
plot(jjs,iis,’r:’)
plot(jjs’,iis’,’r:’)
axis on
err = mean(sqrt(sum(d.*d,2))) % mean error in pixels

The output of this code is shown in in Fig. 3.9. The detected (or measured) points
correspond to the centers of mass of the holes. They were found using an image
processing algorithm. Their coordinates are stored in file plate_points.mat.
The mean error between measured and modeled points is 0.7699 pixels. �
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Fig. 3.9 Cubic model of the X-ray projection of regular grid (see Fig. 3.5) (→ Example 3.4 )

Matlab Example 3.5 In Fig. 3.10 we show how a 3D point M is projected
onto five different X-ray images of an aluminum wheel that has been rotated. The
coordinates of M given in the object coordinate system are the same for each pro-
jection. In this example, we model the image intensifier using the hyperbolic model
explained in this section:

Listing 3.5 : Transformation 3D → 2D using hyperbolic model

% ProjectionHyperbolicModel.m
M = [60 60 −40 1]’; % 3D point in mm

h = Xloaddata(’C’,1,’HyperbolicModel.txt’);
P = Xloaddata(’C’,1,’ManipulatorPosition.txt’);

for p=38:2:46 % for position p:
t = [P(p,1) P(p,2) P(p,3)]’; % translation vector
Rp = Xmatrixr3(P(p,4),P(p,5),P(p,6)); % rotation matrix
Hp = [Rp t;0 0 0 1]; % 3D Euclidean transformation
w = Xhyperproj(M,h,Hp); % projection using hyperbolic model
Xloadimg(’C’,1,p,1); % display image p
hold on
plot(w(2),w(1),’rx’); % 2D projection of 3D point M
pause

end
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Fig. 3.10 Projection of a 3D point onto 5 different X-ray images of the same object in 5 different
positions (→ Example 3.5 )

The output of this code is Fig. 3.10. In this code, we use function Xhyperproj (see
Appendix B) of XVIS Toolbox. This function computes the transformation 3D →
2D defined in (3.28). �

3.3.3 Explicit Geometric Model Using an Image Intensifier

In this section, we present an explicit model [14] based on the hyperbolic model
of Mery and Filbert [11, 12] to perform the transformation PCS → ICS that takes
place in the image intensifier and CCD camera. The original hyperbolic model, pre-
sented in the previous section, does not take into account the nonlinear projection
between input screen and output screen of the image intensifier, because it is consid-
ered as an affine transformation. Additionally, there is no decentering point, since
in this model the optical axis of the X-ray projection coincides with the optical axis
of the image intensifier. Furthermore, the skew factor of the CCD camera is not
included. Finally, the distortion that arises when electromagnetic fields are present
around the image intensifier is not considered. In this section, we propose a com-
plete model that incorporates the mentioned distortion effects.

Image intensifier
The image intensifier converts the X-ray image into a bright visual image (see
Sect. 1.4.3) that can be captured by a CCD camera [15]. Due to the curvature of
the input screen of the image intensifier, the X-ray image received at the output
screen is deformed, especially at the corners of the image. An additional distortion
can be caused by electromagnetic fields that perform a nonlinear projection. An
example of these distortion effects is shown in Fig. 3.5, where an X-ray image of a
plate containing holes that have been placed in a regular grid manner is illustrated.

First, we will consider a model without electromagnetic field distortion. The
geometry of the model used to compute the distortioned perspective projection is
shown in Fig. 3.11. It consists of a (curved) input screen S and an output screen
�, on which the image is projected. The output screen � coincides with the retinal
plane of this projection.2 We have shown in Sect. 3.3.1, how the 3D object point
M is projected onto plane Π as point m. Thus, the perspective X-ray projection

2The reader should note that at this moment there are two retinal planes: Π for the central projec-
tion and � for the image intensifier.

http://dx.doi.org/10.1007/978-3-319-20747-6_1
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Fig. 3.11 Geometric model of the image intensifier (axis parallel to Ȳ are not shown)

OCS → PCS, is given by (3.19). In this section we will calculate, how point m is
projected onto input screen S as point p and then onto the retinal plane � as point r .

The X-ray image present on the input screen is projected onto the output screen
through an optical center of the image intensifier. We may assume without loss of
generality that the optical axis of the image intensifier (z-axis) is parallel to the
optical axis of the X-ray projection (Z̄ -axis), because, in a central X-ray projection,
there is always a ray that is parallel to the optical axis of the image intensifier. How-
ever, the displacement of the axis must be determined. For this reason, we modify
the hyperbolic surface of (3.27) by introducing a shift of the center of the hyper-
boloid as shown in Fig. 3.11. Therefore, the hyperbolic surface S is defined in WCS
by:

Z̄ = S(X̄ , Ȳ ) = f

√
1 + (X̄ − x̄0)2

a2 + (Ȳ − ȳ0)2

b2
, (3.29)

with f being the real half axis of the hyperboloid; a and b the imaginary half axis;
and (x̄0, ȳ0) the coordinates of the center of the hyperboloid. The focal length of
the X-ray projection ( f ), defined in Sect. 3.3.1, is the minimal value that takes the
surface S. This occurs in (x̄0, ȳ0), that is represented as q in Fig. 3.11. The displace-
ment between Z̄ - and z-axis is given by (x̄0, ȳ0).

The projection of point M onto the input screen of the image intensifier is cal-
culated as the intersection of the line that contains points C , M , and m with the 3D
surface S. This intersection is denoted by p in Fig. 3.11, whose coordinates in WCS
are given by (x̄ ′, ȳ′, z̄′):

x̄ ′ = z̄′ x̄/ f, ȳ′ = z̄′ ȳ/ f and z̄′ = −B + √
B2 − 4AC

2A
(3.30)

with

A = 1
f 2

(
1 − x̄2

a2
− ȳ2

b2

)
, B = 2

f

(
x̄ x̄0
a2

+ ȳ ȳ0
b2

)
, C = −

(
1 + x̄20

a2
+ ȳ20

b2

)
.
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The coordinates of point p depend on the coordinates (x̄, ȳ) of point m in PCS.
Using homogeneous coordinates, p can be expressed as follows:

p = g(m), (3.31)

where p = [x̄ ′ ȳ′ z̄′ 1]T, m is a homogeneous representation of (x̄, ȳ), and g is the
nonlinear function defined from (3.30).

As illustrated in Fig. 3.11, point p is projected through the optical center of the
image intensifier onto the output screen� as point r . The projected point r has coor-
dinates (x, y) in a new 2D coordinate system, called the output screen coordinate
system (SCS). This coordinate system is centered in e, and its x, y-axis is parallel
to the x̄, ȳ-axis of PCS. We can conclude from consideration of similar triangles
that:

λ

⎡
⎣ x

y
1

⎤
⎦ =

⎡
⎣ d 0 0 −dx̄0
0 d 0 −d ȳ0
0 0 1 −( f + c)

⎤
⎦

⎡
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x̄ ′
ȳ′
z̄′
1

⎤
⎥⎥⎦ , (3.32)

where λ is a scale factor, and c and d are the distances of the input and output
screen to the optical center of the image intensifier (see Fig. 3.11). This equation
can be expressed in matrix form as:

λr = Dp, (3.33)

where the 3-component vector r is a homogeneous representation of (x, y), and D is
the 3× 4 projective matrix of the image intensifier expressed in (3.32). From (3.31)
and (3.33) we obtain the nonlinear equation, which depends on six parameters: a,
b, c, d, x̄0, and ȳ0, that maps a projected point on the retinal plane Π of the X-ray
projection onto a point on the retinal plane � of the image intensifier:

λr = Dg(m). (3.34)

To model the effect of the electromagnetic distortion we propose an empirical
model, in which a point r on plane � will be transformed into a new point r ′. We
observed that the projection of a regular grid seems to have an additional harmonic
signal (see Fig. 3.5). For this reason, we can empirically model this distortion with
sinusoidal functions.

The electromagnetic distortion is modeled in two steps. The first step introduces
a distortion in the x direction and the second one in the y direction. Thus, x is first
transformed into x ′ from (x, y) and second, y is transformed into y′ from (x ′, y) as
follows:

x ′ = x + A1 sin(B1y + C1)

y′ = y + A2 sin(B2x ′ + C2)
(3.35)
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Fig. 3.12 Imaging process in the CCD camera

where Ai , Bi , and Ci , i = 1, 2 are the parameters of the electromagnetic distortion
model. Formally, r ′ can be expressed using homogeneous coordinates as follows:

r′ = f(r) = [x ′ y′ 1]T, (3.36)

where f is the nonlinear function defined from (3.35).
Other sinusoidal functions can be used to model the distortion introduced by

electromagnetic fields. The reason why we use a two-step-based model is because
equation (3.35) can be back-projected in a closed form as shown previously.

CCD camera
The 2D image coordinate system (ICS) is used to represent the pixel coordinates
of the X-ray image captured by the CCD camera. The point r (or r ′ if we consider
the electromagnetic field distortion) at the output screen of the image intensifier (see
Fig. 3.11) is projected onto the retinal plane � of the CCD array3as point w as shown
in Fig. 3.12.

The camera could be modeled as a general pinhole camera [1], in which a pro-
jective mapping from a 3D point of the space to a 2D projective space takes place.
However, in our model the 3D points to be mapped belong to a plane, namely the
retinal plane �. For this reason, in this work we use a homography, i.e., a 2D →
2D general projective transformation as explained in Sect. 3.2.2, which relates the
coordinates of retinal plane � to retinal plane � of the camera. This transformation
is defined by:

λw = Hr, (3.37)

where the 3-component vectors r and w are homogeneous representations of (x, y)

and (u, v) (coordinates of r in SCS and w in ICS), respectively. Matrix H is a homo-
geneous 3×3matrix that causes a general perspective transformation where rotation,

3The reader should note that �, the retinal plane of the CCD camera, is the third retinal plane of
our model (see footnote 2).
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translation, scaling, skew, and perspective distortions are considered. Matrix H has
nine elements where only their ratio is significant, so the transformation is defined
by only eight parameters, e.g., h11, h12, . . . , h32. Parameter h33 can be defined as
h33 = 1, or H can be constrained by ‖ H ‖= 1 [2].

Summary
In this section we described a model which relates the transformation 3D → 2D,
from a 3D point M of the test object to a 2D point w of the digitalized X-ray image
pixel using homogeneous coordinates. Therefore, the transformation is expressed
by M → w, where M = [X Y Z 1]T and w = [u v 1]T. There are two pos-
sibilities for performing the transformation, namely without and with considering
the electromagnetic distortion. In the first case, the transformation is given by:
M → m → r → w using Eqs. (3.19), (3.34), and (3.37) respectively:

λw = HDg(PM). (3.38)

This model has seven extrinsic parameters (defined in (3.20)) and fourteen intrinsic
parameters: a, b, c, d, x̄0, ȳ0, h11, h12, . . . , h31, and h32.

In the second case, where the electromagnetic distortion is modeled, the transfor-
mation is expressed by: M → m → r → r′ → w using Eqs. (3.19), (3.34), (3.36),
and (3.37), respectively:

λw = HDf(g(PM)). (3.39)

In comparison with the first case model, the consideration of the electromagnetic
distortion requires six more intrinsic parameters: Ai , Bi , and Ci , for i = 1, 2.

3.3.4 Multiple View Model

In many applications, a single view of a test object is not enough because there are,
for example, occluded parts or intricate projections that cannot be observed with a
single view. For this reason the test object must be analyzed from n points of views
(with n ≥ 2). In this section, we present a geometric model that can be used when
dealing with multiple views, i.e., a geometric model that relates the transformation
of a 3D point of the test object into the 2D coordinates of each X-ray projection. For
multiple view analysis, i.e., 3D reconstruction or analysis of a part from different
points of view, it is required that the n geometric models must share the same 3D
object coordinate system (OCS). That means the 3D coordinates (X, Y, Z) of each
projection, for p = 1 . . . n, are the same, and we are interested to find the location of
the projection of this unique 3D point in each 2D view. Using (3.22) for each view
we obtain: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
w1 = F(M, θ1)

w2 = F(M, θ2)
...

wn = F(M, θn)

(3.40)
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Fig. 3.13 Multiple views of an object acquired using a manipulator that rotates the object around
its vertical axis (series S0007 of GDXray)

where M = [X Y Z 1]T are the homogenous coordinates of the 3D points
in OCS, θp are the parameters of the geometric model for pth projection, and
wp = [u p vp 1]T are the homogenous coordinates in pixels in pth X-ray image.

Two views can be simultaneously achieved using two different X-ray detectors.
There are some X-ray computer vision systems with three or four detectors as well
(see, for example, [16]). In medicine for instance, it is a common practice to take
two X-ray images simultaneously (from two different points of views) of certain
organs that change their shape and size because they are in motion (e.g., X-ray
stereo angiography [17]). In this case, we have independent geometric models (one
for each view) that can be obtained using the theory outlined in the previous section.
That means, in (3.40), the parameters of the models are independent from each other.
Usually in X-ray testing, however, there is a manipulator that is able to locate the test
object in different positions, and different views are obtained in different times using
a single detector. Given that we are capturing X-ray images of a rigid test object, it is
not necessary to acquire the images simultaneously (see Fig. 3.13). In this case, the
parameters of the models are not independent from each other because they share
the same intrinsic parameters as there is only one X-ray detector. For example, if
a manipulator rotates the test object as shown in Fig. 3.6, and for each position a
new X-ray image is acquired, it is clear therefore that the transformation from OCS
to word coordinate system (WCS) is different for each projection, however, the
projection from WCS into image coordinate system (ICS) is exactly the same.

In an X-ray computer vision system with a manipulator and a flat panel (that can
be modeled by a simple model with no distortion), the following equation can be
used for pth view (wp = F(M, θp)) according to (3.18) and (3.24):

λp
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1
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⎥⎥⎦ , (3.41)
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where 4 × 4 matrix Hp, that includes rotation matrix Rp and translation vector
tp, defines the Euclidean transformation of pth position from OCS to WCS. In
this simple model, the vector parameter θp for pth projection includes intrinsic
parameters (ku, kv, s, u0, v0) and extrinsic parameters focal length f for the cen-
tral projection, (ωX p, ωY p, ωZ p) for the pth rotation, and (tX p, tY p, tZ p) for the pth
translation. It is clear, that the intrinsic parameters are the same for each projec-
tion whereas the extrinsic parameters are different. In many cases, however, the test
object is rotated around one axis only, that means (tX p, tY p, tZ p) is constant and
only one ω angle changes for each position. This is the case of example of Fig. 3.13
where ωX p = ωX , ωY p = ωY and ωZ p = ωZ + p5◦, where the rotation around the
vertical axis between two consecutive frames is 5◦.

The transformation defined by Hp (OCS → WCS) can be modeled using a
manipulator coordinate system (MCS): OCS → MCS → WCS. Thus, for pth
view the transformation OCS → MCS is constant (with some constant rotation and
translation), whereas MCS → WCS has a different rotation and translation for each
position.

This methodology can be extended to more complex manipulators with several
degrees of freedom. For example, in Fig. 3.14 such a manipulator system is pre-
sented. This system can be used in the inspection of aluminum castings. The object
can be rotated around its vertical axis using rotation R. In addition, it can be trans-
lated in X and Z direction using the manipulator table. Moreover, the whole com-
puter vision system can be translated in Y and rotated using rotation T. In order to
model the transformation OCS → WCS of this manipulator system, we can include
additional coordinate systems as illustrated in Fig. 3.15: OCS → MCS → SCS →
WCS. Thus, there are three 3D Euclidean transformations. Each one is modeled

Fig. 3.14 X-ray computer vision system with a manipulator with several degrees of freedom
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Fig. 3.15 Coordinate systems used in the geometric model of Fig. 3.14

using a 4× 4 transformation matrix that includes a 3× 3 rotation matrix and a 3× 1
translation vector as explained in Sect. 3.2.3. That means, the whole transformation
OCS → WCS is a 4×4 matrix computed as the multiplication of these three matri-
ces. This matrix corresponds to Hp in (3.41). The reader can find more details of
this model in [18].

3.4 Calibration

The calibration of an X-ray computer vision system—in the context of 3D machine
vision—is the process of estimating the parameters of the model, which is used to
determine the projection of the 3D object under test into its 2D digital X-ray image.
This relationship 3D → 2D can be modeled with the transfer function F : R3 → R

2

expressed in (3.22).
There are several techniques developed to calibrate a computer vision system.

They can be roughly classified into two categories: photogrammetric calibration
and self-calibration [19]. The first one is a 3D reference object-based calibration,
where the calibration is performed by observing a calibration object whose geom-
etry in 3D space is known with high accuracy [1]. The second technique uses the
identification of matching points in several views of a scene taken by the same cam-
era. Self-Calibration does not use a calibration object with known 3D geometry
because it aims to identify the intrinsic parameters of the computer vision system
and to reconstruct 3D structure up to a scale similarity [20]. Due to the high pre-
cision feature measurement of 3D geometry required in the NDT applications, it
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(a) (b)

(c)

Fig. 3.16 Calibration object: a photography; b CAD model; and c X-ray image of the calibration
object and measured calibration points

would be necessary to do a true reconstruction of the 3D space without a scale fac-
tor. For this reason, usually the calibration technique in X-ray testing belongs to the
photogrammetric category.4

In calibration, we estimate the parameters of the model based on n points of a cal-
ibration object whose object coordinates Mi = [Xi Yi Zi 1]T are known and whose
image coordinates w̃i = [ũi ṽi 1]T are measured, for i = 1, . . . , n. In Fig. 3.16 an
example of a calibration object is illustrated.

Using the geometric model explained in Sect. 3.3 (see (3.22)), we obtain the
reprojected points wi = [ui vi 1]T, i.e., the inferred projections in the digital image
computed from the calibration points Mi and the parameter vector θ :

wi = γ (AMi ) := F(θ, Mi ) for i = 1 . . . n (3.42)

where θT = [θext ; θint ] is the vector of parameters involved in the projection model
including both extrinsic and intrinsic parameters. The parameter vector is then esti-
mated by minimizing the distance between measured points w̃i (see Fig. 3.16c) and
inferred points wi = F(θ, Mi ) (see Fig. 3.16b). Thus, the calibration is performed
by minimizing the objective function μ(θ) defined as the mean-square discrepancy
between these points:

μ(θ) = 1

n

n∑
i=1

‖ w̃i − F(θ, Mi ) ‖→ min. (3.43)

4Nevertheless, in Sect. 8.4.3 the reader can find an interesting X-ray testing application where the
3D model is estimated using a self-calibration method based on bundle adjustment.

http://dx.doi.org/10.1007/978-3-319-20747-6_8
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Fig. 3.17 Calibration process

The whole calibration process is summarized in Fig. 3.17. The calibration prob-
lem is a nonlinear optimization problem. Generally, the minimization of μ(θ) has
no closed-form solution. For this reason, the objective function must be iteratively
minimized starting with an initial guess θ◦ that can be obtained from nominal val-
ues or preliminary reference measurements. In this section, we present two different
methodologies that can be used to calibrate an X-ray computer vision system. The
first one was proposed originally in [21] and it is implemented in the Computer
Vision Toolbox of Matlab [22]. This technique is very effective and it can be used
in the calibration of computer vision with flat panels or with image intensifiers with
low distortion. The second technique was proposed in [14] and can be used in com-
puter vision systems with image intensifiers with high distortion.

3.4.1 Calibration Using Matlab

This method can be used to easily calibrate an X-ray computer vision system [22].
It requires a checkerboard as calibration object, and at least two X-ray images taken
by the computer vision system to be calibrated. For best results, however, it is rec-
ommended to acquire between 10 and 20 images. An example of 18 X-ray images
of a calibration pattern is shown in Fig. 2.15.

Matlab Example 3.6 For the calibration of an X-ray computer vision sys-
tem the X-ray images of Fig. 2.15 and the following Matlab code can be used. In
this example, a 3D Gaussian bell is superimposed onto an X-ray image in order to
show how we can use the obtained geometric model to reproject 3D points onto the
original image.

http://dx.doi.org/10.1007/978-3-319-20747-6_2
http://dx.doi.org/10.1007/978-3-319-20747-6_2
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Listing 3.6 : Calibration of an X-ray computer vision system.

% Calibration.m

sd = [ Xgdxdir(’S’,1) ’S0001_00’];
% Define images to process
imageFileNames = {[sd ’01.png’],[sd ’02.png’],[sd ’03.png’],[sd ’04.png’],...

[sd ’05.png’],[sd ’06.png’],[sd ’07.png’],[sd ’08.png’],[sd ’09.png’],...
[sd ’10.png’],[sd ’11.png’],[sd ’12.png’],[sd ’13.png’],[sd ’14.png’],...
[sd ’15.png’],[sd ’16.png’],[sd ’17.png’],[sd ’18.png’]};

% Detect checkerboards in images
[imagePoints, boardSize, imagesUsed] = detectCheckerboardPoints(imageFileNames);
imageFileNames = imageFileNames(imagesUsed);

% Generate world coordinates of the corners of the squares
squareSize = 25; % in units of ’mm’
worldPoints = generateCheckerboardPoints(boardSize, squareSize);

% Calibrate the camera
[cameraParams, imagesUsed, estimationErrors] = estimateCameraParameters(imagePoints,

worldPoints, ...
’EstimateSkew’, false, ’EstimateTangentialDistortion’, false, ...
’NumRadialDistortionCoefficients’, 2, ’WorldUnits’, ’mm’);

% View reprojection errors
figure; showReprojectionErrors(cameraParams, ’BarGraph’);
figure; showReprojectionErrors(cameraParams, ’ScatterPlot’)

% Visualize pattern locations
figure; showExtrinsics(cameraParams, ’CameraCentric’);

% Display parameter estimation errors
displayErrors(estimationErrors, cameraParams);

% Example: Superimposition of 3D Gaussian bell onto image #6
i = 6;
I = imread(imageFileNames{i});

% Projection matrix of image i
R = cameraParams.RotationMatrices(:,:,i); % Rotation matrix
t = cameraParams.TranslationVectors(i,:); % Translation vector
P = cameraMatrix(cameraParams, R, t)’; % Projection matrix

GaussianSuperimposition(I,P,squareSize)

The output of this code is shown in Figs. 3.18, 3.19 and 3.20. The reader who is
interested in the computer graphics details of the superimposition can study the
program GaussianSuperimposition that can be found in geo folder. �

3.4.2 Experiments of Calibration

In this section, we present the experiments which we did in order to evaluate the per-
formance of the different models used to calibrate X-ray computer vision systems.
The tested models and their principal features are summarized in Table 3.3. They are
the seven models outlined in Sect. 3.3.2 and the two proposed models of Sect. 3.3.3
(without and with considering electromagnetic distortion). In the presentation of the
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Fig. 3.18 Details of image 6: left measured and reprojected points, right simulation of a 3D
Gaussian bell superimposed onto the checkerboard (→ Example 3.6 )

Fig. 3.19 Camera centric view of the planes of the calibration patterns (→ Example 3.6 )

Fig. 3.20 Reprojection error in pixels of the calibration (→ Example 3.6 )
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results, each model will be identified by the name given in the second column of
Table 3.3.

As we explained in the introduction of Sect. 3.4, the calibration process estimates
the parameters of a model based on points whose object coordinates are known, and
whose image coordinates are measured. The calibration object used in our experi-
ments is shown in Fig. 3.16a. It is an aluminum object with an external diameter of
70mm. A CADmodel was developed by measurement of the calibration object (see
Fig. 3.16b). It has seventy small holes (φ = 3–5mm) distributed on four rings and
the center. As we can see in Fig. 3.16, the centers of gravity of the holes are arranged
in three heights.

The search for the calibration points within the X-ray image is carried out with
a simple procedure that detects regions with high contrast and defined size for
the area. The centers of gravity of the detected regions, computed with subpixel
accuracy, are defined to be the calibration points. Only complete enclosed regions
will be segmented. Figure 3.16c shows an example of the search for the calibra-
tion points within an X-ray image. The reader can use series S0007 of GDXray
with detected points stored in file ground_truth.txt and 3D points in file
points_object_3D.txt. The correspondence between the 3D object points
and their images was established manually. The image intensifier used in the exper-
iments was the XRS 2325 with a 22 cm input screen. The size of the images was
576 × 768 pixels.

In our experiments, the calibration object was placed in different positions using
a manipulator. The positions of the calibration object were achieved by rotating
one of the axis of the manipulator. Some of the images obtained are illustrated in
Fig. 3.21. In order to incorporate the pth position of the manipulator (for each X-ray
image) into the geometric model, we modify Eq. (3.18) by:

λ

⎡
⎣ x̄

ȳ
1

⎤
⎦ =

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
P

[
H̄p t̄ p

0T 1

]
︸ ︷︷ ︸

H̄p

[
R t
0T 1

]
︸ ︷︷ ︸

H

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ . (3.44)

In this equation, we have two 4 × 4 matrices (H and H̄p) that define, respectively,
two 3D Euclidean transformations: (i) between object and manipulator coordinate
systems, and (ii) between manipulator and world coordinate systems. The trans-
lation vectors (t and t̄ p) and the rotation matrices (R and R̄ p) are related to the
corresponding translation and rotation of the mentioned transformations. Since the
calibration object is fixed to manipulator, matrix H is constant for each position:
t = [tX tY tZ ]T and a matrix R is calculated from the Euler angles ωX , ωY , and ωZ

(see (3.13)). However, matrix H̄p depends on the position of the manipulator with
respect to the world coordinate system. Matrix H̄p is defined by a translation vector
t̄ p = [t̄X t̄Y t̄Z ]Tp and a rotation matrix R̄ p computed from the Euler angles ω̄X , ω̄Y ,

5Image intensifier developed by YXLON International Inc.
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Fig. 3.21 Calibration results using the proposed method Hyp-EFD
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and ω̄Z . In our experiments, t̄X , t̄Y , t̄Z , ω̄X , and ω̄Y were constant. Nevertheless, ω̄Z

was incremented by the manipulator in constant steps. Thus, the rotation of this axis
can be linearly modeled by ω̄Z (p) = ω̄Z0 + p
ω̄Z , where p denotes the number of
the position. This new model introduces seven additional extrinsic parameters (t̄X ,
t̄Y , t̄Z , ω̄X , ω̄Y , ω̄Z0, and 
ω̄Z ) that must be estimated in the calibration process as
well.

The calibration is performed by minimizing the mean reprojection error (μ) com-
puted as the average of the distance between measured points (w̃i p) and inferred
points (wi p)—in the image coordinate system (ICS)—obtained from the pth pro-
jection of the i th object point Mi according to the model of the computer vision
system. As we can see, the calibration problem is a nonlinear optimization problem,
where the minimization of the objective function has no closed-form solution. For
this reason, the objective function must be iteratively minimized starting with an
initial estimated value for the parameters involved in the model. In our experiments,
the estimation is achieved using the well-known algorithm for minimization prob-
lems: the BFGS Quasi-Newton method,6 which is implemented by MathWorks Inc.
in the optimization toolbox of MATLAB [23].

We subdivided the calibration points into two groups: the points measured from
seven images (p = 1, 3, 5, . . . 13) were used as control points to calibrate the
computer vision system, whereas the points extracted from seven other images
(p = 2, 4, 6, . . . 14) were used as test points in order to evaluate the accuracy of
calibration.

An example of the calibration using our proposed model, called Hyp-EFD, is
illustrated in Fig. 3.21. We can see that the modeled projection of a CAD model of
the calibration object coincides with the X-ray image very well. Although points of
the top right and the bottom left images of Fig. 3.21 could not be used as control
(or test) points because they are very intricate, the inferred projection of the CAD
model in these positions seems to be fine.

In order to assess the performance of each model, we carried out two exper-
iments: 2D reprojection and 3D reconstruction. The results are summarized in
Table 3.4. The first experiment estimates the parameters of each model by mini-
mizing the average error of the reprojection error—in ICS given in pixels—of the
control points. The accuracy is assessed with the reprojection error in the test points.
Once the calibration is completed, the second experiment is performed using the
parameters estimated in the first. The 3D reconstruction of the measured points was
performed using a least square technique [1]. As a performance measurement of
the second experiment, the Euclidean distance between measured and reconstructed
points in OCS was calculated in millimeters. The meanμ and the standard deviation
σ of the computed distances errors in control and test points were tabulated for each
experiment. For emphasis, we remind the reader that the calibration is performed by
minimizing the average of the reprojection error of the control points (first column

6This is a gradient method that uses the Broyden–Fletcher–Goldfarb–Shanno formula for updating
the approximation of the Hessian matrix iteratively, which reduces the computational cost of the
minimization.
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Table 3.4 Error of the models in control (C) and test (T) points

Model ↓ 2D reprojection (pixels) 3D reconstruction (mm)

μ σ μ σ

C T C T C T C T

1. Linear 2.52 2.45 1.57 1.53 0.47 0.41 0.229 0.157

2. Radial 1.70 1.64 0.96 0.83 0.18 0.17 0.087 0.075

3. Rad-Tan-1 1.40 1.39 0.85 0.76 0.15 0.15 0.076 0.071

4. Rad-Tan-2 1.62 1.66 0.87 0.87 0.25 0.21 0.123 0.092

5. Rad-Tan-3 1.64 1.62 0.92 0.81 0.20 0.18 0.102 0.079

6. Cubic 1.16 1.16 0.67 0.59 0.15 0.14 0.079 0.063

7. Hyp-Simple 1.36 1.40 0.77 0.73 0.18 0.17 0.090 0.074

8. Hyp-Full 1.25 1.29 0.72 0.69 0.17 0.16 0.096 0.072

9. Hyp-EFD 1.18 1.17 0.71 0.64 0.16 0.14 0.084 0.069

in Table 3.4), i.e., the control points in the experiments of 3D reconstruction were
not used to calibrate, but also as test points too.

As the results obtained on control and test points are very similar, our analysis
will consider test point measurements only. The two values x/y given below corre-
spond to the mean error values obtained by computing the 2D reprojection and 3D
reconstruction given in pixels and millimeters, respectively. We observed that the
best results were obtained by Cubic and Hyp-EFD models in both experiments. In
these cases the mean errors were in the order of 1.16 ∼ 1.17/0.14, i.e., 1.16 ∼ 1.17
pixels for the 2D reprojection, and 0.14mm for the 3D reconstruction. Although
the Cubic model obtains a fractionally better accuracy than model Hyp-EFD (see
standard deviations), we must take into account that Cubic model uses an implicit
model with 20 parameters for the projection, and 20 other parameters for the back-
projection. On the other hand, model Hyp-EFD uses the same 20 parameters for
both projection and back-projection.

In our experiments, the X-ray computer vision system could not be adequately
modeled without consideration of the lens distortion or with only radial and tan-
gential distortions. The models that were originally developed for cameras (Lin-
ear, Radial, Rad-Tan-1, Rad-Tan-2, and Rad-Tan-3, where the mean errors were
2.45/0.41, 1.64/0.17, 1.39/0.15, 1.66/0.21, and 1.62/0.18 respectively), did not work
appropriately for our X-ray computer vision system. In many cases, the maximum
reprojection error was greater than 4 pixels. The reason for this is that the distortion
introduced by the image intensifiers is different from the distortion introduced by a
camera lens and the camera models do not consider the electromagnetic distortion
in the image intensifier.

On the other hand, hyperbolic models are used by Hyp-Simple, Hyp-Full, and
Hyp-EFD. The results obtained with model Hyp-Simple are comparable with the
best results obtained from camera models (Rad-Tan-1), where the mean errors
were 1.40/0.17 and 1.39/0.15, respectively. In relation to model Hyp-Simple, model
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Hyp-Full introduces a decentering point and a nonlinear transformation in the image
intensifier. This additional complexity in the model has a significant decrease in the
reprojection error (1.40/0.17 vs. 1.29/0.16). In addition, another important reduc-
tion of both errors is achieved by considering the electromagnetic field distortion in
model Hyp-EFD (1.29/0.16 vs. 1.17/0.14).

We conclude that the proposed explicit model considers the physical parameters
of the computer vision system, like image center, focal length, etc., independently.
The model is able to map the 3D coordinates of a test object to the 2D coordi-
nates of the corresponding pixel on the digital X-ray image. The model consists
of three parts: X-ray projection, image intensifier, and CCD camera. The distortion
introduced by the image intensifier was modeled using a hyperbolic surface for the
input screen and sinusoidal functions for electromagnetic fields. Using our explicit
model, the back-projection function—required for 3D reconstruction—can be cal-
culated directly using a closed-form solution.

The suggested model was experimentally compared with seven other models,
which are normally used to calibrate a computer vision system with and without
lens distortion. Fourteen X-ray images of a calibration object in different positions
were taken. Seven of them were used to calibrate the computer vision system and
the other seven were employed to test the accuracy of calibration. The results show
that the consideration of only radial and tangential distortions is not good enough if
we are working with image intensifiers. In this case, other models must be used for
high accuracy requirements. For this reason, Cubic or Hyp-EFD models are recom-
mended. Their mean errors are very similar as shown in Table 3.4. However, for the
back-projection, it is convenient to use the proposed model Hyp-EFD because the
same parameters are used for both the projection and the back-projection model.

3.5 Geometric Correspondence in Multiple Views

As explained in Sect. 3.3.4, in certain X-ray testing applications it is necessary to
analyze multiple views of a test object. In general, in this kind of computer vision
applications only the images (2D projections) are available and no 3D information
of the test object is known.

In multiple view analysis, it is very important to find corresponding points
because they can be used for 3D reconstruction, or for analysis of the test object
from different points of views. Corresponding points are those 2D points (in differ-
ent views) that are projections of the same 3D point (see Fig. 3.22). An example for
two views is shown in Fig. 3.23, in which we can see two perspective projections
of a 3D point M . This stereo rig consists of projection p and projection q. It is
built using two monocular perspective projection models (Fig. 3.4). In this example,
m p and mq are corresponding points because they are projections of the same 3D
point M .

In this section, we consider geometric and algebraic constraints to solve the
correspondence problem between X-ray images obtained as different projections
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Fig. 3.22 Corresponding points in two different views

of the test object. We will consider the correspondence in two (Sect. 3.5.1), three
(Sect. 3.5.2), and more views (Sect. 3.5.3). In order to model the perspective projec-
tion in each view, we will use linear model (3.19) with no distortion:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λpmp = PpM
λqmq = PqM
λr mr = Pr M

...

(3.45)

for different views p, q, r . . . In general, we assume that there are n views, and
indices p, q, r . . . ∈ {1 . . . n}. It is worth noting that the coordinates of M are given
in the same 3D coordinate system for each projection. That means, M = [X Y Z 1]T
in each equation of (3.45).

The correspondence problem with nonlinear projection models will be consid-
ered for two views only. The reader, however, will be able to establish correspon-
dences with nonlinear models in more views using the methodology of two views.

3.5.1 Correspondence Between Two Views

Now, the correspondence between two points m p and mq (in the X-ray projection
coordinate system) is considered. The first point is obtained by projecting the object
point M at position p, and the second one at position q:

{
λpmp = PpM
λqmq = PqM

(3.46)

for M = [X Y Z 1]T given in the same 3D coordinate system for each equation.
The correspondence problem in two views p and q can be stated as follows: given
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Fig. 3.23 Projection in two
views

mp, Pp, and Pq , is it possible to find mq? Note that in this problem M is unknown.
Moreover, if we know mp and Pp, it is impossible to find an exact location for
M . In this section, we will explain a geometric and algebraic approach that can be
used to solve the correspondence problem. In addition, the section gives practical
considerations and the use of nonlinear projection models.

Epipolar Geometry
We do not know where M is exactly, however, it is known that M lies on the
line 〈C p, m p〉 as illustrated in Fig. 3.23. Since mq is the projection of M onto
view q, we can affirm that mq lies on line � defined as the projection of 〈C p, m p〉
onto view q. Line � is known as the epipolar line of m p in view q.

Thus, to solve the correspondence problem in two views we use epipolar geom-
etry [1, 2, 12]. The epipolar constraint is well known in stereo vision: for each
projection point m p at the position p, its corresponding projection point mq at the
position q lies on the epipolar line � of m p, as shown in Fig. 3.24, where C p and Cq

are the centers of projections p and q, respectively. In this representation, a rotation
and translation relative to the object coordinate system is assumed. The epipolar line
� can be defined as the projection of line 〈C p, m p〉 by the center of projection Cq

onto projection plane q.
Epipolar line can be calculated in three simple steps (see Fig. 3.24):

(i) From m p and Pp, we find two 3D points Mp1 and Mp2 that lies on 〈C p, m p〉.
Obviously, one point that lies on 〈C p, m p〉 is C p, i.e., Mp1 = C p. Since the
location of C p is unknown, we can find it by considering the following reason-
ing [2]: it is not possible to project C p onto view p because C p is the optical
center of this projection. For this reason, if we use the first equation of (3.46)
to project Cp (the homogeneous representation of C p) we will obtain PpCp.
Since this projected point is not defined it can be shown that its homogeneous
representation is [0 0 0]T. It is not possible to estimate the nonhomogeneous
representation of this point because there is a division by zero. For this reason,
PpCp = [0 0 0]T. Thus, Cp can be easily calculated as the null space of Pp:
For A = Pp and Cp = [CX CY CZ 1]T, ACp = 0 can be reformulated as:
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Fig. 3.24 Estimation of
epipolar line � in three steps

⎡
⎣ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦

︸ ︷︷ ︸
A1

⎡
⎣ CX

CY

CZ

⎤
⎦ = −

⎡
⎣ a14

a24
a34

⎤
⎦

︸ ︷︷ ︸
a4

. (3.47)

Then the coordinates of C p in 3D coordinate system are: [CX CY CZ ]T =
−A−1

1 a4.
The second point should be m p, however, we do not know the coordinates of
m p in 3D coordinate space, we only know mp = [x p yp 1]T, where (x p, yp)

are coordinates of m p in 2D coordinates system of view p. Nevertheless, it can
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be shown [2], that a point that lies on 〈C p, m p〉 is M+ calculated as:

M+ = P+
p mp (3.48)

where P+
p is:

P+
p = PT

p[PpPT
p]−1. (3.49)

The 4×3 matrix P+
p is known as the pseudoinverse of Pp because PpP+

p = I3×3.
The reader can demonstrate that the projection of M+ onto view p is mp by
substituting (3.48) in the first equation of (3.46).
Thus, the two 3D points that lie on 〈C p, m p〉 are Mp1 = Cp (defined in (3.47))
and Mp2 = M+ (defined in (3.48)).

(ii) From Mp1 and Mp2, we find the projection of them onto view q using Pq . These
2D points will be denoted as mq1 and mq2, respectively.
Both 3D points are projected onto view q using the second equation of (3.46):

{
λq1mq1 = PqMp1 = PqCp

λq2mq2 = PqMp2 = PqP+
p mp

. (3.50)

(iii) From mq1 and mq2 we find line � which contains them.
Since the epipolar line contains mq1 and mq2, line � can be computed in homo-
geneous coordinates using (3.2):

� = mq1 × mq2. (3.51)

The first point mq1, i.e., the projection of C p onto plane q, as defined in the first
equation of (3.50), is the well known epipole.7 The epipolar line is defined as the
line that contains the epipole mq1 and the point mq2. We observe that the epipole
belongs to any epipolar line obtained from any arbitrary point m p. In other words,
all epipolar lines share a common point: the epipole. Moreover, the epipole does not
depend on m p or mq . It depends only on the two views geometry.

The projective representation of the epipolar line is obtained by taking the cross
product of these two points, i.e., � = mq1×mq2. Line � can be written using [mq1]×,
the antisymmetric matrix of mq1, where � = [mq1]×mq2. Matrix [mq1]× is defined
as the 3 × 3 matrix such that [mq1]×s = mq1 × s for all vectors s, i.e.,

[mq1]× =
⎡
⎣ 0 +mq1(3) −mq1(2)

−mq1(3) 0 +mq1(1)
+mq1(2) −mq1(1) 0

⎤
⎦ .

7The word epipole comes from the Greek ὲπι (epi): over and π óλoς (polos): attractor.
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where mq1 = [mq1(1) mq1(2) mq1(3)]T. Thus, using the antisymmetric matrix,
from (3.51) and (3.50), line � can be computed by:

� = Fpqmp (3.52)

where Fpq is the fundamental matrix known from multiple view computer vision
[2, 24] given by:

Fpq = [PqCp]×PqP+
p mp. (3.53)

Since the point mq belongs to the epipolar line �, it follows that

mT
q � = mT

q Fpqmp = 0 (3.54)

Equation (3.54) is known as the epipolar constraint: If m p and mq are corresponding
points, then mq must lie on the epipolar line � of m p, i.e., mT

q Fpqmp must be zero.

Matlab Example 3.7 This example shows epipolar lines in two views (p and
q). We assume that the projection matrices Pp and Pq are known from a calibration
process. The code computes the fundamental matrix. We select manually eight m p

points in view p. The code plots the epipolar lines of these points in view q.

Listing 3.7 : Epipolar lines for two views.

% EpipolarGeometry.m
close all
Data = Xloaddata(’B’,44,’Pmatrices’); % projection matrices

p = 1; q = 82; % p and q indices
Ip = Xloadimg(’B’,44,p);
Iq = Xloadimg(’B’,44,q);
figure(1);imshow(Ip);title(’Image p’);hold on
figure(2);imshow(Iq);title(’Image q’);hold on

Pp = Data.P(:,:,p); % projection matrix of view p
Pq = Data.P(:,:,q); % projection matrix of view q

F = Xfundamental(Pp,Pq); % fundamental matrix

col = ’bgrcmykw’; % colors for each point−line pair

for i=1:8
disp(’click a point mp in Figure 1...’)
figure(1);
mp = ginput(1)’; % click
plot(mp(1),mp(2), [col(i) ’*’])
figure(2)
Xplotepipolarline(F,mp,col(i)); % Epipolar line

end

The output of this code is shown in Fig. 3.25. The code uses two functions of XVIS

Toolbox: the first one is Xfundamental (see Appendix B) to compute the funda-
mental matrix and the second one is Xplotepipolarline (see Appendix B) to plot
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Fig. 3.25 Example of
epipolar geometry: Top view
p with eight points. Bottom
view q with corresponding
epipolar lines. It is clear that
the corresponding points in
view q lie on the
corresponding epipolar lines.
The intersection of the
epipole lines defines the
epipole (→ Example 3.7 )

the epipolar lines onto view q. The example uses images p = 1 and q = 82 of
series B0044 of GDXray. In this set of images there are 178 different views (taken
by rotating the test object around a quasi-vertical axis in 2◦ between consecutive
views). The reader who is interested in other views can change the code in order to
define other values for p and q. �

Bifocal tensors
Another way to estimate the epipolar constraint is using bifocal tensors [25, 26], as
explained next. This can be considered as an algebraic approach. From (3.46) the
two projections can be expressed by:

{
λpmp = PpM := AM
λqmq = PqM := BM

. (3.55)
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These two equations can also be written as:

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 x p 0
a2 yp 0
a3 1 0
b1 0 xq

b2 0 yq

b3 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G

⎡
⎣ M

−λp

−λq

⎤
⎦

︸ ︷︷ ︸
v

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.56)

where ai and bi denote the i th row of matrices A and B, respectively. If m p and mq

are corresponding points, then the 3D point M exists. It follows that there must be
a nontrivial solution for v in (3.56), i.e., the determinant of the 6× 6 matrix G must
be zero. Expanding the determinant of G we obtain:

|G| = x pxq

∣∣∣∣∣∣∣∣
a2
a3
b2
b3

∣∣∣∣∣∣∣∣
− ypxq

∣∣∣∣∣∣∣∣
a1
a3
b2
b3

∣∣∣∣∣∣∣∣
+ xq

∣∣∣∣∣∣∣∣
a1
a2
b2
b3

∣∣∣∣∣∣∣∣
+

−x p yq

∣∣∣∣∣∣∣∣
a2
a3
b1
b3

∣∣∣∣∣∣∣∣
+ yp yq

∣∣∣∣∣∣∣∣
a1
a3
b1
b3

∣∣∣∣∣∣∣∣
− yq

∣∣∣∣∣∣∣∣
a1
a2
b1
b3

∣∣∣∣∣∣∣∣
+ x p

∣∣∣∣∣∣∣∣
a2
a3
b1
b2

∣∣∣∣∣∣∣∣
− yp

∣∣∣∣∣∣∣∣
a1
a3
b1
b2

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
a1
a2
b1
b2

∣∣∣∣∣∣∣∣
= 0.

that can be expressed by:

|G| = [xq yq 1]
⎡
⎣ F11 F12 F13

F21 F22 F23
F31 F32 F33

⎤
⎦

︸ ︷︷ ︸
Fpq

⎡
⎣ x p

yp

1

⎤
⎦ = mT

q Fpqmp = 0 (3.57)

where Fpq corresponds to the mentioned fundamental matrix of Eq. (3.53) for A =
Pp and B = Pq . In this algebraic formulation, the elements of Fpq are called bifocal
tensors [2]. They can be computed as:

Fi j = (−1)i+ j
∣∣∣∣∼a j

∼bi

∣∣∣∣ for i, j = 1, 2, 3. (3.58)

where ∼a j and ∼bi mean, respectively, matrix A without the j th row and matrix B
without the i th row.
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Usually, we can express matrix A in a canonical form:

A =
⎡
⎣ 1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎦ = [I | 0]. (3.59)

The canonical form can be achieved using a general projective transformation of the
object coordinate system: M′ = HM, where M′ is the transformation of M, and H
is a 4 × 4 nonsingular matrix obtained by adding one extra row to Pp [27]. Thus,
Eq. (3.55) can be expressed as:

{
λpmp = [I | 0]M′ = AM′
λqmq = BM′ (3.60)

with

M′ = HM
A = PpH−1

B = PqH−1
.

For the canonical form A = [I | 0], the bifocal tensors may be expressed by:

Fi j = bi⊕1, j bi⊕2,4 − bi⊕2, j bi⊕1,4 (3.61)

where

i ⊕ k =
{

i + k if i + k ≤ 3
i + k − 3 otherwise

.

Practical considerations
In practice, the projection points m p and mq can be corresponding points, if the
perpendicular Euclidean distance from the epipolar line � of the point m p to the
point mq is smaller than a small number ε [28]:

d2 = |mT
q Fpqmp|√
�21 + �22

< ε, (3.62)

where � = Fpqmp = [�1 �2 �3]T.
An additional criterion to establish the correspondence between two views is

that the 3D point reconstructed from the projection points m p and mq must belong
to the space occupied by the test object [11]. From m p and mq the corresponding
3D point M̂ can be estimated using 3D reconstruction techniques (see Sect. 3.6). It
is necessary to examine if M̂ resides in the volume of the test object, the dimensions
of which are usually known a priori (e.g., a wheel is assumed to be a cylinder).
This criterion implies that the epipolar is delimited as illustrated in Fig. 3.26. It is
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C C
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test object

m
m

p

pq

q

Fig. 3.26 Epipolar geometry in two views using 3D information of the test object

possible to use a CAD model of the test object to evaluate this criterion in a more
precise way.

Nonlinear projections
An example of corresponding points using a nonlinear model that considers geomet-
ric distortions is illustrated in Fig. 3.27. The idea is simple. The projection model
has a linear part (that corresponds to the perspective projection), a nonlinear part
(that corresponds to the image intensifier) as illustrated in Fig. 3.6 as PCS and ICS.
The epipolar geometry explained in the previous section is defined for the linear part
only (for PCS and not for ICS). That means, the epipolar lines are straight lines in
PCS, however, they are curves in ICS. In order to use the theory of the epipo-
lar geometry we need the inverse transformation from both coordinate systems:
ICS → PCS. Thus a point in ICS defined as w is transformed into a point in
PCS as m by m = f−1(w), where w = f(m) is the direct transformation: PCS
→ ICS in homogeneous coordinates. Using the inverse transformation of this non-
linear model, we can use the epipolar constraint (3.54). Thus the epipolar curves are
given by:

[f−1(wq)]TFpq [f−1(wp)] = 0 (3.63)

In the example of Fig. 3.27, the epipolar lines were computed using a hyperbolic
model (see Sect. 3.3.3). Other nonlinear model can be used as well.

It is clear that if the transformation between PCS → ICS is linear (for example,
using a flat panel), we have w = Hm. That means, we can substitute m = H−1w in
(3.57):
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Fig. 3.27 Epipolar lines using a hyperbolic model [12]

wT
q [H−TFpqH−1]︸ ︷︷ ︸

F′
pq

wp = 0 (3.64)

where F′
pq is the fundamental matrix given in ICS.

Nevertheless, using a general nonlinear model, as explained in Sect. 3.3.3, a point
w, whose coordinates in ICS are (u, v), can be back-projected onto a point m, whose
coordinates in PCS are (x̄, ȳ). The back-projection is carried out in two steps: trans-
formation ICS → SCS and transformation SCS → PCS.

Transformation ICS → SCS: Without considering the electromagnetic distor-
tion, the transformation ICS → SCS can be directly obtained from (3.37):

λr = H−1w. (3.65)

However, if the electromagnetic distortion is considered, the inverse function of
(3.36) r = f−1(r′) must be obtained from (3.35):

y = y′ − A2 sin(B2x ′ + C2)

x = x ′ − A1 sin(B1y + C1)
. (3.66)

Therefore, it yields
r = f−1(H−1w). (3.67)

Transformation SCS → PCS: The second transformation is nonlinear because it
takes into account the geometric distortion of the image intensifier. Given the coor-
dinates (x, y) of point r in SCS, a point p on the surface S (see Fig. 3.11) that is
the back-projection of r can be computed by finding the coordinates (x̄ ′, ȳ′, z̄′) that
satisfy Eqs. (3.32) and (3.29) simultaneously. The solution is:
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x̄ ′ = x̄0 − x
d ( f + c − z̄′)

ȳ′ = ȳ0 − y
d ( f + c − z̄′)

z̄′ = −B′ +√
B′2−4A′C ′
2A′

, (3.68)

where

A′ = g
f 2

− 1, B ′ = 2( f + c), C ′ = −g − ( f + c)2, g = d2

x2

a2
+ y2

b2
,

or using matrix notation:
p = h(r), (3.69)

where p = [x̄ ′ ȳ′ z̄′ 1]T, r is a homogeneous representation of (x, y), and h is the
nonlinear function defined from (3.68).

Now, the coordinates of the back-projected point m on the projection plane can
be calculated from (3.68) and the first two equations of (3.30):

x̄ = f x̄ ′/z̄′ and ȳ = f ȳ′/z̄′. (3.70)

Equations (3.65), (3.69), and (3.70) can be joined in:

λm = Eh(H−1w), (3.71)

where E is the 3 × 4 perspective projection matrix expressed in (3.18). However, if
the electromagnetic distortion is taken into account, the homogeneous representa-
tion of m is from (3.67):

λm = Eh(f−1(H−1w)). (3.72)

3.5.2 Correspondence Between Three Views

In three views, we have the projection points m p, mq , and mr at pth, qth, and r th
positions, respectively. The correspondence in three views can be established by
calculating the epipolar lines of m p and mq in third view as shown in Fig. 3.28. If the
intersection coincides with mr , then the three points are corresponding. However,
the intersection of epipolar lines in trifocal geometry is not well-defined when the
epipolar lines are equal. This situation occurs in two cases: (i) when the 3D point M
that has generated the points m p, mq , and mr , lie in the plane defined by the three
optical centers, and (ii) when the three optical centers are aligned [29].

In order to avoid these singularities, the relationships in three views are generally
described using trifocal tensors [2]. Analogous to the two views case explained in
Sect. 3.5.1, the three projection equations are:
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Fig. 3.28 Epipolar geometry in three views

⎧⎨
⎩

λpmp = PpM := AM
λqmq = PqM := BM
λr mr = Pr M := CM

. (3.73)

They can be written according to (3.56) by:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 x p 0 0
a2 yp 0 0
a3 1 0 0
b1 0 xq 0
b2 0 yq 0
b3 0 1 0
c1 0 0 xr

c2 0 0 yr

c3 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G

⎡
⎢⎢⎣

M
−λp

−λq

−λr

⎤
⎥⎥⎦

︸ ︷︷ ︸
v

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.74)

where ai , bi , and ci denote the i th row of matrix A, B, and C, respectively. If m p,
mq , and mr are corresponding points, then there must be a nontrivial solution for v.
It follows that the rank of the 9 × 7 matrix G must be at most 6. In other words, all
7×7 submatrices have vanishing determinants. The minors of G can be written using
Laplace expansions as sums of products of determinants of four rows taken from the
first four columns of G and products of image coordinates [30]. By expanding the
determinants, we can find four linearly independent relationships:
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⎧⎪⎪⎨
⎪⎪⎩

D1 = (xr T13 − xr xqT33 + xqT31 − T11)mp = 0
D2 = (yr T13 − yr xqT33 + xqT32 − T12)mp = 0
D3 = (xr T23 − xr yqT33 + yqT31 − T21)mp = 0
D4 = (yr T23 − yr yqT33 + yqT32 − T22)mp = 0

, (3.75)

where

T jk = [T jk
1 T jk

2 T jk
3 ],

and

T jk
i = (−1)i+1

∣∣∣∣∣∣
∼ai

b j

ck

∣∣∣∣∣∣ for i, j, k = 1, 2, 3, (3.76)

where ∼ai means the matrix A without row i . The elements T jk
i are called the

trifocal tensors for the images p, q, and r [25, 27]. For the canonical form A =
[I | 0], the trifocal tensors may be easily obtained by:

T jk
i = b ji ck4 − b j4cki for i, j, k = 1, 2, 3. (3.77)

The equations denoted by (3.75) above, are known as the trilinearities [31]. They
establish a linear relationship between the coordinates of points m p, mq , mr to find
the correspondence. If the three points satisfy the four trilinearities, then they are
corresponding points. Equation (3.76) implies that the trifocal tensors do not depend
on the points of the images, rather they are computed from the three projection
matrices.

The reprojection of mr , i.e., the coordinates x̂r and ŷr obtained from the points
m p and mq , may be simply estimated from the trilinearities (3.75):

λm̂r = (T1 − xqT3)mp = (T2 − yqT3)mp. (3.78)

where λ is a scale factor, m̂r = [x̂r ŷr 1]T, and T j is a 3 × 3 matrix with the
(k, i)-element equal to T jk

i .
In practice, given two corresponding points mp and mq , the third one mr can

be considered as the corresponding point in third view, if the Euclidean distance
between mr and its reprojection m̂r is smaller than a small number ε:

d3 = ‖m̂r − mr‖ < ε. (3.79)

Trifocal geometry is performed for the corresponding points in the X-ray pro-
jection coordinate system. In case that the X-ray computer vision system is mod-
eled using a nonlinear geometric model due to an image intensifier, as explained in
Sect. 3.5.1, a point wp, that is found in the pth image, is first transformed into the
coordinates m p of the X-ray projection coordinate system.
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Matlab Example 3.8 This example shows how to estimate the coordinates
of a corresponding point in view r if we know the trifocal tensors and correspond-
ing points m p and mq in views p and q, respectively. Epipolar lines in two views
(p and q). This code computes the trifocal tensors from the projection matrices Pp,
Pq , and Pr . The reprojection is computed using (3.78).

Listing 3.8 : Reprojection of third point using trifocal tensors.

% TrifocalGeometry.m
close all

Data = Xloaddata(’B’,44,’Pmatrices’); % projection matrices

p = 1; q = 90; r = 170; % p, q and r indices
Ip = Xloadimg(’B’,44,p);
Iq = Xloadimg(’B’,44,q);
Ir = Xloadimg(’B’,44,r);
figure(1);imshow(Ip);title(’Image p’);hold on
figure(2);imshow(Iq);title(’Image q’);hold on
figure(3);imshow(Ir);title(’Image r’);hold on

Pp = Data.P(:,:,p); % projection matrix of view p
Pq = Data.P(:,:,q); % projection matrix of view q
Pr = Data.P(:,:,r); % projection matrix of view q

T = Xtrifocal(Pp,Pq,Pr); % trifocal tensors
disp(’click a point mp in Figure 1...’)
figure(1);
mp = [ginput(1) 1]’; % click
plot(mp(1),mp(2), ’g*’)
disp(’click a point mp in Figure 2...’)
figure(2);
mq = [ginput(1) 1]’; % click
plot(mq(1),mq(2), ’g*’)
mr = Xreproj3(mp,mq,T); % reprojection of mr from mp, mq and T
figure(3);
plot(mr(1),mr(2), ’g*’)

The output of this code is shown in Fig. 3.29. The code uses two functions of XVIS

Toolbox: Xtrifocal (see Appendix B) to compute the trifocal tensors and Xreproj3
(see Appendix B) to compute the reprojection of mr . The example uses images
p = 1, q = 90, and r = 170 of series B0044 of GDXray. In this set of images
there are 178 different views (taken by rotating the test object around a quasi-vertical
axis in 2◦ between consecutive views). The reader who is interested in other views
can change the code in order to define other values for p, q, and r . �

3.5.3 Correspondence Between Four Views or More

In the four views case we have the projection points m p, mq , mr , and ms at pth, qth,
r th, and sth positions, respectively. Similar to the previous sections, we can write
the four projection equations as a linear equation Gv = 0. Once more, the existence
of a nontrivial solution for v yields in this case to the condition that all 8× 8 minors
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Fig. 3.29 Example of
trifocal geometry: views p,
q, and r with corresponding
points. In this example, the
corresponding points in view
p and q are known.
Corresponding point mr is
estimated from m p , mq , and
the trifocal tensors T of these
views (→ Example 3.8 )

of G must be zero. Thus, we obtain the well known 81 quadrifocal tensors and the
corresponding 16 quadrilinearities [25, 30].

In practice, the quadrilinearities are not used because they are redundant. Cor-
responding constraints in four views are obtained from the trilinearities. Thus, the
points m p, mq , mr , and ms are corresponding if m p, mq , and mr are corresponding,
and mq , mr , and ms are corresponding as well [18].

For more than four views, a similar approach can be used.
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3.6 Three-Dimensional Reconstruction

In X-ray testing, three-dimensional reconstruction is usually related to computed
tomography (CT). However, in Computer Vision the attempt is made to estimate
only the location (and not the X-ray absorption coefficient) of 3D points in space. In
this sense, the reconstruction is based on photogrammetric rather than tomographic
methods.

The 3D reconstruction problem can be stated as follows. Given n corresponding
points mp for p = 1 . . . n with n ≥ 2, and the projection matrices of each view Pp,
find the “best” 3D point M which projected by Pp gives approximately mp. If we
have the projection equation λpmp = PpM, we can solve the following system of
equation for M: ⎧⎪⎨

⎪⎩
λ1m1 = P1M

...

λnmn = PnM

. (3.80)

In this section, two approaches that perform the 3D reconstruction, in sense of
locating in 3D space, will be described. The 3D reconstruction will be undertaken
from corresponding points in the X-ray projection coordinate system. As explained
in Sect. 3.5.1, a point wp, that is found in the pth image, is first transformed into the
coordinates m p of the X-ray projection coordinate system.

3.6.1 Linear 3D Reconstruction from Two Views

Now, we estimate the 3D point M from two corresponding points m p and mq

using the linear approach introduced by Hartley [27]. Without loss of generality,
the method employs the canonical form (see Eq. (3.60)) for the first projection:

λpmp = [I | 0]M′.

Thus, the transformed 3D point can be expressed by:

M′ = λp[mT
p 1/λp]T. (3.81)

The second projection of this point yields

λqmq = BM′ = Bλp[mT
p 1/λp]T, (3.82)
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that is an equation system with three linear equations in the unknowns λp and λq . If
m p and mq are corresponding points one may consider only two of these three equa-
tions. Taking, for example, the first two equations one may compute λp. Substituting
the value of λp into (3.81) and after some simplifications, we obtain:

M = H−1M′ = αH−1
[

(yqb14 − xqb24)mp

(xqb2 − yqb1)mp

]
(3.83)

where α is a scale factor.

3.6.2 3D Reconstruction from Two or More Views

We assume that we have n ≥ 2 projections at n different positions. In these projec-
tions we have found the corresponding points m p, p = 1, . . . , n, with coordinates
(x p, yp). To reconstruct the corresponding 3D point M that has produced these pro-
jection points, we use a least squares technique [1].

Each projection yields the equation λpmp = PpM as shown in (3.80), with three
linear equations in the unknowns (X, Y, Z) and λp:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1x1
λ1y1
λ1
:

λn xn

λn yn

λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s111 s112 s113 s114
s121 s122 s123 s124
s131 s132 s133 s134
: : : :

sn
11 sn

12 sn
13 sn

14

sn
21 sn

22 sn
23 sn

24

sn
31 sn

32 sn
33 sn

34

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , (3.84)

where s p
i j denotes the (i, j)-element of Pp. With λp = s p

31X + s p
32Y + s p

33Z + s p
34

and after some slight rearranging we obtain:

⎡
⎢⎢⎢⎢⎢⎣

s131x1 − s111 s132x1 − s112 s133x1 − s113
s131y1 − s121 s132y1 − s122 s133y1 − s123

: : :
sn
31xn − sn

11 sn
32xn − sn

12 sn
33xn − sn

13

sn
31yn − sn

21 sn
32yn − sn

22 sn
33yn − sn

23

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Q

⎡
⎣ X

Y
Z

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

s114 − s134x1
s124 − s134y1

:
sn
14 − sn

34xn

sn
24 − sn

34yn

⎤
⎥⎥⎥⎥⎥⎦ .

︸ ︷︷ ︸
r

(3.85)

If rank(Q) = 3, the least squares solution for M̂ = [X̂ Ŷ Ẑ ]T is then given by:

M̂ = [QTQ]−1QTr. (3.86)
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Matlab Example 3.9 In this example, we estimate the length of an object in
millimeters. There are three views p, q, and r . Two points of the object are given
by the user in each view (by mouse clicking). The code estimates the two 3D points
and compute the 3D distance between them. Since the calibration of this X-ray
computer vision system was implemented using a calibration object with dimen-
sions measured in millimeters, it is clear that the 3D reconstructed points are given
in millimeters as well.

Listing 3.9 : 3D Reconstruction.

% Reconstruction3D.m
close all

Data = Xloaddata(’B’,44,’Pmatrices’); % projection matrices

p = 1; q = 40; r = 90; % p, q and r indices
Ip = Xloadimg(’B’,44,p);
Iq = Xloadimg(’B’,44,q);
Ir = Xloadimg(’B’,44,r);
figure(1);imshow(Ip);title(’Image p’);hold on
figure(2);imshow(Iq);title(’Image q’);hold on
figure(3);imshow(Ir);title(’Image r’);hold on

P1 = Data.P(:,:,p); % projection matrix of view p
P2 = Data.P(:,:,q); % projection matrix of view q
P3 = Data.P(:,:,r); % projection matrix of view q
P = [P1;P2;P3]; % all projection matrices

figure(1);disp(’click first and second points in Figure 1...’)
m1 = [ginput(2) ones(2,1)]’; % click
plot(m1(1,:),m1(2,:), ’r*’)
plot(m1(1,:),m1(2,:), ’g’)

figure(2);disp(’click first and second points in Figure 2...’)
m2 = [ginput(2) ones(2,1)]’; % click
plot(m2(1,:),m2(2,:), ’r*’)
plot(m2(1,:),m2(2,:), ’g’)

figure(3);disp(’click first and second points in Figure 3...’)
m3 = [ginput(2) ones(2,1)]’; % click
plot(m3(1,:),m3(2,:), ’r*’)
plot(m3(1,:),m3(2,:), ’g’)

mm_1 = [m1(:,1) m2(:,1) m3(:,1)]; % first 2D point in each view
mm_2 = [m1(:,2) m2(:,2) m3(:,2)]; % second 2D point in each view
M1 = Bmv_reco3dn(mm_1,P); % 3D reconstruction of first point
M2 = Bmv_reco3dn(mm_2,P); % 3D reconstruction of second point

Md = M1(1:3)−M2(1:3); % 3D vector from 1st to 2nd point
dist = norm(Md) % length of 3D vector in mm

The output of this code is shown in Fig. 3.30. The code uses the function of XVIS

Toolbox: Xreco3dn (see Appendix B) to compute the 3D reconstruction using
(3.86). The estimated length in this example was dist = 46.2881mm. The
reader who is interested in 3D reconstruction using (3.83) for two views can use
command Xreco3d2 (see Appendix B) from XVIS Toolbox. �
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Fig. 3.30 Example of 3D reconstruction using three views. There are two corresponding points
in each view (in this example the coordinates of the top and the bottom of the key were manu-
ally given). Two 3D points were reconstructed using (3.86) and the distance between these two
3D points was computed. In this example, the estimation of the length of the key was 46.29mm
(→ Example 3.9 )

3.7 Summary

In this chapter, we presented several methods that can be used when dealing with
geometric problems in X-ray testing. We gave a theoretical background of geometry
using homogenous coordinates. Thus, the projective transformations can be easily
established. Linear and nonlinear models for X-ray computer vision systems were
outlined, in order to relate the 3D coordinates of an object to the 2D coordinates
of the digital X-ray image pixel. In addition, calibration approaches that can be
used to estimate the parameters of these models were studied. Finally, multiple view
geometry was outlined. We presented geometric and algebraic constraints between
two, three, and more X-ray images obtained as different projections of the object,
and we explained the problem of the 3D reconstruction.
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Chapter 4
X-ray Image Processing

Abstract In this chapter, we cover the main techniques of image processing used in
X-ray testing. They are: (i) image processing to enhance details, (ii) image filtering
to remove noise or detect high frequency details, (iii) edge detection to identify the
boundaries of the objects, (iv) image segmentation to isolate the regions of inter-
est and (v) to remove the blurriness of the X-ray image. The chapter provides an
overview and presents several methodologies with examples using real and simu-
lated X-ray images.

Cover image: Gradient of an X-ray image of a wheel (from X-ray image C0001_0001 colored
with ‘jet’ colormap).
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4.1 Introduction

Image processing manipulates a digital image in order to obtain a new digital image,
i.e., in this process the input is an image and the output is another image. A typi-
cal example is segmentation as shown in Fig. 4.1, where the input is a grayscale
image that contains a clip and the output is a binary image where the pixels that
belong to the clip are detected. In our book, we distinguish image processing from
image analysis, in which the output is rather an interpretation, a recognition or a
measurement of the input image. We will perform image analysis further on, when
we learn pattern recognition techniques such as feature extraction (see Chap. 5) and
classification (see Chap. 6).

In this chapter, we cover the following image processing techniques that are used
in X-ray testing.

• Image preprocessing: The quality of the X-ray image is improved in order to
enhance its details.

• Image Filtering: Mainly used to remove noise and detect high frequency details
of the X-ray image.

• Edge detection: The details of the images can be highlighted by detecting the
boundaries of the objects of the X-ray image.

• Image segmentation: Regions of interest of the X-ray image are identified and
isolated from their surroundings.

• Image restoration: This involves recovering details in blurred images.

In this chapter, we provide an overview of these five techniques. Methodologies
and principles will also be outlined, and some application examples followed by
limitations to the applicability of the used methodologies will be presented.

Fig. 4.1 Image processing: input is digital image X, output is digital image Y

http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_6
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In image processing methodology we have a continuous image f defined in a
coordinate system (x, y). Image f is digitalized. The obtained image is a digital
image which is stored in matrix X of size M × N pixels. The gray value of pixel
(i, j) of image X is X (i, j). Image X is processed digitally. The output image of
this process is image Y, usually a matrix of the same size of X. In this example,
the output is a binary image, that means Y (i, j) is ‘1’ (white) and ‘0’ black. Image
Y corresponds to the segmentation of a clip (that is the object of interest in this
example).

4.2 Image Preprocessing

The X-ray image taken must be preprocessed to improve the quality of the image
before it is analyzed. In this section, we will discuss preprocessing techniques that
can remove noise, enhance contrast, correct the shading effect and restore blur defor-
mation in X-ray images.

4.2.1 Noise Removal

Noise in an X-ray image can prove a significant source of image degradation and
must be taken into account during image processing and analysis. In an X-ray imag-
ing system, photon noise occurs given the quantum nature of X-rays. If we have a
system that receives μ photons per pixel in a time �T on average, the number of
photons striking any particular pixel in any time �T will be random. At low levels,
however, the noise follows a Poisson law, characterized by the probability:

p(x |μ) = e−μ

μx x ! (4.1)

to obtain a value x of photons given its average μ photons in a time �T . The stan-
dard deviation of this distribution is equal to the square root of the mean.1 This
means that the photon noise amplitude is signal-dependent.

Integration (or averaging) is used to remove X-ray image noise. This technique
requires n stationary X-ray images. It computes the filtered image as follows:

Y (i, j) = 1

n

n∑
k=1

Xk(i, j) (4.2)

1At high levels, the Poisson distribution approaches the Gaussian with a standard deviation equal
to the square root of the mean: σ = √

μ.
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Fig. 4.2 Noise removal after an averaging of n frames. The noise is reduced by factor
√

n

where Xk(i, j) is pixel (i, j) of kth stationary image, and Y (i, j) is the correspond-
ing pixel of the filtered image.

In this technique, the X-ray image noise is modeled using two components: the
image of interest (that is constant throughout the n images) and the noise component
(that varies from one image to the next). If the noise component has zero mean, by
averaging the n images the stationary component is unchanged, while the noise
pattern decreases by increasing n. Integrating n stationary X-ray images improves
the signal-to-noise ratio by a factor of

√
n [1, 2].

The effect of image integration is illustrated in Fig. 4.2 that uses n stationary
images of an aluminum casting and shows the improvement in the quality of the
X-ray image. The larger the number of stationary images n, the better the improve-
ment. Normally, between 10 and 16 stationary images are taken (10 ≤ n ≤ 16).

Matlab Example 4.1 In this example, we have 20 noisy X-ray images
obtained from a very thin wood piece. The following Matlab code uses averaging to
effectively remove X-ray image noise (4.2):

Listing 4.1 : Noise removal by averaging.

% AritmeticAverage.m

close all
S = double(Xloadimg(’N’,4,1)); % S = image 1
n = 20;
for k=2:n

Xk = double(Xloadimg(’N’,4,k)); % image k
imshow(Xk,[]);
title([’image with noise ’ num2str(k)])
pause(0.25);
S = S + Xk; % S = S + image k

end
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Y = S/n; % average

figure(2);
imshow(Y,[]);title(’filtered image’)

figure(3)
plot([Xk(100,:)’ Y(100,:)’]) % profile of row 100
legend({’original’,’filtered’})

The output of this code is shown in Fig. 4.3. The reduction of noise is not perfect
but very satisfactory. The reader can test this approach on series C0034 and C0041
of GDXray, in which 37 noisy X-ray images of an aluminum wheel with no motion
are taken. �

Fig. 4.3 Noise removal of
an X-ray image of a wood
piece after an averaging of
20 frames. Top one of the
20 images. Middle filtered
image. Bottom row 100 of
each image (→ Example
4.1 )
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4.2.2 Contrast Enhancement

The gray values in some X-ray images lie in a relatively narrow range of the gray
scale. In this case, enhancing the contrast will amplify the differences in the gray
values of the image.

We compute the gray value histogram to investigate how an X-ray image uses the
grayscale. The function summarizes the gray value information of an X-ray image.
The histogram is a function h(x) that denotes the number of pixels in the X-ray
image that have a gray value equal to x . Figure 4.4 shows how each histogram rep-
resents the distribution of gray values in the X-ray images.

A transformation can be applied to modify the distribution of gray value in an
X-ray image. Simple contrast enhancement can be achieved if we use a linear trans-
formation which sets the minimal and maximal gray values of the X-ray image to
the minimal and maximal gray value of the grayscale respectively. Thus, the his-
togram is expanded to occupy the full range of the grayscale. Mathematically, for a
scale between 0 and 255, this transformation is expressed as:

Y (i, j) = 255 · X (i, j) − xmin

xmax − xmin
(4.3)

where xmin and xmax denote the minimal and maximal gray value of the input X-ray
image. The output image is stored in matrix Y. This simple function is implemented
in command Xlinimg (see Appendix B) from XVIS Toolbox. Figure 4.4b shows the
result of the transformation applied to the X-ray image in Fig. 4.4a. We observe in
the histogram of the enhanced X-ray image, how the gray values expand from ‘0’ to
‘255’. The mapping is linear, and means that a gray value equal to 1

2 (xmax − xmin)

will be mapped to 255/2. This linear transformation is illustrated in Fig. 4.5a, where
the abscissa is the input gray value and the ordinate is the output gray value.
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Fig. 4.4 Contrast enhancement: a original image, b linear transformation (γ = 1), c nonlinear
transformation (γ = 2), d nonlinear transformation (γ = 1/2), e gray values uniformly distributed
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Fig. 4.5 Plots showing different transformations of the gray values: a linear transformation
(γ = 1), b nonlinear transformation with γ > 1, c nonlinear transformation with γ < 1

In a similar fashion, gray input image values can be mapped using a nonlinear
transformation y = f (x), as illustrated in Fig. 4.5b, c, the results of which are
shown in Fig. 4.4c, d, respectively. Here, x and y are the gray values of the input
and output images respectively. The nonlinear transformation is usually performed
with a γ correction [3]. In these examples, if γ > 1 the mapping is weighted toward
darker output values, and if γ < 1 the mapping is weighted toward brighter output
values. Gamma transformation can be expressed as:

Y (i, j) =

⎧⎪⎨
⎪⎩

0 for X (i, j) < xmin

255 ·
[

X (i, j)−xmin
xmax−xmin

]γ

for xmin ≤ X (i, j) ≤ xmax

255 for X (i, j) > xmax

(4.4)

Finally, we present a contrast enhancement equalizing the histogram. Here, we
can alter the gray value distribution in order to obtain a desired histogram. A typical
equalization corresponds to the uniform histogram as shown in Fig. 4.4d. We see
that the number of pixels in the X-ray image for each gray value is constant.

Matlab Example 4.2 In this example, we have an X-ray image of a baggage
with very dark zones. The user defines a zone to be enhanced by clicking two oppo-
site corners of a rectangle. The code forces the histogram of this zone to be uniform:

Listing 4.2 : Contrast enhancement of a selected area.

% ContrastEnhancement.m
close all
X = Xloadimg(’B’,44,130); % input image
figure(1)
imshow(X,[]); title(’original image’)
hold on
disp(’Select top corner of rectangle to be enhanced...’)
p = round(ginput(1));
i1 = p(1,2); j1 = p(1,1); % coordinates of first corner
plot(j1,i1,’r+’)
disp(’Select bottom corner of rectangle to be enhanced...’)
p = round(ginput(1));
i2 = p(1,2); j2 = p(1,1); % coordinates of second corner
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plot([j1 j2 j2 j1 j1],[i1 i1 i2 i2 i1],’r’) % selected area
Xbox = X(i1:i2,j1:j2); % subimage
Ybox = Xforceuni(Xbox); % equalization of subimage
Y = X;
Y(i1:i2,j1:j2) = Ybox; % replacement
figure(2)
imshow(Y,[]); title(’enhanced image’)

The output of this code is shown in Fig. 4.6. For the equalization, the code uses
function Xforceuni (see Appendix B) from XVIS Toolbox. �

4.2.3 Shading Correction

A decrease in the angular intensity in the projection of the X-rays causes low spatial
frequency variations in X-ray images [2, 4]. An example is illustrated in Fig. 4.7a,
which shows an X-ray image of an aluminum plate with holes in it. Since the plate
is of a constant thickness, we would expect to see a constant gray value for the
aluminum part and another constant gray value for the holes. In fact, the X-ray
image is darker at the corners. This deficiency can be overcome by using a linear
shading correction.

In this technique, we take two images as shown in Fig. 4.8. The first one, r1,
of a thin plate, and the second one, r2, of a thick plate. We define i1 and i2 as the
ideal gray values for the first and second image, respectively. From r1, r2, i1 and
i2, offset and gain, correction matrices a, and b are calculated assuming a linear
transformation between the original X-ray image x and corrected X-ray image y:

Y (i, j) = a(i, j) · X (i, j) + b(i, j), (4.5)

Fig. 4.6 Contrast enhancement by uniforming a histogram of the selected area (→ Example
4.2 )
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Fig. 4.7 Shading correction: a original image, b image after shading correction. The correspond-
ing gray values profiles of row number 130 are shown above the images

Fig. 4.8 Shading correction: a X-ray image for a thin plate, b X-ray image for a thick plate. Ideal
X-ray images have a constant gray value
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where the offset and gain matrices are computed as follows:

a(i, j) = i2 − i1
r2(i, j) − r1(i, j)

b(i, j) = i1 − r1(i, j) · a(i, j). (4.6)

An example of this technique is illustrated in Fig. 4.7b. In this case, we obtain
only two gray values (with noise) one for the aluminum part and another for the
holes of the plate.

Matlab Example 4.3 In this example, we simulate images X (a plate with a
square cavity). In addition, we simulate X-ray images r1 (a thin plate) and r2 (a thick
plate) as illustrated in Fig. 4.8. The following Matlab code shows how the shading
effect of X can be corrected:

Listing 4.3 : Shading correction.

% ShadingCorrection.m

R1 = fspecial(’Gaussian’,256,80); R1=R1/max(R1(:))*0.8; % X−ray image of a thin plate
i1 = 0.8; % ideal gray value for R1
R2 = fspecial(’Gaussian’,256,60); R2=R2/max(R2(:))*0.6; % X−ray image of a thick plate
i2 = 0.4; % ideal gray value for R2

X = fspecial(’Gaussian’,256,70); X=X/max(X(:))*0.7; % simulation of a X−ray image
X(30:80,30:80) = X(30:80,30:80)*1.5; % with a square cacity

figure(1)
imshow(X,[]) % input image
figure(2)
Y = Xshading(X,R1,R2,i1,i2); % output image
imshow(Y,[])

The output of this code is shown in Fig. 4.9. The correction is evident: the appear-
ance of the background is homogenous whereas the square is more distinguishable.

Fig. 4.9 Simulation of shading correction: Left X-ray image for a plate with a square cavity (X),
Right corrected image (Y) (→ Example 4.3 )
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In this code, we use function Xshading (see Appendix B) of XVIS Toolbox. This
function computes shading correction as defined in (4.5). �

4.3 Image Filtering

2D image filtering is performed in digital image processing using a small neighbor-
hood of a pixel X (i, j) in an input image to produce a new gray value Y (i, j) in
the output image, as shown in Fig. 4.10. A filter mask defines the input pixels to be
processed by an operator f . The resulting value is the output pixel. The output for
the entire image is obtained by shifting the mask over the input image. Mathemati-
cally, the image filtering is expressed as:

Y (i, j) = f [X (i − p, j − p), . . . , X (i, j), . . . , X (i + p, j + p)︸ ︷︷ ︸
input pixels

], (4.7)

for i = p + 1 . . . M − p and j = p + 1 . . . N − p, where M and N are the number
of rows and columns of the input and output images. The size of the filter mask is,
in this case, (2p + 1) × (2p + 1). The operator f can be linear or nonlinear. In this
section, the most important linear and nonlinear filters for X-ray testing are outlined.

o

operator

i
i

i

j

f

j

y(i,j)
x(i,j) i

Fig. 4.10 Image filtering
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4.3.1 Linear Filtering

The operator f is linear, if the resulting value Y (i, j) is calculated as a linear com-
bination of the input pixels:

Y (i, j) =
p∑

m=−p

p∑
n=−p

h(m, n) · X (i − m, j − n), (4.8)

where h is called the convolution mask. The elements of h weight the input pixels.
The convolution of an image X with a mask h can be written as:

Y = X ∗ h, (4.9)

Averaging is a simple example of linear filtering. For a 3 × 3 neighborhood, the
convolution mask is

h = 1

9

⎡
⎣1 1 1
1 1 1
1 1 1

⎤
⎦

Gaussian mask can be used as well

h(m, n) = 1

2πσ 2 · e− m2+n2

2σ2 (4.10)

scale factor 1/(2πσ 2) ensures
∑

m,n h(m, n) = 1 over all elements of h. Average
and Gaussian filtering are implemented respectively as functions Ximaverage and
Ximgaussian (see Appendix B) in XVIS Toolbox.

A common application of filtering in X-ray testing is defect detection, e.g., in
castings and welds. Filtering out defects detected in an X-ray image will provide
a reference defect-free image. The defects are detected by finding deviations in the
original image from the reference image. The problem is how one can generate a
defect-free image from the original X-ray image. Assuming that the defects will be
smaller than the regular structure of the test piece, one can use a low-pass filter that
does not consider the high frequency components of the image. However, if a linear
filter is used for this task, the edges of the regular structure of the specimen are
not necessarily preserved and many false alarms are raised at the edges of regular
structures. Consequently, a nonlinear filter is used.
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4.3.2 Nonlinear Filtering

In order to avoid the mentioned problems of linear filters, nonlinear filters are used.
Defect discrimination can be performed with a median filter. The median filter is
a ranking operator (and thus nonlinear) where the output value is the middle value
of the input values ordered in a rising sequence [5]. For an even number of input
numbers the median value is the arithmetic mean of the two middle values.

The application of a median filter is useful for generating the reference image
because it smoothes noise yet preserves sharp edges, whereas other linear low-pass
filters blur such edges (see a comparison with linear filters in Fig. 4.11). Hence, it
follows that small defects can be suppressed while the regular structures are pre-
served. Figure 4.12 shows this phenomenon for a 1D example. The input signal x is

Fig. 4.11 Example of filtering of a an X-ray image of 600 × 700 pixels using b arithmetic, c
Gaussian, and d median filters with a mask of 19 × 19 pixels. The filtered images where obtained
using commands Ximaverage, Ximgaussian and Ximmedian (see Appendix B) of XVIS Toolbox

Fig. 4.12 Median filter application on a 1D signal x . The filtered signal is y (the size of the median
mask is 9). Structures of length n less than 9/2 are eliminated in y. This filter can be used to detect
small structures (n ≤ 4)
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filtered using a median filter with nine input elements, and the resulting signal is y.
We can see that structures of length n greater than four cannot be eliminated. The
third column shows the detection x − y. Large structures of n ≥ 5 are not detected,
as presented in the last two cases.

If the background captured by the median filter is constant, foreground structures
could be suppressed if the number of values belonging to the structure is less than
one-half of the input value to the filter. This characteristic is utilized to suppress the
defect structures and to preserve the design features of the test piece in the image.

An example for the application of a median filter on 2D signals (images) is shown
in Fig. 4.13 and includes different structures and mask sizes compared to the effects
of two linear low-pass filters. One can appreciate that only the median filter manages
to suppress the relatively small structures completely, whereas the large patterns
retain their gray values and sharp edges.

The goal of the background image function, therefore, is to create a defect-free
image from the test image. A real example is shown in Fig. 4.14. In this example,
from an original X-ray image X we generate a filtered image Y and a difference
image |X − Y|. By setting a threshold, we obtain a binary image whose pixels are
‘1’ (or white), where the gray values in the difference image are greater than the
selected threshold. Finally, we eliminate very small regions. The remaining pixels
correspond to the detected flaws.

Matlab Example 4.4 In this example, we detect small defects of an alu-
minum wheel. First, a reference defect-free image is estimated from original image
itself using median filtering. Second, the difference between original and reference
image is computed. Finally, defects are detected when the difference in gray values
is high enough and the size of the detected region is large enough:

3

median Gauss

n

Structure→

3
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7

9

11

13

15

17

Fig. 4.13 Median filter application on an n×n structure using an m×m quadratic mask compared
to average and Gauss low-pass filter application
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Fig. 4.14 Defect detection using median filtering: a original X-ray image of an aluminum wheel
with small defects, b filtered X-ray image, c difference image, d binary image using a threshold,
e elimination of small regions, f detection superimposed onto original image (→ Example 4.4 )

Listing 4.4 : Defect detection using median filtering

% MedianDetection.m

close all;
X = Xloadimg(’C’,21,29); % original image
X = Ximgaussian(X,5); % low pass filtering
figure(1);
imshow(X,[]); title(’Original image with defects’);

figure(2)
Y0 = Ximmedian(X,23);
imshow(Y0,[]);title(’Median filter’);

figure(3);
Y1 = abs(double(X)−double(Y0));
imshow(log(Y1+1),[]); title(’Difference image’);

figure(4)
Y2 = Y1>18;
imshow(Y2); title(’Binary image’);

figure(5)
Y3 = bwareaopen(Y2,18);
imshow(Y3); title(’Small regions are eliminated’);

figure(6)
Y = imclearborder(imdilate(Y3,ones(3,3)));
imshow(Y); title(’Regions are dilated and border region are eliminated’);

figure(7)
Xbinview(X,Y,’y’); title(’Detection’);

The output of this code—step by step—is shown in the last row of Fig. 4.14. �
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4.4 Edge Detection

In this section, we will study how the edges of an X-ray image can be detected.
The edges correspond to pixels of the image in which the gray value changes sig-
nificantly over a short distance [1]. Since edges are discontinuities in the intensity
of the X-ray image, they are normally estimated by maximizing the gradient of the
image. Edge detection image corresponds to a binary image (of the same size of the
X-ray image), where a pixel is ‘1’ if it belongs to an edge, otherwise it is ‘0’, as
shown in Fig. 4.15. Before we begin a more detailed description of edge detection,
it is worthwhile to highlight some aspects of its relevance in the analysis of X-ray
images.

The edges of an X-ray image should show the boundary of objects, e.g., bound-
aries of defects in control quality of aluminum castings, boundaries of the weld
in welding inspection and boundaries of objects in baggage screening (Fig. 4.15).
Thus, the input X-ray image is transformed into a binary image which shows struc-
tural properties of the X-ray image. The key idea is to detect objects of interest,
such as defects in case of quality control or threatening objects in case of baggage
screening, based on the information provided by edge detection.

In this section, we will review some basic edge detection techniques that have
been used in X-ray testing: gradient estimation (Sect. 4.4.1), Laplacian-of-Gaussian
(Sect. 4.4.2) and Canny (Sect. 4.4.3). Segmentation techniques based on edge detec-
tion will be outlined in Sect. 4.5.

4.4.1 Gradient Estimation

The gradient for a 1D function f (x) is defined by:

f ′(x) = ∂ f

∂x
= lim

�x→0

f (x + �x) − f (x)

�x
(4.11)

and for a 2D function f (x, y) is defined by a vector of two elements, one in x
direction and the another one in y direction:

Fig. 4.15 Edge detection of an X-ray image of a pen-case. The edges correspond to the boundaries
of the objects that are inside the pen-case (→ Example 4.11 )
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∇ f (x, y) =
[
∂ f

∂x
,
∂ f

∂y

]
. (4.12)

In digital images, after digitalization of f (x, y), however, corresponding �x or
�y values cannot be less than one pixel. A simple way to compute the gradient of
image X in i and j direction can be respectively:

Gi (i, j) = X (i + 1, j) − X (i, j) and G j (i, j) = X (i, j + 1) − X (i, j). (4.13)

Thus, the magnitude of the gradient can be computed as:

G(i, j) =
√

(Gi (i, j))2 + (G j (i, j))2 (4.14)

and the direction of the gradient as:

A(i, j) = arctan
G j (i, j)

Gi (i, j)
. (4.15)

In this formulation, gradient images Gi and G j can be easily calculated by convo-
lution (4.9). Thus,

Gi = X ∗ hT and G j = X ∗ h. (4.16)

where h is the mask used to compute the gradient in horizontal direction. For
instance, if we compute the gradient using the simple way (4.13), we can use
h = [−1 + 1] in (4.16). Nevertheless, for noisy images, larger masks are sug-
gested for (4.16). Sobel and Prewitt masks are commonly used in image processing
[5]. They are defined as follows:

hSobel =
⎡
⎣−1 0 +1

−2 0 +2
−1 0 +1

⎤
⎦ and hPrewitt =

⎡
⎣−1 0 +1

−1 0 +1
−1 0 +1

⎤
⎦. (4.17)

For severe noise, it is recommended to use Gaussian filtering before applying
gradient operators. Since Gaussian and gradient operations are linear, the Gaussian
gradient operator can be defined by taking the derivative of the Gaussian (4.10):

hGauss(m, n) = m · e− m2+n2

2σ2 . (4.18)

It should be noted that edges are detected when the magnitude of the gradient is
maximal. That means, the location of edge pixels will not be modified if a mask h is
replaced by λh with λ 	= 0. Moreover, the direction of the gradient does not become
modified either. For this reason, the elements of h are usually shown in its simplest
way.
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Fig. 4.16 Gradient of an X-ray of a pen-case using different masks (Sobel, Prewitt, and Gaussian).
See edge detection in Fig. 4.17 (→ Example 4.5 )

An example of estimation of gradient using the explained masks is illustrated in
Fig. 4.16. After the gradient image is calculated, the edges are detected by thresh-
olding. Thus, if the magnitude of the gradient is greater than a certain threshold, then
the pixel of the output image is set as an edge pixel. The output for the mentioned
example is illustrated in Fig. 4.17. We can see how the boundaries are detected,
especially for those objects that are very dark in comparison with their background.

Fig. 4.17 Edge detection by thresholding a Gaussian gradient image of Fig. 4.16. The edges are
detected for gradients greater than 3. In this representation, a logarithmical scale for the gray values
was used (→ Example 4.5 )
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Matlab Example 4.5 In this example, we show the edge detection of an
X-ray image of a pen-case using the gradient operators according to the method
explained in this Sect. 4.5.1:

Listing 4.5 : Gradient with different masks

% PencaseGradient.m

close all
X = Xloadimg(’B’,2,1); % input image
X = imresize(X,0.25); % resize of input image
figure(1)
imshow(X); title(’input image’);

hs = fspecial(’sobel’)’; % sobel operator
hp = fspecial(’prewitt’)’; % prewitt operator
hg = conv2(fspecial(’gaussian’,9,1),[−1 1],’same’); % gaussian operator

Gs = Ximgrad(X,hs); % Gradient for sobel
Gp = Ximgrad(X,hp); % ... prewitt
Gg = Ximgrad(X,hg ); % ... gaussian

G = [Xlinimg(Gs) Xlinimg(Gp) Xlinimg(Gg)]; % output image
figure(2)
imshow(G); title(’Original and Gradients (Sobel, Prewitt and Gaussian )’)

figure(3)
Y = log(Gg+1); % log representation
mesh(Y(5:end−5,end−5:−1:5)); title(’3D representation of Gaussian output’);
colorbar; view(−178,74); axis off

figure(4)
imshow(Y>3); title(’Edge detection’); % edge detection

The output of this code is shown in Figs. 4.16 and 4.17. The code uses command
Ximgrad (see Appendix B) of XVIS Toolbox. �

4.4.2 Laplacian-of-Gaussian

In the previous section, we learned that the edges of a function can be located by
detecting local maxima of the magnitudes of gradients. We know that the location
of the maximal values of the gradient coincides with zero-crossing of the second
derivative. In order to eliminate noisy zero-crossings, which do not correspond to
high gradient values, this method uses a Gaussian low-pass filter (see Fig. 4.18).
The method, known as Laplacian-of-Gaussian (LoG), is based on a kernel and a
zero-crossing algorithm [6]. LoG-kernel involves a Gaussian low-pass filter (4.10),
which is suitable for the pre-smoothing of the noisy X-ray images. LoG-kernel is
defined as the Laplacian of a 2D-Gaussian function:

hLoG(m, n) = 1

2πσ 4 ·
(
2 − m2 + n2

σ 2

)
· e− m2+n2

2σ2 . (4.19)
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Fig. 4.18 Example of edge detection in 1D using LoG: The profile of the red line in an X-ray
image is shown as f (x). This function is filtered by a Gaussian low-pass filter obtaining g(x). The
gradient of g(x), represented as g′(x) shows the location of the maximal value (see dashed orange
lines), that corresponds to the zero-crossing of the second derivative of g(x). The edges ‘1’ and ‘2’
are then detected

Fig. 4.19 LoG mask: Left representation of (4.19), Right profile for n = 0

LoG-kernel is shown in Fig. 4.19. The parameter σ defines the width of the
Gaussian function and, thus, the amount of smoothing and the edges detected (see
Fig. 4.20). Using (4.8) we can calculate an image Y in which the edges of the origi-
nal image are located by their zero-crossing. After zero-crossing, the detected edges
Z correspond to the maximal (or minimal) values of the gradient image. In order
to eliminate weak edges, a threshold θ is typically used. Thus, all edge pixels in Z
that are not strong enough are ignored. The higher the threshold, the less edges will
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Fig. 4.20 Example of LoG-edge detection of a slider (see bottom left of X-ray image of the pen-
case Fig. 4.18). Several values for σ and θ are presented. The smoothness of the edges is controlled
by increasing σ . The reduction of noisy edges is controlled by increasing θ (→ Example 4.6 )

be detected. On the other hand, if θ = 0, i.e., all zero-crossings are included, the
edge image has closed and connected contours. As we will see in Sect. 4.5.2, this
property is required when segmenting a region of the image.

Matlab Example 4.6 In this example, we show the edge detection of the
object of a pen-case (see Fig. 4.20) according to LoG algorithm explained in this
Sect. 4.4.2:

Listing 4.6 : Edge detection using LoG

% PencaseLoG.m

close all
X = Xloadimg(’B’,2,1); % input image
X = imresize(X,0.5); % resize of input image
X = X(595:714,1:120); % selected area
figure(1)
imshow(X); title(’input image’);

threshold = [1e−8 1e−6 1e−5 1e−3 1e−2] % different threshold values
sigma = [0.5 1 2 3 4 6 8] % different sigma values

II = [];
for t = threshold % for all thresholds

JJ = [];
for s=sigma % for all simgas

E = edge(X,’log’,t,s); % edge detection
JJ = [JJ E]; % row of edge images

end
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II = [II;JJ]; % rows concatenation
end
figure(2)
imshow(II,[])
xlabel(’sigma’); ylabel(’threshold’)

The output of this code—step by step—in Fig. 4.20. The code uses command edge
of Image Processing Toolbox [3]. �

4.4.3 Canny Edge Detector

Canny proposes a 2D linear mask for edge detection based on an optimization
approach [7], in which the following criteria are met:

• Good detection: The detection should respond to an edge (and not to noise).
• Good localization: The detected edge should be near the true edge.
• Single response: It should be one detected edge per true edge.

The optimal mask is similar to a derivative of a Gaussian. Thus, the idea is to
use this mask to find the local maxima of the gradient of the image. The practi-
cal implementation uses adaptive thresholding of the gradient (to detect strong and
weak edges) with hysteresis (weak edges are detected only if they are connected to
strong edges).

The reader can change in Example 4.6 the code line E=edge(X,’log’,t,s)
by E = edge(X,’canny’,t,s) in order to elucidate similarities and differ-
ences between both edge detectors.

4.5 Segmentation

Image segmentation is defined as the process of subdividing an image into disjointed
regions [1]. A region is defined as a set of connected pixels that correspond to a
certain object of interest. Obviously, these regions of interest depend on the appli-
cation. For instance, in the inspection of aluminum castings with X-ray images, the
idea of segmentation is to find regions with defects. Here, the object of interest is
the defects. An example is shown Fig. 4.21, where the segmentation are the small
spots that indicate defective areas.

Another example of segmentation in X-ray testing is weld inspection as illus-
trated in Fig. 4.22, where a weld seam with two regions is clearly distinguishable:
the weld (foreground) and the base metal (background). In this example, the (first)
object of interest is the weld because it is the region where defects can be present.
The reader can clearly identify the defects in the weld (see small dark regions in the
middle of the X-ray image). In this example, the defects, that have to be detected
in a second segmentation stage, are our second object of interest. In this case, the
background is the weld, and the foreground is the defects.
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Fig. 4.21 Example of segmentation: detection of defects in an aluminum wheel (see details in
Fig. 4.14) (→ Example 4.4 )

Fig. 4.22 Segmentation of a weld. Top original X-ray image. Bottom segmentation. The first step
in weld inspection is the segmentation of the weld, i.e., the region where the defects can be present
(see segmentation in Fig. 4.27). The second step is the detection of defects (→ Example 4.8 )

Segmentation is one of the most difficult processes in image processing. Clearly,
there are some simple applications in which certain segmentation techniques are
very effective (e.g., separation between weld and metal base as shown in Fig. 4.22),
however, in many other applications segmentation is far from being solved as the
appearance of the object of interest can become very intricate. This is the case of
baggage screening, where the segmentation of objects of interest inside a piece of
luggage can be extremely difficult due to problems of (self-)occlusion, noise, and
acquisition (see Fig. 4.23).

In image processing for X-ray testing, segmentation is used to detect (potential)
regions that can be the objects of interest that we are looking for. As mentioned
in previous examples, segmentation divides the X-ray image into two areas: fore-
ground and background. Foreground means the pixels of the object(s) of interest.
Background means the remaining pixels of the image. Usually, a binary image is
the output of the segmentation process as we can see in Figs. 4.21 and 4.22: where
a pixel equals to ‘1’ (white) is foreground, whereas ‘0’ (black) means background.

Fig. 4.23 Problems when detecting a gun. Detection can be a very complex task due to a occlu-
sion, b self–occlusion, c noise, d wrong acquisition
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We use the term ‘potential’ throughout to make it clear that a segmented region is
not necessarily the final detected region. In many applications, the segmentation is
just the first step of the whole detection process. In such cases, an additional step
that analyzes the segmented region is required. This additional step can include
multiple view analysis or a pattern recognition technique (see Fig. 1.21). The later
extracts and classifies features of the segmented region in order to verify whether it
corresponds to the object that we are detecting or it is a false detection.

Thus, segmentation basically acts as a focus of attention mechanism that filters
the information that is fed to the following steps, as such a failure in the segmenta-
tion is catastrophic for the final performance. In this section, we will review some
basic segmentation techniques that have been used in X-ray testing: thresholding
(Sect. 4.5.1), region growing (Sect. 4.5.2) and maximally stable extremal regions
(Sect. 4.5.3). Please note that more complex techniques based on computer vision
algorithms will be addressed in the next sections.

4.5.1 Thresholding

In some X-ray images, we can observe that the background is significantly darker
than the foreground. This is the case of an X-ray image of an apple placed on a
uniform background as illustrated in Fig. 4.24. It is clear that the object of inter-
est can be segmented using a very simple approach based on thresholding. In this
section, we will explain a methodology based on two steps: (i) estimate of a global
threshold using a statistical approach, and (ii) a morphological operation in order to
fill the possible holes presented in the segmented binary image. This method was
originally presented for color food images [8], however, it can be easily adapted for
X-ray images.

Fig. 4.24 X-ray image of an apple and its histogram

http://dx.doi.org/10.1007/978-3-319-20747-6_1
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The X-ray image to be segmented is stored in matrix I. In order to enhance the
contrast of the image, a linear transformation can be performed (see Sect. 4.2.2).
Additionally, a linear or nonlinear filter can be used for noise removal (see Sect. 4.3).
Here, after image enhancement and filtering, we obtain a new image J where
Jmax = 1 and Jmax = 0. Image J has a bimodal histogram as shown in Fig. 4.24,
where the left distribution corresponds to the background and the right to the food
image. In this image, a first separation between foreground and background can be
performed estimating a global threshold t . Thus, we define a binary image

K (i, j) =
{
1 if J (i, j) > t
0 else

(4.20)

where ‘1’ means foreground and ‘0’ background, that define two classes of pixels
in the image. Figure 4.25 illustrates different outputs depending on t . The problem
is to determine the ‘best’ threshold t that separates the two modes of the histogram
from each other. A good separation of the classes is obtained by ensuring (i) a small
variation of the gray values in each class, and (ii) a large variation of the gray values
in the image [9]. The first criterion is obtained by minimizing a weighted sum of the
within-class variances (called intraclass variance σ 2

W (t)):

σ 2
W (t) = pb(t)σ

2
b (t) + p f (t)σ

2
f (t) (4.21)

where the indices ‘b’ and ‘ f ’ denote respectively background and foreground
classes, and p and σ 2 are, respectively, the probability and the variance for the
indicated class. These values can be computed from the histogram.

The second criterion is obtained by maximizing the between-class variance
(called interclass variance σ 2

B(t)):

σ 2
B(t) = pb(μb(t) − μ)2 + p f (μ f (t) − μ)2 (4.22)

where μb, μ f and μ indicate the mean value of the background, foreground and the
whole image respectively.

The best threshold t can be estimated by a sequential search through all possible
values of t that minimizes σ 2

W (t) (or maximizes σ 2
B(t)). Both criteria, however, lead

to the same result because the sum σ 2
W + σ 2

B is a constant and corresponds to the
variance of the whole image [9]. Matlab computes the global image threshold by
minimizing the intraclass variance σ 2

W (t). The threshold can be obtained with the
function graythresh [3]. In our example, the obtained threshold is t = 0.4824,
that is approximately 0.5 (see Fig. 4.25).

We can observe in Fig. 4.25 that the segmentation suffers from inaccuracy
because there are many dark (bright) regions belonging to the foreground (back-
ground) that are below (above) the chosen threshold and therefore misclassified.
For this reason, additional morphological processing must be obtained.
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Fig. 4.25 Segmentation using threshold t = 0.1, 0.2, . . . 1.0

Fig. 4.26 Additional morphological operations. From left to right: K: binary image after thresh-
olding, A: after removal of small objects, C: after closing process, R: after filling holes, and bound-
ary superimposed onto the original image (→ Example 4.7 )

The morphological operation is performed in three steps as shown in Fig. 4.26:
(i) remove small objects, (ii) close the binary image and (iii) fill the holes.

In the first step, we remove from binary image K obtained from (4.20) all con-
nected regions that have fewer than n pixels (see image A in Fig. 4.26).This oper-
ation is necessary to eliminate those isolated pixels of the background that have a
gray value greater than the selected threshold. Empirically, we set n = N M/100,
where N × M is the number of pixels of the image.

The second step closes the image, i.e., the image is dilated and then eroded. The
dilation is the process that incorporates into the foreground the background pixels
that touch it. On the other hand, erosion is the process that eliminates all the bound-
ary pixels of the foreground. The closing process (dilation followed by erosion)
fills small holes and thins holes in the foreground, connecting nearby regions, and
smoothing the boundaries of the foreground without changing the area significantly
[1] (see image C in Fig. 4.26). This operation is very useful in objects that have
spots in the boundary.

Finally, the last operation fills the holes in the closed image (see image R in
Fig. 4.26). We use this operation to incorporate into the foreground all pixels ‘0’ that
are inside of the region. The whole algorithm is implemented in command Xsegbi-
modal (see Appendix B) of XVIS Toolbox. In the implementation, as suggested in
[8], an offset p that modifies the threshold is used because there are dark zones in
the boundary that are not well included in the original segmented region.
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Matlab Example 4.7 In this example, we show the segmentation of an
X-ray image of an apple (see Fig. 4.24) according to the method explained in this
Sect. 4.5.1:

Listing 4.7 : Apple segmentation using global thresholding

% AppleSegmentation.m

close all
I = Xloadimg(’N’,5,9); % input image (a fruit)
figure(1)
imshow(I);title(’Input image’);

[R,E] = Xsegbimodal(I); % bimodal segmentation and boundary
figure(2)
imshow(R); title(’Segmetation’);

figure(3)
Xbinview(I,E,’r’,2); title(’Segmentation’); % boundary of the segmented region

The output of this code—step by step—in Fig. 4.26. The code uses command Xseg-
bimodal (see Appendix B) of XVIS Toolbox. �

The above-mentioned methodology, based on a global threshold, does not seg-
ment appropriately when there is a large variation in the background or foreground
intensity. For this reason, in certain cases, it is recommended to use an adaptive
threshold. The idea is to divide the input image into partitions with some overlap-
ping. Each partition is handled as a new image that is segmented by thresholding
(using a global but an ad hoc threshold for each partition). The output image is a
fusion of all segmented partitions, e.g., using logical OR operator. The next example
shows an implementation that was used to segment the weld of Fig. 4.22. Since the
weld area is horizontal, the proposed method uses vertical partitions that include
background and foreground areas. The segmentation of each partition is performed
by the same method used for the segmentation of the apple.

Matlab Example 4.8 This example shows the segmentation of a weld of
Fig. 4.22 using adaptive thresholding. The approach is simple: the input image is
divided into four partitions with an overlapping of 50%. Each partition is segmented
using command Xsegbimodal (see Appendix B) of XVIS Toolbox. The obtained
binary images of the segmentation are superimposed using logical OR operator:

Listing 4.8 : Weld segmentation using adaptive thresholding

% WeldSegmentation.m

close all
I = Xloadimg(’W’,1,1); % input image
figure(1)
imshow(I);title(’Input image’);

R = zeros(size(I)); % initialization of segmentation

M = size(I,2); % width of the image
d1 = round(M/4); % 4 partitions
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d2 = round(d1*1.5); % width of each partition
i1 = 1; % first column of partition

while i1<M
i2 = min([i1+d2 M]); % second column of partition
Ii = I(:,i1:i2); % partition i
Ri = Xsegbimodal(Ii); % segemntation of partition i
R(:,i1:i2) = or(R(:,i1:i2),Ri); % addition into whole segmentation
i1 = i1+d1; % update of first column

end
E = bwperim(R,4); % edge of segmentation
figure(2);
Xbinview(I,E,’r’,5); title(’Segmentation’); % boundary of the segmented region

The output of this code—step by step—is shown in the last row of Fig. 4.27. �

4.5.2 Region Growing

In region growing, we segment a region using an iterative approach. We start by
choosing a seed pixel, as shown in Fig. 4.28. At this moment, our region is initial-
ized and its size is one pixel only. We extract some feature of the region, e.g., the
gray value. We extract the same feature of each neighboring pixel. In our example,
there are four neighbors (up, down, right, and left), as we can see in third image of
Fig. 4.28. We increase our region by adding similar neighboring pixels, i.e., those
neighboring pixels that have a similar feature to the region. The whole process is
continued, each added pixel is a new seed for the next iteration, until no more neigh-
boring pixels can be added.

Fig. 4.27 Weld segmentation of Fig. 4.22 using adaptive thresholding of four partitions. The last
image shows the segmentation after fusion the four individual segmentations using logical OR
operator (→ Example 4.8 )
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Fig. 4.28 Region growing: we start with a seed pixel that grows in each iteration in four directions
until a boundary is found. The directions in this example are four: up, down, right, and left

In Fig. 4.28, we have a binary edge image. The feature that we use to establish
the similarity is the value of the pixel. In our example, there are only two pixel
values: ‘0’ for the edge pixels, and ‘1’ for the remaining pixels. That means, that
the value of the pixel of the seed is ‘1’ and in each iteration, we can add only those
neighboring pixels the value of which are ‘1’. As we can see, the red region grows
up from 1 pixel to 5, 12, 16, 22, and finally 24 pixels. The output is the red region
of the last step.

Region growing can be used directly in X-ray images as illustrated in Fig. 4.29.
We start with a seed pixel, and neighboring pixels are added if they are similar
enough.

Matlab Example 4.9 In this example, we show the performance of region
growing in the segmentation of an object in an X-ray image of a pen-case (see
Fig. 4.29). The seed is chosen at pixel (190,403). The seed grows by adding neigh-
boring pixels with similar gray values. We use command Xregiongrowing (see
Appendix B) ofXVIS Toolbox. In this implementation, the similarity between region
and neighboring pixels is established if |R̄ − rn| ≤ θ , where R̄ is the average of the
gray values of the region, rn is the gray value of the neighboring pixel, and θ is a
threshold. In this example, θ = 20:

Fig. 4.29 Region growing in an X-ray image using a seed pixel in the object of interest. The
region is well segmented as we can see in the binary image and in boundaries (→ Example 4.9 )
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Listing 4.9 : Region Growing

% PencaseRegionGrowing.m
close all
X = Xloadimg(’B’,3,4); % input image
X = imresize(X,0.35); % resize of input image
th = 40; % threshold
si = 403; sj = 190; % seed
Y = Xregiongrowing(X,th,[sj si]); % segmentation of the selected region
figure(1)
imshow(X,[]); title(’input image’);
hold on
plot(sj,si,’r+’); % seed pixel
figure(2)
imshow(Y);title(’segmented region’);
figure(3)
Xbinview(X,bwperim(Y));title(’edges of the region’);

The output of this code is shown in Fig. 4.29. �

Region growing can be used in X-ray testing in defect detection (see for example
interesting approaches in aluminum castings [10] and welds [11]). The method is
illustrated in Fig. 4.30. The method uses an edge detection algorithm to obtain an
edge image with closed and connected contours around the real defects. Thus, we
use region growing to isolate each region enclosed by edges. The idea is to extract
features from this isolated region (e.g., area, average of gray value, contrast, etc.)
that can be used in a classification strategy. In our example, a region is segmented
using a very simple classifier (the features of a segmented region must be in certain
ranges, e.g., Amin ≤ Area ≤ Amax). Obviously, more sophisticated features and
classifiers can be used to improve the segmentation performance in more complex
scenarios as we will see in the following chapters.

Fig. 4.30 Segmentation of defects in aluminum castings using region growing, edge detection,
and some features. The size of the image in this example is 286× 286 pixels (→ Example 4.10 )



4.5 Segmentation 139

Matlab Example 4.10 In this example, we show how to segment defects in
aluminum castings using binary images of potential defects and some simple fea-
tures that can be extracted from each potential region. In this example, we segment
all those regions the area of which is between 200 and 2000 pixels, the average of
the gray value is less than 150, and the contrast is greater than 1.1:

Listing 4.10 : Region Growing

% SegmentationCastDefect.m
X = Xloadimg(’C’,31,19); % input image
X = X(1:2:572,1:2:572);
figure(1)
imshow(X); title(’input image’);

R = X<240; % casting segmentation
figure(2);imshow(R);title(’segmented object’);

Amin = 30; Amax = 2000; % Area range
Gmin = 0; Gmax = 150; % Gray value range
Cmin = 1.1; Cmax = 3; % Contrast range
sigma = 2.5; % sigma of LoG

Y = Xseglogfeat(X,R,[Amin Amax],[Gmin Gmax],... % Segmentation
[Cmin Cmax],sigma);

figure(3)
Xbinview(X,bwperim(Y>0)); title(’segmented regions’) % Edges of the segmentation

The output of this code is shown—step by step—in Fig. 4.30. We use command
Xseglogfeat (see Appendix B) of XVIS Toolbox. �

This method is very effective for regions of interest that have gray values signifi-
cantly different from the background (the reader, for instance, can try to segment the
objects of the pen-case of Fig. 4.29 using command Xseglogfeat (see Appendix B)
of XVIS Toolbox).

Nevertheless, the method may fail if the boundaries do not close a region of inter-
est. This is the case in some defects of aluminum castings that are at an edge of a
regular structure as illustrated in Fig. 4.31.2 In this problem, we can see that the
edges of LoG algorithm (and other edge detection algorithms like Sobel or Canny
as well) cannot correctly find the defect’s edge. Contrarily, it finds the regular struc-
ture’s edge. To overcome this problem, we have to complete the remaining edges of
these defects. A simple approach was suggested in [12] by thickening of the edges
of the regular structure after LoG-edge detection: (i) The gradient of the original
image is calculated. The gradient image is computed by taking the square root of
the sum of the squares of the gradient in horizontal and in vertical directions. These
are calculated by the convolution of the radioscopic image with the first deriva-
tive (in the corresponding direction) of the Gaussian low-pass filter used in the
LoG filter. (ii) High gradient pixels are detected by thresholding. (iii) The resulting
image is added to the LoG-edge detection image. Afterwards, each closed region is

2A video of this small defect can be watched at http://youtu.be/e3wDJhq2Tqg.

http://youtu.be/e3wDJhq2Tqg
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Fig. 4.31 X-ray image of an aluminum casting with a small defect at an edge (see defect pointed
by green arrow). First row original image. Second row LoG. Third row LoG and high gradient
pixels. First column image representation. Second column 3D representation of red square. Third
column zoom of blue square. In this representation, the edge pixels are represented as red points
superimposed onto the 3D surface. The output of this method is a binary image in which the real
defects are closed by edges

segmented as a potential flaw. As can be observed the effectiveness of this method
in Fig. 4.31, the defect on an edge of a regular structure could be satisfactory closed.
Thus, the method of Fig. 4.30 can be used.

4.5.3 Maximally Stable Extremal Regions

In order to understand the MSER approach [13], the reader can imagine a simple
video as follows. The video will have 256 frames. Frame t is defined as the binary
image I < t , where I is the input image we want to segment. If the binary image
is black for ‘0’ and white for ‘1’, at the beginning our video will be very dark and
at the end very bright. In the middle, we will have some regions depending on the
threshold.3 Thus, each region has an area A(t), that depends on t . If the gray value

3The video can be found in http://youtu.be/tWdJ-NFE6vY.

http://youtu.be/tWdJ-NFE6vY
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of the region is very different from its background, the area of this region will be
stable for some thresholds t, t + 1 . . . t + p, i.e., A(t) ≈ A(t + 1) · · · ≈ A(t + p).
The key idea of MSER, is to segment those regions which fulfill:

�A

�t
< θ, (4.23)

where θ is a threshold. That means, those regions whose sizes remain approximately
stable by varying the segmentation threshold t are to be detected.

Matlab Example 4.11 In this example, we show the segmentation of an
X-ray image of a pen-case (see Fig. 4.15) according to MSER approach (see
Sect. 4.5.3):

Listing 4.11 : Pencase segmentation using MSER algorithm

% PencaseSegmentation.m

close all
I = Xloadimg(’B’,2,1); % input image
figure(1)
imshow(I); title(’Input image’);

[fr,sd,J] = Xsegmser(I,[15 20000 0.9 0.2 6 2 0]); % MSER segmentation
E = imdilate(bwperim(J),ones(3,3)); % edges
figure(2)
imshow(E); title(’Edges’);

L = bwlabel(J);
figure(3)
imshow(L,[]); title(’Segmentation’);

The output of this code—step by step—in Fig. 4.15. The code uses command
Xsegmser (see Appendix B) ofXVIS Toolbox. This command uses VLFeat Toolbox
[14]. �

4.6 Image Restoration

Image restoration involves recovering detail in severely blurred images. This process
is more efficient when the causes of the imperfections are known a-priori [5]. This
knowledge may exist as an analytical model, or as a-priori information in conjunc-
tion with knowledge (or assumptions) of the physical system that provided the imag-
ing process in the first place. The purpose of restoration then is to estimate the best
source image, given the blurred example and some a-priori knowledge.

In this section, we concentrate on the particular case of blur caused by uniform
linear motion, which may be introduced by relative motion between detector and
object. Early work on restoring an image degraded by blurring calculated the deblur-
ring function as an inverse filtering. The inverse filtering evaluation of the blurring
function h (or point spread function PSF) in the frequency domain tends to be very
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sensitive to noise [5]. The cause of this sensitivity is the low-pass nature of the PSF:
its frequency response H(ω) contains very small values, and small noise in the fre-
quency regions where 1/H(ω) is very large, may be greatly emphasized. Sondhi
[5], proposed a non-iterative algorithm to find a solution to the uniform-blurring
case, but the computational load is extremely high in small motions. Another two
non-iterative approaches are presented in [3]. In the first one, the matrix left divi-
sion calculates the restored signal as a signal that has the fewest possible nonzero
components. This solution differs strongly from the original signal because the orig-
inal signal must not have necessarily many zero components. The second one, the
Moore-Penrose pseudo-inverse of a matrix, finds a restored signal whose norm is
smaller than any other solution. This solution is very good, but the estimation is
based on Singular-Value Decomposition (SVD), whose computation load is very
high. In this section, we address the above problems and reduce the computational
times significantly using a new technique that minimize the norm between blurred
and original.

A blurred X-ray image g(x, y) that has been degraded by a motion in the vertical
direction x and the horizontal direction y can be modeled by:

g(x, y) = 1

T

∫ T

0
f (x − xt (t), y − yt (t))dt, (4.24)

where f , T , xt (t) and yt (t) represent, respectively, the deterministic original X-ray
image, the duration of the exposure, and the time-varying component of motion in
the x and y directions. In this case, the total exposure is obtained by integrating the
instantaneous exposure over the time interval during which the shutter is open. By
rotation of the camera or by using a transformation that rotates the blurred image,
a new system of coordinates is chosen in which xt (t) is zero. Considering that the
original image f (x, y) undergoes uniform linear motion in the horizontal direction
y only, at a rate given by yt (t) = ct/T , let us write (4.24), with u = y − ct/T, as:

g(y) = 1

T

∫ T

0
f (y − ct/T )dt = 1

c

∫ y

y−c
f (u)dt, (4.25)

or as a digital that has been discretized in spatial coordinates by taking N samples
�y = Y/N units apart:

gk = 1

n

n−1∑
i=0

fk+i , (4.26)

where

gk = g
(

y0 + (k − 1)
c

n

)
, fk = f

(
y0 + (k − 1)

c

n
− c

)
, (4.27)
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Fig. 4.32 Blurring process: Left original row f . Right Blurred row

with n = c/�y. Figure 4.32 shows a row f = [ f1 . . . fM ]T of an original image
and its corresponding row g = [g1 . . . gN ]T of the blurred image for n = 3 pixels.
Equation (4.26) describes an underdetermined system of N simultaneous equations
(one for each element of vector g) and M = N + n − 1 unknowns (one for each
element of vector f) with M > N . This process is carried out for each row of the
image. The degradation of f can be modeled using a convolution of f with h, where
h is the PSF, a n-element vector defined as the impulse response of this linear system
[5]. Thus, element gi of vector g is calculated as a weighted sum of n elements of
f , i.e., gi = h1 fi + h2 fi+1 + · · · + hn fi+n−1, for i = 1, . . . , N . Using a circulant
matrix, the convolution can be written as Hf = g:

g = f ∗ h =

⎡
⎢⎢⎣

h1 . . . hn 0 0 0 0
0 h1 . . . hn 0 0 0

: :
0 0 . . . 0 h1 . . . hn

⎤
⎥⎥⎦

⎡
⎢⎢⎣

f1
f2
:

fM

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

g1
g2
:

gN

⎤
⎥⎥⎦ (4.28)

An example of a degradation process is shown in Fig. 4.33. In this example, we can
see how the objects cannot be recognized when the degradation is severe.

If the PSF is not exactly known, but if we know that it corresponds to a uni-
form linear motion, the parameter n can be estimated from the spectrum of the
blurred image. An example is shown in Fig. 4.34. The 2D-Fourier Transformation
of a blurred test is represented in Fig. 4.34a, in this case a horizontal degradation
took place with n = 32. The mean of its rows is illustrated in Fig. 4.34b. We can

Fig. 4.33 Degradation of an X-ray image of 2208 × 2688 pixels: Original image and degraded
images with n = 32, 256, and 512 pixels
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Fig. 4.34 Spectrum of a blurred image which was degraded by uniform linear motion with n = 32
pixels. Left 2D-Fourier Transformation of the original image of Fig. 4.33. Right Mean of the rows
of the Fourier transformation. The size of the degraded image is 2208 × 2657 pixels. It can be
demonstrated that b is approximately 2657/n

observe that the period of this function is inversely proportional to the length of the
blurring process in pixels.

The problem of restoring an X-ray that has been blurred by uniform linear motion
consists of solving the underdetermined system (4.28). The objective is to estimate
an original row per row (f), given each row of a blurred (g) and a-priori knowledge
of the degradation phenomenon (H). Since there is an infinite number of exact solu-
tions for f in the sense that Hf − g = 0, an additional criterion that finds a sharp
restored is required.
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Fig. 4.35 Restoration of row f : a original row, b degraded row with n = 2, c–f four possible
solution that satisfy Hf̂ = g
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We observed that most solutions for f strongly oscillate. Figure 4.35 shows an
example in which four different solutions for f are estimated, all solutions satisfy
Eq. (4.28): Hf = g. Although these solutions are mathematically right, they do not
correspond to the original signal. By the assumption that the components of the
higher frequencies of f are not so significant in the wanted solution, these oscil-
lations can be reduced by minimization of the distance between fk and gk , i.e., we
take a vector as a sharp solution of Hf = g so, that this presents the smallest distance
between original signal and blurred signal: we seek then to minimize the objective
function

J (f, g) =
N∑

k=1

( fk − gk)
2 → min. (4.29)

The application of criteria of the minimization of the norm between input and
output (MINIO) does not mean that f is equal to g, because this solution does not
satisfy the system of equations (4.28) and the size of f and g are different. The solu-
tion also is defined as the vector in the solution space of the underdetermined system
Hf = g whose first N components has the minimum distance to the measured data,
i.e., where the first N elements are of f . We can express vector f̂ = Pf , with f a
N × M matrix which projects the vector f on the support of g:

P =

⎡
⎢⎢⎣
1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0

: : 0
0 0 . . . 1 0 . . . 0

⎤
⎥⎥⎦. (4.30)

The original optimization problem is now:

f̂ = argmin
f

‖ Pf − g ‖2 (4.31)

subject to the constraint ‖ Pf − g ‖2= 0. Applying the technique of Lagrange
multipliers this problem can be alternatively formulated as an optimization problem
without constraints:

V (f) = λ ‖ Hf − g ‖2 + ‖ Pf − g ‖2→ min, (4.32)

if λ is large enough. The solution of this problem can be easily obtained by comput-
ing the partial derivative of criterion V with respect to the unknown f :

∂

∂f
V (f) = 2λHT(Hf − g) + 2PT(Pf − g) = 0, (4.33)

then is

f̂ =
[
λHTH + PTP

]−1
[λH + P] g. (4.34)
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Fig. 4.36 Restoration in simulated degraded X-ray images. Each column shows the original, the
degraded with n pixels and the restored images. The size of the images are respectively: 574×768,
with n = 30; 574 × 768, with n = 40; and 2208 × 2688, with n = 128 (→ Example 4.12 )

This solution for the example of Fig. 4.35b is almost identical to the original
sharp input signal of Fig. 4.35a. Figure 4.36 shows three different restoration exam-
ples.

Matlab Example 4.12 In this example, we simulate an X-ray image that has
been degraded by a horizontal motion. The image is restored using MINIO algo-
rithm (4.34):

Listing 4.12 : X-ray image restoration.

% MinioRestauration.m
F = Xloadimg(’B’,46,90); % original image
n = 128; % amount of blur in pixels
h = ones(1,n)/n; % PSF
G = conv2(double(F),h,’valid’); % degradation
Fs = Xresminio(G,h); % restoration
figure(1)
imshow(F,[]) ;title(’original image’);
figure(2)
imshow(G,[]) ;title(’degraded image’);
figure(3)
imshow(Fs,[]);title(’restored image’);
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The output of this code is shown in the last row of Fig. 4.36. Details of the baggage
are not discernible in the degraded image, but are recovered in the restored image.
In this code, we use function Xresminio (see Appendix B) of XVIS Toolbox. This
function computes MINIO restoration algorithm as defined in (4.34). �

The restoration quality is equally as good as the classical methods (see for exam-
ple [5]), while the computation load is decreased considerably (see comparisons
in [15]).

4.7 Summary

In this chapter, we covered the main techniques of image processing used in X-ray
testing.

They are:

• Image preprocessing: Noise removal, contrast enhancement, and shading correc-
tion.

• Image Filtering: linear and nonlinear filtering.
• Edge detection: Gradient estimation, Laplacian-of-Gaussian, and Canny.
• Image segmentation: Thresholding, region growing, and maximally stable
extremal regions.

• Image restoration: Minimization of the norm between input and output.

The chapter provided a good overview, presenting several methodologies with
examples using real and simulated X-ray images.

References

1. Castleman, K.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1996)
2. Boerner, H., Strecker, H.: Automated X-ray inspection of aluminum casting. IEEE Trans.

Pattern Anal. Mach. Intell. 10(1), 79–91 (1988)
3. MathWorks: Image Processing Toolbox for Use with MATLAB: User’s Guide. The Math-

Works Inc. (2014)
4. Heinrich, W.: Automated inspection of castings using X-ray testing. Ph.D. thesis, Institute

for Measurement and Automation, Faculty of Electrical Engineering, Technical University of
Berlin (1988). (in German)

5. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Pearson (2008)
6. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press,

Cambridge (1993)
7. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.

Intell. PAMI–8(6), 679–698 (1986)
8. Mery, D., Pedreschi, F.: Segmentation of colour food images using a robust algorithm. J. Food

Eng. 66(3), 353–360 (2004)
9. Haralick, R., Shapiro, L.: Computer and Robot Vision. Addison-Wesley Publishing Co., New

York (1992)



148 4 X-ray Image Processing

10. Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings. In:
Proceedings of the Scandinavian Conference on Image Analysis (SCIA 2003), Lecture Notes
in Computer Science vol. 2749, pp. 725–732 (2003)

11. Mery, D., Berti, M.A.: Automatic detection of welding defects using texture features. Insight-
Non-Destr. Test. Cond. Monit. 45(10), 676–681 (2003)

12. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of
potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901
(2002)

13. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo frommaximally stable
extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

14. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algo-
rithms. In: Proceedings of the International Conference on Multimedia, pp. 1469–1472. ACM
(2010)

15. Mery, D., Filbert, D.: A fast non-iterative algorithm for the removal of blur caused by uni-
form linear motion in X-ray images. In: Proceedings of the 15th World Conference on Non-
Destructive Testing (WCNDT-2000). Rome (2000)



Chapter 5
X-ray Image Representation

Abstract In this chapter we cover several topics that are used to represent an X-ray
image (or a specific region of an X-ray image). This representation means that new
features are extracted from the original image that can give us more information
than the raw information expressed as a matrix of gray values. This kind of infor-
mation is extracted as features or descriptors, i.e., a set of values, that can be used in
pattern recognition problems such as object recognition, defect detection, etc. The
chapter explains geometric and intensity features, and local descriptors and sparse
representations that are very common in computer vision applications. Furthermore,
the chapter addresses some feature selection techniques that can be used to chose
which features are relevant in terms of extraction.

Cover image: Welding defects (from X-ray image W0001_0001, well known as BAM5,
colored with ‘sinmap’ colormap).
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5.1 Introduction

As we learned in the previous chapter, in image processing for X-ray testing, seg-
mentation is used to detect (potential) regions that can be the objects of interest that
we are looking for (see Sect. 4.5). As segmented potential regions frequently set
off false detections, an analysis of the segmented regions can significantly improve
the effectiveness of detection. Measuring certain characteristics of the segmented
regions (feature extraction) can help us to distinguish the false detection, although
some of the features extracted are either irrelevant or are not correlated. Therefore,
a feature selection must be performed. Depending on the values returned for the
selected features, we can try to classify each segmented potential region in one of
the following two classes: background or object of interest.

In this chapter, we will explain several features that are normally used in image
analysis and computer vision for X-ray testing. In our description, features will be
divided into two groups: geometric and intensity features. Furthermore, we will
cover some local descriptors and sparse representations that can be used in many
X-ray testing applications. In this chapter we shall concentrate on the extraction and
selection of features, whereas in the following chapter we will discuss the classifi-
cation problem itself.

We will use Fig. 5.1 as our example in the description of features. In our exam-
ple, we use an X-ray image of a circular defect. The segmentation is a binary image
that gives information about the pixels that belongs to our object of interest (the
defect). Geometric features are extracted from this binary image. Moreover, inten-
sity features are extracted from the intensity image considering the pixels of the
segmentation. Some intensity features consider only the gray values inside the seg-
mented region, other ones take into account both gray values inside and outside the
region (e.g., contrast).
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Fig. 5.1 Example of a region: a X-ray image, b segmented region (gray pixels), c 3D representa-
tion of the gray values
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5.2 Geometric Features

These provide information on the location, size, and shape of the segmented region.
Location and size features, such as center of mass, perimeter, height and width, are
given in pixels. Shape features are usually coefficients without units. It is worth
mentioning that we distinguish three different zones in the segmented image (see
Fig. 5.1b), the segmented region (gray zone �), the boundary (white edge pixels �)
and the background (black zone).

5.2.1 Basic Geometric Features

In this section we will summarize basic geometric features that can be easily
extracted.

Height and width
The eight and width of a region can be defined as:

h = imax − imin + 1 and w = jmax − jmin + 1 (5.1)

where imax and imin is the maximal and minimal value that takes coordinate i in the
region. The same is valid for jmax and jmin in j-direction. In our example of Fig. 5.1,
h = w = 7 pixels.

Area and perimeter
We define the area A of a region as the number of pixels that belong to the region.
On the other hand, the perimeter L is the number of pixels that belong to the
boundary. In the region of Fig. 5.1, the area and the perimeter are A = 45 and
L = 24 pixels, respectively. More accurate measurements for area and perimeter
can also be estimated [1]: for instance, the boundary of the region can be fitted to a
curve with known area and length (in our example the boundary can be fitted to a
circle with radius r = 4 pixels, so A = πr2 = 50.26 pixels and L = 2πr = 25.13
pixels), however, the computational time of such approaches can be extremely long
if there are thousands of regions to be measured. Moreover, the shape of the region
can be much more complex than a simple circle as shown in Fig. 4.30. We should
remember, therefore, that the goal of feature extraction is not the accurate measure-
ment, rather it is simply the extraction of features that can be used in a classification
approach to separate our classes (objects of interest from background). Thus, it is
not relevant that the measurement of the area of the region is just 45 pixels and not
50.26 pixels.

Center of mass
This provides information about the location of the region. It is computed as the
average of coordinate i and coordinate j in pixels that belong to region �:

http://dx.doi.org/10.1007/978-3-319-20747-6_4
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ī = 1

A

∑
i∈�

i j̄ = 1

A

∑
j∈�

j (5.2)

where A is the area of the region, i.e., the number of pixels of the region.

Roundness
Shape features are usually attributed coefficients without units. An example is
roundness that is defined as:

R = 4 · A · π

L2 (5.3)

The roundness R is a value between 1 and 0. R = 1 means a circle, and R = 0
corresponds to a region without an area. In our example R = 4 · 45 · π/242 = 0.98.

Other basic features
There are some useful features that can be extracted employing the Image Process-
ing Toolbox of Matlab using command regionprops. According to User’s Guide
of the Image Processing Toolbox [2] these are defined as follows:

• EulerNumber: The number of objects in the region minus the number of holes
in those objects.

• EquivDiameter: The diameter of a circle with the same area as the region.
• MajorAxisLength and MinorAxisLength: The length (in pixels) of the

major and minor axis of the ellipse that has the same normalized second central
moments as the region.

• Orientation: The angle (in degrees ranging from −90 to 90◦) between the
x-axis and the major axis of the ellipse that has the same second moments as the
region.

• Solidity: The proportion of the pixels in the convex hull that are also in the
region.

• Extent: The ratio of pixels in the region to pixels in the total bounding box.
• Eccentricity: The eccentricity of the ellipse that has the same second moments

as the region.

All basic geometric features explained in this section can be extracted by com-
mand Xbasicgeo (see Appendix B) of XVIS Toolbox. An example is shown in
Table 5.1, where the basic 15 geometric features (divided by 1000) are presented
for 10 regions of Fig. 5.2: f1: Center of mass in i direction. f2: Center of mass in j
direction. f3: Height. f4: Width. f5: Area. f6: Perimeter. f7: Roundness. f8: Euler
Number. f9: Equivalent Diameter. f10: Major Axis Length. f11: Minor Axis Length.
f12: Orientation. f13: Solidity. f14: Extent. f15: Eccentricity.

Matlab Example 5.1 In this example, we show how to extract the basic
geometric features of ten apples as segmented in Fig. 5.2.
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Fig. 5.2 X-ray image of 10 apples (→ Example 5.1 )

Listing 5.1 : Basic geometric features

% AppleBasicGeoFeatures.m
I = Xloadimg(’N’,1,4)’; % X−ray of apples
I = I(300:1000,100:2000); % input image
J = and(I>60,I<110);
K = imerode(bwfill(J,’holes’),ones(11,11)); % segmentation
[L,n]=bwlabel(K,4); % regions

X = zeros(n,15); % features
E = zeros(size(I)); % edges of the regions
imshow(I);hold on
for i=1:n

Ri = imdilate(L==i,ones(11,11));
E = or(E,bwperim(Ri));
X(i,:) = Xbasicgeo(Ri); % basic geo−features
text(X(i,2),X(i,1),sprintf(’%d’,i),...

’color’,’b’,’fontsize’,12) % output
end
[ii,jj] = find(E==1); plot(jj,ii,’r.’) % display edges
X/1000 % features divided by 1000

The output of this code is shown in Fig. 5.2 and Table 5.1. The basic geometric
features are extracted by command Xbasicgeo (see Appendix B) of
XVIS Toolbox. �

5.2.2 Elliptical Features

Elliptical features can be used to extract information about location, size, and shape
of a region. They are extracted from a fitted ellipse to the boundary of the region [3].
From this ellipse we can extract the center, the length of the axes, the orientation and
the eccentricity.

The pixels of the boundary are defined as (xi , yi ) for i = 1 . . . L . It is well known
that an ellipse is defined as:
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ax2 + bxy + cy2 + dx + ey + f = 0, (5.4)

that can be written as aTx = 0, where a = [a b c d e f ]T is a vector that includes
the parameters of the ellipse and x = [x2 xy y2 x y 1]T is a vector that includes the
coordinates of a point (x, y) that lies on the ellipse.

If our region is elliptical, then for each point (xi , yi ) we have aTxi = 0 with
xi = [x2

i xi yi y2
i xi yi 1]T. Nevertheless, in practice the regions are not perfectly

elliptical, not only because real regions have different shapes, but also there is a
discretization error when forming a digital image. For this reason, we look for a
vector a so that aTxi → min for every point i = 1 . . . L . That is, we can formulate
the estimation of the parameters of the ellipse as an optimization problem as follows:

‖ Xa ‖→ min (5.5)

where X is matrix with L rows whose i th row is xT
i . Usually, a solution can be found

by minimizing (5.5) subject to ‖ a ‖ = 1. In this case, a is the last column of matrix
V, where X = USVT is the singular value decomposition (SVD) of X [4].

The elliptical features can be extracted by writing (5.4) as follows:

(
x − x0

ae

)2

+
(

y − y0

be

)2

= 1 (5.6)

where

ae = 1√
s ap

, be = 1√
s bp

(5.7)

with

s = 1

v − f
v = tTTt

T =
[

a b/2
b/2 c

]
t =

[
x0
y0

]
= 1

2
T−1

[
d
e

]

ap = a cos2(α) + b cos(α) sin(α) + c sin2(α)

bp = a sin2(α) − b cos(α) sin(α) + c cos2(α)

and

α = 1

2
arctan

(
b

a − c

)
(5.8)

The axes of the ellipse are defined by ae and be, the center of the ellipse is located
on (x0, y0) and the orientation is α. Thus, the eccentricity is defined by

ex = min(ae, be)

max(ae, be)
(5.9)
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Fig. 5.3 Elliptical features of a fruit. In this example, the coordinates of the center of the ellipse
correspond to the yellow cross (i = 262.99, j = 339.42). The estimated length of each axis
are 109.71 and 213.39 pixels. The orientation (with respect to vertical axis in a counterclockwise
direction) is 1.1396 rad, i.e., 65.30◦. The eccentricity is 0.5141 (→ Example 5.2 ) (Color figure
online)

For circular shapes, the eccentricity as the roundness (5.3), takes values between
0 and 1, where 1 means a perfect circle.

Matlab Example 5.2 In this example, we show how to extract elliptical
features of a shape. We test this approach on an X-ray of an apple with a circu-
lar shape that was transformed and rotated as shown in Fig. 5.3.

Listing 5.2 : Elliptical boundary of a fruit

% EllipticalBoundary.m
I = double(Xloadimg(’N’,5,9)); % input image
I = imrotate(I(1:2:end,:),25); % shape transformation and rotation
R = Xsegbimodal(I); % segmentation
[X,Xn] = Xfitellipse(R); % ellipse features
Xprintfeatures(X,Xn) % features
imshow(I,[]); hold on
Xdrawellipse(X,’y’) % ellipse drawing
plot(X(2),X(1),’y*’) % center of ellipse

The output of this code is shown in Fig. 5.3. The elliptical features are extracted by
command Xfitellipse (see Appendix B) of XVIS Toolbox. �



5.2 Geometric Features 157

5.2.3 Fourier Descriptors

Shape information—invariant to scale, orientation and position—can be measured
using Fourier descriptors [5–7]. The coordinates of the pixels of the boundary are
arranged as a complex number ik + j · jk , with j = √−1 and k = 0, . . . , L − 1,
where L is the perimeter of the region, and pixel k and k + 1 are connected. The
complex boundary function can be considered as a periodical signal of period L .
The Discrete Fourier Transformation [8] gives a characterization of the shape of the
region. The Fourier coefficients are defined by:

Fn =
L−1∑
k=0

(ik + j · jk)e
− j 2πkn

L for n = 0, . . . , L − 1. (5.10)

The Fourier descriptors correspond to the coefficients Fn for n > 0. The Fourier
coefficient F0 is not used because it gives information about the location of the
region. The magnitude and phase of Fourier descriptors give information about ori-
entation and symmetry of the region. In general, only the magnitude |Fn| is used.
Fourier descriptors are invariant under rotation. The Fourier descriptors of our exam-
ple in Fig. 5.1a are illustrated in Fig. 5.4. The first pixel of the periodic function is
(i0, j0) = (6, 10) . In case the region is a perfect circle, |Fn| = 0 for 1 < n < L
because (ik, jk) represent a perfect sinusoid. In our example, the region is not a
perfect circle, however, as we can see the Fourier descriptors are very small for
2 < n < L .

Fourier descriptors can be extracted using command Xfourierdes (see Appen-
dix B) of XVIS Toolbox.

Fig. 5.4 Coordinates of the boundary of region of Fig. 5.1 and the Fourier descriptors
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5.2.4 Invariant Moments

The statistical moments are defined by:

mrs =
∑

i, j∈�
ir j s for r, s ∈ N (5.11)

where � is the set of pixels that belong to the region (see gray pixels in Fig. 5.1b).
In this example, pixel (i = 4, j = 6) ∈ �. The parameter r + s corresponds to the
order of the moment. The reader can demonstrate that the zeroth moments m00 is
equal to the area A of the region. Moreover, the center of mass of the region is easily
defined by:

ī = m10

m00
j̄ = m01

m00
(5.12)

The reader can compare this definition with (5.2). The coordinates of the center
of mass can be computed using command Xcentroid (see Appendix B) of XVIS

Toolbox.
The center of mass and statistical moments of higher order, however, are not

invariant to the location of the region. This can be useful for detecting objects that
must be in certain locations. Nevertheless, when objects of interest may be every-
where in the image we must use features that are invariant to the position. Using the
center of mass, the central moments are defined. They are invariant to the position:

μrs =
∑

i, j∈�
(i − ī)r ( j − j̄)s for r, s ∈ N. (5.13)

Other known moments that can be used are the well-known Hu moments [9, 10].
These were developed using the central moments as follows:

φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η2

11
φ3 = (η30 − 3η12)

2 + (3η21 − η03)
2

φ4 = (η30 + η12)
2 + (η21 + η03)

2

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] +
(3η21 − η03)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] +
4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] −
(η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

(5.14)

with

ηrs = μrs

μt
00

t = r + s

2
+ 1.
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Hu moments are invariant to translation, rotation, and scale. That means that regions
that have the same shape, but have a different size, location and orientation, will have
similar Hu moments.

In addition, there are similar invariant features, called Gupta moments, that are
derived from the pixels of the boundary (instead of the region) [11]. They are invari-
ant to translation, rotation, and scale.

Sometimes, it is necessary to have features that are invariant to affine transforma-
tion as well (see Sect. 3.2.2). For this reason Flusser moments, i.e., features invariant
to translation, rotation, scale, and affine transformation were derived from second
and third order central moments [12, 13]:

I1 = μ20μ02 − μ2
11

μ4
00

I2 = μ2
30μ

2
03 − 6μ30μ21μ12μ03 + 4μ30μ

3
12 + 4μ3

21μ03 − 3μ2
21μ

2
12

μ10
00

I3 = μ20(μ21μ03 − μ2
12) − μ11(μ30μ03 − μ21μ12) + μ02(μ30μ12 − μ2

21)

μ7
00

(5.15)

I4 = (μ3
20μ

2
03 − 6μ2

20μ11μ12μ03 − 6μ2
20μ02μ21μ03 + 9μ2

20μ02μ
2
12

+12μ20μ
2
11μ21μ03 + 6μ20μ11μ02μ30μ03 − 18μ20μ11μ02μ21μ12

−8μ3
11μ30μ03 − 6μ20μ

2
02μ30μ12 + 9μ20μ

2
02μ21

+12μ2
11μ02μ30μ12 − 6μ11μ

2
02μ30μ21 + μ3

02μ
2
30)/μ

11
00

Matlab Example 5.3 In this example, we show how to measure invariant
moments that can be used as a shape feature of objects of interest. We tested this
approach on an X-ray containing 10 apples. We superimpose onto this
image 6 rectangles the size of which is a × b pixels (where b = 2a). The rectangles
are located in horizontal and vertical directions as shown in Fig. 5.5. Thus, we can
simulate an input X-ray image containing apples and rectangles. The idea is to sep-
arate them. We see that the first Hu moment can be used to effectively discriminate
apples from rectangles.

Listing 5.3 : Detection using invariant moments

% AppleMoments.m
I = Xloadimg(’N’,1,4); % X−ray of apples
I( 50: 249,1500:1599) = 90;
I(1500:1599,1550:1749) = 90;
I( 50: 449,1700:1899) = 90;
I(1800:1899,2050:2249) = 90;
I( 350: 749,2000:2199) = 90;
I(1050:1249,2000:2099) = 90;

http://dx.doi.org/10.1007/978-3-319-20747-6_3
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imshow(I); hold on
J = and(I>60,I<110);
K = imerode(bwfill(J,’holes’),ones(11,11)); % segmentation
[L,n]=bwlabel(K,4); % regions
X = zeros(n,7);
for i=1:n

Ri = imdilate(L==i,ones(11,11));
c = Xcentroid(Ri); % mass center
X(i,:) = Xhugeo(Ri); % Hu moments
text(c(2)−55,c(1),sprintf(’%4.0f’,X(i,1)*1000),...

’color’,’b’,’fontsize’,12) % output
end
E = bwperim(K);
[ii,jj] = find(E==1); plot(jj,ii,’y.’) % display edges

The output of this code is shown in Fig. 5.5. In this example, command Xcentroid
(see Appendix B) was used to compute the center of mass of each segmented object.
The coordinates were used to print the first Hu moment (× 1000) in blue. The Hu
moments are extracted by command Xhugeo (see Appendix B) of XVIS Toolbox.

Fig. 5.5 First Hu moment (φ1) of apples and rectangles. Since φ1 for apples is approximately
163, and for these rectangles is 208, it is evident that this feature can be used to discriminate them
from each other (→ Example 5.3 )
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The reader can test Flusser and Gupta moments using commands Xflusser and
Xgupta (see Appendix B). �

5.3 Intensity Features

These provide information about the intensity of a region. For gray value images,
e.g., X-ray images, there is only one intensity channel. The following features are
computed using the gray values in the image, where x(i, j) denotes the gray value
of pixel (i, j).

5.3.1 Basic Intensity Features

In this section we summarize basic intensity features that can be easily extracted.

Mean gray value
The mean gray value of the region is computed as:

G = 1

A

∑
i, j∈�

x(i, j) (5.16)

where � is the set of pixels of the region and A the area. A 3D representation of the
gray values of the region and its neighborhood of our example is shown in Fig. 5.1.
In this example G = 121.90 (G = 0 means 100 % black and G = 255 corresponds
to 100 % white).

Mean gradient in the boundary
This feature gives information about the change of the gray values in the boundary
of the region. It is computed as:

C = 1

L

∑
i, j∈�

x ′(i, j) (5.17)

where x ′(i, j) means the gradient of the gray value function in pixel (i, j) (see
Sect. 4.4.1) and � the set of pixels that belong to the boundary of the region. The
number of pixels of this set corresponds to L , the perimeter of the region. Using a
Gaussian gradient operator in our example in Fig. 5.1, we obtain C = 35.47.

http://dx.doi.org/10.1007/978-3-319-20747-6_4
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Mean second derivative
This feature is computed as:

D = 1

A

∑
i, j∈�

x ′′(i, j) (5.18)

where x ′′(i, j) denotes the second derivate of the gray value function in pixel (i, j).
The Laplacian-of-Gauss (LoG) operator can be used to calculate the second derivate
of the image. If D > 0 we have a region that is darker than its neighborhood as
shown in Fig. 4.18.

Other basic features
A simple texture feature is the local variance [14]. This is given by:

σ 2
g = 1

4hw + 2h + 2w

2h+1∑
i=1

2w+1∑
j=1

(g(i, j) − ḡ)2 (5.19)

where ḡ denotes the mean gray value in the zone, and h and w are the height and
width as expressed in (5.1).

Other basic intensity features such as kurtosis and skewness can be computed as
(5.19). All intensity geometric features explained in this section can be extracted
by command Xbasicint (see Appendix B) of XVIS Toolbox. An example is shown
in Table 5.2, where the basic 6 intensity features are presented for 10 regions of
Fig. 5.2: f1: Intensity mean. f2: Intensity standard deviation. f3: Intensity kurtosis.
f4: Intensity skewness. f5: Mean Laplacian. f6: Mean boundary gradient.

Table 5.2 Basic intensity features of apples of Fig. 5.2 (→ Example 5.4 )

k f1 f2 f3 f4 f5 f6

1 158.6886 41.5743 2.2734 −0.5948 −0.3466 11.7224

2 151.1139 39.7086 2.1362 −0.4942 −0.3008 10.4349

3 150.1203 39.7638 2.1516 −0.5286 −0.3117 10.0269

4 148.1976 39.3551 2.0933 −0.4574 −0.3213 10.2263

5 136.1336 34.4244 2.1840 −0.4309 −0.3156 9.0255

6 156.5436 43.7055 2.0797 −0.3863 −0.3287 10.3313

7 152.4726 44.2841 1.9045 −0.3172 −0.3046 9.0481

8 132.3472 33.1643 2.5448 −0.5122 −0.2555 8.8948

9 143.1046 38.3128 2.0296 −0.3942 −0.2908 9.0821

10 166.2491 46.3513 2.2428 −0.5072 −0.3114 11.1117

http://dx.doi.org/10.1007/978-3-319-20747-6_4
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Matlab Example 5.4 In this example, we show how to extract basic inten-
sity features of ten apples as segmented in Fig. 5.2.

Listing 5.4 : Basic intensity features

% AppleBasicIntFeatures.m
close all
I = Xloadimg(’N’,1,4)’; % X−ray of apples
I = I(300:1000,100:2000); % input image
J = and(I>60,I<110);
K = imerode(bwfill(J,’holes’),ones(11,11)); % segmentation
[L,n]=bwlabel(K,4); % regions

X = zeros(n,6); % features
E = zeros(size(I)); % edges of the regions
imshow(I);hold on
op.mask = 15; op.show = 0;
for i=1:n

Ri = imdilate(L==i,ones(11,11));
E = or(E,bwperim(Ri));
X(i,:) = Xbasicint(I,Ri,op); % basic int−features
c = Xcentroid(Ri); % centroid
text(c(2),c(1),sprintf(’%d’,i),...

’color’,’b’,’fontsize’,12) % output
end
[ii,jj] = find(E==1); plot(jj,ii,’r.’) % display edges
X % features

The output of this code is shown in Fig. 5.2 and Table 5.2. The basic geometric
features are extracted by command Xbasicint (see Appendix B) of XVIS Tool-
box. �

5.3.2 Contrast

The contrast gives a measure of the difference in the gray value between region and
its neighborhood. The smaller the gray value difference, the smaller the contrast.
In this work, region and neighborhood define a zone. The zone is considered as a
window of the image:

g(i, j) = x(i + ir , j + jr ) (5.20)

for i = 1, . . . , 2h + 1 and j = 1, . . . , 2w + 1, where h and w are the height and
width as expressed in (5.1). The offsets ir and jr are defined as ir = ī − h − 1 y
jr = j̄ − b − 1, where (ī, j̄) denotes the center of mass of the region as computed
in (5.12).

Contrast is a very important feature in fault detection, as the differences in the
gray values are good for distinguishing a region from its neighborhood. The smaller
the gray value difference, the smaller the contrast. In order to visualize the contrast
we can use a 3D representation with three coordinates (x, y, z), where (x, y) are
used to represent the location of a pixel (i, j), and z is used for the representation of
the gray value. An example is illustrated in Fig. 5.1c that shows the 3D representa-
tion of Fig. 5.1a. The reader can observe in this example a high contrast region.
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There are many definitions of contrast. A common definition of contrast is given
using texture features (as explained in Sect. 5.3.5). Other simple definitions of con-
trast are given in [12, 15]:

K1 = G − Ge

Ge
, K2 = G − Ge

G + Ge
y K3 = ln(G/Ge), (5.21)

where G an Ge denote the mean gray value in the region and in the neighborhood
respectively.

Two further definitions of contrast are given in [16] where new contrast features
are suggested. According to Fig. 5.6 these new features can be calculated in four
steps: (i) we take a profile in i direction and in j direction centered in the mass
center of the region (see P1 and P2 respectively); (ii) we calculate the ramps R1 and
R2 that are estimated as a first-order function that contains the first and last point of
P1 and P2; (iii) new profiles without background are computed as Q1 = P1 − R1
and Q2 = P2 − R2 (they are stored together as Q = [Q1 Q2]); (iv) the new contrast
features are given by:

Fig. 5.6 Computation of Q for contrast features for region of Fig. 5.1: a Profile in i direction, b
profile in j direction, c fusion of profiles: Q = [Q1 Q2]
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Fig. 5.7 Detection of small defects in apples using area contrast features: input image, edge detec-
tion, labeled regions and detection (→ Example 5.5 )

Kσ = σQ and K = ln(Qmax − Qmin). (5.22)

Another definition of contrast can be found in [17], where the contrast is given by
the mean of absolute differences between pixel values and mean of adjacent (e.g.,
8-adjacent pixels):

Kc = 1

AT

∑
(i, j)∈T

|g(i, j) − μA(i, j)|. (5.23)

where AT is the area of the region and its neighborhood and μA(i, j) is the mean
value of pixels locations adjacent of pixel (i, j).

The contrast features explained in this section can be computed using command
Xcontrast (see Appendix B) of XVIS Toolbox.

Matlab Example 5.5 In this example, we show how to detect small defects
in an X-ray image of an apple (see Fig. 5.7) using area and contrast features. We
follow the general block diagram of Fig. 4.30. Here, area and contrast features are
extracted for each region as defined by enclosed edges. The detection is performed
if the size of the region is between some thresholds and the contrast is high enough.

Listing 5.5 : Defects detections using area and contrast features

% ContrastDefects.m
close all
I = Xloadimg(’N’,1,4); % X−ray of apples
X = I(1450:1629,420:609); % input image (one apple)
figure(1)
imshow(X); title(’input image’);

E = and(edge(X,’log’,1e−10,1),X>40); % edge detection

[F,m] = bwlabel(not(E),4); % labels of the regions
op.neighbor = 2; % neigborhood is imdilate
op.param = 5; % with 5x5 mask
op.show = 0;
R = zeros(size(X)); % initialization of detection
for i=1:m % for each region

Ri = F==i; % region i
Area = sum(Ri(:));
K = Xcontrast(X,Ri,op); % contrast features
if (Area>50) && (Area<150) && ...

http://dx.doi.org/10.1007/978-3-319-20747-6_4
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K(2)<−0.01 && K(5) > 2.9 % detection
R = or(R,Ri);

end
end
figure(2)
Xbinview(X,imclose(R,ones(5,5))); % output image
title(’small defects’);

The output of this code is shown in Fig. 5.7. In this example, the contrast features
are extracted using command Xcontrast (see Appendix B) of XVIS Toolbox. In this
example we use features K2 from (5.21) and K from (5.22). �

5.3.3 Crossing Line Profiles

An approach based on crossing line profiles (CLP) was originally developed to
detect aluminum casting defects [18], however, it can be used to detect spots in
general, or regions that have some gray value difference with their neighborhood.
As the contrast between a defect and a defect-free neighborhood is distinctive, the
detection is usually performed by thresholding this feature (as we already learned in
Sect. 5.3.2). Nevertheless, this measurement suffers from accuracy error when the
neighborhood is not homogeneous, for example when a defect is at an edge of a
regular structure of the test object (see Fig. 4.31). For this reason, many approaches
use a priori information about the location of regular structures of the test piece.
CLP is able to detect those defects without a priori knowledge using crossing line
profiles, i.e., the gray level profiles along straight lines crossing each segmented
potential region in the middle. The profile that contains the most similar gray levels
in the extremes is selected. Hence, the homogeneity of the neighborhood is ensured.
Features from the selected profile are extracted.

In this approach, we follow a simple automated segmentation approach based
on Figs. 4.30 and 4.31. The steps of detection based on CLP are shown in Fig. 5.8.
First, a Laplacian-of-Gaussian (LoG) kernel and a zero crossing algorithm are used
to detect the edges of the X-ray images. The LoG operator involves a Gaussian low-
pass filter which is a good choice for the pre-smoothing of our noisy images that are
obtained without frame averaging. The resulting binary edge image should produce
at real defects closed and connected contours which demarcate regions. However, a
region of interest may not be perfectly enclosed if it is located at an edge of a regular
structure as shown in Fig. 5.8c. In order to complete the remaining edges of these
defects, a thickening of the edges of the regular structure is performed as follows: (a)
the gradient of the original image is calculated (see Fig. 5.8d); (b) by thresholding
the gradient image at a high gray level a new binary image is obtained; and (c) the
resulting image is added to the zero-crossing image (see Fig. 5.8e). Afterwards, each
closed region is segmented as a potential flaw. For details see a description of the
method in [19].

http://dx.doi.org/10.1007/978-3-319-20747-6_4
http://dx.doi.org/10.1007/978-3-319-20747-6_4
http://dx.doi.org/10.1007/978-3-319-20747-6_4
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(a) (b) (c)

(d) (e) (f)

Fig. 5.8 Detection of flaws: a radioscopic image with a small flaw at an edge of a regular structure,
b Laplacian-filtered image with σ = 1.25 pixels (kernel size = 11 × 11), c zero crossing image, d
gradient image, e edge detection after adding high gradient pixels, and f detected flaw using feature
F1 extracted from a crossing line profile (→ Example 5.6 )

This is a very simple detector of potential regions with a large number of false
detections flagged erroneously. However, the advantages are as follows: (i) it is a sin-
gle detector (it is the same detector for each image), (ii) it is able to identify potential
defects independent of the placement and the structure of the specimen, i.e., without
a priori information of the design structure of the test piece, and (iii) the detection
rate of real flaws is very high (approximately 90 %). In order to reduce the number
of the false positives, the segmented regions must be measured and classified.

A segmented potential region is defined as a region enclosed by edges of the
binary image obtained in the edge detection (see connected black pixels in Fig. 5.8e).
For each segmented region, a window g is defined from the X-ray image x as:
g(i, j) = x(i + ir , j + jr ) for i = 1 . . . 2h + 1, and j = 1 . . . 2w + 1, where h and
w are the height and width of the region as defined in (5.1). The offsets ir and jr are
defined as ir = ī − h − 1 and jr = j̄ − w − 1 where (ī, j̄) denotes the coordinates
of the center of mass of the region (5.12), rounded to the nearest integers. Hence, g
is a window of size (2h + 1) × (2w + 1), in which the middle pixel corresponds to
the center of mass of the segmented potential flaw, i.e., g(h + 1, w + 1) = x(ī, j̄).

Now, we define the crossing line profile Pθ as the gray level function along a
straight line of window g through the middle pixel (h +1, w+1) forming an angle θ

with i-axis. In Sect. 5.3.2, P0 and Pπ/2 were analyzed together in order to obtain two
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Fig. 5.9 Crossing line profiles for the window shown in Fig. 5.8a (→ Example 5.6 )

features, K and Kσ , that give a measurement of the difference between maximum
and minimum, and the standard deviation of both crossing line profiles. However,
the analysis does not take into account that the profiles could include a nonhomoge-
neous area. For example, if a non-defect region is segmented at an edge of a regular
structure, it could be that P0 (or Pπ/2) includes a significant gray level change of the
regular structure. In this case, the variation of the profile will be large and therefore
the region will be erroneously classified as defect.

In order to avoid this problem, we suggest an individual analysis of eight cross-
ing line profiles Pθ , at θ = kπ/8, for k = 0, . . . , 7, as illustrated in Fig. 5.9. In
this analysis, the crossing line profile that contains the most similar gray levels in
the extremes is selected. Hence, the attempt is made to ensure the homogeneity of
the neighborhood filtering out those profiles that present a high gray level change in
the edge of the regular structure. In the example of Fig. 5.9, the selected profile is
obtained for k = 5 where the gray values of the extremes are both approximately
equal to 150. We can observe that the selected crossing line is approximately per-
pendicular to the direction of the gradient of the X-ray image without defect. This
coincides with one of the criteria used by approaches with a priori knowledge: the
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selected pixels of the defect-free area are located perpendicular to the direction of
the gradient of the piece’s contour [20].

Before the features are extracted, a preprocessing of the selected crossing line
profile is performed as follows: (1) The selected profile is resized to size n = 32
using a nearest neighbor interpolation. The resized profile will be denoted by P . (2)
In order to obtain a defect profile without the background of the regular structure,
P is linearly transformed by Qi = m Pi + b, for i = 1, . . . , n, where m and b are so
chosen that Q1 = Qn = 0.

Finally, the proposed features are extracted from the normalized profile Q. They
are defined as follows:

Q̄ = mean(Q)

σQ = std(Q)

	Q = max(Q) − min(Q)

Fi = ∑n−1
k=0 Qk+1e− j 2πki

n for i = 1, . . . , 4.

(5.24)

That is Q̄: mean of Q; σQ : standard deviation of Q; 	Q : difference between max-
imum and minimum of Q; and Fi : magnitude of the i th harmonic of the Discrete
Fourier Transform of Q for i = 1, . . . 4.

Matlab Example 5.6 In this example, we show how to detect a very small
casting defect that is located at the edge of a regular structure as illustrated in Fig. 5.8
using area and CLP features. We follow the general block-diagram of Fig. 4.30. That
is area and contrast features are extracted for each region defined by enclosed edges.
The detection is performed if the size of the region is between some thresholds and
a CLP feature is high enough.

Listing 5.6 : Defects detections using area and CLP features

% DetectionCLP.m
close all
X = imread(’small_wheel.png’);
[N,M] = size(X);
figure(1);
imshow(X); title(’Input image’); % input image

D = Xgradlog(X,1.25,4); % edge detection
figure(2)
imshow(D,[]);title(’or(LoG,High gradient)’)

[F,m] = bwlabel(not(D),4); % labels of the regions
op.ng = 32; % size of CLP window
op.show = 0; % do not display results
R = zeros(N,M); % initialization of detection
for i=1:m % for each region

Ri = F==i; % region i
Area = sum(Ri(:)); % area of region
CLP = Xclp(X,Ri,op); % CLP features
if (Area>10) && (Area<40) && CLP(6)>0.8 % detection

R = or(R,Ri);
op.show = 1;
CLP = Xclp(X,Ri,op); % display results
op.show = 0;

http://dx.doi.org/10.1007/978-3-319-20747-6_4
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Fig. 5.10 Class distribution
of CLP feature F1 in
detection of casting defects

pause(1)
end

end
figure(3)
Xbinview(X,imclose(R,ones(5,5))); % output image
title(’Casting defects’);

The output of this code is shown in Figs. 5.8 and 5.9. In this example, the edges
are detected using command Xgradlog (see Appendix B) of XVIS Toolbox, that
computes the logical OR of edge detection using LoG and edge detection by thresh-
olding the gradient. The contrast features are extracted using command Xclp (see
Appendix B) of XVIS Toolbox. In this example we use features F1 from (5.24). �

CLP features were tested on detecting casting defects. In this experiment, 50
X-ray images of aluminum wheels were analyzed. In the segmentation, approxi-
mately 23,000 potential flaws were obtained, in which there were 60 real defects.
Some of these were existing blow holes. The other defects were produced by drilling
small holes in positions of the casting which were known to be difficult to detect.
In the performance analysis, the best result was achieved by our feature F1 (5.24).
The class distribution between class ‘defect’ and ‘non-defect’ (or regular structure)
is illustrated in Fig. 5.10. The reader can observe the effectiveness of the separation
clearly. For more details see [18].

5.3.4 Intensity Moments

In intensity moments, we use statistical moments (5.11) including gray value infor-
mation [12]:

m′
rs =

∑
i, j∈�

ir j s x(i, j) for r, s ∈ N. (5.25)
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The summation is computed over the pixels (i, j) of the region � only. Thus, it is
possible to compute Hu, Flusser and Gupta moments, as explained in Sect. 5.2.4
using the gray value information of the region. Hu moments with intensity informa-
tion can be computed by Xhuint (see Appendix B) of XVIS Toolbox.

5.3.5 Statistical Textures

These features provide information about the distribution of the gray values in the
image. In this work, however, we restrict the computation of the texture features for
a zone only defined as region and neighborhood (see Eq. 5.20).

Statistical texture features can be computed using the co-occurrence matrix
Pkl [21]. The element Pkl(i, j) of this matrix for a zone is the number of times,
divided by NT , that gray levels i and j occur in two pixels separated by that dis-
tance and direction given by the vector (k, l), where NT is the number of pixels
pairs contributing to build matrix Pkl . In order to decrease the size Nx × Nx of
the co-occurrence matrix the gray scale is often reduced to 8 gray levels. From the
co-occurrence matrix several texture features can be computed. Haralick in [21]
proposes (here p(i, j) := Pkl(i, j)):

Angular second moment: f1 = ∑Nx
i=1

∑Nx
j=1[p(i, j)]2

Contrast: f2 = ∑Nx −1
n=0 n2 ∑Nx

i=1

∑Nx
j=1 p(i, j)

for |i − j | = n

Correlation: f3 = 1
σx σy

∑Nx
i=1

∑Nx
j=1[

i j · p(i, j) − μxμy
]2

Sum of squares: f4 = ∑Nx
i=1

∑Nx
j=1(i − j)2 p(i, j)

Inverse difference moment: f5 = ∑Nx
i=1

∑Nx
j=1

p(i, j)
1+(i− j)2

Sum average: f6 = ∑2Nx
i=2 i · px+y(i)

Sum variance: f7 = ∑2Nx
i=2 (i − f8) · px+y(i)

Sum entropy: f8 = −∑2Nx
i=2 px+y(i) · log(px+y(i))

Entropy: f9 = −∑Nx
i=1

∑Nx
j=1 p(i, j) log(p(i, j))

Difference variance: f10 = var(px+y)

Difference entropy: f11 = −∑Nx −1
i=0 px−y(i) · log(px−y(i))

Information measures of correlation 1: f12 = f9−HXY1
max (HX,HY)

Information measures of correlation 2: f13 = √
1 − exp (−2(HXY2 − HXY))

Maximal correlation coefficient: f14 = √
λ2

(5.26)
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where μx , μy , σx and σy are the means and standard deviations of px and py respec-
tively with

px = ∑Nx
j=1 p(i, j)

py = ∑Nx
i=1 p(i, j)

px+y(k) = ∑Nx
i=1

∑Nx
j=1i+ j=k p(i, j) for k = 2, 3, . . . 2Nx

px−y(k) = ∑Nx
i=1

∑Nx
j=1|i− j |=k p(i, j) for k = 0, 1, . . . Nx − 1,

and
H X = −∑Nx

i=1 px (i) log (px (i))

HY = −∑Nx
j=1 py( j) log (py( j))

H XY 1 = −∑Nx
i=1

∑Nx
j=1 p(i, j) log (px (i)py( j))

H XY 2 = −∑Nx
i=1

∑Nx
j=1 px (i)py( j) log (px (i)py( j)).

In f14, λ2 is the second largest eigenvalue of Q defined by

Q(i, j) = ∑Nx
k=1

p(i,k)p( j,k)
px (i)py(k)

The texture features are extracted for four directions (0◦–180◦, 45◦–225◦, 90◦–
270◦ and 135◦–315◦) in different distances d = max(k, l). That is, for a given
distance d we have four possible co-occurrence matrices: P0d , Pdd , Pd0 and P−dd .
For example, for d = 1, we have (k, l) = (0, 1); (1, 1); (1, 0); and (−1, 1). After
Haralick, 14 texture features using each co-occurrence matrix are computed (5.26),
and the mean and range for each feature are calculated, i.e., we obtain 14 × 2 = 28
texture features for each distance d. The features will be denoted as f̄i for the mean
and f 	

i for the range, for i = 1 . . . 14.
The texture features after Haralick can be computed using command Xharalick

(see Appendix B) of XVIS Toolbox.

5.3.6 Gabor

The Gabor functions are Gaussian shaped band-pass filters, with dyadic treatment
of the radial spatial frequency range and multiple orientations, which represent an
appropriate choice for tasks requiring simultaneous measurement in both space and
frequency domains. The Gabor functions are a complete (but a nonorthogonal) basis
set given by:

f (x, y) = 1

2πσxσy
exp

(
−1

2

(
x2

σ 2
x

+ y2

σ 2
y

))
(5.27)

where σx and σy denote the Gaussian envelope along the x and y-axes, and u0
defines the radial frequency of the Gabor function. Examples of Gabor functions
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Fig. 5.11 Example of
Gabor functions in spatial
domain: top imaginary
components of self-similar
filter bank by using
p = 1 . . . 8 scales and
q = 1 . . . 8 orientations,
bottom 3D representations of
two of them

are illustrated in Fig. 5.11. In this case a class of self-similar functions are generated
by rotation and dilation of f (x, y).

Each Gabor filter has a real and an imaginary component that are stored in M×M
masks, called Rpq and Ipq respectively, where p = 1 . . . S, denotes the scale, and
q = 1 . . . L , denotes the orientation (for details see [22]). Usually, S = 8 scales,
and L = 8 orientations as shown in Fig. 5.11, with M = 27.

The Gabor filters are applied to each segmented window W, that contains the
segmented region and its surrounding (see Fig. 5.1). The filtered windows Gpq are
computed using the 2D convolution (4.9) of the window W of the X-ray image with
the Gabor masks as follows:

Gpq =
[
(W ∗ Rpq)2 + (W ∗ Ipq)2

]1/2
(5.28)

http://dx.doi.org/10.1007/978-3-319-20747-6_4
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The Gabor features, denoted by gpq , are defined as the average output of Gpq , i.e.,
it yields S × L Gabor features for each segmented window:

gpq = 1

nwnw

nw∑
i=1

mw∑
j=1

G pq(i, j) (5.29)

where the size of the filtered windows Gpq is nw × mw.
Three additional Gabor features can be extracted: (i) maximum of all Gabor fea-

tures: gmax = max(g), (ii) minimu of all Gabor features: gmin = min(g), and (iii)
range of all Gabor features: g	 = gmax − gmin. These features are very useful
because they are rotation invariant.

The Gabor features can be computed using command Xgabor (see Appendix B)
of XVIS Toolbox.

5.3.7 Filter Banks

Filter banks can be used to extract texture information [23]. They are used in image
transformations like Discrete Fourier Transform (DFT) (magnitude and phase), Dis-
crete Cosine Transform (DCT) [24], and Wavelets as Gabor features based on 2D
Gabor functions (see Sect. 5.3.6).

For an image X of N × N pixels, the Discrete Fourier Transformation in 2D is
defined as follows:

F(m, n) =
N∑

i=1

N∑
k=1

X (i, k)e
−2π j

(
(m−1)(i−1)

N + (n−1)(k−1)
N

)
(5.30)

where j = √−1. F(m, n) is a complex number. That means magnitude and phase
can be used as features. Fourier features can be computed using command Xfourier
(see Appendix B) of XVIS Toolbox.

Discrete Cosine Transform in 2D is defined as:

D(m, n) = αmαn

N∑
i=1

N∑
k=1

X (i, k) cos

(
π(2i − 1)(m − 1)

2N

)
cos

(
π(2k − 1)(n − 1)

2N

)
(5.31)

where α1 = 1/
√

N and αm = √
2/N , for m = 2 . . . N . DCT features are real

numbers instead of complex number such as Fourier features. DCT features can be
computed using command Xdct (see Appendix B) of XVIS Toolbox.

It is worth mentioning that these features are not rotation invariant, however, we
can extract rotation-invariant features if we use maximum, minimum, and a range
of them as we did for the Gabor features in Sect. 5.3.6.
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5.4 Descriptors

Descriptors have been very relevant on computer vision applications [25]. This is
because they are able to provide highly distinctive features, and can be used in
applications such as multiple view analysis, in object recognition, texture recog-
nition, and others. In this section we provide some descriptors that are very useful
in X-ray testing.

5.4.1 Local Binary Patterns

LBP, Local Binary Patterns was proposed as a texture feature [26]. The idea is
to extract texture information from occurrence histogram of local binary patterns
computed from the relationship between each pixel intensity value with its eight
neighbors. The LBP features are the frequencies of each one of the histogram bins.
LBP is computed in three steps: (i) coding, (ii) mapping, and (iii) histogram.

Coding
Each pixel (i, j) of the input image has a set of neighbors. Typically, the set of eight
neighbors defined by the 8-connected pixels is used. However, more neighbors for
different distances can be defined as well. For 8 connected pixels, the locations are
(i − 1, j − 1); (i − 1, j); (i − 1, j + 1); (i, j + 1); (i + 1, j + 1); (i + 1, j + 1);
(i + 1, j) and (i + 1, j − 1), respectively, as shown in Fig. 5.12. The central pixel
has a gray value q, and the neighbors have gray values pi , for i = 0 . . . 7. The code
is computed by:

y =
7∑

i=0

ti 2
i , (5.32)

where ti = 1 if pi ≥ q otherwise ti = 0. That means, a pixel q with its neighbors
can be coded as a number y ∈ {0 . . . 255}. The code can be represented as a string
of bits as shown in Fig. 5.12.

Mapping
We can observe that the code generated by the previous step can be categorized
according to number of changes (from ‘1’ to ‘0’, or from ‘0’ to ‘1’) in a cycle. For
instance, in the example of Fig. 5.12, where the code is 01100111, we define a cycle
with eight transitions as: 0 → 1 → 1 → 0 → 0 → 1 → 1 → 1 → 0 (the last bit is
the repetition of the first one because it is a cycle). The number of changes is U = 4.
Thus, we can have codes with U = 0, 2, 4, 6 and 8 as illustrated in Fig. 5.13. After
the authors, there are uniform and nonuniform patterns. The first ones (U = 0 and 2)
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Fig. 5.12 LBP coding: a central pixel q the gray value of which is 6 has 8 neighbors with gray
values p0 = 4, p1 = 6, p2 = 9, p3 = 4, p4 = 2, p5 = 6, p6 = 9, and p7 = 9. A new mask with 8
bits is built where ti = 1 if pi ≥ q otherwise ti = 0. The LBP code is computed as

∑
i ti 2i , in this

example the code is 230

Fig. 5.13 LBP mapping for 8 neighbors. Each small circle represents a bit ti of the code, green
means ‘1’, white means ‘0’. U is the number of changes from ‘1’ to ‘0’, or from ‘0’ to ‘1’ in one
cycle. For a small number of changes, i.e., U = 0 and 2, the codes represent uniform patterns, for
U > 2 the patterns are nonuniform (Color figure online)

correspond to textures with a low number of changes, the last ones (U > 2) can be
interpreted as noise because there are many changes in the gray values. There are
58 uniform patterns and 198 nonuniform patterns. Each uniform code is mapped as
a number from 0 to 57 as illustrated in Fig. 5.13, whereas all nonuniform codes are
mapped as number 58. This descriptor is known as LBP-u2.

LBP-u2 mapping correspond to a mapping that varies with the orientation of
the image, i.e., it is not rotation invariant. In order to build a rotation-invariant
LBP descriptor, all patterns that have the same structure but with different rota-
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Fig. 5.14 Comparison of six textures using LBP-ri descriptor. It is clear that descriptors of the
same texture are very similar, and descriptors from different textures are very different. A mea-
surement of the Euclidean distance between all six descriptors is shown in the right color matrix

tions are mapped as an unique number. For instance, all patterns of the second row
of Fig. 5.13 are mapped with the same number. The same is valid for the third row.
In this mapping, we have 36 different numbers. This descriptor is known as LBP-ri.

Histogram
The process of coding and mapping is performed at each pixel of the input image.
Thus, each pixel is converted into a number from 0 to M − 1, with a mapping of M
numbers. Afterwards, a histogram of M bins of this image is computed. The LBP
descriptor of the image is this histogram.

LBP is very robust in terms of grayscale and rotation variations [26]. An example
is shown in Fig. 5.14. Other LBP features like semantic LBP (sLBP) [27] can be
used in order to bring together similar bins. LBP is implemented in function Xlbp
(see Appendix B) of XVIS Toolbox.

The reader can find a descriptor with similar properties in [28], where LPQ (from
local phase quantization) is proposed.

5.4.2 Binarized Statistical Image Features

BSIF, binarized statistical image features, was proposed as a texture descriptor [29].
As LBP and LPQ, it computes a binary code for each pixel of the input image. Thus,
a histogram that encodes texture information is built by counting the frequency of
each code.

In BSIF, the input image is filtered using a set of linear filters. The linear fil-
ters are learned from a training set of natural image patches ensuring statistical
independence of the filter responses. BSIF computes the bits of the binary code by
thresholding the response of the linear filters.

Therefore, instead of manually predefined sets of filters (like LBP or LPQ), BSIF
uses filters based on statistics of natural images. After the authors, this improves its
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modeling capacity and the accuracy in texture recognition. BSIF is implemented in
function Xbsif (see Appendix B) of XVIS Toolbox. The reader can use this function
to obtain similar results to those obtained by LBP in Fig. 5.14.

5.4.3 Histogram of Oriented Gradients

HOG, histogram of oriented gradients, was originally proposed as a descriptor that
is able to detect pedestrians [30], however, the powerful of this descriptor can be
used in many computer vision problems that require local object appearance and
shape information. The key idea of HOG is to compute the distribution of intensity
gradients in uniformly spaced cells arranged in a grid manner. A cell is typically
defined a as squared region of the image.

In HOG, the gradient of the input image in both directions Gi and G j is com-
puted (see Sect. 4.4.1). Thus for each pixel, we have the magnitude G(i, j) and the
angle A(i, j) using (4.15) and (4.15) respectively.1 In order to compute the cell his-
togram, we define n bins, where bin k corresponds to the orientation between θk and
θk+1, with θk+1 = θk + 	θ , for k = 1 . . . n. For example, for n = 9 bins we could
define 	θ = 360◦/9 = 40◦ and θ1 = −	θ/2 = −20◦, so the first bin will be for
orientations from −20◦ to +20◦, the second from +20◦ to +60◦ and so on. There-
fore, a pixel (i, j) of the cell whose orientation is θk < A(i, j) ≤ θk+1, registers a
weighted vote in bin k based on its gradient value G(i, j). This operation is repeated
for every pixel of the cell.

In order to improve the performance of HOG descriptor and make it robust
against changes in illumination and contrast, the authors used a dense grid of cells
and an overlapping local contrast normalization [30]. That means, normalized cells
are grouped together into connected blocks. Then, the descriptor is a concatenation
of the normalized cell histograms of all blocks. HOG is implemented in function
Xhog (see Appendix B) of XVIS Toolbox. An example is illustrated in Fig. 5.15.

5.4.4 Scale-Invariant Feature Transform

The Scale-invariant feature transform, SIFT, was proposed in [31] to detect and
describe keypoints. A keypoint is a distinguishable point in an image, i.e., it rep-
resents a salient image region that can be recognized by changing its viewpoint,
orientation, scale, etc. In SIFT methodology, each keypoint is described using a
128-element vector called SIFT-descriptor. SIFT-descriptor is:

• Scale invariant
• Rotation invariant

1Sometimes the magnitude of the angle is used.

http://dx.doi.org/10.1007/978-3-319-20747-6_4
http://dx.doi.org/10.1007/978-3-319-20747-6_4
http://dx.doi.org/10.1007/978-3-319-20747-6_4


5.4 Descriptors 179

Fig. 5.15 Computation of HOG descriptors of an X-ray image of a fruit. The descriptors give
information about shape and appearance

• Illumination invariant
• Viewpoint invariant

SIFT-descriptor can be used as a ‘signature’ and it is highly distinctive, i.e., SIFT-
descriptors of corresponding points (in different images) are very similar, and SIFT-
descriptors of different points are very different. SIFT has two main stages: (i) key-
point detection and (i) keypoint description. In the following, these stages are pre-
sented in further details.

Keypoint detection
Keypoints are then taken as maxima/minima of the Difference of Gaussians (DoG)
that occur at multiple scales. Keypoints can be detected in four steps (see Fig. 5.16):

1. We define two Gaussian masks: G(x, y, σ ) and G(x, y, kσ) from (4.10) at scales
σ and kσ .

2. The input image I (x, y) is convolved with both Gaussian filters obtaining
L(x, y, σ ) and L(x, y, kσ) respectively.

3. The Difference of Gaussians (DoG) is computed as:

D(x, y, σ ) = L(x, y, σ ) − L(x, y, kσ). (5.33)

4. Keypoints are found as maxima of |D(x, y, σ )| that can occur at different values
of σ . We compare each pixel in the DoG images to its 26 neighbors (8 at the
same scale and 9 from the next scale and 9 from the previous scales). If the pixel
value is the maximum or minimum among all compared pixels, it is selected as
a candidate keypoint.

http://dx.doi.org/10.1007/978-3-319-20747-6_4
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Fig. 5.16 Detection of a keypoint in a synthetic image. The image is convolved with several DoG
masks. The maximal response defines the location (x, y) of the keypoint. The used mask for the
convolution defines the scale σ

Keypoint description
For each keypoint we need a description. A keypoint is defined by its location (x, y)

and its scale σ . The descriptor is computed in seven steps (see Fig. 5.17):

1. We define a window of size 1.5σ centered in (x, y).
2. The window is rotated −θ , where θ is the orientation of the gradient in (x, y).
3. The rotated window is divided into 4 × 4 = 16 regular cells distributed in a grid

manner.
4. For each cell, the histogram of gradients is computed using 8 bins.
5. All 16 histograms with 8 bins are concatenated, i.e., we obtain a descriptor of

16 × 8 = 128 elements.
6. Finally, the descriptor is normalized to unit length.

We can observe that SIFT descriptor is invariant to scale because the size of
the window in step 1 depends on scale factor σ . SIFT descriptor is invariant to
rotation, because the window is rotated according to the orientation of the gradient
(see step 2). Thus, if an image is resized and rotated it will have the same window
after these two steps. The SIFT descriptor is invariant to illumination because the
descriptor is normalized to unit length. SIFT has been proven to be robust against
perspective distortions and viewpoint changes when the rotation of the 3D object is
less than 30◦ rotation. An example of this can be found in Fig. 5.18.
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Fig. 5.17 Keypoint description (see explanation of six steps in text). This example corresponds to
keypoint number 18 in Fig. 5.18

Matlab Example 5.7 In this example, we find matching points in two
views. SIFT keypoints are estimated in each view, and those with the most simi-
lar descriptors are matched.

Listing 5.7 : Defects detections using area and CLP features

% SIFTmatching.m

I1 = single(Xloadimg(’B’,2,1)); % image 1
I2 = single(Xloadimg(’B’,2,2)); % image 2
figure(1); imshow(I1,[]); hold on
figure(2); imshow(I2,[]); hold on
[f1,d1] = vl_sift(I1); % SIFT descriptors for image 1
[f2,d2] = vl_sift(I2); % SIFT descriptors for image 2
[mt,sc] = vl_ubcmatch(d1,d2); % matching points
[ii,jj] = sort(sc); % sort of scores
mt = mt(:,jj); sc = sc(:,jj);
n = 25; % the best 25 matchings are selected

figure(1) % display results on image 1
h1 = vl_plotsiftdescriptor(d1(:,mt(1,1:n)),f1(:,mt(1,1:n))) ;
set(h1,’color’,’g’) ;
for i=1:n

plot(f1(1,mt(1,i)),f1(2,mt(1,i)),’ro’)
text(f1(1,mt(1,i))+5,f1(2,mt(1,i)),num2str(i),’fontsize’,15)

end

figure(2) % display results on image 2
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Fig. 5.18 Matching points of two different views of the same object. The object was rotated 10◦
around its horizontal axis from first to second image. The SIFT approach is able to find keypoints
(red small circles) and descriptors (represented as green histograms). The descriptors that are simi-
lar can be matched. The figure shows the best 25 matching pair points (→ Example 5.7 ) (Color
figure online)

h2 = vl_plotsiftdescriptor(d2(:,mt(2,1:n)),f2(:,mt(2,1:n))) ;
set(h2,’color’,’g’) ;
for i=1:n

plot(f2(1,mt(2,i)),f2(2,mt(2,i)),’ro’)
text(f2(1,mt(2,i))+5,f2(2,mt(2,i)),num2str(i),’fontsize’,15)

end

The output of this code is shown in Fig. 5.18. In this example, the SIFT descriptors
are detected using command vl_sift and matched with command vl_ubcmatch
of VLfeat Toolbox [32]. �

The reader can find descriptors with similar properties in SURF: Speeded Up
Robust Feature [33], BRIEF: Binary robust independent elementary features [34],
BRISK: Binary Robust-Invariant Scalable Keypoints [35] among others.

5.5 Sparse Representations

In recent years, sparse representation has been widely used in signal processing
[36], neuroscience [37], statistics [38], sensors [39] and computer vision [40, 41].
In many computer vision applications, under assumption that natural images can
be represented using sparse decomposition [42] state-of-the-art results have been
significantly improved. In these applications, the performance can be improved by
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learning nonparametric dictionaries for the sparse representation (instead of using
fixed dictionaries).

In signal processing, it is very convenient to estimate a new representation of a
signal in order to analyze it efficiently. The idea is that this representation captures
a useful characterization of the signal for analytical tasks, e.g., feature extraction
for pattern recognition, frequency spectrum for denoising, etc. An appropriate rep-
resentation, due to its simplicity, is obtained by a linear transform. Thus, a signal
x ∈ R

n can be expressed as a linear combination of a set of elementary signals
D = [d1 d2 . . . dK ] ∈ R

n×K as:

x = Dz, (5.34)

where the vector z ∈ R
K corresponds to the representation coefficients of signal

x. In this representation, matrix D and its columns dk are commonly known as
dictionary and atoms respectively.

5.5.1 Traditional Dictionaries

When every signal can be uniquely represented by a linear combination, the dictio-
nary D corresponds to a basis. This is the case of Discrete Fourier Transform (DFT),
for example, where the basis functions are sine and cosine waves with unity ampli-
tude. In this case, the element j of atom dk is defined as d jk = exp(2π i jk/n) with
K = n and i = √−1 [24]. It is well known that for some applications, e.g., signal
filtering, instead of processing the signal x, it can be more convenient to process
the signal in frequency domain z, because it can be used to separate low and high
frequencies effectively. Nevertheless, the Fourier basis is very inefficient when rep-
resenting, for example a discontinuity, because its representation coefficients are
over all frequencies and the analysis becomes difficult or even impossible. Other
predefined basis, i.e., where the atoms are fixed, are Discrete Cosine Transforma-
tion (DCT) and Wavelets (e.g., Gabor) among others [24]. In many applications,
since these dictionaries are fixed, they cannot represent more complex and high-
dimensional signals satisfactorily [43].

In order to avoid the mentioned problem with fixed dictionaries, another way
to represent a signal is using a learned dictionary, i.e., a dictionary that is esti-
mated from representative signal examples. This is the case of Principal Component
Analysis (PCA), or Karhunen–Loève Transform (KLT) [44], where the dictionary
D is computed using the first K eigenvectors of the eigenvalue decomposition of
the covariance matrix Σ , which is usually estimated from a set of zero-means sig-
nal examples X = {xi }N

i=1. The basis here represents K orthogonal functions (with
K ≤ n) that transforms X into a set of linearly uncorrelated signals Z = {zi }N

i=1
called the K principal components. This relationship is expressed as X = DZ. In
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this case, KLT represents a signal more efficiently than DFT because the dictionary
is not fixed and it is learned from signal examples [43].

The mentioned dictionaries are orthogonal, i.e., each atom di is orthogonal to
atom d j in R

n space ∀i 
= j . Therefore, a signal x is represented as a sum of
orthogonal vectors zi di . In addition, most of these dictionaries are orthonormal,
with ||di || = 1 and DTD = I, where I is the identity matrix. Hence, it is very simple
to calculate Z = DTX.

5.5.2 Sparse Dictionaries

Due to their mathematical simplicity, the orthogonal dictionaries dominated this
kind of analysis for years. Nevertheless, there is no reason to accept as true that
the number of atoms, required to characterize a set of signals, must be smaller than
the dimension of the signal. Moreover, why should the atoms of the dictionary be
orthogonal? The limited effectiveness of these dictionaries led to the development of
newer dictionaries that can represent a wider range of signal phenomena, namely the
overcomplete ones that have more atoms than the dimension of the signal (K > n)
with no necessarily orthogonal atoms [45]. A seminal work in learning overcom-
plete dictionaries for image representation was presented by Olshausen and Field
[42, 46]. They estimated—from small image patches of natural images—a sparse
representation which was extremely similar to the mammalian simple-cell receptive
fields (at that time, this phenomenon could only be described using Gabor filters).
The key idea for representing natural signals is that although the number of possible
atoms in the overcomplete dictionary is huge, the number of those atoms required to
represent a signal is much smaller, i.e., the signals are sparse in the set of all possible
atoms [45].

Sparse coding models a signal as a linear combination (5.34), or approximate,
x ≈ Dz, using a sparse linear combination of atoms from a learned dictionary, i.e.,
only a few atoms from D are allowed to be used in the linear combination (most
coefficients of z are zero) and the atoms are not fixed (the dictionary is adapted to
fit a given set of signal examples). In this case, the basis is not orthogonal.

Thus, from a representative set of signals X = {xi }N
i=1, the idea is (i) to learn a

dictionary D = {dk}K
k=1 and (ii) to estimate the corresponding sparse representations

Z = {zi }N
i=1 of the original signals X.

In K -means algorithm –a very well–known algorithm used in clustering–, the
sparsity is extreme because for the representation of x only one atom of D is allowed,
and the corresponding coefficient of z is 1. In this case, the dictionary and coeffi-
cients are estimated by:

D∗, Z∗ = argmin
D,Z

||X − DZ||2F subject to ∀i, zi = ek for some k (5.35)
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where ek is a vector from the trivial basis, with all zero entries except a one in kth
position. In this equation, the Frobenius norm is used defined as ||A||2F = ∑

i j a2
i j .

In clustering problems, the atom dk is the centroid of samples xi that fulfill zi = ek .
Thus, a signal x belongs to cluster k if it is closer to centroid k than any other
centroids (in this case, its representation is z = ek and the corresponding atom is dk).

Sparsity in general, can be expressed as:

D∗, Z∗ = argmin
D,Z

||X − DZ||2F subject to ||xi ||0 ≤ T (5.36)

where ||xi ||0 is the �0 norm, counting the nonzero entries of xi . The goal is to express
a new signal x as a linear combination of a small number of signals take from the
dictionary. This optimization problem can be expressed as:

z∗ = argmin
z

(||x − D∗z||22 + λ||z||1) (5.37)

It can be demonstrated that the solution of the �0 minimization problem (5.36) is
equivalent to the solution of the �1 minimization problem [47]:

argmin
D,Z

||X − DZ||2F subject to ||zi ||1 ≤ T (5.38)

Thus, on the one hand, the dictionary learning problem is as follows: given a
set of training signals X = {xi }N

i=1, find the dictionary D (and a set of representa-
tion coefficients Z = {zi }N

i=1) that represents at best each signal using the sparsity
constraint (5.38), where no more than T atoms are allowed in each decomposition
zi . On the other hand, the sparse coding problem can be stated as follows: given a
signal x and a learned dictionary D, find z, the representation of signal x, as:

argmin
z

||z||0 subject to ||x − Dz||2 < ε (5.39)

where ε is the error tolerance.

5.5.3 Dictionary Learning

There are three categories of algorithms used to learn dictionaries [45]: (i) proba-
bilistic methods, (ii) methods based on clustering, and (iii) methods with a particular
construction. Probabilistic methods are based on a maximum likelihood approach,
i.e., given the generative model (5.34), the objective is to maximize the likelihood
that the representative samples have efficient, sparse representations in a redundant
dictionary given by D [42, 48–50]. In clustering-based methods, the representa-
tive samples are grouped into patterns such that their distance to a given atom is
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minimal. Afterwards, the atoms are updated such that the overall distance in the
group of patterns is minimal. This schema follows a K -means algorithm. In order
to generalize the K -means algorithm, the ‘K-SVD’ algorithm was developed [51].
The method has two steps: (a) it uses orthogonal matching pursuit (OMP) algo-
rithm for the sparse approximation,2 (b) the columns of the dictionary are sequen-
tially updated using singular value decomposition (SVD) decomposition to mini-
mize the approximation error- It is reported that dictionaries learned with K-SVD
show excellent performance in image denoising [53, 54] among other applications.
Finally, dictionaries with specific structures use (instead of general forms of atoms)
a set of parametric functions that can describe the atoms shortly, i.e., the generat-
ing functions and the parameters build the dictionary functions. Thus, the problem
is reduced to learning the parameters for one or more generating functions (see for
example [55, 56]). In Sect. 6.2.9 we will see how to use sparse representations for a
classification task.

In XVIS Toolbox, function Xsparsecl (see Appendix B) can be used to build a
sparse dictionary. We will cover this topic in Sect. 6.2.9 when presenting the use of
sparse representation in classification problems.

5.6 Feature Selection

Which features are relevant? or which features should be extracted? Such questions
arise because there is a huge number of features that can be extracted and unfor-
tunately, we do not know which or which of them are really necessary. First, we
should not forget the reason why we extract features... so at least we could answer
the question: why are they really necessary? As we explained in the introduction of
this chapter (see Sect. 5.1), our task is to recognize or detect our objects of inter-
est, and we need to differentiate them from the background. For example, in X-
ray images of aluminum castings, we can have several potential defects that were
detected using some segmentation approaches (see Sect. 4.5). As the segmentation
is far from perfect, the potential defects consist of not only ‘defects,’ but ‘regular
structures’ as well. Our object of interest in this example is the defects, whereas
the background corresponds to the regular structure of the aluminum casting. From
the X-ray images, we can extract features that describe the potential defects (e.g.,
area, width, height, location, contrast, statistical textures, etc.). In order to recog-
nize the defects, we have to analyze the extracted features of the available potential
defects and select those features that are able to properly separate the defects from
the regular structures. In this example, we could expect a good separability of both
classes by selecting the contrast (see Sect. 5.3.2) because it gives a measure of the
difference in the gray value between the segmented region and its neighborhood.

2OMP is a greedy algorithm that iteratively selects locally optimal basis vectors [52].

http://dx.doi.org/10.1007/978-3-319-20747-6_6
http://dx.doi.org/10.1007/978-3-319-20747-6_6
http://dx.doi.org/10.1007/978-3-319-20747-6_4
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5.6.1 Basics

In general, if we have two classes (ω1 for ‘object of interest’ and ω0 for ‘back-
ground’) and we want to analyze the performance of extracted feature x , e.g., con-
trast, we can investigate the frequency distribution for each class as illustrated in his-
tograms of Fig. 5.19. In this case, for frequency distribution of class ωk we only take
into account the samples that belong to the kth class. In this supervised approach,
the label di of i th sample must be available, for i = 1 . . . N for N samples. That
means, someone, for example an expert, must annotate the label of each sample of
the dataset. Thus, if the i th sample belongs to class ωk , then di = k. For N samples
we will have a vector d with N elements.

The available data should be representative enough, that means on the one hand
that Nk , the number of samples of class ωk , must be large enough, and on the other
hand, for each class, the samples of the dataset must include the full range of vari-
ations that exist in the class itself. In our example, if x is the contrast of poten-
tial defects, we compute the frequency distribution of class ω1 and the frequency
distribution of class ω0 by considering only the samples of ‘defects’ and ‘regular
structures’ respectively. In addition, we can estimate the probability density func-
tions from each frequency distribution known as p(x |ωk), i.e., the probability of x
given class ωk . As we can see in Fig. 5.19, feature x is able to properly separate
both classes because it takes low values for class ω0 and high values for class ω1,
however, there is some degree of overlapping.

In feature selection, we have to decide just which features (extracted from our
potential objects of interest) are relevant to the classification. By analyzing each
extracted feature, three general scenarios are possible (see Fig. 5.20): a bad, a good,
and a very good separability. In the first scenario, the confusion between both classes
is so high that it is impossible to separate the classes satisfactorily, i.e., a classifier
cannot distinguish either of the classes. In the second scenario, a good separation

Fig. 5.19 A good class distribution for feature x and two classes ω0 and ω1
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Fig. 5.20 Class distribution for there different features. It is clear that the best separability is
achieved by the last features

is possible with some overlapping of the classes, i.e., a classifier will not recognize
both classes perfectly, however, in many cases this scenario can be acceptable. In
the third scenario, the separability is very good, and a classifier could identify both
classes in approximately 100 % of the cases. If all extracted features are in the first
scenario, there is no classifier that can separate both classes, i.e., new features are
required. On the other hand, if we have a feature of the third scenario, the recognition
can be easily performed by thresholding. In this case, no sophisticated classifiers are
required. Unfortunately, the third scenario seldom occurs and we have to deal with
some degree of overlapping.

In order to overcome the overlapping problem, more than one feature can be
selected, however, the same three scenarios are also possible (see Fig. 5.21 for two
features).

In this section, we will review some known techniques that can be used in feature
selection. The reasons why feature selection is necessary are as follows:

1. It is possible that some extracted features are not discriminative enough, i.e.,
there is no information in these features for separating the classes. An example
of this case is illustrated in the first scenario in Fig. 5.20. This may occur for
example when we consider the mean gray value (5.16) of potential defects when
detecting defects in welds. The (absolute) gray value of some defects can be very
similar to the gray value of some regions of the background. In this example, we
need rather a relative gray value such as a contrast (5.21).

2. Some extracted features with good separability could be redundant, i.e., they are
somehow correlated. An example of this case is shown in the third scenario of
Fig. 5.21 because x1 are highly correlated with x2. In this example, the separa-
bility by using (x1, x2) is very similar to the separability by using x1 only. This
may occur for example when we use two contrasts (5.21) to discriminate defects
from background, maybe one contrast is enough and the second one does not
increase the separability at all because it is redundant.

3. In order to simplify the testing stage, it is much better to extract a low number
of features. In the training stage, we are allowed to investigate a huge number
of features (in order to select some of them), however, in the testing stage it is
recommended to use a reduced subset of these. Thus, the computational time of
the testing stage will be significantly reduced.

4. In order to avoid the curse of the dimensionality, it is highly recommended to
train a classifier with a low number of features. When we increase the number
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Fig. 5.21 Class distribution for three different pairs of features (x1, x2). As in Fig. 5.20, it is
clear that the best separability is achieved by the last set of features. The figure shows two types
of visualization of the feature space of two features: a 3D representation and a top view using a
colormap. A third type of visualization for this data is available in Fig. 5.23

of selected features, the volume of our feature space increases exponentially.
Thus, in order to be statistical significant we need to collect exponentially larger
amounts of samples. This is not possible with a limited number of samples, for
this reason the performance of the classifier tends to become reduced as the num-
ber of features increases [57].

5. Last but not least, in order to avoid false correlations some features should not
have been extracted at all and must be filtered out in this step... just in case they
were extracted. This is a very common mistake and it must be avoided before a
classifier is trained. An example may be by trying to recognize a threat object
(e.g., a knife) in baggage screening using features that are not rotation invari-
ant. Imagine that we extract all elliptical features (see Sect. 5.2.2) of potential
knives. The orientation α of the fitted ellipse is extracted as well (5.8). It is pos-
sible, that in our training dataset the orientation of the potential knives is always
very vertical, as in the series B0008 of GDXray (see Fig. 2.10). That means,
the extracted feature α could have a distribution like scenario two or three of
Fig. 5.20. The separability of this feature could lead to misinterpretation because
we could think that we found an extraordinary good feature that can separate

http://dx.doi.org/10.1007/978-3-319-20747-6_2
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Fig. 5.22 In order to avoid false correlations we can follow these steps when extracting features.
In these three cases, features that are extracted with XVIS Toolbox can be manually eliminated
using commands Xnotranslation, Xnorotation and Xnoscale (see Appendix B) respectively

knives from background, however, we are saying that a knife must be always
vertical if we want to recognize it! It is clear that the orientation should not
have been extracted in order to avoid a false correlation. Another typical mis-
take occurs when considering the location (5.2) as feature in defect recognition.
In our training data, it is possible that all defects are located in one part of the
image, however, in real life they can be everywhere. Obviously, there is no algo-
rithm that detects this error. When we design an automated system, we have to
be very careful in order to select manually those features that could lead to false
correlations. A guide to avoid this problem is suggested in Fig. 5.22.

Formally, the extracted features of a sample can be represented as a row vector
x of m elements, where m is the number of extracted features. Thus, a sample can
be viewed as a point x = [x1 . . . xm] in the feature space of m dimensions (see
Fig. 5.19 for one dimension and Fig. 5.23 for two dimensions). The feature vector
of all samples can be stored in matrix X of size N × m, where N is the number of
samples, i.e., N = ∑

k Nk , and Nk is the number of samples of class ωk . The j th
column of X, called x j , consists of the values that take feature xi in all samples. In

Fig. 5.23 In this visualization each sample is represented as a point in the feature space of two
dimensions (x1, x2). The figure shows the visualization for the three examples of Fig. 5.21
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addition, element xi j means the feature x j of i th sample. The features are usually
normalized as:

x̃i j = xi j − μ j

σ j
(5.40)

for i = 1, . . . , N and j = 1, . . . , m, where μ j and σ j are the mean and standard
deviation respectively of the x j . The normalized features have zero mean and a
standard deviation equal to one.3

A very good practice is to eliminate (i) those features that are very constant, i.e.,
σ j < θ1, where θ1 is some threshold, e.g., 10−8, and (ii) those features that are
very correlated, i.e., if two of any extracted features (xi and x j ) are highly corre-
lated (if |cov(xi , x j )|/(σiσ j ) > θ2) one of them is eliminated. We can set θ2 to
0.99 for example. The feature ‘cleaning’ is implemented in function Xfclean (see
Appendix B) of XVIS Toolbox.

The key idea of the feature selection is to select a subset of p features (p ≤ m)

that leads to the smallest classification error. The selected p features are arranged
in a new row vector of p elements z = [z1 . . . z p]. The selected feature vector of
all samples can be stored in matrix Z of size N × p. This process is illustrated in
Fig. 5.24 for m = 10 and p = 3. The p selected features are columns s1, s2 . . . sp of
X, that means column j of Z is equal to column s j of X, z j = xs j , for j = 1 . . . p.

For a given set of selected features s = (s1, s2 . . . sp) we need some measure-
ment of separability that can be used to assess the performance of the selection,
i.e., for our three scenarios (see Figs. 5.20 and 5.21), this measurement should be
low, high and very high respectively. We define the separability J as a function of Z
(selected features) and d (labels of the samples). Since Z corresponds to the selected
columns of X that are defined by s, we can write the separability as J (X, s, d).

The problem of feature selection can be stated as follows, given the extracted
features for N samples (X) and the labels of each sample (d), find a set of features
(indexed by s = (s1, s2 . . . sp)) that maximizes the separability (J (X, s, d)). This
is an optimization problem

ŝ = argmax
s⊆Q

J (X, s, d), s.t.|s| = p, (5.41)

where Q = (1, 2, . . . m) is the set of all possible indices that can take s.
There are many approaches that can be used to measure the separability. A very

common one is based on Fisher criterion that ensures: (i) a small intraclass variation
and (ii) a large interclass variation in the space of the selected features.

For the first condition, the intraclass covariance (known also as between-class
covariance matrix) is used:

Cb =
∑

k

pk(z̄k − z̄)(z̄k − z̄)T, (5.42)

3In XVIS Toolbox, (5.40) is implemented in function Xfnorm (see Appendix B).



192 5 X-ray Image Representation

Fig. 5.24 Feature selection: there are m extracted features, from them p are selected. As we can
see in the labels, the first samples belong to one class and the last one to another

where pk denotes the a priori probability of the kth class, z̄k and z̄ are the mean
value of the kth class and the mean value of the selected features.

For the second condition, the interclass covariance (known also as within-class
covariance matrix) is used:

Cw =
K∑

k=1

pkCk, (5.43)

where the covariance matrix of the kth class is given by:

Ck = 1

Nk − 1

Nk∑
j=1

(zk j − z̄k)(zk j − z̄k)
T, (5.44)

with zk j the j th selected feature vector of the kth class, Nk is the number of samples
in the kth class. Selection performance can be evaluated using the spur criterion for
the selected features z:

J = spur
(

C−1
w Cb

)
. (5.45)

where ‘spur’ means the sum of the diagonal. The larger the objective function J , the
higher the selection performance. For the examples of Fig. 5.23, this function takes
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the values 0.1, 2.1 and 27.8 respectively. The objective function defined in (5.45)
can be used directly in (5.41).

Another approach that can be used to measure the separability is to compute the
accuracy of a classifier with the selected features. In this approach, we divide Z in
two subsets of samples: training and testing datasets. A classifier is designed using
the training set, and afterwards is tested using the testing set. The separability J is
defined as the accuracy evaluated on the testing set, i.e., the ratio of samples that
were correctly classified to the total number of samples.4

The features can be selected using several state-of-art algorithms reported in the
literature. In the following, some selection algorithms are presented.

5.6.2 Exhaustive Search

The selection of the features is performed by evaluating (5.41) for all possible com-
bination of p features of X. The combination that achieves the highest value for J
is selected. This approach ensures that global maximum of J is attained, however,
it requires n = m!/(p!(m − p)!) evaluations of J . The number n can be prohibited
for large m and p values. For instance, if we have m = 100 extracted features and
we want to select p = 10 features, then 1.73 × 1013 evaluations of J are required
using exhaustive search. This function is implemented in command Xfexsearch
(see Appendix B) of XVIS Toolbox.

5.6.3 Branch and Bound

In Branch and bound, the global maximum of J is ensured also [58]. Given that J
is a monotonically increasing function, i.e., J (z1) < J (z1, z2) < · · · J (z1, . . . zp),
we can considerably reduce the number of evaluations of J . In branch and bound
technique, we use a tree representation, where the root corresponds to the set of
all features, and a node of the tree corresponds to a combination of features. The
children’s nodes are subsets of their parents. Nodes in the kth level represent com-
binations of m − k features. We starts by evaluating J at the main node (k = 0)
with all features. This will be our bound, the current maximum. The key idea of
the algorithm is to evaluate those children nodes that have a separability J higher
than the bound. If that is the case, the we update the bound. Consequently, nodes
whose separability J is lower than the bound will not be evaluated. This method is
implemented in command Xfbb (see Appendix B) of XVIS Toolbox.

4Classifiers and accuracy estimation are covered in Chap. 6.

http://dx.doi.org/10.1007/978-3-319-20747-6_6
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5.6.4 Sequential Forward Selection

This method selects the best single feature and then adds one feature at a time that,
in combination with the selected features, maximizes the separability. The iteration
is stopped once the selected subset reaches p features. This method requires n =
pm − p(p − 1)/2 evaluations. For instance, if we have m = 100 extracted features
and we want to select p = 10 features, then 955 evaluations of J are required
using SFS, this is a very low number in comparison with the number of evaluations
required for exhaustive search. This method is implemented in command Xsfs (see
Appendix B) of XVIS Toolbox.

Matlab Example 5.8 In this example, we extract intensity features of small
cropped X-ray images (100 × 100 pixels) of salmon filets. The cropped images are
in series N0002 of GDXray. There are 100 cropped images with fishbones and 100
with no fishbones. The idea is to select those features that can be relevant for the sep-
aration between both classes ‘fishbones’ and ‘background’ (labels 1 and 0 respec-
tively). Using the selected features, we could detect small regions with fishbones in
an X-ray image of a salmon filet. In this series, the labels of the 200 cropped images
are available. We initially extract several intensity features (more than 300). After-
wards, features that are not rotation invariant are eliminated because fishbones can
be oriented in any direction. Additionally, high correlated or constant features are
eliminated as well. We select 15 features using SFS and 3 from them using exhaus-
tive search. The computational time of the feature selection step is short because we
are dealing with a small number of features and samples.

Listing 5.8 : Feature selection with SFS

% FeatureSelectionSFS.m
close all
gdx_dir = Xgdxdir(’N’,2); % directory of series N0002 of GDX
opf.b = Xfxbuild({’basicint’,’gabor’,... % features to be extracted

’lbpri’,’haralick’}); % rotation invariant for LBP
[X0,Xn0] = Xfxtractor(gdx_dir,’png’,opf); % feature extraction
[X,Xn] = Xnorotation(X0,Xn0); % only rotation invariant features
d = Xloaddata(’N’,2,’labels.txt’); % labels
sc = Xfclean(X); % delete constant and correlated features
figure
Xc = X(:,sc); % sc = indices of selected features
Xcn = Xn(sc,:);
opsfs.show = 1; % display results
opsfs.p = 15; % 15 features will be selected
s1 = Xsfs(Xc,d,opsfs); % using SFS
Y1 = Xc(:,s1); % s1 = indices of selected features
Y1n = Xcn(s1,:);
opexs.show = 1; % display results
opexs.p = 3; % 3 (from 15) features will be selected
s2 = Xfexsearch(Y1,d,opexs); % using exhaustive search
Y2 = Y1(:,s2);
Y2n = Y1n(s2,:);
figure
Xplotfeatures(Y2,d,Y2n) % plot of feature space
grid on; view(−25,30)
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Fig. 5.25 Feature selection using SFS and exhaustive search: a Some cropped X-ray images of
both classes ‘background’ and ‘fishbones’. In this example there are 200 cropped X-ray images,
100 from each class. There are m = 241 extracted features from N = 200 samples, i.e., the
extracted features are stored in matrix X of size 200 × 241. b Sequential forward selection. There
are p1 = 15 selected features and they correspond to columns 10, 4, 12, 40, 9 . . . of X, i.e., the
selected features are stored in matrix Y1 of size 200 × 15. c Using exhaustive search, p2 = 3
features are selected from Y1. The result is stored in matrix Y2 of 200 × 3 elements. The figure
shows the feature space in 3D. The selected features are certain LBP features. We can see that the
separability is ‘good’ and correspond to our second scenario (→ Example 5.8 )

The output of this code is shown in Fig. 5.25. In this example, the features were
extracted using commands Xfxtractor (see Appendix B), and the features were
selected using Xsfs and Xfexsearch (see Appendix B) of XVIS Toolbox. In this
experiment, only LBP feature were selected, i.e., in testing stage it is not neces-
sary to extract Gabor, Haralick and other basic intensity features. This result is
very meaningful because the computational time is considerably reduced: from 0.32
s/image to 0.018 s/image (in a computer with 8GB RAM and a processor Intel Core
i5 of 2.8 GHz, OS X 10.10.2). �

5.6.5 Sequential Backward Selection

This method selects all features and then eliminates one feature at a time that max-
imizes the separability. The iteration is stopped once the selected subset reaches p
features. This method requires n = (m − p + 1)m − (m − p)(m − p + 1)/2 eval-
uations. For instance, if we have m = 100 extracted features and we want to select
p = 10 features, then 5005 evaluations of J are required using SBS.
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5.6.6 Ranking by Class Separability Criteria

Features are ranked using an independent evaluation criterion to assess the signifi-
cance of every feature for separating two labeled groups. The absolute value two–
sample t–Student test with pooled variance estimate is used as an evaluation crite-
rion [59]. This method is implemented in command Xfrank (see Appendix B) of
XVIS Toolbox.

5.6.7 Forward Orthogonal Search

In FOS, features are selected one at a time, by estimating the capability of each
specified candidate feature subset to represent the overall features in the measure-
ment feature space using a squared correlation function to measure the dependency
between features [60]. This method is implemented in command Xfosmod (see
Appendix B) of XVIS Toolbox.

5.6.8 Least Square Estimation

In LSE, features are selected one at a time, evaluating the capacity of the select
feature subsets to reproduce sample projections on principal axis using Principal
Component Analysis (PCA) [61]. This method is implemented in command Xlsef
(see Appendix B) of XVIS Toolbox.

5.6.9 Combination with Principal Components

The first p principal components of the large set of features X (or a preselected sub-
set of features using one of the mentioned approaches) are appended as new columns
(features) of X. Thus, we have a new set of features Xnew = [X pca(X, p)]. After-
wards, a feature selection algorithm (like SFS or exhaustive search) is computed
on Xnew. As result, the selected features can be some original features and some
principal components [62]. An example is shown in Fig. 5.26. In this example, this
method achieved the best separability with only three features, however, it is worth
mentioning that using this method the computational time is increased significantly
in the testing stage. The reason is not because we have to compute the PCA trans-
formation, but because we have to extract all features required by PCA.
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Fig. 5.26 Separability of three different feature selection methods for fishbone detection (see
Example 5.8 for details). Each visualization is a 3D plot, the axes and the grid are not represented
for the sake of simplicity. a The best three features after SFS. It corresponds to the first three
columns of variable Y1 that has 15 columns. b The best three features (from 15 features selected
by SFS) after exhaustive search. It correspond to variable Y2. This plot is the same of Fig. 5.25c.
c The three principal components of Y1 is computed (Ypca = Xpca(Y1,3);). A new set of
features including Y1 and Ypca is defined (Ynew = [Y1 Ypca];). The plot shows the best
three features of Ynew that are selected using exhaustive search. The last selection included one
principal component. We observe how the separability J after Fisher criterion (5.45) is increased
in each step

5.6.10 Feature Selection Based in Mutual Information

In mRMR, the features are selected based on two criteria: minimal redundancy in
order to remove redundant variables; and maximal relevance in order to select the
relevant features that are able to separate the classes [63]. This method is imple-
mented in command XfmRMR (see Appendix B) of XVIS Toolbox.

5.7 A Final Example

In this example, we show how to extract and select features for a three-class prob-
lem. We want to separate handguns, shuriken and razor blades (see some samples
in Fig. 5.27). We extract geometric features that are invariant to rotation, translation
and scale. The separation is easy because the shapes are very different. Probably,
this particular example does not have any application in real life, but it shows how
we can use XVIS Toolbox easily to extract and select features for a classification task.

The features can be extracted using a simple Matlab code (as shown in Example
5.9) or using a graphic user interface (as shown in Fig. 5.28). With these commands
it is really simple to design a program that is able to extract and select many features.

Matlab Example 5.9 This example shows a simple code that is used to
extract and select features. The task is to separate handguns, shuriken and razor
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blades (Fig. 5.27). The reader can easily adapt this code to similar recognition
problems.

Listing 5.9 : Feature extraction and selection

% SeparationExample.m
clt
dir_obj1 = Xgdxdir(’B’,49); % directory of guns (class 1)
dir_obj2 = Xgdxdir(’B’,50); % directory of shuriken (class 2)
dir_obj3 = Xgdxdir(’B’,51); % directory of razor blades (class 3)
opf.b = Xfxbuild({’basicgeo’,’fitellipse’,’flusser’,’fourierdes’,...

’gupta’,’hugeo’}); % features to be extracted
opf.segmentation = ’Xsegbimodal’; % segmentation approach
[X1,X1n] = Xfxtractor(dir_obj1,’png’,opf); % feature extraction of class 1
[X2,X2n] = Xfxtractor(dir_obj2,’png’,opf); % feature extraction of class 2
[X3,X3n] = Xfxtractor(dir_obj3,’png’,opf); % feature extraction of class 3
N1 = size(X1,1); N2 = size(X2,1); N3 = size(X3,1);% number of samples per class
d = [ones(N1,1); 2*ones(N2,1); 3*ones(N3,1)]; % labels
X0 = [X1;X2;X3]; X0n = X1n; % features of all classes
[Xa,Xan] = Xnorotation(X0,X0n); % only rotation invariant
[Xb,Xbn] = Xnotranslation(Xa,Xan); % only translation invariant
[Xc,Xcn] = Xnoscale(Xb,Xbn); % only scale invariant
s0 = Xfclean(Xc); % cleaning
Xd = Xc(:,s0); Xdn = Xcn(s0,:);
op.p = 3; op.show = 1; % 3 features will be selected
f = Xfnorm(Xd,1); % normalization
s = Xsfs(f,d,op); % SFS with Fisher cirterion.
Xs = f(:,s); Xns = Xdn(s,:); % selected features
figure
Xplotfeatures(Xs,d,Xns); % feature space

The output of this code is shown in Fig. 5.29. In this example, we use several pow-
erful functions of XVIS Toolbox:

• Xfxbuild (see Appendix B): Build structure for feature extraction with default
values.

• Xfxtractor (see Appendix B): Feature extraction from a set of images.
• Xnorotation (see Appendix B): Delete all no rotation-invariant features.
• Xnotranslation (see Appendix B): Delete all no translation invariant features.
• Xnoscale (see Appendix B): Delete all no scale-invariant features.
• Xplotfeatures (see Appendix B): Plot feature space.

Fig. 5.27 Some objects used in example of Sect. 5.7: a handgun, a shuriken and a razor blade,
from GDXray series B0049, B0050, and B0051 respectively
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Fig. 5.28 Graphic user interface Xfxgui (see Appendix B) of XVIS Toolbox for feature extraction.
In this example, all geometric features of all images of series B0049 of GDXray are extracted.
In addition, the user can specify that the features to be extracted must be rotation, translation and
scale invariant

Fig. 5.29 Separation of three classes: 1 Handguns, 2 Shuriken, 3 Razor blades. Left Feature selec-
tion using SFS. Right Feature space (→ Example 5.9 )

From Fig. 5.29 it is very simple to design a classification strategy (e.g., using
thresholds) and Table 5.1. The basic geometric features are extracted by command
Xbasicgeo (see Appendix B) of XVIS Toolbox. �
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5.8 Summary

In this chapter we covered several topics that are used to represent an X-ray image
(or a specific region of an X-ray image). This representation means that new features
are extracted from the original image and that they can give us more information
than the raw information expressed as a matrix of gray values.

In the first part of this chapter, we learned about geometric and intensity fea-
tures. We reviewed basic geometric features (such as area and perimeter among
others), elliptical features, Fourier descriptors, and invariant moments. Further, we
addressed basic intensity features, several definitions of contrast, crossing line pro-
files (CLP), intensity moments, statistical textures, Gabor and filter banks (such as
Fourier and Discrete Cosine Transform).

In the second part of this chapter, we gave an overview of certain descriptors that
are widely used in computer vision and can be a powerful tool in X-ray testing. We
covered local binary patterns (LBP), binarized statistical image features (BSIF), his-
togram of oriented gradients (HOG), and scale-invariant feature transform (SIFT).

In the third part of this chapter, we studied sparse representations. They have
been widely used in computer vision. In X-ray testing, they can be used in problems
of object recognition as we will see in the next chapter.

In the fourth part of this chapter, we presented different feature selection tech-
niques that can be used to choose which features are relevant for a classification
problem. Some of the techniques are sequential feature selection, branch and bound
and feature selection based on mutual information.

Finally, we gave a simple code as an example that can be used to extract and
select features for a classification problem.
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Chapter 6
Classification in X-ray Testing

Abstract In this chapter we will cover known classifiers that can be used in
X-ray testing. Several examples will be presented using Matlab. The reader can
easily modify the proposed implementations in order to test different classification
strategies. We will then present how to estimate the accuracy of a classifier using
hold-out, cross-validation, and leave-one-out. Finally, we will present an example
that involves all steps of a pattern recognition problem, i.e., feature extraction, fea-
ture selection, classifier’s design, and evaluation. We will thus propose a general
framework to design a computer vision system in order to select—automatically—
from a large set of features and a bank of classifiers, those features and classifiers
that can achieve the highest performance.

Cover image: Ideal detection of a handgun superimposed onto a laptop (X-ray image
B0019_0001 colored with ‘sinmap’).
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6.1 Introduction

Considerable research efforts in computer vision applied to industrial applications
have been developed in recent decades. Many of them have been concentrated on
using or developing tailored methods based on visual features that are able to solve a
specific task. Nevertheless, today’s computer capabilities are giving us new ways to
solve complex computer vision problems. In particular, a new paradigm on machine
learning techniques has emerged posing the task of recognizing visual patterns as a
search problem based on training data and a hypothesis space composed of visual
features and suitable classifiers. Furthermore, now we are able to extract, process,
and test in the same time more image features and classifiers than before. In our
book, we propose a general framework that designs a computer vision system auto-
matically, i.e., it finds—without human interaction—the features and the classifiers
for a given application avoiding the classical trial and error framework commonly
used by human designers. The key idea of the proposed framework is to design a
computer vision system as shown in Fig. 6.1 in order to select—automatically—
from a large set of features and a bank of classifiers, those features and classifiers
that achieve the highest performance.

Whereas Chap. 5 covered feature extraction and selection, the focus of this
chapter will be the classification. Once the proper features are selected, a classi-
fier can be designed. Typically, the classifier assigns a feature vector x with n fea-
tures (x1 . . . xn) to one class. In case of defects detection, for example, there are two

Fig. 6.1 Supervised pattern recognition schema. In the training stage, features are extracted and
selected (see Chap. 5). In addition, a classifier is designed. In the testing stage, selected features
are extracted and the test image is classified

http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_5
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classes: flaws or no-flaws. In case of baggage screening, there can be more classes:
knives, handguns, razor blades, etc. In pattern recognition, classification can be per-
formed using the concept of similarity: patterns that are similar are assigned to the
same class [1]. Although this approach is very simple, a good metric defining the
similarity must be established. Using representative samples, we can make a super-
vised classification finding a discriminant function h(x) that provides us information
on how similar a feature vector x is to a class representation.

In this chapter, we will cover many known classifiers (such as linear discrim-
inant analysis, Bayes, support vector machines, neural networks among others).
Several examples will be presented using Matlab. The reader can easily modify
the proposed implementations in order to test different classification strategies.
Afterwards, we present how to estimate the accuracy of a classifier using hold-out,
cross-validation, and leave-one-out. The well-known confusion matrix and receiver-
operation-characteristic curve will be outlined as well. We will explain by detailing
the advantages and disadvantages of each one. Finally, we will present an exam-
ple that involves all steps of a pattern recognition problem, i.e., feature extraction,
feature selection, classifier’s design, and evaluation.

6.2 Classifiers

In this section, the most relevant classifiers are explained with several examples.

6.2.1 Minimal Distance

A very simple classifier is based on the concept of ‘minimal distance’. In this classi-
fier, each class is represented by its center of mass that can be viewed as a template
[2]. Thus, a mean value x̄k of each class is calculated on the training data:

x̄k = 1

Nk

Nk∑
i=1

x jk (6.1)

where x jk is the j th sample of class ωk of the training data, and Nk is the number
of samples of the kth class. A test sample x is assigned to class ωk if the Euclidean
distance ‖ x − x̄k ‖ is minimal. Formerly,

hdmin(x) = argmin
k

{‖ x − x̄k ‖}. (6.2)
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A useful formulation is defining the distance function ddmin(x, k) =‖x− x̄k ‖. Thus,
we can write (6.2) as

hdmin(x) = argmin
k

{ddmin(x, k)}. (6.3)

This formulation based on minimal distances will be used in the following sections.
InXVIS Toolbox, this classifier is implemented in function Xdmin (see Appendix B).

Matlab Example 6.1 In this example, we show how to train and test a clas-
sifier based on Euclidean minimal distance. We use data that was simulated using
a mixture of Gaussian distributions. The data consists of 800 samples for training
and 400 samples for testing purposes. Each sample has two features x1 and x2 and
it belongs to class ω1 or ω0. Figure 6.2 shows the feature spaces for training and
testing.

Listing 6.1 : Classification using Euclidean minimal distance

% DminExample.m
close all
load datasim % simulated data (2 classes, 2 features)

% Xtrain,dtrain features and labels for training
% Xtest, dtest features and labels for testing

subplot(1,2,1);
Xplotfeatures(Xtrain,dtrain) % plot feature space for training data
subplot(1,2,2);
Xplotfeatures(Xtest,dtest) % plot feature space for testing data
opc = []; % options of the classifier
par = Xdmin(Xtrain,dtrain,opc); % Euclidean distance classifier − training
ds = Xdmin(Xtest,par); % Euclidean distance classifier − testing

% ds = predicted labels for testing data
acc = Xaccuracy(ds,dtest) % accuracy on test data

Fig. 6.2 Simulated data that is used in Sect. 6.2 (→ Example 6.1 )
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The output of this code is acc, i.e., the accuracy obtained by classifying the
testing data. In this case, it is only 85.5%. The low performance of this classifier is
because the decision line is a straight line. The reader can imagine that the decision
line can be computed in three steps: (i) Compute the centers of mass of each class
distribution in the training set as x̄1 and x̄0 according to (6.1). (ii) Compute �C the
straight-line that contains both centers of mass. (iii) Compute the decision line � as
the line that is perpendicular to �C and equidistant to x̄1 and x̄0. The decision line
is shown in Fig. 6.9. Obviously, the straight line is not able to separate these curved
distributions.

We use Xdmin (see Appendix B) for training and again Xdmin for testing. In
training, the arguments are Xtrain (for the features of the training samples),
dtrain the corresponding labels and opc the options of the classifier (in this case
the classifier has no options). The output of the training is stored in par containing
all parameters of the learned classifier, i.e., for this classifier the centers of mass
only. In testing, the arguments are Xtest (for the features of the testing samples)
and par (the parameters of the classifier). The output is ds the predicted labels
of the testing data. In order to compute the performance, we compute the accuracy
using command Xaccuracy (see Appendix B) of XVIS Toolbox. This is defined as
the ratio of number of samples correctly classified to the total number of samples.

It is important to know that we could compute training and testing in just one
step using ds = Xdmin(Xtrain,dtrain,Xtest,opc);. �

6.2.2 Mahalanobis Distance

The Mahalanobis classifier employs the same concept as minimal distance (see
Sect. 6.2.1), however, it uses a distance metric based on the ‘Mahalanobis dis-
tance’, in which, by means of the covariance matrix, the features to be evaluated
are weighted according to their variances. A test sample x is assigned to class ωk if
the Mahalanobis distance of x to class ωk , denoted as dmaha(x, k), is minimal. The
Mahalanobis distance is defined as

dmaha(x, k) = (x − x̄k)
TC−1

k , (x − x̄k) (6.4)

where Ck is the covariance matrix of the kth class. It can be estimated as

Ck = 1

Nk − 1

Nk∑
j=1

(xk j − x̄k)(xk j − x̄k)
T, (6.5)

where x jk is the j th sample of class ωk of the training data, and Nk is the number
of samples of the kth class. Some examples are illustrated in Fig. 6.3. Formerly,
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Fig. 6.3 Examples of three different Gaussian distributions p(x|ωk) in 2D. The black point rep-
resents the mean μk and the 2 × 2 matrices the covariances Σk

hmaha(x) = argmin
k

{dmaha(x, k)}, (6.6)

where distance dmaha is defined in (6.4). In XVIS Toolbox, Mahalanobis classifier is
implemented in function Xmaha (see Appendix B). An example of this classifier is
presented in Example 6.3.

6.2.3 Bayes

In Bayes classifier the idea is to assign the test sample x to the most probable class.
For this purpose, we use the conditional probability p(ωk |x), that gives the probabil-
ity of class ωk occurs given sample x. Thus, if p(ωk |x) is maximal the x is assigned
to class ωk :

hBayes(x) = argmax
k

{p(ωk |x)}, (6.7)

Using Bayes theorem we can write the conditional probability as

p(ωk |x) = p(ωk)
p(x|ωk)

p(x)
, (6.8)

where p(ωk |x) is known as ‘posterior’, p(ωk) as ‘prior’, p(x|ωk) as ‘likelihood’
and p(x) as ‘evidence’. Since p(x) is the same by evaluating p(ωk |x) for all k we
can rewrite (6.7) as follows:

hBayes(x) = argmax
k

{p(x|ωk)p(ωk)}. (6.9)
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In order to evaluate (6.9) properly, we need good estimations for p(x|ωk) and p(ωk).
There are several known approaches to estimate these, some of which will be cov-
ered in the following sections under the assumption of Gaussian distributions of the
classes (see Sects. 6.2.4 and 6.2.5).

The prior p(ωk) can be estimated by the number of available samples in the
training dataset of each class. Thus, p(ωk) = Nk/N , where Nk is the number of
samples that belong to class ωk and N = ∑

k Nk the total number of samples.
Nevertheless, in many cases of X-ray testing the available samples are not balanced,
e.g., in defect detection problems there are a reduced number of flaws in comparison
with the large number of non-flaws [3]. If we use the estimation p(ωk) = Nk/N
then the most important class to be detected will have a very low prior, and it will be
difficult to detect. In such cases, the prior must be considerably increased in order
to be the more probable.

In order to estimate p(x|ωk), we can use an approach based on Kernel Density
Estimation (KDE) [4]:

p̂(x|ωk) = αk

Nk∑
j=1

K

(
x − x jk

Δ

)
(6.10)

where K is a kernel function such as a Gaussian, that has a mean zero and variance
of one, Δ is the bandwidth and αk is a normalization factor equal to 1/(NkΔ). Since
K (x/Δ) integrates to Δ, with this normalization factor we ensure that p̂(x|ωk) inte-
grates to one. Example of KDE can be found in Fig. 5.21 that were estimated using
the training data of Fig. 5.23. In XVIS Toolbox, command Xbayes (see Appendix B)
is implemented using KDE.

Matlab Example 6.2 In this example, we show how to train and test a
Bayes classifier using Kernel Density Estimation. We use the same simulated data
addressed in Example 6.1 and illustrated in Fig. 6.2.

Listing 6.2 : Classification using Bayes

% BayesExample.m
close all; clear opc
load datasim % simulated data (2 classes, 2 features)

% Xtrain,dtrain features and labels for training
% Xtest, dtest features and labels for testing

Xplotfeatures(Xtrain,dtrain) % plot feature space
op.p = [0.5 0.5]; % prior probability
op.show = 1; % display results
ds = Xbayes(Xtrain,dtrain,Xtest,op); % Bayes classifier
acc = Xaccuracy(ds,dtest) % accuracy on test data

The output of this code is Fig. 6.4 for the Kernel Density Estimation of each class,
and acc, the accuracy obtained by classifying the testing data. In this case, we
obtain 94.5%. The reader can compare this result with the accuracy obtained by
classifier of Example 6.1. It is clear that Bayes classifier can properly model the
curved distributions. The decision lines are shown in Fig. 6.9. In this example we
use command Xbayes (see Appendix B) of XVIS Toolbox. �

http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_5
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Fig. 6.4 Estimation of p(x|ωk) using Kernel Density Estimation (KDE) for distributions of the
training set of Fig. 6.2 (→ Example 6.2 )

6.2.4 Linear Discriminant Analysis

For Gaussian distributions with x ∈ R
n :

p(x|ωk) = 1

(2π)n/2|Σk |1/2 exp

{
−1

2
(x − μk)

TΣ−1
k (x − μk)

}
, (6.11)

where a good estimation for center of mass μk and covariance Σk of class ωk can
be taken from (6.1) and (6.5) respectively. Since the logarithm is a monotonically
increasing function argmaxk {p} = argmaxk {log(p)}. Thus, (6.9) can be written as

h(x) = argmax
k

{log {p(x|ωk)p(ωk)}}. (6.12)

Using some manipulation,

log {p(x|ωk)p(ωk)} = log {p(x|ωk)} + log {p(ωk)} (6.13)

= −1

2
(x − μk)

TΣ−1
k (x − μk)︸ ︷︷ ︸

1©

−1

2
log(|Σk |)︸ ︷︷ ︸

2©

−n

2
log(2π)︸ ︷︷ ︸
3©

+ log(p(ωk))︸ ︷︷ ︸
4©

(6.14)

It is clear that we do not need to evaluate 3© because this term is constant and the
location of the maximum does not change.

In Linear Discriminant Analysis (LDA) [5], we assume Σk = Σ (constant) for
all k, i.e., term 2© in (6.14) is constant as well, and it is not necessary to be evaluated.
Consequently,

log {p(x|ωk)p(ωk)} = −1

2
(x − μk)

TΣ−1(x − μk) + log(p(ωk))︸ ︷︷ ︸
−dLDA(x,k)

+ C (6.15)
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where constant C corresponds to terms 2© + 3©. Covariance matrix Σ can be com-
puted from training data. A good estimation is the average of the individual covari-
ance matrices Σ = 1

K

∑
k Ck . Formerly, the LDA classifier is defined as follows:

hLDA(x) = argmin
k

{dLDA(x, k)}, (6.16)

where dLDA(x, k) is defined in (6.15). In XVIS Toolbox, the LDA classifier is imple-
mented in function Xlda (see Appendix B). An example of this classifier is presented
in Example 6.3.

A variant of Mahalanobis classifier is obtained by assuming that not only Σk is
constant, but also p(ωk) is constant. Thus, Σk = Σ and p(ωk) = pc for all k. This
means that in (6.14) terms 4© is constant as well:

log {p(x|ωk)p(ωk)} = −1

2
(x − μk)

TΣ−1(x − μk)︸ ︷︷ ︸
−dmaha(x,k)

+C (6.17)

where constant C corresponds to terms 2©+ 3©+ 4©. The classification is performed
by (6.6) where dmaha(x, k) is defined in (6.17). The reader can observe that if we
assume that Σ = I we obtain the Minimal Distance classifier (6.3).

6.2.5 Quadratic Discriminant Analysis

In Quadratic Discriminant Analysis (QDA) [5], we assume that Σk and p(ωk) are
not constant for all k, i.e., in (6.14) only term 3© is constant:

log {p(x|ωk)p(ωk)} = −1

2
(x − μk)TΣ−1(x − μk) − 1

2
log(|Σk |) + log(p(ωk))︸ ︷︷ ︸

−dQDA(x,k)

+ C,

(6.18)
where constant C corresponds to terms 3©. Formerly,

hQDA(x) = argmin
k

{
dQDA(x, k)

}
, (6.19)

where dQDA(x, k) is defined in (6.18). In XVIS Toolbox, QDA classifier is imple-
mented in function Xqda (see Appendix B).

Matlab Example 6.3 In this example, we show how to train and test three
different classifiers: Mahalanobis (see Sect. 6.2.2), LDA (see Sect. 6.2.4) and QDA
(see Sect. 6.2.5). We use the same simulated data addressed in Example 6.1 and
illustrated in Fig. 6.2.
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Listing 6.3 : Classification using Mahalanobis, LDA and QDA

% SimpleClassifiersExample.m
close all; clear opc;
load datasim % simulated data (2 classes, 2 features)

% Xtrain,dtrain features and labels for training
% Xtest, dtest features and labels for testing

pc = [0.5 0.5]; % priors for each class
opc(1).name = ’maha’;opc(1).options.p = pc; % Mahalanobis distance
opc(2).name = ’lda’; opc(2).options.p = pc; % LDA
opc(3).name = ’qda’; opc(3).options.p = pc; % QDA
ds = Xclassify(Xtrain,dtrain,Xtest,opc); % Training and Testing
acc = Xaccuracy(ds,dtest); % Accuracy on test data
for i=1:3 % Output

fprintf(’%8s: %5.2f%%\n’,opc(i).name,100*acc(i));
end

The output of this code is acc, the accuracy obtained by classifying the testing data.
In this case, we obtain 89.00, 87.00 and 92.75% for Mahalanobis, LDA and QDA
respectively. It is clear that Mahalanobis and QDA achieve better performance than
LDA because they can model the curved distributions. The decision lines are shown
in Fig. 6.9. In this example we use command Xclassify (see Appendix B) of XVIS

Toolbox which is able to train and test several classifiers simultaneously. The reader
can try to use commands Xmaha, Xlda and Xqda (see Appendix B) independently
as explained for Xdmin (see Appendix B) in Example 6.1. �

6.2.6 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a nonparametric approach, in which the K most
similar training samples to a given test feature vector x are determined [5]. The
assigned class is the most frequent class from those K samples [6]. In other words,
we find—in the training set—the K nearest neighbors of x and we evaluate the
majority vote of their classes:

hknn(x) = mode(y(x1), . . . y(xK )), (6.20)

where {xi }K
i=1 are the K nearest neighbors of x, and y(xi ) the labeled class of (xi ).

KNN can be implemented (avoiding the exhaustive search of all samples of the
training set) by a search using a k−d tree structure [7] to search the nearest neigh-
bors. InXVIS Toolbox, KNN classifier is implemented in function Xknn (see Appen-
dix B).

6.2.7 Neural Networks

Artificial neuronal networks are mathematical tools derived from what is known
about the mechanisms and physical structure of biological learning, based on the
function of a neuron. They are parallel structures for the distributed processing of
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information [8]. A neural network consists of artificial neurons connected in a net-
work that is able to classify a test feature vector x evaluating a linear or nonlinear
weighed sum of functions. The weights, the functions, and the connections are esti-
mated in a training phase by minimizing the classification error [8, 9].

The basic processing unit is the neuron, made up of multiple inputs and only one
output. This output is determined by an activation function that operates on input
values, and a transfer function that operates on the activation value. In other words,
if we consider the input vector x = [x1 . . . xn]T, the weight vector w = [w1 . . . wn]T,
the activation value a and the output value of the neuron y, the values of a and y
can be described by:

a = wTx + b y = f (a) (6.21)

where b is the bias and f (a) is the so-called transfer function and is generally a
linear function or a sigmoid such as

f (a) = 1

1 + e−a
or f (a) = tanh(a) + 1

2
. (6.22)

The structure of a neuronal network can have one or more neurons and depending
on the type of problem and the training, these networks receive different names.
They have the capacity to associate and classify patterns, compress data, perform
process control, and approximate nonlinear functions [10].

The most often used type of neural network in classification is the Multi Layer
Perceptron (MLP) which consists of sequential layers of neurons. The structure of
an MLP is shown in Fig. 6.5 where each neuron has Eq. (6.21) associated to it.

Backpropagation is the learning algorithm normally used to train this type of
network. Its goal is to minimize the error function constructed from the difference
between the desired and the modeled output.

Fig. 6.5 Multi Layer Perceptron (MLP) with two hidden layers



216 6 Classification in X-ray Testing

The initially developed backpropagation algorithm used a steepest descent first-
order method as the learning rule. Nonetheless, other more powerful second-order
methods are in common use today, such as the conjugate gradient, which consists of
finding the gradient directions that satisfy:

d(t+1)T
Hd(t) = 0 (6.23)

where d is the slope direction and H is the Hessian matrix evaluated at point wt+1.
Vector w is the network weight vector and is updated by means of:

w(t+1) = w(t) + λ(t)d(t) (6.24)

Parameter λ(t) is selected for minimizing:

E(λ) = E(w(t) + λd(t)) (6.25)

where E is the error function [8], computes as the mean squared error between
target value and the value computed by the perceptron. Depending on the number
of hidden layers we will have structures such as the diagram presented in Fig. 6.5.
The output, called z is a real number between 0 and 1. The classification, for the
two-class problem of our test sample x will be ω1 (or ω0) if z is greater (or less)
than 0.5.

In XVIS Toolbox there are two classifiers based on neural networks: Xmlp (see
Appendix B) for Multi Layer Perceptron and Xglm (see Appendix B) that uses a
Generalized Linear Model [11]. In addition, Xpnn (see Appendix B) for probabilis-
tic neural networks is also available [12].

6.2.8 Support Vector Machines

The original Support Vector Machines (SVM) find a decision line that separates two
classes (ω1 and ω0) as illustrated in Fig. 6.6a. In this example, we can see that there
are many possible decision lines like �1, �2 and �3 among others (see Fig. 6.6b). A
relevant question arises: which decision line � can separate both classes at ‘best’? In
SVM strategy, we define the ‘margins’ b1 and b0 as the minimal distance from the
decision line to a sample of class ω1 and ω0 respectively. After SVM criterion, the
‘best’ separation line �SVM is one that (i) it is in the middle, i.e., b1 = b0 = b, and
(ii) its margin is maximal, i.e., b = bmax. Thus, decision line �SVM is equidistant to
the margin lines and the margin is maximal.

In R
2 we have a decision line, however, in general, in R

n , we have a hyperplane
that is defined as

�SVM : g(x) = aTx + a0 = 0 (6.26)
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Fig. 6.6 Key idea of support vector machine: a Given a two-class problem, find a decision line
�. b There are many possible decision lines that can separate both classes. c In SVM, we search
decision line �SVM so that the margin b is maximized. The support vectors are defined as those
samples that belong to the margin lines

where x = [x1 . . . xn]T is our feature vector and a = [a1 . . . an]T and a0 are the
linear parameters to be estimated. The solution for

{
a j

}n
i=0 can be found following

an optimization approach [13]. In the solution,
{
a j

}n
i=0 depends only on the support

vectors, i.e., the samples of both classes that belong to the margin lines as shown in
Fig. 6.6c. The solution of this optimization problem consists of parameter values λi

corresponding to i th support vector:

a =
m∑

i=1

λi zi xi , (6.27)

for m support vectors, where zi = ±1 if xi belongs to ω1 and ω0 respectively. In
addition, a0 can be calculated from any support vector as a0 = zi − aTxi [5]. In
SVM, the classification of a test sample x can be formulated as follows:

hSVM(x) =
{
1 if aTx + a0 > 0
0 otherwise

. (6.28)

In practice, however, there is some overlapping between the classes as shown in
Fig. 6.7a. If we have a decision line that separates the feature space, we will have
misclassified samples. In SVM strategy, we consider only the misclassified samples
as illustrated in Fig. 6.7b. They will be the support vectors. The i th support vector
has a distance ei to the decision line that corresponds to an error (see Fig. 6.7c).
After SVM criterion, the ‘best’ decision line �SVM is one that minimizes the total
error e = ∑

i ei . Again, the solution for {ai }n
i=0 depends only on the support vectors,

and they can be estimated using an optimization approach [13]. The classification is
performed according to (6.28).

The previous approach estimates a straight-line decision boundary in feature
space. In many cases, however, it is convenient to find a curve that separates the
classes as illustrated in Fig. 6.8a. In order to use SVM linear classification, the fea-
ture space can be transformed into a new enlarged feature space (Fig. 6.8b) where
the classification boundary can be linear. Thus, as shown in Fig. 6.8c, a simple lin-
ear classification (6.28) can be designed in the transformed feature space in order to
separate both classes [13].
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Fig. 6.7 Key idea of support vector machine with overlapping: a Given a two-class problem with
overlapping, find a decision line �SVM. b By choosing a decision line �SVM there will be misclas-
sified samples. c The misclassified samples are the support vectors. Each of them has an error ei
defined as the perpendicular distance to the decision line �SVM. In SVM, we search decision line
�SVM so that the total error

∑
ei is minimized

Fig. 6.8 Nonlinear decision line. a Feature space with two classes that can be separated using a
curve. b The feature space can be described in a new coordinate system. c Transformed coordinate
system in which a linear decision line can be used

The original feature space is transformed using a function f (x). Thus, according
to (6.26) and (6.27) we obtain:

g( f (x)) = aT f (x) + a0
= ∑

i λi zi 〈 f (xi ), f (x)〉 + a0
(6.29)
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Table 6.1 Kernel functions
used by SVM

Name K (xi , x)

Linear 〈xi , x〉
qth degree polynomial (1 + 〈xi , x〉)q

Radial basis (RBF) exp(−γ ||xi − x||2)
Sigmoid tanh(α1〈xi , x〉 + α2)

where 〈 f (xi ), f (x)〉 is the inner product [ f (xi )]T f (x). In (6.29), we can observe
that for the classification, only the kernel function 〈 f (xi ), f (x)〉 = K (xi , x) that
computes inner products in the transformed space is required. Consequently, using
(6.29) we can write (6.28) in general as

hSVM(x) =
{
1 if

∑
i λi zi K (xi , x) + a0 > 0

0 otherwise
. (6.30)

Table 6.1 shows typical kernel functions that are used by SVM classifiers. They
should be a symmetric positive (semi-) definite function [5]. In XVIS Toolbox, SVM
classifier is implemented in function Xsvm (see Appendix B).

Matlab Example 6.4 In this example, we show how to train many classifiers
together. We use the same simulated data addressed in Example 6.1 and illustrated
in Fig. 6.2.

Listing 6.4 : Classification using several classifiers

% ManyClassifiersExample.m
close all; clear opc
load datasim % simulated data (2 classes, 2 features)

% Xtrain,dtrain features and labels for training
% Xtest, dtest features and labels for testing

k = 0;
k=k+1;opc(k).name = ’dmin’; opc(k).options.p = []; % Euclidean distance
k=k+1;opc(k).name = ’maha’; opc(k).options.p = []; % Mahalanobis distance
k=k+1;opc(k).name = ’bayes’; opc(k).options.p = []; % Bayes
k=k+1;opc(k).name = ’lda’; opc(k).options.p = []; % LDA
k=k+1;opc(k).name = ’qda’; opc(k).options.p = []; % QDA
k=k+1;opc(k).name = ’knn’; opc(k).options.k = 5; % KNN with 5 neighbors
k=k+1;opc(k).name = ’knn’; opc(k).options.k = 15; % KNN with 5 neighbors
k=k+1;opc(k).name = ’glm’; opc(k).options.method = 2; opc(k).options.iter = 12; % GLM
k=k+1;opc(k).name = ’mlp’; opc(k).options.method = 2; opc(k).options.alpha = 0.2; % MLP

opc(k).options.iter=12;opc(k).options.nhidden = 6;opc(k).options.ncycles = 60;
k=k+1;opc(k).name = ’svm’; opc(k).options.kernel = ’−t 0’; % linear−SVM
k=k+1;opc(k).name = ’svm’; opc(k).options.kernel = ’−t 1’; % polynomial−SVM
k=k+1;opc(k).name = ’svm’; opc(k).options.kernel = ’−t 2’; % rbf−SVM
par = Xclassify(Xtrain,dtrain,opc); % Training
ds = Xclassify(Xtest,par); % Testing
Xdecisionline(Xtrain,dtrain,Xn,par); % Draw decision lines
acc = Xaccuracy(ds,dtest); % Accuracy on test data
for i=1:k % Output

fprintf(’%8s: %5.2f%%\n’,par(i).options.string,100*acc(i));
end

The output of this code is acc, the accuracy obtained by classifying the testing
data (see Table 6.2). In this example, there are many classifiers that obtain more
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Table 6.2 Accuracy of
classifiers of Example 6.4

Classifier Accuracy (%)

dmin 85.50

maha 89.00

bayes 94.50

lda 87.00

qda 92.75

knn, 5 93.75

knn, 15 93.75

glm 86.75

mlp 94.50

svm-lin 0 86.75

svm-poly 1 94.50

svm-rbf 2 94.50

than 94.00% because they can model the curved distributions. On the other hand,
we observe that the linear classifiers cannot achieve more than 87.0%. The deci-
sion lines are shown in Fig. 6.9. In this example, we use command Xclassify (see
Appendix B) ofXVIS Toolbox which is able to train and test several classifiers simul-
taneously, and command Xdecisionline (see Appendix B) to plot the decision lines
of each classifier as shown in Fig. 6.9. �

6.2.9 Classification Using Sparse Representations

In this kind of classifier, the strategy is to use sparse representations of the original
data to perform the classification. Thus, the features are first transformed into a
sparse representation (see Sect. 5.5) and afterwards, the sparse representation is used
by the classifier.

According to Eq. (5.38) it is possible to learn the dictionary D and estimate the
most important constitutive components Z = {zi }N

i=1 of the representative signals
X = {xi }N

i=1. In a supervised problem—with labeled data (xi , di ), where di is the
class of sample xi—, naturally the classification problem can be stated as follows
[14]: given training data (xi , di ), design a classifier h—with parameters θ—which
maps the transformed samples zi to its classification label di , thus, h(zi , θ) should be
di . In order to classify a new sample data x, it is transformed into z using dictionary
D and then it is classified as d = h(z, θ). Nevertheless, since Z is estimated to rep-
resent the original data efficiently, there is no reason to accept as true that this new
representation can ensure an optimal separation of the classes. Another classification

http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_5
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Fig. 6.9 Examples of classification (→ Example 6.4 )

strategy uses one dictionary Dk per class [15], that is learned using the set Xk ,1 that
contains only the samples of class ωk of the training data: Xk = {xi |di = k}.
With this strategy, using (5.39) a test sample x is codified by z = zk with dictio-
nary D = Dk for all classes k = 1 . . . K , and a reconstruction error is computed
as ek = ||x − Dkzk ||. Finally, sample x is assigned to the class with the smallest
reconstruction error:

1There are some approaches that define the dictionary as the original samples (see Sparse Repre-
sentation Classification (SRC) [16]) where Dk = Xk .

http://dx.doi.org/10.1007/978-3-319-20747-6_5
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hSPAr(x) = argmin
k

||x − Dkzk ||, (6.31)

This method is implemented in function Xsparsecl (see Appendix B) in XVIS Tool-
box.

This test strategy, however, does not scale well for a large number of classes.
For these reasons, new strategies have been developed in order to learn at the same
time reconstructive and discriminative dictionaries (for robustness to noise and for
efficient classification respectively) [17]. This can be achieved by adding a new
discrimination term in the objective function that includes the representation that is
also the most different from the one of signals in other data classes:

argmin
D,Z,θ

[||X − DZ||22 + γ J (D, Z, d, θ)] subject to ||z||0 ≤ T . (6.32)

The discrimination term J (D, Z, c, θ) depends on the dictionary, the coefficient vec-
tors, the labels of the samples d, and the parameters θ of the model used for classi-
fication. Parameter γ weights the tradeoff between approximation and classification
performance. This strategy with a common dictionary has the advantage of sharing
some atoms of the dictionary when representing samples of different classes. Equa-
tion (6.32) can be solved efficiently by fixed-point continuation methods when the
classifier is based on logistic regression methods [18].

Another approach that can be used to classify samples in X-ray testing is based
on sparse representations of random patches. This approach, called Adaptive Sparse
Representation of Random Patches (ASR+), has been successfully used in other
recognition problems [19, 20]. The method consists of two stages (see Fig. 6.10): In
the training stage, random patches are extracted from representative images of each
class (e.g., in baggage screening we can have handguns, razor blades, etc.) in order
to construct representative dictionaries. A stop list is used to remove very common
words from the dictionaries [21]. In the testing stage, random test patches of the
query image are extracted, and for each non-stopped test patch a dictionary is built
concatenating the ‘best’ representative dictionary of each class. Using this adapted
dictionary, each non-stopped test patch is classified following the Sparse Repre-
sentation Classification (SRC) methodology [16] by minimizing the reconstruction
error. Finally, the query image is classified by patch voting. Thus, this approach is
able to learn a model for each recognition task dealing with a larger degree of vari-
ability in contrast, pose, expression, occlusion, object size, and distance from the
X-ray detector.

This method was tested in the recognition of five classes in baggage screen-
ing: handguns, shuriken, razor blades, clips, and background (see some samples
in Fig. 6.11). In our experiments, there are 100 images per class. All images were
resized to 128 × 128 pixels. The evaluation is performed using leave-one-out (see
Sect. 6.3.3). The obtained accuracy was η = 97.17%.
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Fig. 6.10 Overview of the proposed method . The figure illustrates the recognition of three dif-
ferent objects. The shown classes are three: clips, razor blades, and springs. There are two stages:
Learning and Testing. The stop list is used to filter out patches that are not discriminating for these
classes. The stopped patches are not considered in the dictionaries of each class and in the testing
stage

Fig. 6.11 Images used in our experiments. The five classes are: handguns, shuriken, razor blades,
clips, and background

6.3 Performance Evaluation

In this section we will see how to evaluate the performance of a classifier and how
to build the datasets ‘training data’ and ‘testing data’. In general, there is a set D that
contains all available data, that is, the features of representative samples and their
corresponding labels. Sometimes, from set D a subset X ⊂ D is chosen, however, in
most casesX = D. We call subsetX the ‘used data’ because it is used to evaluate the
performance of a classifier as illustrated in Fig. 6.12. Set X consists of (i) a matrix
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Fig. 6.12 Estimation of the accuracy of a classifier. Figures 6.13, 6.14 and 6.15 show different
strategies

X of size N × p, for N samples and p features; and (ii) a vector d of N elements
with the labels (one label per sample).

In order to estimate the accuracy of a classifier, we can follow this general strat-
egy:

1. From X, select training data (Xtrain, dtrain) and testing data (Xtest, dtest):

(Xtrain, dtrain, Xtest, dtest) = DataSelection(X) (6.33)

Typically, a given percentage S of X is used for training and the rest (100-S)
for testing. This means that, we have Ntrain = N × S/100 samples for training
and Ntest = N − Ntrain for training. There are many ways to perform the data
selection:

• Random (yes/no): we can choose randomly Ntrain of X or for example the
first Ntrain samples of X.

• Stratified (yes/no): in stratified case, we select the same S percentage of each
class (so the relative number of samples for each class is the same in orig-
inal data set and selected data set), whereas in unstratified cases we select
S percentage of X (so the relative number of samples for each class is not
necessarily the same in original data set and selected data set).

• Replacement (with/without): Data selection without replacement means that
once a sample has been selected, it may not be selected again. In data selec-
tion with replacement a sample of X is allowed to be replicated. It must be
ensured that samples in the training data are not in the testing data and vice
versa.

2. Using training data (Xtrain, dtrain) train a classifier:

θ = ClassifierTrain(Xtrain, dtrain) (6.34)
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where θ is a vector that contains all parameters of the classifier that was
trained. For instance, in a simple classifier like Euclidean minimal distance (see
Sect. 6.2.1) we store in θ only the centers of mass of each class in the training
set.

3. Using the features of the testing data Xtest, the classifier and its parameters θ ,
we predict the labels of each testing sample and store them in vector ds of Ntest
elements:

ds = Classify(Xtest, θ). (6.35)

It is worth mentioning that in this step it is not allowed to use the labels of the
testing data dtest.

4. Now, we can compute the accuracy of the testing data defined as

ηi = #test samples correctly predicted

Ntest
. (6.36)

5. In (6.36), we use index i because the procedure from steps 1 to 4 can be repeated
n times, for i = 1 . . . n. Thus, we can compute the final estimation of the accu-
racy as

η = 1

n

n∑
i=1

ηi . (6.37)

In the following section, we will explain typical strategies used in the literature.

6.3.1 Hold-Out

In hold-out, we take a percentage S of X for training and the rest for testing as
shown in Fig. 6.13. In our general methodology, this strategy corresponds to n = 1
in (6.37). This is the simplest way of how to evaluate the accuracy. It is recom-
mended just in case the computational time is so enormous that the cost of training
a classifier several times is prohibitive. Hold-out can be a good starting point to test
if the features and classifier that we are designing are suitable for the recognition
task. Nevertheless, the standard deviation of the accuracy estimation can be very
high as we will see in next example.

Fig. 6.13 Estimation of the accuracy of a classifier using hold-out. The figure follows the color
representation of Fig. 6.12 for training and testing data
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Matlab Example 6.5 In this example, we show how to evaluate a classifier
using hold-out strategy. We use the same simulated data addressed in Example 6.1
and illustrated in Fig. 6.2.

Listing 6.5 : Hold-out

% HoldOutExample.m
load datasim % simulated data (2 classes, 2 features)
X = Xtrain; d = dtrain; % data selection
c.name = ’knn’; c.options.k = 5; % knn with 5 neighbors
op.c = c; op.strat = 1;op.s = 0.75; % stratify with S=75% for training
acc = Xholdout(X,d,op) % holdout

The output of this code is the value of the estimated accuracy. This number should be
around 92%. This method is implemented in function Xholdout (see Appendix B)
in XVIS Toolbox. If we repeat this experiment 1000 times, the mean of the accuracy
is 92.25%, the standard deviation is 1.6%, the maximal value is 97.00% and the
minimal value is 86.50%, i.e., the estimation is not very accurate because there is a
variation of 10.5% between maximal and minimal value! �

6.3.2 Cross-Validation

Cross-validation is widely used in machine learning problems [22]. In cross-
validation, the data are divided into v folds. A portion s = (v − 1)/v of the whole
data is used to train and the rest (1/v) for test. This experiment is repeated v times
rotating train and test data to evaluate the stability of the classifier as shown in
Fig. 6.14. Then, when training is performed, the samples that were initially removed
can be used to test the performance of the classifier on these test data. Thus, one
can evaluate the generalization capabilities of the classifier by testing how well the
method will classify samples that have not already been examined. The estimated
performance, η, is calculated as the mean of the v percentages of the true classifi-
cations are tabulated in each case, i.e., n = v (6.37). In our experiments, we use

Fig. 6.14 Estimation of the
accuracy of a classifier using
cross-validation with v folds.
The figure follows the color
representation of Fig. 6.12
for training and testing data
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v = 10 folds.2 Confidence intervals, where the classification performance η expects
to fall, are obtained from the test sets. These are determined by the cross-validation
technique, according to a t–Student test [10]. Thus, the performance and also the
confidence can be assessed.

Matlab Example 6.6 In this example, we show how to evaluate several clas-
sifiers using cross-validation strategy with 10 folds. We use the same simulated data
addressed in Example 6.1 and illustrated in Fig. 6.2. The decision lines of the clas-
sifiers used in this example are illustrated in Fig. 6.9.

Listing 6.6 : Cross-validation

% CrossValidationExample.m
load datasim % simulated data (2 classes, 2 features)

% Xtrain,dtrain features and labels for training
% Xtest, dtest features and labels for testing

X = [Xtrain; Xtest]; d = [dtrain; dtest]; % all data
k = 0;
k=k+1;opc(k).name = ‘dmin’; opc(k).options.p = []; % Euclidean distance
k=k+1;opc(k).name = ‘maha’; opc(k).options.p = []; % Mahalanobis distance
k=k+1;opc(k).name = ‘bayes’; opc(k).options.p = []; % Bayes
k=k+1;opc(k).name = ‘lda’; opc(k).options.p = []; % LDA
k=k+1;opc(k).name = ‘qda’; opc(k).options.p = []; % QDA
k=k+1;opc(k).name = ‘knn’; opc(k).options.k = 5; % KNN with 5 neighbors
k=k+1;opc(k).name = ‘knn’; opc(k).options.k = 15; % KNN with 5 neighbors
k=k+1;opc(k).name = ‘glm’; opc(k).options.method = 2; opc(k).options.iter = 12; % GLM
k=k+1;opc(k).name = ‘mlp’; opc(k).options.method = 2; opc(k).options.alpha = 0.2; % MLP

opc(k).options.iter=12;opc(k).options.nhidden = 6;opc(k).options.ncycles = 60;
k=k+1;opc(k).name = ‘svm’; opc(k).options.kernel = ‘−t 0’; % linear−SVM
k=k+1;opc(k).name = ‘svm’; opc(k).options.kernel = ‘−t 1’; % polynomial−SVM
k=k+1;opc(k).name = ‘svm’; opc(k).options.kernel = ‘−t 2’; % rbf−SVM
op.strat=1; op.c = opc; op.v = 10; op.show = 1; op.p = 0.95; % 10−fold cross−validation
[acc,ci] = Xcrossval(X,d,op);

The output of this code is the estimated accuracy of each classifier. The results are
shown in Table 6.3, where the accuracy (η), the lower (ηlower), and upper (ηupper)
endpoints of the 95% confidence interval are presented for each method. The reader
can compare these results with the accuracies presented in Table 6.2. This method
is implemented in function Xcrossval (see Appendix B) in XVIS Toolbox. In order
to compare Hold-Out with Cross-Validation we can repeat the cross-validation 1000
times for classifier KNNwith 5 neighbors (as computed in Example 6.5). The results
are: mean of the accuracy is 91.99%, the standard deviation is 0.39%, the maximal
value is 93.25% and the minimal value is 90.62%, i.e., the estimation is more accu-
rate because there is a variation of 2.6% between maximal and minimal. In hold-out
the variation is 10.5%. �

2The number of folds v can be another number, for instance 5-fold or 20-fold cross-validation
estimate offers very similar performances. In our experiments, we use 10-fold cross-validation
because it has become the standard method in practical terms [23].
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Table 6.3 Accuracy using cross-validation given in [%]

Name ηlower η ηupper

dmin 83.02 85.33 87.64

maha 86.87 88.92 90.97

bayes 91.61 93.25 94.89

lda 83.29 85.58 87.88

qda 90.14 91.92 93.70

knn, 5 91.06 92.75 94.44

knn, 15 91.70 93.33 94.96

glm 83.47 85.75 88.03

mlp 91.70 93.33 94.96

svm-lin 83.11 85.42 87.72

svm-poly 91.24 92.92 94.59

svm-rbf 91.52 93.17 94.81

6.3.3 Leave-One-Out

In leave-one-out strategy, we perform the cross-validation technique with N folds
(the number of samples of X). This means, we leave one sample out for testing
and we train with the rest (N − 1 samples). The operation is repeated for each
sample as illustrated in Fig. 6.15). The estimated accuracy is the average over the N
estimations.

This method is implemented in function Xleaveoneout (see Appendix B) in
XVIS Toolbox. In order to illustrate the estimation accuracy using leave-one-out,
we can change the last line of the code of Example 6.6 by:

[acc,ci] = Xleaveoneout(X,d,op);

The results are summarized in Table 6.4, where the accuracy (η), the lower (ηlower)
and upper (ηupper) endpoints of the 95% confidence interval are presented for each
method. The reader can compare these results with the accuracies presented in

Fig. 6.15 Estimation of the
accuracy of a classifier using
leave-one-out. The figure
follows the color
representation of Fig. 6.12
for training and testing data
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Table 6.4 Accuracy using leave-one-out in [%]

Name ηlower η ηupper

dmin 83.60 85.58 87.57

maha 87.05 88.83 90.62

bayes 91.92 93.33 94.74

lda 83.51 85.50 87.49

qda 90.19 91.75 93.31

knn, 5 90.56 92.08 93.61

knn, 15 91.83 93.25 94.67

glm 83.60 85.58 87.57

mlp 92.01 93.42 94.82

svm-lin 83.16 85.17 87.18

svm-poly 91.56 93.00 94.44

svm-rbf 91.92 93.33 94.74

Tables 6.2 and 6.3. In order to compare Hold-Out and Cross-Validation we can run
Leave-one-out once for classifier KNN with 5 neighbors (as computed in Exam-
ples 6.5 and 6.6). It is not necessary to repeat it, because Leave-one-out always
obtains the same result. The results are: mean of the accuracy is 91.99%. It is clear
that the standard deviation is 0%, and the maximal and minimal values are equal to
the mean.

6.3.4 Confusion Matrix

The confusion matrix, T, is a K × K matrix, where K is the number of classes of
our data. The element T (i, j) of the confusion matrix is defined as the number of
samples that belong to class ωi and were classified as ω j . A perfect classification
means that T (i, i) is Ni and T (i, j) = 0 for i 	= j , where Ni is the number of
samples of class ωi .

Matlab Example 6.7 In this example, we show how to compute the confu-
sion matrix for two classifiers LDA and SVM-RBF. We use the same simulated
data addressed in Example 6.1 and illustrated in Fig. 6.2. The decision lines of the
classifiers used in this example are illustrated in Fig. 6.9.

Listing 6.7 : Confusion Matrix

% ConfusionMatrixExample.m
close all;
load datasim % simulated data (2 classes, 2 features)

% Xtrain,dtrain features and labels for training
% Xtest, dtest features and labels for testing

op1.p = [0.5 0.5]; % priors for LDA
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ds1 = Xlda(Xtrain,dtrain,Xtest,op1); % LDA classifier
T1 = Xconfusion(dtest,ds1) % Confusion Matrix
figure(1);
Xshowconfusion(T1,1);title(’lda’) % Display confusion matrix
op2.kernel = ’−t 2’; % SVM parameter for RBF kernel
ds2 = Xsvm(Xtrain,dtrain,Xtest,op2); % SVM classifier
T2 = Xconfusion(dtest,ds2) % Confusion Matrix
figure(2);
Xshowconfusion(T2,1);title(’svm−rbf’) % Display confusion matrix

The output of this code is two confusion matrices that are illustrated in Fig. 6.16.
This method is implemented in function Xconfusion (see Appendix B) in XVIS

Toolbox. In addition, command Xshowconfusion (see Appendix B) can be used
to visualize a confusion matrix. �

Typically, in X-ray testing, there are two classes: ω1 known as the target or object
of interest, and ω0 known as the no-target or background. In this two-class recog-
nition problem (known as ‘detection’), we are interested in detecting the target cor-
rectly. It is very helpful to build a 2 × 2 confusion matrix as shown in Table 6.5. We
distinguish:

• True Positive (TP): number of targets correctly classified.
• True Positive (TN): number of non-targets correctly classified.
• False Positive (FP): number of non-targets classified as targets. The false positives
are known as ‘false alarms’ and ‘Type I error’.

• False Positive (FN): number of targets classified as no-targets. The false negatives
are known as ‘Type II error’.

Fig. 6.16 Visualization of confusion matrix of LDA and SVM-RBF (→ Example 6.7 )

Table 6.5 Confusion matrix
for two classes

Predicted → ω1 ω0

Actual ↓
ω1 TP FN

ω0 FP TN
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From these statistics, we can obtain the following definitions:
Positive instances:

P = TP + FN (6.38)

Negative instances:
N = TN + FP (6.39)

Detections:
D = TP + FP (6.40)

True positive rate, known as Sensitivity or Recall:

TPR = Sn = RE = TP

P
= TP

TP + FN
(6.41)

Precision or Positive Predictive Value:

PR = TP

D
= TP

TP + FP
(6.42)

True negative rate, known as Specificity:

TNR = Sp = TN

N
= TN

TN + FP
(6.43)

False positive rate, known as 1-Specificity:

FPR = 1 − Sp = FP

N
= FP

TN + FP
(6.44)

False negative rate, known as Miss Rate:

FNR = MR = FN

P
= FN

TP + FN
(6.45)

Accuracy:

ACC = TP + TN

P + N
(6.46)

Ideally, a perfect detection means all existing targets are correctly detected with-
out any false alarms, i.e., TP = P and FP = 0. It is equivalent to: (i) TPR = 1 and
FPR = 0, or (ii) Pr = 1 and Re = 1, or (ii) FN = FP = 0.
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6.3.5 ROC Curve

It is clear that the performance of a detector depends on some parameters, e.g., the
value of a threshold θ when segmenting a gray value image. This means that we
can analyze the performance of the detector by variating its parameter θ . We can
analyze the values TPR and FPR as defined in (6.41) and (6.44) respectively. In this
case, we obtain TPR(θ) and FPR(θ) because the values of these variables depend
on parameter θ .

The receiver operation characteristic (ROC) curve is a plot of TPR(θ) versus
FPR(θ). Thus, we choose different values {θi }n

i=1 and for each value θi we plot the
corresponding point (xi , yi ), where xi = FPR(θi ) and yi = TPR(θi ) as illustrated
in Fig. 6.17.

Matlab Example 6.8 In this example, we evaluate an approach that is used
to detect defects in aluminum castings. The evaluation is performed on series
C0021 of GDXray which contains a wheel with several defects. The wheel is cap-
tured in 37 positions. The defect detection is achieved by thresholding an image
that is computed from the difference between original and a median filtered image
as explained in Sect. 4.3.2. Since the series contains the annotations for the ground
truth, it is very simple to evaluate the performance of the detector. We only need to
generate a binary image with the detected potential defects. This detection is per-
formed by program MedianDetection.m.3 For example, the detection achieved
by this program in a single image of the series is shown in Fig. 6.18. The presented
code of this example, evaluates each image of the series and computes the true and
false positives in order to plot the ROC curve.

Listing 6.8 : Performance using ROC curve

% ROCPerformance.m
clt
n = 4;
p(n).areamin = 0;
show = 0;
for i=1:n

p(i).gaussianmask = 5;
p(i).medianmask = 23;
p(i).threshold = 8+4*i;
p(i).areamin = 20;
p(i).dilationmask = 17;

end
pascalth = 0.5;
[TP,FP,P,N] = Xdetectionstats(’C’,21,’ground_truth.txt’,...

1:37,’MedianDetection’,p,pascalth,show);
TPR = TP./P;
FPR = FP./N;
Xplotroc(FPR,TPR)

The output of this code is the ROC curve illustrated in Fig. 6.19. This code uses
the powerful command Xdetectionstats (see Appendix B) of XVIS Toolbox that
evaluates each potential detection (of each image of the series) in terms of PASCAL

3Available in directory cla of the examples of XVIS Toolbox.

http://dx.doi.org/10.1007/978-3-319-20747-6_4
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Fig. 6.17 ROC curves (right) for different class distributions (left). The area under the curve
(AUC) gives a good measure of the performance of the detection. The obtained points (xi , yi ) are
used to fit the ROC curve to y = (1 − aγ xb

)/(1 − aγ ). In each ROC curve, the ‘best operation
point’ is shown as *. This point is defined as the closest point to ideal operation point (0, 1)
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Fig. 6.18 Detection on a single image. A detection is considered as true positive is the normalized
area of overlap (6.47) is greater than 50%. In this example, the true positives are shown in green,
the false positives in red and the ground truth in yellow (→ Example 6.8 )

Fig. 6.19 ROC curve computed by analyzing detector approach in series C0021 of GDXray
(→ Example 6.8 )

criterion [24], where a detection is considered correct if the normalized area of over-
lap A between the detected bounding box DT and the ground truth bounding box
GT exceeds 0.5, where A is defined as follows:

A = area(GT ∩ DT)

area(GT ∪ DT)
, (6.47)
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with GT ∩ DT the intersection of the detected and ground truth bounding boxes and
GT ∪ DT their union, as illustrated in Fig. 6.18. �

6.4 A Final Example

Our final example is implemented in XVIS Toolbox. In this toolbox, there are two
main graphic user interfaces (GUI): (i) For feature extraction, we have Xfxgui
(see Appendix B) that was used in our final example of Chap. 5 (see Sect. 5.7 and
Fig. 5.28). With Xfxgui (see Appendix B), the user can choose the feature groups
that will be extracted. (ii) For feature and classifier selection, we have Xclgui (see
Appendix B) (Fig. 6.20), the user can choose the feature selection algorithms to be
used, the maximal number of features to be selected, the classifiers that will be eval-
uated, and the number of folds of the cross-validation technique. Using only these
two graphic user interfaces, it is possible to easily design the computer vision sys-
tem automatically according to the general computer vision framework explained in
these two chapters.

Fig. 6.20 Graphic user interface Xclgui (see Appendix B) for feature and classifier selection with
XVIS Toolbox: the user can select the feature selection algorithms, the classifiers, the features file
(computed by previous step and stored in fish_bones.mat) and the number of folds used by
cross-validation technique. In this example, a performance of 95.5% was achieved using a GLM-
classifier with 12 features. In .mat file the user must store the features in variable X, the labels in
variable d and the names of the features in variable Xn

http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_5
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In order to find the best classifier, we evaluate the performance of the r clas-
sifiers on the s subsets of selected features using an exhaustive search as shown
in Algorithm 1. For instance, we could have: s = 2 feature selection algorithms
(SFS with Fisher criterion and mRMR), and r = 3 classifiers (LDA, KNN with 3
neighbors, and SVM with RBF). The accuracy η is defined as the proportion of true
results. As we can see, the accuracy and the confidence intervals of the classifica-
tion are evaluated using cross-validation (see Sect. 6.3.2). According to Algorithm 1,
the highest achieved accuracy (searching in all r classifiers and all s feature selec-
tion algorithms) is computed as η̂. This algorithm is implemented in Xclgui (see
Appendix B) as a graphic user interface (Fig. 6.20) and as command Xclsearch
(see Appendix B).

In Algorithm 1, there are s feature selection approaches. Thus, there are s subsets
of selected features Xi with pi features each (for i = 1 . . . s). In addition, there are
r different classifiers: hk , for k = 1 . . . r . In our exhaustive search, each subset of
features i and each classifier k will be tested using the first 1, 2, . . . pi selected
features of Xi . The output of this exhaustive search is: the selected features, the
selected classifier, the best accuracy, and its corresponding confidence intervals.

Matlab Example 6.9 In this example we can see the whole process: (i) fea-
ture extraction, (ii) feature selection and (ii) and classifier selection. XVIS Toolbox
provides a suite of helpful commands that can be used in this process. The idea is to
design a classifier that can be used to detect fish bones in X-ray images of salmon
filets (see Example 5.8). For this end, as we have 200 small X-ray images (100 ×
100 pixels) of salmon filets, 100 with fish bones and 100 without fish bones. The
images are available in series N0002 of GDXray. In this program, we show how to
automatically design a computer vision system for this application.

Listing 6.9 : Feature extraction, feature selection and classification selection

% ClassificationSelection.m
close all
imagesdir = Xgdxdir(‘N’,2); % directory of series N0002 of GDX
opf.b = Xfxbuild({‘basicint’,‘gabor’,... % features to be extracted

‘lbpri’,‘haralick’});
[X0,Xn0] = Xfxtractor(imagesdir,‘png’,opf); % feature extraction
[X,Xn] = Xnorotation(X0,Xn0); % only rotation invariant features
d = Xloaddata(‘N’,2,‘labels.txt’); % labels
fs = {‘sfs−fisher’,‘mRMR’,‘rank−ttest’}; % Feature selectors to be tested
cl = {‘dmin’,‘maha’,‘lda’,‘qda’,... % Classifiers to be tested

‘glm1’,‘glm2’,‘pnn’,‘svm2’};
options.Xn = Xn; % Feature names
options.p = 20; % Maximal number of selected features
figure
[bcs,selec,acc] = Xclsearch(X,d,cl,fs,options); % Feature and classifier selection

Features are extracted from directory imagesdir, in this case it is the directory of
series N0002 of GDXray. The user can choose the features to be extracted using
Xfxbuild (see Appendix B), in this example, basic intensity features, Gabor, LBP
and Haralick are extracted. The features of all images of this directory are extracted
using Xfxtractor (see Appendix B). The extracted features must be rotation invari-
ant because the fish bones can be oriented in any direction. The labels are available

http://dx.doi.org/10.1007/978-3-319-20747-6_5
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in file labels.txt of this directory. The user can decide which feature selec-
tion techniques and classifiers will be tested in a simple way by defining variables
fs and cl respectively. After these definitions, we run command Xclsearch (see
Appendix B) that follows Algorithm 1. As shown in this code, it is really easy to
define the features and classifiers to be tested. The output of this code is similar to
the output presented in Fig. 6.20. The user can edit this file in order to add or delete
other features, features selection algorithms, classifiers, and number of features to
be selected. �

Algorithm 1 Classifier Selection

Input: Subsets {Xi , pi }s
i=1 of selected features, and labels d of the samples.

1: η̂ = 0//Initialization of the highest accuracy
2: for i = 1 to s do
3: for j = 1 to pi do
4: X = LeftColumns(Xi , j) //First j selected features of Xi
5: for k = 1 to r do
6: ηk = CrossValidation(hk , X, d) //Accuracy of classifier hk on data X
7: if ηk > η̂ then
8: η̂ = ηk //Highest performance
9: X̂ = X //Selected features
10: î = i //Best feature selection approach
11: ĵ = j //Number of selected features
12: k̂ = k //Best classifier
13: end if
14: end for
15: end for
16: end for
Output: η̂, X̂, î, ĵ , k̂

6.5 Summary

In this chapter, we covered the following classifiers:

• Minimal distance (using Euclidean and Mahalanobis distance)
• Bayes
• Linear and quadratic discriminant analysis
• K-nearest neighbors
• Neural networks
• Support vector machines
• Classifiers using sparse representations

In addition, several simple examples were presented using simulated data. The
reader can easily modify the proposed implementations in order to test different
classification strategies or real data.
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Afterwards, we presented how to estimate the accuracy of a classifier using
hold-out, cross-validation, and leave-one-out. We covered the well-known confu-
sion matrix and receiver-operation-characteristic curve will be outlined as well.

Finally, we presented an example that involves all steps of a pattern recognition
problem, i.e., feature extraction, feature selection, classifier’s design, and evaluation.
All steps can be designed automatically using a simple code program of approxi-
mately 10 lines.
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Chapter 7
Simulation in X-ray Testing

Abstract In order to evaluate the performance of computer vision techniques, com-
puter simulation can be a useful tool. In this chapter we review some basic concepts
of the simulation of X-ray images, and present simple geometric and imaging mod-
els that can be used in the simulation. We explain the basic simulation principles
and we address some techniques of simulated defects (that can be used to assess the
performance of a computer vision method for automated defect recognition). The
chapter also has some Matlab examples that the reader can run and follow, along
with examples of simulated defects in castings and welds.

Cover image: X-ray image of a wood located in 1, 4, 6, 36, 72 and 180 positions (image
N0010_0051 colored with ‘hot’ colormap).
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7.1 Introduction

In order to evaluate the performance of computer vision techniques, e.g., an auto-
mated defect recognition system, computer simulation can be a useful tool [1, 2].

The simulated X-ray images, however, should be as similar as possible to real
X-ray images. For this purpose, the simulation should model the physics of the
X-ray formation (generation, interaction and detection) and handle complex 3D
objects efficiently [3]. State-of-the-art of computer modeling of X-ray testing meth-
ods are able to simulate different X-ray spectrum and X-ray source size, varied
photon-matter interactions, and several X-ray detector responses. Special attention
has been given to general purpose Monte Carlo methods that are able to calculate
higher order scattering events [4–6]. A computer simulator for X-ray testing should
include the following modules[7]:

• Source model: generates the spectra of X-ray tubes and isotopic sources.
• Ray-tracing engine: determines ray paths in complex geometries of test objects.
• Material data base: contains cross-section data.
• Straight line attenuation model: determines the contribution of direct radiation, a

scatter model, and a post-processor, combining both contributions.
• Detector model: converts radiation to an optical density and a digital X-ray image.

In this chapter we review some basic concepts of simulation of X-ray images
that can be used to understand other complex and more realistic approaches such
as [4, 5]. In Sect. 7.2, we give the simple (geometric and imaging) models that can
be used in the simulation. In Sect. 7.3, we explain the basic simulation principles
providing some Matlab examples that the reader can run and follow. In Sect. 7.4, we
address some techniques of simulated defects. The simulated X-ray images can be
used to assess the performance of a computer vision method for automated defect
recognition. Examples of simulated defects in castings and welds are also given.

7.2 Modelling

In this section we will explain the geometric model and the imaging model that we
will use in the simulation.

7.2.1 Geometric Model

The model is based on a theoretical approach of Chap. 3 and follows the diagram of
Fig. 7.1. The reader will be referred to the corresponding Sects. 3.2.4 and 3.3 to see
the details.

http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
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Fig. 7.1 Simplified geometric model taken from Fig. 3.6

As explained in Fig. 3.6, a 3D point M can be represented in world coordinate
system (X̄ , Ȳ , Z̄) as M̄ = [X̄ Ȳ Z̄ 1]T or in object coordinate system (X, Y, Z) as
M = [X Y Z 1]T in homogenous coordinates. There is an Euclidean 3D → 3D
transformation defined by (3.10):

M̄ = HM (7.1)

where H is a 4 × 4 matrix that includes the rotation R and translation t between
both coordinate systems (3.11):

H =
[

R t
0 1

]
, (7.2)

Point M is projected into projection plane � as point m using a perspective transfor-
mation. Applying intercept theorem (3.14), the coordinates of m in this 2D system
are (x̄, ȳ), with

x̄ = f X̄/Z̄ and ȳ = f Ȳ/Z̄ . (7.3)

This equation can be rewritten as (3.17): λm = PM, where λ is a scale factor λ �= 0.
Again m is given in homogeneous coordinates m̄ = [x̄ ȳ 1]T. Perspective matrix P
depends on the focal length f . Thus, a point M given in (X, Y, Z) is projected as
point m in (x̄, ȳ) as in (3.18):

http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
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λ

⎡
⎣ x̄

ȳ
1

⎤
⎦

︸ ︷︷ ︸
m̄

=
⎡
⎣ f 0 0 0

0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
P

[
R t
0 1

]
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H

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦

︸ ︷︷ ︸
M

, (7.4)

where 0 = [0 0 0]. In image coordinate system (u, v), point m is viewed as point w

that can be represented in homogenous coordinates as w = [u v 1]T. The transfor-
mation m̄ → w is defined by function f , and the back transformation w → m̄ by
function g. In linear case, where no distortion takes place, transformation f can be
defined by (3.24):

f :
⎡
⎣ u

v
1

⎤
⎦

︸ ︷︷ ︸
w

=
⎡
⎣ ku 0 u0

0 kv v0
0 0 1

⎤
⎦

︸ ︷︷ ︸
K

⎡
⎣ x̄

ȳ
1

⎤
⎦

︸ ︷︷ ︸
m̄

. (7.5)

where scale factors (ku , kv) and a translation of the origin (u0, v0) are considered. In
this model, we assume the skew factor s can be neglected. In this simplified linear
model,

w = f(m̄) = Km̄ and m̄ = g(w) = K−1w. (7.6)

If the transformation m̄ → w is non linear, a non linear model for f and for g must
be used (see examples in Sects. 3.3.2 and 3.3.3). In this section, we will assume a
linear model only. Thus, a point M in object coordinate system is viewed as point w
in image coordinate system as:

λ

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ ku 0 u0

0 kv v0
0 0 1

⎤
⎦

⎡
⎣ f 0 0 0

0 f 0 0
0 0 1 0

⎤
⎦[

R t
0 1

] ⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , (7.7)

or using matrix notation:

λw = KPHM. (7.8)

If we have a pixel w in image coordinate system given by w = [u v 1]T, and we
want to estimate the X-ray beam 〈C, m〉 that defines w, we have to find the coordi-
nates m̄ = [x̄ ȳ 1]T in projection coordinate systems using back transformation g,
i.e., m̄ = g(w) = K−1w in linear case. Thus, the X-ray beam is defined by points
(X̄ , Ȳ , Z̄) that fulfill:

X̄ = x̄ Z̄/ f and Ȳ = ȳ Z̄/ f. (7.9)

Equations (7.7) and (7.9) will be used by the simulation in the following sections.

http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
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7.2.2 X-ray Imaging

As we have already learned in Sect. 1.5, the intensity of X-ray penetrating radiation
is modified by its passage through material and by discontinuities in the material.
An example of this phenomenon is illustrated in Figs. 1.6 and 1.13.

Two properties of the X-rays are used to model the X-ray imaging process:
(i) X-rays are differentially absorbed and (ii) X-rays travel in straight lines. The
absorption can be macroscopically modeled using the exponential attenuation law
for X-rays (1.2):

ϕ = ϕ0e−μx , (7.10)

where ϕ0 is the incident intensity of radiation, ϕ the transmitted intensity, x thick-
ness of the specimen and μ is a constant known as the linear absorption coefficient
of the material under test with dimension cm−1. Coefficient μ depends on the mate-
rial and the X-ray energy. As an example, Fig. 1.6 illustrates the linear absorption
coefficient for aluminum plotted against X-ray energy. Typically, X-ray testing of
aluminum castings uses energy values between 50 and 150 keV [8]. Coefficient μ

can be modeled as a fourth degree polynom [9]:

μ ≈
4∑

i=0

θi Ei for 50 keV ≤ E ≤ 150 keV, (7.11)

with

θ = (6.00,−0.210,−0.00304,−1.97 × 10−5, 4.72 × 10−8).

A flaw such as a cavity can be simulated as a material with no absorption.
In Fig. 1.6 this simulation is shown schematically. An X-ray beam penetrates an
object which has a cavity with thickness d. In this case, from (7.10) the transmitted
radiation ϕ is given by:

ϕ = ϕ0e−μ(x−d), (7.12)

where we assume that the absorption coefficient of the cavity is zero. If the flaw is
an incrusted material, its absorption coefficient μd must be considered.

In the example of Fig. 7.2, we have three materials with different linear absorp-
tion coefficients μ1, μ2 and μ3. The thickness in direction of the X-ray beam is x1,
x2 and x3 for each material. It is worth noting that the thickness depends on the
projection beam 〈C, m〉, i.e., for different locations of m, different thicknesses will
be obtained. A simplified model can be used for different thicknesses and materi-
als (1.4):

ϕ = ϕ0 exp

(
−

∑
i

μi xi

)
. (7.13)

http://dx.doi.org/10.1007/978-3-319-20747-6_1
http://dx.doi.org/10.1007/978-3-319-20747-6_1
http://dx.doi.org/10.1007/978-3-319-20747-6_1
http://dx.doi.org/10.1007/978-3-319-20747-6_1
http://dx.doi.org/10.1007/978-3-319-20747-6_1
http://dx.doi.org/10.1007/978-3-319-20747-6_1
http://dx.doi.org/10.1007/978-3-319-20747-6_1
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Fig. 7.2 Example of an X-ray beam that passes through three materials. The total path length
through material i in direction of the beam is xi , and the linear absorption coefficient of each
material es μi for i = 1, 2, 3

Nevertheless, it is worth mentioning that μ and ϕ0 depends on the energy E . In
addition, if we want to compute the gray value of a pixel (u, v) of a simulated X-ray
image, as a pixel is rather a square than a point, we must take into account the solid
angle that corresponds to the pixel observed from the source point.

ϕ(R) = ϕ0(E)�� exp

(
−

∑
i

μi (E)xi

)
(7.14)

where ϕ0(E) is the incident radiation intensity of energy E , �� is the solid angle
that corresponds to region R of the image (e.g., pixel (u, v)) observed from the
source point, μi (E) designates the attenuation coefficient associated with the mate-
rial i at energy E , and xi the total path length through material i . The X-ray source
can be modeled as a raster of point sources, rays from every source point are traced
to all pixels of the simulated image. The final simulated image will be an addition
of each single simulation, one for each energy and each source point [1].

Finally, a linear transformation from incident energy to gray value is considered:

I = Aϕ + B, (7.15)

where A and B are the linear parameters of I .
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7.3 Basic General Simulation

In this section, we will see a basic approach to simulate an X-ray image of a 3D
object based on voxels, i.e., the volume of the object is discretized in very small
volume elements. In case, the volume is defined as a polygon mesh, the mesh can be
voxelized [10].

A simple way to simulate an X-ray image of a 3D object is by modeling the
object as a set of voxels as illustrated in Fig. 7.3. Thus, each voxel has a 3D location
(X, Y, Z) and can have a linear absorption coefficient V = μ. The value ‘0’ for a
voxel means that the voxel does not belong to the object (see cyan voxels in Fig. 7.3).
In case the whole object is of the same material, e.g., an aluminum wheel, the value
of a voxel can be a binary value: ‘0’ for a voxel that does not belong to the object
and ‘1’ otherwise (see red voxels in Fig. 7.3).

In this approach, we assume that there are P voxels that belong to the object. The
kth voxel, for k =1 . . . P , is defined by its linear absorption coefficient Vk =μk > 0
and its location in object coordinate system as Mk = [Xk Yk Zk 1]T in homogeneous
coordinates. Using (7.8), we can obtain wk = [uk vk 1]T, the coordinates in image
coordinate systems of each projected voxel:

λkwk = KPHMk . (7.16)

A great advantage of using homogeneous coordinates is that the projection of all
points Mk can be done with only one multiplication: W = KPHM, where M
is a 4 × P matrix M = [M1 M2 · · · MP ] and W is a 3 × P matrix W =
[λ1w1 λ2w2 · · · λP wP ].

According to (7.13), an X-ray beam passes through different materials with dif-
ferent levels of thickness. In our model, each voxel can be considered as an element
with a linear absorption coefficient μi and a thickness xi (in direction of the X-ray
beam). It is simple to accumulate in a region R of the image the contribution of
all voxels that are in the corresponding X-ray beam as illustrated in Fig. 7.4. In this

Fig. 7.3 Object modeling using voxels. In these examples (a sphere and two cylinders) there are
153 voxels. The radius of each object is 5. The red voxels belong to the object
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Fig. 7.4 The contribution of all voxels aligned to the X-ray beam in a region R can be modeled
as q(R) = ∑

i μi xi . The example shows the voxels of a sphere that are in the X-ray beam

example, we show the voxels that belong to a spherical object in red, and those vox-
els that contribute to region R in blue. For region R of the image we can compute
q(R) = ∑

i μi xi . Finally, the gray value of this region is modeled using q(R) and
Eqs. (7.13) and (7.15) as:

I (R) = Aϕ0e−q(R) + B. (7.17)

There are two different ways to obtain the simulated X-ray image I:

• From pixels to voxels: In order to simulate I of N × M pixels, we can estimate
the intensity of each pixel (u, v), for u = 1 . . . N and v = 1 . . . M as follows:

1. Each pixel (u, v) defines a point (x̄, ȳ) in the projection coordinate system as
explained in Sect. 7.2.1.

2. Point (x̄, ȳ) defines a specific X-ray beam according to (7.9). If there is an inter-
section of the X-ray beam with the 3D object, follow the next steps.

3. The beam passes through n voxels of the object, that means there are corre-
sponding linear absorption coefficients of each voxel (μi ) and thickness (xi ) for
i = 1 . . . n. The absorption linear coefficient μi can be obtained from the cor-
responding voxel value. The thickness xi can be estimated as the line segment
length of the intersection of the corresponding X-ray beam that passes through
the voxel with the cube defined by the voxel.

4. The contribution q(u, v) = ∑
i μi xi is computed.
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5. Using (7.17) the gray value for each pixel can be estimated. In this approach, the
region R corresponds to the area defined by pixel (u, v).

• From voxels to pixels: In order to simulate image I, we first define an image
Q as a matrix with the same size of I, i.e., N × M pixels. All pixels of Q are
initialized to zero. Afterwards, we can deal with the projection of each voxel k,
for k = 1 . . . P as follows:

1. The kth voxel located at Mk is projected using (7.16), and coordinates (uk, vk)

in the image coordinate system are obtained.
2. The contribution of kth voxel to our image is qk = μk xk . The absorption linear

coefficient μk can be obtained from the voxel value Vk . The thickness xk can
be estimated as the line segment length of the intersection of the corresponding
X-ray beam that passes through the center of the voxel with the cube defined by
the voxel.

3. The value qk is added in those pixels (u, v) of image Q that are neighbors to
(uk, vk).

Finally, using (7.17) the gray value for each pixel can be estimated. In this
approach, the region R corresponds to the area defined by pixel (u, v).

In order to show a simple simulation of an X-ray image of a 3D object, we give
some details of the second approach in the following example.

Matlab Example 7.1 In this example, we simulate the X-ray image of a
homogeneous material using voxels. The implementation corresponds to the method
‘from voxels to pixels’ outlined in this section. The 3D matrix V contains 1800 ×
1800 × 1800 binary voxels created by command Xobjvoxels (see Appendix B) of
XVIS Toolbox.

Listing 7.1 : Simulation of an X-ray image of 3D object

% WheelSimulation.m
close all
Nv = 1800; % Number of voxels in each direction
V = Xobjvoxels(1,Nv,1); % V has Nv^3 voxels od a wheel with a flaw

% Transformation (x,y)−>(u,v)
u0 = 235; v0 = 305; ax = 1.1; ay = 1.1; % translation and scaling
K = [ax 0 u0; 0 ay v0; 0 0 1]; % transformation matrix

% Transformation (Xb,Yb,Zb)−>(x,y)
f = 1500; % focal length
P = [f 0 0 0; 0 f 0 0; 0 0 1 0];

% Transformation (X,Y,Z)−>(Xb,Yb,Zb)
R = Xmatrixr3(0.5,0.1,0.6); % rotation
t = [−120 −120 1000]’; % translation
H = [R t; 0 0 0 1]; % transformation matrix

PP = K*P*H; % complete projection matrix

Q = Xsimvoxels(512,512,V,7,PP); % simulation

imshow(exp(−0.0001*Q),[]) % display simulation
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Fig. 7.5 Simulation of a wheel in eight different positions (→ Example 7.1 )

Fig. 7.6 Since pixel (uk , vk) does not exist, it is impossible to add the contribution μk xk to this
pixel. For this reason, the contribution is distributed in its four neighbor pixels according to their
opposite areas A, B, C, D (note that A + B + C + D = 1). In our simplified model, xk = 1 and
μk is constant, that means that the contribution of each voxel is constant ( → Example 7.1 )

The output of this code is illustrated in Fig. 7.5, where eight different positions are
shown. The eight positions were obtained varying the rotation angles of matrix
R. In this example, the X-ray image was simulated using command Xsimvox-
els (see Appendix B) of XVIS Toolbox. In this implementation we assume that
the thickness of a voxel (xk) is always 1. This is not true, however, for homoge-
nous material, when μk is constant, xk = 1 is a good estimation of the average
value. The weighted distribution explained in step 3 is implemented as shown in
Fig. 7.6. Also the reader can simulate an X-ray image using files in the STL format
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(a standard for a polygon mesh).1 In this case, we have to specify the name of the
STL file (’sample.stl’;), and change the command for the simulation in our
example by:

Q = Xsimvoxels(512,512,’sample.stl’,7,PP,400);

The last parameter (400) indicates that the conversion from STL to voxels will be
into a cube of 400 × 400 400 voxels.2 �

7.4 Flaw Simulation

Generally, the automatic defect recognition consists of a binary classification, where
a decision is performed about whether or not an initially identified hypothetical
defect in an image is in fact a defect. Unfortunately, in real automatic flaw detec-
tion problems there are a reduced number of flaws in comparison with the large
number of non-flaws. This skewed class distribution seriously limits the application
of classification techniques [11]. Usually, the performance of an inspection method
can be assessed on a few images, and an evaluation of a broader and more represen-
tative data base is necessary. A good way of assessing the performance of a method
for inspecting castings is to examine simulated data. This evaluation allows one the
possibility of tuning the parameters of the inspection method and of testing how
well the method works in critical cases.

Among the NDT community there are two groups of methods to obtain this sim-
ulated data: invasive and non-invasive methods. Table 7.1 summarizes their most
important properties.

Invasive Methods
In the invasive methods, discontinuities are produced in the test object artificially.
There are two published invasive methods: (i) drilling holes on the object surface
[12] (see Fig. 7.7), and (ii) designing a test piece with small spherical cavities [13]
(see Fig. 7.8). Usually, the first technique drills small holes (e.g., ∅ = 1.0 ∼ 4.0 mm)
in positions of the casting which are known to be difficult to detect. In the second
technique, a sphere is produced for example by gluing together two aluminum pieces
containing half-spherical concavities. The principal advantage of these methods is
that the discontinuity image is real. However, the disadvantages are: (i) it is impos-
sible to introduce concavities in the middle of the object without destroying it, and
(ii) concavities like cracks are practically impossible to reproduce.

Non-Invasive Methods
In the non-invasive methods, X-ray images are generated or modified without
altering the test object. There are three widespread approaches that produce this

1http://en.wikipedia.org/wiki/STL_(file_format).
2In this example we used the Matlab code for mesh voxelization available on http://www.
mathworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation.

http://en.wikipedia.org/wiki/STL_(file_format)
http://www.mathworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation
http://www.mathworks.com/matlabcentral/fileexchange/27390-mesh-voxelisation
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Table 7.1 Methods for simulation of defects

Method Description Advantages Disadvantages

Invasive Drilling holes It drills holes on
the surface of the
test object

• Real X-ray
image with real
defects

• Cracks cannot be
produced

• X-ray imaging
system is
required

Spherical cavities It produces defects
inside of the test
object by putting
together two parts
with cavities

• Real X-ray
image with real
defects

• It destroys the
test object

• Cracks cannot be
produced

• X-ray imaging
system is
required

Non invasive Mask
superimposition

It modifies the
original gray value
of the image by
multiplying it with
a factor

• Real X-ray
image with
simulated
defects

• Easy
implementation

• Simulated
defects differ
significantly
from the real
ones

• X-ray imaging
system is
required

Full-CAD It simulates the
X-ray imaging
process by
projecting a CAD
model including a
defect

• No real X-ray
imaging system
is required

• Defects and
object can be
modelled in 3D

• No real X-ray
image of the test
object

• Sophisticated
computer
package

• Time consuming

Flaw-CAD It modifies the
original gray value
of the image by
superimposing the
projection of a
CAD model of a
flaw

• Real X-ray
image with
simulated
defects

• No time
consuming

• Defects can be
modelled in 3D

• X-ray imaging
system is
required

Fig. 7.7 Two defects
generated using drilling
holes

simulated defect

simulated defect

Fig. 7.8 Two generated
defects using spherical
cavities [13] simulated defect

simulated defect
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simulated data [14]: (i) mask superimposition, (ii) CAD models for casting and flaw
and (iii) CAD models for flaws only. In this section, they will be described in further
detail.

7.4.1 Mask Superimposition

The first technique attempts to simulate flaws by superimposing masks with differ-
ent gray values onto real X-ray images [8, 15, 16]. This approach is quite simple,
as it neither requires a complex 3D model of the object under test nor of the flaw. It
also provides a real X-ray image with real disturbances, albeit with simulated flaws.

In this technique, the original gray value Io of a pixel (u, v) of an X-ray image is
altered by:

In(u, v) = Io(u, v) (1 + M(u − u0, v − v0)) , (7.18)

with In(u, v) the new gray value and M the mask that is centered on pixel (u0, v0),
where M(i, j) is defined in the interval − n

2 ≤ i ≤ n
2 and −m

2 ≤ j ≤ m
2 . Three

typical masks are shown in 7.9.

Matlab Example 7.2 In this example, we simulate three different flaws in
an aluminum casting using Gaussian, square and circle masks.

Listing 7.2 : Simulation of a defects using superimposed masks

% MaskFlawSimulation.m
close all
I = imread(’wheel.png’); % Input image
h1 = fspecial(’gaussian’,27,3); h1 = h1/max(h1(:))*0.7; % Gaussian mask (a)
i1 = 160; j1 = 110; % Location of the mask
J1 = Xsimmask(I,h1,i1,j1,0); % Simulation
h2 = ones(17,17)*0.4; % Square mask (b)
i2 = 200; j2 = 120; % Location of the mask
J2 = Xsimmask(J1,h2,i2,j2,0); % Simulation
h3 = fspecial(’disk’,7);h3 = h3/max(h3(:))*0.4; % Circle mask (c)
i3 = 240; j3 = 130; % Location of the mask
J3 = Xsimmask(J2,h3,i3,j3,0); % Simulation
imshow(J3) % Output image
text(j1+15,i1,’a’,’fontsize’,16,’color’,’w’);
text(j2+15,i2,’b’,’fontsize’,16,’color’,’w’);
text(j3+15,i3,’c’,’fontsize’,16,’color’,’w’);

The output of this code is illustrated in Fig. 7.9, where three different defects are
shown in. In this example, the X-ray image was simulated using command Xsim-
mask (see Appendix B) of XVIS Toolbox. �

7.4.2 CAD Models for Object and Defect

The second approach simulates the entire X-ray imaging process [17, 18]. In this
approach, characteristics of the X-ray source, the geometry, and material properties
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Fig. 7.9 Flaw simulation using a Gaussian mask, b square, and c circle. As we can see, the
Gaussian mask achieves the best simulation (→ Example 7.2 )

of objects and their defects, as well as the imaging process itself are modeled and
simulated independently. Complex objects and defect shapes can be simulated using
CAD models.

The principle of the simulation is shown in Fig. 7.10. The X-ray may intersect
different parts of the object. The intersection points between the modeled object
with the corresponding X-ray beam that is projected into pixel (u, v) are calculated
for each pixel (u, v) of the simulated image as explained in Sect. 7.3.

Some complicated 3D flaw shapes are reported in [17]. The defect model is cou-
pled with a CAD interface yielding 3D triangulated objects. Other kinds of flaws
like cracks can also be obtained using this simulation technique.

Although this approach offers excellent flexibility for setting the objects and
flaws to be tested, it has three disadvantages for the evaluation of the inspection
methods’ performance: (i) the X-ray image of the object under test is simulated (it
would be better if we could count on real images with simulated flaws); (ii) the sim-
ulation approach is only available when using a sophisticated computer package;
(iii) the computing time is expensive.
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Fig. 7.10 X-ray image simulation using CAD models

7.4.3 CAD Models for Defects Only

This approach simulates only the flaws and not the whole X-ray image of the object
under test [9]. This method can be viewed as an improvement of the first men-
tioned technique (Sect. 7.4.1) and the 3D modeling for the flaws of the second one
(Sect. 7.4.2). In this approach, a 3D modeled flaw is projected and superimposed
onto real X-ray images of a homogeneous object according to the exponential atten-
uation law for X-rays (7.10).

As explained in Sect. 7.2.2, the gray value I of a digital X-ray image can be
expressed as a linear function of the transmitted radiation ϕ:

I (x) = Aϕ(x) + B, (7.19)

where
ϕ(x) = ϕ0e−μx , (7.20)

and A and B are the linear parameters of I , and x the thickness of the object under
test.

Now, we investigate what happens if the penetrated object has a cavity, the thick-
ness of which is d as shown in Fig. 1.13 and its absorption coefficient μ′ ≈ 0. In
this case, from (7.20) the transmitted radiation is given by:

ϕ(x − d) = ϕ0e−μ(x−d) = ϕ(x)eμd . (7.21)

The gray value registered is calculated then from (7.21) and (7.19) as:

http://dx.doi.org/10.1007/978-3-319-20747-6_1
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I (x − d) = Aϕ(x)eμd + B. (7.22)

Substituting the value of Aϕ(x) from (7.19) we see that (7.22) may be written as:

I (x − d) = I (x)eμd + B(1 − eμd). (7.23)

Parameter B can be estimated as follows: The maximal gray value (Imax) in an
X-ray image is obtained when the thickness is zero. Additionally, the minimal gray
value (Imin) is obtained when the thickness is xmax. Substituting these values in
(7.19), it yields: {

Imax = Aϕ0 + B
Imin = Aϕ0e−μxmax + B

. (7.24)

From these equations, one may compute the value for B:

B = Imax − �I/(1 − e−μxmax ) , (7.25)

where �I = Imax − Imin. Usually, Imax and Imin are 255 and 0 respectively. For these
values, B can be written as:

B = 255/(1 − eμxmax) . (7.26)

This means that the gray value of the image of the cavity is:

I (x − d) = I (x)eμd + 255
1 − eμd

1 − eμxmax
. (7.27)

Using Eq. (7.27), we can alter the original gray value of the X-ray image I (x) to
simulate a new image of a flaw I (x − d). A 3D flaw can be modeled, projected and
superimposed onto a real radioscopic image. The new gray value of a pixel, where
the 3D-flaw is projected, depends only on four parameters: (a) Original gray value
I (x); (b) the linear absorption coefficient of the examined material μ; (c) the length
of the intersection of the 3D-flaw with the modeled X-ray beam d, that is projected
into the pixel; and (d) the maximal thickness observable in the radioscopic image
xmax .

Now, we will explain in further details how a 3D defect, namely an ellipsoid, is
projected onto an X-ray image [9]. Using this tool a simulation of an ellipsoidal flaw
of any size and orientation can be made anywhere in the casting. This model can be
used for flaws like blowholes and other round defects. Two examples are shown in
Fig. 7.11. The simulated flaws appear to be real due to the irregularity of the gray
values.

This technique presents two advantages: simulation is better than with the first
technique; and with respect to the second, this technique is faster given the reduced
computational complexity. However, the model used in this method has four simpli-
fications that were not presumed in the second simulation technique: (i) the X-ray
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Fig. 7.11 Simulated ellipsoidal flaws using CAD models of a defect only. See details in Table 7.2.
3D profile of a yellow square is shown in Fig. 7.14 (Color figure online)

source is assumed as a source point; (ii) there is no consideration of noise in the
model; (iii) there is no consideration of the solid angle �� of the X-ray beam that
is projected onto a pixel; and (iv) the spectrum of the radiation source is monochro-
matic.

In our approach we follow the geometric model illustrated in Fig. 7.12. This
model is very similar to the geometric model we learned in Sect. 7.2.1, however,
it includes a new coordinate system (X ′, Y ′, Z ′) attached to the center of the ellip-
soid that is modeled as:

X ′2

a2 + Y ′2

b2 + Z ′2

c2 = 1, (7.28)

where a, b and c are the half-axes of the ellipsoid as shown in Fig. 7.12. The location
of the ellipsoid relative to the object coordinate system is defined by a 3×3 rotation
matrix Re and a 3 × 1 translation vector te. They can be arranged in a 4 × 4 matrix
He as in Eq. (7.2). Using (7.1), the coordinates in the ellipsoid coordinate system
(X ′, Y ′, Z ′) can be expressed in the world coordinate system (X̄ , Ȳ , Z̄) by:

M̄ = HHeM′, (7.29)
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Fig. 7.12 Ellipsoid used by modeling a 3D flaw in coordinate system (X ′, Y ′, Z ′). The two inter-
sections of an X-ray beam with the surface of the ellipsoid define distance d

with M′ = [X ′ Y ′ Z ′ 1]T and M̄ = [X̄ Ȳ Z̄ 1]T . Now, we can write the ellipsoid in
world coordinate system from (7.28) and (7.29) as:

(s11 X̄ + s12Ȳ + s13 Z̄ + s14)
2/a2 +

(s21 X̄ + s22Ȳ + s23 Z̄ + s24)
2/b2 +

(s31 X̄ + s32Ȳ + s33 Z̄ + s34)
2/c2 = 1, (7.30)

where si j are the elements of the 4 × 4 matrix S = [HHe]−1.
Suppose we have a pixel (u, v) of the X-ray image and we want to know if the

X-ray beam, which produces a gray value in this pixel, intersects the modeled ellip-
soid. Using g, the inverse function of f (see (7.6)), we can calculate the correspond-
ing coordinates of (u, v) in the projection coordinate systems (x̄, ȳ):

m̄ = g(u), (7.31)

with u = [u v 1]T and m̄ = [x̄ ȳ 1]T . Remember that for a linear perspective
projection with no distortion, m̄ = K−1w, with K defined in (7.5). The X-ray beam
in the world coordinate system is defined from (7.3) by:

{
X̄ = x Z̄/ f
Ȳ = y Z̄/ f

. (7.32)
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The intersection of the X-ray beam with the ellipsoid is shown in Fig. 7.12. A inter-
section point must satisfy (7.30) and (7.32) simultaneously. Substituting X̄ and Ȳ
from (7.32) in (7.30) and after some slight rearranging we obtain:

AZ̄2 + B Z̄ + C = 0, (7.33)

with

A = r2
1

a2 + r2
2

b2 + r2
3

c2 ,

B = 2
(r1s14

a2 + r2s24

b2 + r3s34

c2

)
,

C = h2
14

a2 + h2
24

b2 + h2
34

c2 − 1 and

ri = si1
x

f
+ si2

y

f
+ si3 for i = 1, 2, 3.

If B2 − 4AC > 0 we obtain two intersection points of the X-ray beam with the
ellipsoid given by:

X̄1,2 = Z̄1,2

f
x

Ȳ1,2 = Z̄1,2

f
y

Z̄1,2 = −B ± √
B2 − 4AC

2A

The length of the X-ray beam that penetrates into the ellipsoid can be calculated as:

d =
√(

X̄1 − X̄2
)2 + (

Ȳ1 − Ȳ2
)2 + (

Z̄1 − Z̄2
)2

, (7.34)

that can be written as:

d =
√

B2 − 4AC

A

√
x2

f 2 + y2

f 2 + 1. (7.35)
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The algorithm to simulate a flaw can be resumed as follows:

1. Calibration: Estimate the parameters of the mapping function 3D → 2D (focal
length f , matrix H and function f).

2. Setting of X-ray imaging parameters: Define μ and xmax according to the energy
used by the X-ray source.

3. Definition of the 3D flaw: Define the size of the flaw (parameters a, b and c) and
the location of the flaw in the object (matrix He).

4. Location of the superimposed area: Find the pixels (u, v) where the modeled 3D
flaw is projected.3

5. Computation of intersection length d: For each determined pixel (u, v) find
the length of the intersection between the X-ray beam and ellipsoid given by
Eq. (7.35).

6. Change of the gray value: For each determined pixel (u, v) change the original
gray value using (7.27).

Matlab Example 7.3 In this example, we simulate a defect as an ellipsoid
using the method outlined in this section.

Listing 7.3 : Simulation of a defect in an aluminum casting

% EllipsoidSimulation.m
close all
I = imread(’wheel.png’); % input image

xmax = 400; var_mu = 0.1; % maximal thickness and mu

% Transformation (x,y)−>(u,v)
u0 = 235; v0 = 305; ax = 1.1; ay = 1.1; % translation and scaling
K = [ax 0 u0; 0 ay v0; 0 0 1]; % transformation matrix

% Transformation (Xb,Yb,Zb)−>(x,y)
f = 1500; % focal length

% Transformation (X,Y,Z)−>(Xb,Yb,Zb)
R = Xmatrixr3(0,0,0); % rotation
t = [−36 40 1000]’; % translation
S = [R t; 0 0 0 1]; % transformation matrix

% Transformation (Xp,Yp,Zp)−>(X,Y,Z)
Re = Xmatrixr3(0,0,pi/3); % rotation
te = [0 0 0]’; % translation
Se = [Re te; 0 0 0 1]; % transformation matrix

% Ellipsoid’s axes
abc = [3.5 4.5 2.5]; % a, b, c

I = Xsimdefect(I,K,S*Se,f,abc,var_mu,xmax,1); % simulation

The output of this code is shown in Fig. 7.13. In this example, the simulated defects
seems to be real. The defect was simulated using command Xsimdefect (see Appen-
dix B) of XVIS Toolbox. �

3These pixels are defined where B2 − 4AC > 0 in Eq. (7.33).



7.4 Flaw Simulation 261

Fig. 7.13 Comparison of real defects with a simulated one (see red square) using proposed
method (→ Example 7.3 (Color figure online))

In the following, the results of the simulation of flaws in cast aluminum wheels
using our approach are presented. The dimensions of the wheels used in our experi-
ments were approximately 48 cm in diameter and 20 cm in height. The focal length
(distance between X-ray source and entrance screen of the image intensifier) was
90 cm. The projection model of the X-ray imaging system was calibrated using a
hyperbolic model [19, 20].

In Fig. 7.11, experimental results on four X-ray images are shown. The values
used to simulate the flaws in each image are summarized in Table 7.2. We can

Table 7.2 Values used in the simulations of Fig. 7.11

Image no. E (keV) μ (1/cm) xmax (cm) a (mm) b (mm) c (mm)

1 54 0.8426 4.0 8 2 4

2 58 0.7569 3.8 4 2 1.5

3 50 0.9500 4.5 4 2 1.7

4 57 0.7765 3.85 6 3 2.5
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Fig. 7.14 3D plot of the gray values in the vicinity of flaws of the last X-ray image of Fig. 7.11

compare real and simulated flaws. It was shown that the simulation results are almost
identical with real flaws. In Fig. 7.14 a 3D plot of the gray values in the vicinity of
the flaws shown in last X-ray image of Fig. 7.11 is illustrated. Due to the irregularity
of the gray values of the simulated flaw, it seems to be real.

Other complex defect shapes can be simulated using CAD models [21]. This
general approach follows the block diagram of Fig. 7.15, where a 3D defect needs
to be modeled as a manifold 3D mesh as illustrated in Fig. 7.16. Crack simulation
can be obtained by superimposing a depth map computed from a single manifold
(see for example Fig. 7.16a). However, a real crack corresponds to a more complex
3D representation. For this reason, we simulated another crack by superimposing
several single cracks onto a real X-ray image. An example of this simulation is
illustrated in Fig. 7.17. Due to the irregularity of the gray values of the simulated
flaw, it can be seen that both real and simulated flaws show similar patterns.
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Fig. 7.15 Flaw simulation process using complex CAD models of the 3D defect

Fig. 7.16 Manifold surfaces from the 3D modeling software: a crack, b zoom of (a), c ellipsoid
and d amorphous surface



264 7 Simulation in X-ray Testing

real real real simulated real

Fig. 7.17 Simulated and real cracks

7.5 Summary

To evaluate the performance of computer vision techniques, it is convenient to exam-
ine simulated data. This offers the possibility of tuning the parameters of the com-
puter vision algorithm and to testing how it works in critical cases.

A simulation tool should model the physics of the X-ray formation (generation,
interaction and detection) and handle complex 3D objects efficiently. State-of-the-
art of computer modeling of X-ray testing methods are able to simulate different X-
ray spectrum and X-ray source size, varied photon-matter interactions, and several
X-ray detector responses. Thus, a computer simulator for X-ray testing should
include the following modules: X-ray source model, ray-tracing engine, material
data base, straight line attenuation model and detector model.

In this chapter we reviewed some basic concepts of simulation of X-ray images.
We gave simple geometric and imaging models that can be used in the simulation.
We explained the basic simulation principles and we addressed some techniques to
simulate defects (that can be used to assess the performance of a computer vision
method for automated defect recognition). The chapter has some Matlab examples
that the reader can run and follow. Examples of simulated defects in castings and
welds are also given.
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Chapter 8
Applications in X-ray Testing

Abstract In this chapter, relevant applications on X-ray testing are described. We
cover X-ray testing in (i) castings, (ii) welds, (iii) baggage, (iv) natural products, and
(v) others (like cargos and electronic circuits). For each application, the state of the
art is presented. Approaches in each application are summarized showing how they
use computer vision techniques. A detailed approach is shown in each application
and some examples using Matlab are given in order to illustrate the performance of
the methods.

Cover image: 3D representation of the X-ray image of a wheel (X-ray image C0023_0001
colored with ‘sinmap’ colormap).
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8.1 Introduction

In this chapter, we review some relevant applications in X-ray testing such as
(i) castings, (ii) welds, (iii) baggage, (iv) natural products, and (v) others (like car-
gos and electronic circuits). For the first four application applications, in which
the author has been undertaking research over the last decades, we will present a
description, the state of the art, a detailed approach and an example in Matlab. For
the last application, different techniques are mentioned.

8.2 Castings

Light-alloy castings produced for the automotive industry, such as wheel rims, steer-
ing knuckles, and steering gear boxes are considered important components for
overall roadworthiness. Nonhomogeneous regions can be formed within the work
piece in the production process. These are manifested, for example, by bubble-
shaped voids, fractures, inclusions, or slag formation. To ensure the safety of con-
struction, it is necessary to check every part thoroughly using X-ray testing. In
casting inspection, automated X-ray systems have not only raised quality, through
repeated objective inspections and improved processes, but have also increased pro-
ductivity and consistency by reducing labor costs. Some examples are illustrated in
Fig. 8.1.

8.2.1 State of the Art

Different methods for the automated detection of casting discontinuities using com-
puter vision have been described in the literature over the 30 years. One can see that
approaches to detecting can be divided into three groups: (i) approaches where an
error-free reference image is used; (ii) approaches using pattern recognition, expert

Fig. 8.1 Real defects in X-ray images of wheels
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systems, artificial neural networks, general filters, or multiple view analyzes to make
them independent of the position and structure of the test piece; and (iii) approaches
using computer tomography to make a reconstruction of the cast piece and thereby
detect discontinuities [1]. Selected approaches are summarized in Table 8.1. In this
area, the automated systems are very effective, because the inspection task is fast
and obtains a high performance.

8.2.2 An Application

In this section, we present a method for the automated detection of flaws based
on tracking principle in an X-ray image sequence, i.e., first, it identifies potential
defects in each image of the sequence, and second, it matches and tracks these from
image to image. The key idea is to consider as false alarms those potential defects
which cannot be tracked in the sequence [4]. The method for automated flaw detec-
tion presented here has basically two steps (see Fig. 8.2): identification and tracking
of potential flaws. These will be described in this section.

Identification of Potential Flaws
A digital X-ray image sequence of the object test is acquired (see for example series
C0001 of GDXray). In order to ensure the tracking of flaws in the X-ray images,
similar projections of the specimen must be achieved along the sequence. For this
reason, the sequence consists of X-ray images taken by the rotation of the cast-
ing at small intervals (e.g., 50). Since many images are captured, the time of the
data acquisition is reduced by taking the images without frame averaging. The posi-
tion of the casting, provided online by the manipulator is registered at each X-ray
image to calculate the perspective projection matrix Pp (for details see Sect. 3.3.4
and Example 3.5). An X-ray image sequence is shown in Figs. 8.3 and 8.4.

The detection of potential flaws identifies regions in X-ray images that may cor-
respond to real defects. This process takes place in each X-ray image of the sequence
without considering information about the correspondence between them. Two gen-
eral characteristics of the defects are used for identification purposes: (i) a flaw can
be considered as a connected subset of the image, and (ii) the gray-level difference
between a flaw and its neighborhood is significant. However, as the signal-to-noise
ratio in our X-ray images is low, the flaws signal is slightly greater than the back-
ground noise, as illustrated in Fig. 8.5. In our experiments, the mean gray level of
the flaw signal (without background) was between 2.4 and 28.8 gray values with a
standard deviation of 6.1. Analyzing a homogeneous background in different areas
of interest of normal parts, we found that the noise signal was within ±13 gray val-
ues with a standard deviation of 2.5. For this reason, the identification of real defects
with poor contrast can also involve the detection of false alarms.

According to the mentioned characteristics of the real flaws, our method of iden-
tification has the following two steps (see Fig. 8.6):

http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
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Fig. 8.2 Automated flaw detection in aluminum castings based on the tracking of potential defects
in an X-ray image sequence: PF = potential flaws, RS = potential flaws classified as regular struc-
tures, F = detected flaws [4]

Fig. 8.3 X-ray image C0001_0030 of an aluminum wheel (see zoom in Fig. 8.5)

Edge Detection: A Laplacian-of-Gaussian (LoG) kernel and a zero-crossing algo-
rithm [12] are used to detect the edges of the X-ray images. The LoG-operator
involves a Gaussian low-pass filter which is a good choice for the pre-smoothing
of our noisy images. The resulting binary edge image should produce at real flaws
closed and connected contours which demarcate regions. However, a flaw may not
be perfectly enclosed if it is located at an edge of a regular structure as shown in
Fig. 8.6c. In order to complete the remaining edges of these flaws, a thickening of
the edges of the regular structure is performed as follows: (a) the gradient image1

of the original image is computed (see Fig. 8.6d); (b) by thresholding the gradient

1The gradient image is computed by taking the square root of the sum of the squares of the gradient
in a horizontal and vertical direction. These are calculated by the convolution of the X-ray image
with the first derivative (in the corresponding direction) of the Gaussian low-pass filter used in the
LoG-filter.
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Fig. 8.4 X-ray image sequence with three flaws (image 5 is shown in Fig. 8.5)

Fig. 8.5 Zoom of Fig. 8.3
and gray-level profile along
three rows crossing defects
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image at a high gray level a new binary image is obtained; and (c) the resulting
image is added to the zero-crossing image (see Fig. 8.6e).

Segmentation and Classification of Potential Flaws: Afterwards, each closed region
is segmented and classified as a potential flaw if (a) its mean gray level is 2.5%
greater than the mean gray level of its surroundings (to ensure the detection of the
flaws with a poor contrast); and (b) its area is greater than 15 pixels (very small
flaws are permitted). A statistical study of the classification of potential flaws using
more than 70 features can be found in [13].
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(a)

(f)

(c)

(e)

(b)

(d)

Fig. 8.6 Identification of potential flaws: a X-ray image with a small flaw at an edge of a regular
structure, b Laplacian-filtered image with σ = 1.25 pixels (kernel size = 11× 11), c zero-crossing
image, d gradient image, e edge detection after adding high gradient pixels, and f potential flaws

This is a very simple detector of potential flaws (see implementation in Exam-
ple 5.6). However, the advantages are as follows: (a) it is a single detector (it is the
same detector for each image) and (b) it is able to identify potential defects inde-
pendent of the placement and the structure of the specimen.

Using this method, some real defects cannot be identified in all X-ray images in
which they appear if the contrast is very poor or the flaw is not enclosed by edges.
For example, in Fig. 8.7 one can observe that the biggest real flaw was identified
in images 1, 2, 3, 4, and 6, but not in image 5 where only two of the three real
flaws were identified (compare with Fig. 8.5). Additionally, if a flaw is overlapped
by edges of the structure of the casting, not all edges of the flaw can be detected. In
this case, the flaw will not be enclosed and therefore not be segmented. Furthermore,
a small flaw that moves in front (or behind) a thick cross-section of the casting, in
which the X-rays are highly absorbed, may cause an occlusion. In our experiments,
this detector identified the real flaws in four or more (not necessarily consecutive)
images of the sequence.

Multiple View Detection
In the previous step, n1 potential regions were segmented and described in the entire
image sequence I. Each segmented region is labeled with a unique number r ∈ T1 =
{1, . . . , n1}. In view i , there are mi segmented regions that are arranged in a subset
ti = {ri,1, ri,2, . . . , ri,mi }, i.e., T1 = t1 ∪ t2 ∪ · · · tm .

http://dx.doi.org/10.1007/978-3-319-20747-6_5
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Fig. 8.7 Identification of potential flaws (the arrows indicate real flaws)

The matching and tracking algorithms combine all regions to generate consistent
tracks of the object’s parts of interest across the image sequence. The algorithm has
the following steps:

Matching in Two Views: All regions in view i that have corresponding regions in
the next p views are searched, i.e., regions r1 ∈ ti that have corresponding regions
r2 ∈ t j for i = 1, . . . , m − 1 and j = i + 1, . . . ,min(i + p, m). In our experiments,
we use p = 3 to reduce the computational cost. The matched regions (r1, r2) are
those that meet similarity and location constraints. The similarity constraint means
that corresponding descriptors yr1 and yr2 must be similar enough such that

||yr1 − yr2 || < ε1. (8.1)

The location constraint means that the corresponding locations of the regions must
meet the epipolar constraint. In this case, the Sampson distance between xr1 and xr2
is used, i.e., the first-order geometric error of the epipolar constraint must be small
enough such that

|xTr2Fijxr1 |
⎛
⎝ 1√

a2
1 + a2

2

+ 1√
b21 + b22

⎞
⎠ < ε2, (8.2)

with Fijxr1 = [a1 a2 a3]T and FT
ijxr2 = [b1 b2 b3]T. In this case, Fij is the funda-

mental matrix between views i and j calculated from projection matrices Pi and P j

[14] (see Sect. 3.5.1). In addition, the location constraint used is as follows:

||xr1 − xr2 || < ρ( j − i), (8.3)

because the translation of corresponding points in these sequences is smaller than ρ

pixels in consecutive frames.

http://dx.doi.org/10.1007/978-3-319-20747-6_3
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If we have 3D information about the space where our test object should be, it
is worth to evaluating whether the 3D point reconstructed from the centers of mass
of the regions must belong to the space occupied by the casting. From ma

p and mb
q ,

the corresponding 3D point M̂ is estimated using the linear approach of Hartley in
[14]. For two views, this approach is faster than the least squares technique. It is
necessary to examine if M̂ resides in the volume of the casting, the dimensions of
which are usually known a priori (e.g., a wheel is assumed to be a cylinder).2

Finally, a newmatrix T2 sized n2×2 is obtained with all matched duplets (r1, r2),
one per row. If a region is found to have no matches, it is eliminated. Multiple match-
ing, i.e., a region that is matched with more than one region, is allowed. Using this
method, problems like nonsegmented regions or occluded regions in the sequence
can be solved by tracking if a region is not segmented in consecutive views.

Matching in 3 Views: Based on the matched regions stored in matrix T2, we look for
triplets (r1, r2, r3), with r1 ∈ ti , r2 ∈ t j , r3 ∈ tk for views i , j and k. We know that a
row a in matrix T2 has a matched duplet [T2(a, 1) T2(a, 2)] = [r1 r2]. We then look
for rows b in T2 in which the first element is equal to r2, i.e., [T2(b, 1) T2(b, 2)] =
[r2 r3]. Thus, a matched triplet (r1, r2, r3) is found if the regions r1, r2 and r3 meet
the trifocal constrain:

||x̂r3 − xr3 || < ε3, (8.4)

This means that xr3 must be similar enough to the reprojected point x̂r3 computed

from the points in views i and j (xr1 and xr2 ), and the trifocal tensors T jk
i of views

i, j, k calculated from projection matrices Pi , P j and Pk [14] (see (3.76)). A new
matrix T3 sized n3 × 3 is built with all matched triplets (r1, r2, r3), one per row.
Regions in which the three views do not match are eliminated.

The results of our example are shown in Fig. 8.8.

Matching in More Views: For v = 4, . . . , q ≤ m views, we can build the matrix
recursively Tv, sized nv × v, with all possible v-tuplets (r1, r2, . . . , rv) that fulfill
[Tv−1(a, 1) ... Tv−1(a, v − 1)] = [r1 r2 . . . rv−1] and [Tv−1(b, 1) . . . Tv−1(b, v −
1)] = [r2 . . . rl−1 rv], for j, k = 1, . . . , nv−1. No more geometric constraints are
required because it is redundant. The final result is stored in matrix Tq . For example,
for q = 4 we store in matrix T4 the matched quadruplets (r1, r2, r3, r4) with r1 ∈ ti ,
r2 ∈ t j , r3 ∈ tk , r4 ∈ tl for views i , j , k and l.

Figure 8.9 shows the tracked regions of our example that fulfill this criterion.
Only two false trajectories are observed (see arrows).

2It is possible to use a CADmodel of the casting to evaluate this criterion more precisely. Using this
model, we could discriminate a small hole of the regular structure that is identified as a potential
flaw. Additionally, the CAD model can be used to inspect the casting geometry, as shown in [15].

http://dx.doi.org/10.1007/978-3-319-20747-6_3
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Fig. 8.8 Matching of potential flaws in two views

Fig. 8.9 Tracking in more views (the arrows indicate false detections)

As our detector cannot guarantee the identification of all real flaws in more than
four views, a tracking in five views could lead to the elimination of those real flaws
that were identified in only four views. However, if a potential flaw is identified in
more than four views, more than one quadruplet can be detected. For this reason,
these corresponding quadruplets are joined in a trajectory that contains more than
four potential flaws (see trajectory with arrows in Fig. 8.9).
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The matching condition for building matrix Ti , i = 3, . . . , q, is efficiently eval-
uated (avoiding an exhaustive search) using a k-d tree structure [16] to search the
nearest neighbors for zero Euclidean distance between the first and last i−2 columns
in Ti−1.

Merging Tracks: Matrix Tq defines tracks of regions in q views. It can be observed
that some of these tracks correspond to the same region. For this reason, it is possible
to merge tracks that have q − 1 common elements. In addition, if a new track has
more than one region per view, we can select the region that shows the minimal
reprojection error after computing the corresponding 3D location. In this case, a
3D reconstruction of X̂ is estimated from tracked points [14]. Finally, matrix Tm

is obtained with all merged tracks in the m views. See an example of the whole
tracking algorithm in Fig. 8.10.

Analysis: The 3D reconstructed point X̂ from each set of tracked points of Tm can be
reprojected in views where the segmentation may have failed to obtain the complete
track in all views. The reprojected points of X̂ should correspond to the centroids of
the nonsegmented regions. It is then possible to calculate the size of the projected
region as an average of the sizes of the identified regions in the track. In each view,
a small window centered in the computed centroids is defined. These corresponding
small windows, referred to as tracked part, will be denoted asW = {W1, . . . , Wm}.
In each view, a small window is defined with the estimated size in the computed
centers of gravities (see Fig. 8.11). Afterwards, the corresponding windows are aver-
aged. Thus, the attempt is made to increase the signal-to-noise ratio by the factor√

n, where n is the number of averaged windows. As flaws must appear as con-
trasted zones relating to their environment, we can verify if the contrast of each
averaged window is greater than 2.5%. With this verification, it is possible to elimi-
nate all remaining false detections. Figure 8.11 shows the detection in our sequence
using this method. Our objective is then achieved: the real defects were separated
from the false ones.

Experimental Results
In this section, results of automatic inspection of cast aluminum wheels using the
outlined approach are presented. These results have been achieved recently on syn-
thetic flaws and real data. The parameters of our method have been manually tuned,
giving σ = 1.25 pixels (for LoG-operator), ε2 = 0.75mm, εs = 0.7, and ε3 = 0.9mm.
These parameters were not changed during these experiments. A wheel was consid-
ered to be a cylinder with the following dimensions: 470mm diameter and 200mm
height. The focal length (distance between X-ray source and entrance screen of the
image intensifier) was 884mm. The bottom of a wheel was 510mm from the X-ray
source. Thus, a pattern of 1mm in the middle of the wheel is projected in the X-ray
projection coordinate system as a pattern of 1.73mm, and in the image coordinate
system as a pattern of 2.96 pixels. The sequences of X-ray images were taken by
rotation of the casting at 50.

The detection performance will be evaluated by computing the number of true
positives (TP) and false positives (FP). They are, respectively, defined as the num-
ber of flaws that are correctly classified and the number of misclassified regular
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Fig. 8.10 Tracking example with m = 6 views. In each view there are 2, 4, 2, 2, 3, and 3 seg-
mented regions, i.e., there are n1 = 16 regions in total. For each region, we seek corresponding
regions in the next p = 3 views (see matching arrows in T1: region 1 with regions (3, 4, 5, 6) in
view 2, regions (7, 8) in view 3, and (9, 10) in view 4). We observe that after tracking in 2, 3, and
4 views there are only two tracks in T6 that could be tracked in 5 and 4 views, respectively. The
regions that were not segmented can be recovered by reprojection (see gray circles in views 2, 4
and 6). Finally, each set of tracked regions are analyzed in order to take the final decision (Color
figure online)
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Fig. 8.11 Reconstruction and verification: the false detections (indicated by the arrows) are elim-
inated after the verification in all images of the sequence

structures. The TP and FP will be normalized by the number of existing flaws (E)
and the number of identified potential flaws (I). Thus, we define the following per-
centages: TPP = TP / E ×100 and FPP = FP / I ×100. Ideally, TPP = 100% and
FPP = 0%.

Synthetic Flaws: To evaluate the performance of our method in critical cases, real
data in which synthetic flaws have been added were examined (see Sect. 7.4.3). A
simple 3D modeled flaw (a spherical bubble) was projected and superimposed on
real X-ray images of an aluminum wheel according to the law of X-ray absorption
[17]. In our experiment, a flaw is simulated in 10 X-ray images of a real casting,
in an area that included an edge of the structure (see Fig. 8.12a). In this area, the
synthetic flaw was located in 24 different positions in a regular grid manner. At
each position, TPP and FPP were tabulated. This test was repeated for different
sizes of the flaws (∅ = 1.5 ∼ 7.5mm) which are illustrated in Fig. 8.12b. The
results are shown in Fig. 8.12c. It was observed that the FPP was always zero. The
TPP was 100% for ∅ ≥ 2.5mm, and greater than 95% for ∅ ≥ 2.1mm. However,
the identification of the flaw may fail (and therefore also its detection) if it is very
small and is located at the edge of the structure of the casting. In this case, one may
choose a smaller value of the parameter σ in the LoG-operator of the edge detection,
which will unfortunately increment the FPP. Other noncritical experiments, where
the area of the simulation does not include an edge of the structure, have led to
perfect results (TPP = 100%, FPP = 0%) for ∅ ≥ 1.5mm (≥4.4 pixels). Usually,
the minimum detectable defect size according to inspection specifications is in the
order of ∅ = 2mm. In X-ray testing, smaller flaws can be detected by decreasing
the distance of the object test to the X-ray source.

http://dx.doi.org/10.1007/978-3-319-20747-6_7
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8

Evaluation
area

(a) (b)

(c)

Fig. 8.12 Detection on synthetic flaws: a X-ray image and evaluated area, b flaw sizes, and c TPP
and FPP

Real Data: Fourteen X-ray image sequences of aluminum wheels with twelve
known flaws were inspected. Three of these defects were existing blow holes (with
∅ = 2.0 ∼ 7.5mm). They were initially detected by a visual (human) inspec-
tion. The remaining nine flaws were produced by drilling small holes (∅ = 2.0 ∼
4.0mm) in positions of the casting which were known to be difficult to detect.
Casting flaws are present only in the first seven sequences. The results are summa-
rized in Table 8.2, Figs. 8.13 and 8.14. In the identification of potential flaws, it was
observed that the FPP was 98% (4,310/4,381). Nevertheless, the TPP in this exper-
iment was good, and it was possible to identify 85% (71/84) of all projected flaws
in the sequences (13 of the existing 84 flaws were not identified because the con-
trast was poor or they were located at edges of regular structures). It was observed
that in the next steps, the FPP was reduced to nil. The detection of the real flaws
was successful in all cases. The first six images of sequence 3 and its results were
already illustrated in Figs. 8.4, 8.7, 8.8, 8.9, 8.10 and 8.11. The results on the other
sequences with flaws are shown in Fig. 8.13.

Comparison with Other Methods: In this section, we present a comparison of our
proposed algorithm with other methods that can be used to detect defects in alu-
minum castings. In this comparison, we evaluate the same real 14 sequences used
in the previous section. The results are summarized in Table 8.3.
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Table 8.2 Detection of flaws on real data

Seq. X-ray
images

Flaws in the
sequence

Flaws in the
images (E)

Identification Detection

TP FP Total (I) TP FP

1 10 2 12 12 249 261 2 0

2 9 1 9 8 238 246 1 0

3 9 3 23 19 253 272 3 0

4 8 1 8 4 413 417 1 0

5 6 1 6 6 554 560 1 0

6 8 1 8 8 196 204 1 0

7 6 3 18 14 445 459 3 0

8 6 0 0 0 178 178 0 0

9 9 0 0 0 256 256 0 0

10 8 0 0 0 150 150 0 0

11 8 0 0 0 345 345 0 0

12 6 0 0 0 355 355 0 0

13 6 0 0 0 365 365 0 0

14 9 0 0 0 313 313 0 0

Total 108 12 84 71 4,310 4,381 12 0

Percentage 85% 98% 100% 0%

11 22 44

66 7755

Fig. 8.13 Detected flaws in sequences 1, 2, 4, 5, 6, and 7 (sequence 3 is shown in Fig. 8.11)

First, we compared the first step of our method (identification of potential flaws).
The objective of this step is the use of a single filter, instead of a set of filters adapted
to the regular structure of the specimen. We evaluated the well-known Canny filter
(see for example [12]). As this filter detects sparse edge pixels that not necessarily
produce at real flaws closed and connected contours, the TPP of this detector was
unacceptable, only 4% of the real flaws were identified (‘Canny I’ in Table 8.3).
In order to increase the number of closed regions, a dilation of the edges using a
3 × 3 mask was performed. Although the TPP is improved to 40% (‘Canny II’
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Fig. 8.14 False positive percentage on real data in the 14 real sequences (the number of identified
potential flaws corresponds to 100%). The mean of each step is given over the fourteen curves

Table 8.3 Comparison with other methods

Method Identification Detection

TPP (%) FPP (%) TPP (%) FPP (%)

Proposed 85 98 100 0

Canny I 4 97 0 –

Canny II 40 99 17 40

Median I 55 85 33 36

Median II 88 98 92 45

Tracking in 3 85 98 100 25

Tracking in 5 85 98 83 0

PXV-5000 – – 100 0

in Table 8.3), many flaws were not detected in any of the images of the sequence.
For this reason, only 17% of the real flaws were detected after the tracking and
verification.

Another detection of potential flaws can be performed using a region-based seg-
mentation. Median filtering is normally used to generate an error-free image, since
defect structures are essentially eliminated, while design features of the test piece
are normally preserved [18]. Once the error-free reference image is computed, an
error difference image between original and error-free images is calculated. Casting
defects are then identified when a sufficiently large gray level in the error difference
image occurs. The best results were obtained using a median filter with a 11 × 11
mask. We evaluated two thresholds: θ = 6 and θ = 2—by 256 gray levels—(see
‘Median I’ and ‘Median II’ in Table 8.3). In the first case, the TPP was only 55%.
By decreasing the threshold value, we increased the TPP to 88%, that is slightly
better than our detector (85%). However, systematic false alarms were detected at
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the corners of the regular structures. Since these false alarms satisfy the multifocal
conditions, they can be tracked in the sequence. For this reason, this detector can
only be used if the median filter is adapted to the regular structures of the specimen
using a priori information. Normally, a set of median filters is used for each X-ray
image [19–21].

In order to evaluate the second step of our method (tracking of potential flaws),
we tested the method by tracking the potential flaws in 3 and in 5 views, instead of 4
views (see ‘Tracking in 3’, ‘Tracking in 5’ and ‘Proposed’ in Table 8.3). By consid-
ering only three views, we obtained so many false alarms that the verification step
detected four false alarms (25%). In the other case, by tracking the potential flaws
in five views, real flaws that were segmented in only four views of the sequences
were not tracked. For this reason, only 83% of the real flaws were detected.

Finally, we inspected the test castings using a classic image-processing method.
In our experiments, we used the industrial software PXV-5000 [22]. The results were
excellent: 100% of the real flaws were detected without false alarms. As a result of
its peak detection performance, the classic image-processing methods have become
the most widely established in industrial applications. However, these method suffer
from the complicated configuration of the filtering, which is tailored to the test piece.
In our experiments, the configuration process has taken two weeks. Nevertheless, as
our method requires only a few number of parameters, the configuration could be
carried out in hours.

Conclusions
A new method for automated flaw detection in aluminum castings using multiple
view geometry has been developed. Our method is very efficient because it is based
on a two-step analysis: identification and tracking. The idea was to try to imitate
the way a human inspector inspects X-ray images: first, relevant details (potential
defects) are detected, followed by tracking them in the X-ray image sequence. In this
way, the false detections can be eliminated without discriminating the real flaws.

The great advantage of our first step is the use of a single filter to identify poten-
tial defects, which is independent of the structure of the specimen. Nevertheless,
its disadvantages are as follows: (a) the false positive percentage is enormous; (b)
the true positive percentage could be poor if the flaws to be detected are very small
and located at the edge of a structure; and (c) the identification of regions is time
consuming. Contrarily, the second step is highly efficient in both discrimination of
false detections and tracking of real defects, and is not time consuming, due to the
use of the multiple view tensors.

To inspect a whole wheel, our method requires approximately 100 views of
256 × 256 pixels, that can be processed in one minute. The required computing time
is acceptable for practical applications because a typical inspection process takes
about 1min, independently of whether it is performed manually or automatically.

We have shown that these preliminary results are promising. However, given
that the performance of the method has been verified on only a few X-ray image
sequences, an evaluation on a broader data base is necessary.

It is possible to combine our second step with existing defect detection technolo-
gies, which use a priori information of the regular structures of the casting to detect
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flaws in single images (see for example [22]). This method could also be used in
the automated flaw detection of other objects. In the adaptation of our method, one
must determine the number of views in which a flaw must be tracked. If the false
positive percentage by identifying potential flaws is low (or high), one may track a
flaw in fewer (or more) views of the sequence. However, one must guarantee that
the real flaws will be identified as potential flaws in these views.

8.2.3 An Example

In this section, an implementation that can be used for defect detection of castings
in single views is presented. It consists of features that are extracted from positive
class (the defects) and negative class (the background).

An example of using detection in multiple views can be found in Sect. 8.4.3.

Matlab Example 8.1 In this example, we show how to implement a classi-
fier that is able to defect casting defects in single X-ray images. For this end, we
use series C0002 that contains small images with and without defects. In addition,
for this series we have the ground truth for all defects. The strategy of this exam-
ple is to extract LBP features of all annotated defects, and LBP features of random
patches that do not contain defects. After that we test a KNN classifier using cross-
validation.

Listing 8.1 : Defect detection in castings

% CastingTraining.m
sdir = Xgdxdir(’C’,2); % directory of the images
sfmt = ’png’; % format of the images
GT = ’ground_truth.txt’; % ground truth file
opx.opf.b = Xfxbuild({’lbpri’}); % LBP rotation invariant
opx.m = 32; % size of patches 0: 32x32
opx.n0 = 15; % number of patche 0 per image
opx.th0 = 0.02; % threshold for patch 0
opx.segmentation = ’Xsegbimodal’; % wheel segmentation
opx.resize = [32 32]; % resize of patches 1: 32x32
[X0,d0,Xn] = Xfxseqpatches(sdir,sfmt,GT,opx,0); % Extracting patches 0
[X1,d1,Xn] = Xfxseqpatches(sdir,sfmt,GT,opx,1); % Extracting patches 1

X = [X0;X1]; % features if both classes
d = [d0;d1]; % labels of both classes

c.name = ’knn’; c.options.k = 5; % KNN with 5 neighbors
op.strat=1; op.c = c; op.v = 10; op.show = 1; op.p = 0.95;% 10 fold−cross−validation
[acc,ci] = Xcrossval(X,d,op);

The output of this code is the estimated accuracy

» knn, 5 97.99% in (97.15, 98.82%) with CI=95%

That means with 95% of confidence, the accuracy of this classifier is between
97.15 and 98.82%. In this code, we used Xfxseqpatches (see Appendix B) of
XVIS Toolbox, that is able to extract features of class ‘1’ and class ‘0’. The reader
can use additional series of GDXray, that contain annotated defects in aluminum
wheels. �
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8.3 Welds

In welding process, a mandatory inspection using X-ray testing is required in order
to detect defects like porosity, inclusion, lack of fusion, lack of penetration, and
cracks. Industrial X-ray images of welds is widely used for detecting those defects
in the petroleum, chemical, nuclear, naval, aeronautics, and civil construction indus-
tries, among others. An example is illustrated in Fig. 8.19.

8.3.1 State of the Art

Over the last three decades, substantial research has been performed on automated
detection and classification of welding defects in continuous welds using X-ray
imaging [23, 24]. Typically, the approaches follow a classical computer vision
schema: (i) image acquisition—an X-ray digital image is taken and stored in the
computer, (ii) preprocessing—the digital image is improved in order to enhance the
details, (iii) segmentation—potential welding defects are found and isolated, (iv)
feature extraction/selection—significant features of the potential welding defects
and their surroundings are quantified, and (v) classification—the extracted features
are interpreted automatically using a priori knowledge of the welding defects in
order to separate potential defects into detected welding defects or false alarms. In
the last few years, some methods based on the tracking principle (as explained in
Sect. 8.2.2) have been developed [25, 26].

Selected approaches are summarized in Table 8.4. As we can see there is much
research on weld inspection. Achieved performance of the developed algorithms is
still not high enough, thus it is not suitable for fully automated inspection.

8.3.2 An Application

In computer vision, many object detection and classification problems have been
solved without classic segmentation using sliding-windows. Sliding-window
approaches have established themselves as state of the art in computer vision prob-
lems where an object must be separated from the background (see for example suc-
cessful applications in face detection [44] and human detection [45]). In sliding-
window methodology, a detection window (see black square in Fig. 8.15) is sledded
over an input image in both horizontal and vertical directions, and for each localiza-
tion of the detection window a classifier decides to which class the corresponding
portion of the image belongs to according to its features. In this section, an approach
to detect defects based on sliding-windows in welds is presented [36].
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Fig. 8.15 Sliding-window approach: a detection window (see black square) is sledded over the
X-ray image starting at place ‘a’ and ending at ‘c’. For each position, e.g., at ‘b’, features are
extracted only from the subimage defined by the square, and a classifier determines the class of
this portion of the image

Fig. 8.16 Feature extraction: from each detection window several features are extracted (see black
path). Additionally, the same features are extracted from a saliency map of the subwindow (see
gray path)

Overview
We developed an X-ray computer vision approach to detect welding defects using
this methodology yielding promising results. We will differentiate between the
‘detection of defects’ and the ‘classification of defects’ [46]. In the detection prob-
lem, the classes that exist are only two: ‘defects’ and ‘no-efects’, whereas the recog-
nition of the type of the defects (e.g., porosity, slag, crack, lack of penetration, etc.)
is known as classification of flaw types. This section describes our approach on
detection only and the corresponding validation experiments. The classification of
defects can be developed by the reader using a similar methodology.

The key idea of this example is to use a computer vision methodology, as shown
in Figs. 8.15 and 8.16, to automatically detect welding defects. In the following,
feature extraction, feature selection, classification, and validation will be explained
in further detail.

Feature Extraction, Selection, and Classification
Features provide information about the intensity of a subimage. In our approach,
p features per intensity channel were extracted. The used intensity channels in our
work are only two: the grayscale X-ray image (I) and a saliency map (J) computed
from I, i.e., , p × 2 features for two intensity channels. In order to reduce the com-
putational time, we restricted the feature extraction for these only two channels,
however, other channels, like Harris transform [47] or other saliency maps, can be
used.
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Fig. 8.17 X-ray images used in our experiments (series W0001 of GDXray)

The saliency map J is obtained using a center-surround saliency mechanism
based on a biologically inspired attention system [48].3 In order to achieve faster
processing, this theory proposes that the human visual system uses only a portion of
the image, called focus of attention, to deal with complex scenes. In our approach,
we use the off-center saliency map that measures the different dark areas surrounded
by a bright background, as shown in Fig. 8.16.

In a training phase, using a priori knowledge of the welding defects, the detec-
tion windows are manually labeled as one of two classes: ‘defects’ and ‘no-defect’.
The first class corresponds to those regions where the potential welding defects are
indeed welding defects. Alternatively, the second class corresponds to false alarms.
For this end, we use series W0001 and W0002 of GDXray. In the first series,
we have the X-ray images, whereas in the second one we have the correspond-
ing binary images representing the ground truth. Thus, the ideal segmentation of
image W0001_00i.png is binary image W0002_00i.png, for i = 01 . . . 10..
Intensity features of each channel are extracted for both classes. Features extracted
from each area of an X-ray image region are divided into four groups: basic inten-
sity features (see Sect. 5.3.1), statistical features (see Sect. 5.3.5), Fourier and DCT
features (see Sect. 5.3.7), Gabor features (see Sect. 5.3.6) and Local Binary Patterns
(see Sect. 5.4.1). Afterwards, the extracted features are selected using feature selec-
tion approaches (see Sect. 5.6, and several classifiers (see Sect. 6.2) were evaluated
using cross-validation (see Sect. 6.3.2).

Experiments
We experimented with 10 representative X-ray images (see Fig. 8.17). The average
size of the image was 1.35 mega-pixels. For each X-ray image, 250 detection win-
dows with detects and 250 without defects were selected, yielding 2 × 250 × 10 =
5,000 detection windows. Each detection window was labeled with ‘1’ for class
defects and ‘0’ for no-defects. The size of the detection windows were 24×24 pixels.

3The saliency function is implemented in Xsaliency (see Appendix B) of XVIS Toolbox.

http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_6
http://dx.doi.org/10.1007/978-3-319-20747-6_6
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Fig. 8.18 Classification performance using the first p features

For each detection window 586 features were extracted. This means that 586 fea-
tures were extracted from 5,000 samples (2,500 with defects and 2,500 without
defects).

After the feature extraction, 75% of the samples from each class were randomly
chosen to perform the feature selection. The best performance was achieved using
sequential forward selection. The best 14 features are shown in Fig. 8.18 in ascend-
ing order.

The performance of the classification using the SVM classifier and the first p
selected features was validated using an average of ten cross-validation with 10-
folds. The results are shown in Fig. 8.18. We observe that using 14 features, the
performance was almost 94% with a 95% confidence interval between 93.0 and
94.5%.

In order to test this methodology on X-ray images, the technique was imple-
mented using a sliding-window sized 24 × 24 pixels that was shifted by 4 pixels.
Thus, in each position, a subwindow of 24 × 24 pixels was defined and the corre-
sponding features were extracted. The subwindow was marked if the trained classi-
fier detected it as a discontinuity. Using a size of 24× 24 pixel and a shift of 4 pixels,
an image pixel could be marked from 0 to 36 times. Finally, if a pixel of the image
was marked more than 24 times, then the pixel was considered as a discontinuity.
The aforementioned parameters were set using an exhaustive search. The described
steps are shown in Fig. 8.19 for one X-ray image. The results on other X-ray images
are shown in Fig. 8.20. From these, one can see the effectiveness of the proposed
technique.

Conclusions
In this section, we presented a new approach to detecting weld defects without
segmentation based on sliding-windows and novel features. The promising results
outlined in our work show that we achieved a very high classification rate in the
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Fig. 8.19 Weld inspection using a sliding-window: a X-ray image, b detected windows, c activa-
tion map, and d detection [36]

detection of welding defects using a large number of features combined with effi-
cient feature selection and classification algorithms. The key idea of the proposed
method was to select, from a large universe of features, namely 572 features, only
those features that were relevant for the separation of the two classes. We tested
our method on 10 representative X-ray images yielding a performance of 94% in
accuracy using only 14 features and support vector machines. It is important to note
that local binary pattern features extracted from the saliency map play an important
role in the performance of the classifier. The method was implemented and tested
on real X-ray images showing high effectiveness.

8.3.3 An Example

In this section, we present a Matlab code that can be used to detect defects in welds
according to sliding-windows approach explained above.

Matlab Example 8.2 In this example, we show how to implement—for a
simple perspective—the strategy explained in the previous section. We will use one
part of image W0001_0001.png as training, and another part as testing. We will
extract only a few number of features, and we will test only one feature selec-
tion technique and only one classifier. The reader can modify this code in order
to achieve better results. The reader will note that this example has pedagogical
purposes only. In order to develop a real application, more training images must be
taken into account.

Listing 8.2 : Sliding-Windows

% SlidingWindows.m

% X−ray image and Ground Truth for training and testing
I = Xloadimg(’W’,1,1,1);
J = Xloadimg(’W’,2,1,1);
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Fig. 8.20 Detection of defects on X-ray images

Itrain = I(:,1650:2399); % Training image
GTtrain = J(:,1650:2399); % Ground truth of training image
Itest = I(:,900:1649); % Testing image
GTtest = J(:,900:1649); % Ground truth of testing image

% Feature Extraction
options.opf.b = Xfxbuild({’basicint’,...

’lbpri’}); % Basic intensity features
options.selec = 0; % all features
options.m = 24; % size of a window mxm
options.n0 = 400; % number of 0 windows
options.n1 = 400; % number of 1 windows
options.th0 = 0.02; % threshold for 0
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options.th1 = 0.02; % threshold for 1
options.show = 1;
options.roi = Xsegbimodal(Itrain); % weld segmentation
[X,d,Xn] = Xfxrandompatches(... % extraction of patches

Itrain,GTtrain,options);% and feature extraction

% Feature Selection
sc = Xfclean(X); % delete constant and correlated features
Xc = X(:,sc); % sc = indices of selected features
Xcn = Xn(sc,:);
opsfs.show = 1; % display results
opsfs.p = 15; % 15 features will be selected
sx = Xsfs(Xc,d,opsfs); % using SFS
selec = sc(sx);
fx = X(:,selec); % selec = indices of selected features

% Training
opc.name = ’qda’; % LDA classifier
opc.options.p = [];
opc = Xclassify(fx,d,opc);

% Detection
options.opc = opc;
options.nm = 6; % shifted by 24/6=4 pixels
options.Dth = 24; % 24x24 pixels
options.selec = selec;
options.roi = Xsegbimodal(Itest); % weld segmentation
[Dmap,Dbin] = Xsegsliwin(Itest,options);
figure % output
imshow(Itest);title(’Detection’);
hold on
[yd,xd] = find(bwperim(Dbin));
plot(xd,yd,’r.’)
[ygt,xgt] = find(bwperim(GTtest));
plot(xgt,ygt,’g.’)
legend({’detection’,’ground truth’})

The output of this code is shown in Fig. 8.21. We can see the positive and negative
samples that are used for training the classifier and the final detection on testing
image. In this example, we use Xfxrandompatches (see Appendix B) to extract
the features of the random patches. The patches are extracted only in the region of
interest (options.roi) defined by the segmentation of the weld. The detection
based on sliding-windows is performed by command Xsegsliwin (see Appendix
B) of XVIS Toolbox. The reader can observe the effectiveness of this strategy. It is
clear that better results can be achieved by considering more features, classifiers and
training images. �

8.4 Baggage

Since the September 11 attacks, automated (or semiautomated) 3D recognition
using X-ray images have become a very important element in baggage screening.
The inspection process, however, is complex, basically because threatening items
are very difficult to detect when placed in close-packed bags, superimposed by other
objects, and/or rotated showing an unrecognizable view [67]. In baggage screening,
where human security plays an important role and inspection complexity is very
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Fig. 8.21 Detection of defects on X-ray images using sliding-windows. Top Training image
(ground truth and patches). Bottom Testing image (activation map and detection with ground truth)
(→ Example 8.2 )

high, human inspectors are still used. Nevertheless, during peak hours in airports,
human screeners have only a few seconds to decide whether a bag contains or not a
prohibited item, and detection performance is only about 80–90% [68].

8.4.1 State of the Art

Before 9/11, the X-ray analysis of luggage mainly focused on capturing the images
of their content: the reader can find in [69] an interesting analysis carried out in
1989 of several aircraft attacks around the world, and the existing technologies to
detect terrorist threats based on Thermal-Neutron Activation (TNA), Fast-Neutron
Activation (FNA), and dual-energy X-rays (used in medicine since the early 1970s).
In the 1990s, Explosive Detection Systems (EDS) were developed based on X-ray
imaging [70], and computed tomography through elastic scatter X-ray (comparing
the structure of irradiated material, against stored reference spectra for explosives
and drugs) [71]. All these works were concentrated on image acquisition and simple
image processing; however, they lacked advanced image analysis to improve detec-
tion performance. Nevertheless, the 9/11 attacks increased the security measures
taken at airports, which in turn stimulated the interest of the scientific community in
the research of areas related to security using advanced computational techniques.
Over the last decade, the main contributions were: analysis of human inspection
[72], pseudo-coloring of X-ray images [73, 74], enhancement and segmentation of
X-ray images [75] and detection of threatening items in X-ray images, based on
texture features (detecting a 9mm Colt Beretta automatic (machine) pistol) [76],
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neural networks and fuzzy rules (yielding about 80% of performance) [77], and
SVM classifier (detecting guns in real time) [78].

In baggage screening, the use of multiple view information yields a significant
improvement in performance as certain items are difficult to recognize using only
one viewpoint. As reported in a study that measures the human performance in
baggage screening [79], (human) multiple view X-ray inspection leads to a higher
detection performance of prohibited items under difficult conditions, however, there
are no significant differences between the detection performance (single vs. multi-
ple view) for difficult–easy multiple view conditions, i.e., two difficult or two easy
views are redundant. We observed that for intricate conditions, multiple view X-ray
inspection is required.

Recently, some algorithms based on multiple X-ray views were reported in the
literature. For example, synthesis of new X-ray images obtained from Kinetic Depth
Effect X-ray (KDEX) images based on SIFT features in order to increase detection
performance [49]; an approach for object detection in multiview dual-energy X-ray
with promising preliminary results [54]; X-ray active vision that is able to adequate
the viewpoint of the target object in order to obtain better X-ray images to ana-
lyze [61]; and tracking across multiple X-ray views in order to verify the diagnoses
performed using a single view [5, 57–59].

An example is illustrated in Fig. 8.22. A survey on explosives detection can be
found in [80, 81]. Selected approaches are summarized in Table 8.5. In baggage
screening, where human security plays an important role and inspection complexity
is very high, human inspectors are still used. For intricate conditions, multiple view
X-ray inspection using dual-energy is required.

Fig. 8.22 Detection of a handgun based on the trigger identification in multiple views [57]
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8.4.2 An Application

In this section, we present the use of an automated method based on multiple X-ray
views to recognize certain regular objects with highly defined shapes and sizes. The
method consists of two steps: ‘monocular analysis’, to obtain possible detections
in each view of a sequence, and ‘multiple view analysis’, to recognize the objects
of interest using matchings in all views. The search for matching candidates is effi-
ciently performed using a lookup table that is computed offline. In order to illustrate
the effectiveness of the proposed method, experimental results on recognizing reg-
ular objects (clips, springs and razor blades) in pen cases are shown. In this section,
we explain in further detail the proposed method. The strategy consists of two main
stages: offline and online.

Off Line Stage
The first stage, performed offline, consists of two main steps: (i) learning a model
that is used for the recognition and (ii) estimation of a multiple view geometric
model that is used for data association.

Learning: In this step, we learn a classifier h to recognize parts of the objects that
we are attempting to detect. It is assumed that there are C + 1 classes (labeled as
‘0’ for nonobject class, and ‘1’, ‘2’, . . . ‘C’ for C different objects). Images are
taken of representative objects of each class from different points of view. In order
to model the details of the objects from different poses, several keypoints per image
are detected, and for each keypoint a descriptor d is extracted using, for exam-
ple, LBP, SIFT, HOG, and SURF, among others (see Sect. 5.4). In this supervised
approach, each descriptor d is manually labeled according to its corresponding class
c ∈ {0, 1, . . . C}. Given the training data (dt , ct ), for t = 1, . . . , N , where N is the
total number of descriptors extracted in all training images, a classifier h is designed
which maps dt to their classification label ct , thus, h(dt ) should be ct . This classifier
will be used in the online stage by monocular and multiple view analysis.

Geometry: Our strategy deals with multiple monocular detections in multiple views.
In this problem of data association, the aim is to find the correct correspondence
among different views. For this reason, we use multiple view geometric constraints
to reduce the number of matching candidates between monocular detections. For an
image sequence with n views I1 . . . In , the fundamental matrices {Fij} between con-
secutive frames Ii and I j=i+1 are computed for i = 1, . . . , n − 1. In our approach,
the fundamental matrix Fij is calculated from projection matrices Pi and P j that can
be estimated using calibration (see Sect. 3.4) or bundle adjustment algorithms (see
Sect. 8.4.3).

The geometric constraints are expressed in homogeneous coordinates. Therefore,
given a point mi = [xi yi 1]T in image Ii , a corresponding point m j = [x j y j 1]T in
image I j must fulfill: (i) epipolar constraint (see Sect. 3.5.1): m j must lie near the
epipolar line � = Fijmi , and (ii) location constraint: for small variations of the point
of views between Ii and I j , m j must lie near mi . Thus, a candidate m j must fulfill:

http://dx.doi.org/10.1007/978-3-319-20747-6_5
http://dx.doi.org/10.1007/978-3-319-20747-6_3
http://dx.doi.org/10.1007/978-3-319-20747-6_3
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Fig. 8.23 Given the grid point illustrated as the red point at (x, y), in image Ii , the set of possible
corresponding points in image I j can be those grid points (yellow points) represented by the inter-
section of the epipolar region (blue rectangle) and neighborhood around (x, y) (orange circle with
radius r centered at red point). The use of grid points allows us to use a lookup table in order to
search the matching candidates in I j efficiently (Color figure online)

|mT
j Fijmi |√
�21+�22

< e and ||mi − m j || < r. (8.5)

In order to accelerate the search of candidates, we propose the use of a lookup table
as follows: Points in images Ii and I j are arranged in a grid format with rows and
columns. For each grid point (x, y) of image Ii , we look for the grid points of image
I j that fulfill (8.5), as illustrated in Fig. 8.23. Therefore, the possible corresponding
points of (x, y) will be the set Sxy = {(x p, yp)}q

p=1, where x p = X (x, y, p), yp =
Y (x, y, p) and q = Q(x, y) are stored (offline) in a lookup table. In the online
stage, given a point mi (in image Ii ), the matching candidates in image I j are those
that lie near to Sxy , where (x, y) is the nearest grid point to mi . This search can be
efficiently implemented using k-d tree structures [16].

In a controlled and calibrated environment, we can assume that the fundamental
matrices are stable and we do not need to estimate them in each new image sequence,
i.e., the lookup tables are constant. Additionally, when the relative motion of the
point of view between consecutive frames is the same, the computed fundamental
matrices are constant, i.e., Fij = F, and we need to store only one lookup table.

Online Stage
The online stage is performed in order to recognize the objects of interest in a test
image sequence of n images {Ii }, for i = 1, . . . , n. The images are acquired by
rotation of the object being tested at β degrees (in our experiments we used n = 4,
and β = 100). This stage consisted of two main steps: monocular and multiple view
analysis that will be described in further detail as follows.

Monocular Analysis: This step is performed in each image Ii of the test image
sequence, as illustrated in Fig. 8.24 in a real case. The whole object contained
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Fig. 8.24 Monocular analysis for each image of the sequence, i.e., for i = 1, . . . , n. In this
example, the class of interest is ‘razor blade’

Fig. 8.25 Multiple view analysis. An explanation of last step (final analysis) is illustrated in
Fig. 8.26

in image Ii is segmented from the background using threshold and morphologi-
cal operations. SIFT-keypoints—or other descriptors–are only extracted in the seg-
mented portion. The descriptor d of each keypoint is classified using classifier h(d)

trained in the offline stage, and explained above. All keypoints classified as class
c, where c is the class of interest, with c ∈ {1 . . . C} are selected. As we can see
in Fig. 8.24 for the classification of ‘razor blade’, there are many keypoints mis-
classified. For this reason, neighbor keypoints are clustered in the 2D space using
Mean Shift algorithm [82]. Only those clusters that have a large enough number of
keypoints are selected. They will be called detected monocular keypoints.

Multiple View Analysis: Multiple view analysis performs the recognition of objects
of interest in three steps (see Fig. 8.25): (i) data association, (ii) 3D analysis, and
(iii) final analysis. The input is the detected monocular keypoints obtained by the
mentioned monocular analysis explained above. The output is c′, the assigned class
for each detected object.

• Data Association: In this step, we find matchings for all detected monocular key-
points in all consecutive images Ii and I j=i+1, for i = 1, . . . , n − 1, as follows:
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– For each detected monocular keypoint in image Ii (located at position (xi , yi )

with descriptor di ), we seek in a dense grid of points, the nearest point (x, y)

(see red point in Fig. 8.23-left) using a k-d tree structure.
– We determine Sxy , the set of matching candidates in image I j=i+1 arranged in
a grid manner by reading the lookup table explained above (see yellow points
in Fig. 8.23-right).

– We look for the detected monocular keypoints in image I j that are located in
the neighborhood of Sxy , again using a k-d tree structure. They will be called
neighbor keypoints. When no neighbor keypoint is found, no match is estab-
lished for (xi , yi ).

– From neighbor keypoints, we select that one (located at position (x j , y j ) with
descriptor d j ) with minimum distance ||di − d j ||. In order to ensure the simi-
larity between matching points, the distance should be less than a threshold ε.
If this constraint is not satisfied, again no match is established for (xi , yi ).

• 3D analysis: From each pair of matched keypoints (xi , yi ) in image Ii and (x j , y j )

in image I j=i+1 established in the previous step, a 3D point is reconstructed using
the projection matrices Pi and P j of our geometric model (see Sect. 3.6). Simi-
larly to the monocular detection approach, neighbor 3D points are clustered in
the 3D space using Mean Shift algorithm [82], and only those clusters that have a
large enough number of 3D points are selected.

• Final analysis: For each selected 3D cluster, all 3D reconstructed points belong-
ing to the cluster are reprojected onto all images of the sequence using the projec-
tion matrices of geometric model (see Fig. 8.26). The extracted descriptors of the
keypoints located near these reprojected points are classified individually using
classifier h. The cluster will be classified as class c′ if there is a large number of
keypoints individually classified as c′, and this number represents a majority in
the cluster.
This majority vote strategy can overcome the problem of false monocular detec-
tions when the classification of the minority fails. A cluster can be misclassified
if the part that we are trying to recognize is occluded by a part of another class. In
this case, there will be keypoints in the cluster assigned to both classes; however,
we expect that the majority of keypoints will be assigned to the true class if there
are a small number of keypoints misclassified.

Experiments and Results
In our experiments, the task was to recognize three different classes of objects that
are present in a pencil case (see for example a sequence in Fig. 8.27a). These classes
are: ‘clips’, ‘springs’ and ‘razor blades’. We followed the recognition approach
explained above.

In the offline stage, we used a structure-from-motion algorithm in order to esti-
mate the projection matrices of each view.4 Additionally, in the learning phase, we
used only 16 training images of each class. Due to the small intraclass variation

4We use in our experiments a fast implementation of multiple view geometry algorithms from Balu
Toolbox [83].

http://dx.doi.org/10.1007/978-3-319-20747-6_3
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Fig. 8.26 Final analysis: using the geometric model, the reconstructed 3D points in each cluster
are reprojected in each view (blue points). The keypoints that are near to the reprojected points are
identified (red points). The descriptors of these keypoints (orange histograms) are classified using
trained classifier h. The class c′ of this cluster is determined by majority vote. In this example of
n = 4 views, only the green cluster is represented

of our classes, this number of training images was deemed sufficient. The training
objects were posed at different angles. SIFT descriptors were extracted as explained
in [84], and a k-Nearest Neighbor (KNN) classifier with k = 3 neighbors was ascer-
tained using the SIFT descriptors of the four classes.5 Other descriptors (like LBP
and HOG) and other classifiers (like SVM or KNN with other values of k) were
also tested, although the best performance was achieved with the aforementioned
configuration.

In order to illustrate step by step the online stage, the recognition of a razor blade
is illustrated in Fig. 8.27a–d for monocular analysis and in Fig. 8.27e–g for multiple
view analysis.6 It is worth mentioning that in monocular detection there are false
alarms, however, they can be filtered out after multiple view analysis. The reason
is because false alarms cannot be tracked in the sequence or because the tracked
points, when validating the corresponding points in other views of the sequence, do
not belong to the class of interest. Other results with some degree of overlap, where
the task was the recognition of springs and clips, are illustrated in Fig. 8.28.

5We used in our experiments fast implementations of SIFT and KNN (based on k-d tree) from
VLFeat Toolbox [85].
6We used in our experiments a fast implementation of Mean Shift from PMT Toolbox [86].
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Fig. 8.27 Recognition of a razor blade using our approach. a original sequence, b keypoints, c
classified keypoints, d detected monocular keypoints, e matched keypoints, f reprojected 3D points
(blue) and neighbor keypoints (red), and g final detection

Testing experiments were carried out by recognizing the three mentioned classes
(‘clips’, ‘springs’, and ‘razor blades’) in 45 different sequences of 4 views (15
sequences for each class).7 The size of an individual image was 1,430 × 900 pix-
els. In these experiments there were 30 clips, 75 springs, and 15 razor blades to be
recognized. A summary of the results using the proposed algorithm is presented in
Table 8.6, in which the performance in the recognition of each class is presented
in two different parts of our algorithm: after monocular analysis (Mono) and after
multiple view analysis (Multi). These parts are illustrated in Fig. 8.27d, g, respec-
tively, for a razor blade. In this table, ground truth (GT) is the number of exist-
ing objects to be recognized. The number of detected objects by our algorithm is

7The images tested in our experiments come from public GDXray database [87].
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Fig. 8.28 Recognition using our approach in cases with some degree of overlap: a one spring,
b two springs, c one clip, and d one clip. Each figure shows a part of one image of the whole
sequence

Table 8.6 Recognition performance

Class Mono Multi

TP FP GT TP FP GT

Clip 114 127 120 26 2 30

Spring 263 30 300 71 3 75

Blade 59 18 60 14 0 15

Total 436 175 480 111 5 120

PR [%] 71.4 95.7

RE [%] 90.8 92.5

D = TP + FP, including false positives (FP) and true positives (TP). Ideally, FP =
0 and TP = GT. In our experiments, precision (PR), computed as PR = TP/D, is
71.4 and 95.7% in each part; and recall (RE), computed as RE = TP/GT, is 90.8
and 92.5% in each step. If we compare single versus multiple view detection, both
precision and recall are incremented. Precision, however, is drastically incremented
because our approach achieves good discrimination from false alarms.

The amount of time required in our experiments was about 15min for the offline
stage and about 16 s for testing each sequence on a iMac OS X 10.7.3, proces-
sor 3.06GHz Intel Core 2 Duo, 4GB 1,067MHz DDR3 memory. The code of the
program—implemented in Matlab—is available on our website.

Conclusions
In this section, we presented a new method that can be used to recognize cer-
tain parts of interest in complex objects using multiple X-ray views. The proposed
method filters out false positives resulting from monocular detection performed on
single views by matching information across multiple views. This step is performed
efficiently using a lookup table that is computed offline. In order to illustrate the
effectiveness of the proposed method, experimental results on recognizing regular
objects—clips, springs and razor blades—in pen cases are shown achieving around
93% accuracy in the recognition of 120 objects. We believe that it would be possible
to design an automated aid in a target detection task using the proposed algorithm. In
our future work, the approach will be tested in more complex scenarios recognizing
objects with a larger intraclass variation.
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8.4.3 An Example

In this example, we show how to detect objects in a noncalibrated image sequence
as illustrated in Fig. 8.30. The approach has two parts: structure estimation and
parts detection. The approach follows the same strategy of method explained in
Sect. 8.2.2.

Structure Estimation
In case the X-ray imaging system is not calibrated, a geometric model must be
estimated. The estimation of the geometric model is based on well-known structure-
from-motion (SfM) methodologies. For the sake of completeness, a brief description
of this model is presented here. In our work, SfM is estimated from a sequence
of m images taken from a rigid object at different viewpoints. The original image
sequence is stored in m images J1, . . . , Jm .

Keypoints: For each image, SIFT keypoints are extracted because they are very
robust against scale, rotation, viewpoint, noise, and illumination changes [84]. Thus,
not only a set of 2D image positions x, but also descriptors y, are obtained. Although
this method is based on SIFT descriptors, there is no limitation to use other descrip-
tors, e.g., SURF [88].

Image Sorting: If the images are not sorted, a visual vocabulary tree is constructed
for fast image indexing. Thus, a new image sequence I1, . . . , Im is established from
J1, . . . , Jm by maximizing the total similarity defined as

∑
sim(Ii , Ii+1), for i =

1, . . . , m − 1, where the similarity function ‘sim’ is computed from a normalized
scalar product obtained from the visual words of the images [89]. See an example
in Fig. 8.29a, b.

Matching Points: For two consecutive images, Ii and Ii+1, SIFT keypoints are
matched using the algorithm suggested by Lowe [84] that rejects too ambiguous
matches. Afterwards, the Fundamental Matrix between views i and i + 1, Fi,i+1,
is estimated using RANSAC [14] to remove outliers. If keypoint k of Ii is matched
with keypoint k′ of Ii+1, the match will be represented as xi,k → xi+1,k′ .

Structure Tracks: We look for all possible structure tracks—with one keypoint in
each image of sequence—that belong to a family of the following matches:

x1,k1 → x2,k2 → x3,k3 → · · · → xm,km .

There are many matches that are eliminated using this approach, however, having a
large number of keypoints there are enough tracks to perform the bundle adjustment.
We define n as the number of tracks.

Bundle Adjustment: The determined tracks define n image point correspondences
over m views. They are arranged as xi, j for i = 1, ..., m and j = 1, . . . , n. Bundle
adjustment estimates 3D points X̂ j and camera matrices Pi so that

∑ ||xi, j − x̂i, j ||
is minimized, where x̂i, j is the projection of X̂ j by Pi . If n ≥ 4, we can use the
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Fig. 8.29 Detection of objects in a pencil case using the proposed method: a Unsorted sequence
with six X-ray images. The images are sorted according to their similarity (see arrows). b Sorted
sequence, keypoints (points) and structure-from-motion (lines across the sequence). c Detection in
the sequence and tracked regions. d Detection of parts of interest in the last image in the sequence
(three of them are used in this example to illustrate the next subfigures). e Tracked example regions
in each view of the sequence (1: pencil sharpener, 2: clip and 3: zipper slider body and pull-tab)
(→ Example 8.3 )

factorization algorithm [14] to perform an affine reconstruction because for our
purposes the affine ambiguity of 3D space is irrelevant.8 This method gives a fast
and closed-form solution using SVD decomposition. A RANSAC approach is used
to remove outliers.

Multiple View Tensors: Bundle adjustment provides a method for computing bifocal
and trifocal tensors from projection matrices Pi [14], that will be used in the next
section.

Parts Detection
In this section, we give details of the algorithm that detects the object parts of inter-
est. The algorithm consists of four steps: segmentation, description, tracking, and
analysis as shown in Fig. 8.30.

Segmentation: Potential regions of interest are segmented in each image Ii of the
sequence. It is an ad-hoc procedure that depends on the application. For instance,
one can be interested in detecting razor blades or pins in a bag, or flaws in a material,
etc. This step ensures the detection of the object parts of interest allowing false
detections. The discrimination between these two classes takes place by tracking
them across multiple views (see steps 2c and 2d). In our experiments, we tested
three segmentation approaches.

• Spots detector: The X-ray image is filtered using a 2D median filter. The differ-
ence between original and filtered images is thresholded obtaining a binary image.
A potential region r is segmented if size, shape, and contrast criteria are fulfilled.

8In this problem, the projective factorization can be used as well [14], however, our simplifying
assumption is that only small depth variations occur and an affine model may be used.



8.4 Baggage 307

Fig. 8.30 Block diagram of
the proposed approach

This approach was used to detect small parts (like pen tips or pins in a pencil
case).

• Crossing line profile (CLP): Laplacian-of-Gaussian edges are computed from the
X-ray image. The closed and connected contours of the edge image define region
candidates. Gray-level profiles along straight lines crossing each region candidate
in the middle are extracted. A potential region r is segmented if the profile that
contains the most similar gray levels in the extremes fulfills contrast criteria [90].
This approach was used to detect discontinuities in a homogeneous material, e.g.,
flaws in automotive parts.

• SIFT matching: SIFT descriptors are extracted from the X-ray image. They are
compared with SIFT descriptors extracted from the image of a reference object
of interest. A potential region r is segmented if the descriptors fulfill similarity
criteria [84, 91]. This approach was used to detect razor blades in a bag.
Other general segmentation approaches can be used as well. For example, meth-
ods based on saliency maps [48], Haar basis features [44], histogram of oriented
gradients [45], corner detectors [47], SURF descriptors [88], Maximally Stable
regions [92], Local Binary Patterns [93], etc.

Description: Each segmented potential region r is characterized using a SIFT
descriptor. The scale of the extracted descriptor, i.e., the width in pixels of the spa-
tial histogram of 4× 4 bins is set to

√
Ar , where Ar is the corresponding area of the

region r .

Tracking and Analysis: The tracking and analysis algorithms were covered in detail
in Sect. 8.2.2. Results are shown in Fig. 8.29.
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Matlab Example 8.3 The approach explained in this section is implemented
in Graphic User Interface (Xtrgui (see Appendix B)) of XVIS Toolbox. In this
example, we show how to detect objects in a pen case. For this end we have six
different views of the object. The parameters of the algorithm are stored in file
pencase.mat. Thus, we use an MSER approach to segment the potential objects.

Listing 8.3 : Detection of objects in a pen case

% DemoXtrgui.m
% 1. Run Xtrgui
% 2. Load pencase.mat
% 3. Press botton ’Search’
% 4. Select ’all objects’ and ’all frames’

The output of this code is shown in Figs. 8.31 and 8.29. �

Fig. 8.31 Detection of objects in a pen case using graphic user interface Xtrgui (see Appendix B)
of XVIS Toolbox. In this example, we can see the zipper slider body and pull-tab in six different
views (→ Example 8.3 )
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8.5 Natural Products

In order to ensure food safety inspection, several applications have been developed
by the natural products industry. The difficulties inherent in the detection of defects
and contaminants in food products have limited the use of X-ray into the packaged
foods sector. However, the need for NDT has motivated a considerable research
effort in this field spanning many decades [95].

8.5.1 State of the Art

The most important advances are: detection of foreign objects in packaged foods
[96]; detection of fish bones in fishes [94]; identification of insect infestation in
citrus [97]; detection of codling moth larvae in apples [95]; fruit quality inspection
like split-pits, water content distribution and internal structure [98]; and detection of
larval stages of the granary weevil in wheat kernels [99]. In these applications, only
single view analysis is required. An example is illustrated in Fig. 8.32. A survey can
be found in [95]. In Table 8.7, some applications are summarized.

8.5.2 An Application

In countries where fish is often consumed, fish bones are some of the most fre-
quently ingested foreign bodies encountered in foods. In the production of fish fil-
lets, fish bone detection is performed by human inspection using their sense of touch
and vision which can lead to misclassification. Effective detection of fish bones in
the quality control process would help avoid this problem. For this reason, an X-
ray machine vision approach to automatically detect fish bones in fish fillets was

Fig. 8.32 Detection of fish bones using sliding-windows [94]
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Fig. 8.33 Segmentation of potential fish bones: a Convolution mask H in space domain, b orig-
inal X-ray image X of a salmon fillet, c filtered image Z, d potential fish bones image P after
thresholding and removing objects deemed too small

developed. This section describes our approach to detect fish bones automatically
and the corresponding experiments with salmon and trout fillets based on [94].

Preprocessing and Segmentation
The fish bones are only present in certain space frequencies of the spectrum: they
are not too thin (minimal 0.5mm) nor too thick (maximal 2mm). The segmentation
of potential fish bones is based on a band-pass filter to enhance the fish bones with
respect to their surroundings as shown in Fig. 8.33. The proposed approach to detect
potential fish bones has four steps:

Enhancement: The original X-ray image X (Fig. 8.33b) is enhanced linearly by
modifying the original histogram in order to increase contrast [106]: The enhanced
image Y is

Y = aX + b (8.6)
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Band-Pass Filtering: The enhanced image Y is filtered using a radial symmet-
ric 17×17 pixels mask H (Fig. 8.33a). Mask H was estimated from twenty X-ray
images by minimizing the error rate as mention in [107] and applied to fish bones
(all fish bones should be found and there should be no false alarms). The filtered
image Z (Fig. 8.33c) is then the convolution of Y with mask H:

Z = Y ∗ H (8.7)

Thresholding: Those pixels in Z that have gray values greater than a certain thresh-
old θ are marked in a binary image B. The threshold is defined to ensure that all
fish bones are detected, i.e., false alarms are allowed in this step. The pixels of B are
defined as

Bij =
{
1 if Zij > θ

0 else
(8.8)

Removal of Small Objects: All connected pixels in B containing fewer than A pixels
are removed as shown in Fig. 8.33d. This image, called P, defines the potential fish
bones.

Feature Extraction, Selection, and Classification
The segmented potential fish bones—contained in image P—are divided into small
10×10 pixels windows called detection windows. In a training phase, using a priori
knowledge of the fish bones, the detection windows are manually labeled as one
of two classes: bones and no-bones. The first class corresponds to those regions
where the potential fish bones are indeed fish bones. Alternatively, the second class
corresponds to false alarms. Intensity features of the enhanced X-ray image Y are
extracted for both classes. We use enhanced image Y, instead of preprocessed image
X, because after our experiments the detection performance was higher. Features
extracted from each area of an X-ray image region are divided into four groups
as shown in Sect. 8.3.2. In these experiments, 279 features are extracted from each
detection window. Afterwards, the features are selected in order to decide on the
relevant features for the two defined classes. In addition, a classifier is designed. The
best results, after evaluation a 10-fold cross-validation was achieved by Sequential
Forward Selection (as feature selection technique) and Support Vector Machine with
RBF kernel (as classifier).

Experimental Results
First, the proposed method was tested with 20 representative salmon fillets obtained
at a local fish market. The average size of these fillets was 15×10 cm2. According
to preprocessing and segmentation techniques explained above, several regions of
interest were obtained where fish bones could be located. The area occupied by
these regions of interest corresponds to approx. 12% of the salmon fillets as shown
in Fig. 8.33.

From the mentioned regions of interest 7,697, detection windows of 10×10 pix-
els were obtained (available in series N0003 ofGDXray). Each window was labeled
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with ‘1’ for class bones and ‘0’ for no–bones (see file labels.txt in directory of
N0003). From each window, 279 features were extracted. After the feature extrac-
tion, 75% of the samples from each class were randomly chosen to perform the
feature selection. The best performance was achieved using Sequential Forward
Selection. 24 features were selected. The features gave information about the spatial
distribution of pixels, i.e., how coarse or fine the texture is. The selected features cor-
respond mainly to statistical features (12) and filter banks (7), however, it is worth
nothing that the two most discriminative features are LBP features (in this case LBP
48 and LBP 11). On the other hand, from the standard features there is only one
feature (standard deviation of the intensity) (Fig. 8.34).

In order to investigate the sensibility (Sn) and 1-specificity (1 − Sp) of the fish
bones depending on their largeness, three size groups were constructed: large for
fish bones larger than 12mm, small for fish bones smaller than 8.5mm, and medium
for fish bones between both sizes. In this experiment, 3,878 fish bones were manu-
ally selected. The performance was calculated using a cross-validation with 5-folds.
The results are summarized in Fig. 8.35. All medium and large fish bones were
detected (with 1− Sp = 0 and 3%, respectively), whereas 93% of small fish bones
were correctly detected with 1−Sp = 6%. This means that cross-validation yielded
a detection performance of 100, 98.5 and 93.5% (computed using (Sn + Sp)/2) for
large, medium and small fish bones, respectively.

Finally, in order to validate the proposed methodology, the last experiment was
carried out using representative fish bones and representative trout fillets provided
by a Chilean salmon industry. The size of the fish bones were between 14 and 47mm
(larger than the small-size and mid-size groups considered above). The fish bones
were arranged in strips that were superimposed onto trout fillets. Thus, the number
of fish bones to be detected was a priori known. According to the absorption law, an
X-ray image of a fillet with a fish bone inside, and an X-ray image with a fish bone
laid on the fillet top are almost identical. Similar methodologies are used in indus-
trial X-ray inspection of materials in order to simulate discontinuities [17]. The only
difference could be that the position of a real fish bone (inside of a fillet) achieves
a more realistic location related to the fish tissues, however, after our experience,
the obtained images were found to be very similar. Figure 8.36 shows the detection
of one fish bone strip on a trout fillet. Using the same classifier trained in the last
experiment, i.e., no new training was necessary, the proposed method was able to
detect all fish bones with a 1% false positive rate. In this case, 15 X-ray images
were tested, with 459 bones and 10,413 no-bones.

Conclusion
The need for more information on the quality control of several fish types by means
of quantitative methods can be satisfied using X-ray testing, a nondestructive tech-
nique that can be used to objectively measure intensity and geometric patterns in
nonuniform surfaces. In addition the method can also determine other physical fea-
tures such as image texture, morphological elements, and defects in order to auto-
matically determine the quality of a fish fillet. The promising results outlined in this
work show that a very high classification rate was achieved in the quality control
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Fig. 8.34 Results obtained in four X-ray images. The columns correspond to enhanced images,
class ified fish bones and post processed fish bones. The first row corresponds to the example shown
in Fig. 8.33

of salmon and trout when using a large number of features combined with efficient
feature selection and classification. The key idea of the proposed method was to
select, from a large universe of features, only those features that were relevant for the
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Fig. 8.35 Results obtained on 3,878 samples using cross-validation with five folds

separation of the classes. Cross-validation yielded a detection performance of 100,
98.5 and 93.5% for large, medium, and small fish bones, respectively. The proposed
method was validated on trout with representative fish bones provided by a Chilean
salmon industry yielding a performance of 99%. Although the method was vali-
dated with salmon and trout fillets only, we believe that the proposed approach opens
new possibilities not only in the field of automated visual inspection of salmons and
trout, but also in other similar fish.

8.5.3 An Example

In order to illustrate the methodology explained in the previous section, the reader
can see Example 6.9, where the whole process is presented. In this example, 200
small X-ray images (100× 100 pixels) of salmon filets, 100 with fish bones, and 100
without fish bones are used. The images are available in series N0002 of GDXray.

8.6 Further Applications

There are many applications in which X-rays can be used as a NDT and E method.
In this section, we mention only cargos and electronic circuits.

http://dx.doi.org/10.1007/978-3-319-20747-6_6
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Fig. 8.36 Results obtained on a trout fillet using a fish bone strip with 33 fish bones: a strip, b
strip over the fillet, c X-ray image, d segmentation, e classification, and f post-processing. All fish
bones were detected (Sn = 1), in this example there was no false alarm (1 − Sp = 0)

Fig. 8.37 X-ray image of a cargo. Collected by U.S. Customs and Border Protection a bureau of
the United States Department of Homeland Security, via Wikimedia Commons

8.6.1 Cargo Inspection

With the ongoing development of international trade, cargo inspection becomes
more and more important. X-ray testing has been used for the evaluation of the con-
tents of cargo, trucks, containers, and passenger vehicles to detect the possible pres-
ence of many types of contraband. See an example in Fig. 8.37. Some approaches
are presented in Table 8.8. There still is not much research on cargo inspection, and
the complexity of this inspection task is very high. For this reason, X-ray systems
are still only semiautomatic, and they require human supervision.
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Fig. 8.38 X-ray image of a printed circuit board. By SecretDisc (Own work) via Wikimedia Com-
mons

8.6.2 Electronic Circuits

In this industrial application of X-rays, the idea is to inspect circuit boards or inte-
grated circuits in order to detect flaws in manufacturing, e.g., broken traces, miss-
ing components, cracks, dilapidations, etc. An example is shown in Fig. 8.38. Some
approaches are presented in Table 8.9. In this area, automated systems are very effec-
tive, and the inspection task is very fast and obtains a high performance.

8.7 Summary

In this chapter, relevant applications on X-ray testing were described. We covered
X-ray testing in:

• Castings: To ensure the safety of the construction of automative parts, it is nec-
essary to check every part thoroughly using X-ray testing. We presented the state
of the art, a defect detection approach based on a tracking principle, and a Matlab
implementation of a classifier that is able to defect casting defects in single X-ray
images.

• Welds: In welding processes, a mandatory inspection using X-ray testing is
required in order to detect defects like porosity, inclusion, lack of fusion, lack
of penetration and cracks. We presented the state of the art, a defect detection
approach based on sliding-windows, and a Matlab implementation of a classifier
that is able to detect defects using sliding-windows methodology in single X-ray
images.

• Baggage: In baggage screening, every piece of luggage must be inspected using
X-ray testing in order to detect dangerous objects. We presented the state of the
art, a recognition approach based on multiple view analysis, and a Matlab imple-
mentation of tracking principle that is able to detect objects in the sequence X-ray
images of a pen case.

• Natural products: We presented some applications of X-ray testing in natural
products, such as inspection of fruit, identification of infections and detection of
fish bones. We reviewed the state of the art, a fish bones detection approach based
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on sliding-windows, and a Matlab implementation of a classifier that is able to
detect fish bones in cropped images with and without fish bones.

• Others: There are several industrial applications that use X-ray testing. We men-
tioned only cargos and electronic circuits giving some references of the state of
art.
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Appendix A
GDXray Details

In this appendix we show the details of each series of GDXray. The database con-
sists of 19,407 X-ray images. The images are organized in a public database called
GDXray that can be used free of charge,1 for research and educational purposes
only. The database includes five groups of X-ray images: castings, welds, baggages,
natural objects, and settings. Each group has several series and each series has sev-
eral X-ray images. The most of the series are annotated or labeled. In those cases,
the coordinates of the bounding boxes of the objects of interest or the labels of the
images are available in standard text files. The size of GDXray is 3.5GB and it can
be downloaded from our website.

The details of each series are summarized in following tables: TableA.1 for natural
objects, TableA.2 for castings, TableA.3 for baggages, TableA.4 for welds and
TableA.5 for setting X-ray images. See more about GDXray in Chap.2.

1Available on http://dmery.ing.puc.cl/index.php/material/gdxray.
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Table A.1 Description of group ‘Nature’ of GDXray

Series Images kpixels Description Additional

N0001 13 5935.1 Apples

N0002 200 10.0 Cropped images of 100 ×
100 pixels for fish bone
detection

Labels

N0003 7,697 0.1 Cropped images of 10 × 10
pixels for fish bone detection

Labels

N0004 20 143.3 Static noisy images of a
wood piece

N0005 9 4076.7 Apples Annotations for apples

N0006 27 5935.1 Cherries Annotations for cherries

N0007 8 5935.1 Cherries Annotations for cherries

N0008 3 5935.1 Kiwis Annotations for cherries

N0009 39 585.0 Wood pieces

N0010 99 83.6 Wood pieces

N0011 163 5935.1 Salmon filets

N0012 6 5935.1 Selected 6 images of N0011 Annotation for fish bones.
See N0013

N0013 6 5935.1 Binary ideal segmentation
of N0012

Original images in N0012

Table A.2 Description of group ‘Castings’ of GDXray

Series Images kpixels Description Additional

C0001 72 439.3 Wheel: Rotation each 5
degrees

Annotations for defects,
calibration

C0002 90 44.5 Crops of C0001 with and
without defects

Annotations for defects

C0003 37 439.3 Wheel with slow rotation

C0004 37 439.3 Wheel with medium
rotation. No defects

C0005 37 439.3 Wheel with fast rotation. No
defects

C0006 37 439.3 Wheel with medium
rotation. No defects

C0007 37 439.3 Wheel with medium rotation

C0008 37 439.3 Wheel with medium
rotation. Large defect

Annotations for defects

C0009 37 439.3 Wheel with medium rotation

C0010 37 439.3 Wheel with medium
rotation. Large defect

Annotations for defects

(continued)
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Table A.2 (continued)

Series Images kpixels Description Additional

C0011 37 439.3 Wheel with medium rotation

C0012 37 439.3 Wheel with medium
rotation. No defect

C0013 37 439.3 Wheel with medium
rotation. No defect

C0014 37 439.3 Wheel with medium
rotation. Defect at axis

C0015 37 439.3 Wheel with medium
rotation. Defect at axis

Annotations for defects

C0016 37 439.3 Wheel with medium
rotation. Defect at edge

C0017 37 439.3 Wheel with medium
rotation. Defect at edge

C0018 37 439.3 Wheel with no defect

C0019 37 439.3 Wheel with hidden defect Annotations for defects

C0020 37 439.3 Wheel with possible defect
at lateral side

C0021 37 439.3 Wheel with many small
drilled defects

Annotations for defects

C0022 37 439.3 Wheel with letters at lateral
side

C0023 37 439.3 Wheel with no defect

C0024 37 439.3 Wheel with defects at the
lateral side

Annotations for defects

C0025 37 439.3 Wheel with defects like a
regular structure

C0026 37 439.3 Wheel with large hidden
defects

Annotations for defects

C0027 37 439.3 Wheel with no defect

C0028 37 439.3 Wheel with no defect

C0029 37 439.3 Wheel with no defect
(lateral side)

Annotations for regular
structure

C0030 37 439.3 Wheel with defect in its axis Annotations for defects

C0031 37 439.3 Wheel with several defects Annotations for defects

C0032 37 439.3 Wheel with several defects Annotations for defects

C0033 37 439.3 Wheel with several defects Annotations for defects

C0034 37 439.3 Wheel with defects. No
motion

Annotations for defects

C0035 37 439.3 Wheel with large defect Annotations for defects

C0036 37 439.3 Wheel with letters at lateral
side

Annotations for letters

(continued)
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Table A.2 (continued)

Series Images Kpixels Description Additional

C0037 37 439.3 Wheel with large defect on
an edge

Annotations for defects

C0038 37 439.3 Wheel with hidden defect Annotations for defects

C0039 37 439.3 Wheel with hidden defect Annotations for defects

C0040 37 439.3 Wheel with hidden defect Annotations for defects

C0041 37 439.3 Wheel with defects. No
motion

Annotations for defects

C0042 37 439.3 Wheel with several defects
in motion

Annotations for defects

C0043 37 439.3 Wheel with large defect at
axis

Annotations for defects

C0044 66 65.5 Wheel with small drilled
defects

C0045 66 65.5 Wheel with small drilled
defects

Annotations for defects

C0046 65 65.5 Wheel with small drilled
defects

C0047 72 65.5 Wheel with small drilled
defects

Annotations for defects

C0048 71 65.5 Wheel with small drilled
defects

C0049 63 65.5 Wheel with small drilled
defects

C0050 54 65.5 Wheel with small drilled
defects

C0051 77 65.5 Wheel with small drilled
defects

Annotations for defects

C0052 17 440.8 Knuckle with small defects
in motion

C0053 31 440.8 Knuckle with small defects
in motion

C0054 31 440.8 Knuckle with low contrast
defects in motion

Annotations for defects

C0055 28 440.8 Sink strainer Annotations for holes

C0056 10 440.8 Sink strainer high speed

C0057 31 440.8 Knuckle with low contrast
defects in motion

Annotations for defects

C0058 56 440.8 Knuckle with small defects
in motion

C0059 43 440.8 Knuckle with small defects
in motion

C0060 14 440.8 Knuckle with small defects
in motion

Annotations for defects

(continued)
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Table A.2 (continued)

Series Images kpixels Description Additional

C0061 31 440.8 Knuckle with small defects
in motion

C0062 10 440.8 Knuckle with small defects
in motion

Annotations for defects

C0063 11 440.8 Knuckle with small defects
in motion

C0064 56 440.8 Knuckle with small defects
in motion

C0065 10 440.8 Knuckle with small defects
in motion

Annotations for defects

C0066 52 440.8 Knuckle with small defects
in motion

C0067 83 440.8 Knuckle with small defects
in motion

Table A.3 Description of group ‘Baggages’ of GDXray

Series Images kpixels Description Additional

B0001 14 5935.1 Pen case with several objects Annotations for razor blades

B0002 9 1287.0 Pen case with several objects Annotations for razor blades

B0003 10 1287.0 Pen case with several objects Annotations for clips

B0004 9 722.5 Pen case with occluded
razor blade

Annotations for razor blades

B0005 10 722.5 Pen case with several objects Annotations for pins

B0006 10 722.5 Pen case with occluded
razor blade

Annotations for razor blades

B0007 20 129.6 Razor blade for training
purposes

B0008 361 745.8 Rotation of a knife in 1◦

B0009 4 276.6 Backpack with handgun Annotations for handguns

B0010 11 276.6 Backpack with handgun Annotations for handguns

B0011 10 276.6 Backpack with handgun Annotations for handguns

B0012 4 276.6 Backpack with handgun Annotations for handguns

B0013 10 276.6 Backpack with handgun and
knife

Annotations for knives

B0014 5 276.6 Backpack with handgun and
camera

Annotations for handguns

B0015 5 276.6 Backpack with handgun Annotations for handguns

B0016 4 276.6 Backpack with
self-occluded handgun

Annotations for handguns

B0017 5 276.6 Backpack with occluded
handgun

Annotations for handguns

(continued)
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Table A.3 (continued)

Series Images kpixels Description Additional

B0018 4 276.6 Backpack with handgun and
laptop

Annotations for handguns

B0019 6 276.6 Backpack with handgun and
laptop

Annotations for handguns

B0020 4 276.6 Backpack with handgun Annotations for handguns

B0021 4 276.6 Backpack with handgun Annotations for handguns

B0022 6 276.6 Backpack with handgun Annotations for handguns

B0023 6 276.6 Backpack with handgun Annotations for handguns

B0024 5 276.6 Backpack with handgun Annotations for handguns

B0025 4 276.6 Backpack with handgun Annotations for handguns

B0026 5 276.6 Backpack with handgun Annotations for handguns

B0027 5 276.6 Backpack with handgun Annotations for handguns

B0028 5 276.6 Backpack with handgun and
laptop

Annotations for handguns

B0029 7 276.6 Backpack with handgun and
laptop

Annotations for handguns

B0030 7 276.6 Backpack with handgun Annotations for handguns

B0031 4 276.6 Backpack with handgun and
laptop

Annotations for handguns

B0032 4 276.6 Backpack with handgun Annotations for handguns

B0033 5 276.6 Backpack with occluded
handgun

Annotations for handguns

B0034 6 276.6 Backpack with handgun and
laptop

Annotations for handguns

B0035 4 276.6 Backpack with handgun and
laptop

Annotations for handguns

B0036 11 276.6 Backpack with
self-occluded handgun

Annotations for handguns

B0037 11 276.6 Backpack with handgun Annotations for handguns

B0038 11 276.6 Backpack with handgun Annotations for handguns

B0039 9 276.6 Backpack with handgun Annotations for handguns

B0040 12 276.6 Backpack with handgun Annotations for handguns

B0041 10 276.6 Backpack with handgun Annotations for handguns

B0042 19 276.6 Backpack with handgun and
knives

Annotations for handguns

B0043 9 276.6 Backpack with handgun and
camera

Annotations for handguns

B0044 178 5935.1 Backpack with handgun Calibration parameters

B0045 90 1287.0 Pen case in 90 positions Annotations for razor blades

B0046 200 5844.0 Backpack with handgun Annotations for handguns

B0047 200 5896.9 Backpack with shuriken Annotations for shuriken

(continued)
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Table A.3 (continued)

Series Images kpixels Description Additional

B0048 200 5412.0 Backpack with razor blade Annotations for razor blade

B0049 200 759.5 Handguns for training
purposes

B0050 100 741.3 Shuriken for training
purposes

B0051 100 165.6 Razor blades for training
purposes

B0052 144 741.3 Shuriken with 8 points for
training purposes

B0053 144 741.3 Shuriken with 7 points for
training purposes

B0054 144 741.3 Shuriken with 6 points for
training purposes

B0055 800 16.9 200 4-image sequences of
single objects

Labels

B0056 1200 18.1 200 6-image sequences of
single objects

Labels

B0057 1600 18.0 200 8-image sequences of
single objects

Labels

B0058 64 196.6 Crops of clips, springs, razor
blades and others

Labels. See B0059

B0059 64 196.6 Binary ideal segmentation
of images of B0058

Labels. Original images in
B0058

B0060 2 5935.1 Images for dual-energy
experiments

Annotations for shuriken

B0061 21 3656.8 Razor blade in a can

B0062 22 3656.8 Razor blade in a wallet

B0063 19 3656.8 Razor blade in a CD case Annotations for razor blades

B0064 19 3656.8 Razor blade in a pen case

B0065 21 3656.8 Razor blade in a pen case Annotations for razor blades

B0066 22 3656.8 Razor blade in a pen case

B0067 17 2856.1 Razor blade in a wallet Annotations for razor blades

B0068 20 2856.1 Razor blade in a large wallet

B0069 25 2856.1 Razor blade in a pen case

B0070 21 2856.1 Razor blade in a pen case Annotations for razor blades

B0071 22 2856.1 Razor blade in a pen case

B0072 22 2856.1 Razor blade in a small pen
case

B0073 20 2856.1 Razor blade in a can Annotations for razor blades

B0074 37 2856.1 Rotation of a door key in 10◦

B0075 576 5935.1 Knife in 576 positions

B0076 576 1581.8 Knife in 576 positions

B0077 576 1582.6 Knife in 576 positions
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Table A.4 Description of group ‘Welds’ of GDXray

Series Images kpixels Description Additional

W0001 10 3323.8 Selection of 10 images of
W0003

Annotations for defects. See
W0002

W0002 10 3323.8 Binary ideal segmentation
of images of W0001

W0003 68 6693.8 Radiographs from a round
robin test performed by
BAM

Excel file with real-values

Table A.5 Description of group ‘Settings’ of GDXray

Series Images kpixels Description Additional

S0001 18 5935.1 Checkerboard captured by
flat panel

Calibration parameters

S0002 1 427.9 Regular grid captured by
image intensifier

Coordinates of calibration
points

S0003 36 440.8 Circular pattern in different
positions

Manipulator coordinates, 3D
coordinates

S0004 23 440.8 Circular pattern in different
positions

Manipulator coordinates, 3D
coordinates

S0005 27 440.8 Circular pattern in different
positions

Manipulator coordinates, 3D
coordinates

S0006 17 440.8 Circular pattern in different
positions

Manipulator coordinates, 3D
coordinates

S0007 29 440.8 Circular pattern in different
positions

Coordinates of calibration
points (2D and 3D)



Appendix B
XVIS Toolbox: Quick Reference

Every function is available on http://web.ing.puc.cl/~dmery/xvis/function_name.m.
In this appendix we show the details of the commands of XVIS Toolbox. The

toolbox consists of approximately 150 functions that are divided into 8 groups:
input and output (see TableB.1), geometry (see TableB.2), image processing (see
TableB.3), feature extraction (see TableB.4), feature analysis and feature selec-
tion (see TableB.5), classification (see TableB.6), performance evaluation (see
TableB.7), and simulation (see TableB.8). XVIS Toolboxcan be downloaded from
our webpage.2

For the installation of XVIS Toolbox, please follow these steps:

1. Download zip file from our webpage (see footnote 2).
2. Unzip zip file to the desired location of the toolbox.
3. Start Matlab.
4. Change into the folder used in step 2
5. Execute Xsetup

XVIS Toolbox does not need any compilation. The installation just add the com-
mands to search path of Matlab.

2http://dmery.ing.puc.cl/index.php/book/xvis/.
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Table B.1 Input and output

Function Description

Xannotate GUI for annotation

Xbinview Display of a binary image superimposed onto a gray scale image

Xcolorimg Display 10 colored representations of a gray scale image

Xdecisionline Display a 2D feature space and decision line

Xdrawellipse Draw an ellipse

Xdualenergy Display a dual-energy image

Xdyncolor Dynamic pseudocolor representations of a gray scale image

Xgdxannotate Interactive environment for annotation of GDXray images

Xgdxbrowse GUI for browsing GDXray series and images

Xgdxdir Name of directory of a group and series of GDXray

Xgdxrandom Display random images of GDXray

Xgdxstats Count number of X-ray images on GDXray database

Xloaddata Load data from GDXray

Xloadimg Load an image from GDXray

Xplotepipolarline Plot epipolar line

Xplotfeatures Plot features and feature space

Xplotroc Plot ROC curve and fit to an exponential curve

Xprintfeatures Display feature values

Xpseudocolor Color a gray scale image

XshowGT Display ground truth of a GDXray series

Xshowconfusion Display confusion matrix

Xshowseries Display X-ray images of a GDXray series

Xsincolormap Sin color map for pseudo coloring

Table B.2 Geometry

Function Description

Xfundamental Fundamental matrix

Xh2nh Conversion homogeneous to non-homogeneous coordinates

Xhyperproj Hyperbolic projection model

Xmatrixp Perspective proyection matrix 3D->2D

Xmatrixr2 2D rotation matrix

Xmatrixr3 3D rotation matrix

Xreco3d2 3D reconstruction for two views

Xreco3dn 3D reconstruction for n>1 views

Xreproj3 Reprojection of third view using trifocal tensors

Xtrgui GUI for tracking algorithm

Xtrifocal Trifocal tensors
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Table B.3 Image processing

Function Description

Xforceuni Enhancement ensuring an uniform histogram

Xgradlog Edge detection using LoG and gradient

Ximaverage Linear average filtering

Ximgaussian Gaussian filtering

Ximgrad Image gradient

Ximmedian Median filtering

Xlinimg Linear enhancement

Xregiongrowing Region segmentation using growing region algorithm

Xresminio Image restoration using MINIO criterium

Xsaliency Center surround saliency image

Xsegbimodal Segmentation in bimodal images

Xseglogfeat Segmentation of regions using LoG edge detection

Xsegmser Segmentation using MSER algorithm

Xsegsliwin Segmentation using sliding windows

Xshading Shading correction

Table B.4 Feature extraction

Function Description

Xbasicgeo Standard geometric features of a binary image

Xbasicint Basic intensity features

Xbsif Binarized statistical image features (BSIF)

Xcentroid Centroid of a region

Xclp Crossing line profiles (CLP)

Xcontrast Contrast features

Xdct 2D DCT features

Xfitellipse Fit ellipse for the boundary of a binary image

Xflusser Flusser moments

Xfourier 2D Fourier features

Xfourierdes Fourier descriptors

Xfxall Pixel values of all pixels

Xfxbuild Build structure for feature extraction with default values

Xfxgeo Geometric features

Xfxgui GUI for feature extraction

Xfxint Intensity features

Xfxrandompatches Feature extraction of random patches of an image

Xfxseqpatches Feature extraction of random patches of a set of images

(continued)
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Table B.4 (continued)

Function Description

Xfxtractor Feature extraction from a set of images

Xgabor Gabor features

Xgupta Gupta moments

Xharalick Statistical texture features

Xhog Histogram of oriented gradients

Xhugeo Hu moments using geometric information

Xhuint Hu moments using intensity and geometric information

Xlbp Local binary patterns (LBP)

Table B.5 Feature analysis and feature selection

Function Description

Xfbb Feature selection using branch and bound

Xfclean Feature selection cleaning

Xfexsearch Feature selection using exhaustive search

XfmRMR Feature selection using mRMR criterium

Xfnorm Normalization of features

Xfosmod Feature selection using FOS-MOD algorithm

Xfrank Feature selection based on command rank features

Xfsall Select all features

Xfsbuild Build structure for feature selection with default values

Xfscore Performance’s score of selected features

Xfsp100 Specificity at sensibility = 100%

Xjfisher Fisher objective function

Xlsef Feature selection using LSE-forward algorithm

Xnofeatures Elimination of features with specific name

Xnorotation Elimination of non-rotation invariant features

Xnoscale Elimination of non-scale invariant features

Xnotranslation Elimination of non-translation invariant features

Xpca Principal component analysis

Xplsr Feature transformation using partial least squares regression

Xsfs Sequential forward selection

Xuninorm Normalization of rows of features
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Table B.6 Classification

Function Description

Xadaboost AdaBoost.M2 classifier

Xbayes Bayes classifier

Xboosting Boosting classifier

Xclassify Classification using Xvis classifier(s)

Xclbuild Build structure for classifiers with default values

Xclgui GUI for classification selection

Xclsearch Feature and classifier selection tool

Xdmin Classifier using Euclidean minimal distance

Xglm Neural network using a generalized linear model

Xknn KNN (k-nearest neighbors) classifier

Xlda LDA (linear discriminant analysis) classifier

Xmaha Classifier using Mahalanobis minimal distance

Xmlp Multi layer perceptron

Xparzen2 Mutual information using Parzen windows for two variables

Xpnn Probabilistic neural network

Xqda QDA (quadratic discriminant analysis) classifier

Xsparsecl Classifier using sparse representations

Xsvm Support vector machine (for two classes)

Xsvmplus Support vector machine (for two and more classes)

Xtree Classifier using a tree algorithm

Table B.7 Performance evaluation

Function Description

Xaccuracy Accuracy by comparing ideal with real classification

Xconfusion Confusion matrix

Xcrossval Evaluation of a classifier using cross-validation

Xdetectionstats Evaluation of a segmentation algorithm on a set of images

Xgaussgen Simulation of data with Gaussian distributions

Xholdout Evaluation of a classifier using holdout

Xleaveoneout Evaluation of a classifier using leave-one-out

Xnostratify Data sampling without stratification

Xpascalstats Pascal statistics

Xstratify Data stratification
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Table B.8 Simulation

Function Description

Xobjvoxels Generate voxels of an object

Xsimdefect Simulation of defects using ellipsoids

Xsimmask Mask superimposition

Xsimsphere Simulation of defects using spheres

Xsimvoxels Simulation of an X-ray image using voxels (or STL files)
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0–9
3D recognition, 294
3D reconstruction, 87, 97, 104, 275, 277, 300
3D representation, 21, 150

A
Absorption, 8, 23
Accuracy, 193, 209, 224, 231
Active vision, 27
Adaptive sparse representation, 222
Adaptive thresholding, 135
Annotations, 36, 39–41, 45, 49
Anode, 7, 12
Area, 151, 158
Area under ROC curve, see AUC
Atomic number, 23
Atoms of a dictionary, 183
AUC, 232
Automated system, 2
Automative parts, 39
Automobile industry, 4
Average filtering, 120
Axis length, 152, 154

B
Backpropagation, 215
Baggage, 36, 41, 115, 124, 131, 146, 293
Band-pass filtering, 312
Basic geometric features, 151
Basic intensity features, 161
Basic simulation, 247
Bayes classifier, 210
Between-class covariance matrix, 191
Bifocal tensors, 94

Binarized statistical image features, see
BSIF

Binary image, 126, 132
Branch and bound, 193
BSIF, 177
Bundle adjustment, 79, 298, 306

C
CAD, 75, 79, 83, 86, 97, 253, 255, 263, 275
Calibration, 66, 78, 81, 83, 261, 298
Calibration images, 36, 44
Calibration object, 79, 83, 86, 116
Camera model, 67
Canny edge detector, 130, 280
Canonical form, 96, 101, 104
Cartesian coordinates, 54
Castings, 36, 39, 112, 120, 124, 130, 138,

139, 166, 170, 186, 260, 268
Cathode, 7, 12
CCD-camera, 3, 5, 15, 62, 63, 66, 68, 69, 71,

74, 88
Center of mass, 151, 154, 158
Central projection, 64
Cherries, 36, 43
Circulant matrix, 143
Class frequency distribution, 187
Classification, 150, 206, 272
Classification using sparse representations,

223
Classifier selection, 237
Classifiers, 207
Clips, 222, 301
CLP, 166, 307
Co-occurrence matrix, 171
Color maps, 20, 45
Compton effect, 9
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Computed tomography, 2, 5, 104
Computer, 16, 63
Computer graphics, 81, 247
Computer vision, 24
Computer vision system, 62, 66, 76, 78, 86,

101
Conditional probability, 210
Confidence interval, 227, 229, 236
Confusion matrix, 229
Conrad Röntgen, see Roentgen
Contrast, 5, 18, 111, 138, 139, 163, 166
Contrast enhancement, 114
Convolution, 120, 143, 173
Coordinate systems, 26, 63

image, 65, 67, 68, 74, 76, 97
manipulator, 77
object, 64, 67, 72, 75–77, 96
output screen, 73, 98
projection, 65
world, 64, 72, 76, 77
X-ray projection, 65, 67, 68, 72, 73, 97

Correspondence problem, 89
Corresponding points, 28, 88, 96, 100, 101
Covariance matrix, 184, 191, 209
Crack simulation, 262
Cross product, 56
Cross-validation, 226, 235, 236, 290, 312
Crossing line profile, see CLP
CT, see computed tomography
Curse of the dimensionality, 189

D
Data association, 28, 300
Datasets, 36
DCT, 174, 183, 289
Defect-free image, 122
Descriptors, 175
Detection of defects, 288
DFT, 174, 183, 289
Dictionary, 183
Dictionary learning, 185
Difference of Gaussians, see DoG
Digital radiography, 2
Discrete Cosine Transform, see DCT
Discrete Fourier Transform, see DFT
DoG, 179
3D recognition, 294
3D reconstruction, 87, 97, 104, 275, 277, 300
3D representation, 21, 150
Dual energy, 22, 295

E
Eccentricity, 152, 154
Edge detection, 110, 124, 138, 140, 166, 271
Electromagnetic distortion, 63, 66, 68, 71,

73, 75, 80, 83, 87, 88, 98
Electromagnetic spectrum, 5
Elliptical features, 154
Energy, 23
Epipolar connstraint, 298
Epipolar constraint, 93, 274
Epipolar geometry, 28, 89, 90
Epipolar line, 90, 99
Epipole, 92
Equivalent diameter, 152
Euclidean distance classifier, 207
Euclidean transformation, see geometric

transformations
Euler angles, 58, 65, 86
Euler number, 152
Exhaustive search, 193
Extent, 152
Extrinsic parameters, 65, 67, 75, 77

F
False correlation, 190
False detection, 132
False negative, 231
False negative rate, 231
False positive, 231
False positive rate, 231
Feature cleaning, 191
Feature extraction, 150
Feature normalization, 191
Feature representation, 191
Feature selection, 150
Feature space, 191
Filter banks, 174
Filter mask, 119
Fish bones, 36, 43
Fisher criterion, 191
Flat panel, 3, 5, 15, 62, 63, 67, 76
Flaw simulation, 250
Flusser moments, 159
Focal length, 60, 64, 72, 77, 277
Foreword, vii
Forward orthogonal search, 196
Fourier descriptors, 157
Fourier transform, 144, 157
Fundamental matrix, 93, 95, 274, 298

G
Gabor features, 289
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Gabor transform, 172, 183, 184
Gamma-correction, 115
Gamma-rays, 5
Gaussian distribution, 209, 210, 212
Gaussian filtering, 120, 125, 127, 130, 179
GDXray, x, xii, 29, 35–39, 44–46, 48–50, 76,

83, 94, 102, 113, 189, 194, 198, 199,
232, 234, 236, 269, 284, 289, 312,
315, 327, 328, 331, 334

Geometric distortion, 63, 66–68, 71, 75, 80,
83, 87–89, 97, 98

Geometric features, 151
Geometric model, 25, 62, 63, 242
Geometric transformations, 54

2D → 2D, 56
3D → 3D, 58
affine transformation (2D), 58, 159
Euclidean transformation (2D), 56
general transformation (2D), 58
homography, 58, 74
perspective, 60, 62, 77
perspective projection matrix, 60
rotation (2D), 56, 69
rotation (3D), 58, 77, 78, 86
rotation matrix (2D), 56
rotation matrix (3D), 58, 65
similarity transformation (2D), 58
transformation 3D → 2D, 60
translation (2D), 56, 67, 69, 72, 77
translation (3D), 58, 65, 77, 78, 86

Geometry of four views, 102
Geometry of n views, 102
Geometry of three views, 99
Geometry of two views, see bifocal geome-

try
Global threshold, 133
Gradient estimation, 124
Gradient image, 124, 161, 272
Graphic user interface, 45, 49, 236
Gray value, 17–20, 111, 114–116, 119, 122,

133, 134, 136, 141
Grayscale, 15, 20, 21, 23, 110, 114
Ground truth, 39–41, 48, 83
Gupta moments, 159

H
Handguns, 41, 197–199, 222
Haralick features, see statistical textures
Harrys transform, 288
Height, 151
Histogram, 114, 115, 133, 177
Histogram of oriented gradients, see HOG

HOG, 178, 298, 307
Hold-out, 225
Homogeneous coordinates, 54
Homography, see geometric transformations
Hu moments, 158
Hyperbolic model, 68, 71, 97, 261

I
Identification of potential defects, 269
Illumination invariant, 180
Image acquisition, 19
Image analysis, 110
Image averaging, 111
Image degradation, 143
Image filtering, 110, 119, 125, 132, 141
Image indexing, 305
Image integration, 111
Image intensifier, 3, 4, 14, 62–64, 66–69, 71,

74, 80, 83, 87, 88, 97, 101
Image preprocessing, 110, 111
Image processing, 110
Image restoration, 141
Imaging model, 242
Infrared, 5
Intensity features, 161
Intensity moments, 170
Intercept theorem, 60
Interclass variation, 191
Intraclass variation, 191
Intrinsic parameters, 66–68, 75, 77
Invariant features, 159
Invariant moments, 158
Inverse filtering, 142

K
Kernel density estimation, 211
Kernel function, 219
Keypoint, 179, 180
Kiwis, 43
K-means, 184, 186
K-nearest neighbors, see KNN
Knives, 41
KNN, 214, 302
Knuckles, 39
K-SVD, 186
Kurtosis, 162

L
Lagrange multipliers, 145
Laplacian-of-Gaussian, see LoG
LBP, 175, 298, 313
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LDA, 212
Least square estimation, 196
Leave-one-out, 228
Line representation, 55
Linear discriminant analysis, see LDA
Linear filtering, 120
Local binary patterns, see LBP
Location, 151, 154
LoG, 127, 162, 166, 271
Low-pass filtering, 120, 122, 127, 140, 271

M
Mahalanobis distance classifier, 209
Manifold surface, 263
Manipulator, 13, 62, 63, 76, 78
Manual inspection, 2
Mask superimposition, 253
Mass attenuation coefficient, 23
Matching in n views, 275
Matching in two views, 274
Material density, 23
MATLAB, xii

Balu Toolbox, 302
Computer Vision Toolbox, 80
ImageProcessingToolbox, 130, 133, 152
NETLAB Toolbox, 216
Optimization Toolbox, 86
PMT Toolbox, 302
VLFeat Toolbox, 141, 302
Xvis Toolbox, see Xvis

Mean gradient, 161
Mean gray value, 161
Mean second derivative, 162
Median filtering, 121, 122, 280
Medical imaging, 36
Medicine, 2, 36, 76
Microwaves, 5
MINIO, 145
Miss rate, 231
Morphological closing, 134
Morphological dilation, 134
Morphological erosion, 134
Morphological operations, 132
mRMR, 197
MSER, 140
Multi layer perceptron, 215
Multifocal tensors, 28
Multiple view analysis, 27, 88, 273, 298, 300
Multiple view geometry, 75, 88

N
Natural objects, 36, 41

Natural products, 309
NDT, see nondestructive testing
Neural networks, 214
Noise removal, 111
Nondestructive testing, 2
Nonhomogeneous coordinates, 54
Nonlinear distortion, 63
Nonlinear filtering, 121
Null space, 90

O
Object of interest, 130, 132, 150, 186
OMP, 186
Optical center, 60, 64
Orientation, 152, 154
Orthogonal matching pursuit, see OMP

P
Pair production, 9
PASCAL criterion, 234
Pattern recognition, 206
PCA, 184, 196
Performance evaluation, 223
Perimeter, 151
Perspective, see geometric transformations
Perspective projection matrix, see geometric

transformations
Photo effect, 9
Photogrammetric calibration, 79
Photon noise, 111
PNG format, 38
Point representation, 54
Point spread function, 142
Poison distribution, 111
Polygon mesh, 247
Positive predictive value, 231
Potential region, 132, 150, 166, 186
Precision, 231
Preface, ix
Prewitt filtering, 125
Principal component analysis, see PCA
Probability density function, 187
Projection plane, 60
Pseudo color, 20, 45
Pseudo-inverse, 142
Pseudoinverse, 92
PSF, see point spread function
Public databases, 36

Q
QDA, 213
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Quadratic discriminant analysis, see QDA
Quadrifocal tensors, 103
Quadrilinearities, 103

R
Radial distortion, 67
Radiographic film, 4
Radiowaves, 5
Ranking by class separability criteria, 196
RANSAC, 305
Rayleigh scattering, 9
Razor blades, 41, 197–199, 222, 301
Recall, 231
Recognition of defects, 288
Region growing, 136
Region of interest, 166
Reprojection, 62, 66, 79, 86–88, 101, 102
Retinal plane, 60, 64
RGB color space, 20
ROC curve, 232
Roentgen, 2, 3
Rotation invariant, 157, 159, 180
Rotation matrix, see geometric transforma-

tions
Roundness, 152

S
Saliency map, 288, 307
Salmon filets, 36, 43
SBS, 195
Scale factor, 67
Scale invariant, 159, 180
Scale-invariant feature transform, see SIFT
Scattering, 8
Segmentation, 27, 110, 111, 124, 130, 150,

166, 235, 272, 306
Self-calibration, 79
Self-occlusion, 131
Semiautomated system, 2
Sensitivity, 231
Separability, 188, 191
Sequential backward selection, see SBS
Sequential forward selection, see SFS
Setting images, 36, 44
SFS, 194, 290
Shading correction, 116
Shape, 151, 154, 157
Shuriken, 41, 197–199, 222
SIFT, 28, 178, 295, 298, 300, 302, 305, 307
Signal-to-noise ratio, 112, 269, 277
Simulated ellipsoidal flaw, 256
Simulated spherical flaw, 279

Simulation, 241
Sin transformation, 20
Single view analysis, 27
Singular-value-decomposition, see SVD
Size, 151, 154
Skew factor, 67, 71
Skewness, 162
Sliding-windows, 27, 285
Sobel filtering, 125
Solidity, 152
Sparse coding, 184
Sparse dictionary, 184
Sparse representation, 182
Sparse representation classification, 222
Sparsity, 185
Specificity, 231
Speeded up robust feature, see SURF
Spots detector, 307
Springs, 301
Statistical moment, 158, 170
Statistical texture, 289
Statistical textures, 171
STL format, 250
Stop list, 222
Structure-from-motion, 305
Supervised learning, 187, 206
Support vector machines, see SVM
SURF, 182, 298, 305, 307
SVD, 142, 155, 186
SVM, 216, 290, 312

T
Tangential distortion, 67
Testing, 209
Testing data, 224
Testing dataset, 193
Texture feature, 162
Thresholding, 122, 126, 129, 132, 166, 312
Tracking principle, 269
Traditional dictionary, 183
Training, 209
Training data, 224
Training dataset, 193
Translation invariant, 159
Trifocal geometry, 99
Trifocal tensors, 99, 101, 275
Trilinearities, 103
True negative, 231
True negative rate, 231
True positive, 231
True positive rate, 231
T-Student test, 227
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U
Ultraviolet, 5

V
Visible light, 5
Visual vocabulary, 305
Voxel, 247

W
Wavelets, 174, 183
Welds, 36, 40, 120, 124, 130, 132, 135, 136,

188, 262, 285
Wheels, 39
Width, 151
Within-class covariance matrix, 192
Woods, 36, 43

X
X-ray computer vision system, 63
X-ray image sequence, 269
X-ray images, 36
X-ray testing, 2
X-rays, 5

Bremsstrahlung, 7
continuous, 7
detectors, 5
discrete, 7
formation, 5
image formation, 16
image visualization, 20
imaging, 16, 245
physics, 5
source, 3, 12, 62–64
spectrum, 7
testing system, 11, 62

Xvis, 28
Xaccuracy, 209, 339
Xadaboost, 339
Xannotate, 49, 336
Xbasicgeo, 152, 337
Xbasicint, 337
Xbayes, 211, 339
Xbinview, 336
Xboosting, 339
Xbsif, 337
Xcentroid, 337
Xclassify, 214, 220, 339
Xclbuild, 339
Xclgui, 235, 236, 339
Xclp, 337
Xclsearch, 236, 237, 339

Xcolorimg, 21, 336
Xconfusion, 230, 339
Xcontrast, 337
Xcrossval, 227, 339
Xdct, 337
Xdecisionline, 220, 336
Xdetectionstats, 232, 339
Xdmin, 208, 209, 214, 339
Xdrawellipse, 336
Xdualenergy, 23, 336
Xdyncolor, 21, 336
Xfbb, 338
Xfclean, 338
Xfexsearch, 338
Xfitellipse, 337
Xflusser, 337
XfmRMR, 338
Xfnorm, 338
Xforceuni, 116, 337
Xfosmod, 338
Xfourier, 337
Xfourierdes, 337
Xfrank, 338
Xfsall, 338
Xfsbuild, 338
Xfscore, 338
Xfsp100, 338
Xfundamental, 93, 336
Xfxall, 337
Xfxbuild, 236, 337
Xfxgeo, 337
Xfxgui, 235, 337
Xfxint, 337
Xfxrandompatches, 293, 337
Xfxseqpatches, 284, 337
Xfxtractor, 236, 338
Xgabor, 338
Xgaussgen, 339
Xgdxannotate, 49, 336
Xgdxbrowse, 45, 48, 336
Xgdxdir, 46, 336
Xgdxrandom, 336
Xgdxstats, 46, 336
Xglm, 216, 339
Xgradlog, 337
Xgupta, 338
Xh2nh, 336
Xharalick, 338
Xhog, 338
Xholdout, 226, 339
Xhugeo, 338
Xhuint, 338
Xhyperproj, 71, 336
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Ximaverage, 120, 121, 337
Ximgaussian, 120, 121, 337
Ximgrad, 127, 337
Ximmedian, 29, 337
Xjfisher, 338
Xknn, 214, 339
Xlbp, 338
Xlda, 213, 214, 339
Xleaveoneout, 228, 339
Xlinimg, 114, 337
Xloaddata, 49, 336
Xloadimg, 46, 336
Xlsef, 338
Xmaha, 210, 214, 339
Xmatrixp, 62, 336
Xmatrixr2, 57, 336
Xmatrixr3, 60, 336
Xmlp, 216, 339
Xnofeatures, 338
Xnorotation, 338
Xnoscale, 338
Xnostratify, 339
Xnotranslation, 338
Xobjvoxels, 249, 340
Xparzen2, 339
Xpascalstats, 339
Xpca, 338
Xplotepipolarline, 93, 336
Xplotfeatures, 336
Xplotroc, 336
Xplsr, 338
Xpnn, 216, 339
Xprintfeatures, 336
Xpseudocolor, 336
Xqda, 213, 214, 339

Xreco3d2, 106, 336
Xreco3dn, 106, 336
Xregiongrowing, 137, 337
Xreproj3, 102, 336
Xresminio, 147, 337
Xsaliency, 289, 337
Xsegbimodal, 134, 135, 337
Xseglogfeat, 139, 337
Xsegmser, 141, 337
Xsegsliwin, 293, 337
Xsetup, 335
Xsfs, 338
Xshading, 119, 337
Xshowconfusion, 230, 336
XshowGT, 48, 336
Xshowseries, 45, 336
Xsimdefect, 260, 340
Xsimmask, 253, 340
Xsimmask.m, 250
Xsimsphere, 340
Xsimvoxels, 340
Xsincolormap, 20, 336
Xsparsecl, 222, 339
Xstratify, 339
Xsvm, 219, 339
Xsvmplus, 339
Xtree, 339
Xtrgui, 308, 336
Xtrifocal, 102, 336
Xuninorm, 338

Z
Zero-crossing, 166, 271
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