cover

Mara than 10 seitliion Schaum's Owiilmes safil!

Programming

with G++

UM’'Ss
oul/ines

CRASH COURSHEH

NS TR SO PRRL M i YRR THFe

s Fapuiid Tors foi MoTonnss Pasinsiness win D
o NLL Vil NEED T RA% TI0 P -f@f?ﬁiﬁgr-
TN LA ReB
#ﬂ.
title : Schaum's Easy Outlines. Programming With C++
Schaum's Outline Series
author : Hubbard, J. R.; Baxter, Anthony Q.
publisher : McGraw-Hill Professional
isbn10 | asin : 007052713X
print isbnl3 : 9780070527133
ebook isbnl13 : 9780071368131
language : English
subject C++ (Computer program language)--Outlines, syllabi,

publication date :
Icc :

ddc :

subject :

etc, C++ (Computer program language)--Study guides.
2000

QA76.73.C153.H83 2000eb

005.13

C++ (Computer program language)--Outlines, syllabi,
etc, C++ (Computer program language)--Study guides.

cover

next page >

next page >

< previous page page i next page >
Pagei
Schaum's Easy Outlines

Programming With C++

< previous page page i next page >

< previous page

< previous page

page_ii

Other Books in Schaum's Easy Outline Seriesinclude:

Schaum's Easy Outline: College Algebra
Schaum's Easy Outline: Calculus
Schaum's Easy Outline: College Physics
Schaum's Easy Outline: Statistics
Schaum's Easy Outline: College Chemistry
Schaum's Easy Outline: French
Schaum's Easy Outline: Spanish
Schaum's Easy Outline: German

Schaum's Easy Outline: Organic Chemistry

page_ii

next page >
Page ii

next page >

< previous page page_iii next page >
Pageiii
Schaum's Easy Outlines

Programming with C++
Based on Schaum's Outline of
Programming with C++
By John Hubbard

Abridgement Editor
Anthony Q. Baxter

SCHAUM'S OUTLINE SERIES
MCGRAW-HILL
New York San Francisco Washington, D.C. Auckland Bogota
Caracas Lisbon London Madrid Mexico City Milan Montreal
New Delhi San Juan Singapore Sydney Tokyo Toronto

< previous page page_iii next page >

< previous page page_iv next page >
Pageiv

JOHN R. HUBBARD is Professor of Mathematics and Computer Science' at the University of Richmond. He
received his Ph.D. from The University of Michigan.

ANTHONY Q. BAXTER is Associate Professor of Computer Science and Director of Undergraduate Studies at the
University of Kentucky. where he has taught since 1972. Hereceived hisB.S. and M S. degrees from Union College
in New York and his Ph.D. from the University of Virginia.

Copyright © 2000 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976. no part of this publication may be reproduced or

distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written
permission of the publisher.

123456789101112131415DOCDOC9098765432109
ISBN 0-07-052713-X

Sponsoring Editor: Barbara Gilson

Production Supervisor: Tina Cameron

Editing Supervisor: Maureen B. Walker

McGraw-Hill
A Division of The McGraw-Hill Companies m

< previous page page_iv next page >

< previous page page_v next page >
Page v

Contents

Chapter 1 1
Introduction to C++ Programming

Chapter 2 14
Conditionals and Type Conversion

Chapter 33
3

Iteration

Chapter 42
4

Functions

Chapter 61
5

Arrays

Chapter 6 69
Pointers and References

Chapter 84
7

Strings

Chapter 97
8

Classes

Chapter 9 113
Overloading Operators

Chapter 10 125
A String Class

Chapter 11 137
Composition and Inheritance

Chapter 150
12

Stream 1/O

Appendix A C++ Keywords 158
Appendix B C++ Operators 160
Appendix C C++ Pre-defined Functions 162

I ndex 168

< previous page page_v next page >

< previous page

Chapter 1
Introduction to C++ Programming

In this chapter:

A Smple Program

The Output Operator

Characters, String Literals, and String Length
Comments

Variables, Objects, Declaration, and Initialization
Smple Satements and the Assignment Oper ator
Smple Arithmetic Operations

Operator Precedence and Associativity

The Increment and Decrement Operators

< previous page

page 1

page 1

next page >
Page 1

next page >

< previous page page 2 next page >
Page 2

Compound Assignment Statements

Character, Integer, and Real Types

Overflow, Underflow, and Roundoff Errors

The E-Format for Floating-Point Values

A program is a sequence of instructions for a computer to execute. Every program is written is some language. The C
++ (pronounced see-plus-plus) is one of the most widely accepted programming languages available. It alows
programmers to write efficient, well-structured, object-oriented programs.

This chapter introduces some of the basic C++ features.

A Simple Program

#i ncl ude <i ostream h>
/1 This program displays "Hello
Wrld."
int min () {
cout << "Hello Wrld. \n";
return O;

The#i ncl ude directive instructs the compiler to include thefilei ost r eam h with our program. Thisfile
contains cout 'sdefinition. The second line is acomment and is ignored by the compiler. The third line contains the

function prototype statement for the main function. Thisis required for every C++ program. The required parameter
list is enclosed in parentheses (). In this example, we have no parameters. The opening and closing braces, { },
enclose the body of the main function.

< previous page page 2 next page >

< previous page page 3 next page >
Page 3

The body of the main function isthe cout statement: cout << "Hell o Worl d.\ n"; which directsthe
computer to send the string " Hel | o Wor | d. \ n" tothecout object. Thecout object ("see-out") isthe console
output device that usually isthe display screen. The"\ n" inthe string is the newline character. "\ n" isasingle
character.

Thereturn 0; causesnai n to return azero value indicating to the operating system that it terminated normally.

The Output Operator

The symbol " <<" iscalled the insertion operator. It inserts objects into the output stream named on its left. The
cout stream ordinarily refersto the monitor, so cout <<123 would display the number 123.

An operator is something that performs an action on one or more objects. The output operator << performs the

action of sending the value of the expression on its right to the object on itsleft. The expression values are directed
out to the cout output stream. The reason that we call this a stream is that values sent to it fall in line, one after the
other, as they are dropped into the stream.

The following all produce the same "Hello, World." output:

cout << "Hel" << "lo Wor" << "lId. \n";
Cout << n |_bll << II| | o n << II\Mrl d. n <<II\ r]II;
Cout << n |_b| | oII << n n <<II \Mr | dll <<II . \ nll ;

Here the message has been split into several pieces. Since there are no newline characters or other characters added
to the stream they all come out as asingle line, just as before.

The output stream cout isused with the insertion operator << in the general form:

cout <<expression <<expression... <<expression;

This syntax statement saysthat cout isfollowed by one or more pairs, where each consists of the << operator
followed by someexpr essi on.

Characters, String Literals, and String Length
Thesymbol * A" isacharacter literal. It isasingle character in length and is enclosed in apair of single quotes. A

character is any member of a predefined character set or alphabet. Most computers today use the ASCIl (American
Standard Code for Information Interchange) character set.

< previous page page_3 next page >

< previous page page_4 next page >

Page 4
Y ou Need to Know /

Some additional non-printing characters such as the newline
character,’ \ n' , arealso contained in the ASCII character set.
The backslash character,' \ ' , isUsed with a printing character to
represent some useful non-printing characters. Some such
characters are the horizontal tab character ' \ 't ' , thealert

character,’ \ a' , thequote character,"' \ "', and the backslash
character itself ' \' \ ' . Internally, a character requires one byte of
storage.

The expression" Hel | 0" iscaled astring literal. It consists of a sequence of characters delimited by quotation
marks. The length of astring literal is the number of charactersit contains. The string literal " ABCDE" has length 5.
C++ provides a predefined function named st r| en () that can be used to obtain the length of a string.

In the machine a C++ string of length n actually requires n + 1 bytes of memory for its storage. Thisis because the
null character is appended after the last character in the string to indicate the end of the string. The null character is
the character ' \ 0" .

Note that the character ' a' requires one byte of storage and the string literal " a" requires two bytes; one for the
"a' andonefor theterminating' \ n' .

Example 1.1 Print Sring Lengths

#i ncl ude <i ostream h>

#i ncl ude <string. h>

/'l This programtests the strlen function

int min () {
cout << strlen("Hel
cout << strlen("Hel
cout << strlen("Hel
cout << strlen("H")
cout << strlen("") <
return O

o, Wrld.\n") << '"\n";
o, Wrld.") << '\n";
0, ") << '\n';

<< '\n';

<'\n';

< previous page page 4 next page >

< previous page page 5 next page >
Page 5

Thestrl en() function countsthe charactersin the specified string. The first two outputs would be 14 and 13
which demonstrates that the' \ n' character counts as a single character. The last output demonstrates that the
empty string has length O.

Comments

Comments are messages in your program that are ignored by the compiler. They are messages intended for human
readers of the program code.

There are two types of commentsin C++. The Standard C comment begins with the combination slash-star symbol /
* and ends with the star-slash symbol */ . Anything written between the opening / * and the closing */ is part of

the comment. Standard C comments can span several lines. The Standard C++ comment starts with a double
slash/ / and continues to the end of the line. Most programmers prefer the C++ comment but the C comment is

needed if you want to embed a C++ comment within aline of code.

Example 1.2 Demonstrate Comments

/***\

* Sanpl e Program wi th Comments
* Aut hor: A Q Baxter
* Witten: March, 1999
***/
#i ncl ude <l ostream h>
int main ()
/'l here begins the program
cout << "A nessage to output. \n";
cout /* first */ << "Line 2\n";
/'l This is the end of the program
/'l The return statenent is the best
/'l way to end a C++ program
return 0; // all done

}

This program is clearly over commented but it contains all commenting styles. Theinitial five lines are a C comment
asisthe embedded comment in the second cout statement. The other comments are C++ comments. C++

comments extend only to the end of the line.

< previous page page 5 next page >

< previous page page_6 next page >
Page 6

Variables, Objects, Declaration, and Initialization

A variableisasymbol that represents a storage location in the computer's memory. The information that is stored in

that location is called the value of the variable. The most common way that a variable obtains a value is by means of

an assignment. This has the syntax

variable = expression;

The expression isfirst evaluated, and then itsresulting value is assigned to the variable. The equal sign "=" isthe
assignment operator.

Example 1.3 Assignment and Variable Declaration

#i ncl ude <i ostream h>
/'l assignnment & decl arations
int main ()

int n, Xx; /1l declare n and x

n = 22 /'l assign a value to n

i nt y=33; /'l declare y and assign a val ue
x = 11; /'l assign a value to X

cout <<n <<" " <<x <<" " <y <<endl;

return O

}

Thefirst line of the main program declares n and x to be of typei nt . The next line assigns avalue of 22 to the
variablen. The next line both declares the variable y to be of typei nt and assignsan initial value of 33toy. The
next line assignsavalue of 11 to thevariable x. Finally, we display the values of these three expressionsn, X,
andy. Theendl inthecout statementisequivalent to the endline character ' \ n' and forces the output buffer to
be "flushed" to the screen.

A declaration of avariable is a statement that gives information about a variable to the C++ compiler. Its syntax is:

typevarl, var2 varN,;

|

The value stored inside the computer for these &::..—-:L/
variables are sequences of bits (O'sand 1's).

The program interprets these bits as integers

because the variables were declared to bei nt s.

< previous page page 6 next page >

< previous page page 7 next page >
Page 7

where type is the name of some C++ type. For example, the declarationi nt x; tellsthe compiler two things: (1)
the name of the variableisx, and (2) the variable hastypei nt . Every variable must have atype. Itstypetellsthe
compiler how the variable isto be interpreted and what set of values can be assigned to it.

C++ isan object-oriented programming language Objects are endowed with certain capabilities. We say that the
declaration creates an object and assigns a name to that object. Thus, i nt x; would create an object, nameit X,

and typeit asi nt . We can visualize this by letting a shaded box represent that areain memory necessary to store
that integer object to be used to represent the variable x. The question marks are to remind us that no value has yet

been assigned to the variable. An assignment is one way that an object's value can be changed. In Ex. 1.3 the
assignment x= 11; changesthevalueof x to11.

i nt

In C++ adeclaration can be placed anywhere in a program, but it must be declared before it is used. As shown in Ex.
1.3, variables can be assigned an initial value when they are declared.

Simple Statements and the Assignment Operator
We have seen the use of the assignment operator (=). The assignment itself is an expression with avalue. The value
of theexpressionx = 22is22. Likeany other valueit can be used in another assignment:y = (x = 22); is

an example of achained assignment. First 22 isassigned to x and then the value of the assignment assignment 22 is
assigned toy. Usually compound assignments are written without the parentheses.

Simple Arithmetic Operations

An operator isasymbol that "operates’ on one or more expressions, producing avalue. We have already
encountered the output operator << and the assignment operator =.

Some of the simplest operators are those that do arithmetic. These operate on numeric types to produce another
numeric type. For

< previous page page_7 next page >

< previous page

page 8

next page >
Page 8

example, m + n produces the sum of mand n and - n produces the negation of n. Six operators are summarized in the

following table.

Operator Description Example m:Ré?gl’Jlt fnoL 5
+ Add m+ n 43
- Subtract m- n 33
- Negate -m - 38
* Multiply m* n 190
/ Divide m/ n 7
% Remainder m % n 3

Notethat 38/ 5 =7 and 38%% =3. These two operations provide complete information about the ordinary division of 38 by
5: 38/5=7.6. The integer quotient 7 (38/ 5) and the integer remainder 3 (38%b) can be recombined with the dividend 38 and
divisor 5inthefollowing relation: 7*5+3 = 38.

The integer quotient and remainder operators are more complicated if the integers are not positive. Of course, the divisor should
never be zero. But if either is negative, N1 n always gives the same result; n¥m gives different results on different machines.

Operator Precedence and Associativity

A

Q._‘ Don't fight the system!

Know the precedence of Operations!

C++ has arich repertoire of operators. (Appendix A listsall 55 of them.) Since an expression may include several operators, it
isimportant to know in what order the evaluations of the operators occurs. We are already familiar with the precedence of
ordinary arithmetic operators. the*, /, and %operators have higher precedence than the + and - operators; i.e., they are

evaluated first. For example,

< previous page page_ 8 next page >

< previous page page_ 9 next page >
Page 9
42- 3*5isevauated as42- (3*5) = 42-15 = 27

Moreover, all the arithmetic operators have higher precedence than the assignment and output operators. For
example, the statement n= 42 3*5; will assignthevalue27 ton. First the operator * isinvoked to evaluate

*5, thenthe- operator isinvoked to evaluate 42- 15, and then the operator = isinvoked to assign 27 to n.

Part of Appendix B

Op Description Prec Assoc Arity Example
- Negate 15 Right Unary -n

* Multiply 13 Left Binary ntn

/ Divide 13 Left Binary nin

% Remainder 13 Left Binary N/

+ Add 12 Left Binary mtn

- Subtract 12 Left Binary mn

<< Bit shift 11 Left Binary cout <<n

left, output
= 2 Right Binary meEn

Simple assignment

It lists eight operators that apply to integer variables. They fall into five distinct precedence levels. For example, the
negate operator - has precedence level 15, and the binary multiply operator * has precedence level 13, so negateis

evaluated before multiply. Thus the expression nt - n isevaluated asnt (- n) . Assignment operators have lower
precedence than nearly all other operators, so they are usually performed last.

The column labeled "Associativity” tells what happens when sever a different operators with the same precedence
level appear in the same expression. For example, + and - both have precedence level 12 and are |eft associative, so

the operators are evaluated from left to right. For example, in the expression 8- 5+4 first 5 is subtracted from 8,
and then 4 isadded to that sum: (8-5) +4 = 3+4 = 7.

The column labeled "Arity" lists whether the operator is unary or binary. Unary means that the operator takes only

one operand. For example, the negate operator - isunary. Binary means that the operator takes two operands. For
example, the add operator + is binary.

< previous page page_ 9 next page >

< previous page page 10 next page >
Page 10

The Increment and Decrement Operators

Of the many features C++ inherited from C, some of the most useful are the increment operator ++ and decrement
operator - . These operators transform a variable into a statement expression that abbreviates a special form of
assignment.

The pre-increment operator (++m) and the post-increment operator (m++) when used as a stand-alone expression
statement are both equivalent to the assignment: m=mt1; . They simply increase the value of mby 1. Similarly, the
expression statements - n and n- are both equivalent to the assignment: n=n- 1; . They simply decrease the value of
n by 1. (Theincrement operator ++ was used in the name "C++" because it "increments’ the original C
programming language; it has everything that C has, and more.)

When used as subexpressions (i.e., expressions within expressions), the pre-increment operation ++mis different
from the post-increment operation m++. The pre-increment increases the variable first before using it in the larger

expression, whereas the post-increment increases the value of the variable only after using the prior value of the
variable within the larger expression.

Since the incrementing processis equivalent to a separate assignment, there are really two statements to be executed
when the increment operation is used as a subexpression: the incrementing assignment and the larger enclosing

statement.
* Notel!

The difference between the Pre-increment and the post-increment
issimply the difference between executing the assignment before
or after the enclosing statement.

Example 1.4 Pre-Increment and Post-1ncrement Operations

#1 ncl ude <i ostream h.
int min () {

i nt nE66, n;

n = ++m

< previous page page 10 next page >

< previous page page 11 next page >

Page 11
cout <<"'m=" <<m<<", n =" <<n <<endl;
n = m+;
cout <<"'m=" <<m<<", n =" <<n <<endl;
cout <<"m =" <<mr+ <<endl ;
cout <<"m=" <<m <<endl! ;
cout <<"m=" <<++m <<endl ;
return O;
}
m= 67, n = 67
m= 68, n = 67
m= 68
m= 69
m= 70

In the first assignment, mi s pre-increnented, increasing its value to 67, which is then
assigned to n. Next, mis post-incremented, so 67 is assigned to n and then mis
increased to 68.

In the third output statement, mis post-incremented, so 68 is dropped into the output stream and then misincreased to 69. Inthe
last output statement, mis pre-incremented to 70 and then that value is dropped into the output stream.

Compound Assignment Statements

C++ alows us to combine assignment with other types of operators. The general syntax for these combined assignmentsis:
variable op= expression, where op is any binary operator. The effect of the combined assignment is. variable = variable op
expression.

For example, the combined assignment nunber _so_far += 8; hasthe same effect as the simple statement:

nunber _so_far = nunber_so far + 8;

Character, Integer, and Real Types

Aninteger isawhole number: 0, 1, -1, 2, etc. An unsigned integer is an integer that is not negative. C++ has the following integer
types:

short int unsi gned short int
char
unsi gned i nt unsi gned i nt
unsi gned char | ong int unsi gned | ong int

< previous page page 11 next page >

< previous page page 12 next page >
Page 12

The difference between these types is the range of values allowed. The ranges depend on the computer system being
used. For example, on most PCs, i nt ranges between -32,768 and 32,767. On most UNIX workstations it ranges

between -2,147,483,648 and 2,147,483,647. The i nt part may be omitted fromshort int, unsi gned
short int, unsigned int, long int, andunsi gned | ong int.

C++ supports three real number types: f | oat, doubl e, andl ong doubl e. Usualy, doubl e usestwice as
many bytesasf | oat . Typicaly, f| oat uses4 bytes, doubl e 8, and| ong doubl e between 8 and 16 bytes.

Typesthat are used for real numbers are called "floating-point” types because of the way they are stored internally in
the computer. On most systems, a number like 123.45 isfirst converted to binary form:
123.45=1111011. 011100112. Thenthe pointis"floated" so that all the bits are on itsright. In this example,

the floating-point form is obtained by floating the point 7 bits to the left, producing a mantissa 27 times smaller. So
the original number is

123.45 = 0.111101101110011227

This number would be represented internally by storing the mantissa0. 111101101110011 and the exponent 7
separately. For a32-bit f | oat type, the mantissais stored in a 23-bit segment and the exponent in an 8-bit segment,
leaving 1 bit for the sign of the number. For a 64-bit doubl e type, the mantissais stored in a 52-bit segment and
the exponent in an 11-bit segment.

If you wished to determine how many bytes any particular machine uses for each type you can use the si zeof
operator, which returns the size in bytes of the type specified. For example, si zeof (unsi gned short) and
si zeof (doubl e) would evaluate to the number of bytes used to storean unsi gned short andadoubl e,

respectively.
=

-

All floating-point arithmetic isdonein doubl e

precision. So the only time you should use
f | oat instead of doubl e iswhen you are

storing large quantities of real numbers and. are
concerned about storage. space or access time.

< previous page page 12 next page >

< previous page page 13 next page >
Page 13

Overflow, Underflow, and Roundoff Errors

Unlike mathematical numbers, computer numbers are of finite precision. Integers have afinite range and floating-

point numbers have limited precision and range. Attempts to increase a number above its maximum value will result

in an overflow error. Decreasing a value below its smallest allowable value results in an underflow. Floating-point

numbers are imprecise. Thisimprecision is called roundoff error.

Example 1.5 Roundoff Error

This program does some simple arithmetic to illustrate roundoff error:

void main ()

doubl e x=1000/ 3. 0; cout <<"x=" <<x;
doubl e y=x - 333.0; cout <<"y=" <<y;
doubl e z=3*y - 1.0; cout <<"z=" <<z;

}

X = 333.333 y = 0.333333 z = -5.68434E-14

In exact arithmetic, the variables would have the values x=331/3. y=I/3, and z=0. However, 1/3 cannot
be represented exactly as a floating-point value. The inaccuracy is reflected in the residue value for z.

This example also illustrates an inherent problem with using floating-point types within conditional tests of equality.

If one wereto test (z==0) it would fail evenif zisvery nearly zero, which islikely to happen when z should
algebraically be zero. Therefore, it is better to avoid tests for equality with floating-point types.

The E-Format for Floating-Point Values

When input or output, floating-point values may be specified in either of two formats: fixed-point and scientific. The
output in Ex. 1.5 illustrates both: 333.333 has fixed-point format, and -5.68434E-14 has scientific format.

Floating-point values with magnitude in the range 0.1 to 999,999 will normally be printed in fixed-point format; all
others will be printed in scientific format.

< previous page page_13 next page >

< previous page page 14

Chapter 2
Conditionals and Type Conversion

In this chapter:
I nput
Thei f Satement

Thei f. .. el se Satement

Relational Operators

Compound Statements

Keywords

Compound Conditions

Boolean Expressions

Nested Conditionals

The Conditional Expression Operator

Thesw t ch Satement

Scope

< previous page page_ 14

next page >
Page 14

next page >

< previous page page 15 next page >
Page 15

Enumeration Types

Type Conversions

The programs in Chapter 1 al have sequential execution: each statement in the program executes once, in the order

that they are listed. Conditional statements allow for programs that are more flexible in that the execution of some

statements depends upon conditions that change while the program is running.

This chapter describesthei f statement,thei f . . . el se statement, and the switch statement and it also
shows how to include simple input into your programs.

I nput

In C++, input is analogous to output. Instead of data flowing out to the output stream cout , we have dataflowing
in from the input stream ci n (pronounced "see-in"). The name stands for "console input.”

Example 2.1 Integer Input

Here is code that reads integer inpuit:

int min () {

i nt age;

cout <<"How old are you? ";

ci n >>age;

cout <<"In 10 yrs, you will be" <<age+l0
<<". \n";

return O;

How ol d are you? 19
In 10 yrs, you wll be 29

The symbol >> isthe extraction operator, also called the input operator. It isusually used with the ci n input
stream, which is usually the user's keyboard. Thus, when the statement ci n >>age; executes, the system pauses,
waiting for input. As soon as an integer isinput, it is assigned to age and the program continues.

< previous page page_15 next page >

< previous page page_16 next page >

Page 16
* Note!

Notice that the preprocessor directive:
#i ncl ude <i ostream h>

ismissing from Ex. 2.1. It isrequired in any program that uses
either ci n or cout . Since nearly every program in this book uses

either ci n or cout , we will assume that you Will include thisline

at the beginning of your source code file. Omitting it from these
examples simply saves some print space. We will also omit the
r et ur n statement at the end of the mai n() functioninal future

examples. We preface mai n() withvoi d toindicate to the
compiler that no r et ur n is expected.

The input object ci n isanalogous to the output object coat . Each isa C++ stream object that acts as a conduit
through which bytes flow. The bytes flow into the running program through the ci n object, and they flow out
through the cout object.

- ——

, cin]
| kevboard ¢ J C4

e

_

Example 2.2 Character Input

void main () {
char first, |ast;
cout <<"Enter initials:\n";
cout <<"\tFirst: ";
cin >first;
cout <<"\tlLast: ";
cin >>| ast:
cout <<"Hi, " <<first <<". " <<last <<".!\n";

Enter initials:
First: J
Last: B

H, J. B!

This exampleillustrates a standard way to format input. The first output line alerts the user to what general input is
needed. Thisisfollowed by a sequence of specific input

< previous page page_16 next page >

< previous page page_17 next page >
Page 17

requests, called user prompts. Each user prompt is indented with the tab character ' \ t ' , and by omitting the
newline character ' \ n' it leavesthe cursor on the same line for the user to enter arresponse there.

More than one variable may be read in the same input statement: ci n >>fi rst >>| ast ; reads the itemsfrom
left to right; i.e., the left-most variable is read first. Sincethe char typeisan integer type, ci n will ignore all

leading white space (i.e., blanks, tabs, and newlines) when it reads input. The input in this example could have been
entered on several lines with leading and/or trailing blanks and tabs.

Notice that this prevents the input of blanks as characters using the input operator <<. In later chapters, we will see
additional methods for character input.

Thei f Statement

Thei f statement allows conditional execution. Its syntax is

i f (condition) statenent;

wherecondi ti on isaninteger expression and st at enment isany executable statement. The st at enent will
be executed only if thecondi t i on has anonzero value. (Whenever an integer expression is being evaluated as a

condition, anonzero value is interpreted to mean "true" and a zero value to mean "false.") Notice the required
parentheses around the condi t i on.

Example 2.3 Testing for Divisibility

int n, d;

cout <<"Enter two integers: ";
cin >>n >>d;

if (n%==0) cout <<d <<" divides " <<n <<endl;

Enter two integers: 24 6
6 divides 24

This code reads two integers and then checks the value of the remainder n%. In thisrun, the value of 249%6 isO0,
which means that 24 is divisible by 6. You will notice that we have omitted the void mai n() { andtheclosing}.
Again thisisto save space.

The trouble with thislast exampleisthat it doesn't do anything when nis not divisible by d so inputs of 6 and 24
produce no results.

< previous page page 17 next page >

< previous page page 18 next page >
Page 18

To execute an dternative statement when the condition is zero, weneed thei f ... el se statement.

Thei f . . . el se Statement

Theif . . . el se statement executes one of two alternative statements, according to the value of the
condition. It has the syntax

if (condition) statenentl;
el se statenent 2;

wherecondi t i on isaninteger expression, and st at enent | and st at enent 2 are any statements. The
st at enent 1 isexecuted if thecondi t i on hasanonzero value, and st at er aent 2 is executed if the
condi ti on hasazero vaue.

Changing thei f statement of Ex. 2.3 to:

I f (n%==0) cout <<d <<" divides " <<n <<endl;
el se cout <<d <<" doesn't " <<n <<endl:

will produce output for all inputs.

A condition like (n%==0) isan expression whose valueisinterpreted as being either "false" or "true." In C++

those two values are integers. 0 means "false," and any nonzero integer means "true." Because of that
correspondence, conditions can be ordinary integer expressions. In particular, the integer expression (n%) itself

can be used as a condition. If it isnonzero (i.e., "true") precisely when n is not divisible by d, we could reverse the
two print statements in the previous example and rewrite it as.

if (n%) cout <<d <<" doesn't divide " <<n <<endl;
el se cout <<d <<" divides " <<n <<endl;

Relational Operators

Relational operators allow us to write conditions more intuitively. A condition, such as (n™n) , isan integer
expression. If mis greater than n, the condition is "true" and evaluates to 1; otherwise, the condition is "false" and
evaluatesto 0.

The symbol > is one of the relational operators. It iscalled "relationa” because it evaluates how the two
expressions relate; for example,

< previous page page_18 next page >

< previous page page_19

next page >
Page 19

the relation 22>55 isfalse. The symbol is called an "operator” because when it is combined with expressions it
produces a value. For example, when > is combined with 22 and 55 in the form 22>55, it produces the integer value

0, meaning "false.”

Y ou Need to Know /

There are six relational operators:

<= |essthan or equal to
< |lessthan €

—= equal to > greater than

=
>= greater than or equal to 1= not equal to

Note the double equals sign == must be used to test for equality. A
common error among C++ programmersisto use the single equals
sign =. This mistake is difficult to uncover because it does not
violate the syntax rules of C++.

Example 2.4 Finding the Maximum of Three Integers

This program prints the largest of the three numbers input:

int nl, n2, n3;

cout <<"Enter three integers: ";
cin >>nl >>n2 >>n3;

i nt nmax=nl;

I f (n2>max) max=n2;

i f (n3>max) max=n3;

cout <<"The maximumis " <<max <<endl;

Enter three integers: 22 44 66
The maxi numis 66

Enter three integers: 77 33 55
The maximumis 77

Onthefirstrun, nlis22, n2 is44, and n3 is66. First max isassigned 22. Then, since 44 > 22, max isassigned 44.
Finally, since 66 > 44, max is assigned 66, and that value is printed. On the second run, n1 is77,n2 is 33, and n3 is
55. First max isassigned 77. Then, since 33 is not greater than 77, max is unchanged. Finally, since 55 is also not

greater than 77, max is again unchanged, and so the value 77 is printed.

< previous page page_19 next page >

< previous page page 20 next page >
Page 20

Compound Statements

A compound statement is a sequence of statements that is treated as a single statement. C++ identifies a compound

statement by enclosing its sequence of statements in curly braces. Here the braces enclose a three-statement block.
As acompound statement, it is treated as a statement and can be used wherever any other statement could be used.
(In a C++ program everything that follows mai n () isacompound statement.)

Example 2.5 Sorting

This program reads two integers and outputs them in increasing order:

int x, vy;
cout <<"Enter two ints: ";
cin >>x >>y;

if (x>y) {
int tenp=x;
X=;
y=tenp;

cout <<x <<" " <<y <<endl;

Enter two ints: 66 44
44 66

The effect of putting this compound statement inthei f statement isthat all statements inside the block will be
executed if the condition istrue.

These three statements form a swap, interchanging the values of x and y. This construct is often used in programs
that sort data.

Thevariablet enp isdeclared inside the block. That makesit local to the block; i.e., it only exists during the
execution of the block. If the conditionisfalse (x<I >y) , thent enp will never exist. Thisis an example of
localizing objects so that they are created only when needed.

Example 2.5 is not the most efficient way to solve the problem. Its purposeisto illustrate compound statements and
local variable declarations. If al we want to do is print the two numbers in increasing order; we could do it directly
without thet enp variable:

if (x<I>y) cout <<x <<" " <<y <<endl;

el se cout <<y <<" " <<x <<endl;

< previous page page_20 next page >

< previous page page 21 next page >
Page 21

Keywords

A keyword in a programming language is aword that is already defined and is reserved for a single specia purpose.

We have adready seen the keywordschar, else, if, int, long, short, signed, andunsi gned.
The remaining 40 keywords will be described subsequently. They are all described in Appendix A.

* Important Point!

There are two kinds of keywords: those likei f and el se which

serve as structure markers used to define the syntax of the
language, and those like char andi nt which are actual names of

things in the language. In some languages, the structure markers
are called reserved words and the predefined names are called
standard identifiers.

Compound Conditions

Conditions such as n% and x>y can be combined to form compound conditions. The three logical operators that
are used for this purpose are & (and), | | (or),and! (not). They are defined by

p&&q is 1 only when both p and q evaluate to 1

| | p| | g is1when either p or q or both evaluate to 1

! I pisto 1 whenever p evaluatesto O

For example, (n% || x>y) will betrueif either n% isnonzero or if X isgreater thany (or both).! (x>y) is
equivalent tox<=y and! (x<y) isequivalent tox>=y.

Definitions of the logical operators can be given by the truth tables:

p q p&&q
0 0 0
0 1 0
1 0 0
1 1 1

P q pllg

0 1 1
1 0 1
1 1 1

p 'p

0 1

1 0

< previous page page 21 next page >

< previous page page 22 next page >
Page 22

These show, that if p hasthe value 1 (for "true") and q hasthe value O (for "false"), then the expression p&&q will
have the value 0 and the expressionp | | q will havethevalue 1.

Example 2.6 the Maximum of Three Again

The same problem as Ex. 2.4 using compound conditionals:

int a, b, c;

cout <<"Enter three integers: ";
cin >>a >>b >>c;

if (a>=b && a>=c) cout <<a <<endl;
i f (b>=a && b>=c) cout <<b <<endl;
if (c>=a & & c>=b) cout <<c <<endl;

Note that Ex. 2.6 is no improvement over Ex. 2.4. Its purpose is ssmply to illustrate the use of compound
conditionals.

Here is another example using a compound conditional:
Example 2.7 User-Friendly Input

This program allows the user to input either aY or ay for "yes'":

char ans;
cout <<"Are you enrolled (y/n): "; cin >>ans;
if (ans=="Y" | | ans=="y') cout <<"Enrolled.\n";

el se cout <<"Not enrolled.\n";

Are you enrolled? N
Not enrol | ed.

It prompts the user for an answer, suggesting aresponse of either y or n. Then it accepts any character and
concludes that the user meant "no" unless either aY or ay isinput.

Compound conditionalsusing && and | | do not evaluate the second part of the conditional unless necessary. Thisis
called short-circuiting or lazy evaluation. As the truth tables show, (p&&q) will befalseif p isfalse. Sothereisno
need to evaluate q if p isfase. Similarly, if p istrue, then thereis no need to evaluate q to determinethat (p| | 9)
istrue.

The value of short-circuiting is shown in the following example:
Example 2.8 Short-Circuiting in a Condition

This fragment tests integer divisibility:

int n, d;

cout <<"Enter two positive ints: ";

cin >>n >>d;

i f (d>0&&n%==0) cout <<d <<" divides " <<n <<endl;
el se cout <<d <<" does not divide" <<n <<endl;

< previous page page 22 next page >

< previous page page_ 23 next page >
Page 23

Enter two positive ints: 300 6
6 divides 300

Enter two positive ints: 300 7
7 does not divide 300

Enter two positive ints: 300 O
0 does not divide 300

Inthefirst run, d is positive and n% is zero, so the compound condition istrue. In the second run. d is positive but
n% is not zero, so the compound condition isfalse. In the third run, d is zero, so the compound condition is
determined to be false without evaluating the second component " n%@==0" . This short-circuiting prevents the
program from crashing because when d is zero the expression n%od cannot be eval uated.

Boolean Expressions

A Boolean expression is a condition that is either true or false. The expressionsd>0, n%==0,and (d>0 && n%
d==0) are Boolean expressions. Aswe have seen, Boolean expressions evaluate to integer values where 0 means
"false" and every nonzero value means "true."

Since all nonzero integer values are interpreted as meaning "true," Boolean expressions are often disguised. For
example, the statementi f (n%) cout <<"n is not a multiple of d"; will print precisely when n%

d isnot zero. That happens when d does not divide n evenly, because n% is the remainder from the integer
division.

Boolean expressions having integer values can lead to some surprising anomalies in C++. For example, the
following line might be written by a novice C++ programmer:

if (x >y >=2z) cout <<"max = x"; / | ERROR!

Obviously, the programmer intended to write

if (x >y && y >= z) cout <<"max x"; Il K

The problem is that the erroneous line is syntactically correct, so the compiler will not catch the error. In fact, the
program could run without any apparent error at all. Thisisarun-time error of the worst kind because there is no
clear indication that anything iswrong.

The source of the difficulty described here is the fact that Boolean expressions have numeric values. Suppose that x

and y both have the value 0 and that z has the value 1. The expression (x>=y>=z) isevau-

< previous page page_23 next page >

< previous page page_ 24 next page >
Page 24

ated from left to right. The first part x>=y evaluatesto "true" which isthe numeric value 1. Then that is compared to
z, and since they are equal the complete expression evaluatesto "true”" even though the author intended expression
would be false!

The moral hereisto remember that Boolean
expressions have numeric values, and that compound
conditionals can be tricky.

Another error that novice C++ programmers are prone to make is using a single equals sign when the double equals
sign == should be used. For example,

if (x=0) cout <<"= 0"; /| ERROR!

Obvioudly, the programmer intended to write

if (x==0) cout <<"x = 0"; Il K

The erroneous statement will first assign 0 to x. That assignment then has the value 0 which means "false" so the
cout statement will not be executed. Even if x originally was zero, it will not be printed. Worse, if x originally was
not zero, it will inadvertently be changed to zero!

Like the previous bug, thisis another run-time error of the worst kind. It is very difficult to detect.

Nested Conditionals

Like compound statements, conditional statements can be used wherever any other statement can be used. So a
conditional statement can be used within another conditional statement. Thisis called nesting conditional statements.
For example, the condition in the last example could be restated equivalently as

if (d>0)
if (n%==0) cout <<d <<" divides " <<n <<endl;
el se cout <<d <<" doesn't divide" <<n <<endl;
el se
cout <<d <<" doesn't divide" <<n <<endl;

Here extra indentation is used to help clarify the complex logic. Of

< previous page page_24 next page >

< previous page page_ 25 next page >
Page 25

course, the compiler ignores all indentation and white space. To parse the statement, it uses the following "else
matching” rule:

Mat ch each else with the |ast unmatched if.

Using thisrule, the compiler can easily decipher code as inscrutable as this:

if (a>0) if (b>0) ++a; else if (c>0)
if (a<4) ++b; else if (b<<4) ++c; else-a;
else if (a<l>4) -b; else-c; else a = 0;

To makeit readable for humans, that code should be written like this:

if (a>0)
if (b>0) ++a;
el se
if (a>0)
I f (a<4) ++b;
el se
if (b<4) ++c;
el se -a;
el se
if (a<4) -b;
el se -c;
el se
a = 0;

Example 2.9 the Maximum of Three Again

Here is yet another way to do what was done in Exs. 2.4 and 2.6:

int a, b, ¢, max;
>cout <<"Enter 3 int: ";
>cin >>a >>b >>c;
>i f (a>b)
if (a>c) max=a; // a>b and a>c
el se max=c; [/ c>=a>b
el se
if (b>c) max=b; // b>=a and b>c
el se max = c; /] c>=b>=a
cout <<"The maxinmumis " <<max <<endl;

Enter 3 ints: 22 33 44
The maxi mnumis 44

Enter 3 ints: 66 55 44
The nmaximumis 66

Inthefirst run, thetest (a>b) fails, sothe second el se executesthetest (a>c) , which also fails, thus executing
the third

< previous page page_ 25 next page >

< previous page page_ 26 next page >
Page 26

el se which assigns ¢ to max. In the second run, both tests (a>b) and (a>c) succeed, so a is assigned to nax.

This program is more efficient than the one in Ex. 2.6 because it evaluates only two simple conditions instead of
three compound conditions. Nevertheless, it should be considered inferior because its logic is more complicated.

In the trade-off between efficiency and simplicity, one should opt
for smplicity.

Nested conditionals by their very nature are complicated. It is usually better to avoid them if possible. An exception
to thisruleisaspecial form of nested conditional where all except possibly the last el se isimmediately followed

by another i f . Thisisapopular logical structure because it delineates in a simple way a sequence of digoint
aternatives. To clarify thelogic, programmers usualy lineup theel se i f phrases, as shown in the next example.

Example 2.10
This program converts a number of yearsin college into a class name:

int yr;

cout <<"Enter class year: "; cin >>yr;
if (yr<l) ceut <<" *** not in school.";

else if (yr==l) cout <<" Freshman";

else if (yr==2) cout <<" Sophonore";

else if (yr==3) cout <<" Junior";

else if (yr==4) cout <<" Senior";

el se cout <<" *** career student.";

Enter class year: 3 Junior

Enter class year: 1 Freshman

Enter class year: -9 *** not in school.

The year is tested through a cascade of conditionals, continuing until oneisfound true, or until the last elseis
reached as in the third run.

< previous page page 26 next page >

< previous page page 27 next page >

Page 27
The Conditional Expression Operator
C++ provides an abbreviated form of aspecial caseof thei f ... el se statement. It is called the conditional

expression operator and uses the ? and then : symbolsin a special ternary format:

condition ? expressionl : expression2

Like any operator, this combines the given expressions to produce a value. The value produced is either the value of
expr essi onl or that of expr essi on2, according to whether thecondi t i on istrue or false. For example, the

assignment statement
mn = x<I>y ? x : vy;
will assign the value of x tom n if x<| >y, otherwiseit assignsthe value of y to m n.

The conditional expression operator is generally used only when the condition and both expressions are very simple.

The swi t ch Statement

The sequence of mutually exclusive aternatives delineated by the multipleel se i f construct often can also be
coded using asw t ch statement. Its syntax is

switch (expression) {
case constant1l: statenentlListl;
case constant?2: statenentlList2;

case- constant N. statenmentLi stN
defaul t: statenentlist;

Theswi t ch statement evaluates the expr essi on and then looks for its
value among the case constants. If the value is found among theconst ant s

listed, then control is transferred to the first statement in that
st at ement Li st . Otherwiseif thereisadefault (which is optional), then the

program branchesto that st at enment Li st . Note that the expr essi on
must evaluate to an integer type and that the const ant s must be integer
constants (which include char s).

< previous page page 27 next page >

< previous page

Example 2.11

page 28

The program has the same effect as the program in Ex. 2.10:

int yr;
cout <<"Enter class year: "; cin >>yr;
switch (yr<0 ? 0 : yr)
case 0: cout <<" *** not in school.";
case 1: cout <<" Freshman";
case 2: cout <<" Sophonore";
case 3: cout <<" Junior";
case 4: cout <<" Senior";
defaul t: cout <<" *** career student.";

}

next page >
Page 28

br eak;
br eak;
br eak;
br eak;
br eak;

First the program changes negative yearsto0O (yr <O ? 0: yr) Thenthat valueislocated inthe case list, and
every statement from there to the next br eak is executed. If the breaks were not included every case after the
matching one would be executed.

Scope

The scope of an identifier isthat part of the program where it can be used. For example, variables cannot be used
before they are declared, so their scopes begin where they are declared. Also a program may have several objects
with the same name as long as their scopes are nested or digoint. Thisisillustrated by the next example.

Example 2.12 Nested and Parallel Scopes

int x = 11; /'l this x is global int main()
{ /'l begin scope of main(int x =
22,
{ /'l begin scope of internal block
int x = 33, y=44;
cout <<"In inside block: x =" <<x <<endl;

/'l end scope of internal block

cout <<"In main(): x =" <<x <<endl;
cout <<"In main(): : :x =" <<::x <<endl;
return O;

< previous page

/'l end scope of main()

page 28

next page >

< previous page page_ 29 next page >
Page 29

ns
|
|

bl ock: x = 33
X:

|
| 22
| =

50 355

de
():
():

mal n
mal n

Thevariabley isonly available in theinside block. There are three different objects named x in this program. The x
that isinitialized with the value 11 isa global variable, so its scope extends throughout the file. The x that is
initialized to 22 has scope limited to mai n() . Since thisis nested within the scope of thefirst x, it hides the first x
withinmai n() . Thex that isinitialized to 33 has scope limited to the internal block within mai n(), so it hides
both the first and the second x within that block.

The last line in the program uses the scope resolution operator : : to accessthe global x that is otherwise hidden in
mai n() .

Enumeration Types

In addition to the predefined types such asi nt and char, C++ alowsyou to define your own datatypes. This

can be done in several ways, the most powerful of which use classes as described in Chapters 8-11. We consider
here amuch simpler kind of user-defined type.

An enumeration type is a user-defined integral type with the syntax:

enum typenane { enuneratorlist);

Here enumis a C++ keyword, t ypenamne stands for an identifier that names the type being defined, and
enuner at or | i st standsfor alist of identifiers that define integer constants. For example, the following defines
the enumeration type Senest er , specifying three possible values that a variable of that type can have:

enum Senester {fall, spring, summer};

We can then declare variables of thistype:

Senester sl1, s2;

and can use them as we would predefined types:

sl = spring; s2 = fall;
if (sl==s2) cout <<"Sane senester. \n";

The actual values defined intheenuner at or | i st are called enumerators. In fact, they are ordinary integer
values. Thevaluesfal | , spring, andsumrer defined for the Senmest er type above could have been defined
likethis:

const int fall=0 w nter=1, sumrer=2;

< previous page page_29 next page >

< previous page page 30 next page >
Page 30

ThevaluesO, 1, . . . are assigned automatically when the type is defined. These default values can be overridden in
theenuneratorli st:

enum Coi n {penny=1, nickel=5, dine=10, quarter=25);

If integer values are assigned to only some of the enumerators, then the ones that follow are given consecutive
values. For example,

enum Days {non=1, tue, wed, thur, fri, sat, sun);
will assign the numbers 1 through 7 to the days of the week.

Enumeration types are usually defined to make code more self-documenting; i.e., easier to understand. Here are a
few more examples:

enum Bool ean {fal se, true);

enum Gender {female, male);

enum Base {bin=2, octal =8, dec=10, hex=16);

enum Col or {red, orange, yellow, green, blue);
enum Roman {I=1, V=5, X=10, L = 50, C=100, D=500);

Definitions like these can help make your code more readable. However, enumerations should not be overused. Each
enumerator in an enumerator list defines anew identifier. For example, the definition of Roman above defines the

sevenidentifiers|, v; x, L, C, D, andMasspecificinteger constants, so these letters could not be used for
any other purpose within the scope of their definition.

Enumerators must be valid identifiers. The following isinvalid:

enum Gade {F, b G, C, C+ . B-, B, B+ A, A},

because the characters '+' and '-' cannot be used in identifiers.

Type Conversions

In many cases, C++ allows objects of one type to be used where another type is expected. Thisis called type

conversion. The most common examples of type conversion are from one integer type to another and conversion
from an integer type to afloating-point type.

The general ideais that one type may be used where another type is expected if the expected type has a higher
"rank." For example, achar can be used whereani nt isexpected becausei nt has higher rank than char. Ani nt

can be used instead of af | oat for the same reason.

Example 2.13 Type Promotion

char c="A";
short nE22;

< previous page page 30 next page >

< previous page page_ 31 next page >

Page 31
int n= c+m
float x = c+mrn+2. 222;
cout <<"n = " <<n <<endl;
cout <<"x = " <<x <<endl;

Thechar variable c isinitialized with the integer value 65 (ASCII for the character ' A") and the short variable m
isinitialized with the integer value 22. In the assignment n=c+m the operands ¢ and mhave different integral types.
Their values are promoted to typei nt before the resulting value of 87 isassigned to n. The variable x receivesthe
value 65 + 22 + 87 + 2.22 or 176.22.

Type promotion like thisis quite common and usually occurs unnoticed. The genera ruleisthat any integral type
will be promoted to i nt whenever an integer conversion like thisis necessary. An exception to that rule applies on

compilers whose implementation of i nt does not cover all the values of the type being promoted. In this case, the
integral type will be promoted to unsi gned i nt instead.

Since enumeration types are integral types, integral promotion applies to them too. If x were avariable of some
emumerated type, then the statement: cout <<"x = " <<x <<endl| ; would promote the value of x is
promoted from the enumeration type to the typei nt beforeit isinserted into the output stream.

Promoting from integer to float is done as one would expect and is usually taken for granted. But converting from a
floating-point type to an integral type is not automatic.

In generdl, if Tisonetypeand v isavalue of another type, then the expresson T (v) convertsv totypeT. Thisis
called type casting. For example, if expr isafloating-point expression and n isavariable of typei nt ,thenn =

i nt (expr); convertsthevaueof expr totypei nt and assignsit to n. The effect isto remove the real
number's fractional part, leaving only its whole number part to be assigned to n. For example, 2.71828 would be
converted to 2. Note that this is truncating, not rounding.

Example 2.14 Smple Type Casting

This program convertsadoubl e toani nt :
doubl e v=1234.56789;

int nz=int (v);

cout <<"v=" <<v <<", n=" <<n <<endl;

The doubl e value 1234.56789 is converted to thei nt value 1234.

< previous page page_ 31 next page >

< previous page page_ 32 next page >
Page 32
Becauseit is so easy to convert between integer types and real typesin C++, it is easy to forget the distinction

between them. In general, integers are used for counting discrete things, while reals are used for measuring on a
continuous scale. This means that integer values are exact, while real values are approximate.

In the C programming language, the syntax for casting v astype T isT) v. C++ inherits this form also, so we could
have donen=i nt (v) asn=(int)v.

< previous page page 32 next page >

< previous page page 33 next page >
Page 33

Chapter 3
Iteration

In this chapter:

Thewhi | eSatement
Thedo. . . whi | e Satement
Thef or Statement

The br eak Statement
Thecont i nue Statement
The got 0 Satement

Constants, Variables, and Objects
Iteration is the repetition of a statement or block of statementsin a program. C++ has three iteration statements: the

whi | e statement, thedo. .. whi | e statement, and thef or statement. Iteration statements are also called loops
because of their cyclic nature.

Thewhi | e Statement

Thewhi | e statement has the syntax

while (condition) statenent;

Firstthecondi ti on isevauated. If it isnonzero (i.e, true), the st at ement isexecuted andthecondi ti onis
evaluated again. These two steps are repeated until the condi t i on evaluatesto zero (i.e, is

< previous page page 33 next page >

< previous page page 34 next page >
Page 34

false). Note that parentheses are required around thecondi ti on.

Example 3.1 Printing Cubes

void main() {
int n;
cout <<"Enter >0 ints.\nTermnate with 0\n";
cin >>n;
while (n>0
cout <<" cubed is " <<n*n*n <<"\n";
cin >>n;

}
}

Enter >0 ints.
Termnate with O
2 cubed is 8

5 cubed is 125

0

First n isset to 2. Thewhi | e statement tests the condition (n>0) . Since the condition is true, the statementsinside
the loop are executed. The second statement reads 5 into n. At the end of the loop, control returns to the condition
(n> 0).Itisdtill true, so the statements inside the loop are executed again. Each time control reaches the end of
the loop, the condition is tested. After the third iteration, n is 0, and the condition is false. That terminates the loop.

Most C++ programmers indent all the statements that lie inside aloop to make it easier to see the logic of the
program. When you want severa statements to execute within aloop, you need to use braces{ } to combine them

into a compound statement. Example 3.1 illustrates the standard way to format a compound statement in aloop. The
left brace ends the loop's header line. The right brace ison aline by itself below the" w' of thewhi | e keyword.

And the statements within the compound statement are all indented.
Of course, the compiler doesn't care how the code is formatted. It would accept this format:

whi |l e(n>0) {cout <<" cubed=" <<n*n*n <<'\n";cin >>n;}

Most C++ programmers find using multiple lines asin Ex. 3.1 to be easier to read. Some C programmers also like to
put the left brace on aline by itself, directly below the" w' of thewhi | e keyword.

< previous page page 34 next page >

< previous page page 35 next page >

Page 35
Thedo. . . whi | e Statement
Thedo. .. whil e statement isalmost the same asthe whi | e statement. Its syntax is
do statenent while (condition);
The only differenceisthat thedo ... whi | e statement executesthest at enent first and then evaluates the

condi t i on. These two steps are repeated until thecondi t i on evaluatesto zero (i.e, isfalse). Ado. . .
whi | e loop will alwaysiterate at |east once, regardless of the value of the condi t i on, becausethe st at enent
executes before the condi t i on isevauated thefirst time.

Example 3.2 The Factorial Function

This program computes the factorial function: n!=(n)(n-i) (3)(2)x(1).

void main() {
int n, f=l;
cout <<"Enter a positive integer: "; cin >>n;

cout <<n <<" factorial is ";
do {
f *=n; n-;
} while (n>l);
cout <<f <<endl;

The program initializesf to 1 and then multipliesit by the input number n and al the positive integers that are less
than n. So 5!=(5)(4)(3)(2)(1)=120, and 8!=(8)(7)(6)(5)(4)(3)(2)(1)=40,320.

Thef or Statement
A loop is controlled by three separate parts: an initialization, a continuation condition, and an update. For example,
in the program in Ex. 3.2, the loop control variableisn; itsinitidlizationisci n >>n, its continuation condition is

n>1, and its update is n- . When these three parts are simple, the loop can be set up asaf or loop. The syntax for
thef or statementis

for (initialize; continue; update)

Theinitialize,theconti nue, ortheupdat e may be empty.

< previous page page 35 next page >

< previous page page 36 next page >
Page 36

If you have the choice between af or loop and awhi | e or do. . whi | e loop, you should probably use thef or
loop. Asthe next exampleillustrates, af or loop isusualy easier to understand.

Example 3.3 The Factorial Function Again

Compare this program with the one in Ex. 3.2:

void main() {

int n, f=1;

cout <<"Enter a positive integer: "; cin >>n;
for (int i=2; i <=n; i++) f *=1i;

cout <<n <<" factorial is "<<f <<endl;

}

This computes the factorial by multiplying 1 by the factors 2, 3,..., n-i, n. It won't run any faster than the version
done with the whi | e loop, but the code is more succinct.

It is customary to localize the declaration of the control ratable in the initialization pan of af or loop. For example,
the control ratablei in the program aboveis declared to beani nt withintheinitialization parti nt i =l . Thisisa

nice feature of C++. However, once the control ratable is declared thisway, it should not be redeclared in alater
f or loop. For example,

for =0; 1<100; i++) sum+=1i*i;
for

(int
(int i=0; i1<100; i++) cout <<i; // ERROR

The same control variable can be used again; it just cannot be redeclared in the same block.
Example 3.4 The Extreme Valuesin a Sequence

This program reads a sequence of positive integers, terminated by a 0. It then prints the smallest and largest numbers
in the sequence.

void main() {
int n, mn, max;
cout <<"Enter >0 ints.\nTerm nate with 0\n";

cin >>n;

for (m n=max=n; n>0;) {
if (n<mn) mn=n; /I mn-max are snal | est
else if (n>max) nmax=n; [/& largest of the n
cin >>n; /'l read so far

}

cout <<"min =" <<mn <<"\nmax = " <<max <<endl;

< previous page page_36 next page >

< previous page page 37 next page >
Page 37

Enter >0 ints.
Termnate with O

22
88

Notice that the initialization part of thef or loop m n=max=n isthe equivaent of two assignments, and the update
part is empty.

A sentinel isaspecial value of an input variable that is used to terminate the input loop. In the example above, the
value 0 isused as a sentinel.

Example 3.5 More than One Control Variable
This shows how af or loop may use more than one control variable:
void main() {

for (int nmel, n=8; nxn; mt+, n-)
cout <<"m=" <<m<<", n =" <<n <<endl;
}

Theinitiaization part of thef or loop declares the two control variables mand n, initializing mto 1 and n to 8. The
update part uses the comma operator to include two update expressions. m++ and n- . The loop continues as long as
nmxn.

Thebr eak Statement
We have aready seen the br eak statement used intheswi t ch statement. It is also used to terminate a loop.

Example 3.6 Breaking Out of an Infinite Loop

Thiswhi | e loop is equivalent to the onein Ex. 3.2:

while (1) {
if (i>n) break; /'l 1 oop stops here when i>n
sum += | *j;
i ++;

}

Aslong as (i <=n), theloop will continue. Assoon as (i >n), the br eak statement executes, immediately
terminating the loop.

Example 3.7 Controlling Input with a Sentinel

This program reads a sequence of positive integers, terminated by 0, and prints their average:

< previous page page 37 next page >

< previous page page_38

void main() {
int n, count=0, sun¥O;
cout <<"Enter >0 ints.\nTermnate with 0\n";

for (; ;)
cout <<"\t" <<count + 1 <<": ";
cin >>n;
i f (n==0 break;
++count ;
sum += n;

cout <<"Average is "
<<fl oat (sun)/ count <<endl;
}

Enter >0 ints.
Term nate with 0
1:7

2: 4
3:5
4:2
5:0
age

Aver is 4.5

g

next page >
Page 38

When O isinput, the br eak executes and terminatesthef or loop causing the final output statement to execute.
Without the use of the br eak here, the ++count statement would have to be put in a conditional or count would

have to be decremented outside the loop or initialized to -1.

Notice that all three control parts of thisf or loop are empty: f or (;

Without the presence of the break, this would be an infinite loop.

Thecont i nue Statement

;) . Thisconstruct is pronounced "forever."

The br eak statement skips the rest of the statements in the loop and goes to the statement after the loop. The
cont i nue statement does the same thing except that, instead of terminating the loop, it goes back to the beginning

of the loop to begin the next iteration.

Example 3.8 Using continue and break Statements

This program fragment illustrates the continue and break statements:

< previous page page 38

next page >

< previous page page 39 next page >
Page 39
for (;;) {

cout <<"Enter int: "; cin >>n;
I f (n%==0) continue;

else if (n%3==0) break;

cout <<" Loop Bottom\n";

}

cout <<" Qutside Loop.\n";

Enter int: 7
Loop Bottom

Enter int: 4

Enter int: 9
Qut si de | oop

When n is 7, both of thei f conditions fail and control reaches the bottom of the loop. When n is4, thefirsti f

condition istrue, so control skips over the rest of the statementsin the loop and jumps to the top of the loop to
continue with the next iteration. When n is 9, thefirsti f condition isfalse but the second is true, so control breaks

out of the loop and jumps to the first statement that follows the loop.

The got o Statement

The br eak statement, the cont i nue statement, and the swi t ch statement cause the control of the program to

branch to alocation other than where it normally would go. The destination of the branch is determined by the
context: br eak goesto the next statement outside the loop, cont i nue goes to the loop's continue condition, and

swW t ch goesto the correct case constant. All three of these statements are called jump statements because they
cause the control of the program to "jump over" other statements.

The got o statement is another kind of jump statement. Its destination is specified by alabel within the statement.

A label issimply an identifier followed by a colon, placed before a statement. Labels work like the case statements
insideaswi t ch statement: they specify the destination of the jump.

Example 3.9 Breaking Out of Nested Loops

This fragment illustrates the correct way to break out of nested loops.
for (int i=0; i<a; i++) {
for (int j=0; j<b; j++)
for (int k=0; k<c; k++)

< previous page page_39 next page >

< previous page page 40 next page >
Page 40

i f (i*j*k>100) goto esc;
el se cout <<i*j*k <<" ";
esc: cout <<endl:

}

When the got o is reached inside the innermost loop, program control jumps out to the output statement at the
bottom of the outermost loop.

Another way to break out isto use a"done flag" within the continue conditions of the f or loops like this:

i nt done=0;
for (int i1=0; i<a && !done; i++) {
for (int j=0; j<b && !done; j++)
for (int k=0; k<c && !done; k++)
if (i*j*k>100) done=1;
el se cout <<i*j*k << " "

}

Thisavoidsthe use of agot o but isabit artificial and cumbersome.

* Caution!

The overuse of got o statements often produces unstructured

spaghetti code that is difficult to debug, so limit your use of the
got o statements to terminating deeply nested loops.

Constants, Variables, and Objects

An object is a contiguous region of memory that has an address, a size, atype, and avalue. The address of an object
isthe memory address of itsfirst byte. The size of an object is simply the number of bytes that it occupies. The value
of an object is determined by the actual bits stored in its memory location and by the object's type that prescribes
how those bits are to be interpreted.

The type of an object is determined by the programmer. The value of an object may be determined by the

programmer at compile time or at run-time. An object's size is determined by the compiler and its addressis
determined by the computer's operating system at run-time.

< previous page page_40 next page >

< previous page page_41 next page >
Page 41

Some objects do not have names. We will see examples of such anonymous objects later. A variable is an object that
has a name. The word "variable" is used to suggest that the object’'s value can be changed. An object whose value
cannot be changed is called a constant. Constants are declared by preceding the type specifier with the keyword
const . Constants must be initialized when they are declared. The following program fragment illustrates constant

definitions:

const char BEEP='\Db';

const int MAXI NT=2147483647;

i nt n=MAXI NT/ 2;

const doubl e Pl =3.14159265358979323846;

Constants are usually defined for values that will be used more than once in a program but not changed.

It is customary to use all capital letters in constant
identifiersto distinguish them from other kinds of
identifiers. A good compiler will replace each constant
symbol with its numeric value.

< previous page page 41 next page >

< previous page page_42

Chapter 4
Functions

In this chapter:

Sandard C Library Functions
User-Defined Functions

Test Drivers

Function Declarations and Definitions
Separate Compilation

Local Variables and Functions

voi d Functions

Boolean Functions

I/0 Functions

Passing by Reference

Passing by Constant Reference
Scope

Overloading

Themai n() andexi t () Functions

< previous page page 42

next page >
Page 42

next page >

< previous page page 43 next page >
Page 43

Default Arguments

To make large programs more manageable, we modularize them into subprograms called functions or methods.
They can be developed, compiled, and tested separately and can be reused in other programs. This modularization is
a characteristic of successful object-oriented software. Now we look at individual functions and in subsequent
chapters we look at collecting groups of useful functions into classes.

Standard C Library Functions

The Sandard C Library is a collection of predefined functions and other program elements that are accessed
through header files. We have used some of these from the <i ost r eam h> header file. Our first example uses of

one of the mathematical functionsin <mat h. h>.
Example 4.1 The Square Root Functionsqrt ()
We can think of afunction as a"black box" to which we send some values, called arguments, and which will use

these arguments to compute and return aresult. Thesqrt function when given a positive number will return the
value of the square root of the argument.

#i ncl ude <i ostream h>
#i ncl ude <mat h. h>
/'l Square root test driver.
void main() {
for (int i=0 1<6; i++)
cout <<i <<"\t" <<sgrt(i) <<endl;

This program prints the square root of the numbers0,...,.5. The#i ncl ude <mat h. h> tellsthe compiler to use
the functions defined infilemat h. h.

A functionlikesqrt () isexecuted by using its name as avariable in a statement, likethis: y=sqrt (i) +10. 0;
Thisiscalled invoking or calling the function. In the last example, sqrt (i) callsthesqrt function. The

expression x in the parentheses is the argument or actual parameter.. So wheni is 3, the value 3 is passed to the
sqrt functionby thecal sqrt (i) . Thisprocessisillustrated by the following diagram:

< previous page page_ 43 next page >

< previous page page_44 next page >
Page 44

main () scrk ()

3 ‘N
i J‘ 1.73205

Thevariablei isdeclaredin mai n() . During the fourth iteration of the for loop, itsvalueis 3. That value is passed
tothesqrt () function, which then returns the value 1.73205.

Example 4.2 Testing an Identity from Trigonometry

Hereis code that uses <mat h. h> to alow an empirical verification of the standard trigonometric identity sin 2x=2
Sin XCos X:
#i ncl ude <mat h. h>
/'l Fragnment to test the identity sin2x=2si nx cOSX:
for (float x=C, x < 2; x += 0.2)
cout <<"\t" <<x <<"\t\t" <<sin(2*x) <<"\t"
<<2*sin(x)*cos(x) <<endl;

Executing this code would print x, sin 2 x, and 2 sin X cos X in three columns. Try it to see that for each value of x
tested, sin2x=2sinxcosx. This provides empirical evidence of the truth of the identity.

Function values may be used like ordinary variablesin an expression. Thus we can write
y=sqrt(2); or cout <<2*sin(x) *cos(Xx);

We can even "nest” function calls, like this:

y=sqrt(1 + 2*sqgrt (3 + 4*sqrt(5)));

Most of the math functions you find on a pocket calculator are declared in the <mat h. h> header file, including
those shown below.

Table 4.1 Some <mat h. h> Functions

Function Description Example

acos (x) Inverse cosine (radians) acos(0.2) returns 1.36944
asin (x) Inverse sine of x (radians) asin(0.2) returns 0.201358
atan (x) Inverse tangent (radians) atan(0.2) returns 0.197396
ceil (x) Ceiling of x (rounds up) ceil(3.141593) returns 4.0

cos (x) Cosine of x (radians) cos(2) returns -0.416147

exp (x) Exponential of x (base €) exp(2) returns 7.38906

fabs (x) Absolute value of x fabs(-2) returns 2.0
(table continued on following page)

< previous page page 44 next page >

< previous page

(table continued from previous page)

Function

floor (x)

l'og (x)

| 0g10 (x)

pow (X, p)

sin (x)

sgrt (x)

tan (x)

Description

Floor of x (rounds down)

Natural log of x (base €)

Common log (base 10)

X to the power p

Sine of x (radians)

Square root of x

Tangent of x (radians)

page_ 45

Example

floor(3.141593) returns 3.0
log(2) returns 0.693147
log10(2) returns 0.30103
pow(2,3) returns 8.0

sin(2) returns 0.909297
sqrt(2) returns 1.41421

tan(2) returns -2.18504

next page >
Page 45

Every mathematical function listed above returnsadoubl e type. If passed an integer, it is promoted to doubl e
before it is processed by the function.

Table 4.2 Some of the Header Filesin the Standard C Library

Header File

<assert. h>

<ctype. h>

<float. h>

<limts. h>

<mat h. h>

<stdio. h>

<stdlib. h>

<string. h>

Description

The assert() function

Functions to test characters

Constants relevant to floats

Integer limits on your local system

Mathematical functions

Functions for standard input and output

Utility functions

Functions for processing strings

<tinme. h> Time and date functions

These header files are used the same way as<i ost r eam h>. For example, if you want the random number
functionr and(), place#i ncl ude <stdlib. h> atthebeginning of your main program file.

User-Defined Functions

The functions provided by libraries are not sufficient for all problems. Programmers must be able to define their own
functions.

Example 4.3 Acube() Function

Hereis asimple example of a user-defined function:

[l returns the cube of the given integer:
int cube(int x) {

< previous page page_ 45 next page >

< previous page page 46 next page >
Page 46

return x*x*x;

}

Thei nt function returns the cube of thei nt argument, so cube(2) would return 8.

A user-defined function has two parts: its header and its body. The header of afunction specifiesits return type,
name, and parameter list. In Ex. 4.3, thereturntypeisi nt , the nameiscube, and the parameter listisi nt x.

Thus the header for the cube functionis

int cube (int Xx)

The body of afunction isthe block of code that follows its header. It contains the code that performs the function's
action, including the return statement that specifies the value that the function sends back to the place where it was
called. The body of the cube functionis

{ return x*x*x; }

This body is about as simple as a function could have. Usually the body is much larger. But the function's header
typically fitson asingleline.

A function’s return statement serves two purposes. it terminates the function, and it returns a value to the calling
program. Its syntax is

return expression,

where expression is any expression whose value could be assigned to a variable whose type is the same as the
function's return type.

Test Drivers

Whenever you create your own function, you should test it with asimple program called atest driver. Its only
purpose isto test the function. It is atemporary, ad hoc program that can be "quick and dirty." Y ou need not include
all the usual niceties of user prompts, output labels, and documentation.

2 4
x|
Don't Forget! I\F‘f—-jj

Once you have used atest driver, discard it.

< previous page page 46 next page >

< previous page page 47 next page >
Page 47

Example 4.4 A Test Driver for the cube() Function

Hereis aprogram, with our cube function followed by atest driver:

/'l returns the cube of the given integer:
int cube(int x) { return x*x*x; }
/'l Test driver for the cube function:
main () {
int n=l;
while (n!'= 0 {
cin >>n;
cout <<cube(n) <<endl;
}
}

This reads integers and prints their cubes until the user inputs the sentinel value 0. Each integer read is passed to the
cube function by the call cube ('n). The value returned by the function replaces the expression cube (n) and
is then passed to the output object cout .

Note that we omitted the #i ncl ude <i ost ream h> directive. Thisdirective of courseisrequired for every
program that usesci n or cout . Itisomitted from further examples only to save space.

We can visualize the relationship between the mai n() function and thecube() function likethis:

main) cube)

L

Themai n() function passesthe value 5 to the cube() function, and thecube() function returns 125 to the
mai n() function. The actual parameter n is passed by value to the formal parameter x. Thissimply means that x
is assigned the value of n when the function is called.

Note that the cube() function is defined above the mai n() function in the example. Thisis because the C++
compiler must know about the cube() function beforeitisusedinmai n().

The next example shows a user-defined function named max() , which returns the larger of thetwo i nt s passed to
it. Thisfunction has two arguments.

< previous page page 47 next page >

< previous page page_ 48 next page >
Page 48
Example 4.5 A Test Driver for the max() Function

This function returns the larger of the two values passed to it:
A r et ur n statement islikeabr eak statement. It isajump

int max(int X, | nt y) { statement that jumps out of the function that containsit.
return x<y ? y:Xx; Although usually found at the end of the function, areturn
} statement may be put anywhere that any other statement
main () { could appear within afunction.
int mn;
do

cin >>m >>n;
cout <<max(mn) <<endl;
} while (m=0);
}

Function Declarations and Definitions

The last two examples define a function in a program with the complete definition of the function listed above the
main program.

Another, more common arrangement isto list only the function's header above the main program, and then list the
function's complete definition (header and body) below the main program.

A function declaration or prototype isits header, followed by a semicolon. The definition is the complete function:
header and body.

Like a variable declaration, afunction declaration must appear above any use of its name. However, the function
definition, when listed separately from the declaration, may appear anywhere outsidethermai n () functionandis

usually listed after it or in a separate file.

Y ou Need to Know /

A function declaration is like a variable declaration. It provides the
compiler with information needed to compile the rest of the file.
The compiler doesn't need to know how the function works. It only
needs the function's name, the number and types of its parameters,
and itsreturn type. Thisisthe information contained in the
function's header.

< previous page page_ 48 next page >

< previous page page 49 next page >
Page 49

The variablesthat are listed in a parameter list are called formal parameters or formal arguments. They are local
variables that exist only during the execution of the function. Their listing in the parameter list declares them. In Ex.
4.5, the formal parametersarex andy.

The variablesthat are listed in the function's calls are called the actual parameters or actual arguments. Like any
other variable in the main program, they must be declared before they are used in the call. In Ex. 4.5, the actual
parameters are mand n.

In these examples, the actual parameters are passed by value. This means that their values are assigned to the
function's corresponding formal parameters. So in the previous example, the value of mis assigned to x and the
valueof nisassignedtoy. When passed by value, actual parameters may be constants or expressions. For
example, themax () function could be called by max (44, 5*m n). Thiswould assign the value 44 to x and
the value of the expression5 *m ntoy.

Example 4.6 max () FunctionSeparate Declaration and Definition

Thisisthe same test driver as Ex. 4.5. The function's declaration appears above the main program and its definition
followsit:

int max(int, int);
/[l test driver for the nax function:
void main () {
int m n;
do {
cin >>m >>n;
cout <<max(mn) <<endl;
} while (m!= 0);

/'l returns the |arger of the two given integers:
int max(int x, int vy)
if (x <y) returny; else return x;

Notice that the formal parameters, x and y, are listed in the header in the definition (as usual) but not in the
declaration.

There is not much difference between a function declaration and a variable declaration, especially if the function has
no parameters. For example, in a program that processes strings, you might need a variable named length to store the
length of astring. However, areasonable alternative would be to have afunction that computes the length of the
string

< previous page page 49 next page >

< previous page page 50 next page >
Page 50

wherever it is needed, instead of storing and updating the value. The function would be declared asi nt | engt h
() ; whereasthe variable would be declared asi nt | engt h;

The only difference isthat the function declaration includes the parentheses (). In redlity, the two alternatives are
quite different, but syntactically they are nearly the same when they are used.

In cases like this one can regard a function as akind of "active variable”; i.e., avariable that can do things.

Separate Compilation

Function definitions are often compiled independently in separate files. For example, al the functions declared in
the Standard C Library are compiled separately. One reason for separate compilation is "information hiding” that is,
information that is necessary for the complete compilation of the program but not essential to the programmer's
understanding of the program is hidden. Experience shows that information hiding facilitates the understanding and
thus success of large software projects.

Example 4.7 The max () Function Compiled Separately

/1 file test _max.cc
max(int, int);
[l driver for max:
void main() {
int m n;
do {
cin >>m >>n;
cout <<max(mn) <<endl;
} while (m!= 0);

/1 file max.cc

/'l max=larger of two ints

int max(int x, int y) {
return x<y ? y : x; }

max() (max.cc) anditstest driver (max_dri ver. cc) arein separate files and could be compiled separately.
The actual commands that you would use to compile these files will depend upon your local system.

Another advantage of compiling functions separately is that they can be tested separately before the program(s) that

call them are written. Once you know that the max function works properly, you can forget about how it works and
save it to be used whenever it is needed.

< previous page page 50 next page >

< previous page page 51 next page >
Page 51

Y et another advantage of separate compilation is the ease with which one module can be replaced by another
equivalent module. If you happen to discover a better way to implement max () , you can compile and test that

function, and then link that module with whatever programs were using the previous version of the max () function.

Loca Variables and Functions

A local variableis one declared inside ablock. It is accessible only from within that block. Since the body of a
function itself isablock, variables declared within afunction are local to that function; they exist only while the
function is executing. A function's formal parameters (arguments) are also regarded as being local to the function.

int factorial (int n) {
if (n <0) return O;

int f = 1;
while (n > 1) f *= n-;
return f;

}

Example 4.8 Thef act ori al () Function

The factorial of a positiveinteger n (n!) is obtained by multiplying n by all the positive integers less than n: n! = (n)
(n-1)...%x(3)(2)().

This function hastwo local variables: n and f . The parameter nislocal becauseit is declared in the function's
parameter list. The variablef islocal because it is declared within the function body.

i i Note!

The use of local variables within functions is another example of
information hiding. The user of afunction need not know what
variables are used within the function.

< previous page page 51 next page >

< previous page page 52 next page >
Page 52

voi d Functions

A function need not return avalue. In other programming languages, such afunction is called a procedure or
subroutine. In C++, such afunction isidentified by placing the keyword voi d asthe function'sreturn type. A voi d
function is one that returns no value.

Since avoid function does not return avalue, it need not include areturn statement. If it does have areturn
statement, then it appears ssimply asr et ur n; with no expression following the keyword return. In this case, the
return statement is simply terminates the function.

A function with no return value is an action. Accordingly, it is usually best to use averb phrase for its name.

Boolean Functions

Sometimesit is helpful to use afunction to evaluate a condition, typically withinani f or whi | e statement. Such
functions are called Boolean functions, after the British logician George Boole (1815-1864).

Example 4.9 A Function to Test Primality

This Boolean function tests whether a given integer is a prime number.

/1l returns 1 if pis prinme, 0 otherw se
int isPrime (int p) {
float sqrtp = sqrt(p);
if (p<2) return O; Il 2 is the first prine
if (p==2) return 1;
i f (p2 == O return O0; // 2 is the only even prine
for (int d=3; d<=sqrtp; d+=2)
if (p% == O return O;
return 1,

}

It works by looking for adivisor d of thegiven n. It testsdivisibility with the condition (n%@==0). Thisistrue
whend isadivisor of n. Inthat case, n isnot a prime number and the function returns 0. If the f or loop finishes
without finding any divisor it returns 1.

Once we get past the square root of n we stop becauseif n isaproduct d* a. one of the factors must be less than or
equal to the squareroot of n. We define that to be a constant so that it is only evaluated once; if

< previous page page_ 52 next page >

< previous page page_ 53 next page >
Page 53

we had used d<=sqr t (n) to control thef or loop, it would be reevaluated at the end of each iteration. It isalso
more efficient to check for even numbers (n==2) first. Thisway, thef or loop need only check odd divisors by
incrementing the divider d by 2 each iteration.

We have used name"i sPri ne" asitsnameto makeitsuse morereadable.i f (i sPrinme (n)) ...isamost
thesame as"if nisprime.”

1/0O Functions

Functions are particularly useful for encapsulating tasks that require messy details that are not very germane to the
primary task of the program. For example, in processing personnel records, you might have a program that requires
Interactive input of auser's age. By relegating this task to a separate function, you encapsul ate the details needed to
ensure correct data entry without distracting the main program.

Ex. 4.10 illustrates an input function. Thewhi | e (1) control of the loop in this example makesit ook like an

infinite loop: the condition (1) is aways "true." But the loop is actually controlled by the return statement which
terminates both the loop and the function.

Example 4.10 A Function for Reading the User's Age

This function that prompts the user for his/her age and then returnsit. It is"robust” in the sense that it rejects
unreasonable input. It repeatedly requests input until it receives an integer in the range 1 to 120:

int age () {

int n;

while(1l) {
cout <<"How old are you? "; cin >> n;
if (n<0) cout <<"\a\tAge can't be negative.";
else if (n>120) cout <<"\a\tNot over 120.";
el se return n;
cout << "\n\tTry again. \n";

}
}

When acceptable input is received from ci n, the function terminates with a return statement, sending the input back
to the calling function. For unacceptable input (n<0 or n>120), the system beep (' \ @') is sounded, and a comment
is printed and the user is asked to "Try again."

< previous page page 53 next page >

< previous page page 54 next page >
Page 54

Thisis an example of afunction whose return statement is not at the end of the function.

Passing by Reference

So far, the parameters we have seen in functions have been passed by value. The expression used in the function call
is evaluated first and the resulting value is assigned to the corresponding parameter in the parameter list before
function execution. For example, incube (x), if x is4, thenthe value 4 is passed to the local variable n before

the function executes. Since the value 4 is used locally inside the function, x is unaffected by the function. Thus, x is
aread-only parameter.

The pass-by-value mechanism allows expressions to be passed to the function. For example, cube() could be
called ascube(2*x- 3) orevenascube(2*sqrt (x)-cube(3)). Ineach case, the expression is evaluated to
asingle value that is passed to the function.

Read-only, pass-by-value communication is usually what we want. It makes the function self-contained, protecting
against accidental side effects. There are situations where a function must change the value of the parameter passed
toit. Thisisdone by passing it by reference.

To pass a parameter by reference, simply append an ampersand & to the type specifier in the parameter list. This
makes the local variable areference to the actual parameter passed to it. Therefore, the actual parameter isread-

write, not read-only. Any change to the local variable inside the function will cause the same change to the actual
parameter.

Parameters passed by value are called value
parameters, and those passed by reference are
called reference parameters.

Example 4.11 The swap() Function

Swaps x and y so that each ends up with the other's value:
void swap(float& x, float& y) {

float tenp = x;

X =Y;

< previous page page 54 next page >

< previous page page 55 next page >
Page 55

y = tenp;
}

Its sole purpose is to interchange the two objects that are passed to it. Thisis accomplished by declaring the formal
parametersx and y asreference variables. f | oat & x, fl oat & y. Thereference operator & makes x andy

synonyms for the actual parameters.

When acall swap(a, b) executes, the function createsitslocal referencesx andy so that x isan aliasfor a, and y
isanaiasfor b. Thenthelocal variablet enp isdeclared and initialized with the value of a, a isassigned the
value of b, and b is assigned the value of t enp.

The compiler will acceptf | oat & x, float &, float & x, orevenfl oat &. It'samatter of taste.

Example 4.12 Passing by Value and Passing by Reference

This shows the difference between passing by value and by reference.

void f(int x, int&y) { x=88; y=99 }

main ()
int a=22, b=33;
cout <<"a = " <<a <<" b = " << b << endl;
f (a,b);
cout <<"a = " <<a <<" b = " << b << endl;
}

Thecal f (a, b) passesaby vauetox and b by referencetoy. Sox isalocal variable whichisassigned a's
value of 22, whiley isan alias for the variable b whose valueis 33. The function assigns 88 to x, but that has no
effect ona. Whenitassigns99toy, itisrealy assigning 99to b. Thus, when the function terminates, a till has
itsoriginal value 22, while b has the new value 99. The actual parameter a isread-only, while the actual parameter
b isread-write.

Table 4.3 Passing by Vaue versus Passing by Reference

Passing by Value Passing by Reference

int Xx; int &x;

Formal parameter x islocal variable. Formal parameter x islocal reference.
A duplicate of the actual parameter. A synonym for actual parameter.
Cannot change the actual parameter. Can change the actual parameter.

Actua parameter may be constant, variable, or expression. Actual parameter must be variable.

Actual parameter is read-only. Actual parameter is read-write.

< previous page page_55 next page >

< previous page page_ 56 next page >
Page 56

A common situation where reference parameters are needed is where the function has to return more than one value.
It can only return one value directly with areturn statement. So if more than one value must be returned, reference
parameters can do the job.

Passing by Constant Reference

There are two good reasons for passing a parameter by reference. If the function has to change the value of the
actual parameter, astheswap () function did, then it must be passed by reference. If the actual parameter takes
up alot of storage space (e.g., a one-megabyte graphics image), then it is more efficient to passit by reference to
prevent it from being duplicated. However, this aso allows the function to change the value of the actual parameter.
If you don't want the function to change its contents, C++ provides athird alternative: passing by constant reference.
It works the same way as passing by reference, except that the function cannot change the parameter value. The
effect is that the function has access to the actual parameter by means of its alias, but the value of parameter may not
be changed during the execution of the function. A parameter that is passed by valueis called "read-only" because it
cannot change the contents of that parameter.

Consider the function:

void f(int x, int&y, const int& z) The
first paraneter is by value, the second
paramnmeter is by reference, and the third
parameter is by constant reference.

Passing parameters by constant reference is used to process large objects, such as arrays and class instances that are
described in later chapters. Objects of fundamental types (int, float, etc.) are usually passed by value (not
modifiable) or by reference (modifiable).

< previous page page_ 56 next page >

< previous page page 57 next page >
Page 57

Scope

The scope of a name consists of that part of the program where it can be used. It begins where the name is declared.
If that declaration isinside afunction (i ncl udi ng mai n ()), then the scope extends to the end of the

innermost block that contains the declaration.

A program may have several objects with the same name as long as their scopes are nested or digoint. Thisis
illustrated below.

Example 4.13 Nested and Parallel Scopes

Inthisexample,f () andg () areglobal functions, and thefirst x isaglobal variable with a scope of the
entirefile. Thisis called file scope. The second x isdeclared insidemai n () soit haslocal scope; i.e, itis
accessible only fromwithinmai n (). Thethird x is declared inside an internal block, so its scope isrestricted to
that internal block.

void f(); /1 f() is global
void g(); /'l g() is globa
int x = 11; /'l this x is gl obal
main () { /'l begin scope of main()
int x = 22;
{ /'l begin scope of internal block
int x = 33;
cout << "In block inside main(): " <<x <<endl;
} /'l end scope of interna
bl ock
cout <<"In main(): x =" <<x <<endl;
cout <<"In main(): ::x =" <<::x <<endl; //global x
f();
9();

/'l end scope of main()

Each x scope overrides the scope of the previously declared x, so there is no ambiguity when the identifier x is
referenced. The scope resolution operator :: is used to access the last x whose scope was overridden; in this case,
the global x whose valueis 11:

void f() { /'l begin scope of f()
int x = 44;
cout <<"In f(): x = "<<x <<endl;
} /'l end scope of f()
void g() { /'l begin scope of g()

< previous page page 57 next page >

< previous page page 58 next page >
Page 58

cout <<"In g() : x =" <<x <<endl;
} /'l end scope of g()

The x initialized to 44 has scope limited to thef () whichisparalel to main but its scope is aso nested within the
global scope of thefirst x, so its scope overrides that of both the first x withinf () . The only place where the scope
of thefirst x is not overridden is within the function g.

Overloading

C++ alows you to use the same name for different functions. Aslong as they have different parameter type lists, the
compiler regards them as different functions. To be distinguished, the parameter lists must either contain a different
number of parameters, or at least one position in their parameter lists must have different types.

Example 4.14 Overloading the max () Function

Here we define several max () functionsin the same program:

int max(int, int);
int max(int, int, int);
doubl e max(doubl e, double);
void main ()
cout <<max(99,77) <<" "<<max(55, 66,33) <<" "
<<max(3.4,7.2) <<endl;

nt max(int x, int y) {return (x >y ? x :vy); }
int max(int x, int y, int z)

int t = (x>y ? x:y); return (z>t ? z:m,;
doubl e max(doubl e x, double y) {return (x>y ? X1y);

Three different functions, all named max, are defined here. The compiler checks their parameter lists to determine
which one to use on each call. For example, the first call passestwo i nt s, so the version that has two intsinits
parameter list is called. (If that version had been omitted, then the system would promote thei nt s to doubl es
and pass them to the version that hastwo doubl es in its parameter list.)

Overloaded functions are widely used in C++.

< previous page page 58 next page >

< previous page page_ 59 next page >
Page 59

Themai n() andexi t () Functions

Every C++ program requires a function named mai n() . In fact, we can think of the complete program itself as
being made up of the mai n() function together with all the other functions that are called either directly or
indirectly fromiit.

Most C++ compilers expect the mai n() function to have return kg-u;;

typei nt . Sincethisisthe default return type for any function, it

need not be specified. So we usually just write mai n() instead of
int main().

Some C++ programmers, as we have seen previously, prefer to declarevoi d mai n() and any r et ur n statement
should appear smply asr et ur n, sincein this case mai n() has no return type.

If you want to terminate the program from within a function other than the main function, you cannot usear et ur n
statement. Ther et ur n statement will only terminate the current function and return control to the invoking
function. Theexi t () function that isdefined inthe <sbdl i b. h> header file takes an integer argument that is

returned to the operating system as the "value" of the program execution. Thisvalueis usualy ignored by the
operating system unless the user is executing the program as part of a script.

Default Arguments

C++ dlows afunction to have a variable number of arguments. Providing default values for the optional arguments
does this. Consider afunction p with 4 double parameters. Thefirst isrequired and the last three are optional:

doubl e p(doubl e, doubl e=0, doubl e=l, double=-1); Thecalp (1.2) isequivaent to thecall
p (1.2,0,1,-1) andthecal p(x, 7. 6,5) isequivaenttothecal p(x, 7. 6, 5, -1)

< previous page page 59 next page >

< previous page page 60 next page >
Page 60

In the example above, the function may be called with 1, 2, 3, or 4 arguments. So the effect of allowing default
parameter valuesisreally to allow avariable number of actual parameters passed to the function.

If afunction has default parameter values, then the function's parameter list must show all the parameters with
default values to theright of all the parameters that have no default values, like this:

void f(int a, int b, int c=4, int d=7, int e=3); // K
void g(int a, int b=2, int c=4, int d, int e=3); //NO

The optiona" parameters must all be listed last.

< previous page page 60 next page >

< previous page page_61

Chapter 5
Arrays

In this chapter:

Processing the Elements of an Array

Initializing an Array

Passing Arrays as Function Arguments

C++ Does NOT Check the Range of an Array Index
Multi-Dimensional Arrays

Arrays with Enumeration Types

Type Definitions

next page >
Page 61

An array is asequence of objects all of the same type. The objects, called elements, are numbered consecutively
starting with 0. These numbers are called index values, or subscripts of the array. Subscripts |ocate element positions

and allow direct access into the array.

If the name of an array isa thena [0] isthe name of thefirst element that element in position 0. Here is an array

of 6 integers:

a 1 3 55 8 3 21

a[0] a[1] al 2] a[3] a[4] a[5]

< previous page page 61

next page >

< previous page page_ 62 next page >
Page 62

Numbering the ith element with index i - 1 is called zero-based indexing. The index is the distance from the start of
the array.

Processing the Elements of an Array

Processing arrays allows us to manipulate a list of objects without having to name each object differently. This
examplereadsin alist of 4 data values and displays then in reverse order.

Example 5.1 Displaying a List of Values

main () {
const i ht SIZE=4;
doubl e a[Sl ZE] ;
cout <<"Enter " <<SIZE <<" reals:\n";
for (int i=0; i<SIZE;, i++) {
cout <<ji <<": ";
cin >>alil];

cout << "Here they are in reverse\n";

for (i=SIZE-1; i>=0; i-)
cout <<"\ta[" <<i <<"]" = <<ag[i] <<endl;
}

Asiscustomary in C++ we have defined the array size as a separate constant. This allows changing a single line of
code to alter the size of an array and all places where that sizeis used.

Initializing an Array

In C++ an array can beinitialized with asingleinitializer list. We list theinitial values for each element in the array
and they are assigned to the array elements in the order they are listed. If the list is shorter than the array, the
remaining array elements are filled with zeros (null characters for character types).

Example 5.2 Using an Array Initializer List

main ()
const int SIZE=4;

< previous page page 62 next page >

< previous page page_63

int a[SIZE] = {1,, 5},
for (int i =0; i < SIZE, i++) {
cout <<"a[" <<i <<"|"=" <<a[i] <<" "y
}

a[0]=l a[1]=0 a[2]=5 a[3]=0

next page >
Page 63

Note that the uninitialized elements are set to zero. If we omitted the initializer list entirely, the results would be four

"garbage” values of whatever happened to be in the memory used for the array.

Passing Arrays as Function Arguments

In C++ an array name is a symbolic reference to the memory location
where the first element of the array islocated. Some programming
languages make the number of array elements available at execution
time. The designers of C++ decided not to do this, so that the only
attributes that are know about an array are the type of the elements
and the location of the start of the array. The program in Ex. 5.3
illustrates how arrays are passed to functions.

Example 5.3 An Array 1/0O Function

const int SIZE = 100;
void getArr(double[], int&);
voi d di spArr(const double[], const int)
main () {
doubl e a[SI ZE] = (1,, 5};
i nt n;
getArray(a, n);
cout <<"Array has " << n << " elenents\n";
di spArr (a, n);

}

void getArr (double x[], int& num {
num = O;
cout <<"Enter data (enter O to end):\n";
do {

< previous page page_63

next page >

< previous page page 64 next page >
Page 64

cout << n << " "
cin >> X[numt+] ;

while (x[num 1] !=0.0);

voi d di spArr(const double x[], const int num {
for (int 1=0; i<num i++)
cout <<'\t' <<i <<": " <x[i] <<endl;
}

The function get Ar r () changesthe formal parameter num so it is passed by reference. The formal parameter x is
passed to the address of the first element of an array and that address is not changed, so it isdeclared asaconst .
Since x isthe name of an array (indicated by X[]), the function can still change the array values.

C++ Does NOT Check the Range of an Array Index

Some languages will generate arun-time error if a program attempts to reference an array element with an index that
islessthan O or greater than the declared array size. The designers of C++ elected to leave this checking to the
programmer.

If you attempt to access array elements with an index which is out of bounds, seemingly unpredictable results will
occur. Since the array name references the location in memory where the array starts, a negative index will refer to
memory located before the space reserved for the array. A positive index greater that the number of array elements
will refer to memory above the array.

array
Elth.E]'_' ﬂther
users' users’
sSpace space

If the reference falls within the program's address space, the reference will be valid. If the reference reads data, it
will probably reference a meaningless dataitem or program code. A write operation will overwrite some other data
item or program instructions.

< previous page page 64 next page >

< previous page page_65 next page >

Page 65
* Note!

If the reference is outside the space owned by the executing
program a segmentation fault (memory access violation) will occur
and your program will terminate abnormally.

Multi-Dimensional Arrays

So far, we have looked only at one-dimensional arrays. Since the element type of an array may be any type, it can
be an array type. An array of arraysis called amulti-dimensional array. A one-dimensional array of one-
dimensional arraysis called atwo-dimensional array; a one-dimensional array of two-dimensional arraysiscalled a
three-dimensional array; etc. The simplest way to declare amulti-dimensional array islike this:

doubl e a[32] [10] [4];

Thisis athree-dimensional array with dimensions 32, 10, and 4. The statementa [25] [8] [3] = 99.9
would assign the value of 99. 9 to the element identified by the multi-index (25,8,3).

Example 5.4 An Array 1/0 Function

const int R=3, C=5;
void read(int [] [Q]);
void print (const int [] [C]);

main ()

int a[R[C;

read(a): print(a);

}

void read (int x[] [C) {

cout <<"Enter " <<R*C <<" " <<C <<"/rown";

for (int i=0; i<R i++) {
COUt <<" ROW " <<| << ll: II;
for (int j=0; j<C, j++) cin >> x[i] [j]:

< previous page page_65 next page >

< previous page page_66 next page >
Page 66

void print(const int x[] [C]) {
for (int 1=0; I <R 1++) {

cout "\nRovv <<j;
for (int j=0; j<Cj++) cout <<'\t' <<x[i] [j];

}

Notice that in the function's parameter lists, the first dimension is not specified while the second dimension (C) is
specified. Thisis because the array a is stored as a one-dimensional array of R with each entry being an array

containing c integers.
a[0] [O], a[O] [1], ..., a[0O] [CI], a[1] [O], a[1] [1],

The computer doesn't need to know the number of rows, but it must know the length of each row (the number of
columns) to be able to compute the distance from the first element to the one being accessed.

When amulti-dimensional array is passed to a function, the first dimension is not specified while al remaining
dimensions are specified.

Example 5.5 Processing a Three-Dimensional Array
This counts the number of zeros in athree-dimensional array.
const int TBL=2, R=4, C=3;

int nunZero(int X[] [R [C] int nl,
i nt n2 int n3);

ma n () {
nt a[TBL] [R] [C
= { {{5,0,2},{0,0,9},{4,1,0},{7,7,7}},
{{3,0,0},{8,5 0},{0,0,0},{2,0,9}} };
cout <<nun¥ero(a, TBL, R C) <<" zeros. \n";
i}nt nunZero(int x[][R [,
int t, int r, int c) {

int count = O;
for (int 1=0; i<t; i++)
for (int j=0; j<r; j++)
for (int k=0; k<c; k++)
if (x[i][j][k]==0) count++
return count;

}

Array has 11 zeros.

Notice how the array isinitialized: it is atwo-element array of four-element arrays of three elements each.

< previous page page 66 next page >

< previous page page 67 next page >
Page 67

Arrays with Enumeration Types

Enumeration types were discussed in Chapter 2. They are naturally processed with arrays. The following program
fragment defines an array of seven real numbers, representing the high temperature for each of the seven days of a
week:

Example 5.6 Days of the Week

enum Day {SUN, MON, TUE, WED, THU, FRI, SAT};
doubl e hi gh[SAT+1] = {87.2, 81.0, 67.2,
72.2, 75.5, 79.2, 81.5 };
for (Day d=SUN, d<=SAT; d++)
cout <<"\nDay " <<d <<" high=" <<high[d];

hi gh=87.
hi gh=81.
hi gh=67.
hi gh=72.
hi gh=75.
hi gh=79.
hi gh=81.

<
OO~ WNEFLO
OINOCIOINON

A type Day variable can be assigned thevalues SUN, ..., SAT and can be used thesameway ani nt can. The
array has dimension SAT+1 because we need seven elements and the value of SAT is 6. The loop takes the values of
SUN, MON, ..., SAT(0,I,...6).Using enumeration in thisway makes your code more readable.

Type Definitions

Asshown in the last section, enumeration is one way to define your own types. C++ also provides away to rename
existing types. The keyword t ypedef declares anew name (i.e., an alias) for a specified type. A typedef does not

define anew type; it only provides a synonym for an existing type. In Ex. 5.7 we use at ypedef to name an array
of doubl es TenplLi st.

Example 5.7 Days of the Week witht ypedef

#i ncl ude <iostream h>

t ypedef doubl e TenpList|[];

enum Day{SUN, MON, TUE, WED, THU, FRI, SAT },;
voi d di sp(const TenpList);

t ypedef TenpDay Day;

< previous page page_67 next page >

< previous page page 68 next page >
Page 68

mai n()
TenpLi st high = {87.2, 81.0, 67.2, 72.2,
75.5, 79.2, 81.5};
di sp (high);

voi d di sp (const TenplLi st)

for (TenpDay d=SUN, d<=SAT; d++)

cout <<"\nDay" <<d <<" high was " <<high[d];
}

Observe that the array declaration TenpLi st hi gh shows usthat the array specifier, [], ispart of the definition.

It is not needed in the declaration. The array has seven elements as the initializer specifies seven values. The
variable d of type TenpDay isactualy of type Day. Finaly, theformal parameter is specified asaTenpLi st .
This alerts us that the argument should be alist of temperatures, not just any array of doubles.

< previous page page_68 next page >

< previous page

Chapter 6
Pointers and References

IN THIS CHAPTER:
References

Pointers

Derived Types
Objects and Ivalues
Returning a Reference
Arrays and Pointers

The new Operator
Thedel et e Operator
Dynamic Arrays

Using const with Pointers

Arrays of Pointers and Pointersto Arrays

NUL, NULL, andvoi d

< previous page

page 69

page 69

next page >
Page 69

next page >

< previous page page 70 next page >
Page 70

When avariableis declared, three fundamental attributes are associated with it: its name, type, and addressin
memory. For example, the declarationi nt n; associatesthe namen, thetypei nt, and the address of some

location in memory where the value of n isto be stored. The value of avariable is accessed by means of its name.
For example, we can print the value of n with the statement: cout <<n;

A variable's address is accessed by means of the address operator & We can print the address of n with the
statement: cout <<é&n;

The address operator & "operates’ on the variable's name to produce its address. It has precedence level 15 (See
Appendix B) which isthe samelevel asthe logical NOT ! and pre-increment operator ++.

Example 6.1 Printing Pointer Values

This shows how the value and the address of a variable can be printed:
i nt n=33;

cout <<' n=" <<n <<endl; //print value of n
cout <<"&n=" <<&n <<endl; //print address of n

n=33
&n=0x3f f f d14

Y ou can tell that the second output Ox3f f f d14 isan address by the" Ox" prefix for hexadecimal format. This

address is equal to the decimal number 67,108,116. Displaying a variabl€e's address thisway is not very useful. The
address operator & has other more important uses. We saw one use in Chapter 4. designating reference parametersin

afunction declaration. That useis closely tied to another: declaring reference variables.

References

A referenceis an alias, a synonym for another variable. It is declared by appending the ampersand & to the
reference's type.

Example 6.2 Using References

Herer isdeclared areference for n:

i nt n=33;
int& r=n; /[l r is areference for n
cout <<" n=" <<n <<")\t or=" <<r <<endl; - n;

cout <<" n=" <<n <<")\t r=" <<r <<endl; r *= 2;
cout <<" n=" <<n <<",\t r=" <<r <<endl:
cout <<"&n=" <<&n <<" \t&r=" <<& <<endl;

< previous page page_70 next page >

< previous page page 71 next page >

Page 71
n=33, r=33
n=32, r=32
n=64, r =64

&n=0x3ff f d14, &r=0x3fffdl4

Thetwo identifiersn and r are different names for the same variable: they always have the same value.
Decrementing n changes both n and r to 32. Doubling r increases both n and r to 64. Thelast line shows that r
and n arealiases. Theidentifiersn and r are both symbolic names for the same memory location Ox 3f f f d14.

Likeaconst, areference must beinitialized when it is declared. That should seem reasonable: a synonym must
have a something for which it isan alias. Every reference must have a referent.

Reference parameters were defined for functions in Chapter 4. We see that they work the same way as reference
variables: they are synonyms for other variables.

Remember!

A reference parameter for afunctionisjust a
reference variable whose scope is limited to the
function.

We have seen that the ampersand character & has several usesin C++. It can be used as a prefix to a variable name

when it returns the address of that variable. When used as a suffix to atype in avariable declaration, it declares the
variable to be a synonym for the variable to which it isinitialized. When used as a suffix to atype in afunction’s
parameter declaration, it declares the parameter to be areference parameter for the variable that is passed to it. All of
these uses are variations on the same theme: the ampersand refers to the address at which the value is stored.

< previous page page_71 next page >

< previous page page 72 next page >
Page 72

Pointers

The reference operator & returns the address of the variable to which it is applied. We used thisin Ex. 6.1 to print the

address. We can also store the address in another variable. The type of the variable that stores an addressis called a
pointer. If the variable hastypei nt , then the pointer variable must have type "pointer toi nt , " denoted by i nt *:

The value of a pointer is an address that depends upon the state of the individual computer on which the programis
running. In most cases, the actual value of that addressis not relevant to the issues that concern the programmer. A
pointer can be thought of as a"locator": it tells where to locate another value.

Often we will need to use the pointer p alone to obtain the value to which it points. Thisis called "dereferencing” the
pointer, and is accomplished simply by applying the star * (the asterisk) symbol as an operator to the pointer. The

address operator * and the dereference operator - are inverses of each other: n==* p whenever p==&n. Thiscan
also be expressed as n==* & and p==&* p.

Example 6.3 Referencing and Dereferencing a Pointer
int n=33;

int* p=&n; // p points to n
cout <<" *p=" <<*p <<, "

int& r=*p; // r is a reference for n
cout <<"r=" <<r <<endl;

Here p pointsto the integer named n, so * p and n are the same value;

*p=33, r=33

*p isanaiasfor n. r isareferenceto the value to which p points. So p referencesn and r dereferencesp.
Therefore, r isaso analiasfor n.

Derived Types

In Ex. 6.3, p hastype pointertoi nt, andr hastypereferencetoi nt. Thesetypes are derived from thei nt type.
Like arrays, constants, and functions, these are derived types. Here are some declarations of derived types:

< previous page page_72 next page >

< previous page page_ 73 next page >

Page 73
I nt& r=n; Il r - reference to int
I nt* p=&n; Il p - pointer to int
int a[]={33, 66}; /'l a - array of int
const int C=33; /1 C - const int
int f()={ return 33; }; // f - function returns int

C++ types are classified as either fundamental or derived. The fundamental types include enumeration types and all
the number types. Each derived type is based upon some other type. A variable declared to have any of the derived
typesillustrated above (constant, array, pointer, reference, and function) is based upon a single fundamental type.

Y ou Need to Know /

A derived type that is based upon more than one fundamental type
is called astructure type. These include structures, unions, and
classes.

Objects and lvalues

An object isaregion of storage. An Ivalue is an expression referring to an object or function. Originally, the terms
"Ivalue" and "rvalue" referred to things that appeared on the left and right sides of assignments. But now "lvalue” is
more general. The simplest examples of Ivalues are names of objects, i.e., variables:

int n;
n=44; // n is an |val ue

The simplest examples of things that are not Ivalues are literals:

44=n; // ERROR 44 is not an |val ue

But, symbolic constants are lvalues:

const int MAX=65535; // MAX is an |val ue

even though they cannot appear on the left side of an assignment:

MAX=21024; // ERROR. MAX i s constant

< previous page page 73 next page >

< previous page page_74 next page >
Page 74

Lvalues that can appear on the left side of an assignment are called mutable Ivalues; those that can't are called
immutable lvalues. Variables are mutable lvalues and constants are immutable lvalues. Other mutable Ivalues
include subscripted variables and dereferenced pointers:

a[5] is a nutable |value

int a[8]; a[5] =22; /
/'l *p is a nmutable |value

i nt* p=&n; *p=77,

~ ~

Other immutable Ivalues include arrays, functions, and references.

In general, an Ivalue is anything whose address is accessible. Since an address is what a reference variable needs
when it is declared, the C++ syntax requirement for such a declaration specifies an lvalue:

type& ref nane=l val ue;

For example, i nt & r =n; islegal, but right-hand sides of 44, n++, or cube(n) areall illegal Ivalues.

Returning a Reference

A function's return type may be areferenceif the value returned is an Ivalue which is not local to the function. This
restriction means that the returned value is actually areference to an Ivalue that exists after the function terminates.
Consequently, that returned Ivalue may be used like any other Ivalue; for example, on the left side of an assignment:

Example 6.5 Returning a Reference

int& max(int& m int& n) { //return ref. to int
return (m>n? m: n); // m&n are nonl ocal

void main() {
int nrd44, n=22;

cout <<m<<", " <<n <<", " <<max(mn) <<endl;
max(m n)=55; /'l changes mfrom44 to 55
cout <<m<<", " <<n <<", " <<max(mn) <<endl;

}

44, 22, 44

55, 22, 55

Themax () function returns areference to the larger of the two variables passed to it. Since the return valueisa
reference, the expression max (m n) actslike areference to m(since mislarger than n). So assigning 55 to the
expressionmax (m n) isequivaent to assigning it to mitself.

< previous page page 74 next page >

< previous page page 75 next page >
Page 75
Arrays and Pointers

Although pointer types are not integer types, some integer arithmetic operators can be applied to pointers. The affect
of this arithmetic isto cause the pointer to point to another memory location. The actual change in address depends
upon the size of the fundamental type to which the pointer points.

Pointers can be incremented and decremented like integers. However, the increase or decrease in the pointer'svalueis
equal to the size of the object to which it points.

Example 6.7 Traversing an Array with a Pointer

This example shows how a pointer can be used to traverse an array.

const int Sl|ZE=3;
short a[Sl ZE] ={22, 33, 44};
cout <<"a=" <<a <<endl ;
cout <<"sizeof (short)=" <<sizeof(short) <<endl
short* end=a + SIZE; // convert size to offset 6
short sun¥O;
for (short* p=a; p < end; p++)
sum += *p
cout <<" p=" <<p;
cout <<" *p=" <<*p;

cout <<" sunkE" <<sum <<endl ;

}

cout <<"end=" <<end <<endl ;

a=0x3fffdla

si zeof (short) =2
p=0x3fffdla *p=22 sunr22
p=0x3fffdlc *p=22 sum=22
p=0x3fffdle *p=22 sunr22

end=0x3f ffd20

The second line of output shows that on this machine shor t integers occupy 2 bytes. Since p isapointer to short
each timeit isincremented it advances 2 bytesto the next shor t integer in the array. That way, sum+=*p
accumul ates the sum of the integers. If p were apointer to doubl e andsi zeof (doubl e) were 8 bytes, then
each time p isincremented it would advance 8 bytes.

Example 6.7 shows that when a pointer isincremented, its value isincreased by the number size (in bytes) of the
object to which it points.

< previous page page_ 75 next page =

< previous page page_76 next page >

Page 76
For example,
float a[8];
float* p=a; /'l p points to a[O0]
++p; /'l increases p by sizeof (float)

If f1 oat s occupy 4 bytes, then ++p; increasesthe value of p by 4, and p+=5; increasesthe value of p by 20.

Thisis how an array can be traversed: by initializing a pointer to the first element of the array and then repeatedly
incrementing the pointer. Each increment moves the pointer to the next element of the array.

We can also use a pointer for direct accessinto the array. We can accessa[5] by initializing the pointer to a[0]
and then adding 5 to it:

float* p=a; /'l p points to a[0]
p += 5; /'l now p points to a[5]

So once the pointer isinitialized to the starting address of the array, it works like an index.

WARNING: It is possible to access and modify unallocated
memory locations.

float a[8];

float* p&a[7]; [l p->1last a
++p; /[l p -> past |ast!
*p=22. 2; /1 TROUBLE!

The next example shows an even tighter connection between arrays and pointers: the name of an array itself isa
const pointer to thefirst element of the array. It also shows that pointers can be compared.

Example 6.8 Examining the Addresses of Array Elements

short a []={22, 33, 44, 55, 66};
cout <<"a=" <<a <<", *a=" <<*a <<endl;
for (short* p=a; p<atb; p++)
cout <<"p=" <<p <", *Fp=" <<*p <<endl;

Initially, a and p are the same: they are both pointersto shor t and they have the same value. Since a is a constant

pointer, it cannot be incremented to traverse the array. Instead, we increment p and use the exit condition p<a+5.
This computes a+5 to be that address5 shor t s past

< previous page page 76 next page >

< previous page page_77 next page >
Page 77

a [0] ; whichwould by one short past the end of the array. The loop continues as long as p references an anot
located past the last element.

The array subscript operator [] isequivaent to the dereference operator * . They provide direct access into the array
the same way:

a[0] == *a
a[l] == *(a + 1)
a[2] == *(a + 2), etc.

So the array a could be traversed like this:
for (int i=0; 1<5; i++)
cout <*(a+i) <<endi;

Thus, pointers and array notation can be used interchangeably.

The new Operator

When the pointer isdeclared (e.g.,, f | oat * p;) itonly allocates memory for the pointer itself. The value of the

pointer will be some memory address, but the memory referenced by that addressis not yet allocated. This means
that storage could aready be in use by some other variable. In this case, p isuninitialized: it is not pointing to any

allocated memory. Any attempt to access the memory to which it points will be an error:

*p=3. 14159; /1 ERROR. no storage for *p

A way to avoid thisisto initialize pointers when they are declared:

fl oat x=3.14159; /'l x contains the value 3.14159
float* p=&x; /1 p contains the address of x
cout <<*p /'l OK: *p has been allocated

In this case, accessing * p is no problem because the memory needed to storethef | oat 3.14159 was automatically
allocated when x was declared; p pointsto the same allocated memory.

Another way to avoid the problem of a dangling pointer isto allocate memory explicitly. Thisis done with the new
operator:

float* q;
g=new f| oat; /'l allocate storage for 1 fl oat
*g=3. 14159; /'l OK: *q has been allocated

The new operator returns the address of ablock of s unallocated bytes in memory, where sisthe size of af | oat .
(Typically, si zeof (fl oat) is4 bytes.) Assigning that addressto q guaranteesthat * q isnot currently in use
by any other variables.

< previous page page 77 next page >

< previous page page 78 next page >
Page 78

The first two of these lines can be combined, thereby initializing q asitisdeclared: f | oat * g=new
fl oat;

Note that using the new operator to initialize g only initializes the pointer itself, not the memory to which it points.
It is possible to do both in the same statement that declares the pointer:

fl oat* g=new fl oat (3.14159);
cout <<*q; // OK both q and *g have been initialized

In the unlikely event that there is not enough free memory to allocate a block of the required size, the new operator
will return O (the NULL pointer):

doubl e* p=new doubl e;
if (p ==20) abort (); // insufficient nenory
el se *p=3.141592658979324;

This prudent code callsanabort () function to prevent dereferencing the NULL pointer.

Consider again the two aternatives to allocating memory:

fl oat x=3.14159; // allocates naned nenory float* p=new fl oat
(3.14159); // allocates unnamed nenory

In thefirst case, memory is allocated at compile time to the named variable x. In the second case, memory is
allocated at run time to an unnamed object that is accessible through * p.

Thedel et e Operator

Thedel et e operator reverses the action of the new operator, returning allocated memory to the free store. It
should only be applied to pointers that have been alocated explicitly by the new operator:

fl oat* g=new fl oat (3.14159);
del ete q; /| deal |l ocates q
*Q=2.71828; // ERROR q has been deall ocated

Deallocating g returnsthe block of si zeof (fl oat) bytesto thefree store, making it available for allocation to
other objects. Once g has been deallocated, it should not be used again until after it has been reall ocated.

< previous page page 78 next page >

< previous page page_79 next page >

Page 79
* Note!

A deallocated pointer, also called adangling pointer, islike an
uninitialized pointer: it doesn't point to anything.

A pointer to a constant cannot be deleted:

const int * p=new int;
delete p; // ERROR cannot delete pointer to const

Thisrestriction is consistent with the general principle that constants cannot be changed.

Using thedel et e operator for fundamental types(char, int, float, doubl e,etc.)isgeneraly not
recommended because little is gained at the risk of a potentially disastrous error:

float x=3.14159; // x has value 3.14159
float* p=&x; // p references x
delete p; // RISKY: p not allocated by new

Thiswould deallocate x, a mistake that can be very difficult to debug.

Dynamic Arrays
An array nameis just a constant pointer allocated at compile time:

float a[20]; // a is a const pointer 20 floats
float* const p=new float[20]; // sois p
Here, both a and p are constant pointers to blocks of 20 f | oat s. The declaration of a is called static binding

because it is allocated at compile time; the symbol is bound to the allocated memory even if the array is never used
while the program is running.

In contrast, we can use a non-constant pointer to postpone the allocation of memory until the program is running.
Thisis generally called run-time binding or dynamic binding. An array that is declared thisway is called a dynamic
array. Compare the two ways of defining an array:

float a[20]; /] static array
fl oat *p=new float [20]; /1 dynam c array

< previous page page 79 next page >

< previous page page 80 next page >
Page 80

The static array a is created at compile time; its memory remains allocated thoughout the run of the program. The
dynamic array p is created at run time; its memory allocated only when its declaration executes. Furthermore, the
memory allocated to the array p is deallocated as soon as the delete operator isinvoked on it:

delete [] p; // deallocates the array p

The subscript operator [] must be included, because p is an array.
Example 6.9 Using Dynamic Arrays
Theget () function here creates adynamic array

voi d get(double*& a, int& n) {
cout <<"Enter nunber of items: "; cin >>n;
a=new double [n];
cout <<"Enter " <<n <<" itens: ";
for (int 1=0; i<n; i++) cin >>ali];
void print (double* a, int n)
for (int i=0; i < n; i++) cout <<a[i] <<" "
cout <<endl;

void main () {

doubl e* a; /1 a is now an unal |l ocated pointer
int n;
/'l allocate it use it destroy it
get(a, n); print(a, n); delete [] a;
get(a, n); print(a, n); delete [] a;

Enter nunber of itens: 4
Enter 4 itens: 1.1 2.2
3.3 7.7

1.1 2.2 3.3 7.7

Enter nunber of items: 2
Enter 2 itens: 1.23 9.87
1.23 9.87

Insidetheget () function, nis obtained and the new operator allocates storage for n doubles. So the array is created
"on the fly" while the program is running. Before get () isused to create another array for a, the current array has
to be deallocated with the del et e operator. Note that the subscript operator [] must be specified when deleting an

array.
Note that the ais a pointer that is passed by reference:
voi d get(double*& a, int& n)

< previous page page 80 next page >

< previous page page 81 next page >
Page 81

Thisis necessary because the new operator will change the value of a, which is the address of the first element of
the newly allocated array.

Using const with Pointers
A pointer to a constant is different from a constant pointer. Thisdistinction isillustrated in the following example.
Example 6.10 const Pointers, etc.

This fragment declares four variables: a pointer p, a constant pointer cp, a pointer pc to a constant, and a constant
pointer cpc to aconstant:

int n - 44; /1l an int

i nt* p=&n; /1l a pointer to an int
++(*p); /'l increments int *p
+4p; / increment pointer p
I nt* const cp=&n; /'l const pointer to int
++(*cp);

/ increments int *cp
/

/

/

/
++Cp; /'l illegal:pointer cp is const
const int k=88; /'l const int
const int * pc=&k /l,pointer to a const int
++(*pc); /'l illegal:int *pc is const
++pc; /'l increnents pointer pc
const int* const cpc=&k //const pntr to const int
++(*cpc); /lillegal:int *cpc is const
++Ccpc; /1illegal:pointer cpc is const

Arrays of Pointers and Pointers To Arrays

The elements of an array may be pointers. Hereis an array of 4 pointersto typedoubl e: doubl e* p[4]; Its
elements can be allocated like any other pointer: p [2] =new doubl e (3. 14159);

The next example illustrates a useful application of pointer arrays. It shows how to sort alist indirectly by changing
the pointers to the elements instead of moving the elements themselves.

< previous page page_ 81 next page >

< previous page page_ 82 next page >
Page 82

Example 6.11 Indirect Bubble Sort

void sort (float* p [], int n) {

float* tenp;
for (int i=l; i < n; i++)
for (int j=0; J < n-i; j++)
ifo (*pli] > *pli+l]) {
tenp=p[j];
pljl=plj+];
p[j +I] =t enp;

On each iteration of theinner loop, if thef | oat s of adjacent pointers are out of order, then the pointers are
swapped.

NUL, NULL, andvoi d

The constant O (zero) hastypei nt . Nevertheless, this symbol can be assigned to all the fundamental types. In each

case, the object isinitialized to the number 0. In the case of type char, the character ¢ becomes the null character;
denotedby' \ 0" or NUL.

The values of pointers are memory addresses. These addresses must remain within that part of memory allocated to
the executing process, with the exception of the address 0x0. Thisis called the NULL pointer. The same constant
applies to pointers derived from any type. All of the following initialize the pointersto NULL:

char* pc=0; short* pd=0; i nt* pn=0;
unsi gned* pu=0; float* px=0; doubl e* pz=0;

The NULL pointer cannot be dereferenced. Thisis acommon fatal error:

i nt* p=0;
*p=22; // ERROR cannot dereference NULL pointer

A reasonable precaution is to test a pointer before attempting to dereference it:
i f (p) *p=22; // ok
Thistests the condition (p! =NULL) because that condition istrue precisely when p is nonzero.

The namevoi d denotes a special fundamental type. Unlike al the other fundamental types, voi d can only be used
in aderived type:

< previous page page_82 next page >

< previous page page 83 next page >
Page 83

void x; // ERROR no object can be void
void* p; // K

The most common use of thetype voi d isto specify that afunction does not return avalue:

voi d swap (doubl e& doubl e&);

Another, different use of void is to declare a pointer to an object of unknown type:

voi d* p=q;

This useis most common in low-level C programs designed to manipul ate hardware resources.

< previous page page 83 next page =

< previous page page 84 next page >
Page 84

Chapter 7
Strings

In this chapter:

Review of Pointers

Srings

Sring 1/0

Some ci n Member Functions

Character Functions Defined in <ct ype. h>

Arrays of Srings
The C-Sring Handling Library

A string is a sequence of contiguous characters in memory terminated by the NUL character' \ 0 ' . Stringsare
accessed by variables of type char * (pointer to char). For example, if s hastypechar *,thencout << s <<
endl ; will print al the characters stored in memory beginning at the address s and ending with the first
occurrence of the NUL character.

The C header file<st r i ng. h> provides awealth of special functions for manipulating strings. For example, the
cal strl en(s) will return the number of charactersin the string s, not counting its terminating NUL character.
These functions all declare their string parameters as pointersto char . So before we study these string operations,
we need to review pointers.

< previous page page 84 next page >

< previous page page 85 next page >
Page 85
Review of Pointers

A pointer isamemory address. The following declarations define x to beaf | oat containing the value 44.44 and p
to be a pointer containing the address of x:

float x = 44. 44;
float* p = &x;

R ®

®—> 44 .44

This shows two rectangles, one labeled p and one labeled x . The rectangles represent storage locations in memory.
The variable p points to the variable x. We can access x through the pointer p by means of the dereference operator
* The statement

*p = 77.77;
changes the value of x to 77.77.

B 4

[.:—ill 77.71

We can also have severa pointers referencing the same object. Now *p, *q, andx areal namesfor the same
object whose current value is 77.77.

E

._ =
q‘\ﬂ FEILET
.---*'F'_Fr

&

If p isapointer, then the call cout <<*p will always print the value of the object to which p points, and the call
cout << p will usualy print the value of the addressthat is stored in p. The important exception to this second
ruleiswhen p isdeclared to have typechar *.

Strings

A C++ string is a character array with the following features:

< previous page page 85 next page >

< previous page page_ 86 next page >
Page 86

A NUL character ' \ 0" isappended to the end of the array. This means that the number of

charactersin the array is always 1 more than the string length.

The string may be initialized with astring literal likethis. char str[] = "Bet hany";

‘Note that this array has 8 elements. ' B' ,
"\0".

'e', '"t', 'h', '"a', n, 'y,

‘The entire string may be output as asingle object, likethis: cout << str; Thesystem will
copy charactersfrom st r to cout until the NUL character ' \ Q' isencountered.

‘The entire string may be input as asingle object, likethis: ci n >> buffer; Thesystem
copies charactersinto buf f er from ci n until white space is encountered. The user must ensure
that buffer is defined long enough to hold the input.

‘The functions declared in <st r i ng. h> may be used to manipulate strings. These include the
string length function st r | en() , the string copying functionsst r cpy() and st r ncpy(),
the string concatenating functionsst r cat () and st r ncat () , the string comparing functions
strcnp() andstrncnp(), and the token extracting function st rt ok() .

String 1/0

Input and output of strings are done in several ways in C++ programs. The best way is by means of string class
operators as described in Chapter 10. Since straightforward methods are useful to understanding how strings are
represented and manipulated we describe these techniques in this chapter.

Example 7.1 Ordinary Input and Output of Srings

This fragment reads words into a 79-character buffer:

char word[80];

do
cin >word; cout <<endl;

< previous page page_ 86 next page >

< previous page page 87 next page >
Page 87

if (*word) cout <<"\" " <<word <<"\"\n";
} while (*word);

In thisrun, thewhi | e loop iterated 7 times. once for each word entered (including the Ctrl-Z that stopped the loop).
Each word in the input stream ci n is echoed to the output stream cout . The output stream is not "flushed" until the

input stream encounters the end of line. Each string is printed with a double quotation mark on each side. This
character must be designated by the character* \ " ' .

The expression * wor d controls the loop. It isthe initial character in the string. It will be nonzero aslong as the
string wor d contains a string of length greater than 0. The string of length O (the empty or NUL string) contains a
NUL (" \ 0") asitsfirst element. Pressing Ctrl-Z sends the end-of-file character in from ci n. Thisloads the NUL
string into wor d, setting * wor d (wor d[0]) to NUL and stopping the loop.

Note that punctuation marks (commas, periods, etc.) are
included in the strings, but white space (blanks, tabs,
newlines, etc.) is not.

Thedo loop in Ex. 7.1 could be replaced with:

cin > word

whi |l e (*word)
cout <<"\"" <<word <<"\"\n";
cin >> word;

}

When Ctrl-Z is pressed, the ci n call assigns the empty string to wor d.
Example 7.1 illustrates that the output operator << behaves differently with pointers of type char * than with other

pointer types. With achar * pointer, << outputs the character string to which the pointer points. With any other
pointer type << will output the pointer address.

Someci n Member Functions

The input stream object ci n includestheinput functions: get | i ne, get, ignore, putback,andpeek.
Each of these functions is prefaced

< previous page page 87 next page >

< previous page page_ 88 next page >

Page 88

with the prefix "ci n." when used because they are member functions of the object ci n.
Thecdlcin. getline (str, n) readsupton charactersintost r and ignorestherest.
Example 7.2t he cin. getline() Functionwith Two Parameters
This fragment echoes the input, line by line:
char |ine[80];
do {

cin.getline(line, 80);

if (*line) cout << "[" << |line << "]\n";
} while (*line);
The tinme has cone, the walrus said,
[The tinme has cone, the walrus said,]
to think of other things,
[to think of other things,]
NZ
(*I i ne) becomes"true" when | i ne contains a non-NUL string, because only then will | i ne[0] be different from

the NUL character.

Thecadl getline(str, n, ch) readsinput to thefirst occurrence of the delimiting character ch intostr . If
ch isthe newline character ' \ n' , thenthisisequivalenttoget | i ne(str, n).Thisisillustrated in the next
example where the delimiting character is the comma

Example 7.3theci n. get | i ne() Function

This program echoes the input, clause by clause:

char cl ause[30];
do {

cin.getline(clause, 30, ',");

if (*clause) cout << " [" << clause << "]\n";
} while (*clause);

The time has cone, the walrus said,
to think of other things,

nZ

[The tinme has cone]

[the wal rus sai d]

[
to think of other things.]
[

The invisible end-line character that follows "sai d," is stored as the first character of the next input line. Since the
commais being used as

< previous page page_88 next page >

< previous page page 89 next page >
Page 89

the delimiting character, the endline character is processed just like an ordinary character.

get () isused for reading input character-by-character. The call get (ch) copiesthe next character from the input
stream ci n into the variable ch and returns 1, unless the end of file is detected in which case it returns 0. The
opposite of get is put. put () isused for writing to the output stream cout character-by-character

The put back() function restoresthe last character read by aget () back to theinput stream ci n. Thei gnor e
() function reads past one or more charactersin the input stream ci n without processing them. Example 7.4
illustrates these functions.

Example 7.4 Theci n. put back() andci n. i gnor e() Functions

Thistests afunction that extracts the integers from the input stream:

int nextint ();

void main () {
int menextlIint (), n=nextint ();
cin.ignore(80,'\n"); //ignore rest of input Iine
cout <<m <<" + " <<n <<" =" <<mtn <<endl ;

}
int nextint() {
char ch;
int n;
while (cin.get (ch))
if (ch>="0" && ch<="9") { //next char is a digit
ci n. put back(ch); // replace so it can be
cin >>n; /'l read as a conplete int
br eak;

}

return n;

}

What is 305 plus 94167
305 + 9416 = 9721

next | nt () scans past the characters until it encounters the first digit. In thisrun, that digit is 3. Since this digit
will be part of the first integer 305, it is put back into ci n so that the >> can read it into n.

< previous page page 89 next page >

< previous page page_ 90 next page >
Page 90

peek() canbeusedin place of the combination get () and put back() . Thecal ch=ci n. peek() copies

the next character of the input stream cin into the char variable ch without removing that character from the input
stream. The following code shows how peek() can be used in place of theget () and put back() functions.

while (ch = cin.peek ())
if (ch >='0 & ch <="'9") {
cin >> n; break;

el se cin.get(ch);
The expression ch=ci n. peek() copiesthe next character into ch, and returns 1 if successful. Thenif ch isa

digit, the complete integer is read into n and returned. Otherwise, the character isremoved from ci n and the loop
continues. If the end-of-file is encountered, the expressonch = ci n. peek() returns 0, stopping the loop.

Character Functions Defined in <ct ype. h>

Many character manipulation functions are defined in <ct ype. h>; see Table 7.1.

Table 7.1 <ct ype. h> Functions

i sal num() int isalnun(int c); Returnsnonzeroif c isan aphabetic or numeric
character; otherwise returns 0.

i sal pha() int i salpha (int c); Returnsnonzeroif c isan aphabetic character;
otherwise returns 0.

iscntrl () int iscntrl (int c); Returnsnonzeroif c isacontrol character;
otherwise returns 0.

isdigit() int isdigit (int c); Returnsnonzeroif c isadigit character; otherwise
returns 0.

i sgraph() int isgraph (int c); Returnsnonzeroif c isany nonblank printing
character; otherwise returns 0.

islower() int islower (int c); Returnsnonzeroif c isalowercase alphabetic
character; otherwise returns 0.

isprint() int isprint (int c); Returnsnonzeroif c isany printing character;
otherwise returns 0.

i spunct() int ispunct (int c); Returnsnonzeroif c isany printing character,

except the alphabetic characters, the numeric characters, and the blank; otherwise
returns O.

(table continued on following page)

< previous page page_90 next page >

< previous page page 91 next page >
Page 91

(table continued from previous page)

i sspace() int isspace (int c); Returnsnonzeroif c isany white-space
character, including theblank ' ', theformfeed' \ f', thenewline' \ n',
thecarriagereturn' \r' ,thehorizontal tab' \t' , andthevertical tab'
\'v'; otherwisereturnsO.

i supper() int isupper (int c); Returnsnonzeroif c isan uppercase alphabetic
character; otherwise returns 0.

isxdigit() int isxdigit(int c); Returnsnonzeroifc isadigitor oneof hex
letters:' a',...,"f'", "A", ' F; esereturnsO.

tolower() int tolower (int c); Returnslowercaseof c if ¢ isan uppercase
alphabetic character; elsereturnsc.

toupper () int toupper (int c); Returnstheuppercaseversionof cifcisa
lowercase alphabetic character; otherwise returnsc.

Note that these functionsreceive ani nt parameter ¢ and they return ani nt . Thisworks because char isan
integer type. Normally, achar is passed to the function and the return valueis assigned to achar, soweregard
these as character-modifying functions.

Arrays of Strings

Recall that atwo-dimensional array isreally a one-dimensional array whose components themselves are one-
dimensional arrays. When those component arrays are strings, we have an array of strings. The declaration char

nane[5] [40] would allocate 200 bytes logically arranged in 5 rows of 40 characters each. We could use thisto
enter 5 names with the following code fragment:

for (int 1=0; i<4; i++) cin.getline(nane[i], 40);

The C-String Handling Library

The C header file<st r i ng. h> includes afamily of functions that are very useful for manipulating strings. The
simplest of these functionsisthe string length functionstrl en(). strl en(s) returnstheinteger

< previous page page_91 next page >

< previous page page 92 next page >
Page 92

length of the string referenced by s; that is, it counts the number of
non-NUL from s until the first NUL character.

Strings are structured objects, composed of characters. So the
operations that are provided for fundamental objects, such asthe
assignment operator (=) , the comparison operators(<, >,
==, <=, >=, and !=), andthearithmetic operators (+,
et c.) arenot available for strings. Functionsin the C-String
Library simulate these operations.

The next example illustrates three other string functions. These are used to locate characters and substrings within a
given string.

Example 7.5 Thestrchr (),strrchr(),andstrstr () Functions

char s[] = "The Mssissippi is a river.";
Cout << "S:\" n << S << II\II\nII;

char* p = strchr(s, ' ");

cout <<"strchr(s, ' ') -> s[" <<p-s <<"]. \n";

p = strchr(s, 's');
cout <<"strchr(s, 's') -> s[" <<p-s <<"]. \n";
p = strrchr(s, "s");
cout <<"strrchr(s, 's') -> s[" <<p-s <<"]. \n";

p = strstr(s, "is"),
cout <<"strstr(s, \"is\") -> s[" <<p-s <<"].\n";
p = strstr(s, "isi");

i f (p == NULL)
cout <<"strstr(s, \"isi\") is NULL\n";

s="The M ssissippi is ariver."
strchr(s,"') -> s[3].

strchr(s, 's') -> s[6].

strrchr(s, 's') -> s[17].

strstr (s, '"is') ->s [5].

strchr (s, "isi') is NULL.

strchr (s, ' ') returnsapointer to the first occurrence of the blank character within s. The expression p- s

computes the index 3 of this character within the string. (Remember theinitial character ' T' hasindex 0.) The
character ' s' first appearsat index 6ins.

< previous page page 92 next page >

< previous page page_ 93 next page >
Page 93

Thecal strrchr(s, 's') returnsapointer to the last occurrence of the character * s' ; thisisats [17].

Thecadlstrstr(s, "is") returnsapointer to the first occurrence of the substring "is* withins; thisisats
[5]. Thecdlstrstr(s, "isi") returnsNULL because"i si " does not occur withins.

The functions that simulate string assignment are: st rcpy() andstrncpy(). strcpy (sl, s2) copies
strings2 intosl. strncpy (sl1l, s2, n) copiesthefirst n charactersof s2 intos1. Bothreturnsl.

Consider the following program fragment which illustrates the use of st r cpy() and st r ncpy():

char si1[] = "ABCDEFG';
char s2[] = "XYZ";
array
other other
users' users
space space

strcpy(sl, s2);replacesthe charactersstarting at s1 with characters starting at s2 up to and including the
terminating NULL character. Notethat st r cpy(sl1, s2) createsaduplicate of string s2. The resulting two
copies are distinct strings. Changing one of these strings later would have no effect upon the other string.

strncpy(sl, s2, 2);appliedtotheorigina copy of s1 replacesthefirst 2 characters of s1 with XY, leaving
therest of s1 unchanged. The effect of st rncpy(sl, s2, 2) canbevisuaized likethis:

R—

: . T - . - T

|-"f-|'f|?.";:|ll'_':|'-" [E:'i ! | | b4 1r;’||IIIT|
i i 1 =]

T [T T

»~

'_i =Nl |-. 52

< previous page page 93 next page >

< previous page page 94 next page >
Page 94

If n<strlen(s2) thenstrncpy(sl, s2, n) smply copiesthefirst n charactersof s2 into the beginning of
s1. However, if n>strl en(s2),thenstrncpy(sl, s2, n) hasthesameeffectasstrcpy(sl, s2):it
makes s 1 aduplicate of s2 with the same length.

Thestrcat () andstrncat () functionswork thesameasthest rcpy() andst rncpy() functionsexcept
that the characters from the second string are copied onto the end of thefirst string. Theterm " cat " comes from
the word "catenate”" meaning "string together.”

Thecal strcat (sl1, s2) totheorigina version of s1 appends XYZ onto theend of s1. It can be visualized
likethis:

!
&'_z|@‘ |:="a Zlop

x| v |c sz Flolx |
-)
[._Jsl ® =

Sinces2 haslength 3, strcat (s1, s2) copies4 bytes(including the NUL character), overwriting the NUL
characters of s1 and itsfollowing 3 bytes. The length of s1 isincreased to 10.

If any of the extra bytes following s1 that are needed to copy s2 arein use by any other object, the results will be
unpredictable.

Thecadl strncat (s1, s2, 2) appends XY ontothe end of s1. The effect can be visualized like this:

{ ! | i
X|YiC :'-E-:l?t}:-: Y Z|0| :-:!‘ri?. @

- .
_.].31 m:&

Sinces2 haslength 3, st rncat (sl1, s2, 2) copies?2 bytes, overwriting the NUL character of s1 and the
byte that follows it. Then it puts the NUL character in the next byte to complete the string s1. Thisincreasesits

length to 9. (If either of the extra 2 bytes had been in use by some other object, the program will behave
unpredictably.)

< previous page page 94 next page >

< previous page page 95 next page >
Page 95

Thest r pbr k() function uses astring of characters as a collection of characters. It generalizesthe st r chr () function,
looking for the first occurrence in the first string of any of the characters in the second string.

Example 7.6 The st r pbr k() Function

char s[]="The Mssissippi is a river.";
cout <<"s = \"" <<s <<"\"\n";
char* p = strpbrk(s, "nopqr");
cout <<"strpbrk(s, \"nopgr\") -> s[" <<p-s <<"].\n";
p = strpbrk(s, "NOPQR');
| f (p == NULL)
cout <<"strpbrk(s, \"NOPQR ") is NULL\n";

Thecal strpbrk(s, "nopqr") returnsthefirst occurrenceins of any of thefive characters' n', 'o', 'p',
"q', or 'r'.Thefirstof thesefoundisthe' p' ats [12].

Thecal strpbrk (s, "NOPQR') returnsthe NULL pointer because none of these five characters occursin s.

Table 7.2 summarizes most of the useful functionsin<string. h>. size_t isaspecia integer typethat is defined
inthe<string. h>file.

Table 7.2 <string.h> Functions

mencpy() void* mencpy(void* sl1, const void* s2, size_t n); Replacesthefirstn
bytesof *s1 with thefirst n bytesof *s2. Returnss 1.

strcat() char* strcat(char* sl1, const char* s2); Appendss2tosl. Returnssl.

strchr() <char* strchr (const char* s, int c); Returnspointer tothe 1st occurrence of ¢
ins. ReturnsNULL if c isnotins.

strcnp() int strcnp(const char* sl1, const char* s2); Comparess1 with substring
s2. Returns anegative integer zero, or a positive integer, according to whether s1 is
lexicographically less than, equal to, or greater than s 2.

strcpy() char* strcpy(char* s1, const char* s2); Replacess1l withs2. Returnssl.

strcspn() size_t strcspn(char* s1, const char* s2); Returnsthelength of the longest
substring of s1 that beginswith s1 [0] and contains none of the characters found in s2.

(table continued on following page)

< previous page page 95 next page >

< previous page page 96 next page >
Page 96

(table continued from previous page)

strlen() size_t strlen(const char* s);Returnsthelength of s, which isthe number of
characters beginning with s [O] that precede the first occurrence of the NUL character.

strncat () char* strncat(char* sl1l, const char* s2, size_t n);Appendsthefirstn
charactersof s2 tosl1l. Returnssl.1fn > strlen(s2),thenstrncat (sl1l, s2, n)is
thesameasstrcat (sl, s2).

strncnp() int strncnp(const char* s1, const char* s2, size_t n); Comparesfirst
n characters of s1 with first n characters of s2. Returns a negative, zero, or a positive integer,
according to whether the first substringis<, ==, or >thesecond.lfn > strlen (s2),
thenitisthesameasstrcnp (sl, s2).

strncpy() char* strncpy(char* sl1l, const char* s2, size_t n);Replacesthefirstn
characters of s1 with thefirst n charactersof s2. Returnss1.1fn < strl en(s1l),thelength
of sl isnot affected. If n > strl en(s2),thenitissameasstrcpy (sl, s2).

strpbrk() char* strpbrk(const char* s1, const char* s2); Returnsthe addressof the
first occurrencein s1 of any of the charactersin s2. Returns NULL if none of the charactersin
S2 appearsins2.

strrch() char* strrchr (const char* s, int c);Returnsapointertothelast occurrence of
cins.ReturnsNULL if c isnotins.

strspn() size_t strspn(char* sl1l, const char* s2); Returnsthelength of the longest
substring of sl that beginswiths1 [0] and containsonly charactersfoundins2.

strstr() char* strstr (const char* sl, const char* s2); Returnsthe address of the
first occurrence of s2 asasubstring of s1. ReturnsNULL if ch isnotins1.

strtok() char* strtok(char* sl1, const char* s2); Tokenizesthestrings1l into tokens
delimited by the charactersfound in string s2. After theinitial call strt ok (sl1, s2),each
successivecall strt ok (NULL, s2) returnsapointer to the next token foundinsl1. These
calls change the string s 1, replacing each delimiter with the NUL character ' \ O' .

< previous page page 96 next page >

< previous page page 97 next page >
Page 97

Chapter 8
Classes

In this chapter:

Class Declarations

Constructors and Initialization Lists
Access Functions

Private Methods

The Copy Constructor

Constant Objects

Structures

Pointersto Objects

st ati ¢ Data Members
st at i ¢ Function Members

A classisisaderived type whose elements are other types. Unlike an array, the elements of a class may have
different types. Furthermore, elements of a class may be functions, including operators.

Although any region of storage may generally be regarded as an "object,” the word is usually used to describe
variables whose typeis aclass. Thus, "object-oriented programming" involves programs that use

< previous page page 97 next page =

< previous page page 98 next page >
Page 98

classes. We think of an object as a self-contained entity that stores its own data and owns its own functions. The
functionality of an object givesit life in the sense that it "knows" how to do things on its own.

There is more to object-oriented programming than just including classes in your programs, but that is the first step.
An adequate treatment of the subject isfar beyond this introductory outline.

Class Declarations

Here is adeclaration for a class to represent rational numbers:

cl ass Rational {
public:
void assign (int, int);
doubl e convert ();
void invert ();
void print ();
private:
int num den;

b

The declaration begins with the keyword cl ass followed by the name of the class and ends the semicolon. This
classisnamed Rat i onal .

Thefunctionsassi gn(), convert(),invert(), andprint() arecalled servicesor methods. The
variablesnumand den are called member data.

Inthis class, al the methods are designated as publ i ¢, and all the member data are designated aspr i vat e.
Publ i ¢ members are accessible from outside the class, while pr i vat e members are accessible only from within

the class. Preventing outside accessis called "information hiding.” It allows the programmer to modularize software,
making it easier to understand, to debug, and to maintain.

Example 8.1. shows how Rat i onal s are implemented and used.

Example 8.1 Implementing the Rational Class

cl ass Rational {

public:
void assign(int, int);
doubl e convert();
void invert();

< previous page page 98 next page >

< previous page page 99 next page >
Page 99

void print ();
private:
int num den;

void main() {
Rational x;
X.assign(22,7);

cout <<"x ="; x.print();
cout <<" = "<<x.convert() <<endl;
X. invert();
cout <<"I/x ="; x.print(); cout <<endl;
void Rational: :assign(int n, int d)
{num = n; den = d;}
doubl e Rational: :convert()
{return doubl e(nunm/den;}
void Rational: :invert()

{int tenp =num num= den; den=tenp;}
void Rational: :print()
{cout <<num <<'/' <<den;}

Here x is declared as an object of the Rat i onal class. Consequently. it hasits own internal data members numand
den, and it has the ability to call the class methodsassi gn(), convert(), invert(),andprint().
Note that amethod likei nvert () iscaled by prefixing its name with the name of itsowner: x. i nvert().
Indeed, a method can only be called thisway. We say that the object x "owns" the call.

An object like x isdeclared as avariable but with type Rat i onal . We think of this as a "user-defined type." C++
allows us to extend the programming language definition by adding our Rat i onal typeto the predefined types like
i nt, fl oat,etc. Wevisualizethe object x below:

Notice the use of the specifier Rat i onal : asaprefix to each method. Thisis necessary for each method definition

that is given outside of its definition. The scope resolution operator is used to tie the function definition to the
Rat i onal class. Without this specifier, the compiler would not know that the function being defined is a method

of theRat i onal class. This

< previous page page 99 next page >

< previous page page_100 next page >
Page 100

can be avoided by including the function definitions within declaration, as shown in Ex. 8.2.

When an object likethe Rat i onal object x in Ex. 8.1 is declared, we say that the class has been instantiated, and

we call the object an instance of the class. And just as we may have many variables of the same type, we may have
may instances of the same class:

Rational x, vy, z;
Example 8.2 a Self-contained Implementation of Rat i onal

The Rat i onal classwith its method definitions within the
declaration:

cl ass Rational {
publi c:
void assign(int n, int d)
{numen; den=d;}
doubl e convert ()
{return doubl e(nunm)/den;}
void invert()
{int temp=num nun=den; den=tenp;}
void print()
{cout <<num <<'/' <<den;}
private:
int num den;

};

In most cases, the preferred style is to define the methods outside the class declaration, using the scope resolution
operator as shown in Ex. 8.1. This physically separates the declarations from their definitions, consistent with the
principle of information hiding. In fact, the definitions are usually put in a separate file and compiled separately. The
point isthat application programs need only know what the objects can do; they do not need to know how the
objects do it. The function declarations tell what they do; the function definitions tell how they do it. Thisis how the
predefined types (i nt, doubl e, etc.) work.

< previous page page_100 next page >

< previous page page_101 next page >
Page 101

Remember!

When the definitions are separated from the declarations, the
declaration section is called the class interface, and the definition
section is called the implementation. The interface is the part of the
class that the programmer needs to see in order to use the class.

Constructors and Initialization Lists

TheRat i onal classdefined in Ex. 8.1 usestheassi gn() function toinitialize its objects. It is more natural to
allow initialization when the objects are declared. That's how ordinary (predefined) types work:

22:

int n=
*s = "Hell o";

char

C++ uses constructor functions to allows this style of initialization. A constructor isamethod that is invoked
automatically when an object is declared. A constructor function has the same name as the classitself and it is
declared without a return type. Ex 8.3 illustrates how we can replacetheassi gn () function with a constructor.

Example 8.3 A Constructor Function for the Rat i onal Class

cl ass Rational {

publi c:
Rational (int n, int d) {nun¥n; den=d;}
void print() {cout <<num <<'/' <<den;}
private:

int num den;

};

We can now declarerationalsasRat i onal x(-1, 3), y(22,7);thefunction of which has the same effect as
theassi gn() function had in Ex. 8.1. When the declaration of x executes, the constructor is called automatically
and the integers -1 and 3 are passed to its parametersn and d and assigned to x' s numand den data members. A
classs

< previous page page 101 next page >

< previous page page_102 next page >
Page 102

constructor "constructs' the class objects by allocating and initializing storage for the objects.

A class may have many constructors. Like all overloaded functions, they are distinguished by having distinct
parameter lists. For example:

Rati onal () {num=0; den=l;}
Rational (int n) {numen; den=l;}
Rational (int n, int d) {nunen; den=d;}

Thefirst has no parameters and initializes the declared object with the default values 0 and 1. The second has one
I nt parameter and initializes the object to be the fractional equivalent of that integer. The third constructor isthe

same asin Ex. 8.3.

Among the various constructors that a class may have, the simplest is the one, called the default constructor, has no
parameters. If this constructor is not explicitly declared in the class definition, the system will automatically create
one. That iswhat happensin Ex. 8.1.

These could also be written equivalently using initialization lists as:

Rational (): nun(0), den (1) { }
Rational (int n): num(n), den (I)
Rational (int n, int d): num(n), den (d) { }

Note that the list begins with a colon and precedes the function body. These three separate constructors are not
necessary. They could be combined into a single constructor, using default parameter values:

Rational (int n=0, int d=l): num(), den (d) { }

Inthe declaration: Rat i onal x, y(4), z(22,7); x will represent 0/1,y will represent 4/1, and z will
represent 22/7.

Recall that the default values are used when actual parameters are not passed. In the declaration of the Rat i onal
object x, the formal parametersn and d are given default values of 0 and 1, respectively. In the declaration of the
objecty, nisgiventhat value4 andd isgiven the default value 1. No default values are used in the declaration of
z.

Access Functions

Although a class's member data are usually declared pri vat e to limit access, it is a'so common to include
publ i ¢ methods that provide read-only access to the data. Such functions are called access functions.

< previous page page_102 next page >

< previous page page_103 next page >
Page 103

Example 8.4 Access Functionsinthe Rat i onal Class

cl ass Rational {

publi c:
Rational (int n=0, int d=l) : num(n), den(d) { }
i nt numerator() const {return num}
i nt denom nator() const {return den;}
private:
int hum den;

voi d mai n()
Rational x (22,7);
cout <<x.nunerator() <<'/'
<<x. denom nator () <<endl;
}

The functions nuner at or () and denom nat or () return the values of the pri vat e member data. The const
keyword in the declarations of the two access functions allows them to be applied to constant objects.

Private M ethods

Class member data are usually declared pr i vat e and methods publ i c. Thisdichotomy is not required. It is often
useful to declare one or more methodsto be pr i vat e. As such, these functions can only be used within the class
itself; i.e,, they arelocal utility functions.

Example 8.5 Using pri vat e Functionsgcd() andr educe()

cl ass Rational {
publi c:
Rational (int n=0, int d=l): num(n), den (d)
{reduce();}
void print() {cout <<num <<'/' <<den <<endl;}
private:
int num den;
int ged (int j, int k) { return k ? j: gcd(k, j%); }
voi d reduce() {int g=gcd(num den); num =g;
den/ =q; }

void main() {

< previous page page_103 next page >

< previous page page 104 next page >
Page 104

Rational x (100, 360);
X.print ();

5/ 18

Thisversion includestwo pri vat e functions. gcd() returnsthe greatest common divisor. r educe() usesgcd
() toreducethefraction num den to lowest terms. Thus the fraction 100/360 is stored as the object 5/18.

i i Note!

The keywords publ i ¢ and pri vat e are called access specifiers,

which specify whether the members are accessible outside the class
definition. The keyword pr ot ect ed isthe third access specifier.

it will be described in Chapter 11.

The Copy Constructor

Every class has at |least two constructors. These are identified by their unique declarations:

X(); /'l default constructor
X(const X&) ; [/ copy constructor

where X isthe classidentifier. For example, these two special constructors for aW dget class would be declared:

W dget () ; /'l default constructor
W dget (const Wdget&); // copy constructor

Thefirst of these two special constructorsis called the default constructor; it is called automatically whenever an
object is declared in the simplest form, like this: W dget Xx;

The second of these two special constructorsis called the copy constructor; it is called automatically whenever an
object is copied (i.e., duplicated), like this: W dget y(X) ;

If either of these two constructorsis not defined explicitly, then it is automatically defined implicitly by the system.

The copy constructor takes one parameter: the object that it is going to copy. That object is passed by constant
reference because it should

< previous page page 104 next page >

< previous page page_105 next page >
Page 105

not be changed. When the copy constructor is called, it copies the complete state of an existing object into a new
object of the same class. If the class definition does not explicitly include a copy, then the system automatically
creates one by default. The ability to write your own copy constructor gives you more control over your software.

A copy constructor for the Rational class could look like:

Rational (const Rational & r):
num (r.nunm), den (r.den) { }

The copy constructor copies the numand den fields of the parameter r into the object being constructed.

Note the required syntax for the copy constructor: it must have one parameter, which has the same class as that
being declared, and it must be passed by constant reference: conat X&.

Y ou Need to Know /

The copy constructor is called automatically whenever

an object is copied by means of a declaration initiaization;
an object is passed by value to a function;
an object isreturned by value from afunction.

Example 8.6 Tracing Calls to the Copy Constructor

cl ass Rational {
publi c:
Rational (int n, int d):numn), den(d) { }
Rati onal (const Rational & r):nun(r.num, den(r.den)
{ cout <<"In COPY\nNn";}
private:
I nt num den;

1

Rational f (Rational r) { // copy ? tor
Rati onal s=r; /[l copy r to s
return s; /'l copy s to ?

}

< previous page page_105 next page >

< previous page page_106 next page >
Page 106

void main()
Rat i onal x(22,7);

Rati onal y(Xx); /'l copy X toy
f(y);

}

| n COPY

| n COPY

| n COPY

| n COPY

Here, the copy constructor is called four times:

1. wheny isdeclared, copying x toy

2. wheny ispassed by valuetof , copyingy tor
3. when s isdeclared, copyingr tos;

4. when f returns, even though nothing is copied.

Note that the initialization of s looks like an assignment, but it calls the copy constructor just as the declaration of y
does.

If you do not include a copy constructor in your class definition, then the "default” copy constructor will ssmply
copy objects bit-by-bit. In many cases, thisis exactly what you would want.

However, in some important cases, a bit-by-bit copy will not be adequate. The St r i ng class, defined in Chapter

10, isaprime example. In objects of that class, the relevant data member holds only a pointer to the actual string, so
a bit-by-bit copy would only duplicate the pointer, not the string itself. In cases like this, it is essential that you
define your own copy constructor.

When an object is created, a constructor is called to manage its birth. Similarly, when an object comes to the end of
its life, another special method is called automatically to manage its death. This function is called a destructor.

Each class has exactly one destructor. If it is not defined explicitly, then like the default constructor, the copy
constructor, and the assignment operator, the destructor is created automatically.

The class destructor is called for an object when it reaches the end of its scope. For alocal object, thiswill be at the
end of the block within which it isdeclared. For ast at i ¢ object, it will be at then end of thermai n () function.

< previous page page_106 next page >

< previous page page 107 next page >
Page 107

Although the system will provide them automatically, it is considered
good programming practice always to define the copy constructor, the
assignment operator, and the destructor within each class definition.

Constant Objects

It is good programming practice to make an object constant if it should not be changed. Thisis done with the const
keyword:

const char BLANK ="' ';

const int MAX_INT = 2147483647,

const double PI = 3.141592653589793;
void init (float a(), const int SIZE);

Like variables and function parameters, objects may also be declared to be constant: const Rat i onal PI
(22, 7) ; When thisisdone, the C++ compiler restricts access to the object's methods. For example, with the
Rational class defined previoudly, the pri nt () function could not be called for this object:

Pl.print(), /'l error: call not allowed

In fact, unless we modify our class definition, the only methods that could be called for const objects would be the
constructors and the destructor. To overcome this restriction, we must declare as constant those methods that we
want to be able to use with const objects.

A function is declared constant by inserting the const keyword between its parameter list and its body:

void print() const {cout <<num <<'/' <<den <<endl ;}

This modification of the function definition will alow it to be called for constant objects:

const Rational PI(22,7);
Pl.print(); /'l o.k. now

< previous page page 107 next page >

< previous page page_108 next page >
Page 108

Structures

The C++ classisageneralization of the C st r uct (for "structure") which is a class with only public members and

no functions. One normally thinks of a class as a structure that is given life by means of its methods and which
enjoys information hiding by means of private data members.

To remain compatible with the older C language, C++ retainsthe st r uct keyword, which allows st r uct s to be
defined. However, aC++ st ruct isessentially the sameasa C++ cl ass. The only significant difference between

the two is with the default access specifier assigned to members. Although not recommended, C++ classes can be
defined without explicitly specifying its member access specifier. For example,

class Rational { int num den; }

isavalid definition of a Rational class. Since the access specifier for its data members numand den is not
specified, itisset by default tobepri vat e. If wemakeitast r uct instead of acl ass

struct Rational (int num den; }

then the data members are set by default to be publ i c.

Pointers to Objects
In many applications, it is advantageous to use pointers to objects (and structs). Here is a simple example:

Example 8.7 Using Pointers to Objects

class X {
publi c:
I nt dat a;

void main() {
X* p = new X
(*p) .data=22; /'l equivalent to: p->data=22;
cout <<"(*p).data=" <<(*p) .data <<"="
<<p->data <<endl;
p- >dat a=44;

< previous page page 108 next page =

< previous page page_109 next page >
Page 109

COUt <<" p- >dat a:" <<(* p) . dat a << ="
<<p->dat a <<endl;
}

(*p).dat a=22=22
p- >dat a=44=44

Since p isapointer to an x object, * p isan x object, and (* p) . dataaccessesits (publ i ¢c) datamember dat a.
Parentheses are required in the expression (* p) . dat a because the direct member selection operator " . " has
higher precedence than the dereferencing operator " * " .

Thetwo notations. (* p) . dat a and p- >dat a have the same meaning. When working with pointers, the "arrow"
symbol " - >" ispreferred asit is simpler and suggests "the thing to which p points.”

Example 8.8 A Node Class for Linked Lists

This defines aNode class each of whose objects contain ani nt data member and anext pointer. The program
allows the user to create alinked list. Then it traversesthe list, printing each dat a value.

cl ass Node {

public:
Node(int d, Node* p=0) : data(d), next(p) { }
I nt dat a;
Node* next;

void main() {
i nt n;
Node* p;
Node* Q=0;
while (cin >>n) {
= new Node(n, Q);
= P

for (; p->next; p=p->next)
cout <<p->data <<" ->"
cout <<"*\n";

77 66 55 44 33 227D
22 -> 33 -> 44 -> 55 -> 66 -> 77 -> *

First note that the definition of the Node class includes two references to the class itself. Thisis allowed because each

< previous page page_109 next page >

< previous page page_110 next page >
Page 110

reference is actually a pointer to the class. Also, note that the constructor initializes both data members.

Thewhi | e loop continuesreading i nt s into n until the user enters the end-of-file character. Within the loop, it
getsanew node, insertsthei nt into its data member, and connects the new node to the previous node (pointed to
by q). Then, thef or loop traversesthe list. It starts with the node pointed to by p (the last node constructed) and
continues until p- >next isNUL (last nodein the list).

st ati ¢ DataMembers

Sometimes avalue is needed by al members of the class. It would be inefficient to store this value in every object of
the class so we declare the data member to be st at i ¢ by including the st at i ¢ keyword at the beginning of the

variable's declaration. It also requires that the variable be defined globally. The syntax looks like this:
class X {
publi c:
static int n; // declare n a static data nenber
1
int X:n =20; [// definition of n

Static variables are automatically initialized to O, so the explicit
initialization is unnecessary unless you need a nonzero initial value.

Example 8.9 Ast at i ¢ Data Member
The W dget classmaintainsa

cl glss W dget { st at i ¢ datamember count ,
publi C. which keeps track of the number
Wdget () { ++count; } of W dget objectsin existence.

~Wdget() { -count; }
static int count

}

Each time awidget is created the
counter isincremented, and

< previous page page 110 next page >

< previous page page 111 next page >

Page 111
each time awidget
int Wdget :: count = O; is destroyed the
void main() { counter is decre-
Wdget w, X; mented.

cout <<w.count <<" w dgets.\n";
{ Wdget w, x, vy, z;
cout <<w.count <<" w dgets.\n";

2 W dgets
cout <<w. count <<" widgets.\n"; 6 w dgets
W dget v; 2 W dgets
cout <<w. count <<" widgets.\n": 3 widgets

Notice how four widgets are created in the inner block, and then destroyed when program control |eaves that block,
reducing the global number of widgets from 6 to 2.

A st at i ¢ datamember islike an ordinary global variable: only one copy of the variable exists no matter how

many instances of the class exist. The main differenceisthat it is a data member of the class, and so may be
privat e. If wemadethest at i ¢ variablecount pri vat e, wewould need an access function like

numA dget s() to obtain the value in the main program:

I nt numMN dgets() { return count; }

st at i ¢ Function Members

Like most methods, numW dget s() requiresthat it be owned by some instance of the class. But it returns the
value of the st at i ¢ datamember count that isindependent of the individual objects themselves. Since the action

of the function is independent of the actual function objects, it would make sense to have the calls independent of
them too. This can be done by declaring the functionto best ati c.

Example 8.10 A st at i ¢ Function Member

The Widget class maintainsast at i ¢ datamember count , which keepstrack of the number of W dget objects
in existence globally.

cl ass Wdget {

publi c:
Wdget() { ++count; }

< previous page page_111 next page >

< previous page page 112 next page >
Page 112
~Wdget() { -count; }
static int num() { return count; }

private:
static int count;
b

Declaring the nunm() functionto be st at i ¢ rendersit independent of the class instances. So now it isinvoked
simply as amember of the W dget class using the scope resolution operator " : "

cout <<Wdget: :hunm() <<" wdgets. \n";

This allows the function to be called before any objects have been instantiated.

Now the method num() hasno"t hi s" pointer. Asast at i ¢ method, it is associated with the class itself, not
with its instances. Static methods can access only st at i ¢ datafrom their own class.

< previous page page 112 next page >

< previous page page 113

Chapter 9
Overloading Operators

In this chapter:
Overloading the Assignment Operator

Thet hi s Pointer

Overloading Arithmetic Operators

Overloading the Arithmetic Assignment Operators
Overloading the Relational Operators

Overloading the Stream Operators

Conversion Operators

Overloading the Increment and Decrement Operators

Overloading the Subscript Operator

< previous page page 113

next page >
Page 113

next page >

< previous page page 114 next page >
Page 114

C++ includes arich store of operators that are defined automatically for fundamental types(i nt, fl oat,
et c.) . When you create a new type (class) you can overload most C++ operators to this user-defined type.
Overloading the Assignment Operator

Of all the operators, the assignment operator = is probably used the most. Its purpose is to copy one object to

another. Like the default constructor, the copy constructor, and the destructor, the assignment operator is created
automatically for every class that is defined, but it can be defined explicitly in the class definition.

Example 9.1 An Assignment Operator for theRat i onal Class

Rat i onal default and copy constructors and assignment operator:

cl ass Rational {

public:
Rational (int =0, int =1); // default const
Rational (const Rational &; // copy constructor
voi d operator=(const Rational &; // assignnment
/'l other declarations go here

private:
i nt num den;

1

The name of this member functionisoper at or =. Itsargument list is the same as that of the copy constructor: it
contains a single argument of the same class, passed by constant reference.

Here is the implementation of the overloaded assignment operator:

void Rational: :operator=(const Rational & r) {
numer . num den=r. den; }

It copies the member datafromr to the object that owns the call.

Thet hi s Pointer

C++ dlows assignments to be chained together, like this:
X =y =1z = 3.14,

Thisis executed first by assigning 3.14 to z, thento y, and finally to x.

< previous page page 114 next page >

< previous page page_115 next page >
Page 115

As Ex. 9.1 shows, the assignment operator is really afunction named oper at or =. In this chain, the function is
called threetimes nested, likethis: f (x, f(y, f(z, 3.14)))

As assignment operator returns the value it assigns, it should return areference to the same type as the object being
assigned:

Rati onal & operator=(Rational & r)

This allows assignments to be chained together.

Example 9.2 Preferred Prototype for an Overloaded Assignment

/'l assi gnnment
Rati onal & operator = (const Rational &);

The function should return the object that is being assigned, in order for the assignment chain to work. Since thereis
no other name available for this owner object, C++ defines a special pointer, named t hi s, which points to the

owner object. Using thet hi s pointer we can give the correct implementation of the overloaded assignment
operator:

Example 9.3 Implementation of the Rat i onal Class Assignment
Rati onal & Rational ::operator = (const Rational & r) {

num = r.num den = r.den;
return *this;

}

Now assignments for the Rat i onal class can be chained together:
Rational x, y, z(22,7); X =y =z

Finally, note that an assignment is different from an initialization, even though they both use the equals sign:

Rational x(22,7); // this is an initialization
Rati onal y(Xx); /1l this is an initialization
Rational z = x; /1 this is an initialization
Rati onal w;

W = X; /1l this is an assignnent

Aninitialization calls the copy constructor. An assignment calls the assignment operator.

Overloading Arithmetic Operators

Most programming languages provide the standard arithmetic operators +, - , *, and/ for numeric types. Therefore,
it is natural to define these

< previous page page_115 next page >

< previous page page_116 next page >
Page 116

for user-defined types likethe Rat i onal class. In older programming languages, thisis done by defining functions
like this:

Rati onal product(Rational x, Rational y) {
Rati onal z(x.nunty.num x.den*y.den);
return z; }

Thisworks, but the function has to be called in the conventional way:

z = product (Xx,Y);

C++ alows such functions to be defined using the standard arithmetic operator symbols, so that they can be called
more naturally using infix notation (e.g., z = x*y;). Like most operatorsin C++, the multiplication operator has

afunction name: oper at or * . Using thisin place of "product” in the code above resultsin

Rati onal operator*(Rational x, Rational y) {
Rati onal z(x.nunty.num x.den*y. den)
return z; }

However, thisis not amember function of Rat i onal . Since the overloaded arithmetic operators cannot be member
functions, they cannot accessthe pr i vat e member datanumand den. Fortunately, C++ allows an exception to
this by allowing us to declare the function as a friend of the Rational class.

ill i Notel!

A fri end function is anonmember function that is given access
to al members of the classwithin which it isdeclared. f r i ends
have all the privileges of member functions without actually being

aclass member. This attribute is used mostly with overloaded
operators.

Example 9.4 Making the Multiplication Operator af ri end

Hereaf r i end function overloads the multiplication operator:

cl ass Rational {

friend Rati onal operator* (const Rational & const Rational &);
public:

Rational (int =0, int =1);

Rati onal (const Rational & ;

< previous page page_116 next page >

< previous page page 117 next page >
Page 117

Rati onal & operator=(const Rational & ;

/'l other declarations go here
private:

I nt num

i nt den;

/'l other declarations go here

H

The function prototype isinserted in the class declaration, above the publ i ¢ section and the arguments are passed
by constant reference.

Now we can implement this nonmember just as we had expected:

Rat i onal operator*
(const Rational & x, const Rational & y) {
Rati onal z(x.nunty.num Xx.den*y.den);

return z;
}
Note that the keyword f r i end is not used in the function implementation. Also note that the scope resolution
prefix Rat i onal : : isnot used because thisis not a member function.

Hereisalittle program that uses our improved Rat i onal class:

Example 9.5 Rat i onal with Assignment and Multiplication
Rati onal x(22,7), y(-3,8), z;

Z = X; /| assignment operator called
z.print(); cout <<endl;

X = y*z; /1 multiplication operator called
x.print(); cout <<endl;

Ther educe() function would be called from within the overloaded multiplication operator to reduce -66/56 to -
33/28.

Overloading the Arithmetic Assignment Operators

C++ alows you to combine arithmetic operations with the assignment operator: for example, using x* =y in place of
x=x*y. All combination operators can be overloaded for usein your own classes.

Example 9.6 the Rat i onal Classwith an Overloaded *=

Rati onal & Rational ::operator* = (const Rational & r) {
nuMmENUNtr . num den=den*r. den;

< previous page page 117 next page >

< previous page page 118 next page >
Page 118
return *this;

}

The operator oper at or * = has the same syntax and nearly the same implementation as the basic assignment
operator oper at or =. By returning *t hi s, the operator canbechained (x *=y *= z ;)

It is also important to ensure that overloaded operators perform consistently with each other. For example,
(x=x*y;) and (x*=y;) should have the same effect, even though they call different operators.

Overloading the Relational Operators
Therelational operators<, >, <=, >=, == and! =canbealsobeoverloaded asf ri end functions.
Example 9.7 Overloading the Rat i onal Equality Operator ==

Like other f ri ends, the == operator is declared above the publ i ¢ section of the class:

class Rational {
friend int operator ==
(const Rational & const Rational &) ;
/1 other declarations go here
public:
/1 other declarations go here
private:
int num den;
/1 other declarations go here
}
i nt operator ==
(const Rational & x, const Rational & y) {
return (x.nunty.den == y. nuntx.den);

}

Thetest for equality of two factionsa/ b and ¢/ d isequivalent to thetestad == bc. So we end up using the
equality operator for i nt s to define the equality operator for Rat i onal s.

< previous page page 118 next page >

< previous page page_119 next page >
Page 119

Overloading the Stream Operators

C++ alows you to overload the stream operators >> and << to customize input and output. Like the arithmetic and
relational operators, these should also be declared asf r i end functions.

For aclass T with data member d, the syntax for the << operator is

friend ostream& operator<<(ostream& os, const T& t)
return os <<t.d; }

ost r eamisastandard class defined in the <i ost ream h>. The parameters and the return value are passed by
reference. This function can then be called using the syntax used for fundamental types:

cout <<"x =" <<x <<", y =" <<y <<endl;

Example 9.8 Overloading the Rat i onal Output Operator <<

cl ass Rational {
friend ostream& operat or <<
(ostrean&, const Rational &);
publi c:
Rational (int n=0, int d=l) : numn), den(d) { }
/'l other declarations go here
private:
int num den;
/'l other declarations go here
void main() {
Rati onal x(22,7), y(-3,8);
cout <<"x=" <<x <<", y=" <<y <<endl;

ostream& oper at or <<(ostream& os, const Rational & r)

{

return os <<r.num<<'/' <<r.den; }
x=22/7, y=-3/8
When the second line of mai n() executes, the expression cout <<"x = " executesfirst. Thiscallsthe
standard output operator <<, passing the standard output stream cout and the string " x=" to it. Asusual, this

inserts the string into the output stream and returns areference to cout . Thisreturn value is then passed with the
object X to the overloaded << operator. This call to operator << executeswith cout in place of os and

< previous page page_119 next page >

< previous page page_120 next page >
Page 120

with x in place of r . The result is the execution of the line:
return os <<r.num<<' /[' <<r.den;whichinserts
22/7 into the output stream and returns areference to cout . Then
another call to the standard output operator << and another call to

the overloaded operator are made, with the output (a reference to
cout) of each call cascading into the next call asinput. Finally the

last call to operator << is made, passing cout and endlI . This
flushes the stream, causing the linex=22/ 7, y=-3/ 8 tobe
printed.

The syntax for overloading >> issimilar to <<. Here, i st r eamis another standard class defined in the
I ost r eam h header file. Hereis an example of how custom input can be written:

Example 9.9 Overloading the Rat i onal Input Operator >>

i stream& operator>>(istrean& is, Rational & r) {

cout <<"\'t Numerator: "; i's >>r.num
cout <<"\tDenom nator: "; is >>r.den;
r.reduce ();

return is;

}

This version of the input operator includes user prompts to facilitate input. It also includes a call to the utility
functionr educe ().Notethat, asaf ri end, the operator can access this private function.

Conversion Operators

In our origina implementation of Rat i onal we defined the member functionconvert () toconvert from
Rati onal todoubl e:

doubl e convert() {return double(num/den; }

This requires the member function to be called as

Xx. convert ();

In keeping with our goal to make objects of the Rat i onal class behave like objects of fundamental types, we will
build a conversion function that can be called the same way as ordinary type conversions:

n
y

int (t);
doubl e (x);

< previous page page 120 next page >

< previous page page 121 next page >
Page 121

This can be done with a conversion operator.

Our Rat i onal classaready hasthe facility to convert an object fromi nt toRati onal . (Rati onal X

(22) ;) ishandled by the default constructor, which assigns 22 to x. numand 1tox. den. Thisconstructor aso
handles direct type conversionsfromtypei nt totypeRati onal by x = Rational (22);. Constructors of
agiven class are used to convert from another type to that classtype.

To convert from the given class type to another type requires a different kind of member function. It iscalled a
conversion operator, and it has adifferent syntax. If t ype isthe type to which the object is to be converted, then the

conversion operator is declared as

operator tvpe ();

For example, amember function of the Rat i onal classthat returnsan equivalent f | oat would be declared as:
operator float();

If we want to convert to type doubl e, wewould declareit as: oper at or doubl e() ;. If wewant it usable for
constant Rat i onal s (like pi), then we would declareit as: oper at or doubl e() const;. Recal that, in
our original implementation of the Rat i onal classwe defined the member function convert () for this purpose.

Example 9.10 Adding a Conversion Operator to the Rat i onal Class

Rati onal : :operator double () const {
return doubl e (num/den;

}

Consider the following code fragment:

Rati onal x(-5,8);

cout <<"x=" <<x <<", x=" <<double (x) <<endl;
const Rational p(22,7);

const doubl e pi = double(p);

cout <<"p=" <<p <<, pi =" <<pi <<endl;

First we use the conversion operator doubl e() to convert the Rat i onal object x into the doubl e -0.625. Then
we use it again to convert the constant Rat i onal object p into the constant doubl e pi .

Overloading the Increment and Decrement Operators

The increment operator ++ and the decrement operator- each have two forms: prefix and postfix. Each of these four
forms can be overloaded.

< previous page page 121 next page >

< previous page page 122 next page >
Page 122

WEe'll examine the overloading of the increment operator here. Overloading the decrement operator works the same
way.

When applied to integer types, the pre-increment operator adds 1 to the value of the object being incremented. This
isaunary operator: its single argument is the object being incremented. The syntax for overloading it for a class
named T issmply T operator++ (); soforourRati onal class. itisdeclared asRati onal operat or +

+ ()
Example 9.11 a Pre-Increment Operator for the Rat i onal Class

Thisexample addsaRat i onal pre-increment operator ++ to our class. Although we can make this function do
whatever we want, it should be consistent with the action that the standard pre-increment operator performs on
integer types. That adds 1 to the value of the object before that value is used in the expression. Thisis equivalent to
adding its denominator to its numerator, so we simply add den to numand then return *t hi s, which isthe object
itself.

Rati onal Rational: :operator++ () { //pre ++
num += den;
return *this;

}

Postfix operators have the same function name as the prefix operators. For example, both the pre-increment and the
post-increment operator are named oper at or ++. To distinguish them, C++ specifies that the prefix operator has

one argument and the postfix operator has two arguments. (When used. they both appear to have one argument.) So
the correct syntax for the prototype for an overloaded post-increment operator isT oper at or ++ (i nt);

Example 9.12 Adding a Rat i onal Post-Increment Operator

To be consistent with the ordinary post-increment operator for integer types, this overloaded version should not
change the value of x until after it has been assignedtoy. To do that, we need atemporary object

The required argument must have typei nt . l‘_—_:':F

This appears a bit strange because no integer is
passed to the function when it isinvoked. The
integer argument is thus a dummy argument,
required only so that the postfix operator can be
distinguished from the prefix operator.

< previous page page 122 next page =

< previous page page_123 next page >
Page 123

to hold the contents of the object that ownsthe call. Thisisdone by assigning* t hi s tot enp. Then this object
can be returned after adding den to num

Rati onal Rational::operator++(int) { // post ++
Rational tenp = *this;
num += den;
return tenp;

}

Note that the dummy argument in the oper at or ++ function isan unnamed i nt . It need not be named because it
isnot used. But it must be declared to distinguish the post-increment from the pre-increment operator.

Overloading the Subscript Operator

If aisanarray, thentheexpressona [i] redlyisthesameas* (a + i). Thisisbhecausea isactualy
the address of theinitial element inthearray, soa + i isthe address of the ith element, since the number of bytes
addedtoa isi timesthe size of each array element

Thesymbol [] denotes the subscript operator. Its name derives from the original use of arrays, wherea [1]
represented the mathematical symbol ai. Whenusedasa [i], it hastwo operands. a andi . The expression a
[1] isequivalenttooperator [] (a, i). Andasanoperator,[] canbe overloaded.

Example 9.13 Adding a Rat i onal Subscript Operator

#i ncl ude <stdlib. h> /1l defines exit () function
int& Rational: :operator[](int i) {

if (i == 1) return num

if (i == 2) return den;

cerr <<"ERROR index out of range\n";

exit(0);

An expression X[1] would call the subscript operator, passing 1toi , whichreturnsx. num Similarly, x
[2] wouldreturnx. den. Ifi hasany value other than 1 or 2, then an error messageissenttocerr, the
standard error stream, and thentheexit () functioniscalled.

< previous page page_123 next page >

< previous page page 124 next page >

Page 124

This exampleisartificial in that there is no advantage to accessing the fields of the Rat i onal object x with x[1]

and x[2] instead of x. numandx. den. However, there are many important classes where the subscript is very
useful.

Note that the subscript operator is an access function,
sinceit provides publ i ¢ accessto pri vat e member
data.

< previous page page_ 124 next page >

< previous page page 125

Chapter 10
A String Class

In this chapter:

The St ri ng Class Interface

The Constructors and Destructor
The Copy Constructor

The Assignment Operator

The Addition Operator

An Append Operator

Access Functions The * Operator
The Comparison Operators

Sream Operators

next page >
Page 125

Chapter 7 described the way that character strings are handled using C-style programming: each string is
implemented as a pointer p to achar in memory. The actual string of charactersthat p representsare held in a

contiguous block beginning with byte * p and terminated with the NUL character. To distinguish this representation

from that to be defined in this chapter, we will refer to the former as " C-strings.”

Chapter 7 also described thest ri ng. h header file. It defines many functions that operate on C-strings. The
St ri ng classwill include functions that perform equivalent operationson St r i ng objects and of

< previous page page 125

next page >

< previous page page 126 next page >
Page 126

these new operations will be implemented using functions from the
st ri ng. h header file.

The character string abstract datatype is an ideal candidate for
implementation as a C++ class, encapsulating the data and
functionality in individualized objects. This chapter shows one way
to do that. Such an implementation allows us to use objects of a
String class.

The St ri ng Class Interface

There are generally two methods for delimiting an un-indexed sequence of objects. One method isto use a
distinguished object to signal the end of the sequence (e.g., the NUL in C-strings). Another method isto store the

length of the sequence with the sequence. Thisis how we will implement our St r i ng class:

unsi gned | en; /'l nunber of (non-NUL) characters
char* buf; /'l actual character string

Here, | en will be the length of the sequence of characters and buf (a C-string) will be the "buffer" that holds them.

For example, suppose that name isa St r i ng object representing the C-string "Natalie B." Then we can visualize it
like this:

name| lam |-

This implementation will improve the efficiency of some string operations. For example, to determine that "Shaum'’s
Outline" and "Shaum's Outline !" are not equal requires examining all 31 characters. But since we are storing the
strings' lengthsinour St ri ng class, the comparison operator need only compare the integers 15 and 16 to

determine that these two strings are not equal.

< previous page page 126 next page >

< previous page page 127 next page >
Page 127

Hereisthe classinterfacefor aSt r i ng class:

#i ncl ude <i ostream h>
class String {
friend int operator==(const String& const Stringg&);
friend int operator!=(const String& const Stringg&);
friend int operator<(const String& const String&);
friend int operator<=(const String& const String&);
friend int operator>(const String& const String&);
friend int operator>=(const String& const Stringg&);
friend ostream& operator<<(ostream& const Stringg&);
friend i stream& operator>>(istrealn& Stringg&);
friend String operator+(const String& const String&);
publi c:
String(unsigned =0); /|l default constructor
String(char, unsigned); /'l constructor
String(const char*); /'l constructor
String(const Stringg&); /| copy constructor
~String (); /1 destructor
String& operator=(const String&); /'l assi gnment
String& operator+=(const String&); /'l append
operator char* () const; /'l converstion
char & operator[] (unsigned) const; /'l subscri pt
unsi gned length () const; /| access nethod
private:
unsi gned | en; /'l nunber of non-null characters
char* buf; /'l actual character string

}

The Constructors and Destructor

Here is the implementation of the three constructors. The first constructsa St r i ng object containing n blanks. If
no parameter is passed, then n becomes the default 0 and the null string is constructed.

String::String(unsigned n) : len(n) {
buf = new char[len+l];

< previous page page 127 next page >

< previous page page 128 next page >
Page 128

for (int 1=0; i<ten; i++) buf[i]=" ";
buf[len] ="\0";

The second constructor creates a string of identical characters.

String: :String(char c, unsigned n) : len(n) (
buf = new char[len+l];
for (int 1=0; i<len; i++) buf[i] = c;
buf[len] = "\0";

The third constructor convertsa C-string intoa St r i ng object.

String::String(const char* s) {
len = strlen(s)
bur = new char [len+l];
for (int i=0; i<len; i++) buf[i] =s[i];
buf[len] = "\n";

Example 10.1 Testing the Constructor

The code invokes the default constructor twice: once with no parameter and once with length 4. It invokes the
second constructor with 4 B's, and the third with with a string.

String s1, s2(4), s3('B, 4), s4("Hello, Wrld!'");
cout <<"sl = [" <<sl <<"], len=" <<sl.length ();
cout <<" s2 = [" <<s2 <<"], len="
<<s2.length () <<endl;
cout <<"s3 = [" <<s3 <<"], len=" <<s3.length ();
cout <<" s4 = [" <<s4 <<"], len="
<<s4.length () <<endl;

sl
s3

[], len=0 s2 =[], len=4
[BBBB], len=4 s4 = [Hello, Wirld!], |len=13

The destructor for our String classistypical:
String::~String() { delete [] buf; }

It usesthe del et e operator to release the object's memory. The sub-script operator []| must be specified because
buf isan array.

< previous page page 128 next page >

< previous page page_129 next page >
Page 129

The Copy Constructor

In many class definitions, instead of defining a copy constructor explicitly, we use the default which does a direct
copy of each corresponding data member. This doesn't work for our St r i ng class because a direct memory copy

would duplicate the buf pointer but not the string to which it points. Thiswould yield two different objects with the
same data. So, we define our own copy constructor:

String::String(const String& s) :len(s.len) {

buf = new char[l en+l];

for (int i=0; i<s.len; i++) buf[i]=s.buf[i];
buf[len] ="\0";

This works the same way as the third constructor, except that the string it duplicatesis an existing St r i ng object
instead of a C-string. Also, we can use an initialization list to assigns. | en to the new object's| en field. That
was not possible in the third constructor because we had to invoke afunction (st r | en(')) to obtain the length of s.

Example 10.2 Testing the Copy Constructor

Thistest invokes the copy constructor twice: once when it initializes the object sel f, and once when it initializes
the object si s:

#include "String. h"
void main() {
String nme("Jennifer");
cout <<"npe = [" <<nane <<"] \n";

String self = ne; /1l calls copy constructor
cout <<"self = [" <<self <<"] \n";
String sis = "Natalie B."; // calls 2 constructors
cout <<"sis = [" <<sis <<"]\n";

}

me = [Jennifer]

self = [Jennifer]

sis = [Natalie B.]

First it uses the third constructor to construct the St r i ng object me which duplicates the constant C-string
"Jennifer." Then it uses the copy constructor to createthe St r i ng object sel f that duplicatesthe St ri ng object
nme by being initialized by it. The last declaration uses both constructorsto construct the St r i ng object si s. First
it uses

< previous page page_129 next page >

< previous page page_130 next page >
Page 130

the third constructor to create atemporary St r i ng object that duplicates the constant C-string "Natalie B." Then it
uses the copy constructor to createthe St r i ng object si s to duplicate the temporary object.

The Assignment Operator

The assignment operator is used whenever one object is assigned to another object that has already been declared of
the same class. Like the copy constructor, the assignment operator is automatically provided by the compiler if we
don't write our own version.

ill i Notel

It isunwise to rely upon the automatically generated assignment
operator for classes whose objects contain pointers, because
duplicating pointers does not duplicate the data to which they point.

Example 10.3 Using the Compiler Default Assignment Operator

This example shows what can go wrong when you rely upon the automatically generated assignment operator for the
Stringclass:

String nyCar = "Infiniti Q&Q0";

String yourCar = "Lexus ES300";

cout <<"\t nyCar = [" <<nyCar <<"]\n";
cout <<"\tyourCar = [" <<yourCar <<"]\n";
myCar = your Car; /1 menberw se assi gnnent
cout <<"After: nmyCar = yourCar\n";

cout <<"\t nyCar = [" <<nyCar <<"]\n";
cout <<"\tyourCar = [" <<yourCar <<"]\n";
yourCar[6] = "L';

cout <<"After: yourCar[6] = '"L"\n";

cout <<" MyCar = [" <<nyCar <<"]In";

cout <<" yourCar = [" <<yourCar <<"] \n";

< previous page page 130 next page >

< previous page page_131 next page >

Page 131
MyCar = [Infiniti Q0]
your Car = [Lexus ES300]
After: nmyCar = yourCar

MyCar = [Lexus ES300]
your Car = [Lexus ES300]
After: yourCar[6] = "L’

MyCar = [Lexus LS300]
your Car = [Lexus LS300]

The default assignment operator uses "member-wise assignment.” For our St r i ng class, that means that in the fifth
statementinmain (), yourCar. |enisassignedtomyCar.| enandyour Car. buf isassigned to
nmyCar . buf . Butthebuf members are pointers, so the result isthat both your Car . buf and myCar . buf point

to the same C-string in memory: the one that contains "L exus ES300." So when you buy a new Lexus LS300, it
becomes my car too! In other words, the assignment nyCar = your Car inthis program meansthat | become a

co-owner of your new Lexus LS300 (and that | lost my Lexus ES300).

Both objects, your Car and nyCar, point to the same character string in memory. The assignment nyCar =
your Car simply duplicated theinteger | en and the pointer buf , without duplicating the character string. So
whenthe" E" ischangedtoan"L, " it gets changed in both objects. To overcome this problem, we need to define
our own assignment operator so that an assignmenty = X replaces the object y with a duplicate of the object x.

Here is our own assignment operator, defined explicitly:

String& String: operator (const String& s) {
if (& == this) return *this;
len = s.len;
delete [] buf;
buf = new char[s.len + 1];
strcpy(buf, s.buf);
return *this;

}

First, it checks whether the object sis different from the object to which it isto be assigned. If they are the same
object, then nothing more needs to be done. If the two objects are not the same, then we recreate the current object
so that it becomesaduplicate of s. After settingl entos. | en, we deallocate the memory currently assigned to

buf and then allocate a new string of bytes of the correct length (s. | en+l). Thenweusethestrcpy ()
function (definedinst ri ng. h) tocopy s. buf intobuf andreturn*t hi s.

< previous page page 131 next page >

< previous page page_132 next page >
Page 132

The Addition Operator

The addition operator + is anatural choice for the concatenation functionina St r i ng class. After al,
concatenation means adding two strings together to form a new string.

Hereis the concatenation function for our St r i ng class:

String operator+(const const String& sl, const String& s2) {
string s(sl.len + s2.len);
strcpy(s. buf, si.buf);
strcat(s. buf, s2.buf);
return s;

First, it constructsa St r i ng object s of lengths1. | en+s2. | en. Thenitusesthestrcpy () and
strcat () (in<string. h>)tocopysl. buf tos. buf and appends2. buf toit.

An Append Operator

The += operator is one of a series of arithmetic assignment operators that combine the arithmetic operators (+, -, *,
etc.) with the assignment operator.

locx |
Don't Forget! E‘/E/

Like most operators, the arithmetic assignment operators
can be overloaded to perform whatever operations you
want. However, it is unwise to define an overloaded
operator to do anything that is not similar to the action of
the original operator.

< previous page page 132 next page >

< previous page page_133 next page >
Page 133

Here isthe overloaded += operator for our St r i ng class:

String& String::operator+=(const String& s) {
len += s.len;
char* tenpbuf = new char[len+l];
strcpy(tenpbuf, buf); strcat(tenpbuf, s.buf);
delete [] buf;
buf = tenpbuf;
return *this;

}

Firstit incrementsits| en field by the length of the St r i ng object passed to it. Then it allocates the total number
of bytes needed for the new string and holds this space in the temporary C-stringt enpbuf . Then, it usesthe
strcpy () andstrcat () tocopyitsbuf tot enpbuf andthenappends. buf toit. Now it canrelease
the memory alocated to its original buffer and then assign thet enpbuf pointer to it.

Example 10.4 Testing the += Operator
This test driver invokes the += operator to append the string™, Jr." tothe St ri ng object nane.

#i nclude "String. h"

int main ()
String nanme ("Bob Brown");
cout <<"nane = [" <<nanme <<"] \n";
name += ", Jr. ";
cout <<"nanme = [" <<nane << "] \n";

nane
namne

[Bob Brown]
[Bob Brown, Jr.]

The third constructor isinvoked to convert the C-string St r i ng object beforeit is passed to the + = operator.

Access Functions the * Operator

operator char* () const; isaconversion operator that convertsa St ri ng object into a C-string. It has
the reverse effect of the constructor: St ri ng (const char *); which convertsaC-stringintoaSt ri ng
object.

This conversion operator has a very simple implementation:

String::operator char* () const { return buf;}

< previous page page_133 next page >

< previous page page 134 next page >
Page 134

Itsbuf datamember isthe C-string that we want. This conversion operator is an access function: it simply provides
public access to the private data member buf . Itisnot realy an"inverse" of theStri ng (const char*)

constructor because it does not create a new C-string. As an access function, it merely provides public access to the
buf C-string that already exists within the St r i ng object.

Example 10.5 Testing the Conversion to C-Sring Operator

String name("Bet hany"); /'l a String object
cout <<"nane = [" <<nane <<"] \n";
char* s = nane; Il sis a Cstring

Cout <<IIS - [II <<S <<II]\nII;
Here is the overloaded subscript operator for our St r i ng class:

char& String: :operator [] (unsigned i) const { return buf[i]; }

It simply returns the ith element of the object’'s buf buffer.

Example 10.6 Testing the Subscript Operator

String nane ("C. Babbage");

cout <<"nanme= [" <<nane <<"] \n";
cout <<"nane[3]=[" <<nane[3] <<"]\n";
nane[3] = 'C;

cout <<"nane[3]=[" <<nane[3] <<"]\n";
cout <<"nanme= [" <<nane <<"] \n";

nane= [C. Babbage]
nane|[3] [B]
nane| 3] [C]
nane=[C. Cabbage]

The only surprising result hereis that the expression nanme[8] , which invokes the function, can be used on the left
side of an assignment! This works because the expression is an Ivalue.

The other accessfunctionin St ri ng isthel ength () function:

unsigned String: :length () const (return len; }

We have already tested thel engt h () functionin Ex. 10.1.

The Comparison Operators

We now overload al six of the comparison operators. ==, ! =, <, <=, >, and>=. Sinceall aredefined for
C-stringsin<st ri ng. h>, their implementation for our St r i ng classistrivial and three are shown here:

< previous page page 134 next page >

< previous page page_135 next page >
Page 135

I nt operator==(const String& s1, const String& s2) (
return (strcnp(sl. buf, s2.buf) == 0);

I nt operator!=(const String& sl1, const String& s2) (
return (strcnp(sl. buf, s2.buf) I'= 0);

I nt operator<(const String& si, const String& s2) {
return (strcnp(sl. buf, s2.buf) < 0); }

All simply call thestrcnp (). It returnsan integer whose sign indicates how the two C-strings compare:

negative means that the first C-string lexicographically precedes the second; zero means that the two are equal; and
positive means that the first lexicographically follows the second.

Example 10.7 Testing the Comparison Operators

String x, v;

cout <<"Enter two strings: ";

cin >>x >>y; cout <<'\n';

if (x==y) cout <<" [" <<x <<"]=m[" <<y <<"]";
1f (x!'=y) cout <<" [" <<x <<"] I'=[" <<y <<"]";
I f (x<y) cout <<" [" <<x <<"]|<[" <<y <<"]";
I f (x<=y) cout <<" [" <<x <<"]<7[" <<y <<"]";
if (x>y) cout <<" [" <<x <<"]>[" <<y <<"]";
I f (x>=y) cout <<" [" <<x <<"]>7[" <<y <<"]|";

Enter two strings: ABC AB
[ABC]! = [AB] [ABC]>[AB] [ABC]>= [AB]

Stream Operators

The stream operators overloaded for our St r i ng class are the stream insertion operator << and the stream
extraction operator >>. We have already used these in several test drivers. Here are their implementations:

ostream& oper at or <<(ostream& ostr, const String& s)
{ return ostr <<s.buf; }
i stream& operator>>(istrean& istr, String& s) {
char buffer[256];
I str >>buffer;
S = buffer;
return istr; }

< previous page page 135 next page >

< previous page page_136 next page >
Page 136

The overloaded stream insertion operator << inserts the object's buf into the output stream ost r and then returns
that reference. The overloaded stream extraction operator >> uses atemporary buf f er string to read the input,
assignsit to thereference s, andthenreturnsthei st r eamreferencei str.

Note that both of these overloaded stream operators
return the stream object that is passed to them. This
makes these functions consistent with the corresponding
predefined stream operators, allowing them to be
invoked in cascades like this.

Example 10.8 Testing the Stream Operators

String sl, s2;
cin >>s| >>s2:
cout <<s| <<"####" <<s2 <<endl;

Hel |l o, Worl d!
Hel | o, ####Worl d!

Thefirst call isoper at or >>(ci n, sl1) which passesareferencetothei st r eamobject ci n to the parameter
i str and areferencetothe St ri ng object s1 to the parameter s. Then" Hel | 0, " isread into the C-string
tenp. Thisisassignedtothe St ri ng object s1, andthen areferenceto ci n isreturned. That return valueis
then used in the second call oper at or >> (cin, s2) whichworksthe sameway, leaving the object s2
representing " Wor | d! .

The output line intermingles the two calls to the overloaded <<operator with the two calls to the standard <<operator
inthecascade: f (f (f (f (cout, sl1), "####"), s2), endl); wheref isoperator <<.

< previous page page_136 next page >

< previous page page 137 next page >
Page 137

Chapter 11
Composition and Inheritance

In this chapter:

Composition

Inheritance

pr ot ect ed Class Members Overriding and Dominating Inherited Members
pri vat e Access versus

pr ot ect ed Access

vi rt ual Functions and Polymorphism

Virtual Destructors

We often use existing classes to define new classes. The two waysto do this are called composition and the
inheritance. This chapter describes both methods.

< previous page page 137 next page >

< previous page page_138 next page >
Page 138

Composition

Composition of classesrefers to the use of one or more classes within the definition of another class. When a data
member of the new classis an object of another class, we say that the new class is a composite of the other objects.

Example 11.1 A Person Class

Hereisasimple definition for a class to represent people.

#i nclude "String. h"
cl ass Person {
publi c:
Person(char* n="", char* c="", int s=l)
nane(n), city(c), sex(s) { }
void printNanme () {cout <<nane; }
void printCty () {cout <<city;}
private:
String nanme, city;
int sex;
1
void main () {
Person satchnmo ("Louis Arnmstrong”, "New Ol eans");
satchno. printNanme ();
cout <<"/nBorn in ";
satchnmo.printCity ();
cout <<".\n";

Loui s Arnstrong
Born in New Ol eans

We have used the St r i ng class (Chap. 10) to declare the data members nane and ci t y for the Per son class.
Notice that we used the St r i ng overloaded insertion operator << inthe Per son classspri nt Nanme ()
function.

Example 11.1 illustrates the composition of the St r i ng class within the Per son class. The next example defines
another class that we can compose with this classto improveit:

Example 11.2 A dat e Class
cl ass Date {

friend i stream& operator>>(istreami Date&);
friend ostream& operator<<(ostream& const Date&);

< previous page page 138 next page >

< previous page page_139 next page >
Page 139

publi c:
Date(int m=0, int d=0, int y=0):
_ mont h(m), day(d), year(y) { }
void setDate(int m int d, int y)
{ nmonth=m day=d; year=y; }
private:
i nt nonth, day, year;
3
I stream& operator>>(istream& in, Date& x) {
I n >>x. nonth >>x.day >>x.year;

return in;

}

ostream& oper at or <<(ostream& out, const Date& x) {
static char* nonthNane[13]={ "", "Jan",

n Febll , n Nalr n , n Apr n , n Nalyll , n Junll , n Jul n ,
n Augll , n Sepll , n @t n , n mvll , n mcll } ;
out <<nont hNane[Xx. nonth] <<' ' <<x.day <<",
<<x.year;
return out;

void main () {
Dat e peace(11, 11, 1918);
cout <<"WWN1 ended on " <<peace <<".\n";
peace. set Dat e(8, 14, 1945);
cout <<"WWNII ended on " <<peace <<".\n";
cout <<"Enter nth, day, & yr: ";
Dat e dat e;
ci n >>dat e;
cout <<"The date is " <<date <<"In";

WV ended on Nov 11, 1918

WV Il ended on Aug 14, 1945
Enter nth, day, & yr: 7 4 1776
The date is Jul 4, 1776

The test driver tests the default constructor, the set Dat e() function, the overloaded <<, and the overloaded >>.
Now we can use the Dat e classinside the Per son classto store a person's date of birth.

< previous page page 139 next page >

< previous page page 140 next page >
Page 140
Example 11.3 Composing Dat e Class with Per son Class

#i nclude "String. h"
#i ncl ude "Date. h"
cl ass Person {
publi c:
void setDOB(int m int d, int vy)
{ dob.setDate(m d, y);}
void setDOD(int m int d, int vy)
{ dod.setDate(m d, y);}
/1 other methods as in in Ex. 11.1
private:
Dat e dob, dod; /1 dates of birth & death

b

satchno.setDOB (7, 4, 1900);

satchno. set DOD (8, 15, 1971);

satchno. printNanme ();

cout <<"\nBorn on "; satchnmo. printDOB ();
cout <<"\nbDied on "; sat chnmo. printDOD ();
cout <<".\n";

Loui s Arnstrong
Born on July 4, 1900

Notice again that we have used a method of one class to define methods of the composed class: the set Dat e()
function is used to define the set DOB(') function.

Composition is one way of reusing software to create new software.

Inheritance

Another way to reuse software is by means of inheritance (also called specialization or derivation). The common
syntax for derivingaclass Y fromaclass X is

class Y : public X {
. ..
1

Here X is called the base class (or superclass) and y is called the derived class (or subclass). The keyword publ i ¢
after the colon specifies

< previous page page 140 next page >

< previous page page 141 next page >
Page 141

public inheritance, which meansthat publ i ¢ members of the base class become publ i ¢ members of the derived
class.

Example 11.4 Deriving a St udent : Classfromthe Per son Class

Since students are people it is natural to use the Per son classto derivea St udent class:

#i ncl ude "Person. h"
cl ass Student : public Person {
publi c:
Student (char* n, int s=0, char* i= :
Person(n, s), id(i), credits(0) { }
void setDOE(int m int d, int y)
{ dom setDate(m d, y);}
void printDCE () { cout <<dom}

private:
String id; /'l student identification nunber
Dat e doe; /| date entered coll ege
int credits; /'l course credits
fl oat gpa; /'l grade-point average

The St udent classinheritsall the publ i ¢ methods of the Per son class, including itsconst r uct or .
St udent usesPer son' s toinitialize the Per son classnane. Sincethisisapr i vat e member of the Per son
classit could not be accessed directly.

Hereis atest driver for the St udent class;

St udent x("Ann Jones", "219360061");

x.setDOB(7, 10, 1983);

x.set DOE(8, 26, 2001);

X. printNanme ();

cout << "\n Born: "; x.printDOB();

cout << "\nEntered: "; x.printDOE(); cout <<endl;

Bet h Jones
Born: Jul 10, 1983
Entered: Aug 26, 2001

< previous page page 141 next page >

< previous page page 142 next page >
Page 142

Remember! \‘_——:g

Inheritance is also call "specialization” or
"derivation.”

protected Class Members

The St udent classin Ex. 11.4 has asignificant problem: it cannot directly accessthe pri vat e data members of
itsPer son superclass: nane, city, DOB, DOD, andsex. Thelack of accessof thefirst four of these are
not serious because these can be written and read through the Per son class' constructor and public access
functions. However, there isno way to write or read aSt udent ' s sex. Oneway to overcome this problem
would be to make sex adata member of the St udent class. But that isunnatural: sex isan attribute that all

Per son objects have, not just St udent s. A better solution isto changethe pr i vat e access specifier to

pr ot ect ed inthe Per son class. That will allow access to these data members from derived classes.

Example 11.5 The Per son Classwith pr ot ect ed Data Members

Changethepri vat e access specifier of Ex. 11.3 and 11.4 to pr ot ect ed and add the method pri nt Sex ()
tothe St udent class:

cl ass Person {
public:

prot ect ed:
String nane, nationality;
Dat e dob, dod; Il
I nt sex; Il

dates of birth & death
0 =female, 1 = male

class Student : public Person {
public:

voi d printSex() { cout <<(sex ? "male":"female");

}

< previous page page 142 next page >

< previous page

pr ot ect ed:
String id,
Dat e dom
int credits;
fl oat gpa;

page 143 next page >

Page 143

student identification nunber
date of nmatricul ation

course credits

gr ade- poi nt aver age

~ NN Y
~ NN Y

Now all five data members defined in the Per son class are accessible from its St udent subclass, as seen by the

following test driver:

St udent x("Beth Jones", 0, "219360061");
X.setDOB(7, 10, 1983);

Xx.set DOE(8, 26, 2001);

X. setDOX 7, 4, 2065);

X. print Name() ;

cout <<"\n Born: "; X. print DOB();
cout <<"\n Sex: "; X. printSex();
cout <<"\nEntered: "; X. printDOM);
cout <<endl

Bet h Jones
Born: July 10, 1983
Sex: fenale

Ent ered: August 26, 2001

The pr ot ect ed access category is abalance between pri vat e and publ i ¢ categories: pri vat e members are
accessible only from within the classitself and itsf r i end classes; pr ot ect ed members are accessible from
within the classitself, itsf r i end classes, its derived classes, and their f r i end classes; publ i ¢ members are
accessible from anywhere. In general, pr ot ect ed isused instead of pr i vat e whenever it is anticipated that a
subclass might be defined for the class.

E i Note!

A subclassinherits publ i ¢ and pr ot ect ed members of its base
class. From the subclass view, publ i ¢ and pr ot ect ed

members of its base class appear as though they were declared in
the subclass.

< previous page page_ 143 next page >

< previous page page 144 next page >
Page 144

If classy isderived from classx, publ i ¢ member a of classx isinherited asapubl i ¢ member of y, and the
pr ot ect ed member b of classx isinherited asapr ot ect ed member of y. But the pri vat e member ¢ of
classx isnot inherited by y.

Overriding and Dominating Inherited Members

If Yisasubclass of X, then'Y objectsinherit the publ i ¢ and pr ot ect ed member data and methods of X. In the
Per son, thenamne dataand pri nt Name () method are a'so members of St udent .

Sometimes, you might want to define alocal version of an inherited member. For example, if a is adata member of
Xandif Yisasubclass of X, then you could aso define a separate data member named a for Y. In this case, we say
that the a defined in Y dominates the a defined in X. A referencey. a for an object y of class Y will accessthea
inY instead of thea in X. To accessthe a defined in X, onewould usey. Xx: : a.

The same rule appliesto methods. If f () isdefinedin Xand another f () with the same signature is defined
inY,theny. f () invokesthelatter,andy. X: : f () invokestheformer. In thiscase, theloca function
y. f () overridesthef () functiondefinedinXunlessitisinvokedasy. X::f ().

Y ou Need to Know /

In an inheritance hierarchy, default constructors and destructors
behave differently from other methods. Each constructor invokes
its parent constructor before executing itself, and each destructor
invokes its parent destructor after executing itself.

< previous page page_144 next page >

< previous page page 145 next page >
Page 145

pri vat e Accessversuspr ot ect ed Access

The difference between pr i vat e and pr ot ect ed class members is that subclasses can access pr ot ect ed
members of aparent class but not pri vat e members. Since pr ot ect ed is more flexible, when would you want
to make members pr i vat e? The answer lies at the heart of the principle of information hiding: restrict access now

to facilitate changes later. If you think you may want to modify the implementation of a data member in the future,
then declaring it pr i vat e will obviate the need to make any corollary changes in subclasses.

vi rt ual Functions and Polymorphism

One of the most powerful features of C++ isthat it allows objects of different types to respond differently to the
same function call. Thisis called polymorphism and it is achieved by means of virtual functions. Polymorphismis
rendered possible by the fact that a pointer to a base class instance may also point to any subclass instance:

class X { . . .
class Y:public X {// Y is a subclass of x . . . }
mai n() {
X* p; /Il p - pointer to base class X objects
Yy,

p = &y; I/l p points to subclass Y objects
}

If p hastype X*, then p can also point to any object whose type is a subclass of X. Even when p is pointing to an
instance of asubclassY, itstypeis still X*. So an expression like p- >f () would invoke the functionf () defined
in the base class.

Recall that p- >f () isan aternative notation for * p. f () . Thisinvokesthe member functionf () of the object to
which p points. But what if p isactually pointing to an object y of a subclass of the class to which p points, and
what if that subclass Y hasits own overriding version of f () ?Whichf () getsexecuted: X: : f () orY::f () ?
The answer isthat p- >f () will execute X: : f () because p had type X* . The fact that p happens to be pointing at
that moment to an instance of subclassY isirrelevant; it's the statically defined type X* of p that nor-

< previous page page 145 next page >

< previous page page 146 next page >
Page 146

mally determinesits behavior.

Example 11.6 Using vi r t ual Functions

This demonstration declares p to be a pointer to objects of the base class that point to an instance x of class X. Then
it assigns p to point to an instance 'y
class X {
publi c:
void f() { cout <<"X :f() executing\n";}
class Y : public X {
publi c:
void f() { cout <<"VY::f() executing\n";}

voi d mai n() {

; /'l invokes X :f() because p has type X*
->f(); /'l invokes X :f() because p has type X*

) executing

X f(
X::f() executing

Two function calls p- >f () are made. Both callsinvoke the same version of f () that is defined in the base class X
because p is declared to be a pointer to X objects. Having p point toy has no effect on the second call p- >f () .

Wetransform X: : f () into avirtual function by adding the keyword vi r t ual toits declaration:
class X {
publi c:

virtual void f() { cout <<"X: :f() executing\n";}

1
Wth the rest of the code |eft unchanged, the output
now becomes:

X f
Y:: f

NN

) executing
) executing

Now the second call p- >f () invokesY: : f () insteadof X: : f ().

< previous page page 146 next page >

< previous page page_147 next page >
Page 147

Thisillustrates polymorphism: thesamecal p- > f () invokesdifferent functions. The function is selected
according to which class of object p pointsto. Thisis called dynamic binding because the association (i.e., binding)

of the call to the actual code to be executed is deferred until run time. The rule that the pointer's statically defined
type determines which member function getsinvoked is overruled by declaring the member function virtual.

Essential Point!

Polymorphism is one of the most powerful features of CC++.

Example 11.7 Polymorphismthrough vi r t ual Functions

HereisPer son classwith St udent and Pr of essor subclasses:

cl ass Person {
public:
Person(char* s)
{ name=new char[strlen(s+l)]; strcpy(nane, s);}
void print() {cout <<"I'n{ <<nanme <<".\n";}
prot ect ed:
char* nane;

cl ass Student : public Person {
public:
Student(char* s, float g) : Person(s), gpa(g) { }
void print() { cout <<"I'm' <<nane
<<" & ny GPAis " <<gpa <<".\n";
}

private:
fl oat gpa;

cl ass Professor : public Person {

public:
Prof essor(char* s, int n) . Person(s), publs(n) { }
void print () { cout <<"I'nf <<nane

< previous page page 147 next page >

< previous page page 148 next page >

Page 148
<<" & | wote "<<publs <<" papers.\n";}
private:
I nt publs;

void main () {
Person* p; Person x("Bob");

p = &; p->print();
Student y("Tont, 3.47);
p = &; p->print();
Professor z ("Ann", 7);
p = &z; p->print();

}

My nanme i s Bob.
My nanme is Tom
My nanme is Ann.

Thepri nt () function defined inthe base classisnotvi rtual . Sothecall p -> print () awaysinvokes
that same base class function Per son: : pri nt () because p hastype Per son* . The pointer p is statically bound
to that base class function at compile time.

Now change the base class function Per son: : print () intoavi rt ual function, and run the same program:

cl ass Person {
publi c:
Person(char* s) { nane = new
char [strlen (s+l)];
strcpy(nane, s);}
virtual void print()
{ cout <<"I'n' <<nane << "\n"\;}
pr ot ect ed:
char* nane;
3

| " m Bob.
"mTom & ny GPA is 3.47.
['"'mAnn & | wote 7 papers.

Now the pointer p is dynamically bound to the pr i nt () function of whatever object it pointsto. Thefirstcal p -
> print() invokesthe base classfunction Per son: : pri nt (), the second invokes the derived class function
Student:: print(),andthethirdinvokesthe derived classfunction Pr of essor: :print ().Wesay
that the call p- >pri nt () ispolymorphic because its meaning changes according to circumstance.

< previous page page 148 next page >

< previous page page 149 next page >

Page 149
E:I i Notel!

In general, amember function should be declared as virtua
whenever it is anticipated that at |east some of its subclasses will
define their own local version of the function.

Virtual Destructors

Virtual functions are overridden by functions that have the same signature and are defined in subclasses. Since the
names of constructors and destructors involve the names of their different classes, it would seem that constructors
and destructors could not be declared virtual. That isindeed true for constructors. However, an exception is made for
destructors.

The reason for this exception is that when we instantiate a subclass instance we implicitly invoke base class
constructors each of which could alocate memory storage. When we free a subclass we should invoke the
destructors of the subclass and all classes on which it is derived.

When a base class destructor isdeclared vi r t ual , all destructorsin a hierarchy will be invoked on the death of an
object. Thiswill appropriately free all memory that was allocated by a new operator.

Failure to do this could cause what is known as a memory leak. In alarge-scale software system, this could lead to a

catastrophe. Moreover, it isabug that is not easily located. The moral is' declare the base class destructor vi r t ual
whenever your class hierarchy uses dynamic binding.

Avoid Memory Leaks

Declare your base class destructor vi r t ual if you use dynamic
binding!

< previous page page_149 next page >

< previous page page_150 next page >
Page 150

Chapter 12
Stream /O

In this chapter:
Sream Classes

Thei os Class

I 0s State Variables

Thei st r eamand ost r eamClasses
Unformatted Input Functions

Unformatted Output Functions

Stream Manipulators

Stream Classes

The C++ programming language does not include any input/output facilities. These are supplied by using standard
libraries. We have used the directive #i ncl ude <i ost r eam h> in every program that does I/O. Thisincludes

thei ost r eam h header file that includes the definitions for the I/O library function. This chapter describesin
more detail the contents of this library and how it is used.

< previous page page_ 150 next page >

< previous page page_151 next page >
Page 151

The /O library defines a hierarchies of stream classes.

plosy
15'_rea.*:-f) "Cl':'r-tl'Eﬂ."!'l
Sifstream ™ ipatream 1 pEstrean
-ll’-—
LECrartredm iStl'-J'I"'JS'.]'EF.l."!'i SSCrgtrea l..l:hll’;':_.l'l"lﬂ'_lll—ﬂ.l'l":
fscream SLreECyYyeam

The iostream classis the one that we usually use for ordinary 1/0. Note that it is a subclass of both thei st r eam
and the ost r eamclasses, both of which are subclasses of thei 0s base class. The classes with "fstream” in their
name are used for file processing.

Thei os Class

Thei os class serves as the base class for the other stream classes. Its primary purposeis to control the buffer for

whatever stream object has been instantiated. This means that the stream controls how many characters are inserted
into or extracted from the buffer. To do that, thei os object maintains a collection of data elements that control 1/0

behavior. They include such things as the number base (octal, decimal, hexadecimal) that is used, the width of the
display field, the number of digits displayed for floating point numbers, etc. We shall examine how to interface with
thei os class.

i os State Variables

Every stream hasa _st at e datamember that is defined inthei os class. The _st at e member is abit string that
holds several Boolean variables. These state variables are specified in the enumdefinition:

enum { goodbi t =0, /1 all ok

< previous page page 151 next page >

< previous page page_152 next page >
Page 152

eof bit = 01, /'l end of file

failbit = 02, /1l 1ast operation failed
badbit = 04 /1 invalid operation

3

A stream's format flags can only be changed explicitly, and only by
means of the access functions described below. In contrast, a
stream's state variables are changed implicitly, aresult of 1/0
operations. For example, when a user inputs Control-Z to indicate
end-of-file, the ci n'seof flag is set, and we say that the stream is

an eof state.

A stream'sfour state variables (goodbi t, eofbit, fail bit,andbadbit) canbe accessed individualy by
their access functions (good(), eof (), fail (), and bad ()). Statevariablesare generaly used to read
the current state of the stream. The stream conversion operator () isoverloaded to return O if the state is nonzero.
So for example, if i n isaninput stream, then the expression (i n) will evaluate to true if none of the flags are set (i.
e., thereis still more input), and false otherwise.

The second of these access functions overloads the negation operator. It smply callsf ai | () and returnsitsreturn
value, which will be nonzero unless both thef ai | bi t andthebadbi t areclear. The advantage of this alternate

form for determining whether the stream can be used any more is that, like the conversion operator above, thisform
can be used conveniently in conditional expressions.

Example 12.1 Operator operator voi d* () for Loop Control

int n, sum=0; cin >> n;
while (cin) { // loop continues while _state
sum += n; cin >> n;

}

44 11 22
nNZ
sum= 77

Using Control-Z to terminate input is simple and convenient. Pressing this key setsthe eof bi t in theinput stream.
If you want to use it again in the program, it hasto be cleared first. Thisis done with the member function cl ear
(),ascin. clear ();

< previous page page 152 next page >

< previous page page_153 next page >
Page 153

Thei st r eamand ost r eamClasses

Thei st r eamand ost r eamclasses both inherit from thei osclass:

class istream: virtual public ios { //. };
class ostream: virtual public ios { //

Making i os avirtual base class facilitates the multiple inheritance that thei ost r eamclass has from both the
i st reamand ost r eamclasses by preventing multiple copies of thei os classto be made for thel ost r eam
class.

Thei st r eamclass definesthe ci n object and the stream extraction operator >> for formatted input. The
ost r eamclass definesthecout, cerr, andcl og objects and the stream insertion operator << for formatted
output.

The familiar 1/0 operations that use the extraction and insertion operators are called formatted 1/0 because they
recognize the types of the objects accessed and format the data accordingly. For example, if nisan integer with
value 22, thencout < n printsthevaue 22 ininteger format. Thei st r eamand ost r eamclasses also define a

set of member functions for unformatted I/O desribed briefly in the next section that handles data simply as a
sequence of bytes.

Thei st r eamclass defines the stream extraction operator >> which reads datafromi st r eamobjects, which are

usually the standard input device cin (i.e., the keyboard). If successful, this operator returns a reference to the object
so that calls can be chained like

cin >> x >y > z;

If ci nisunsuccessful, it returns 0. Under normal operation, ci n skips white space characters (blanks, tabs,

newlines, etc.). The >> operator will return O when it encounters the end-of-file character. This can be used to
control an input loop:

Example 12.2 Controlling an Input Loop

EZA)

int n, sum= 0;
while (cin >> n) sum += n;
cout <<"The sumis " <<sum <<endl| ;

80 70 60 50 40 30 20 10 ~z
The sumis 360

< previous page page 153 next page >

< previous page page 154 next page >
Page 154

Unformatted Input Functions

Thei st r eamclass defines arich collection of unformatted input functions. Several versions of theget ()
function are defined by thei st r eamclass. Inits simplest form, it has no arguments and simply returns the next
character in the input stream. Its function prototypeisi nt get () ;. Thisversion of the functionistypicaly used
in an input loop as shown by the following fragment:

char c;
while ((c=cin.get()) !=EOF) cout <<c;
cout <<endl;

What is in a nane?

What is in a nane?

| don't know

| don't know

"D

Each call of the cin. get () function reads one nore character fromcin and
returns it to the variable c. Then the statenent inside the | oop inserts c
into the output stream These characters accunulate in a buffer until the end-
of -l1ine character is inserted. Then the buffer is flushed, and the conplete
line is printed just as it had been read.

The expression (c=ci n. get ()) returnsavalue that is compared with the integer constant EOF. Aslong as they
are unegual, the loop continues. When the end-of-file character *Disread, ci n. get () returnsthe value of EOF
(usually -1), thereby terminating the loop.

Another form of theget () function reads the next character from the input stream into its reference char
parameter:

i stream& get(char& c);

This version returns false when the end of file is detected, so it can conveniently be used to control an input loop.
The previous loop control could be equivalently rewritten:

whil e (cin.get(ch))
A third form of theget () functionissimilartotheget|i ne () function. Its prototypeis
i strean& get (char* buf, int n, char delinF'\n');

This reads charactersinto buf until either n- 1 characters are read or the de del i mcharacter is encountered,
whichever comes first. It does not extract del i mfrom the input stream.

Theget | i ne () functionisamost the same asthe third form of theget () function. The only differenceis
that it does extract the delimiter

< previous page page 154 next page >

< previous page page 155 next page >
Page 155
character from the input stream but does not store it in the buf. Its prototypeis

i stream& getline(char* buf, int n, char delinm'\n");

Thei gnor e() functionisusedto "eat" charactersin theinput stream. It ssmply extracts characters, without
copying them into any variable. Its prototype is

i strean& i gnore(int n=1, int delinEOF);

Initssmplest form, ci n. i gnore () extractsone character fromci n. More generally, ci n. i gnore (n)
will extract n charactersfromci n,andci n. i gnore (100000, ' $') would extract all the characters up
toand including thenext ' $' character (or to the end of thefile).

Unformatted Output Functions

Thei st r eamclass defines functions for unformatted output that are anal ogous to unformatted input functions. The
two versions of theput () function are theinverses of the corresponding get () functions:

int put (char c);
ostream& put (char c);

They both insert the character ¢ into the output stream.

Example 12.3 Using the cout . put () Function

This example shows the parallel nature of put () andget () :

char c;
while (cin.get(c)) cout.put(c);
cout <<endl;

The woods are |l ovely, dark and deep.
The woods are | ovely, dark and deep.
But | have prom ses to keep,

But | have prom ses to keep,

"D

Thewrite () function hasversionsthat are theinverses of the corresponding read functions:

ostream& write(const char* buf, int n);
ostream& wite(const unsigned char* buf, int n);

They both transfer n bytes from buf to the output stream.

< previous page page_155 next page >

< previous page page_156 next page >
Page 156

Stream Manipulators

A stream manipulator is aspecial kind of stream class member function. When used with the insertion and
extraction operators, they look like objects. They really are function calls. For example, cout <<endl ; isactually

acall to the stream manipulator functionend!l () .Whenoper at or << isinvoked, it is done so with a pointer
pointing to thecout . endl () function. After printing the newline it returns a pointer to cout .

Socout <<x <<y isactualy processed as(cout <<x) <<y.Afterthecout <<x isprocessed itevaluatesto
areferenceto cout whichinturnevaluatescout <<y. The next example shows how you can write your own
stream manipulator.

Example 12.4 A "Home-Grown" Stream Mani pul ator

ostrearn& Deep(ostrearn& ostr) {
return ostr <<"\a";

%/oi d main() {
| cout <<Deep;

When used as shown here, the stream manipulator sendsthe alert character '\ a' to the output stream which
sounds the system beep.

All stream manipulators work thisway. They are defined with prototypes like this:
i 0s& f(ios& ostr)

ostream& f (ostream& ostr)
I stream& f(ostream& istr)

or, in the case of manipulators with parameters, like this:
i 0s& f(ios& ostr, int n)

ostream& f(ostream& ostr, int n)
istream& f(ostream& istr, int n)

Table 12.1 lists of some of the more common stream manipul ators.

Table 12.1 Stream Manipulators
Manipulator Stream Action
bi nary I 0s Set stream node to binary

(table continued on following page)

< previous page page 156 next page >

< previous page

(table continued from previous page)

Manipul ator

dec i 0s

endl ost ream
ends ostream
flush

hex I 0S

oct i 0s

resetiosflags (long u ios

Stream

ostream

page 157

Action

Read-write integers base 10 (default)

End output line and flush output stream

End output string

Flush output stream

Read/write integers base 16

Read/write integers base 8)

Clear format flags specified by u

f];et base (i nt ost r eam Writeintegers base n (default: 10)

i(ﬁ;fi [l (int ost r eam Set fill character to ch (default: * '}

E;sti osfl ags (Il ong i 0S Set format flags specified by u

ﬁ)et precision (int i 0S g;atfloating point precision = n digits (default:
ﬁ)et w(i nt i 0S Set field width to n columns (default: 0)

t ext i 0S Set stream to text (default)

ws i stream Skip white space

next page >
Page 157

We have already seen how the endl manipulator works. It inserts the newline character ' \ n' into the output
stream and then callsthe f | ush manipulator which "flushes' the buffer.

The ends manipulator ssimply inserts the null character ' \ 0" into the output stream.

Theoct, dec, hex,andset base (n) manipulators are used to change the number base integers that are

input or outpuit.

Example 12.5 Using the oct, dec, and hex Stream Manipulators

int n = 510;

cout << "Hexadeci nal :" <<hex <<n <<endl
cout << " Deci mal : " <<dec <<n <<endl;
cout << " Cctal : " <<oct <<n <<endl;
cout <<"Enter integer in octal: ";

cin >>oct >>n; /'l read integer base 8

Thefirst three cout statements would display n in hexadecimal, decimal, and octal. The ci n statement would

changeinput to be in octal. Recall that the manipulator resets the number base for all subsequent input or output
until another manipulator is used.

Thews manipulator simply eats the next string of white space (blanks, tabs, newlines).

< previous page page 157 next page >

< previous page

Appendix A

C++ Keywords

page 158

next page >
Page 158

C++ has 48 keywords. These specia words are used to define the syntax of the language.

Keyword
asm

auto

br eak
case
catch
char

cl ass
const
conti nue
def aul t
del ete
do
doubl e
el se
enum
extern
fl oat
for

friend

Description

Allows information to be passed to the assembler directly

Storage class for objects that exist only within their own block

Terminates aloop or a switch statement

Used m a switch statement to specify control expression
Specifies actions to take when an exception occurs

An integer type

Specifies a class declaration

Specifies a constant definition

Jumps to beginning of next iteration in aloop

The "otherwise" case in a switch statement

Deallocates memory allocated by a new statement
Specifiesado ... while loop

A real number type

Specifies alternative in an if statement

Used to declare an enumeration type

Storage class for objects declared outside the local block
A real number type

Specifiesafor loop

Specifies afriend function in aclass

(table continued on following page)

< previous page

page 158

Example

ama ("check");
auto int n;

br eak;

switch (n/10)
catch(error)
char c;

class X {...};
const int s=32;
cont i nue;
defaul t: sun0;
del ete a;

do{ ... } while
doubl e x;

else n = 0,
enura bool {...}
extern int max;
float Xx;

for (; ;)
friend int f();

next page >

< previous page

page 159

(table continued from previous page)

Keyword
goto

i f
inline

i nt

| ong
new
oper at or
private
prot ect ed
public
regi ster
return
short

si gned
si zeof
static
struct
switch
tenpl at e
this

t hr ow
try

t ypedef
uni on
unsi gned
vi rtual
voi d

vol atile

Wi | e

< previous page

Description

Causes execution to jJump to alabeled statement
Specifies an if statement

Declares a function whose text is to be substituted for its call

An integer type

Used to define integer and real types

Allocates memory

Used to declare an operator overload

Specifies private declarationsin a class

Specifies protected declarationsin a class

Specifies public declarationsin a class

Storage class specifier for objects stored in registers

Statement that terminates a function and returns a value

An integer type

Used to define integer types

Operator that returns the number of bytes used to store an object
Storage class of objects that exist for the duration of the program
Specifies a structure definition

Specifies a switch statement

Specifies atemplate class

Pointer that points to the current object

Used to generate an exception

Specifies a block that contains exception handlers

Declares a synonym for an existing type

Specifies a structure whose elements occupy the same storage
Used to define integer types

Declares amember function that is defined in a subclass
Designates the absence of atype

Declares objects that can be modified outside of program control

Specifies awhile loop

page 159

next page >

Example

goto error;

if (n>0)

inline int f()
int n;

| ong doubl e x;
int* p=new int;
X operator++();
private: int n;

protected:int n;

public: int n;
register int i;
return O;
short n;

si gned char c;
n = sizeof (float);
static int n;
struct x {...);
switch (n) (.)
Tenpl ate <class T>

return *this;

throw X();
try { ... }
typedef int Num
union z { ... };

unsi gned int b;

virtual int f();
void f();

int volatile n;
whi | e (n>0)

Page 159

next page >

< previous page page_160 next page >
Page 160

Appendix B
C++ Operators

Thistablelists al the C++ operators, grouped by order of precedence. The higher-level precedence operators are evaluated before the lower-
level precedence operators. For example, inthe expression(a - b * c),the* operator will be evaluated first and the - operator second,
because * has precedence level 13 which is higher than the level 12 precedence of -. The column labeled "As' tells whether an operator is
right (R) or left (L) associative. The expression (a- b-c) isevaluatedas((a - b) - c¢) because- isleft associative. The column
labeled "Ar" tells whether an operator operates on one, two, or three operands (unary (1), binary (2), or ternary (3)). The column labeled
"Or" tells whether an operator is overloadable. (See Chapter 8.)

Name Pr As Ar Ov Example
Op
Global scope resolution 17 R 1 N DX
Class scope resolution 17 L 2 N X:iX
Direct member selection 16 L 2 N s.len
-> Indirect member selection 16 L 2 Y p->l en
[] Subscript 16 L 2 Y ali]
() Function call 16 L n‘a Y rand()
() Type construction 16 L n/a Y int (ch)
++ Post-increment 16 R 1 Y n++
- Post-decrement 16 R 1 Y n-
si zeof Size of object or type 15 R 1 N si zeof (a)
++ Pre-increment 15 R 1 Y ++n
- Pre-decrement 15 R 1 Y -n
~ Bitwise complement 15 R 1 Y -S
! Logical NOT 15 R 1 Y I'p
+ 1 plus 15 R 1 Y +n
- 1 minus 15 R 1 Y -n
* Dereference 15 R 1 Y *p

(table continued on following page)

< previous page page_ 160 next page >

< previous page

(table continued from previous page)

Op
&
new

del ete

<<=

>>=

Name

Address

Allocation

Deallocation

Type conversion

Direct member selection
Indirect member selection
Multiplicaion

Division

Remainder

Addition

Subtraction

Bit shift left

Bit shift right

Lessthan

Less than or equal to
Greater than

Greater than or equal to
Equal to

Nt equal to

Bitwise AND

Bitwise XOR

Bitwise OR

Logica AND

Logical OR

Conditional expression
Assignment

Addition assignment
Subtraction assignment
Multiplication assignment
Division assignment
Remainder assignment
Bitwise AND assignment
Bitwise XOR assignment
Bitwise OR assignment
Bit shift left assignment
Bit shift right assignment

Comma

page 161

v
>
7]

e = i e e e e e I ~ N S S T T)
O O O O kR P NN W W W M D O a a o

r o »®¥ »®¥ ©® ©®¥ ©®¥ ©®¥ ®¥ ¥ 3 » o r o O r mrmrc-rrrrrrrrrrr rr x» Ao AW A

O N N N N N N N N N NMNMDN W M 00 O N 0 © ©

>

N N N N N NN N N N N N WO DN DN DN DN DNDNDDNDDNDDNDDNDDNDDNDDNDDNDDNDDNDDNDDDNDDDDND P PP

Q

< < <X < < < < < < < < < 2Z < <<<<=<=<=<=<=<=<=<=<=<=<=<=<=<==<=<z=ZH=x=<2=<=<HXx<

next page >

Page 161
Example
&x
new p
delete p
i nt(ch)
X.*q
p->q
nn
n n
/i
m+n
mn
cout << n
cin > n
X <y
X <=y
X >y
X >=y
X ==Yy
x 1=
sé&t
s™t
s|t
u && v
ull v
u?xy
n =22
n += 8
n- =24
n *=-1
n /=10
n % 10
s &= nmask
s "= mask
s | = mask
s <=1
s >=1

< previous page page_161 next page >

< previous page page_162 next page >
Page 162

Appendix C
Pre-Defined Functions

Describes functions provided in the C++ libraries.

Function <header> Example & Brief Description

abort () <stdlib.h> void abort (); Abortsthe program.

abs() <stdlib.h> int abs (int n); Absolutevaueof n.

acos () <math. h> doubl e acos (doubl e x); Inversecosine (arccosine) of x.
asi n() <math. h> doubl e asi n(doubl e x); Inversesine(arcsine) of x.

atari () <math. h> doubl e at an(doubl e x); Inversetangent (arctangent) of x.

atof () <stdlib.h> double atof (const char* s); Returnsfloatingpoint number represented in
string s.

atoi () <stdlib.h>int atoi (const char* s); Returnsinteger representedin strings.
atol ()<stdlib.h> long atol (const char* s); Returnsinteger representedinstrings.

bad () <iostreamh> int ios: :bad(); Returnsnonzeroif badbi t isset; returnsO otherwise.

bsearch () <stdlib.h> void* bsearch(const void* x, void* a, size_t n, size-t
s, (*cnp) (const void*, const void*)); Implementsbinary search to search for x in the sorted
array a of n elements of size s using the function * cnp to compare elements. If found, a pointer to the element is
returned; otherwise, NULL is returned

ceil () <math.h> double ceil (double x); Returnsx rounded up to the next whole number.
clear() <iostrearn.h> void ios: :clear(int n=0); Changesstream stateto n.

clearerr () <stdio.h> void clearerr(FlILE* p); Clearsend-of-fileand error flags for the file * p.

< previous page page 162 next page >

< previous page page 163 next page >

Page 163
close () <fstream h> void fstreanbase: :close(); Closesthefileattached to the owner object.
cos () <math.h> doubl e cos (doubl e x); Inversecosineof Xx.

cosh () <math. h> doubl e cosh(doubl e x); Hyperboliccosineof x: (ex+ex)/2.

difftime () <time.h> double difftinme(tinme-t t1, time_t t0); Returnstimeeapsed (in
seconds) fromtimet O totimet 1

eof () <lostreamh> int ios :: eof (); Returnsnonzeroif eof bit isset; Returns 0 otherwise.
exit() <stdlib.h> void exit (int n); Terminatesprogram & returnsn to the invoking process
exp() <math. h> doubl e exp(doubl e x); Exponential of x: ex.

fabs() <math. h> doubl e | abs (doubl e x); Absolutevalueof x.

fail() <iostreamh> int ios : : fail (); Retunsnonzeroiffail bit isset; ReturnsO
otherwise.

fclose() <stdio.h>int fclose(FILE* p); Closesthefile*p and flushesall buffers. Returns O if
successful; returns EOF otherwise.

fgetc () <stdio.h> int fgetc(FlILE* p); Reads& returnsnext character from the * p if possible;
el se returns EOF.

fgets() <stdio.h> char* fgets(char* s, int n, FILE* P); Readsthenextlinefromthefile
*p and storesitin*s. The "next line" means either the next n- 1 characters or all the characters up to the next
endline character, whichever comesfirst. The NUL is appended to the characters stored in s. Returns s if successful;
returns NULL otherwise.

fill () <iostreamh> char ios: :fill(); Returnscurrentfill character.char ios: :fill
(char c¢) ; Changesfill char to ¢ and returns previousfill character.

flags () <lostream h> long ios: :flags (); Returnsthecurrentformatflags.| ong i os:
flags (1 ong n); Changesformat flagsto n; returns previous flags.

floor () <math.h> double floor (double x); Returnsx rounded down to the next whole number.

flush () <iostream h> ostrean& ostream: : flush(); Flushestheoutput buffer and returns
the updates stream.

fopen () <iostream h> FILE* fopen(const char* p, const char* s); Opensfile*pand
returns address of the file structure if successful; else returns NULL. String s setsfilesmode: "r" = read, "W' =
write, "a" = append, "r+" or "w+" = reading and writing an existing file. and "a+" = reading and appending an
existing file.

fprintf ()<iostreamh> int fprintf (FILE* p, const char* s); Writesformatted output
tothefile* p. Returns the number of characters printed if successful; otherwise it returns a negative number.

< previous page page 163 next page >

< previous page page 164 next page >
Page 164

putc() <stdio.h>int fputc(int c, FILE* p); Writescharacter c tothefile* p. Returnsthe
character written or EOF if unsuccessful.

fputs() <iostreamh> int fputs(const char* s, FILE* p); Writesstring s tothefile* p.
Returns a nonnegative integer if successful; otherwise it returns EOF

fread() <iostream h> size-t fread(void* s, size-t k, size-t n, FILE* p) ; Reads

up to nitems each of size k from the file * p and stores them at location sin memory. Returns the number of items
read

fscanf () <lostream h> int fscanf (FILE* p, const char* s); Readsformattedinput from
thefile *p and storesit at location. Returns EOF if end of file; otherwise returns the number of items read.

fseek () <iostreamh> int fseek(FILE* p, long k, int base); Repositionsthe position
marker of thefile *p k bytes from its base, where base should be SEEK_SET for the beginning of thefile,
SEEK _CUR for the current position of the file marker or SEEK _END for the end of the file. Returns O if successful.

ftell () <iostreamh> long ftell (FILE* p); Returnsthelocation of the position marker in file
*p or returns-1.

fwite () <lostream h> size-t fwite(void* s, size-t k, size-t n, FILE* p);
Writes n items each of size k to the file * p and Returns the number written.

gcount () <stdio.h> int istream :gcount(); Returnsthenumber of characters most recently read.
get() <stdio.h>int istream :get(); istream& istream :get (signed char& c);
istream& i stream :get (unsigned char& c); istreanm& i stream :get (signed
char* b, int n, char e="\n"); istrean& i stream :get(unsigned char* b, int n,

char e=, \n'); Readsthenext character c from theistream. Thefirst version returns ¢ or EOF. The last two
versions read up to n charactersinto b, stopping when e is encountered.

getc () <stdio.h> int getc (FILE* p); Sameasfgetc () exceptimplemented asamacro.
getchar () <stdio.h> int getchar (); Returnsthenextcharacter from standard input or returns EOF.

gets () <stdio.h> char* gets (char* s); Readsnextlinefrom standard input and storesitins.
Returnss or NULL if no characters are read.

good () <iostream h> int ios : : good (); Returnsnonzeroif stream stateis zero; returns zero
otherwise.

ignore () <iostreamh> istream& i gnore(int n=1, int e=EOF); Extractsupto n characters
from stream, or up to character e, which ever comesfirst. Returns the stream.

I sal num () <ctype.h> int isalnun(int c); Returnsnonzeroif c isan aphabetic or numeric
character; returns O otherwise.

< previous page page_164 next page >

< previous page page_165 next page >
Page 165

i sal pha () <ctype h> int isalpha(int c); Returnsnonzeroif c isan aphabetic character;
otherwise returns 0.

iscntrl () <ctype h> int iscntrl (int c); Returnsnonzeroif c isacontrol character; otherwise
returns 0.

resdigit () <ctype h>int isdigit (int c); Returnsnonzeroif c isadigit character; otherwise
returns 0.

i sgraph() <ctype h> int isgraph(int c); Returnsnonzeroif c isany non-blank printing character;
otherwise returns 0.

I slower () <ctype h> int islower(int c); Returnsnonzeroif c isalowercase aphabetic
character; otherwise returns 0.

isprint () <ctype h>int isprint (int c); Returnsnonzeroif c isany printing character;
otherwise returns O.

I spunct () <ctype h> int ispunct (int c); Returnsnonzeroif c isany punctuation mark, except
the alphabetic characters, the numeric characters, and the blank; otherwise returns 0.

i sspace () <ctype.h> int isspace (int c); Returnsnonzeroif c isawhite-space character,

including the blank, the form feed the newline. the carriage return, the horizontal tab, and the vertical tab; otherwise
returns O.

I supper () <ctype.h> int isupper (int c); Returnsnonzeroif c isan uppercase aphabetic
character; otherwise returns 0.

isxdigit () <ctype.h> int isxdigit(int c); Returnsnonzeroif c isoneof the 10 digit characters
or one of the 12 hexadecimal digit letters. 'a, 'b', 'c', 'd, '€, 'f', 'A", 'B', 'C', 'D', 'E', or 'F'; otherwise Returns 0.

| abs () <stdlib.h>1long [abs (Iong n); Absolutevalueof n.
|l og () <hath.h> doubl e | og(doubl e x); Natural log of x.
| 0g10 () <hath. h> double | 0gl0 (double x); Commonlogof x.

menchr () <string.h> void* nenchr(const void* s, int c, size-t k); Searchesk bytes
of memory beginning at s for character c. If found, the address of itsfirst occurrence is returned; NULL otherwise.

mencnp () <string.h> int nencnp(const void* sl, const void* s2, size-t k);
Comparesthe k bytes of memory beginning at s1 with the k bytes of memory beginning at s2 and returns a

negative, zero. or a positive integer according to whether the first string is lexicographically less than, equal to, or
greater than the second string.

mencpy () <string.h> void* nencpy(const void* sl1, const void* s2, size-t k);
Copiesthe k bytes of memory beginning at s2 into memory location s1 and returnss1.

menmove () <string.h> int memmove(const voi d* sl1, const void* s2, size-t k);
Same as memcpy/() except strings may overlap.

open() <fstream h> void fstream :open(const char* f, int m int p=filebuf:
openprot); void ifstream :open(const char* f, int nmrios: :in, int
p=fil ebuf: :openprot); void ofstream

< previous page page 165 next page >

< previous page page_166 next page >
Page 166

:open(const char* f, int nmrios: :out, int p=filebuf: :open-prot); Opensthefile
f in mode mwith protection p.

peek () <iostreamh> int istream :peek(); Returnsnextcharacter (or EOF) from stream without
extracting it.

pow () <math h> doubl e pow(doubl e x, doubl e y); Returnsx raised tothe powery (xy).

precision () <iostreara.h> int ios: :precision(); int ios: :precision (int Kk);
Returns the precision for the stream. The second version changes the precision to k and returns the old precision.

tolower () <ctype. h>int tolower (int c); Returnsthelowercaseversionof c if c isan
uppercase alphabetic character; otherwise returnsc.

toupper () <ctype.h> int toupper(int c); Returnstheuppercaseversionof c if c isanlowercase
alphabetic character; otherwise returnsc.

< previous page page_166 next page >

< previous page

Index

A
Access functions, 102-03, 133 -34
Addition operator, 132
Append operator, 132-33
Arithmetic operations, 7-8
Arithmetic operators, 117-18
Arrays, 61-62
definition of types, 67-68
dynamic, 79-81
enumeration types, 67
index, 64-65
initializating, 62-63
multidimentional, 65-66
passing as function arguments, 63-64
pointers, 75-77, 81-82
processing, 62
string, 91
Assignment
coumpound statements, 11
operator, 7, 114, 130-32
Associativity, 8-9
B
Boolean
expressions, 23-24
function, 52

br eak statement, 37-38

page 167

next page >
Page 167

C
Characters, 3-4, 11-12, 90-96
ci n functions, 87-90
Classes, 97-112
declarations, 98-101
i 0s, 151
I stream 153
pr ot ect ed, 142-44
ost ream 153
String, 125-36
Comments, 5
Comparison operator, 134-35
Composition, 137-40
Compound
assignment 11
conditions, 21-23
statements, 20
Conditional expression operator, 27
Constant objects, 107
Constants, 41
Constructors, 101-02, 127-28
copy, 104-07, 129-30
string, 128
cont i nue statements, 38-39

Copy constructors, 104-07, 129-30

D

Declaration, 5-7, 98-101

Decrement operators, 10-11, 98-101, 121-23
Default arguments, 59-60

del et e operator, 78-79

Derived types, 72-73
do. .. whi | e statement, 35

Dynamic arrays, 79-81

E

E-format, 13

< previous page

page 167

next page >

< previous page

Enumeration types, 29-30
Errors, 13

exi t funtion, 59

F
Floating-point values, 13
f or statement, 35-37
Functions
access, 102-03, 133-34
Boolean, 52-53
character, 90-96
constructor, 101-02
declarations, 48-50
definitions, 48-50
exit,59
/0, 53-54
local variables, 51

mai n, 59

separative compilation, 50-51

standard C library, 43-45
unformatted, 154-57
user defined, 45-46

voi d, 52

G

got o statement, 39-40

|
I/O functions, 53-54

i f statement, 17-18

if ... else statement, 18

page 168

next page >
Page 168

Increment operators, 10-11, 121-23
Inheritance, 140-42, 144
Initialization, 6-7, 62-63
Input, 15-17
Integer types, 11-12
I 0s class, 151

variables, 151-52

i st reamclass, 153

K

Keywords, 21

L

L values, 73-74

M

mai n function, 59

N
Nested conditionals, 24-27
new operator, 77-78

NUL, 82

NULL, 82

O

Objects, 7, 40-41, 73-74

Operators
additional, 132
append, 132-33
arithmetic, 7-8, 117-18
assignment, 7, 114, 130-32
comparison, 134-35
conditional expression, 27

conversion, 120-21

decrement, 10-11, 121-23
del et e, 78-79
increment, 10-11, 121-23
new, 77-78
output, 3
overloading, 113-124
precedence, 8-9
relational, 18-19, 118-19
stream, 119-20, 135-36
subscript, 123-24

ost r eamclass, 153

Output operator, 3

Overflow errors, 13

Overloading, 58, 113-24

P
Passing by reference, 54-56

Pointers, 70, 72, 75-77, 81-82, 85, 108-10, 114-16
Polymorphism, 145-49

Precedence operator, 8-9

pr ot ect ed class members, 142-44

< previous page

page 168

next page >

< previous page

Public methods, 103-04

R

Real types, 12

References, 70-71, 74
Relational operators, 18-19, 118

Roundoff errors, 13

S
Scope, 28-29, 57-58
Simple statements, 7
Standard C library functions, 43-45
Statements
br eak, 37-38
cont i nue, 38-39
do...while,35
for, 3537
got o, 39-40
i f,17-18
if...else, 18
swi tch, 27-28
whi | e, 33-34
static
data members, 110- 11
function members, 111-12
Stream operators, 119-20, 135-36, 150-57
string class, 125-36
access functions, 134-35
addition operator, 132

append operator, 132-33

page 169

Page 169

assignment operator, 130-32
comparison operator, 135
constrcutor, 128-29
copy constructor, 129-30
destructor, 129
interface, 126-27
stream operator, 125-36
Strings, 84-96
arrays, 91
C-string handling library, 91-96
1/0, 86-87
length, 3-4
literal, 3-4
Structures, 108
Subscript operator, 123-24

SW t ch statement, 27-28

-
Test drivers, 46-48

t hi s pointer, 114-16

Type conversion, 30-32
types, 67-68

\%

Variables, 5-7, 41, 51, 151-52
voi d, 82-83

Virtual destructors, 149

Virtual functions, 145-49

U
Underflow errors, 13

user-defined functions, 45-46

W

whi | e statements, 33-34

< previous page page 169

	Локальный диск
	cover
	page_i
	page_ii
	page_iii
	page_iv
	page_v
	page_1
	page_2
	page_3
	page_4
	page_5
	page_6
	page_7
	page_8
	page_9
	page_10
	page_11
	page_12
	page_13
	page_14
	page_15
	page_16
	page_17
	page_18
	page_19
	page_20
	page_21
	page_22
	page_23
	page_24
	page_25
	page_26
	page_27
	page_28
	page_29
	page_30
	page_31
	page_32
	page_33
	page_34
	page_35
	page_36
	page_37
	page_38
	page_39
	page_40
	page_41
	page_42
	page_43
	page_44
	page_45
	page_46
	page_47
	page_48
	page_49
	page_50
	page_51
	page_52
	page_53
	page_54
	page_55
	page_56
	page_57
	page_58
	page_59
	page_60
	page_61
	page_62
	page_63
	page_64
	page_65
	page_66
	page_67
	page_68
	page_69
	page_70
	page_71
	page_72
	page_73
	page_74
	page_75
	page_76
	page_77
	page_78
	page_79
	page_80
	page_81
	page_82
	page_83
	page_84
	page_85
	page_86
	page_87
	page_88
	page_89
	page_90
	page_91
	page_92
	page_93
	page_94
	page_95
	page_96
	page_97
	page_98
	page_99
	page_100
	page_101
	page_102
	page_103
	page_104
	page_105
	page_106
	page_107
	page_108
	page_109
	page_110
	page_111
	page_112
	page_113
	page_114
	page_115
	page_116
	page_117
	page_118
	page_119
	page_120
	page_121
	page_122
	page_123
	page_124
	page_125
	page_126
	page_127
	page_128
	page_129
	page_130
	page_131
	page_132
	page_133
	page_134
	page_135
	page_136
	page_137
	page_138
	page_139
	page_140
	page_141
	page_142
	page_143
	page_144
	page_145
	page_146
	page_147
	page_148
	page_149
	page_150
	page_151
	page_152
	page_153
	page_154
	page_155
	page_156
	page_157
	page_158
	page_159
	page_160
	page_161
	page_162
	page_163
	page_164
	page_165
	page_166
	page_167
	page_168
	page_169

